資料1-4 Doc No. MA035B-SC-B01 Rev.1 2022年1月20日 日立造船株式会社

補足説明資料16-4

16条 燃料体等の取扱施設及び貯蔵施設

除熱機能に関する説明資料

無断複製·転載禁止 日立造船株式会社

目 次

1.	要求事項		 	 •••••	 $\cdot 1$
2.	要求事項へ	の適合性	 	 •••••	 $\cdot 4$
3.	参考文献		 	 •••••	 ·31

- 別紙1 除熱解析のモデル化及び解析条件について
- 別紙2 除熱解析の設計基準値における参考文献の記載内容について
- 別紙3 貯蔵建屋の除熱評価について
- 別紙4 貯蔵施設における Hitz-P24 型の取扱上の安全性について
- 別紙5 除熱解析に使用する解析コードについて

1. 要求事項

発電用原子炉施設に係る特定機器の型式証明申請において、特定兼用キャスクの除熱 機能に関する要求事項は、以下のとおりである。

- (1) 設置許可基準規則要求事項
- a. 設置許可基準規則第16条第4項第二号 使用済燃料の崩壊熱を適切に除去することができるものとすること。
- b. 設置許可基準規則解釈別記4第16条第3項

第16条第4項第2号に規定する「崩壊熱を適切に除去することができる」とは、第 5項に規定するもののほか、貯蔵事業許可基準規則解釈第6条並びに第17条第1項 第2号(貯蔵建屋を設置する場合に限る。)及び第3号に規定する金属キャスクの設計 に関する基準を満たすことをいう。

- ▶ 貯蔵事業許可基準規則解釈第6条
 - 第6条に規定する「崩壊熱を適切に除去できるもの」とは、以下の設計をいう。
 - 使用済燃料の温度を、被覆管のクリープ破損及び被覆管の機械的特性の低下を
 防止する観点から制限される値以下に維持できる設計であること。
 - 二 金属キャスクの温度を、基本的安全機能を維持する観点から制限される値以下 に維持できる設計であること。
 - 三 貯蔵建屋(使用済燃料貯蔵施設において金属キャスク等を収納する建物をいう。 以下同じ。)は、金属キャスクの除熱機能を阻害しない設計であること。また、 貯蔵建屋の給排気口は積雪等により閉塞しない設計であること。
 - 四 使用済燃料を金属キャスクに収納するに当たっては、除熱機能に関する評価で 考慮した使用済燃料の燃焼度に応じた配置の条件又は範囲を逸脱しないよう必 要な措置が講じられること。
- ▶ 貯蔵事業許可基準規則解釈第17条第1項
 - 第1項に規定する「適切に監視することができる」とは、以下の設計をいう。
 - 一 (略)
 - 二 貯蔵建屋内の雰囲気温度が異常に上昇しないことを監視できること。
 - 三 使用済燃料及び金属キャスクの温度が制限される値以下に維持されていること を評価するために必要なデータを測定等により取得できること。
- c. 設置許可基準規則解釈別記4第16条第5項
 - ・第16条第2項第1号ハ及び同条第4項各号を満たすため、兼用キャスクは、当該 兼用キャスクを構成する部材及び使用済燃料の経年変化を考慮した上で、使用済 燃料の健全性を確保する設計とすること。ここで、「兼用キャスクを構成する部材

及び使用済燃料の経年変化を考慮した上で、使用済燃料の健全性を確保する設計」 とは、以下を満たす設計をいう。

- ・設計貯蔵期間を明確にしていること。
- ・設計貯蔵期間中の温度、放射線等の環境条件下での経年変化を考慮した材料及び 構造であること。
- (2) 原子力発電所敷地内での輸送・貯蔵兼用乾式キャスクによる使用済燃料の貯蔵に関 する審査ガイド確認事項

「2.安全機能の確保 2.3 除熱機能」及び「4. 自然現象に対する兼用キャスクの設計 4.4 監視機能」には、以下のように記載されている。

【審査における確認事項】

Γ

- (1) 設計上想定される状態において、使用済燃料の崩壊熱を適切に除去することができること。
 -]

【確認内容】

ſ

以下を踏まえ除熱設計が妥当であること。

- 使用済燃料の崩壊熱評価
 使用済燃料の崩壊熱は、検証され適用性が確認された燃焼計算コードを使用して 求めること。また、燃料型式、燃料体の実形状、燃焼度、濃縮度、冷却年数等を条 件として計算した核種の生成及び崩壊から発熱量として求めること
- 2) 兼用キャスク各部の温度評価
 - a. 兼用キャスクの各部の温度は、検証され適用性が確認された伝熱解析コードを 使用して求めること。また、使用済燃料の崩壊熱、外部からの入熱及び兼用キャス ク周囲の温度を条件とし、及び兼用キャスクの実形状を適切にモデル化すること。
 - b. 安全機能及び兼用キャスクの構造強度を維持する観点から、a.で求めた温度は、 設計上想定される状態において、兼用キャスクの構成部材が健全性を保つ範囲に 収まること。ここで、「健全性を保つ範囲」とは、兼用キャスクの各部の安全機能 を維持する構造健全性及び性能を維持できる温度の範囲をいう。
- 3) 燃料被覆管の温度評価
 - a. 燃料被覆管の温度は、検証され適用性が確認された伝熱解析コードを使用して 求めること。また、1)で求めた使用済燃料の崩壊熱と 2)で求めた兼用キャスク

無断複製·転載禁止 日立造船株式会社

の各部の温度を条件とし、使用済燃料集合体、バスケット等の実形状を適切にモデル化すること。

- b. 燃料被覆管のクリープ破損及び機械的特性の低下を防止する観点から、a.で求めた温度は、設計上想定される状態において、制限される範囲に収まること。ここで、「制限される範囲」とは、燃料被覆管の構造健全性を維持できる温度の範囲をいう。
- 4) 貯蔵建屋の除熱評価
 - 貯蔵建屋を設置する場合は、兼用キャスクの除熱機能を阻害しないこと。また、
 貯蔵建屋の給排気口は積雪等により閉塞しないこと。
 - ② 貯蔵建屋を設置する場合であって、放水による冷却等応急復旧による除熱機能の回復を期待するときには、その実施に係る体制を適切に整備すること。

]

【審査における確認事項】

Γ

蓋間圧力及び兼用キャスク表面温度について、適切な温度での監視をすること。

]

【確認内容】

Γ

- 5) 蓋間圧力を適切な頻度で監視すること。ここで、適切な頻度とは、閉じ込め機能が 低下しても、FP ガス等の放出に至る前に、密封シール部の異常を検知できる頻度 をいう。頻度の設定に当たっては、設計貯蔵時間中の兼用キャスク発熱量の低下、 周囲環境の温度変化及び蓋間圧力の変化を考慮する。
- 6) 兼用キャスク表面温度を適切な頻度で監視すること。ここで、適切な頻度とは、除 熱機能が低下しても、兼用キャスクや燃料被覆管が健全であるうちに異常を検知 できる頻度をいう。

]

3

- 2. 要求事項への適合性
 - (1) 設置許可基準規則への適合性

Hitz-P24型の除熱機能については、以下のとおり設置許可基準規則に適合している。

- a. 設置許可基準規則第16条第4項第二号
 - ・使用済燃料の崩壊熱を適切に除去することができるものとすること。
- b. 設置許可基準規則解釈別記4第16条第3項
 - ・第16条第4項第2号に規定する「崩壊熱を適切に除去することができる」とは、第 5項に規定するもののほか、貯蔵事業許可基準規則解釈第6条並びに第17条第1 項第2号(貯蔵建屋を設置する場合に限る。)及び第3号に規定する金属キャスクの 設計に関する基準を満たすことをいう。
 - ▶ 貯蔵事業許可基準規則解釈第6条 第6条に規定する「崩壊熱を適切に除去できるもの」とは、以下の設計をいう。
 - 使用済燃料の温度を、被覆管のクリープ破損及び被覆管の機械的特性の低下を
 防止する観点から制限される値以下に維持できる設計であること。
 - 二 金属キャスクの温度を、基本的安全機能を維持する観点から制限される値以下 に維持される値以下に維持できる設計であること。
 - 三 貯蔵建屋(使用済燃料貯蔵施設において金属キャスク等を収納する建物をいう。以下同じ。)は、金属キャスクの除熱機能を阻害しない設計であること。また、貯蔵建屋の吸排気口は積雪等により閉塞しない設計であること。
 - 四 使用済燃料を金属キャスクに収納するに当たっては、除熱機能に関する評価で 考慮した使用済燃料の燃焼度に応じた配置の条件又は範囲を逸脱しないよう 必要な措置が講じられること。
 - ▶ 貯蔵事業許可基準規則解釈第17条第1項
 - 第1項に規定する「適切に監視することができる」とは、以下の設計をいう。
 - 二 貯蔵建屋内の雰囲気温度が異常に上昇しないことを監視できること。
 - 三 使用済燃料及び金属キャスクの温度が制限される値以下に維持されているこ とを評価するために必要なデータを測定等により取得できること。

Hitz-P24 型は、動力を用いずに使用済燃料の崩壊熱を適切に除去するため、使用済燃料の崩壊熱を特定兼用キャスクの外表面に伝え、周囲空気等に伝達することにより除熱する設計とし、使用済燃料の健全性及び特定兼用キャスクの安全機能を有する構成部材の健全性を維持するために、使用済燃料及び特定兼用キャスクの温度を制限される値以下に維持する方針とする。

燃料被覆管の温度は、設計貯蔵期間を通じて、燃料被覆管のクリープ破損及び燃料被覆 管の機械的特性の低下を防止する観点から、燃料被覆管の累積クリープひずみが1%を 超えない温度、照射硬化の回復により燃料被覆管の機械的特性が著しく低下しない温度、 及び水素化物の再配向により燃料被覆管の機械的特性の低下が生じない温度以下とする ため、貯蔵する使用済燃料に以下の制限を設ける。

・17×17 燃料 48,000MWd/t (A型及びB型) 275℃以下

また、Hitz-P24型は、特定兼用キャスクの安全機能を維持する観点から、特定兼用キャスクの温度を構成部材の健全性が維持される温度以下に制限する設計とし、Hitz-P24型の主要な構成部材の温度は、以下の制限を設ける。

・胴、外筒及び蓋部	350℃以下
・中性子遮蔽材	149℃以下
・金属ガスケット	130℃以下
・バスケットプレート	250℃以下

さらに、Hitz-P24 型は、使用済燃料及び特定兼用キャスクの温度が制限される値以下 に維持されていることを評価するために、特定兼用キャスク外表面の温度を測定できる 設計とする。

2. (2)審査ガイドへの適合性〔確認内容〕1)から 3)への説明に示すとおり、特定兼用 キャスクの構成部材の温度は、使用済燃料の崩壊熱、外部からの入熱及び周囲温度等を条 件として、Hitz-P24型の実形状を二次元でモデル化し、伝熱解析コード ABAQUS を使 用して求める。また、燃料被覆管の温度は、使用済燃料の崩壊熱とバスケットの温度を条 件として、燃料集合体の径方向断面の二次元モデルを用い、伝熱解析コード ABAQUS を 使用して求める。使用済燃料の崩壊熱は、使用済燃料の型式、燃焼度、濃縮度、冷却期間 等を条件に燃焼計算コード ORIGEN2 を使用して求め、使用済燃料集合体の燃焼度に応 じた収納位置を入力条件として、燃料被覆管及び主要な構成部材の温度を評価する。構成 部材の温度評価に当たっては、使用済燃料の軸方向の燃焼度分布を考慮して、最大崩壊熱 量を上回る崩壊熱量を設定するとともに、燃料被覆管の温度評価に当たっては、軸方向を 断熱条件とするなど、十分な保守性を見込むこととする。上記条件に基づく解析の結果、 燃料被覆管及び構成部材の温度は制限温度以下となることを確認した。

なお、貯蔵事業許可基準規則解釈第6条第三号に示される貯蔵建屋の除熱設計、同第6 条第四号に示される使用済燃料の燃焼度に応じた配置の条件又は範囲を逸脱しないよう 必要な措置が講じられること、及び同第17条第1項第二号に示される貯蔵建屋内の雰 囲気温度(周囲温度)の監視については型式証明申請の範囲外(設置(変更)許可時に別 途確認)である。 c. 設置許可基準規則解釈別記4第16条第5項

- ・第16条第2項第1号ハ及び同条第4項各号を満たすため、兼用キャスクは、当該兼 用キャスクを構成する部材及び使用済燃料の経年変化を考慮した上で、使用済燃料 の健全性を確保する設計とすること。ここで、「兼用キャスクを構成する部材及び使 用済燃料の経年変化を考慮した上で、使用済燃料の健全性を確保する設計」とは、以 下を満たす設計をいう。
 - ・設計貯蔵期間を明確にしていること。
 - ・設計貯蔵期間中の温度、放射線等の環境条件下での経年変化を考慮した材料及 び構造であること。

Hitz-P24型の設計貯蔵期間は60年である。また、補足説明資料16-6「材料・構造健 全性(長期健全性)に関する説明資料(MA035B-SC-F01)」に示すとおり、特定兼用キ ャスクの構成部材について、設計貯蔵期間中の温度、放射線等の環境及びその環境下での 腐食、クリープ、応力腐食割れ等の経年変化に対して十分な信頼性を有する材料を選定し、 その必要とされる強度及び性能を維持することで使用済燃料の健全性を確保する設計と する。 (2) 審査ガイドへの適合性

審査ガイドでは、特定兼用キャスクの有する安全機能(臨界防止機能、遮蔽機能、除熱機能及び閉じ込め機能)に係る設計の基本方針の妥当性を確認することが定められており、Hitz-P24型の除熱機能については、以下のとおり審査ガイドの確認内容に適合している。

〔確認内容〕

- 使用済燃料の崩壊熱評価
 使用済燃料の崩壊熱は、検証され適用性が確認された燃焼計算コードを使用して 求めること。また、燃料型式、燃料体の実形状、燃焼度、濃縮度、冷却年数等を条 件として計算した核種の生成及び崩壊から発熱量として求めること。
- 2) 兼用キャスク各部の温度評価
 - a. 兼用キャスクの各部の温度は、検証され適用性が確認された伝熱解析コードを 使用して求めること。また、使用済燃料の崩壊熱、外部からの入熱及び兼用キャス ク周囲の温度を条件とし、及び兼用キャスクの実形状を適切にモデル化すること。
 - b. 安全機能及び兼用キャスクの構造強度を維持する観点から、a.で求めた温度は、 設計上想定される状態において、兼用キャスクの構成部材が健全性を保つ範囲に 収まること。ここで、「健全性を保つ範囲」とは、兼用キャスクの各部の安全機能 を維持する構造健全性及び性能を維持できる温度の範囲をいう。
- 3) 燃料被覆管の温度評価
 - a. 燃料被覆管の温度は、検証され適用性が確認された伝熱解析コードを使用して 求めること。また、1)で求めた使用済燃料の崩壊熱と2)で求めた兼用キャスク の各部の温度を条件とし、使用済燃料集合体、バスケット等の実形状を適切にモデ ル化すること。
 - b. 燃料被覆管のクリープ破損及び機械的特性の低下を防止する観点から、a.で求めた温度は、設計上想定される状態において、制限される範囲に収まること。ここで、「制限される範囲」とは、燃料被覆管の構造健全性を維持できる温度の範囲をいう。
- (1) 除熱機能に関する構造

Hitz-P24型は、使用済燃料から発生する崩壊熱を熱伝導及び放射により特定兼用 キャスクの外表面に伝え、対流及び放射により周囲の空気等に伝達する。

特定兼用キャスク貯蔵施設における使用済燃料の崩壊熱の主要な伝熱形態は次の とおりである(図1参照)。

- a) 崩壊熱は、使用済燃料の被覆管表面からヘリウムガスを介した熱伝導及び放 射によりバスケット内面へ伝えられる。
- b) バスケット内面に伝えられた熱は、バスケット内の熱伝導及び放射によりバ

無断複製·転載禁止 日立造船株式会社

スケット外周部へ伝えられる。

- c) バスケット外周部に伝えられた熱は、ヘリウムガスを介した熱伝導及び放射 により胴内面へ伝えられる。
- d) 胴内面に伝えられた熱は、熱伝導により胴外面へ伝えられる。
- e) 胴外面に伝えられた熱は、伝熱フィンの伝導により外筒内面へ伝えられる。
- f) 外筒内面に伝えられた熱は、熱伝導により外筒外面へ伝えられる。
- g) 外筒外面に伝えられた熱は、特定兼用キャスク外面の対流により周囲の空気 へ、放射により貯蔵建屋へ、それぞれ伝えられる。
- h) 特定兼用キャスク周囲の空気及び貯蔵建屋に伝えられた熱は、貯蔵建屋の自 然換気により建屋外環境へ放出される。

無断複製·転載禁止 日立造船株式会社

(2) 除熱機能に関する評価

Hitz-P24型の除熱解析は図2に示す除熱解析フローに従って行う。なお、除熱解 析に用いるコードは別紙5に示すとおり検証され、適用性が確認されている。

a. 使用済燃料の崩壊熱評価方法

使用済燃料の崩壊熱量は、表 1 に示す使用済燃料集合体の型式、燃焼度、濃縮 度、冷却期間等を条件に燃焼計算コード ORIGEN2 を使用して求められる。

ここで、使用済燃料集合体の燃焼度分布を考慮して、最大崩壊熱量(15.9kW) を上回る崩壊熱量(以下「設計崩壊熱量」という。)を次のとおり設定する(図 3 参照)。

[設計崩壊熱量]=[燃料集合体(平均燃焼度^(注1))1体当たりの崩壊熱量 (PF^(注2)考慮有り)]×1.05^(注3)×[収納体数]

使用済撚料の崩壊熱量計算に用いる計算条件及び計算結果を表 2 に示す。表 2 より、17×17 燃料について、燃焼計算で使用する燃料仕様は冷却期間を除き A 型と B 型で同じであり、除熱解析では冷却期間が短く発熱量が大きい A 型を対象として評価するため、A 型の値で代表する。

Hitz-P24型の除熱解析における収納物条件を表3に示す。

- (注1) 平均燃焼度とは、Hitz-P24型1基当たりに収納される使用済燃料集合体の燃焼度の平均値を示す。
- (注 2) PF (ピーキングファクタ)とは、使用済燃料集合体の軸方向燃焼度の平 均値に対する燃焼度の比を包含する燃焼度分布を示す。
- (注 3) ORIGEN2 コードの計算結果に 5%の不確かさを考慮する。

		仕	様	
	17×17 燃料			
	A型 B型		B 型	
武小厅	燃料集合体幅(mm)		約	214
カシャス	全長 (mm)	約 4100		
質量 (kg)		約 680		680
做到在会休1休	初期濃縮度(wt%)			
の仕様	最高燃焼度(MWd/t)	48,000以下		0以下
の江塚	冷却期間(年)	$15 \downarrow$	以上	17 以上
	収納体数(体)	24		4
ΠItZ-P24 空 1 奉 当をれの仕様	平均燃焼度(MWd/t)	44,000以下		
ヨにりの江塚	崩壊熱量(kW)	15.9以下		

表1 燃料集合体の仕様

	体田这牌船	生くけの発怒		17×17 燃料	
	使用資源科集宣体の種類		A 型		B型
	最高燃	焼度(MWd/t)		48,000	
	平均燃焼度(MWd/t)			44,000	
	比出	力(MW/t)			
	照射期間	最高燃焼度			
	(日)	平均燃焼度			
	濃縮	度(%) ^(注1)			
	冷去	即期間(年)	15		17
山岱	ウラ	ン重量 (kg)		470	
条件	ピーキン	·グファクタ ^(注2)			
計算	炵	然料集合体		753.6	
結果	1体当たり)の崩壊熱量(W)	(平均燃焼度)	
収納体数(体)			24		
	Hitz-P24 型	1基当たりの	10.1		
設計崩壞熱量(kW) ^(注 3)		18.1			

表2 崩壊熱量計算条件及び結果

(注1) 収納される使用済燃料集合体の最小値を用いる。

(注2) ノードは燃料有効部を軸方向に48分割したものである。

(注3) 除熱解析では、ピーキングファクタを考慮した崩壊熱量から計算した設計崩壊 熱量を用いる。

百日		1	特定兼用キャス	ク収納位置制限	角军市	斤条件
	· · · · · · · · · · · · · · · · · · ·		中央部	外周部	中央部	外周部
		種類	17×17型(A型・B型)		17×17型 (A型)	
		初期濃縮度(wt%)				
	湖北住入什	ウラン重量 (kg)				
収	燃料集合体 1体の仕様	最高燃焼度(GWd/t) (燃料集合体平均)	≦48	≦ 44	48	(40) (注 2)
納物仕		冷却期間 (年)	A型:≧15 B型:≥17		15	
様	バーナブルポイズン 集合体の仕様	最高燃焼度(GWd/t)				
		冷却期間(年)				
	Hitz-P24 型 1 基当たりの仕様	平均燃焼度(GWd/t)	\leq	44		44
配置 (注5)				中央部外周部	40 40 40 48 40 48 40 40	40 40 48 48 48 48 48 48 48 48 48 48 48 48 48 48 40 40

表3 除熱解析における収納物条件概要

(注1)保守的に最小値とする。

(注 2) 本値は外周部の燃料集合体における燃焼度の相当値である。外周部に入力する崩壊熱量は、Hitz-P24型の総崩壊熱量が平均燃 焼度の崩壊熱量×収納体数(24 体)となるように調整した値である。

(注3)組み合わせる使用済燃料集合体の冷却期間以上とする。

(注4)バーナブルポイズン集合体は伝熱体となるため、装荷しない場合を想定しモデル化しない。

(注5) 数値は燃焼度(GWd/t)を示す。

無断複製·転載禁止 日立造船株式会社

図2 除熱解析フロー

(注)使用済燃料集合体24体分の崩壊熱量を示す。

図3 使用済燃料集合体(燃料有効部)の軸方向崩壊熱量分布

b. 特定兼用キャスク構成部材及び燃料被覆管の温度評価方法

特定兼用キャスク構成部材の各部温度は、使用済燃料の崩壊熱及び周囲温度等を 条件として、Hitz-P24型の実形状をモデル化し、伝熱解析コード ABAQUS を使用 して求める。

燃料被覆管の温度は、使用済燃料の崩壊熱とバスケットの温度を条件として、燃料 集合体の径方向断面の二次元モデルを用い、伝熱解析コード ABAQUS を使用して求 める。

除熱解析の詳細を別紙 1 に示す。貯蔵建屋内における縦置き貯蔵時を対象として 評価する。

① 解析モデル

温度評価に当たっては、以下の3種類の熱解析モデルを用いる。

・軸方向二次元軸対称全体モデル(以下「全体モデル」という。)

・半径方向輪切りモデル(以下「輪切りモデル」という。)

・燃料集合体モデル

Hitz-P24型における各解析モデルの形状図及び要素分割図を図4から図9に示す。

各解析モデルで評価する部位は次のとおりである。

- ・全体モデル......底板、下部端板、一次蓋、二次蓋、一次蓋金属ガスケット、二次蓋金属ガスケット、一次蓋ボルト、二次蓋ボルト、二次蓋ボルト、蓋部中性子遮蔽材、底部中性子遮蔽材、側部中性子遮蔽材、蓋部中性子遮蔽材カバー、底部中性子遮蔽材カバー
- ・輪切りモデル.......外筒、伝熱フィン、側部中性子遮蔽材、胴、バスケット ・燃料集合体モデル...燃料被覆管

なお、全体モデルではトラニオンはモデル化しないが、トラニオン温度は保守 的に胴外面温度とする。

② 境界条件

Hitz-P24型周囲の環境として、以下の条件を用いる。

- ・貯蔵姿勢 :縦置き・貯蔵建屋内
- ・周囲空気温度 :50℃
- ・放射環境温度 :65℃

16

図 4 Hitz-P24 型全体モデル形状図

(単位:mm)

図 5 Hitz-P24 型輪切りモデル形状図

無断複製·転載禁止 日立造船株式会社

18

(単位:mm)

図 6 Hitz-P24 型燃料集合体モデル形状図

図7 Hitz-P24 型全体モデル要素分割図

無断複製·転載禁止 日立造船株式会社

20

図 9 Hitz-P24 型燃料集合体モデル要素分割図

無断複製·転載禁止 日立造船株式会社

22

c. 評価結果

Hitz-P24 型の除熱解析結果として、Hitz-P24 型の安全機能を担保する部位、構造強度部材及び燃料被覆管の温度及び温度分布図を表4、図10から図12に示す。

解析の結果、Hitz-P24型の各部位の温度及び燃料被覆管の温度は設計基準値を満足しており、Hitz-P24型は、使用済燃料の崩壊熱を適切に除去する設計となっていることが確認された。

また、除熱解析結果を基に設定した Hitz-P24 型の各部位及び使用済燃料の設計温度を表 5 に示す。

対象となる部位		評価結果(℃)	設計基準値 (℃) ^(注1~7)
	胴	132	$375^{\ (1)}$
	底板	156	$375^{\ (1)}$
	外筒	121	$350^{\ (2)}$
	底部中性子遮蔽材カバー	130	$425^{\ (2)}$
	下部端板	122	$350^{\ (2)}$
	一次蓋	124	$375^{\ (1)}$
	蓋部中性子遮蔽材カバー	103	$425^{\ (2)}$
	二次蓋	102	$375^{\ (1)}$
IIIIZ [−] F24 空	一次蓋ボルト	108	$350^{\ (2)}$
	二次蓋ボルト	102	$350^{\ (2)}$
	中性子遮蔽材 (蓋部、底部、側部)	138 ^(注 8)	$149^{\ (3)}$
	トラニオン	129	$350^{\ (2)}$
	金属ガスケット	107 (注 9)	$130^{\ (4)}$
	バスケット	171	250
	伝熱フィン	129	$200^{(5)}$
	燃料被覆管	203	$275^{(6)}$

表 4 除熱解析結果

※注記を次頁に示す。

- (注1)参考文献(1)に低合金鋼の設計用強度が示されており、構造強度部材であり、かつ、安全機能の担保に必要な構成部材は、構造強度評価が可能な温度として、参考文献(1)の温度範囲の上限を設定している。なお、参考文献(1)の記載内容の詳細は別紙2を参照。
- (注 2) 参考文献(2) に炭素鋼、ニッケルクロムモリブデン鋼、ステンレス鋼及び折出硬 化系ステンレス鋼の設計用強度が示されており、構造強度部材であり、かつ、安全 機能の担保に必要な構成部材は、構造強度評価が可能な温度として、参考文献(2)の温度範囲の上限を設定している。なお、参考文献(2)の記載内容の詳細は別紙 2 を参照。
- (注3)参考文献(3)に中性子遮蔽材の使用可能温度が示されており、安全機能の担保に 必要な構成部材である中性子遮蔽材は、この温度を設計基準値に設定している。な お、参考文献(3)の記載内容の詳細は別紙2を参照。
- (注4)参考文献(4)に金属ガスケットの長期密封試験結果が示されており、安全機能の 担保に必要な構成部材である金属ガスケットは、この長期密封試験結果において 密封機能が設計貯蔵期間維持可能と評価された温度を下回る温度を設計基準値に 設定している。なお、参考文献(4)の記載内容の詳細は別紙2を参照。
- (注5)補足説明資料 1-1「バスケット用アルミニウム合金(HZ-A3004-H112)」 (MA035B-SC-Z01)に熱ばく露による強度低下を適切に模擬したアルミニウム 合金の設計強度が示されており、構造強度部材であり、かつ、安全機能の担保に必 要な構成部材であるバスケットは、構造強度評価が可能な温度として、同資料の温 度範囲の上限を設定している。
- (注6)参考文献(5)に銅の設計用強度が規定されており、安全機能の担保に必要な構成 部材である伝熱フィンは、伝熱機能が維持可能な温度として参考文献(5)の温度 範囲の上限を設定している。なお、参考文献(5)の記載内容の詳細は別紙2を参 照。
- (注7)参考文献(6)に燃料被覆管の累積クリープ量が1%を超えない温度が、また、照射 硬化回復現象により燃料被覆管の機械的特性が著しく低下しない温度、さらに、水 素化物の再配向による燃料被覆管の機械的特性の低下が生じない温度が示されて おり、燃料被覆管の設計基準値は、これら全ての温度を下回る水素化物再配向が防 止可能な温度を設定している。なお、参考文献(6)の記載内容の詳細は別紙2を 参照。
- (注8) 蓋部中性子遮蔽材、底部中性子遮蔽材、側部中性子遮蔽材のうち、最高となる温度 である。
- (注9)保守側に評価するため、一次蓋の最高温度とする。

無断複製·転載禁止 日立造船株式会社

対象となる部位		設計温度
		(°C)
	胴	140
	底板	160
	外筒	130
	底部中性子遮蔽材カバー	140
	下部端板	130
	一次蓋	130
	蓋部中性子遮蔽材カバー	110
Hitz-P24 型	二次蓋	110
	一次蓋ボルト	110
	二次蓋ボルト	110
	中性子遮蔽材 (蓋部、底部、側部)	140
	トラニオン	130
	金属ガスケット	110
	バスケット	180
	燃料被覆管	210

表 5 設計温度

図 10 Hitz-P24 型除熱解析結果(全体モデル)

図 11 Hitz-P24 型除熱解析結果(輪切りモデル)

無断複製·転載禁止 日立造船株式会社

السار

図 12 Hitz-P24 型除熱解析結果(燃料集合体モデル)

〔確認内容〕

- 4) 貯蔵建屋の除熱評価
 - 貯蔵建屋を設置する場合は、兼用キャスクの除熱機能を阻害しないこと。また、
 貯蔵建屋の給排気口は積雪等により閉塞しないこと。
 - ② 貯蔵建屋を設置する場合であって、放水による冷却等応急復旧による除熱機能の回復を期待するときには、その実施に係る体制を適切に整備すること。

貯蔵建屋は型式証明申請の範囲外(設置(変更)許可時に別途確認)である。設置(変更)許可申請において実施する貯蔵建屋の除熱評価(貯蔵建屋を設置する場合)の概要(一例)を別紙3に示す。

〔確認内容〕

- 5) 蓋間圧力を適切な頻度で監視すること。ここで、適切な頻度とは、閉じ込め機能が 低下しても、FP ガス等の放出に至る前に、密封シール部の異常を検知できる頻度 をいう。頻度の設定に当たっては、設計貯蔵時間中の兼用キャスク発熱量の低下、 周囲環境の温度変化及び蓋間圧力の変化を考慮する。
- 6) 兼用キャスク表面温度を適切な頻度で監視すること。ここで、適切な頻度とは、除 熱機能が低下しても、兼用キャスクや燃料被覆管が健全であるうちに異常を検知 できる頻度をいう。

確認内容 5)は、閉じ込め機能の監視に係る確認事項である。また、確認内容 6)については、除熱機能の監視頻度に関する確認事項であり、型式証明の範囲外(設置(変更)許可時 に別途確認)である。

無断複製·転載禁止 日立造船株式会社

- 3. 参考文献
 - (1) (一社)日本機械学会、「使用済燃料貯蔵施設規格 金属キャスク構造規格 (2007 年版) (JSME S FA1-2007)、【事例規格】低温用合金鋼鍛鋼品 ASME SA-350M Gr.LF3 に関する規定(JSME S FA-CC-007)」、(2011)
 - (2) (一社)日本機械学会、「使用済燃料貯蔵施設規格 金属キャスク構造規格 (2007 年版) (JSME S FAI-2007)」、(2007)
 - (3) BISCO PRODUCTS, Inc., "NS-4-FR Fire Resistant Neutron and/or Gamma Shielding Material", (1986)
 - (4) (一財)電力中央研究所、「平成21年度リサイクル燃料資源貯蔵技術調査等
 (中間貯蔵設備等長期健全性等試験のうち貯蔵設備長期健全性等調査)報告
 書」、(2010)
 - (5) (一財)日本規格協会、「圧力容器の設計」(JIS B 8265: 2017)」、(2017)
 - (6)総合資源エネルギー調査会 原子力安全・保安部会 核燃料サイクル安全小委員会 中間貯蔵ワーキンググループ 輸送ワーキンググループ、「金属製乾式キャスクを用いる使用済燃料中間貯蔵施設における金属製乾式キャスクとその収納物の長期健全性について」、(2009)

除熱解析のモデル化及び解析条件について

1. 除熱解析のモデル化

除熱解析は、Hitz-P24型及び使用済燃料集合体の実形状をモデル化し、有限要素法コード ABAQUS を用いて行う。使用した解析モデルは以下の3つのモデルである。

- ・軸方向二次元軸対称全体モデル(以下「全体モデル」という。)
- ・半径方向輪切りモデル(以下「輪切りモデル」という。)
- ・燃料集合体モデル

これら3つの解析モデルの入出力フローを別紙1-1図に示す。また、各解析モデルの 概要及び解析条件を以下に示す。解析に使用する物性値を別紙1-1表に、Hitz-P24型外 表面の熱伝達率を別紙1-2表に、放射率を別紙1-3表に示す。

(1) 全体モデル

全体モデルは、Hitz-P24型の軸方向温度評価のための解析モデルである。

全体モデルでは、バスケットより内側の領域(以下「燃料集合体領域」という。) を 燃料集合体及びバスケットの均質な領域であると近似し、ジルカロイ、二酸化ウラン、 ヘリウム、ステンレス鋼、インコネル、アルミニウム合金、ほう素添加アルミニウム合 金及びほう素添加ステンレス鋼が均一に混合されていると仮定する。燃料集合体領域 の軸方向の平均熱伝導率は体積平均値とし、径方向の平均熱伝導率は輪切りモデルと 等価になるように値を定める。なお、軸方向の平均熱伝導率の設定においては、端部温 度を保守的に評価するため、バスケットプレート間のギャップを考慮していない。ただ し、軸方向の熱移動量設定時は保守的にバスケットプレート間のギャップを考慮する。

全体モデルにおいて側部中性子遮蔽部はレジンと伝熱フィンの均質な領域であると 近似し、レジンと銅が均一に混合されていると仮定する。側部中性子遮蔽部の軸方向の 平均熱伝導率は体積平均値とし、径方向の平均熱伝導率は、輪切りモデルと等価になる ように値を定める。

1

(2) 輪切りモデル

輪切りモデルは、全体モデルで均質化している胴より内側の部位の温度を評価する ためのモデルである。

輪切りモデルにおいては、バスケットの格子内側は一体ずつの独立した均質な領域 であると近似し、二酸化ウラン、ジルカロイ、ステンレス鋼、インコネル及びヘリウム が均一に混合されていると仮定する。均質化する燃料集合体の平均熱伝導率に関して は、燃料集合体モデルと等価になるように値を定める。

(3) 燃料集合体モデル

燃料集合体モデルは、使用済燃料集合体の軸方向中央断面を二次元でモデル化した ものであり、燃料棒の温度を評価するためのモデルである。

燃料棒には、二酸化ウラン、ヘリウムガス及びジルカロイの体積割合を考慮して均質 化した物性値を設定する。また、ヘリウムの対流による熱伝達は考慮せず、伝導と放射 のみを考慮する。

	****	温度 熱伝導率 (注1)		
作用以前が	村科	(°C)	$(W/(m \cdot K))$	
月同	任人入纲	26.85	36.6	
一次蓋		226.85	38.6	
二次蓋	(A500 LF 5)	526.85	34.2	
茎部巾畑之海菇はカバー	フテンレフ細	26.85	16.0	
ニー・ローン - 二 ニー		326.85	19.0	
瓜 即中住于 应 敝树 刀 八章	(505304)	526.85	22.5	
从倍	忠妻綱	26.85	43.0	
下如逆垣	灰茶剄 (CM590D)	226.85	38.6	
「日口」の加加	[`司)师权 (SNI320B)		27.7	
蓋部中性子遮蔽材				
底部中性子遮蔽材	(NS-4-FR)	—	0.645	
側部中性子遮蔽材	(100 4 110)			
山性子吸収材	ほう素添加	_	85	
	アルミニウム合金		00	
	アルミーウム合全	20	162.1	
バスケットプレート	(HZ-A3004-H112)	125	170.1	
	(112 A0004 11112)	200	173.6	
	細	26.85	398	
伝熱フィン	^{如吗} (C1020)	326.85	383	
	(01020)	526.85	371	

別紙 1-1 表 材料の物性値(1/2)

(注1)参考文献(1)を参照。ただし、レジンは参考文献(2)、ほう素添加アルミニウム 合金は参考文献(3)、アルミニウム合金は参考文献(4)を参照。

		温度	熱伝導率(注1)
構成部材	材料	(°C)	$(W/(m \cdot K))$
断熱材	—	_	0.070
		26.85	0.1527
内如气体	へ川内な	126.85	0.1882
41)×(14		226.85	0.2212
		326.85	0.2523
		26.85	0.02614
周囲気体	空気	126.85	0.03305
		226.85	0.03951

別紙 1-1 表 材料の物性値(2/2)

(注1) 断熱材は参考文献(5)、ヘリウム及び空気は参考文献(1)を参照。

吃番担託	+r /+-	TX	温度	温度	熱伝達率(注1)
灯廊场灯	前业市业		(K)	(°C)	$(W/(m^2 \cdot K))$
	Hitz-P24型		293.15	20	$1.55 imes \Delta t^{1/3}$
	外表面	垂直平板	373.15	100	$1.31 imes \Delta t^{1/3}$
	(側面)		473.15	200	$1.11 imes \Delta t^{1/3}$
	Hitz-P24 型		293.15	20	$1.57 imes \Delta t^{1/3}$
貯蔵建屋	外表面	水平上向面	373.15	100	$1.32 imes \Delta t^{1/3}$
	(上向面)		473.15	200	$1.12 imes \Delta t^{1/3}$
	Hitz-P24 型		293.15	20	$0.617 \times D^{-2/5} \Delta t^{1/5}$
	外表面	水平下向面	373.15	100	$0.603 \times D^{-2/5} \Delta t^{1/5}$
	(下向面)		473.15	200	$0.590 \times D^{-2/5} \Delta t^{1/5}$

別紙 1-2表 Hitz-P24 型外表面の熱伝達率

(注1) 熱伝達率は以下の式を用いて計算する。

$$\begin{split} h &= 0.129\lambda \bigg(\frac{g\beta\Delta t}{v^2} P_r \bigg)^{1/3} \quad (\text{垂直平板})^{-(6)} \\ h &= 0.13\lambda \bigg(\frac{g\beta\Delta t}{v^2} P_r \bigg)^{1/3} \quad (m 熱水平上向面)^{-(1)} \\ h &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/5} \quad (m 熱水平下向面)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/5} \quad (m \pounds n + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/5} \quad (m \pounds n + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} P_r \bigg)^{1/3} \quad (m \pounds n + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} P_r \bigg)^{1/3} \quad (m \pounds n + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} P_r \bigg)^{1/3} \quad (m \pounds n + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} P_r \bigg)^{1/3} \quad (m \pounds n + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} P_r \bigg)^{1/3} \quad (m \hbar + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} P_r \bigg)^{1/3} \quad (m \hbar + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} P_r \bigg)^{1/3} \quad (m \hbar + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} P_r \bigg)^{1/3} \quad (m \hbar + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/3} \quad (m \hbar + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/3} \quad (m \hbar + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/3} \quad (m \hbar + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/3} \quad (m \hbar + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/3} \quad (m \hbar + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/3} \quad (m \hbar + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/3} \quad (m \hbar + 1)^{-(1)} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/3} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 P_r \bigg)^{1/3} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 D_r \bigg)^{1/3} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 D_r \bigg)^{1/3} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 D_r \bigg)^{1/3} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 D_r \bigg)^{1/3} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 D_r \bigg)^{1/3} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 D_r \bigg)^{1/3} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 D_r \bigg)^{1/3} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 D_r \bigg)^{1/3} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 D_r \bigg)^{1/3} \\ \vdots &= 0.6 \frac{\lambda}{D} \bigg(\frac{g\beta\Delta t}{v^2} D^3 D_r \bigg)^{1/3} \\ \vdots$$

構成部材	材料	放射率
胴(内面)	アルミニウム溶射	$0.055^{\ (7)}$
ー次蓋 (アルミ溶射又は肉盛溶接面) 二次蓋 (アルミ溶射又は肉盛溶接面)	アルミニウム(酸化面) 又は ステンレス	0.33 ⁽⁸⁾ 又は 0.15 ⁽⁸⁾
バスケットプレート	アルミニウム合金又は アルミニウム (酸化面) (注1)	0.055 ⁽⁷⁾ 又は 0.33 ⁽⁸⁾
底板	低合金鋼 (研磨面)	0.1 (1)
外筒(外表面) 胴(外表面) 底板(外表面) 二次蓋(外表面)	塗装	0.8 (8) (注 2)
断熱材	_	$0.8^{(7)}$

別紙 1-3表 材料の放射率

(注1)軸方向温度を保守的に評価するため、一次蓋との対向面ではアルミニウム(酸化面) の値を用い、胴との対向面ではアルミニウム合金の値を用いる。

(注2) 塗装の放射率の設定根拠は別添2を参照。

無断複製·転載禁止 日立造船株式会社

2. 解析条件

外部境界条件を別紙 1-4 表に示す。また、各モデルの崩壊熱量及び境界条件を以下に 示す。

(1) 全体モデル

全体モデルでは、本文図 4 に示したとおり、燃料集合体の軸方向の崩壊熱分布を考慮するために燃料有効部の範囲を 48 領域に分割する。

貯蔵建屋内貯蔵における全体モデルの境界条件には、三次蓋シール部を保護するための保護カバーが取り付けられると仮定し、取付箇所を断熱条件とする。断熱条件とした範囲を別紙 1-2 図に示す。また、底板は貯蔵架台と接していると仮定し、底板及び底部中性子遮蔽材カバー底面全体を断熱条件とする。

(2) 輪切りモデル

輪切りモデルでは、径方向崩壊熱分布を考慮して、中央に最高燃焼度燃料に対応した 崩壊熱量の燃料集合体を配置し、断面崩壊熱量がトータルで軸方向中央部の平均燃焼 度燃料と等しくなるように外周には低い崩壊熱量の燃料集合体を配置する。径方向の 崩壊熱量分布を別紙 1-3 図及び別紙 1-5 表に示す。

輪切りモデルにおいては、全体モデルの結果に基づいて軸方向への熱の移動を考慮 する。全体モデルの胴内の軸方向への熱の逃げ量と一致するように燃料集合体領域の 崩壊熱密度を低減する。また、胴内面と外筒外面の温度が全体モデルの胴内面と外筒外 面の温度と一致するように、外筒外面に負の熱流束を与える。これらの軸方向への熱の 逃げのモデル化概念図を別紙 1-4 図に示す。また、実際に用いた軸方向への熱移動量 を別紙 1-6 表に示す。

(3) 燃料集合体モデル

燃料集合体モデルには、PF 最大領域の崩壊熱量となるように各燃料棒の発熱密度を 設定する。また、軸方向への伝熱を無視し断熱とする。

燃料集合体モデルの境界条件には、輪切りモデルにおいて求められるバスケットの 最高温度を設定する。

		2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	項目	境界条件
対	流環境温度	50°C
放射環境温度		$65^\circ\!\mathrm{C}$
十七百十六六	特定兼用キャスク表面	0.8 (8)
<u> </u>	貯蔵建屋天井、床面	0.8 (8)
特定兼用キャスク側面の放射形態係数		$0.142^{~(\pm 1)}$
特定兼用キャスク端面(蓋)の放射形態係数		0.667 ^(注 1)
特定兼用キ	ャスク表面熱伝達率	別紙 1-9 表に上る
(側面	i、上面、下面)	

別紙 1-4 表 外部境界条件

(注1) 正方格子状に稠密に特定兼用キャスクが3.5m間隔(キャスク中心間)で配置された場合を仮定しており、周囲キャスクを考慮したキャスク側面(放射率0.8)と床/天井(放射率0.8)との形態係数を考慮

別紙 1-5 表 輪切りモデルにおける径方向発熱量分布の値

		発熱量 (kW) ^(注1)			
部位	燃料集 合体数	軸方向への熱の逃げ考慮前		軸方向への熱の逃げ考慮後	
		1 体 当たり	合計	1体 当たり	合計
中央部周辺に					
収納される	12 体	0.898	10.78	0.898	10.78
燃料集合体					
外周に					
収納される	12 体	0.694	8.32	0.366	4.39
燃料集合体					
合計	24 体	_	19.1	_	15.2

(注1)輪切りモデルにおける評価断面、すなわち本文図4における発熱量最大の領域 を燃料有効長(3648mm)当たりに換算した値

別紙 1-6表 輪切りモデルにおける軸方向への熱移動量

部位	軸方向への熱移動量(kW) ^(注1)	
中央部周辺に収納される	0.0	
燃料集合体(12体)		
外周に収納される	3.93	
燃料集合体(12体)		
外筒外面	1.26	

(注1)輪切りモデルにおける評価断面、すなわち本文図4における発熱量最大の領域 を燃料有効長(3648mm)当たりに換算した値

別紙 1-9

3. 除熱解析の保守性

除熱解析は、以下の点について保守性を有している。

・収納制限に対する解析条件の保守性

崩壊熱量を保守的に高めに算出するためにウラン濃縮度を最小値である
 とする。

- -使用済燃料の最高温度を保守的に高めに算出するために、別紙 1-2 図のとおり 中央部 12 体の使用済燃料は最高燃焼度(48GWd/t)の崩壊熱量とし、外周部 12 体は、特定兼用キャスク全体の総崩壊熱が平均燃焼度(44GWd/t)燃料を 24 体 収納した場合と等しくなるように調整した崩壊熱量を設定する。
- ・モデル化の保守性
 - 一特定兼用キャスク本体内のバスケット及びバスケット内の使用済燃料は、燃料 集合体の温度を高めに評価するよう、空間の中央に配置する。
 - -燃料集合体モデルは、軸方向への熱移動を考慮しない二次元モデルとする。
 - -使用済燃料とともにバーナブルポイズン集合体を収納する場合もあるが、無視する方が熱伝導性が低下し保守側の評価となるため、モデル化しない。
 - 一輪切りモデルは、燃料集合体領域で軸方向への熱移動を考慮するのは外周部領域のみであり、中央部周辺の最高燃焼度燃料領域の軸方向への熱の流れを無視している。
 - -全体モデルにおいて、軸方向の平均熱伝導率の設定においては、端部温度を保守 的に評価するため、バスケットプレート間のギャップを考慮しない。
 - 一全体モデルにおいて、軸方向の熱移動量設定時は保守的にバスケットプレート 間のギャップを考慮する。

無断複製·転載禁止 日立造船株式会社

無断複製·転載禁止 日立造船株式会社

別紙 1-2 図 貯蔵建屋内貯蔵時の全体モデルの断熱条件設定範囲 (保護カバー取付箇所)

- :最高燃焼度燃料(軸方向中央部)の発熱量(中央に収納される燃料集合体(12体))
 - :総発熱量が平均燃焼度燃料を 24 体収納した場合と等しくなるように調整した発熱量(外周に収納される燃料集合体 (12 体))

別紙 1-3 図 使用済燃料集合体の径方向発熱分布

①軸方向への熱の逃げを入力 (全体モデルの胴内の軸方向への熱 の逃げ量と一致するように発熱密度 を低減)

②軸方向への熱の逃げを入力 (胴内面と外筒外面の温度が全体モデルの 胴内面と外筒外面の温度と一致するように 負の熱流束を付与)

別紙 1-4 図 軸方向への熱の逃げのモデル化概念図

3. 参考文献

- (1) (一社) 日本機械学会、「伝熱工学資料 改訂第4版」、(1986)
- (2) BISCO PRODUCTS, Inc., "NS-4-FR Fire Resistant Neutron and/or Gamma Shielding Material", (1986)
- (3) メーカー資料
- (4) 米国機械学会, "ASME Boiler & Pressure Vessel Code Section II Materials Part D Properties (Metric)", (2019)
- (5) メーカー資料
- (6) M. Jokob, "Heat Transfer. Volume 1", John Wiley & Sons, Inc., (1949)
- (7) (一社) 日本機械学会、「伝熱工学資料 改訂第3版」、(1975)
- (8) J. R. Howell, R. Siegel, "Thermal Radiation Heat Transfer Fifth Edition", Hemisphere Publishing Corp., (1981)

燃料集合体モデル及び輪切りモデルを用いた予備解析について

輪切りモデルのバスケットの格子内側、全体モデルの燃料集合体領域及び側部中性子遮 蔽部に設定する径方向熱伝導率は、それぞれ燃料集合体モデル及び輪切りモデルを用いた 予備解析により求められる。

径方向等価熱伝導率の算出方法を以下に示す。

<径方向等価熱伝導率の算出方法>

(1) 輪切りモデルのバスケット内部

輪切りモデルのバスケット内部に設定する径方向等価熱伝導率 λ_f は、燃料集合体モ デルを用いたパラメータサーベイの結果から、円柱形状の内部発熱体の伝熱基礎式を 基に正方形直角柱形状に当てはめた①式により求められる。

ここで、

 λ_{f} :径方向等価熱伝導率(W/(m·K))

- q : 単位体積崩壊熱量 (W/m³)
- W :燃料集合体領域外寸 (m)
- K :係数(13.57)(-)
- T₁ :燃料棒最高温度(K)
- T₂ : バスケットプレート内面温度(K)

燃料集合体モデルを用いて、 T_2 を 300.15K (27 \mathbb{C})、400.15K (127 \mathbb{C})、600.15K (327 \mathbb{C}) とした 3 ケースで T_1 を算定し、①式から温度依存性のある λ_f を設定する。 なお、各ケースで求められる λ_f の代表温度は、 T_1 と T_2 の平均値とする。

無断複製·転載禁止 日立造船株式会社

(2) 全体モデルの燃料集合体領域

全体モデルの燃料集合体領域に設定する径方向等価熱伝導率 λ_f は、輪切りモデルを 用いたパラメータサーベイの結果から、円柱形状の内部発熱体の伝熱基礎式を当ては めた②式により求められる。

ここで、

- λ_{f} :径方向等価熱伝導率(W/(m·K))
- q : 使用済燃料集合体の PF 最大領域における単位体積崩壊熱量(W/m³)
- R :バスケット外半径 (m)
- K :係数(4)(-)
- T₁ :燃料集合体領域最高温度(K)
- T。:バスケット外面平均温度(K)

輪切りモデルを用いて、周囲温度を 248.15K(-25°C)、311.15K(38°C)、373.15K (100°C) とした 3 ケースで T_1 及び T_2 を算定し、②式から温度依存性のある λ_f を設 定する。

なお、各ケースで求められる λ_f の代表温度は、 $T_1 \ge T_2$ の平均値とする。

(3) 全体モデルの側部中性子遮蔽部

全体モデルの側部中性子遮蔽部に設定する径方向等価熱伝導率 λ_f は、輪切りモデル を用いたパラメータサーベイの結果から、熱通過を伴う多層体の評価式を当てはめた ③及び④式により求められる。

輪切りモデルを用いて、周囲温度を 248.15K(-25℃)、311.15K(38℃)、373.15K (100℃) とした 3 ケースで T_1 及び T_2 を算定し、③及び④式から温度依存性のある λ_f を設定する。

なお、各ケースで求められる λ_f の代表温度は、 $T_1 \ge T_2$ の平均値とする。

無断複製·転載禁止 日立造船株式会社

18

塗装の放射率の設定根拠

別紙 1-3 表「材料の放射率」において、塗装に設定した放射率 0.8 は、参考文献(1) に 示された塗料の放射率 0.7~0.9 の最大と最小の平均値である。なお、設定の妥当性を以下 に示す。

<塗装に放射率 0.8 を設定したことの妥当性>

別紙 1-3 表「材料の放射率」のうち、塗装の放射率 0.8 が設定されている構成部材は、 外筒(外表面)、胴(外表面)、底板(外表面)及び二次蓋(外表面)である。これらの構 成部材の放射率に係る文献値、解析入力値及び実測値を別添 2-1 表に示す。なお、実測値 はエポキシ樹脂系塗料(白)の値である。

放射率 0.8 は実測値(0.94)より小さいことから、Hitz-P24 型の内部の温度がより高く評価される。したがって、設定は妥当である。

· 바 - 아 - 카 - 마 - 바 - 바	仕様	放射率		
博 成部M		文献値	解析入力值	実測値
外筒 (外表面)				
胴 (外表面)	塗装	0.7~0.9 ^{(1)(注1)}	0.8	0.94 (注 2)
底板(外表面)				
二次蓋 (外表面)				

別添 2-1 表 材料の放射率

(注1) 参考文献(1) に示される塗料の放射率の最大と最小の値

(注2) エポキシ樹脂系塗料(白)に対して3回測定した実測値

除熱解析の設計基準値における参考文献の記載内容について

本別紙、除熱解析の設計基準値における参考文献の記載内容を示すものである。各参考 文献の記載内容を別紙 2-1 表に示す。

別紙 2-1 表	設計基準値における参考文献の記載内容	(1/2)
		· · ·

番号	参考文献			
	文献名	文献概要		
	(国際規格/研究機関論文等)			
1	(一社)日本機械学会、「使用済燃料貯	低合金鋼は-30℃~375℃での温度範囲において設計用強度と物性値が規定されている。		
	蔵施設規格 金属キャスク構造規格	・A350 LF3(胴、底板、一次蓋、二次蓋)[低合金鋼]		
	(2007 年版)(JSME S FA1-2007)、			
	【事例規格】低温用合金鋼鍛鋼品			
	ASME SA-350M Gr.LF3 に関する規定			
	(JSME S FA-CC-007) 」、(2011)			
2	(一社)日本機械学会、「使用済燃料貯	炭素鋼は−30℃~350℃での温度範囲において、ステンレス鋼は−30℃~425℃の温度範囲		
	蔵施設規格 金属キャスク構造規格	において、ニッケルクロムモリブデン鋼は−30℃~350℃の温度範囲において、析出硬化		
	(2007 年版)(JSME S FA1-2007)」、	系ステンレス鋼は-30℃~350℃の温度範囲において設計用強度と物性値が規定されてい		
	(2007)	る。		
		・SM520B(外筒、下部端板)[炭素鋼]		
		・SUS304(蓋部中性子遮蔽材カバー、底部中性子遮蔽材カバー)[ステンレス鋼]		
		・SNB23-2(一次蓋ボルト、二次蓋ボルト)[ニッケルクロムモリブデン鋼]		
		・SUS630(トラニオン)[析出硬化系ステンレス鋼]		
3	BISCO PRODUCTS, Inc., "NS-4-FR	エポキシ系レジンの使用可能温度の上限 149℃が示された文献である。		
	Fire Resistant Neutron and/or			
	Gamma shielding Material", (1986)			
4	(一財)電力中央研究所、「平成 21 年	・金属ガスケット(外被材:アルミニウム、内被材及びコイルスプリング:ニッケル基合		
	度 リサイクル燃料資源貯蔵技術調査	金)の性能について、ガスケット部の温度を約130℃から140℃の範囲で一定とし、定期		
	等 報告書」、(2010)	的に密封性能を測定した結果、試験開始から19年以上が経過(ラーソン・ミラー・パラ		
		メータ(LMP)=7942)しても密封部の漏えい率の変化はなく、良好な密封性能を保持		
		していることが確認されている。		
		・本試験結果では LMP=7942 まで健全性が示されており、貯蔵期間を 60 年とした場合		
		に LMP=7942 となる金属ガスケットの初期温度は 134℃となり、この温度以下にすれば		
		密封性能が維持される。		

別紙 2-1 表 設計基準値における参考文献の記載内容(2/2)

番号	参考文献			
	文献名	文献概要		
	(国際規格/研究機関論文等)			
5	(一財)日本規格協会、「圧力容器の設	-40℃~200℃の温度範囲において、設計用強度と物性値が規定されている。		
	計」(JIS B 8265:2017)」、(2017)			
6	総合資源エネルギー調査会 原子力安	・クリープ		
	全・保安部会 核燃料サイクル安全小	国内で照射された照射済ジルカロイ 4 被覆管を用いたクリープ試験が実施され、1%		
	委員会 中間貯蔵ワーキンググループ	以上の変形能力を有することが確認されている。設計貯蔵期間中には温度を 420℃以		
	輸送ワーキンググループ、「金属製乾式	下に制限することによりクリープひずみが1%以下に制限でき、クリープ破損を防止す		
	キャスクを用いる使用済燃料中間貯蔵	ることができる。		
	施設における金属製乾式キャスクとそ	・照射硬化		
	の収納物の長期健全性について」、	被覆管は炉内照射により強度が増し、延性が低下するが、高温条件に長時間保持さ		
	(2009)	れると照射効果が徐々に回復する。約 300℃では照射硬化の回復の可能性は小さいこ		
		とが確認されている。		
		・水素化物再配向		
		貯蔵中は燃料棒の内圧が外圧より高いため、被覆管には周方向応力が発生している。		
		照射被覆管を用いた水素化物再配向試験及び機械特性試験を行い、被覆管温度を275℃		
		以下、周方向応力を 100MPa 以下に制限することにより、機械特性の劣化を防止する		
		ことができる。		

1. 概要

設置(変更)許可申請において実施する貯蔵建屋の除熱評価(貯蔵建屋を設置する場合)の概要(一例)を示す。

2. 貯蔵建屋を設置する場合の要求事項

設置許可基準規則解釈別記4第16条第3項では、「貯蔵建屋は、金属キャスクの除熱機能を阻害しない設計であること。」の要求があり、また、審査ガイド2.3 除熱機能の確認内容において、「貯蔵建屋を設置する場合は、兼用キャスクの除熱機能を阻害しないこと。」の要求が示されている。Hitz-P24型の除熱設計は、貯蔵建屋内でのHitz-P24型周囲温度が50℃以下であることを条件としているため、設置(変更)許可申請では、Hitz-P24型の除熱評価において貯蔵施設側で確認する事項として設定している「Hitz-P24型 周囲温度が貯蔵建屋内で50℃以下であること。」の確認を行う。

なお、Hitz-P24型の除熱評価と貯蔵建屋の除熱評価相互の関係は本書の本文図2のとおりである。

3. 貯蔵建屋の除熱評価例

貯蔵建屋の設計例として、給気口と排気口を有する構造とし、自然対流冷却により、貯 蔵建屋内に設置された特定兼用キャスク表面から特定兼用キャスクの周囲の空気に伝え られた熱を、その熱量に応じて生じる空気の通風力を利用して貯蔵建屋外へ放散する設 計での除熱評価例を示す。

(1) 評価方法

貯蔵建屋の流路(例)を別紙 3-1 図に示す。貯蔵建屋の除熱評価は、特定兼用キャス ク表面に伝えられた使用済燃料の崩壊熱全てが周囲空気に移行するものとして、貯蔵 建屋の給気口から排気口までの流路をモデル化し、排気温度が特定兼用キャスクの除 熱評価で適用している周囲温度条件以下となることを示すことである。

別紙 3-1 図 貯蔵建屋の熱の流路(例)

(2) 排気温度の計算

排気温度は、別紙 3-1 表に示す貯蔵建屋の給気温度、特定兼用キャスクの崩壊熱量 等を条件として、乾式貯蔵建屋内の空気と外気との密度差により生じる駆動力 H_{th}と、 貯蔵建屋内を空気が流れることによって生じる圧力損失 ΔP (別紙 3-1 図の①~⑥の箇 所の総和)がバランスする点を算出することで算出される。

駆動力 H_{th} (熱ドラフト力)の計算
 駆動力 H_{th} (熱ドラフト力)は、以下の式で表される。
 H_{th} = (p_{in} - p_{out})×g×h

ここで、

- H_{th} :熱ドラフト力 (Pa)
- ρ_{in}: 外気の密度 (kg/m³)
- ρ_{out} :排気の密度 (kg/m³)
- g : 重力加速度 (m/s²)
- h : ドラフト高さ (m)

2) 圧力損失 ΔP の計算

圧力損失 ΔP は、以下の式で表される。

$$P = \sum_{i} \frac{\xi_{i} W_{i}^{2}}{2\rho_{i} A_{i}^{2}}$$
$$W_{i} = \frac{q \cdot n}{C_{p} (T_{out} - T_{in})}$$

ここで、

 ΔP : 圧力損失 (Pa) ξ_i : 圧力損失係数 (-) W_i : 通過風量 (質量流量) (kg/s) ρ_i : 通風路の空気密度 (kg/m³) A_i : 通風路の断面積 (m²) q : 特定兼用キャスクの崩壊熱量 (kW/基) n : 特定兼用キャスクの基数 (基) C_p : 空気の比熱 (kJ/ (kg· \mathbb{C})) T_{out} : 排気温度 (\mathbb{C}) T_{in} : 給気温度 (\mathbb{C})

別紙 3-1 表 貯蔵建屋の除熱評価条件(例)

項目	条件	備考
特定兼用キャスクの		設置する特定兼用キャスクの崩壊熱量に
崩壊熱量(q)	15.9KW/基	より設定される
	30°C	設置する貯蔵建屋の気温等により設定さ
紹気温度(T _{in})		れる
티듁배는고랴		特定兼用キャスクの除熱評価条件(周囲温
目標排気温度	貯蔵建屋:50℃以下	度)に適用される温度以下になることを確
(T _{out})		認する

無断複製·転載禁止 日立造船株式会社

貯蔵施設における Hitz-P24 型の取扱上の安全性について

1. 貯蔵施設における取扱上の安全性に対する設計上の配慮

Hitz-P24型は、設計貯蔵期間中を通して安全機能を維持するとともに、設計貯蔵期間 中の温度、放射線等の環境及びその環境下での腐食等の経年変化に対して信頼性を有す る材料及び構造とすることで使用済燃料の健全性を確保する設計としており、貯蔵中に Hitz-P24型の安全機能維持の監視のために蓋間圧力及び表面温度を適切な頻度で確認す ることを除けば、貯蔵中、Hitz-P24型近傍で行う作業を特段要しない設計としている。 Hitz-P24型の外面温度は高温となる可能性があるが、貯蔵施設でのHitz-P24型の取 扱いにおいて、人がHitz-P24型の外面に触れる場合には、保護具の装着により防護する ことが可能であり、安全上問題はないと判断している。詳細を以下に示す。

2. Hitz-P24 型の外面温度

貯蔵建屋内貯蔵における Hitz-P24 型の最高温度を別紙 4-1 表に示す。

なお、除熱解析では、崩壊熱量の他に、別紙1の3.に示すその他の保守性を有しており、現実的には、別紙4-1表に示す温度以下となる。

Hitz-P24型の外面 ^(注2)	最高温度(℃)
外筒外面	121
底板外面	122

別紙 4-1 表 Hitz-P24 型外面の温度^(注 1)

(注1) Hitz-P24 型1 基あたりの崩壊熱量を本書本文の2.(2) に示す除熱解析の入力
 18.1kW(設計崩壊熱量)として解析した場合の温度。

(注 2) Hitz-P24型の外面のうち、人が接触し得る表面。

3. Hitz-P24 型の周囲温度

Hitz-P24型の周囲温度は、50℃(貯蔵建屋内貯蔵)として設定している。

4. 貯蔵施設における Hitz-P24 型の取扱いフロー

Hitz-P24型を貯蔵施設に搬入してから貯蔵するまでの取扱いフロー及び作業内容を別 紙 4-2 表に示す。ここで、貯蔵後の貯蔵施設からの Hitz-P24 型の搬出フローは、搬入か ら貯蔵までの手順と逆手順であり、フロー及び作業内容は同一であることから記載を省 略している。

なお、実運用での取扱いフロー及び作業内容は事業者の運用により異なる可能性があり、別紙 4-2 表に示す内容は一例である。

5. 貯蔵施設における Hitz-P24 型の取扱いに対する安全性評価

3.に示したとおり、Hitz-P24型を貯蔵するにあたっての周囲温度の最高温度は 50℃であり、取扱いを行う上で人が Hitz-P24型の周囲に近づくことに問題はない。

また、2.に示したとおり、Hitz-P24型の外面温度は、高温となる可能性があるが、別 紙 4-2表に示すとおり、Hitz-P24型の外面に人が触れる可能性がある作業は、表面温度 の計測、蓋間圧力の測定に係る圧力計の取付け及び圧力計の保守である。本作業では、保 護具の装着により防護することが可能であり、安全上問題はないと判断している。

No.	取扱い手順	作業内容	作業者の Hitz-P24 型への 接触有無
1	Hitz-P24 型の貯蔵 施設への搬入	・搬入	(なし)
2	トレーラからの貯蔵 場所への吊り降ろし	 ・水平吊具のトラニオ ンへの取付け 	 ・水平吊具はトラニオンに触れることなく取付けが可能である。
3	貯蔵前準備・貯蔵	 ・蓋間圧力の測定 (測定頻度例 :1回/3カ月) ・表面温度の測定 (測定頻度例 :1回/3カ月) 	・蓋間圧力の測定に係る圧力計 の取付け及び保守を行う際に二 次蓋外面又は外筒外面に一時的 に触れる可能性があるが、保護 具の装着により防護可能。 ・外筒外面(例)の温度測定時に 一時的に触れる可能性はある が、保護具の装着により防護可 能。また、可搬式の非接触式温度 計を使用すれば、Hitz-P24型 外面に触れることなく測定が可 能。

別紙 4-2 表 Hitz-P24 型の取扱いフロー及び作業内容(例)

除熱解析で使用する解析コードについて

Hitz-P24型の除熱設計に用いられる解析コードについて、その機能、計算方法、使用実績及び検証結果について説明する。

- 1. ORIGEN2 $\neg \vDash$
- (1) 概要

ORIGEN2 コード⁽¹⁾は、米国のオークリッジ国立研究所(ORNL)で開発された燃焼計算コードである。ORIGEN2 コードは公開コードであり、輸送容器の崩壊熱計算等 に広く用いられている。

(2) 機能

ORIGEN2 コードは、燃焼計算に際して以下の機能を有している。

- a. 燃料の炉内での燃焼計算、炉取出後の減衰計算により、冷却期間に対応した崩壊 熱、放射線の強度、各核種の放射能量等が求められる。
- b. 原子炉の炉型と燃料の組合せに対し、中性子エネルギースペクトルの違いによ り重みをつけた断面積ライブラリデータが内蔵されており、任意に選択できる。
- c. 計算結果は、放射化生成物、アクチニド、核分裂生成物に分類して出力される。
- d. 燃焼計算に必要な放射性核種のデータ(崩壊熱、ガンマ線のエネルギー分布、自 発核分裂と(a、n)反応により発生する中性子源強度等)は、ライブラリデータ としてコードに内蔵されている。
- (3) 解析フローORIGEN2 コードの計算フローを別紙 5-1 図に示す。
- (4) 使用実績及び検証

ORIGEN2 コードは、輸送キャスク、原子燃料施設の崩壊熱計算に広く使用されている。また、ORNL では ORIGEN2 コードの崩壊熱計算結果を ANS 標準崩壊熱の値と 比較し、ORIGEN2 コードの妥当性を検証している⁽²⁾。

ORIGEN2 コードの検証例を別紙 5-2 図に示す。

別紙 5-1 図 ORIGEN2 コードの計算フロー図

無断複製·転載禁止 日立造船株式会社

Fig. 3. Differences between ORIGEN2 and ANS Standard 5.1 decay heat values for 1013-s irradiation of 235U.

(注) ORIGEN2 の崩壊熱は、ANS 標準崩壊熱と比較して、15 年以上(Hitz-P24 型に収納される燃料の冷却期間)の冷却年数に対して高めの値を示している。この理由は、 ANS 標準崩壊熱は ⁹⁹Tc を考慮していないためである。したがって、ORIGEN2 の解析結果より ⁹⁹Tc を除いた崩壊熱を比較するとよい一致を示している。

別紙 5-2 図 ORIGEN2 コードの検証例

- 2. ABAQUS コード
 - (1) 概要

ABAQUS コード⁽³⁾ は、米国 Hibbitt, Karlsson and Sorensen, Inc. (現在 Dassault Systèmes 社) で開発された有限要素法に基づく伝熱解析等の汎用コードであり、輸送 キャスクの伝熱解析などに広く利用されている。

(2) 機能

ABAQUS コードは、伝熱解析に際して以下の機能を有している。

- a. 定常、非定常のいずれの解も得ることができる。
- b. 一次元から三次元の任意形状の構造に対して解くことが可能である。
- c. 初期条件(温度)は要素ごとに変化させることができ、計算ステップの自動決定 も可能である。
- d. 境界条件として、時間に依存する熱流束、温度、熱伝導、対流及び放射が考慮で きる。熱伝導率の温度依存が可能で、また、伝熱解析と応力解析(構造強度解析) を同時に行うことが可能なため、ギャップ間の変化による伝熱条件を変化させ ることができる。
- e. 構成物質の相変態が考慮できる。
- (3) 解析フロー

代表的な解析フローを別紙 5-3 図に示す。

(4) 使用実績及び検証

ABAQUS コードは、多くの伝熱解析に使用された実績がある。また、特定兼用キャ スクの定常伝熱試験に対して、ABAQUS による解析結果と試験結果を比較・検討し、 ABAQUS コードの妥当性が検証されている⁽⁴⁾。

ABAQUS コードの検証例を別紙 5-4 図に示す

別紙 5-3 図 ABAQUS コードの解析フロー図

別紙 5-4 図 ABAQUS コードの検証例 (定常伝熱試験の解析結果と試験結果の比較)⁽⁴⁾

3. 参考文献

- M. Ishikawa et al., "ZZ-ORIGEN2.2-UPJ, A Complete Package of ORIGEN2 Libraries Based on JENDL-3.2 and JENDL-3.3", Computer Programs NEA-1642, OECD/NEA Databank, (2006)
- A. G. Croff, "ORIGEN2 : A Versatile Computer Code for Calculating the Nuclide Compositions and Characteristics of Nuclear Materials", Nuclear Technology, Vol.62, (1983)
- (3) Dassault Systèmes, "ABAQUS 2016 Analysis User's Guide", (2016)
- (4) 山川秀次、五味義雄、尾崎幸男、小崎明朗、「使用済燃料キャスク貯蔵技術の確立-キャスクの伝熱特性評価-」、(一財)電力中央研究所、(1993)