東通原子力発電所1号炉審査資料					
資料番号 A1-CA-0139					
提出年月日	2024年2月22日				

東通原子力発電所 基準地震動の策定のうち 震源を特定せず策定する地震動について

2024年2月22日 東北電力株式会社

All rights reserved. Copyrights © 2024, Tohoku Electric Power Co., Inc.

基準地震動の策定全体フローと本資料の説明範囲

1. 全国共通に考慮すべき地震動	 3
2. 地域性を考慮する地震動	 21
参考文献	 40

1. 全国共通に考慮すべき地震動

- 1.1 検討方針
- 1.2 2004年北海道留萌支庁南部の地震における基盤地震動の知見を用いた評価
- 1.3 標準応答スペクトルに基づく地震動の評価
- 1.4 全国共通に考慮すべき地震動の評価結果

1.1 検討方針

(1) 基準地震動及び耐震設計方針に係る審査ガイドを踏まえた評価方針

基準地震動及び耐震設計方針に係る審査ガイドの記載	評価方針
 「全国共通に考慮すべき地震動」の検討対象地震の選定においては、地震規模のスケーリング(スケーリング則が不連続となる地震規模)の観点から、「地表地震断層が出現しない可能性がある地震」が適切に選定されていることを確認する。 「全国共通に考慮すべき地震動」については、設置許可基準規則解釈別記2第4条第5項第3号②に掲げる知見を用いて解放基盤表面における応答スペクトル(地震動レベル)が設定されていること。 	 2004年北海道留萌支庁南部の地震について, 佐藤ほか(2013)よる評価を踏まえた地震動を 評価する。 標準応答スペクトルに対し,地震基盤相当面 から解放基盤表面までの地盤増幅率を考慮し た地震動を評価する。
【設置許可基準規則解釈別記2 第4条第5項第3号②】 ②上記の「全国共通に考慮すべき地震動」の策定に当たっては、震源近傍 における観測記録を基に得られた次の知見をすべて用いること。 • 2004年北海道留萌支庁南部の地震において、防災科学技術研究所が 運用する全国強震観測網の港町観測点における観測記録から推定した 基盤地震動 • 震源近傍の多数の地震動記録に基づいて策定した地震基盤相当面(地 震基盤からの地盤増幅率が小さく地震動としては地震基盤面と同等とみ なすことができる地盤の解放面で、せん断波速度Vs=2200m/s以上 の地層をいう。)における標準的な応答スペクトル(以下「標準応答スペク トル」という。)として次の図に示すもの	

第1178回審査会合(2023.8.4)

資料2-1 p.6 再掲

1.1 検討方針

(2)全国共通に考慮すべき地震動の評価フロー

全国共通に考慮すべき地震動の評価結果

5

第1178回審査会合(2023.8.4)

資料2-1 p.7 一部修正

1. 全国共通に考慮すべき地震動

1.2 2004年北海道留萌支庁南部の地震における基盤地震動の知見を用いた評価

(1)佐藤ほか(2013)による基盤地震動 HKD020観測点の基盤地震動評価 ①基盤地震動評価(EW成分)

- ▶ 等価線形解析により、地表観測記録(EW成分)からG.L.-41mの基盤地震動を評価している。
- ▶ はぎとり結果の最大加速度は585cm/s²で、地表観測記録の約1/2となっている。

第1178回審査会合(2023.8.4)

資料2-1 p.17 再掲

1. 全国共通に考慮すべき地震動

- 第1178回審査会合(2023.8.4) 資料2-1 p.18 再掲
- 1.2 2004年北海道留萌支庁南部の地震における基盤地震動の知見を用いた評価
- (1) 佐藤ほか(2013) による基盤地震動 HKD020 観測点の基盤地震動評価 ②基盤地震動評価(UD成分)
- ▶ 体積弾性率一定を仮定した1次元波動論による線形解析により、地表観測記録(UD成分)からG.L.-41mの基盤 地震動を評価している。
- ▶ はぎとり結果の最大加速度は296cm/s²となっている。

2004年北海道留萌支庁南部の地震時のP波速度と減衰定数

- 1. 全国共通に考慮すべき地震動
- 1.2 2004年北海道留萌支庁南部の地震における基盤地震動の知見を用いた評価

- (2) 震源を特定せず策定する地震動の評価に反映する基盤地震動
- ▶ 佐藤ほか(2013)による2004年北海道留萌支庁南部の地震におけるHKD020(港町)の基盤地震動評価について、以下の追加検討を実施した。
 - ① G.L.-41m以浅に非線形性を考慮した基盤地震動評価(水平方向)
 - ② G.L.-6m~G.L.-41mの減衰定数を3%とした基盤地震動評価(水平方向)
 - ③ 再測定されたPS検層結果を踏まえた基盤地震動評価(鉛直方向)
 - ④ 地下水位の状況を踏まえG.L.-6m以浅をポアソン比一定とした基盤地震動評価(鉛直方向)
- ▶ 上記の①~④の検討結果によると、HKD020(港町)の基盤地震動は水平方向については追加 検討②の結果(609cm/s²), 鉛直方向については追加検討③の結果(306cm/s²)が最も大きいも のとなった。

震源を特定せず策定する地震動の評価に反映する基盤地震動として,水平方向は最大加速度609cm/s²の基盤地震動,鉛直方向は最大加速度306cm/s²の基盤地震動を採用する。

1. 全国共通に考慮すべき地震動 1. 2 2004年北海道留萌支庁南部の地震における基盤地震動の知見を用いた評価 (3) 基盤地震動を踏まえた地震動の設定

- ▶「震源を特定せず策定する地震動」の評価に反映する2004年北海道留萌支庁南部の地震の基盤地震動として、 水平方向は最大加速度609cm/s²の基盤地震動,鉛直方向は最大加速度306cm/s²の基盤地震動を採用する。
- ▶ なお、下表のとおり、PS検層結果から得られているHKD020(港町)の基盤層(G.L.-41m)におけるS波速度は 938m/s、P波速度は2215m/sであり、一方、東通原子力発電所の解放基盤表面の振動特性を代表する位置[※] におけるS波速度は1300m/s、P波速度は2250m/sである。
- ▶ 東通原子力発電所のS波速度及びP波速度は、HKD020(港町)の基盤層のS波速度及びP波速度をそれぞれ 上回っているため、本検討結果は地盤条件的に保守性のあるものとなっている。

※:解放基盤表面の位置は,原子炉建屋設置レベルであるT.P.-16.3mに設定しているが,解放基盤表面の振動特性は,建屋の影響を受けず,振幅が原子炉建屋設置レベルと同等以上である自由地盤の岩盤上部の地震観測点(T.P.+2.0m)で代表している。 〔東通原子力発電所 基準地震動の策定のうち敷地ごとに震源を特定して策定する地震動について(コメント回答)2章3.1(1)参照〕

	HKD020(港町)の基盤層(G.L41m)	東通原子力発電所の解放基盤表面の 振動特性を代表する位置
S波速度	938m/s	1300m/s
P波速度	2215m/s	2250m/s

ᆛ┝

基盤におけるS波及びP波速度の比較

「震源を特定せず策定する地震動」に考慮する地震動として,更なる保守性を考慮し,水平方向の最大加速度620cm/s²,鉛直方向の最大加速度320cm/s²の地震動を設定する。

第1178回審査会合(2023.8.4)

資料2-1 p.39 一部修正

- 1. 全国共通に考慮すべき地震動
- 1.2 2004年北海道留萌支庁南部の地震における基盤地震動の知見を用いた評価

2004年北海道留萌支庁南部の地震の知見に基づき設定した「震源を特定せず策定する地震動」に考慮する地震動の応答スペクトル及び加速度波形を示す。

第1178回審査会合(2023.8.4)

資料2-1 p.40 一部修正

1. 全国共通に考慮すべき地震動 1. 3 標準応答スペクトルに基づく地震動の評価

(1)標準応答スペクトルの概要と評価方針

▶ 地震基盤相当面(せん断波速度Vs=2200m/s以上)で定義された標準応答スペクトルに基づき,解放基盤表面(せん断波速度Vs=1300m/s)における地震動を評価する。

г				
_				
~			/	
~	~	~	-	
		-		

東通原子力発電所	評価方針
解放基盤表面 ^{※1} の せん断波速度Vs 1300m/s	 標準応答スペクトルに適合した模擬地震波を作成し、地下構造モデルによって地震基盤相当面から解放基盤表面までの地盤補正を考慮する。 審査ガイド^{※2}を踏まえ、模擬地震波は、複数の方法によることが望ましいが、敷地での適切な観測記録が得られていないこと等から一様乱数の位相特性を持つ正弦波の重ね合わせによる方法により作成する。

- ※1:解放基盤表面の位置は,原子炉建屋設置レベルであるT.P.(東京湾平均海面)-16.3m。
 - 解放基盤表面の振動特性は、自由地盤の岩盤上部の地震観測点(T.P.+2.0m)で代表する。
- ※2:審査ガイド(基準地震動及び耐震設計方針に係る審査ガイド 5.基準地震動)では、「震源を特定せず策定する地震動による基準地震動は、設定さ れた応答スペクトル(地震動レベル)に対して、地震動の継続時間及び振幅包絡線の経時的変化等の特性が適切に考慮されていることを確認する。 また、設定された応答スペクトルに基づいて模擬地震動を作成する場合には、複数の方法(例えば、正弦波の重ね合わせによる位相を用いる方法、 実観測記録の位相を用いる方法等)により検討が行われていることを確認する。」とされている。

11

第1178回審査会合(2023.8.4)

資料2-1 p.42 再掲

- 1. 全国共通に考慮すべき地震動
- 1.3 標準応答スペクトルに基づく地震動の評価

第1178回審査会合(2023.8.4) 資料2-1 p.43 再掲

(2) 解放基盤表面位置における標準応答スペクトルの評価概要

- 地震基盤相当面において作成した標準応答スペクトルに対し所定の適合度[※]を有する模擬地震波を,統計的グリーン関数法による地震動評価に用いる地下構造モデルにより解放基盤表面位置まで引き上げる。
 - ※:原子力発電所耐震設計技術指針JEAG4601-2015(日本電気協会, 2016)に示される以下の適合度の条件を満足するように作 成する。
 - ①目標とする応答スペクトル値に対する模擬地震波の応答スペクトル値の比が全周期帯で0.85以上
 - ②目標とする応答スペクトル強さに対する模擬地震波の応答スペクトル強さの比(SI比, 周期0.1~2.5秒)が1.0以上

評価概要図

- 1. 全国共通に考慮すべき地震動
- 1.3 標準応答スペクトルに基づく地震動の評価

- 一様乱数の位相特性を持つ正弦波の重ね合わせによって作成する模擬地震波の振幅包絡線の経時的変化は、 以下の諸元を用いてNoda et al.(2002)の方法により評価する。
 - ・振幅包絡線の経時的変化算定の諸元:マグニチュード7.0,等価震源距離10km

地震規模は,武村(1990)のM₀-M関係及びKanamori(1977)のM₀-Mw関係から導かれる経験式(Mw=0.78M+1.08)と,全国共通に 考慮すべき地震動の地震規模(Mw6.5程度未満)との関係から,Mw6.5の場合のMは約6.95となることからM7.0に設定。 また,等価震源距離は,敷地近傍(半径10km程度以内の領域)で発生する地震を想定し,継続時間が長めとなるよう10kmに設定。

マグニチュード	等価震源距離	振幅包絡線の経時的変化(s)					
Μ	Xeq(km)	Tb	Тс	Td(継続時間)			
7.0	10	3.72	16.31	29.80			

振幅包絡線の経時的変化

第1178回審査会合(2023.8.4)

資料2-1 p.44 一部修正

- 1. 全国共通に考慮すべき地震動
- 1.3 標準応答スペクトルに基づく地震動の評価

(3) 一様乱数の位相特性を用いた模擬地震波による評価 ②模擬地震波の作成結果

第1178回審査会合(2023.8.4)

資料2-1 p.45 再掲

- 1. 全国共通に考慮すべき地震動
- 1.3 標準応答スペクトルに基づく地震動の評価

(3) 一様乱数の位相特性を用いた模擬地震波による評価 ③解放基盤表面位置における地震動の評価方法

▶ 地盤補正には,統計的グリーン関数法に用いる地下構造モデルを用いる。

〔東通原子力発電所 基準地震動の策定のうち敷地ごとに震源を特定して策定する地震動について(コメント回答)2章4.4(2)参照〕

▶ 当該地下構造モデルを採用した場合, 地震基盤相当面(Vs=2200m/sを上回るVsの値を示す層)の要件を満たす層はT.P.-282.8m以深の層が該当 するが, 模擬地震波の入力位置は, この該当層の中から, 東通の地下構造モデルの特徴並びに算定される解放基盤表面位置での応答スペクトル の傾向を踏まえ, 以下の2箇所を選定する。

①T.P. -282.8m: Vs=2200m/sを上回る最も浅い位置(当該レベルではPS検層によりVs=2200m/s以上の地層が確認されていることを考慮)。

②T.P.-2987.8m: Vp=4200m/sを上回る位置[Noda et al. (2002)で示される地震基盤として、Vsb=2200m/sの他にVpb=4200m/sが挙げられていることを考慮]。

▶ 作成した模擬地震波に対して、各入力位置から解放基盤表面〔基準地震動の振動特性を代表する位置(T.P.+2.0m, Vs=1300m/s, Vp=2250m/s層上面)〕までの地盤補正を行い、T.P.-282.8mを入力位置とした場合の解放基盤表面における地震動(以下、「標準応答スペクトルに基づく地震動A」という。)と、T.P.-2987.8mを入力位置とした場合の解放基盤表面における地震動(以下、「標準応答スペクトルに基づく地震動B」という。)を評価する。

T.P. (m)	層厚 (m)	密度 (t/m³)	Vs (m/s)	Vp (m/s)	Qs	Qp		
	—	—	—	—	—	—		解放基盤表面の
+2.0	9.0	2.24	1300	2250	1.23f ^{0.74}	2.33f ^{0.50}		振動特性を代表する位置
-7.0	55.0	2.24	1790	3060	1.23f ^{0.74}	2.33f ^{0.50}		
-62.0	20.8	2.72	1800	3340	1.23f ^{0.74}	2.33f ^{0.50}		
-82.8	23.2	2.72	1800	3340	1.23f ^{0.74}	2.33f ^{0.50}		
-106.0	60.0	2.30	1910	3350	8.91f ^{0.94}	5.55f ^{0.50}		
-166.0	24.0	2.30	2030	3360	8.91f ^{0.94}	5.55f ^{0.50}		
-190.0	62.0	2.30	2100	3390	8.91f ^{0.94}	5.55f ^{0.50}		挿進さなっぷりリックサズノ
-252.0	30.8	2.33	2090	3690	8.91f ^{0.94}	5.55f ^{0.50}		標準心合人へクトルに基づく 地震動Aの入力位置
-282.8	292.0	2.44	2390	3690	100	100		(Vs=2390m/s,
-5/4.8	921.0	2.45	2460	3750	100	100		Vp=3690m/s層上面)
-1495.8	946.0	2.48	2590	3960	100	100		標準応答スペクトルに基づく
-2441.8	546.0	2.50	2680	4160	100	100		地震動Bの入力位置
-2987.8	œ	2.63	3340	5800	150	150		(地宸本笽江直) (Vs=3340m/s.
└──── └─────: 地震観測点(立置を示す。			!	I		_1	Vp=5800m/s層上面)

地盤補正に用いる地下構造モデル

15

第1178回審査会合(2023.8.4)

資料2-1 p.46 一部修正

- 1. 全国共通に考慮すべき地震動
- 1.3 標準応答スペクトルに基づく地震動の評価
- (3) 一様乱数の位相特性を用いた模擬地震波による評価 ④解放基盤表面位置における地震動の評価結果(応答スペクトル)
- ▶ 敷地において適切な内陸地殻内地震の観測記録が得られておらず、また、下北半島では他機関においても内陸地殻内地震震源近傍の大きな観測記録 は得られていないことから、標準応答スペクトルに基づく地震動は一様乱数の位相特性を用いた模擬地震波による評価結果(標準応答スペクトルに基づく 地震動A及びB)を採用する。標準応答スペクトルに基づく地震動の評価結果として応答スペクトルを示す。

第1178回審査会合(2023.8.4)

資料2-1 p.52 一部修正

- 1. 全国共通に考慮すべき地震動
- 1.3 標準応答スペクトルに基づく地震動の評価
- (3) 一様乱数の位相特性を用いた模擬地震波による評価 ⑤解放基盤表面位置における地震動の評価結果(加速度波形)
- ▶ 標準応答スペクトルに適合する模擬地震波(一様乱数)を地下構造モデルを用いて各入力位置から解放基盤表面位置(Vs=1300m/s) に引き上げた地震動(標準応答スペクトルに基づく地震動A及びB)について,加速度波形を示す。

第1178回審査会合(2023.8.4)

資料2-1 p.48 再掲

- 1. 全国共通に考慮すべき地震動
- 1.4 全国共通に考慮すべき地震動の評価結果
- (1)2004年北海道留萌支庁南部の地震の知見に基づき設定した「震源を特定せず策定する地震動」に考慮する地震動
- 全国共通に考慮すべき地震動のうち、2004年北海道留萌支庁南部の地震の知見に基づき設定した「震源を特定せず策定する地震動」に考慮する地震動は以下のとおり設定する。

800

- :2004年北海道留萌支庁南部の地震の知見に基づき設定した 「震源を特定せず策定する地震動」に考慮する地震動(鉛直)

第1178回審査会合(2023.8.4)

資料2-1 p.55 一部修正

加速度波形(鉛直)

<u> 鉛直方向</u>

1. 全国共通に考慮すべき地震動

1.4 全国共通に考慮すべき地震動の評価結果

(2)標準応答スペクトルに基づく地震動 ①応答スペクトル

▶ 全国共通に考慮すべき地震動のうち、標準応答スペクトルに基づく地震動の応答スペクトルを以下のとおり設定する。

鉛直方向

10

水平方向

19

- 1. 全国共通に考慮すべき地震動
- 1.4 全国共通に考慮すべき地震動の評価結果

(2)標準応答スペクトルに基づく地震動 ②加速度波形

▶ 全国共通に考慮すべき地震動のうち,標準応答スペクトルに基づく地震動の加速度波形を以下のとおり設定する。

20

第1178回審査会合(2023.8.4)

資料2-1 p.57 再掲

2. 地域性を考慮する地震動

2.1 検討概要

- 2.2 2000年鳥取県西部地震震源域との地域性の比較・検討結果
- 2.3 2008年岩手・宮城内陸地震震源域との地域性の比較・検討結果
- 2.4 2008年岩手・宮城内陸地震の地震動に関する検討
- 2.5 地域性を考慮する地震動の評価結果

2.	地域性を考慮	電する地震動

2.1 検討概要

- ▶「事前に活断層の存在が指摘されていなかった地域において発生し,地表付近に一部の痕跡が確認された地震」について,「①活断層の密度が少なく活動度が低いと考えられる地域で発生した地震」として2000年鳥取県西部地震を対象に,「②上部に軟岩や火山岩,堆積層が厚く分布する地域で発生した地震」として2008年岩手・宮城内陸地震を対象に敷地周辺との地域差について検討を行った。
- ▶ 検討の結果,東通原子力発電所においては,2008年岩手・宮城内陸地震と敷地周辺には,地域差は認められるものの,地質・地質構造において類似点が認められるほか,地震地体構造に一部類似するといった共通性も認められることから,2008年岩手・宮城内陸地震を観測記録収集対象として選定する。
- ▶ 2008年岩手・宮城内陸地震について,対象となる地震観測記録を収集し,分析・評価した結果,KiK-net金ヶ崎,KiK-net一関東(水平),栗駒ダムの基盤地震動に基づく地震動を考慮する。

2. 地域性を考慮する地震動

2.2 2000年鳥取県西部地震震源域との地域性の比較・検討結果

[凡例]○:類似性有り、△:類似性低い~一部有り、×類似性なし

第1178回審査会合(2023.8.4)

資料2-2 p.17 再掲

項目	類似性	鳥取県西部地震の震源域	東通原子力発電所敷地周辺
①地質·地質構造	×	 WNW-ESE方向の圧縮応力による<u>横ずれ断層型</u>。 <u>白亜紀から古第三紀の花崗岩を主体</u>としており、新第三紀中 新世に貫入した安山岩~玄武岩質の<u>岩脈が頻繁に分布</u>。 	 ・東西圧縮応力による<u>逆断層型</u>。 ・主に<u>新第三紀の火山岩類, 堆積岩類</u>や第四紀の段丘堆積物 等が分布し, <u>大規模な岩脈の分布は認められない</u>。
②第四系の分布・ 地形等	×	 ・明瞭な<u>断層変位基準の少ない地域</u>である。 ・文献[岡田(2002)]では、震源域周辺に<u>活断層は記載されていない</u>。 ・第四紀中期以降に新たな断層面が形成され活断層が発達しつつある(活断層の成熟度が低い)。 	 ・変位基準となる<u>海成段丘面が広く認められる</u>。 ・敷地周辺には<u>横浜断層等が認められ</u>,地形一地質調査等から活断層の認定が可能。
③地震地体構造	×	•[内帯] 中国山地・瀬戸内海(10C5):安定隆起域	•[外帯] 東北日本弧外帯(8B):外弧隆起帯の安定域
④ひずみ集中帯	×	 ・地質学的ひずみ集中帯,測地学的ひずみ集中帯の領域内に 分布する。 	・地質学的ひずみ集中帯,測地学的ひずみ集中帯の領域外に 分布する。

2000年鳥取県西部地震は、その震源域と敷地周辺について、地域差の観点で整理を実施した結果、横ずれ断層型と 逆断層型の違いや活断層の成熟度の違い等、地域差が認められると判断されることから、観測記録収集対象外の地 震とする。

2. 地域性を考慮する地震動 2. 3 2008年岩手・宮城内陸地震震源域との地域性の比較・検討結果

▶ 2008年岩手・宮城内陸地震震源域と敷地周辺との地域性の比較・検討にあたっては、地表に明瞭な痕跡を示さない震源断層に 起因する震源近傍の地震動について、各種の不確かさを考慮した評価が求められていることを踏まえて、各評価項目に十分な 保守性を考慮して、総合的に評価を行った。

[凡例]○:類似性有り、△:類似性一部有り、×類似性なし

項目	類似性		岩手·宮城内陸地震震源域	東通原子力発電所敷地周辺		
①地質・地質構造	0	両地域は、東西圧縮応力による逆 断層型で軟岩及び火山岩が分布 する地質であるといった共通点が あることから、類似性有りと評価	 ・東西圧縮応力による逆断層型 ・山間部に位置する。 ・主に新第三紀以降の火山岩類及び堆積岩類 が分布し、褶曲構造の分布が認められる。 	 ・東西圧縮応力による逆断層型 ・主として台地からなる。 ・主に新第三紀の火山岩類及び堆積岩類が分 布し、顕著な褶曲構造の分布は認められない。 		
 ②第四系の 分布・地形等 	×	両地域は、段丘堆積物、地すべり の特徴は明瞭に異なることから、 <u>類似性なし</u> と評価	 第四系の分布は限られており河川沿いに 河成段丘面等が分布する。 大規模地すべり地形が密集している。 	 ・変位基準となる海成段丘面が広く認められる。 ・大規模な地すべり地形の密集は認められない。 		
③地震地体構造 垣見ほか(2003)	Δ	地震地体構造は異なるものの,敷 地周辺は8Cとの境界に近接する ことから, 類似性一部有り と評価	・ <u>(8C)東北日本弧内帯</u> ・火山性内弧,隆起優勢,脊梁山地	 ・(8B)東北日本弧外帯 ・(8C)東北日本弧内帯との境界に近接している。 ・外弧隆起帯の安定域 		
④ひずみ集中帯	×	両地域は、ひずみ集中帯の領域と の位置関係が明瞭に異なることか ら、 <u>類似性なし</u> と評価	 ・地質学的ひずみ集中帯、測地学的ひずみ集 中帯の領域内に位置する。 	 ・地質学的ひずみ集中帯,測地学的ひずみ集 中帯の領域外に分布する。 		
⑤火山フロントとの 位置関係	×	敷地周辺は、岩手・宮城内陸地震 震源域の特徴と明瞭に異なること から、 <u>類似性なし</u> と評価	・火山フロントに位置しており,多数のカルデラ に囲まれ,第四紀火山噴出物に覆われる。	•火山フロントの海溝側に位置しており,付近に カルデラは認められず,顕著な火山噴出物は 認められない。		
 ⑥震源断層の伏在 による地表変形 の広範囲化 	×	両地域は、地下深部構造の特徴 が明瞭に異なることから、 <u>類似性</u> なしと評価	 ・震源域全体に西側が相対的に隆起する西傾 斜の逆断層が伏在し、地表付近はブロードな 幅広い変形帯となっている。 	 ・地下深部に伏在する震源断層を示唆するよう な変形は認められない。 		

2008年岩手・宮城内陸地震震源域と敷地周辺について、地域性の比較・検討を実施した結果、地域差は認められる ものの、①地質・地質構造において類似点が認められるほか、③地震地体構造に一部類似するといった共通性も認 められることから、2008年岩手・宮城内陸地震を観測記録収集対象として選定する。

標準応答スペクトル

岩手・宮城内陸地震の震源を特定せず策定する地震動に考慮する基盤地震動として、IWTH24(金ヶ崎)、IWTH26(一関東)(水平)のはぎとり波及び栗駒ダム(右岸地山)の観測記録を採用する

・IWTH24(金ヶ崎)

•IWTH26(一関東)(水平)

・栗駒ダム(右岸地山)

・IWTH24(金ヶ崎)

•IWTH26(一関東)(水平)

・栗駒ダム(右岸地山)

2. 地域性を考慮する地震動 2. 4 2008年岩手・宮城内陸地震の地震動に関する検討 (1) 地震動に関する検討③

(5) 震源を特定せず策定する地震動に反映する地震動

これまでの検討結果を踏まえ、IWTH24(金ヶ崎)、IWTH26(一関東) (水平)及び栗駒ダム(右岸地山)の基盤地震動を震源を特定せず策 定する地震動に反映する。

反映する観測記録が、震源の北側・東側に限られることから、震源

_域北側・東側と南側・西側の地震動を比較する。_____

《参考》採用する地震動の観測点の方位性の確認

《審査ガイド》審査の方針 震源近傍における観測記録を基に、各種 の不確かさを考慮して敷地の地盤物性に 応じた応答スペクトルの設定を確認する。

IWTH26(一関東)のはぎとり解析には、地盤の非線形性 の影響、周辺地形の影響が含まれていることも踏まえ、 IWTH26(一関東)(水平)の基盤地震動については、基盤 地震動の最大加速度とはぎとり地震動(10ケース)の最大 加速度の平均+1 σとの比(1.03)を考慮する。震源を特定 せず策定する地震動としては、施設の重要性を鑑み、さら に保守性を考慮する。

第1178回審査会合(2023.8.4)

資料2-2 p.46 一部修正

IWTH24(金ヶ崎)及び栗駒ダム(右岸地山)の基盤地震動 についても、安全側の対応として同様の保守性を考慮す る。

_						-			-			
	観測点	基盤地震動 最大加速度(Gal)			ばらつきを 考慮	ばらつきを考慮した地震動 最大加速度(Gal)		保守性を 考慮	震源を特定せず策定する地震動 ^{※4} 最大加速度(Gal)			
		水	(平	公古		水	平	小古		水	Ŧ	
		NS方向	EW方向 ^{站直}			NS方向	EW方向	「」」「」」「」」		NS方向	EW方向	ゴビ
	IWTH24(金ヶ崎)	401	370	279	⇒	413	381	287	\Rightarrow	430	400	300
	IWTH26(一関東)	511	476	3	⇒	528	490	3	⇒	540	500	_**3
	栗駒ダム(右岸地山)	421 ^{×1}	463 ^{%2}	298	⇒	434 ^{×1}	477 ^{%2}	307	⇒	450 ^{×1}	490 ^{%2}	320

※1:ダム軸方向

※2:上下流方向

※3:IWTH26(一関東)の鉛直方向は観測記録の伝達関数を再現できていないことから, 信頼性の高い基盤地震動の評価は困難である。

※4:それぞれの基盤地震動の加速度時刻歴波形について、基盤地震動の最大加速度と保守性を考慮した最大加速度との比を用いて係数倍する。(位相特性を変更せずに振幅特性のみを変更)

2. 地域性を考慮する地震動 2. 4 2008年岩手・宮城内陸地震の地震動に関する検討 (2) 地震観測記録の収集対象

- ▶ 防災科学技術研究所のK-NET及びKiK-net観測点のうち,断層最短距離30km以内の観測点を対象に収集する(16地点)。
- ▶ あわせて,本地震の震源近傍に位置している荒砥沢ダム,栗駒ダムの地震観測記録※も収集する(2地点)。

※:ダム観測記録は宮城県より受領

2008年岩手・宮城内陸地震の震央位置と周辺観測点

28

第1178回審査会合(2023.8.4)

資料2-2 p.58 再掲

2. 地域性を考慮する地震動 2. 4 2008年岩手・宮城内陸地震の地震動に関する検討 (3) 地震観測記録の収集

▶ 収集した観測記録について、以下の観点で抽出し、考察を行う。

• 標準応答スペクトルを上回る記録(KiK-net観測点の記録は,地中記録の2倍で整理)

• K-NET観測点については、上記の観点に加えAVS30が500m/sを上回っている観測点における記録

29

2. 地域性を考慮する地震動 2. 4 2008年岩手・宮城内陸地震の地震動に関する検討 (4) K-NET観測点及びKiK-net観測点より抽出した地震観測記録のまとめ

▶ K-NET観測点及びKiK-net観測点より抽出された観測記録と標準応答スペクトルについて比較する。

水平方向

鉛直方向

2. 地域性を考慮する地震動 2. 4 2008年岩手・宮城内陸地震の地震動に関する検討 (5) 荒砥沢ダム及び栗駒ダムより抽出した地震観測記録のまとめ

▶ 荒砥沢ダム及び栗駒ダムより抽出された観測記録と標準応答スペクトルについて比較する。

観測記録(ダム)と標準応答スペクトルとの比較

▶ IWT010(一関), AKTH04(東成瀬), IWTH24(金ヶ崎), IWTH25(一関西), IWTH26(一関東), MYGH02(鳴子), 荒砥沢ダム, 栗駒ダ ムの観測記録は, 標準応答スペクトルを一部の周期帯で上回る。

31

2. 地域性を考慮する地震動 2. 4 2008年岩手・宮城内陸地震の地震動に関する検討 (6)抽出した地震観測記録の分析・評価の概要

- ▶ 前項の観測記録の収集において,敷地に及ぼす影響が大きいと考えられるものとして抽出した観測記録について,以下の観点で記録の分析・評価を実施する。
 - ・ 地盤応答等による特異な影響の評価(地盤情報の収集,各種知見の収集・整理,相対的地盤増幅率の評価,地質及び速 度構造に関する検討,地形の影響に関する検討)
 - 基盤波を算定するモデルの妥当性確認〔観測記録を用いた地盤同定及びはぎとり解析, 地盤同定に関する検討(再現性の確認, 探索範囲等の変更, 中小地震を用いた検討)〕

第1178回審査会合(2023.8.4)

資料2-2 p.75 再掲

2. 地域性を考慮する地震動 2. 4 2008年岩手・宮城内陸地震の地震動に関する検討 (7)抽出した地震観測記録の分析・評価のまとめ①

- ▶ IWT010(一関)は、表層のVsは430m/sであるが、深さ4mでVs=730m/sの層となっており、観測記録の応答スペクトルは、一部の周期帯で標準応答スペクトルを上回る。
- ▶ KiK-net観測点のうち, IWTH25(一関西)については、地表記録にトランポリン効果、ロッキング振動の影響などが含まれており、観測記録の伝達関数を用いた地盤同定によるはぎとり波の算定は困難と考えられること、IWTH25(一関西)が本震震源域南部で発生する地震に対して、他の観測点よりも大きく増幅する地域と考えられることから、信頼性の高い基盤地震動の評価は困難である。
- ▶ AKTH04(東成瀬)は、観測記録に地盤の非線形性の影響、周辺地形による影響が含まれており、観測記録と整合する地盤モデルが同定できず、地表記録も再現できていないことから、信頼性の高い基盤地震動の評価は困難である。
- ▶ MYGH02(鳴子)は、鉛直方向において概ね妥当な地盤モデルを作成でき、はぎとり解析を実施した結果、全周期帯で標準応答スペクトルを下回る結果となった。なお、水平方向においては、観測記録(地中記録の2倍)が標準応答スペクトルを下回る。
- ▶ IWTH24(金ヶ崎)は, 概ね妥当な地盤モデルを作成でき, はぎとり解析を実施した結果, 一部の周期帯で標準応答スペクトルを上回る結果となった。
- ▷ IWTH26(一関東)は、観測記録に地盤の非線形性の影響、周辺地形による影響が含まれており、鉛直方向において観測記録の伝達関数を再現できていないことから、信頼性の高い基盤地震動の評価は困難である。しかしながら、水平方向は、本震記録による伝達関数に一定の整合がみられ、地表記録を概ね再現できている。
- ▶ 荒砥沢ダムについては、岩手・宮城内陸地震の本震記録に地盤の非線形性の影響、ロックフィルダム堤体の強非線形性や変形による影響が 含まれていると考えられること、荒砥沢ダムが本震震源域南部で発生する地震に対して、他の観測点よりも大きく増幅する地域と考えられることから、信頼性の高い基盤地震動の評価は困難である。
- ▶ 栗駒ダム(右岸地山)の観測記録は,基盤地震動として評価可能と考えられ,監査廊の観測記録には、ダム堤体の影響が含まれていると考えられることから、栗駒ダムの観測記録は、右岸地山を採用する。

- IWTH26(一関東)の水平方向は、本震記録による伝達関数に一定の整合がみられ、地表記録を概ね再現できていることから、はぎとり解析 を実施した結果、一部の周期帯で標準応答スペクトルを上回るため基盤波として選定可能と判断する。
- ・ 上記以外のAKTH04(東成瀬), IWTH25(一関西)及び荒砥沢ダムは、各々の観測点において観測記録に特異な傾向等がみられることから、 信頼性の高い基盤地震動の評価は困難である。

第1178回審査会合(2023.8.4)

資料2-2 p.156 再掲

2. 地域性を考慮する地震動

2.4 2008年岩手・宮城内陸地震の地震動に関する検討

(7)抽出した地震観測記録の分析・評価のまとめ②

		IWT010 (一関)	AKTH04 (東成瀬)	IWTH24 (金ヶ崎)	IWTH25 (一関西)	IWTH26 (一関東)	荒砥沢ダム	栗駒ダム	
地盤情報 (基盤相当のVs)		730m/s	1500m/s	540m/s	1810m/s	680m/s	600m/s (J-SHIS)	700m/s 程度以上	
地盤応答等による特異な影響	地盤の非線 形性,特異 な増幅特性 の有無	_	 ・地表記録に地盤の非線 形性の影響が含まれて いる 	_	 本震震源域南部で発 生する地震に対して 他の観測点よりも大 きく増幅する地域 	 ・地表記録に地盤の非線 形性の影響が含まれて いる 	 右岸地山の観測記 録に地盤の非線形性 の影響が含まれてい る 本震震源域南部で発 生する地震に対して 他の観測点よりも大 きく増幅する地域 	_	
	上部構造物 の影響の有 無						・監査廊の観測記録に ダム堤体の影響が含 まれている	・監査廊の観測記録 にダム堤体の影響 が含まれている	
	その他要因 の有無	特になし	 ・地表記録に観測点周辺 の地形の影響が含まれ ている 	特になし	 地表記録にトランポリン効果、ロッキング振動等の影響が含まれている 	 地表記録に観測点周辺の地形の影響が一部含まれていると考えられる 	 右岸地山付近に地表の変状がみられる 	特になし	
基盤波を算定するモデルの妥当性	はぎとり解 析の可否及 び妥当性	・地盤状況 を踏まえ, 観測記録 を採用	 水平方向は、表層のVs が極端に小さい 鉛直方向は、観測記録 の伝達関数を再現できていない >観測記録に地盤の非線 形性、周辺地形による 影響が含まれており、 地表記録を再現できていないことから、はぎとり解析は困難 	 概ね妥当 ながかで、 ができ、 が可能 	• 観測記録にトランポリ ン効果等の影響がみ られることから, はぎ とり解析は困難	 水平方向は、本震記録 による伝達関数などに一 定の整合がみられる 鉛直方向は、観測記録 の伝達関数を再現できて いない ⇒観測記録に地盤の非線 形性、周辺地形による 影響が含まれているも のの、水平方向は、地 表記録を概ね再現でき ることから、はぎとり解 析を実施 	・観測記録にダム堤体 等の非線形性の影響 がみられることから、 はぎとり解析は困難	 ・右岸地山の観測点 は、硬質な岩盤の地 表面に設置 ・右岸地山は、特異な 増幅傾向を示してい ない地域 ⇒右岸地山の観測記 録を採用 	
基盤波としての評価		 基盤波と して選定 可能 	 信頼性の高い基盤地震 動の評価は困難 	 基盤波と して選定 可能 	 信頼性の高い基盤地 震動の評価は困難 	 水平方向は、基盤波として選定可能と判断 	 信頼性の高い基盤地 震動の評価は困難 	 右岸地山は、基盤波として選定可能 	

34

第1178回審査会合(2023.8.4)

資料2-2 p.157 再掲

- 2. 地域性を考慮する地震動
 2. 4 2008年岩手・宮城内陸地震の地震動に関する検討
 (8) 基盤波の選定①
 - ▶ 基盤波として選定可能なIWT010(一関), IWTH24(金ヶ崎), IWTH26(一関東)(水平)及び栗駒ダム(右岸地山)の観測記録(応答 スペクトル)の比較を示す。
 - ▶ 比較した結果,保守的な基盤波として,IWTH24(金ヶ崎),IWTH26(一関東)(水平)及び栗駒ダム(右岸地山)を選定する。

水平方向

鉛直方向

35

第1178回審査会合(2023.8.4)

資料2-2 p.158 一部修正

- 2. 地域性を考慮する地震動
 2. 4 2008年岩手・宮城内陸地震の地震動に関する検討
 (8) 基盤波の選定②
 - ▶ 基盤波として選定したIWTH24(金ヶ崎), IWTH26(一関東)(水平)及び栗駒ダム(右岸地山)について, 敷地の地盤物性に応じた基盤地震動を評価する。

- ▶ IWTH24(金ヶ崎)について、はぎとり波算定位置のVsは、PS検層では540m/s、観測記録に基づく地盤同定結果ではVsは584m/sとなっており、原子力発電所の解放基盤表面におけるVs=700m/s以上と比べると速度の遅い岩盤上の地震動であると考えられる。 ⇒IWTH24(金ヶ崎)のはぎとり波は、安全側の判断として地盤物性による補正をせず基盤地震動に採用
- ▷ IWTH26(一関東)(水平)について、はぎとり波算定位置のVsは、PS検層では680m/sとなっており、原子力発電所の解放基盤表面におけるVs=700m/s以上と比べると速度の遅い岩盤上の地震動であると考えられる。 ⇒IWTH26(一関東)(水平)のはぎとり波は、安全側の判断として地盤物性による補正をせず基盤地震動に採用
- ▶ 栗駒ダムの地震観測点の地盤については、地質及び速度構造から相応の硬さの地盤であると考えられる。また、栗駒ダム(右岸地山)については、Noda et al.(2002)で評価可能であり、特異な増幅傾向を示していない地域であると考えられる。 ⇒栗駒ダム(右岸地山)の観測記録は、基盤地震動に採用

▶ 岩手・宮城内陸地震の震源を特定せず策定する地震動に考慮する基盤地震動として, IWTH24(金ヶ崎), IWTH26(一関東)(水平)のはぎとり波及び栗駒ダム(右岸地山)の観測記録を採用する。

第1178回審査会合(2023.8.4)

資料2-2 p.159 再掲

2. 地域性を考慮する地震動 2. 4 2008年岩手・宮城内陸地震の地震動に関する検討 (9)震源を特定せず策定する地震動への反映

- ▶ IWTH26(一関東)の観測記録には、地盤の非線形性の影響や観測点周辺の地形の影響が含まれていることを踏まえ、ばらつきを考慮する。IWTH26(一関東)(水平)のはぎとり解析に用いる地盤モデル及びはぎとり地震動については、ばらつきが小さい結果となっているものの、採用地震動の最大加速度とはぎとり地震動の最大加速度の平均+1σとの比(1.03)を考慮する。さらに、震源を特定せず策定する地震動としては、施設の重要性を鑑み、さらに保守性を考慮する。
- ▶ 加えて,安全側の対応として,岩手・宮城内陸地震において採用するすべての地震動に同様の保守性を考慮する。
- ▶ また,これまでの審査において, IWTH26(一関東)鉛直方向での評価用地震動設定の実績があることから,同様に以下の方針にて評価用地震動を設定する。
 - IWTH26(一関東)は、鉛直方向の信頼性の高い基盤波を評価することが困難なこと(本震記録を用いて、観測記録の はぎとり解析のための地盤同定を実施したが、得られた地盤モデルは観測記録の伝達関数を再現できない)から、水 平方向の地震動のみ設定しているものであり、鉛直方向の地震動については、震源を特定せず策定する地震動として 考慮しない。
 - IWTH26(一関東)(水平)の地震動を基準地震動とする場合には,水平方向及び鉛直方向の同時入力を行う影響評価 (基礎地盤及び周辺斜面の安定性評価等)並びに水平方向と鉛直方向の地震力を組み合わせた影響評価に用いる鉛 直方向の地震動として,新たに評価用地震動を設定する。

観測点	基盤地震動 最大加速度(Gal)			ばらつきを 孝信	ばらつきを考慮した地震動 最大加速度(Gal)			保守性を 老歯	震源を特定せず策定する地震動 ^{※4} 最大加速度(Gal)		
	水平		公古	· J //EX	水平		公古	JIEA	水平		公古
	NS方向	EW方向	如但		NS方向	EW方向	如但		NS方向	EW方向	四世
IWTH24(金ヶ崎)	401	370	279	⇒	413	381	287	⇒	430	400	300
IWTH26(一関東)	511	476	3	⇒	528	490	_**3	⇒	540	500	_**3
栗駒ダム(右岸地山)	42 1 ^{%1}	463 ^{%2}	298	⇒	434 ^{%1}	477 ^{%2}	307	⇒	450 ^{%1}	490 ^{%2}	320

※1:ダム軸方向

※2:上下流方向

※3:IWTH26(一関東)の鉛直方向は観測記録の伝達関数を再現できていないことから、信頼性の高い基盤地震動の評価は困難である。

※4:それぞれの基盤地震動の加速度時刻歴波形について、基盤地震動の最大加速度と保守性を考慮した最大加速度との比を用いて係数倍する。

(位相特性を変更せずに振幅特性のみを変更)

第1178回審査会合(2023.8.4)

資料2-2 p.165 一部修正

2. 地域性を考慮する地震動

2.5 地域性を考慮する地震動の評価結果

▶ 震源を特定せず策定する地震動として, IWTH24(金ヶ崎), IWTH26(一関東)(水平)及び栗駒ダム(右岸地山)の基盤地震動に基づく地震動を考慮する。

水平方向

鉛直方向

第1178回審査会合(2023.8.4)

資料2-2 p.167 一部修正

- 2. 地域性を考慮する地震動
- 2.5 地域性を考慮する地震動の評価結果

▶ 震源を特定せず策定する地震動として, IWTH24(金ヶ崎), IWTH26(一関東)(水平)及び栗駒ダム(右岸地山)の基盤地震動に基づく地震動を考慮する。

第1178回審査会合(2023.8.4)

資料2-2 p.168 一部修正

参考文献

1. 全国共通に考慮すべき地震動

- 1. 佐藤浩章, 芝良昭, 東貞成, 功刀卓, 前田宜浩, 藤原広行(2013):物理探査・室内試験に基づく2004年留萌支庁南部の地震によるK-NET港町観測点 (HKD020)の基盤地震動とサイト特性評価, 電力中央研究所報告, 2013年12月
- 2. 日本電気協会(2016):原子力発電所耐震設計技術指針 JEAG4601-2015
- Noda, S., K. Yashiro, K. Takahashi, M. Takemura, S. Ohno, M. Tohdo and T. Watanabe (2002): RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES, OECD-NEA Workshop on the Relations Between Seismological Data and Seismic Engineering Analysis. Oct. 16–18, Istanbul
- 4. 武村雅之(1990):日本列島およびその周辺地域に起こる浅発地震のマグニチュードと地震モーメントの関係, 地震 第2輯 第43巻
- 5. Kanamori H. (1977) : The Energy Release in Great Earthquakes, Journal of Geophysical Research Vol.82 No.20

2. 地域性を考慮する地震動

- 1. 岡田篤正(2002):山陰地方の活断層の諸特徴,活断層研究, No.22,17-32.
- 2. 垣見俊弘・松田時彦・相田勇・衣笠善博(2003):日本列島と周辺海域の地震地体構造区分,地震第2輯,第55巻,389-406.