2.3 地質調査 **2.3.1 幌似露頭1における調査結果**

下部壁面(薄片観察結果)(1/11)

【薄片観察結果】

187

○小野・斉藤 (2019) におけるピソライト層に対比されると考えられる砂混じりシルトを対象として, 薄片観察を行った。

- ・上部は、明黄灰~明灰色を呈する角~亜角礫の濃集部に対応し、下部に比べ粗粒であり、砂が優勢で、主に斜長石、岩片からなる
- ・上部においては、ガラス片及び軽石は認められない

 下部は、シルトが優勢であり、「シルトからなる同心円状の構造を持つほぼ球形の粒子」が認められ、明黄灰〜明灰色を呈する角〜亜角礫の 濃集部の基質に当該粒子の砕屑物と考えられるブロックが認められる

・上部及び下部ともに淘汰が悪く、泥粒径の砕屑物が認められるものの、火山ガラス及び軽石が風化・変質したことにより形成したと考えられ る粘土鉱物はほとんど認められない PI:斜長石 Hbl:角閃石 Px:輝石類 シルトからなる同心円状 ✓:の構造を持つほぼ球形 の粒子 ✓:上記粒子の砕屑物と考 えられるブロック

Rf:岩片

○「シルトからなる同心円状の構造を持つほぼ球形の粒子」の状況を次頁~P191に示す。

研磨片写真

10mm

クロスニコル

10mm

2.3.1 幌似露頭1における調査結果

下部壁面(薄片観察結果)(2/11)

○下部に認められる当該粒子は、主に砂質シルトからなり、外周部に不透明鉱物を多く含むシルトを伴う ○当該粒子中及び基質にガラス片は認められない

2.3 地質調査

<拡大写真①>

<拡大写真2>

1mm

188

<拡大写真④>

オープンニコル

0.5mm

オープンニコル

0.5mm

2.3 地質調査

2.3.1 幌似露頭1における調査結果

下部壁面(薄片観察結果)(3/11)

クロスニコル

0.5mm

クロスニコル

189

0.5mm

2.3 地質調査

2.3.1 幌似露頭1における調査結果

下部壁面(薄片観察結果)(4/11)

クロスニコル(左方向に45°回転) 0.5mm 191

0.5mm

2.3 地質調査

2.3.1 幌似露頭1における調査結果

下部壁面(薄片観察結果)(5/11)

○岩内層上位の砂混じりシルトにおいて認められる「シルトからなる同心円状の構造を持つほぼ球形の粒子」の成因を明確にするため,以 下の手順で検討を行った。

①当該層は、小野・斉藤(2019)におけるピソライト層に対比されることを踏まえ、ピソライト(火山豆石)に関する文献調査を実施し、一般的な火山豆石の特徴を整理した。

②既往知見において火山豆石を含むとされている堆積物の薄片観察を実施し、一般的な火山豆石の特徴を有するか否か確認した。
 ③「シルトからなる同心円状の構造を持つほぼ球形の粒子」及び一般的な火山豆石について、それぞれの特徴を整理し、比較した。

【①文献調査を踏まえた一般的な火山豆石の特徴の整理】 ○文献調査の結果、火山豆石は、以下の通りとされている。

・火山灰が球状に固結したもの。同心構造をなし、表面に細粒の層がある場合が多い(「新版地学事典」(地学団体研究会編、 1996))。

・細粒の火山灰が凝集してできる数mm以上の球体状粒子は、火山豆石 (狭義)または火山灰凝集火山礫と呼ばれる。また、鉱物粒子 や軽石、岩片などを核としてその周りを細粒火山灰が皮膜状に覆う球状体粒子は、アーマードラピリまたは火山灰付着火山礫と呼ば れる。この両者が区別されずに、火山豆石 (広義)とされ、これらの堆積物がピソライトと呼ばれることもある (伊藤編、2022)。 〇なお、火山灰は、以下の通りとされている。

・直径2mm以下の破片からなる火山砕屑物で、固結していないもの(「新版地学事典」(地学団体研究会編、1996))。

・マグマ噴火に由来する火砕粒子は、火山ガラス片や結晶片、緻密な石質岩片のほか、気泡に富む軽石やスコリアが含まれる(伊藤編, 2022)。

○また,相原(1990)においては,後期中新世三浦層群の海成堆積物にみられる火山豆石は,浅海~比較的浅い海面付近で起きた安山岩~玄武岩質マグマの水蒸気爆発によるものであるとされている。

○内部は同心円状構造をしており、核を構成する物質はスコリアまたは岩片・鉱物であり、その周りにはガラス等が認められるとされている。

○火山灰の粒子の種類に関する記載がなされている伊藤編(2022)を踏まえると、一般的な火山豆石は、火山ガラス片や結晶片、緻密な石質岩片のほか、気泡に富む軽石やスコリアからなる球体状の粒子であり、同心構造若しくは核をなす粒子の周りを覆う内部構造が認められると判断される。

○また,相原 (1990)を踏まえると,火山豆石は,火砕流堆積物若しくは降下火山灰以外の堆積物においても,存在し得るものと考えられ るが,火山ガラスが認められる点については,一般的な火山豆石の特徴と同様であると考えられる。

2.3 地質調査 2.3.1 幌似露頭1における調査結果

下部壁面(薄片観察結果)(6/11)

【②既往知見において火山豆石を含むとされている堆積物の観察】
 ○観察対象は、長岡ほか(2001)において、火山豆石を含むとされている姶良カルデラを給源とする30cal kyrBPに堆積した毛梨野テフラ(Kn)とした。
 ○毛梨野テフラ(Kn)は、同文献において、以下のとおりとされている。
 ・阿多火砕流堆積物(Ata)から姶良Tnテフラ(AT)までの間には、土壌が発達するような時間間隙を挟んで、少なくとも7層のテフラが認められ、そのうちの最上位が毛梨野テフラ(Kn)である
 ・毛梨野テフラ(Kn)は、給源付近では、火砕サージ堆積物、遠方では降下軽石と灰白色火山豆石を含むガラス質降下火山灰層であるとされている
 ・毛梨野テフラ(Kn)のうち、主体をなす降下火山灰層のユニットには、軽石型火山ガラスからなる直径1cm以下の火山豆石が多量に含まれる
 〇毛梨野テフラ(Kn)のうち、主体をなす降下火山灰層中に含まれる
 ・毛梨野テフラ(Kn)のうち、主体をなす降下火山灰層中に含まれる
 ・毛梨野テフラ(Kn)のうち、主体をなす降下火山灰層中に含まれる
 ・軽石型火山ガラスからなる

○なお、毛梨野テフラ(Kn)の薄片試料は、長岡ほか(2001)における地点2で採取した(左上図参照)。

0.2mm

2.3 地質調査 2.3.1 幌似露頭1における調査結果

下部壁面(薄片観察結果)(8/11)

クロスニコル

2.3 地質調査 2.3.1 幌似露頭1における調査結果

下部壁面(薄片観察結果)(9/11)

クロスニコル(左方向に45°回転) 0.2mm

2.3 地質調査

2.3.1 幌似露頭1における調査結果

下部壁面(薄片観察結果)(10/11)

○毛梨野テフラ (Kn) において認められる火山豆石は、5mm程度の円形の粒子*であり、数層の同心円状の構造が認められ、構成粒子のほとんどは火山ガラ ス及び軽石片からなる。

○長岡ほか (2001) 及び上記の特徴を踏まえると、毛梨野テフラ (Kn) において認められる火山豆石は、「①火山豆石の特徴の整理」における一般的な火山豆石であると判断されることから、「シルトからなる同心円状の構造を持つほぼ球形の粒子」の成因を明確にするため、当該火山豆石と比較を行うことは妥当であると判断される。

【③「シルトからなる同心円状の構造を持つほぼ球形の粒子」及び既往知見における火山豆石の特徴の比較】

○砂混じりシルトにおいて認められる「シルトからなる同心円状の構造を持つほぼ球形の粒子」及び毛梨野テフラ(Kn)において認められる火山豆石の特徴を 下表の通り整理・比較した。

	シルトからなる同心円状の構造を持つほぼ球形の粒子	毛梨野テフラ (Kn) において認められる火山豆石		
構造	・外周部に不透明鉱物を多く含むシルトを伴う	・数層の同心円状の構造が認められる		
構成粒子	・主に砂質シルトからなる ・粒子中にガラス片は認められない	・ほとんどは火山ガラス及び軽石片からなり, わずかに斜長石等が 混じる		
基質部の特徴	・基質にガラス片は認められない ・上部 (明黄灰〜明灰色を呈する角〜亜角礫の濃集部)の基質に当該粒 子の砕屑物と考えられるブロックが認められる ・淘汰が悪く, 泥粒径の砕屑物が認められるものの, 火山ガラスが風化・ 変質したことにより形成したと考えられる粘土鉱物はほとんど認められな い	・構成粒子のほとんどは火山ガラス及び軽石片からなる ・火山豆石の砕屑物と考えられるブロックが認められる ・火山豆石及び基質部の構成粒子比は同様である		
○「シルトからなる同心円状の構造を持つほぼ球形の粒子」は, 一般的な火山豆石である毛梨野テフラ(Kn) において認められる火山豆石と異なる特徴が認 められる。				

※当該粒子は、薄片観察においては円形であるものの、露頭観察等においては、球形を呈する。

2.3 地質調査

2.3.1 幌似露頭1における調査結果

下部壁面(薄片観察結果)(11/11)

○「シルトからなる同心円状の構造を持つほぼ球形の粒子」は、以下の点から、火山豆石ではないものと判断される。

- ①一般的な火山豆石は、火山ガラス片や結晶片、緻密な石質岩片のほか、気泡に富む軽石やスコリアからなる球体状の粒子であり、同心構造若しくは核をなす粒子の周りを覆う内部構造が認められると判断される。
- ②毛梨野テフラ (Kn) において認められる火山豆石は、5mm程度の円形の粒子であり、数層の同心円状の構造が認められ、構成粒子のほとんどは火山ガラス及び軽石片からなり、一般的な火山豆石であると判断される。
- ③「シルトからなる同心円状の構造を持つほぼ球形の粒子」は、一般的な火山豆石である毛梨野テフラ (Kn) において認められる火山豆石と異なる特徴が認められる。
- ○「シルトからなる同心円状の構造を持つほぼ球形の粒子」は、以下の点から、ごく弱い水の作用により形成したものと判断される。
- ・当該粒子は, 主に砂質シルトからなり, 粒子中及び基質にガラス片は認められず, 火山ガラスが風化したこと等により形成したと考えられる粘土鉱 物はほとんど認められない

・上部の基質中に当該粒子の砕屑物と考えられるブロックが認められることから,明黄灰~明灰色を呈する角~亜角礫の濃集部は下部を侵食してい るものと判断され,当該粒子の構造は堆積時に形成したものであると考えられる

2.3 地質調査 2.3.2 敷地における調査結果

(1)断層調査時トレンチ及び3号炉調査時ボーリング調査結果

① 地質調査結果(1/3)

一部修正(R5/1/20審査会合)

○至近に実施した敷地内断層の活動性評価に関する当社地質調査(以降,「断層調査」と呼ぶ)の結果,敷地においては,支笏第1降下軽石(Spfa-1),洞爺火山灰(Toya)及び対象火山灰※に対比される火山ガラスが混在する堆積物が認められるが,主に火山砕屑物からなる堆積物若しくは軽石又はスコリアを含む堆積物は認められない。

○断層調査のうち,敷地の南東側(洞爺火砕流堆積物が確認される共和町幌似付近方向)に存在する丘陵地におけるB地点及びC地点の地質調査結果の詳細を一例としてP205~P239に示す。

○断層調査においては、主に火山砕屑物からなる堆積物若しくは軽石又はスコリアを含む堆積物は認められないが、3号炉調査時のボーリングにおいて柱状図に"軽石"、"火山灰質"等との記載がなされている堆積物が4つのボーリング(3B-4、3H-2、3J-4及び3-2ボーリング)で確認される。

○これらのボーリングコアは現存することから, R3.10.14審査会合以降, コアの再観察を実施し, "軽石"に対応すると考えられる白色粒子 が認められないため, 基質を対象とした火山灰分析等を実施しており, その結果についてはP241~P251に示す。

※ニセコ火山噴出物(火砕流堆積物)に対比される火山灰を「対象火山灰」と呼称している。

B-a

トレンチ壁面写真 (B地点)

測線B-b付近拡大図

2.3 地質調査 2.3.2 敷地における調査結果 (1)断層調査時トレンチ及び3号炉調査時ボーリング調査結果

①-1 B地点(2/7)

一部修正(H29/12/8審査会合)

【露頭柱状図(B-a)】

2.3 地質調査 2.3.2 敷地における調査結果

(1)断層調査時トレンチ及び3号炉調査時ボーリング調査結果

①-1 B地点(3/7)

一部修正(H29/12/8審査会合)

(参考) Spfl及びSpfa-1の屈折率(町田・新井, 2011より)

略号	特徴	火山ガラス	斜方輝石	角閃石
Spfl	バブルウォールタイプ・ パミスタイプの 火山ガラス主体	1.500-1.503	1.730-1.733	1.688-1.691
Spfa-1	パミスタイプの 火山ガラス主体	1.501-1.505 (1.502-1.503)	1.729-1.735	1.688-1.691

敷地における地質調査の結果, 堆積物中に洞爺火山灰(Toya), 支笏第1降下軽石(Spfa-1)及び 対象火山灰に対比される火山ガラスが認められるものの, 組成分析の結果, これらの火山ガラスの 粒子数は少ない。

(参考)洞爺火山灰 (Toya)の屈折率 (町田・新井, 2011より)

略号	特徴	火山ガラス	斜方輝石	角閃石
Тоуа	バブルウォールタイプ・ パミスタイプの 火山ガラス主体	1.494-1.498	1.711-1.761 (1.758-1.761, 1.712-1.729 bimodal)	1.674-1.684

B-a 火山ガラスの主元素組成(ハーカー図)

割地における地質調査の結果,堆積物中に洞爺火山灰(Toya),支笏第1降下軽石(Spfa-1)及び
対象火山灰に対比される火山ガラスが認められるものの,組成分析の結果,これらの火山ガラスの
↓ 粒子数は少ない。
↓

2.3 地質調査 2.3.2 敷地における調査結果 (1)断層調査時トレンチ及び3号炉調査時ボーリング調査結果

①-1 B地点(5/7)

一部修正(H29/12/8審査会合)

バブルウォールタイプ・ パミスタイプの

火山ガラス主体

火山ガラス主体

Spfl

Spfa-1

1.500-1.503

1.501-1.505

(1.502 - 1.503)

1.730-1.733

1.729-1.735

1.688-1.691

1.688-1.691

2.3 地質調査 2.3.2 敷地における調査結果

(1)断層調査時トレンチ及び3号炉調査時ボーリング調査結果

①-1 B地点(6/7)

一部修正(H29/12/8審査会合)

略号	}	特徴	火山ガラス	斜方輝石	角閃石
Тоу	a	バブルウォールタイプ・ パミスタイプの 火山ガラス主体	1.494-1.498	1.711-1.761 (1.758-1.761, 1.712-1.729 bimodal)	1.674-1.684

2<u>11</u>

^{※1} 町田·新井(2011), ※2 青木·町田(2006)

B-b 火山ガラスの主元素組成(ハーカー図)

|敷地における地質調査の結果, 堆積物中に洞爺火山灰(Toya), 支笏第1降下軽石(Spfa-1) 及び |対象火山灰に対比される火山ガラスが認められるものの, 組成分析の結果, これらの火山ガラスの |粒子数は少ない。

2.3 地質調査

2.3.2 敷地における調査結果

(1)断層調査時トレンチ及び3号炉調査時ボーリング調査結果

①-2 C地点(まとめ)(1/2)

一部修正(H30/5/11審査会合)

- 【1-3 C-1トレンチ (P216~P223参照)】
- ○本調査箇所では,基盤岩の上位に,海成堆積物(円~亜角礫のクサリ礫が混じる砂礫層,淘汰の良い砂層)及び陸上堆積物(シルト混じり砂礫層, 礫混じり砂質シルト層,シルト質砂層)が認められる。
- ○本調査箇所はHm3段丘面が判読されることから、海成堆積物はHm3段丘堆積物に区分される。
- ○Hm3段丘堆積物の上位のシルト混じり砂礫層及び礫混じり砂質シルト層は、角礫が混じり、下位のHm3段丘堆積物を削り込んで堆積していること から、斜面Ⅱ堆積物に区分される。
- ○本露頭では、支笏第1降下軽石(Spfa-1)、洞爺火山灰(Toya)及び対象火山灰に対比される火山ガラスが混在する堆積物が認められるが、主に 火山砕屑物からなる堆積物若しくは軽石又はスコリアを含む堆積物は認められない。
- 【1-4 C-2トレンチ (P224~P231参照)】
- ○本調査箇所では,基盤岩の上位に海成堆積物(亜円礫主体で風化した礫がわずかに混じる砂礫層及び淘汰の良い砂層)及び陸上堆積物(角礫が 混じるシルト質砂礫層,シルト質砂層)が認められる。
- 〇海成堆積物は,以下の理由から,Hm2段丘堆積物相当層に区分される。
- ・海成堆積物及び本堆積物に覆われる範囲の基盤岩の上面標高は、積丹半島西岸における他地点のHm2段丘の上面標高と同程度である。
- ・海成堆積物上部の砂層には水平な葉理が認められ、他地点における段丘堆積物と同様、水平に堆積している状況が確認される。
- ・基盤岩は傾斜しており,段丘基盤(緩やかな平坦面)を有していない。
- ○Hm2段丘堆積物相当層を不整合で覆うシルト質砂礫層及びシルト質砂層は、角礫が混じる状況であることから、斜面Ⅱ堆積物に区分される。
 ○本露頭では、支笏第1降下軽石 (Spfa-1)、洞爺火山灰 (Toya) 及び対象火山灰に対比される火山ガラスが混在する堆積物が認められるが、主に火山砕屑物からなる堆積物若しくは軽石又はスコリアを含む堆積物は認められない。
- 【1-5 C-3トレンチ(P232~P239参照)】
- ○本調査箇所では,基盤岩は確認されないものの,下位から,海成堆積物(淘汰の良い砂層)及び陸上堆積物(角礫が混じるシルト混じり砂礫層,礫 混じり砂層,シルト質砂層)が認められる。
- ○海成堆積物は、C-2トレンチにおけるHm2段丘堆積物相当層と層相が調和的である。
- ○本調査箇所はC-2トレンチ背後の段丘面が判読されない緩斜面に位置し、海成堆積物はC-2トレンチに連続しているものと判断されることから、 Hm2段丘堆積物相当層に区分される。
- ○Hm2段丘堆積物相当層を不整合で覆うシルト混じり砂礫層及び礫混じり砂は、角礫が混じる状況であることから、斜面Ⅱ堆積物に区分される。
 ○本露頭では、支笏第1降下軽石 (Spfa-1)、洞爺火山灰 (Toya) 及び対象火山灰に対比される火山ガラスが混在する堆積物が認められるが、主に火山砕屑物からなる堆積物若しくは軽石又はスコリアを含む堆積物は認められない。

50.0-

49.0-

48.0

47.0-

46.0-

45.0-

トレンチ壁面写真(C-1)(範囲B)

※岩内平野南方に位置する老古美周辺において確認されるニセコ火山噴出物(火砕流 堆積物)に対比される火山灰を「対象火山灰」と呼称している。模式地において、本火 砕流堆積物から、フィッショントラック法年代測定値0.19±0.02Maを得ている。

(参考) Spfl及びSpfa-1の屈折率(町田・新井, 2011より)

略号	特徴	火山ガラス	斜方輝石	角閃石
Spfl	バブルウォールタイプ・ パミスタイプの 火山ガラス主体	1.500-1.503	1.730-1.733	1.688-1.691
Spfa-1	パミスタイプの 火山ガラス主体	1.501-1.505 (1.502-1.503)	1.729-1.735	1.688-1.691

(参考)洞爺火山灰 (Toya)の屈折率 (町田・新井, 2011より)

略号	特徴	火山ガラス	斜方輝石	角閃石
Тоуа	バブルウォールタイプ・ パミスタイプの 火山ガラス主体	1.494-1.498	1.711-1.761 (1.758-1.761, 1.712-1.729 bimodal)	1.674-1.684

C-1-a 火山ガラスのK₂O-TiO₂図(左図), K₂O-Na₂O図(右図)

①-3 C地点(C-1トレンチ)(5/8)

一部修正(H29/12/8審査会合)

※岩内平野南方に位置する老古美周辺において確認されるニセコ火山噴出物 (火砕流 堆積物) に対比される火山灰を「対象火山灰」と呼称している。模式地において、本火 砕流堆積物から、フィッショントラック法年代測定値0.19±0.02Maを得ている。

(参考) Spfl及び Spfa-1の屈折率(町田・新井,)

略号	特徴	火山ガラス	斜方輝石	角閃石
Spfl	バブルウォールタイプ・ パミスタイプの 火山ガラス主体	1.500-1.503	1.730-1.733	1.688-1.691
Spfa-1	パミスタイプの 火山ガラス主体	1.501-1.505 (1.502-1.503)	1.729-1.735	1.688-1.691

(参考)洞爺火山灰(Toya)の屈折率(町田・新井, 2011より)

略号	特徴	火山ガラス	斜方輝石	角閃石
Тоуа	バブルウォールタイプ・ パミスタイプの 火山ガラス主体	1.494-1.498	1.711-1.761 (1.758-1.761, 1.712-1.729 bimodal)	1.674-1.684

※岩内平野南方に位置する老古美周辺において確認されるニセコ火山噴出物 (火砕流 堆積物)に対比される火山灰を「対象火山灰」と呼称している。模式地において、本火 砕流堆積物から、フィッショントラック法年代測定値0.19±0.02Maを得ている。

(参考) Spfl及びSpfa-1の屈折率(町田・新井, 2011より)

略号	特徴	火山ガラス	斜方輝石	角閃石
Spfl	バブルウォールタイプ・ パミスタイプの 火山ガラス主体	1.500-1.503	1.730-1.733	1.688-1.691
Spfa-1	パミスタイプの 火山ガラス主体	1.501-1.505 (1.502-1.503)	1.729-1.735	1.688-1.691

(参考)洞爺火山灰 (Toya)の屈折率 (町田・新井, 2011より)

略号	特徴	火山ガラス	斜方輝石	角閃石
Тоуа	バブルウォールタイプ・ パミスタイプの 火山ガラス主体	1.494-1.498	1.711-1.761 (1.758-1.761, 1.712-1.729 bimodal)	1.674-1.684

C-1-c 火山ガラスのK2O-TiO2図(左図), K2O-Na2O図(右図)