女川原子力発電所保安規定審査資料	
資料番	T S -25
提出年月日	2023 年 12 月 14 日

女川原子力発電所 2 号炉

L C O，A O T及びサーベイランスの設定

（「運転上の制限を逸脱した場合における要求される措置等の変更」の反映）

枠囲みの内容は商業機密又は防護上の観点から公開できません。

2 0 2 3年12月

東北電力株式会社

目 次

1．L C O 等の設定について

2．女川原子力発電所保安規定へ規定するLCO等について
資料1 L C O 等を設定する重大事故等対処設備の整理資料
資料1。（1）重大事故等対処設備整理表（各基準）
資料1。（2）重大事故等対処設備代替設備整理表（保安規定第 66 条各表）
資料1。（3）表66－1～表66－19 手順と設備のリスト （設置変更許可申請書 添付十追補1）
資料1．（4）表66－1～表66－19 SA設備の設備分類
（設置変更許可申請書 添付八）
資料1。（5）運転上の制限に係る重大事故等対処設備の系統毎の括り方について
資料1．（6）重大事故等対処設備のLCOを適用する原子炉の状態について

資料2 L C O 等の説明資料
資料2．（1）保安規定第66条 記載方法の類型化，記載例及び記載の考え方
資料2．（2）保安規定第 66 条 運転上の制限等について

資料3 補足説明資料
資料3．（1） SA A設備に係る既存保安規定への反映
資料3．（2）保安規定第 66 条（重大事故等対処設備）

```
変更を抜粋して掲載
- 66－5－4 原子炉補機代替冷却水系
- 66－8－1 静的触媒式水素再結合装置
- 66－10－2 海洋への放射性物質の拡散抑制
- 66－12－1 常設代替交流電源設備
- 66－12－2 可搬型代替交流電源設備
- 66－13－1 主要パラメータおよび代替パラメータ
- 66－16－2 緊急時対策所の代替電源設備
```

資料1．（1）重大事故等対処設備整理表（各基準）

分類	機能埄失を 想定するDB設備	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \\ \hline \end{gathered}$	保安規定	備考
	原子炬保護系		ATWS緩和設備（代替制御棒挿入機能）	連転及び起動	66－1－1	「66－1－1 ATWS緩和設備（代替制御棒挿入機能）」で整理
			制御棒		第22条	「第22条 制御棒のスクラム機能」で整理
			制御榡駆動機構		第22条	「第22条 制御棒のスクラム機能」で整理
			制御枰駆動水圧系配管		第22条	「第22条 制御棒のスクラム機能」で整理（系に含まれる）
			制御棒鴚動水圧系水圧制御ユニット		第22条	「第22条 制御棒のスクラム機能」で整理
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機その1」で整理
		原子炉再循環ポ ンプ停止による原 子炉出力抑制	ATWS緩和設備代替原子炉再看環ポンプトリップ機能）	連転及び起動	66－1－2	「66－1－2 ATWS緩和設備（ 亻弋弋替原子炉再看環ポンプトリップ機能）」で整理
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機その1」で整理
			ATWS緩和設備（自動減圧系作動阻止機能）	運転，起動及び高温停止（原子炉圧力が $0.77 \mathrm{MPa[gage]以}$上の場合）	66－1－3	「66－1－3 ATWS緩和設備（自動滅圧系作動阻止機能）」で整理
			非常用交流電源設備		第59条	「第59条 非常用デイーゼル発電機その1」で整理
		ほう酸水注入	ほう酸水注入系ポンプ	連転及び起動	第24条	「第24条 ほう酸水注入系」で整理
			ほう酸水注入系貯蔵タンク		第24条	「第24条 ほう酸水注入系」で整理
			ほう酸水注入系 配管•弁		第24条	「第24条ほう酸水注入系」で整理（系に含まれる）
			原子炉圧力容器		第24条	「第24条ほう酸水注入系」で整理（系に含まれる）
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機その1」で整理
			非常用交流電源設備	連転及び起動	第59条	「第59条 非常用ディーゼル発電機その1」で整理
		動操作による制御棒挿入）	非常用交流電源設備	運転及び起動	第59条	「第59条 非常用ディーゼル発電機その1」で整理

女川原子力発電所2号炉 重大事故等対処設備整理表【1．2／45条 原子炉冷却材圧カバウンダリ高圧時に発電用原子炉を泠却するための設備】

分類	$\begin{gathered} \text { 機能喪失を } \\ \text { 想定するB設備 } \\ \hline \end{gathered}$	対応手段	LCO対象SA設備	\qquad	保安規定	備考
$\begin{aligned} & \text { 重 } \\ & \text { 事 } \\ & \text { 蟼 } \\ & \text { 対 } \\ & \text { 処 } \\ & \text { 設 } \\ & \text { 備 } \\ & \text { 設 } \\ & \text { 計 } \\ & \text { 基 } \\ & \text { 集 } \\ & \text { 張 } \\ & \text { 動 } \end{aligned}$	（	原子炉隔離時冷却系による発電用原子炉の冷却	原子炉隔離時冷却系ポンプ	運転，起動及び高温停止（原子炉圧力が 1.04 MPa ［gage］以上かつ原子炉起動時に実施 する運転確認終了後）	第41条	「第41条 原子炉隔離時浍却系」で整理
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理
			原子炉隔離時冷却系（（蒸気系）配管•弁		第41条	「第41条 原子炉隔離時冷却系」て整理（系に含まれる）
			主蒸気系配管•弁		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			原子炉隔離時冷却系（注水系）配管•卉		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			補給水系配管		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			高圧炉心スプレイ系 配管•弁		第41条	「第41条 原子炉隔離時冷却系」て整理（系に含まれる）
			原子炉冷却材浄化系配管		第41条	「第41条 原子炉隔離時冷却系」て整理（系に含まれる）
			復水給水系配管•弁・スパージャ		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			原子炉圧力容器		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機をの1」で整理
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備」で整理
		高圧炉心スプレ イ系による発電用原子炉の冷却	高圧炬心スプレイ系ポンプ	運転，起動及び高温停止	第39条	「第39条 非常用炉心冷却系その1」で整理
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」て整理
			サプレッションチェンバ		第46条	「第46条 サプレッションプールの水位」で整理
			高圧炉心スプレイ系配管•升・ストレーナ・スパージャ		第39条	「第39条 非常用炬心泠却系をの1」で整理（系に含まれる）
			補給水系配管		第39条	「第39条 非常用炉心浍却系をの1」で整理（系に含まれる）
			原子炉圧力容器		第39条	「第39条 非常用炬心椧却系その1」で整理（系に含まれる）
					第53条	「第53条 高圧炬心スプレイ補機冷却水系および高圧烼心スプレイ補機浍却海水系」で整理
			非常用取水設備		第53条	「第53条 高圧炬心スプレイ補機泠却水系および高圧炉心スプレイ補機浍却海水系」で整理
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機をの1」で整理

女川原子力発電所2号炉 重大事故等対処設備整理表【1．2／45条 原子炉冷却材圧カバウンダリ高圧時に発電用原子炉を泠却するための設備】

分類		対応手段	LCO対象SA設備	適用される原子炉の状態	保安規定	備考
		高圧代替注水系 の中央制御室か らの操作による発電用原子炉の冷却	高圧代替注水系ポンプ		66－2－1	「66－2－1高圧代替注水系（中央制御室からの遠隔起動）」で整理
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理（66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
			高圧代替注水系（蒸気系）配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			主蒸気系 配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			原子炉隔離時冷却系（（蒸気系）配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			高圧代替注水系（ 注水系）配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			補給水系 配管		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			高圧炉心スプレイ系 配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			燃料プール補給水系 弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			原子炉冷却材浄化系 配管		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			復水給水系 配管•升・スパージャ		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			原子炉圧力容器		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備」て整理（66－2－1高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
			常設代替直流電源設備		66－12－4	「66－12－4 常設代替直流電源設備」で整理（66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
			可搬型代替直流電源設備		66－12－5	「66－12－5 可搬型代替直流電源設備」で整理（66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」て整理（66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備で整理（66－2－1高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
		高圧代替注水系 の現場操作によ る発電用原子炉 の泠却	高圧代替注水系ポンプ	運転，起動及び高温停止（原子炉圧力が 1.04 MPa ［gage］以上かつ原子炉起動時に実施 する運転確認終了後）	66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理 「66－2－2 高圧代替注水系および原子炉隔離時冷却系（現場起動）」では，必要な電動弁の手動操作用レバーおよびハンドルの操作 により現場起動できることを要求。
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理（66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
			高圧代替注水系（（蒸気系）配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			主蒸気系 配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			原子炉隔離時冷却系（（蒸気系）配管•弁		66－2－1	「66－2－1高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			高圧代替注水系（（注水系）配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			補給水系 配管		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			高圧炉心スプレイ系 配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			燃料プール補給水系 弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			原子炉浍却材浄化系 配管		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			復水給水系 配管•升・スパージャ		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			原子炉圧力容器		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．2／45条 原子炉冷却材圧カバウンダリ高圧時に発電用原子炉を冷却するための設備】

分類	$\begin{aligned} & \text { 機能唑失を } \\ & \text { 想定するDB設備 } \end{aligned}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \\ \hline \end{gathered}$	保安規定	備考
	全交流動力電源常設直流電源系統		原子炉隔離時冷却系ポンプ	運転，起動及び高温停止（原子炬圧かが1．04MPa［gage］以上かつ原子炉起動時に実施 する運転確認終了後）	第41条	「第41条 原子炉隔離時冷却系」で整理 「66－2－2 高圧代替注水系および原子炉隔離時冷却系（現場起動）」では，必要な電動弁の手動操作用レバーおよびハンドルの操作 により現場起動できることを要求
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理
			原子炉隔離時泠却系（（蒸気系）配管•弁		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			主蒸気系 配管•弁		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			原子炉隔離時浍却系（注水系）配管•弁		第41条	「第41条 原子炉隔離時冷却系」て整理（系に含まれる）
			補給水系 配管		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			高圧炬心スプレイ系 配管•弁		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			原子炉冷却材浄化系 配管		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			復水給水系 配管•弁・スパージャ		第41条	「第41条 原子炉嗂離時冷却系」で整理（系に含まれる）
			原子炉圧力容器		第41条	「第41条 原子炉融時冷却系」で整理（系に含まれる）
	全交流動力電源		原子炉隔離時泠却系ポンプ	運転，起動及び高温停止（原子炉圧力が 1.04 MPa ［gage］以上かつ原子炉起動時に実施 する運転碓認終了後）	第41条	「第41条 原子炉隔離時浍却系」で整理
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理
			原子炉隔離時冷却系（蒸気系）配管•弁		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			主蒸気系 配管•弁		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			原子炉隔離侍冷却系（注水系）配管•弁		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			補給水系 配管		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			高圧炉心スプレイ系 配管•弁		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			原子炉浍却材浄化系 配管		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			復水給水系 配管•尣・スパージャ		第41条	「第41条 原子炉隔離時冷却系」て整理（系に含まれる）
			原子炉圧力容器		第41条	「第41条 原子炉隔離時浍却系」で整理（系に含まれる）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備」て整理
			常設代替交流電源設備		66－12－1	「66－12－1常設代替交流電源設備」で整理
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備して整理
		可搬型代替直流電源設備による原子炉隔離時冷却系への給電	原子炉隔離時浍却系ポンプ	運転，起動及び高温停止（原子炉圧力が 1.04 MPa ［gage］以上かつ原子炉起動時に実施 する運転確認終了後）	第41条	「第41条 原子炉隔離時浍却系」で整理
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理
			原子炉隔離㫿冷却系（蒸気系）配管•弁		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			主蒸気系 配管•弁		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			原子炉隔離時冷却系（注水系）配管•弁		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			補給水系 配管		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			高圧炉心スプレイ系 配管•弁		第41条	「第41条 原子炉隔離時浍却系」で整理（系に含まれる）
			原子炉浍却村浄化系 配管		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			復水給水系 配管•弁・スパージャ		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			原子炣圧力容器		第41条	「第41条 原子炉隔離時冷却系」で整理（系に含まれる）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内蓄電式直流電源設備して整理
			可般型代替直流電源設備		66－12－5	「66－12－5 可搬型代替直流電源設備」で整理

女川原子力発電所2号炉 重大事故等対処設備整理表【1．2／45条 原子炉冷却材圧カバウンダリ高圧時に発電用原子炉を泠却するための設備】

分類	$\begin{gathered} \text { 機能喪失を } \\ \text { 想定するD設備 } \\ \hline \end{gathered}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \end{gathered}$	保安規定	備考
	（	高圧代替注水系 の中央制御室か らの操作による発電用原子炉の冷却	原子炉水位（広帯域）	運転，起動及び高温停止（原子炉圧力が $1.04 \mathrm{MPa[gage]}$ 以上かつ原子炉起動時に実施 する運転確認終了後）	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉水位（燃料域）		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理 $^{\text {年 }}$
			原子炉水位（SA広帯域）		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉水位（SA然料域）		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理 $^{\text {相 }}$
			原子炣圧力		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉圧力（SA）		66－13－1	
			高圧代替注水系ポンプ出口流量		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			高圧代替注水系ポンプ出口圧力		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			復水貥蔵タンク水位		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉水位（広帯域）	運転，起動及び高温停止（原子炉圧力が $1.04 \mathrm{MPa[gage]}$ 以上かつ原子炉起動時に実施 する運転確認終了後）	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉水位（然料域）		66－13－1	
			原子炉水位（SA広帯域）		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉水位（SA然料域）		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炣圧力		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉圧力（SA）		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			高圧代替注水系ポンプ出口流量		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理 $^{\text {年 }}$
			復水貯蔵タンク水位		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			可搬型計測器		66－13－3	「66－13－3 可搬型計測器」で整理
			原子炉水位（広帯域）	運転，起動及び高温停止（原子炉圧力が 1.04 MPa ［gage］以上かつ原子炉起動時に実施 する運転確認終了後）	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉水位（燃料域）		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉水位（SA広帯域）		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉水位（SA 然料域）		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子涙圧力		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉圧力（SA）		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			原子炉隔離時冷却系ポンプ出口流量		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			復水貯蔵タンク水位		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
			可搬型計測器		66－13－3	「66－13－3 可搬型計測器」で整理
	－	ほう酸水注入系による逪に抑制 （ほう酸水注入）	ほう酸水注入系ポンプ	運転，起動及び高温停止	66－2－3	保安規定の既存条文「第24条 ほう酸水注入系」よりも要求が拡張されたことから，第66条で新たにLCO等を定める 「66－2－3 ほう酸水注入系（重大事故等対処設備）」で整理
			ほう酸水注入系貯蔵タンク		66－2－3	「66－2－3 ほう酸水注入系（重大事故等対処設備）」で整理
			ほう酸水注入系 配管•弁		66－2－3	「66－2－3 ほう酸水注入系（重大事故等対処設備）」で整理（系に含まれる）
			原子炉圧力容器		66－2－3	「66－2－3 ほう酸水注入系（重大事故等対処設備）」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理（66－2－3 ほう酸水注入系（重大事故等対処設備）」で他表を参照）
			可般型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（66－2－3ほう酸水注入系（重大事故等対処設備）」で他表を参照）

分類	$\begin{aligned} & \text { 機能噩失を } \\ & \text { 想定するDB設犕 } \end{aligned}$	対応手段	LCO対象SA設備		保安規定	備考
フロ－ト$ラ$$ラ$ィ系故障時	自動減圧系	減圧の自動化	代替自動滅圧回路（代替自動滅圧機能）	運転，起動及び高温停止（原子炉圧力が 0.77 MPa ［gage］以上）	66－3－1	「66－3－1 代替自動減圧機能」で整理
			ATWS緩和設備（自動減圧系作動阻止機能）		66－1－3	「66－1－3 ATWS緩和設犕（自動隇圧系作動阻止機能）」で整理
			主蒸気逃がし安全弁（自動減圧機能）（ C ，Hの2個）		第39条	「第39条 非常用炉心冷却系その1」で整理
			主蒸気系 配管•洔ンチャ		第39条	「第39条 非常用炉心泠却系その1」で整理（系に含まれる）
			主蒸気逃がし安全弁自動減圧機能用アキュムレータ		第39条	「第39条 非常用炉心浍却系その1」で整理（系に含まれる）
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機その1」で整理
		手動操作による減圧（主蒸気逃 がし安全弁）	主蒸気逃がし安全弁	運転，起動及び高温停止	66－3－2	保安規定の既存条文「第30条 主蒸気逃がし安全弁」では手動減圧機能の要求がないことから，第66条で新たにLCO等を定める
			主蒸気系 配管・クエンチャ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」を整理（系に含まれる）
			主蒸気逃がし安全弁逃がし升機能用アキュムレータ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）
			主蒸気逃がし安全弁自動減圧機能用アキュムレータ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備」で整理（566－3－2 主蒸気逃がし安全弁（手動減圧）」で他表を参照）
			常設代替直流電源設備		66－12－4	「66－12－4 常設代替直流電源設備」で整理（「66－3－2 主蒸気逃がし安全弁（手動滅圧）」で他表を参照）
			可搬型代替直流電源設備		66－12－5	「66－12－5 可搬型代替直流電源設備」で整理（「66－3－2 主蒸気逃がし安全弁（手動減圧）」で゙他表を参昭）
			常設代替交流電源設備		66－12－1	
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－3－2 主蒸気逃がし安全弁（手動減圧）」で他表を参昭）
	常設直流電源系統		可搬型代替直流電源設備	運転，起動及び高温停止	66－12－5	「66－12－5 可搬型代替直流電源設備」で整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）
			125V直流電源切替艦		66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復」で整理
			主蒸気逃がし安全弁（自動減压機能）		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動滅圧）」で整理
			主蒸気系 配管・クエンチャ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）
			主蒸気逃がし安全弁自動減王機能用アキュムレータ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」を整理（系に含まれる）
		主蒸気逃がし安全弁用可搬型蓄電池による主蒸気逃がし安全弁機能回復	主蒸気逃がし安全弁用可搬型蓄電池	運転，起動及び高温停止	66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復」で整理
			主蒸気逃がし安全弁（自動減压機能）		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動滅圧）」で整理
			主蒸気系 配管・クエンチャ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」を整理（系に含まれる）
			主蒸気逃がし安全弁自動減王機能用アキュムレータ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）
	－		高圧室素ガスボンベ	運転，起動及び高温停止	66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復」で整理
			高圧室素がス供給系 配管•弁		66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復して整理（系に含まれる）
			主蒸氛系 配管•弁		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」を整理（系に含まれる）
			主蒸気逃がし安全弁自動減圧機能用アキュムレータ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備で整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）
			非常用交流電源設備		第59条	「第59条 非常用デイーゼル発電機その1」で整理
		$\begin{gathered} \text { 代替高圧窒素が } \\ \text { ス } \\ \text { 原子給系に炉減圧 } \end{gathered}$	高圧窒素ガスボンベ	運転，起動及び高温停止	66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復」で整理
			ホース・弁		66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復」て整理（系に含まれる）
			代替高圧窒素ガス供給系 配管•弁		66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復して整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備なで整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）
			可般型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」で整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）

分類	$\begin{aligned} & \text { 機能跌を } \\ & \hline \end{aligned}$	対応手段	LCO対象SA設備	\|適用される	保安規定	備考
	-	代替高圧窒素が ス供給系による主蒸気逃がし安全弁の背圧対策	高圧室素がスボンベ	運転，起動及び高温停止	66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復」で整理 $^{\text {a }}$
			ホース・弁		66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復」で整理（系に含まれる）
			代替高圧窒素ガス供給系 配管•弁		66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復して整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備で整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備しで整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」で整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）
	$\left\lvert\, \begin{aligned} & \text { 全交流動力需源 } \\ & \text { 掌設直流電源 }\end{aligned}\right.$常設直流電源		可搬型代替直流電源設備	運転，起動及び高温停止	66－12－5	「66－12－5 可搬型代替直流電源設備」で整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）
		代替交流電源設備による復旧	常設代替交流電源設備	連転，起動及び高温停止	66－12－1	「66－12－1 常設代替交流電源設備」で整理（ $566-3-3$ 主蒸気逃がし安全弁の機能回復」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）
	－	$\begin{aligned} & \text { 高圧溶融物放出 } \\ & \text { 格納容器雰井 } \\ & \text { 武 } \end{aligned}$	主蒸気逃がし安全弁	連転，起動及び高温停止	66－3－2	
			主蒸気系 配管・クエンチャ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）
			主蒸気逃がし安全弁逃がし弁機能用アキュムレータ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）
			主蒸気逃がし安全弁自動減王機能用アキュムレータ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）
	－	$\underset{\text { 発電用原子炉の }}{\text { 压 }}$	主蒸気逃がし安全弁	運転，起動及び高温停止	66－3－2	「66－3－2 主蒸気逃がし安全弁（手動滅圧）」で整理
			主蒸気系 配管・クエンチャ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動滅圧）」で整理（系に含まれる）
			主蒸気逃がし安全弁逃がし弁機能用アキュムレータ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）
			主蒸気逃がし安全弁自動減王機能用アキュムレータ		66－3－2	「66－3－2 主蒸気逃がし安全弁（手動滅圧）」で整理（系に含まれる）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備」で整理（「66－3－2 主蒸気逃がし安全弁（手動減圧）」で他表を参照）
			常設代替直流電源設備		66－12－4	「66－12－4 常設代替直流電源設備して整理（「66－3－2 主蒸気逃がし安全弁（手動減圧）」で他表を参照）
			可搬型代替直流電源設備		66－12－5	「66－12－5 可搬型代替直流電源設備」で整理（「66－3－2 主蒸気逃がし安全弁（手動隇圧）」で他表を参照）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備で整理（「66－3－2 ${ }^{\text {主蒸気逃がし安全弁（手動減圧）」で他表を参照）}}$
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－3－2 主蒸気逃がし安全弁（手動減圧）」で他表を参照）
		$\begin{aligned} & \text { 原子炉冷却材の } \\ & \text { 漏えいい箇所の隔 } \\ & \text { 離 } \\ & \hline \end{aligned}$	HPCS注入隔離弁	運転，起動及び高温停止	第39条	「第39条 非常用炉心冷却系その1」で整理
		原子炉建屋原子炉棟内の圧力及 び温度の上昇抑制並びに環境改善	原子炉建屋ブローアウトパネル	運転，起動及び高温停止	第49条	「「第49条（原子炉建屋」で整理

女川原子力発電所2号炉 重大事故等対処設備整理表【1．4／47条 原子炉冷却材圧カバウンダリ低圧時に発電用原子炉を泠却するための設備】

分類	$\begin{gathered} \text { 機能唑失を } \\ \text { 想定するDB設備 } \\ \hline \end{gathered}$	対応手段	LCO対象SA設備	$\begin{aligned} & \text { 適用される } \\ & \text { 原子炉の状態 } \end{aligned}$	保安規定	備考
	－	残留熱除去系（低压注水モード）に よる発電用原子炉の泠却	残留熱除去系ポンプ	運転，起動及び高温停止	第39条	「第39条 非常用炉心泠却系その1」で整理
			サプレッションチェンバ		第46条	「第46条 サプレッションプールの水位」で整理
			残留熱除去系 熱交換器•配管•弁・ストレーナ		第39条	「第39条 非常用炉心冷却系その1」で整理（系に含まれる）
			原子炉圧力容器		第39条	「第39条 非常用炬心泠却系をの1」で整理（系に含まれる）
			原子炉補機冷却水系（ 原子炉補機冷却海水系を含む。）		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理
			非常用取水設備		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理（系に含まれる）
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機その1」で整理
		低圧炉心スプレ係による発電用原子炉の泠却	低圧炬心スプレイ系ポンプ	運転，起動及び高温停止	第39条	「第39条 非常用炉心冷却系その1」で整理
			サプレツションチェンバ		第46条	「第46条 サプレッションプールの水位」で整理
			低圧炉心スプレイ系 配管•弁・ストレーナ・スパージャ		第39条	「第39条 非常用炬心浍却系その1」で整理（系に含まれる）
			原子炉圧力容器		第39条	「第39条 非常用炉心泠却系その1」で整理（系に含まれる）
			原子炉補機冷却水系（ 原子炉補機冷却海水系を含む。）		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理
			非常用取水設備		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理（系に含まれる）
			非常用交流電源設備		第59条	「第59条 非常用デイーゼル発電機その1」で整理
		残留熱除去系（原子炉停止時冷却 モード）による発電用原子炉から の除熱	残留熱除去系ポンプ	高温停止※1，洽温停止及び燃料交換※2 ※ 1 ：原子炉圧力が 1．04MPa［gage］以下 ※2原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ －－水位付近で，かつプール ゲートが開の場合（2）原子炬内から全然料が取出され， かつプールゲートが閉の場合	第34条 第35条 第36条	「「第34条 原子炉停止時冷却系その1」，「第35条 原子炉停止時冷却系その2」，「第36条 原子炉停止時冷却系その3」で整理
			原子炉圧力容器		$\begin{array}{\|l} \\ \text { 第34条 } \\ \text { 第353条 } \\ \text { 第36条 } \end{array}$	「第34条 原子炉停止時冷却系その1」，「第35条 原子炉停止時冷却系その 2 」，「第 36 条 原子炉停止時冷却系その 3 」で整理（系
			残留熱除去系熱交換器		$\left\lvert\, \begin{aligned} & \text { 第34条 } \\ & \text { 第353条 } \end{aligned}\right.$	「第34条 原子炉停止時冷却系その1」，「第35条 原子炉停止時冷却系その2」，「第36条 原子炉停止時冷却系その3」で整理（系 に含まれる）
			残留熱除去系 配管•弁		第34条	「第34条 原子炉停止時冷却系その1」，「第35条 原子炉停止時冷却系その2」，「第36条 原子炉停止時冷却系その3」で整理（系 に含まれる）
			原子炉再循環系 配管•弁・ジェット゚ンプ		第34条 第35条 第36条	「第 34 条 に含まれる） 原子炉停止時冷却系その1」，「第35条 原子炉停止時冷却系その2」，「第 36 条 原子炉停止時冷却系その3」で整理（系
			原子炉補機冷却水系（ 原子炉補機冷却海水系を含む。）		第52条	「第52条 原子炬補機冷却水系および原子炉補機冷却海水系」で整理 また冷温停止以降，原子炉補機冷却水系の不具合等により，関連する設備が運転上の制限を満足していないと判断した場合は，そ れぞれ該当する条文を適用する
			非常用取水設備		第52条	「第52条 原子炬補機冷却水系および原子炉補機冷却海水系」で整理 また冷温停止以降，原子炉補機冷却水系の不具合等により，関連する設備が運転上の制限を満足していないと判断した場合は，そ れぞれ該当する条文を適用する（系に含まれる）
			非常用交流電源設備		第59条	「第59条 非常用デイーゼル発電機その1」，「第60条 非常用ディーゼル発電機その2」で整理

女川原子力発電所2号炉 重大事故等対処設備整理表【1．4／47条 原子炉冷却材圧カバウンダリ低圧時に発電用原子炉を泠却するための設備】

分類	$\begin{aligned} & \text { 想機能する培失を } \\ & \hline \end{aligned}$	対応手段	LCO対象SA設備	$\begin{aligned} & \text { 適用される } \\ & \text { 原子炉の状態 } \end{aligned}$	保安規定	備考
	残留熱除去系（低圧注水モード） 低圧炉心スプレイ系	低圧代替注水系 （常設）（復水移送 ポンプ）による発電用原子炉の冷却	復水移送ポンプ	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理
			復水館蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理（「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で他表を参照）
			補給水系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			残留熱除去系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			高圧炬心スプレイ系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			燃料プール補給水系 弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			原子炉圧力容器		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1常設代替交流電源設備」で整理（「66－4－1 低圧代替注水系（常設）（复水移送ポンプ）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で他表を参照）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備して整理（「66－4－1低圧代替注水系（常設）（復水移送ポンプ）」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」で整理（「66－4－1 低圧代替注水系（常設）（復水移送パンプ）」で他表を参照）
			非常用交流電源設備		第59条	「第59条 非常用デイーゼル発電機その1」で整理
		低圧代替注水系 （常設）（直流駆動低圧注水系ポン プ）による発電用原子炉の冷却	直流駆動低圧注水系ポンプ	䞂転，起動及び高温停止	66－4－2	「66－4－2 低圧代替注水系（常設）（直流験動低圧注水系ポンプ）」で整理
			復水館蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理（「66－4－2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）」で他表を参照）
			補給水系 配管		66－4－2	「66－4－2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）」で整理（系に含まれる）
			直流駆動低圧注水系 配管•卉		66－4－2	「66－4－2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）」で整理（系に含まれる）
			高圧涙心スプレイ系 配管•弁・スパージャ		66－4－2	「66－4－2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）」で整理（系に含まれる）
			燃料プール補給水系弁		66－4－2	「66－4－2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）」で整理（系に含まれる）
			原子炉圧力容器		66－4－2	「66－4－2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）」で整理（系に含まれる）
			常設代替直流電源設備		66－12－4	「66－12－4 常設代替直流電源設備」で整理（「66－4－2低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）」で他表を参照）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備」で整理（「66－4－2低圧代替注水系（常設）（直流駆慟低圧注水系ポンプ）」で他表を参照）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」て整理（「66－4－2低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－4－2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）」で他表を参照）
			大容量送水术ンプ（タイプ I）	運転，起動，高温停止，泠温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			ホース・注水用ヘッダ・接続口		$\begin{aligned} & 66-19-1 \\ & 66-4-3 \\ & \hline \end{aligned}$	「66－19－1 大容量送水ボンプ（タイブ I）」で整理（系に含まれる）「66－4－3 低圧代替注水系（可搬型）」で整理（系に含まれる）
			補給水系 配管•弁		66－4－3	「66－4－3 低圧代替注水系（可般型）」で整理（系に含まれる）
			残留熱除去系 配管＇升		66－4－3	「66－4－3 低圧代替注水系（可搬型）」で整理（系に含まれる）
			原子炉圧力容器		66－4－3	「66－4－3 低圧代替注水系（可般型）」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」て整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			然料補給設備		66－12－7	「66－12－7 然料補䜌設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機その1」で整理

女川原子力発電所2号炉 重大事故等対処設備整理表【1．4／47条 原子炉冷却材圧カバウンダリ低圧時に発電用原子炉を冷却するための設備】

分類	$\begin{gathered} \text { 機能噩失を } \\ \text { 想定するDB設犕 } \end{gathered}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \end{gathered}$	保安規定	備考
			原子炉補機代替泠却水系	運転，起動及び高温信止	66－5－4	「66－5－4 原子炉補機代替冷却水系」で整理
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」て整理（「66－5－4 原子炉補機代替泠却水系」で他表を参照）
			残留熱除去系ポンプ		第39条	「第39条 非常用炉心泠却系その1」で整理
			サプレッションチェンバ		第46条	「第46条 サプレッションプールの水位」を整理
			残留熱除去系 熱交換器•配管•弁・ストレーナ		第39条	「第39条 非常用炉心泠却系その1」で整理（系に含まれる）
			原子炉圧力容器		第39条	「第39条 非常用炉心冷却系その1」で整理（系に含まれる）
			原子炉補機浍却水系（原子炉補機浍却海水系を含む。）		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理
			非常用取水設備		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理（系に含まれる）
		常設代替交流電源設備による低圧炉心スプレイ系の復旧	原子炬補機代替冷却水系	䞂転，起動及び高温停止	66－5－4	「66－5－4 原子炉補機代替泠却水系」で整理
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」て整理（「66－5－4 原子炉補機代替冷却水系」で他表を参照）
			低圧炬心スプレイ系ポンプ		第39条	「第39条 非常用炉心冷却系その1」で整理
			サプレッションチェンバ		第46条	「第46条 サプレッションフールの水位」で整理
			低圧烼心スプレイ系 配管•弁・ストレーナ・スパージャ		第39条	「第39条 非常用炬心泠却系をの1」で整理（系に含まれる）
			原子炉圧力容器		第39条	「第39条 非常用炬心浍却系その1」で整理（系に含まれる）
			原子炬補機冷却水系（ 原子炉補機冷却海水系を含む。）		第52条	「第52条 原子炉補機冷却水系および原子炉補機泠却海水系」で整理
			非常用取水設備		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理（系に含まれる）
	－	低圧代替注水系 （常設）（復水移送 ポンプ）による残存溶融炬心の泠却	復水移送ポンプ	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	66－4－1	「66－4－1 低厈代替注水系（常設）（復水移送ポンプ）」で整理
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理（「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で他表を参照）
			補給水系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			残留熱除去系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			高圧炻心スプレイ系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送戈ンプ）」（6゙整理（系に含まれる）
			燃料プール補紛水系 弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			原子炉圧力容器		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備厂で整理（「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で他表を参昭）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備」で整理（「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備で整理（「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で他表を参照）
		低圧代替注水系 （可搬型）による残存溶融炬心の冷却	大容量送水ポンプ（タイプ I）	運転，起動，高温停止，泠温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（系に含まれる）
			ホース・注水用ヘッダ・接続口		$\begin{aligned} & 66-19-1 \\ & 66-4-3 \\ & \hline \end{aligned}$	［66－19－1 大容量送水ポンプ（タイプ I ）」で整理（系に含まれる）「66－4－3 低圧代替注水系（可搬型）」で整理（系に含まれる）
			補給水系 配管•弁		66－4－3	「66－4－3 低圧代替注水系（可搬型）」で整理（系に含まれる）
			残留熱除去系 配管•弁		66－4－3	「66－4－3 低圧代替注水系（可般型）」で整理（系に含まれる）
			原子炉圧力容器		66－4－3	「66－4－3 低圧代替注水系（可般型）」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」て整理（「66－4－3 低圧代替注水系（ 可般型）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」て整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			然料補給設備		66－12－7	「66－12－7 燃料袢給設備」で整理（「66－4－3 低圧代替注水系（可般型）」で他表を参照）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．4／47条 原子炉冷却材圧カバウンダリ低圧時に発電用原子炉を冷却するための設備】

分類	$\begin{gathered} \text { 機能培失を } \\ \text { 想定するDB設備 } \end{gathered}$	対応手段	LCO 対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \\ \hline \end{gathered}$	保安規定	備考
	-	代替循睘冷却系による戠在溶融炉心の泠却	代替循環泠却ポンプ	連転，起動及び高温停止	66－5－5	「66－5－5 代替循環冷却系」で整理
			サプレッションチェンバ		第46条	「第46条 サプレツションプールの水位」で整理（「66－5－5 代替循環冷却系」で他表を参照）
			残留熱除去系熱交換器		66－5－5	「66－5－5 代替循環冷却系」で整理（系に含まれる）
			残留熱除去系 配管•弁・ストレーナ		66－5－5	「66－5－5 代替循環冷却系」で整理（系に含まれる）
			原子炉圧力容器		66－5－5	「66－5－5 代替循環冷却系」で整理（系に含まれる）
			原子炉補機代替冷却水系		66－5－4	「66－5－4 原子炉補機代替浍却水系」で整理（「66－5－5 代替循環冷却系」で他表を参照）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－5－5 代替循環冷却系」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」で整理（「66－5－5 代替循環冷却系」で他表を参照）
			原子炉補機冷却水系（ 原子炉補機冷却海水系を含む。）		第52条	「第52条 原子炉補機浍却水系および原子炉補機冷却海水系」で整理
			非常用取水設備		第52条	「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」で整理（系に含まれる）
	残留熱除去系（原子炉 停止時泠却モード）	低圧代替注水系 （常設）（復水移送 ポンプ）による発電用原子炉の冷却	復水移送ポンプ	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が 取出され，かつプールゲート が閉の場合	66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理（「66－4－1 低圧代替注水系（常設）（復水移送咃表を参照）
			補給水系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			残留熱除去系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			高圧炉心スプレイ系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			燃料プール補給水系 弁		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			原子炉圧力容器		66－4－1	「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で他表を参照）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備で整理（「66－4－1低圧代替注水系（常設）（復水移送术ンプ）」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」で整理（「66－4－1 低圧代替注水系（常設）（復水移送ポンプ）」で他表を参昭）
			非常用交流電源設備		第60条	「第60条 非常用デイーゼル発電機その2」で整理
		$\begin{aligned} & \text { 低圧代替注水系 } \\ & \text { (可搬型による } \\ & \text { 電原子炉の泠 } \\ & \text { 却 } \end{aligned}$	大容量送水术ンプ（タイプ I）	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（「66－4－3 低压代替注水系（可搬型）」で他表を参照）
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			ホース・注水用ヘッダ・接続口		$\begin{array}{\|l\|l\|} \hline 66-19-1 \\ 66-4-3 \end{array}$	「66－19－1 大容量送水ポンプ（タイプI）」で整理（系に含まれる）「66－4－3 低圧代替注水（可搬型）」で整理（系に含まれる）
			補給水系 配管•弁		66－4－3	「66－4－3 低圧代替注水（可搬型）」で整理（系に含まれる）
			残留熱除去系 配管•弁		66－4－3	「66－4－3 低圧代替注水（可搬型）」で整理（系に含まれる）
			原子炻圧力容器		66－4－3	「66－4－3 低圧代替注水（可搬型）」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			燃料補給設備		66－12－7	「66－12－7 燃料補給設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			非常用交流電源設備		第60条	「第60条 非常用デイーゼル発電機その2」で整理

分類	$\begin{gathered} \text { 機能培失を } \\ \text { 想定するDB設備 } \end{gathered}$	対応手段	LCO対象SA設備	適用される原子炉の状態	保安規定	備考
			原子炉補機代替冷却水系	高温停止※1，泠温停止及び燃料交換※2 ※1：原子炉圧力が 1.04 MPa ［gage］以下 ※2原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合（2）原子 かつプールゲートが閉の場合	66－5－4	「66－5－4 原子炉袆機代替泠却水系」で整理
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備で整理（「66－5－4 原子炉補機代替冷却水系」で他表を参昭）
			残留熱除去系ポンプ		$\left\lvert\, \begin{aligned} & \text { 第33条 } \\ & \text { 第356条 } \\ & \text { 36条 }\end{aligned}\right.$	「「第35条 原子炉停止時冷却系その1」，「第35条 原子炉停止時冷却系その2」，「第36条 原子炬停止時冷却系その3」で整理
			原子炉圧力容器		$\begin{aligned} & \text { 第34条 } \\ & \text { 第356条 } \end{aligned}$	「第35条 原子炉停止時浍却系その1」，「第35条 原子炉停止時椧却系その2」，「第36条 原子炉停止時椧却系その3」で整理（系に含まれる）
			残留熱除去系 配管•升		$\begin{array}{\|l\|} \hline \text { 第343条 } \\ \text { 第3536条 } \end{array}$	「「第35条 1 原子炉停止時椧却系その1」，「第35条 原子炉停止時浍却系その2」，「第36条 原子炉停止時椧却系その3」で整理（系に含まれる）
			残留熱除去系熱交換器		$\left\lvert\, \begin{aligned} & \text { 第353条 } \\ & \text { 第3536 } \end{aligned}\right.$	「答35れる） ）原子炉停止時椧却系その1」，「第35条 原子炉停止時椧却系その 2 」，「第36条 原子炉停止時椧却系その3」で整理（系に
			原子炉再循環系 配管•弁・ジェット゚ンプ		$\left\lvert\, \begin{aligned} & \text { 第34条 } \\ & \text { 第3536条 } \end{aligned}\right.$	「等35条 原子炉停止時浍却系その1」，「第35条 原子炉停止時浍却系その2」，「第36条 原子炉停止時椧却系その3」で整理（系に
			原子炉補機冷却水系（ 原子炉補機冷却海水系を含む。）		第52条	「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」で整理 また，冷温停止以降，原子炉補機冷却水系の不具合等により，関連する設備が運転上の制限を満足していないと判断した場合は， それぞれ該当する条文を適用する
			非常用取水設備		第52条	「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」で整理（系に含まれる）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．5／48条 最終ヒートシンクへ熱を輸送するための設備】

分類	$\begin{gathered} \text { 機能噩失を } \\ \text { 想定するDB設犕 } \end{gathered}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用されでさを } \\ \text { 原子炉の状態 } \end{gathered}$	保安規定	備考
	－		残留熱除去系（ （原子炉停止時冷却モ一ド）	高温停止※1，冷温停止及び燃料交換※2 ※ 1 ：原子炉圧力が 1．04MPa［gage］以下 ※2：原子炉が次に示す状態 となった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合（2）原子炉内から全燃料が取出され， かつプールゲートが閉の場合	$\left\lvert\, \begin{aligned} & \text { 第34条 } \\ & \text { 第353条 } \end{aligned}\right.$	「第34条 原子炉停止時冷却系その1」，「第35条 原子炉停止時泠却系その2」，「第36条 原子炉停止時椧却系その3」で整理
			残留熱除去系（サプレツションプール水泠却モード）	運転，起動及び高温停止	第39条	「第39条 非常用炉心冷却系をの1」で整理
			残留熱除去系（格納容器スプレイ冷却モード）		第39条	「第39条 非常用炉心冷却系その1」で整理
			原子炉補機冷却海水ポンプ	運転，起動及び高温停止	第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理
			原子炉補機冷却水ポンプ		第52条	「第52条 原子炉補機泠却水系および原子炬補機冷却海水系」で整理
			原子炉補機冷却水系（原子炉補機冷却海水系を含む。）配管－弁•海水ストレーナ・サージタンク		第52条	「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」で整理（系に含まれる）
			原子炉補機冷却水系熱交換器		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理（系に含まれる）
			堲留堰		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理（系に含まれる）
			取水口		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理（系に含まれる）
			取水路		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理（系に含まれる）
			海水ポンプ室		第52条	「第52条 原子炉補機泠却水系および原子炬補機冷却海水系」で整理（系に含まれる）
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機をの1」で整理
	残留熱除去系（原子炉停止時冷却モード，サプ レッションプール水冷却 モード及び格納容器スプ レイ冷却モード）		原子炉格納容器フイルタベント系	運転，起動及び高温停止	66－5－1	「66－5－1 原子炉格納容器フィルター゙ント系」で整理
			遠隔手動尣操作設備		66－5－1	「66－5－1 原子炉格納容器フイルター゙ント系」で整理（系に含まれる）
		耐圧強化ベント系による原子炉格納容器内の減圧及び除熱現場操作含む。）	原子炬格納容器調気系 配管•弁	連転，起動及び高温停止	66－5－2	「66－5－2 耐圧強化ベント系」で整理（系に含まれる）
			遠隔手動弁操作設備		66－5－2	「66－5－2 耐圧強化ベント系」で整理（系に含まれる）
			原子炉格納容器（真空破壊装置を含む。）		$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { 第4344条 } \end{array}$	
			非常用ガス処理系 配管•升		66－5－2	「66－5－2 耐圧強化ベント系」で整理（系に含まれる）
			排気筒		66－5－2	「66－5－2 耐圧強化ベント系」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1常設代替交流電源設備」で整理（「66－5－2 耐圧強化ベント系」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備で整理（「66－5－2 射圧強化ベント系」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6代替所内電気設備」て整理（「66－5－2 耐场強化ベント系」で他表を参照）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内蓄電式直流電源設備」て整理（「66－5－2 耐圧強化ベント系」で他表を参照）
			常設代替直流電源設備		66－12－4	「66－12－4 常設代替直流電源設備」で整理（「66－5－2 耐圧強化ベント系」で他表を参照）
			可搬型代替直流電源設備		66－12－5	「66－12－5 可搬型代替直流電源設備で整理（「66－5－2 耐圧強化ベント系」で他表を参照）

分類	$\begin{aligned} & \text { 機能噩失を } \\ & \text { 想定するDB設備 } \end{aligned}$	対応手段	LCO対象SA設備	$\begin{aligned} & \text { 適用される } \\ & \text { 原子炉の状態 } \end{aligned}$	保安規定	備考
$\begin{aligned} & \text { + } \\ & \text { 木 } \\ & 1 \\ & \text { r } \\ & \text { 孚 } \\ & \text { 㢣 } \\ & \text { 時 } \end{aligned}$		原子炉補機代替泠却水系による除熱	熱交換器ユニット	運転，起動，高温停止，冷温停止及び燃料交換	66－5－4	「66－5－4 原子炉補機代替冷却水系」で整理
			大容量送水ポンプ（タイプ I）		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（「66－5－4 原子炉補機代替浍却水系」で他表を参照）
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ ））」で整理（系に含まれる）
			ホース・除熱用ヘッダ・接続口		$\begin{array}{\|l\|} \hline 66-5-4 \\ 66-19-1 \\ \hline \end{array}$	「66－5－4 原子炉補機代替冷却水系」で整理（系に含まれる） 「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			原子炉補機冷却水系 配管•尣・サージタンク		66－5－4	「66－5－4 原子炉補機代替冷却水系」で整理（系に含まれる）
			残留熱除去系熱交換器		66－5－4	「66－5－4 原子炬補機代替泠却水系」で整理（系に含まれる）
			館留堰		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			取水口		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			取水路		66－19－1	「66－19－1 大容量送水ポンプ（タイプ ））」で整理（系に含まれる）
			海水ポンプ室		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」て整理（「66－5－4 原子炉補機代替冷却水系」で他表を参照）
			燃料補給設備		66－12－7	「66－12－7 繎料袆給設備」で整理（「66－5－4 原子炉補機代替冷却水系」で他表を参照）
			残留熱除去系（原子炉停止時冷却モード）		第34条第35条第36条	「第34条 原子炉停止時冷却系その1」，「第35条 原子炉停止時浍却系その2」，「第36条 原子炉停止時浍却系その3」で整理
			残留熱除去系（サプレッションプール水冷却モード）		第39条	「第39条 非常用炬心泠却系その1」で整理
			残留熱除去系（格納容器スプレイン浍却モード）		第39条	「第39条 非常用炉心泠却系その1」で整理

分類	$\begin{aligned} & \text { 機能唯失を } \\ & \hline \end{aligned}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \end{gathered}$	保安規定	備考
	-	残留熱除去系 （格納容器スプレ イ冷却モードノに容器内の除熱	残留熱除去系ポンプ	運転，起動及び高温停止	第39条	「第39条 非常用炉心冷却系その1」で整理
			サプレツションチェンバ		第46条	「第46条 サプレッションプールの水位」で整理
			残留熱除去系熱交換器		第39条	「第39条 非常用炉心冷却系その1」で整理（系に含まれる）
			残留熱除去系 配管•弁・ストレーナ		第39条	「第39条 非常用炬心浍却系をの1」を整理（系に含まれる）
			スプレイ管		第39条	「第39条 非常用炉心浍却系その1」で整理（系に含まれる）
			原子炉格納容器		第43条	「第43条 格納容器および格納容器隔離分」で整理
			原子炉補機冷却水系（原子炉補機冷却海水系を含む。）		第52条	「第52条 原子炉補機泠却水系および原子炬補機冷却海水系」で整理
			非常用取水設備		第52条	「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」で整理（系に含まれる）
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機をの11で整理
		残留熱除去系 －サフレッジョン モード）によるサ プレッションプー ルの除熱	残留熱除去系ポンプ	運転，起動及び高温停止	第39条	「第39条 非常用炉心冷却系その1」で整理
			サプレツションチェンバ		第46条	「第46条 サプレッションプールの水位」で整理
			残留熱除去系熱交換器		第39条	「第39条 非常用炉心冷却系その1」で整理（系に含まれる）
			残留熱除去系 配管•弁・ストレーナ		第39条	「第39条 非常用炉心浍却系その1」で整理（系に含まれる）
			原子炬格納容器		第43条	「第43条 格納容器および格納容器隔離弁」で整理
			原子炉補機冷却水系（ 原子炉補機冷却海水系を含む。）		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理
			非常用取水設備		第52条	「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」で整理（系に含まれる）
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機その1」で整理
	残留熱除去系（格納容器スプレイ冷却モード）	原子炉格納容器代替スプレイ冷却系（常設）によ る原子炉格納容器内の冷却	復水移送ポンプ	運転，起動及び高温停止	66－6－1	「66－6－1 原子炉格納容器代替スプレイ脍却系（常設）」で整理
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理（「66－6－1 原子炉格納容器代替スプレイ泠却系（常設）」で他表を参照）
			補給水系 配管•弁		66－6－1	「66－6－1 原子炉格納容器代替スプレイ伶却系（常設）」で整理（系に含まれる）
			残留熱除去系 配管•弁		66－6－1	「66－6－1 原子炉格納容器代替スプレイ伶却系（常設）」で整理（系に含まれる）
			スプレイ管		66－6－1	「66－6－1 原子炉格納容器代替スプレイ伶却系（常設）」で整理（系に含まれる）
			高圧炬心スプレイ系 配管•弁		66－6－1	「66－6－1 原子炉格納容器代替スプレイ伶却系（常設）」で整理（系に含まれる）
			燃料プール補給水系 弁		66－6－1	「66－6－1 原子炉格納容器代替スプレイ伶却系（常設）」で整理（系に含まれる）
			原子炉格納容器		第43条	「第43条 格納容器および格納容器隔離弁」で整理
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備！で整理（「66－6－1 原子炉格納容器代替スプレイ佮却系（常設）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（66－6－1 原子炉格納容器代替スプレイ浍却系（常設）」で他表を参照）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備」で整理（66－6－1 原子炉格納容器代替スプレイ浍却系（常設）」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」て整理（66－6－1 原子炉格納容器代替スプレイ泠却系（常設）」で他表を参照）
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機をの11で整理
		原子炉格納容器代替スプレイ冷却系（可搬型）に よる原子炉格納容器内の泠却	大容量送水ポンプ（タイプ I）	運転，起動及び高温停止	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（「66－6－2 原子炉格納容器代替スプレイ浍却系（可搬型）」で他表を参照）
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			ホース・注水用ヘッダ・接続口		$\begin{array}{\|l\|} \hline 66-19-1 \\ 66-6-2 \\ \hline \end{array}$	「66－19－1 大容量送水ポンプ（タイプI）」で整理（系に含まれる） 「66－6－2 原子炉格納容器代替スプレイ冷却系（可搬型）」で整理（系に含まれる）
			残留熱除去系 配管•卉		66－6－2	「66－6－2 原子炉格納容器代替スプレイ浍却系（可搬型）」で整理（系に含まれる）
			スプレイ管		66－6－2	「66－6－2 原子炉格納容器代替スプレイ浍却系（可搬型）」で整理（系に含まれる）
			原子炉格納容器		第43条	「第43条 格納容器および格納容器隔離分」で整理
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－6－2 原子炉格納容器代替スプレイ浍却系（可搬型）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－6－2 原子炉格納容器代替スプレイ泠却系（可搬型）」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備厂で整理（「66－6－2 原子炉格納容器代替スプレイ冷却系（可搬型）」で他表を参照）
			然料補給設備		66－12－7	「66－12－7 燃料補綌設備」て整理（「66－6－2 原子炉格納容器代替スプレイ冷却系（可搬型）」で他表を参照）
			非常用交流電源設備		第59条	「第59条 非常用ディーゼル発電機その1」で整理

分類	機能衰失を	対応手段	LCO対象SA設侕	適井されるる	保安規定	借考
		常設代替交流電源設備による残 階却モード）の復	原子炉補機代偣替会却水系	－連転，起動及で高温停止	66－5－4	
			常設代替交流電源設缺		66－12－1	
			残覧然除去系ポンプ		策39条	「第393年非常用炉心浍却系その1」を整理
			サフレッションチチェバ		第46条	「第46条サブレッションプールの水位くで整理
			残留答除去系懸交换器		第393条	「第39条非常用炬心浍却系その1」を整理係に合まれる）
					第393条	「第39条非常用炬心会却系をの1」を整理（系に合まれる）
			スプレイ管		第393条	「第39条非常用炕心浍却系をの1」を整理（系に合まれる）
			原子炉格絞容器		第43条	
					第52条	
			非常索取水設備		第52条	
		常設代替交流電源設備による残留熱除去系（サプ レッションプール復旧	原子炉哦機代代替会却水系	連転，起䡃及ひ高温停止	66－5－4	「66－5－4 原子䊽施機代敒替会却水系」て整理
			常設代替交流電源般傋		66－12－1	
					第39条	「第39条非常用炉心浍却系その1」を整理
			サフレッションンチェンバ		第46条	「第46条 サフレレッションプールの水位を整理
					第393条	「第39条非常用炕心浍却系ての1」を整理（係に合まれる）
					第39条	「第39条非常用炬心浍却系ての1」を整理系に合まれる）
			原子柿格絞容㗊		第43条	
					第52条	「第52条 原子炉補機会却水系およさで原子炉補機会却海水系」c整理
			非常用取水設葓		第52条	
			澓水移送术ンプ	連転，起動及で高温停止	66－6－1	
					66－11－1	
					66－6－1	
			或留懸除去系配管•并		66－6－1	
			スプレイ管		66－6－1	
			高広施心スプレイ系 配管•升		66－6－1	
					66－6－1	
			原子炉格納容哭		第43条	
			常設代替交流電源設窚		66－12－1	
					66－12－2	
					66－12－3	
			代替所内電気設缺		66－12－6	
			翡常用交流電源偐窚		第59条	「第99条非常用テイーゼノ笄電機その1」と整理
		原子炉格納容器代替スプレイ佮 よる原子炉格納容器内の椧却	大容量送水尤プ（タイプ I）	連転，起動及で高温停止	66－19－1	
			木一ス延長回収車		66－19－1	「66－19－1 大容量送水尤プ゙タイプI）」」を整理（系に合まれる）
			ホース・主水用へツ少•接続口		$\begin{array}{\|l\|l\|} \hline 66-19-1 \\ 66-6-2 \end{array}$	
					66－6－2	
			スプレイ管		66－6－2	
			原子炉格絞谷器		第43条	
			常設代澘交流電源設窚		66－12－1	
					66－12－2	
			代替所内電気設缺		66－12－6	
					66－12－7	
			非常用交流電源溺犕		策9条	「第59条 非常用デイーゼノ発电機その1」で整理

分類	$\begin{aligned} & \text { 機能堆失を } \\ & \text { 想定するDB設備 } \\ & \hline \end{aligned}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \end{gathered}$	保安規定	備考
		常設代替交流電源設備による残留熱除去系（格納容器スプレイ冷却モード）の復旧	原子炉補機代替冷却水系	－連転，起動及び高温停止	66－5－4	「66－5－4 原子炉補機代替冷却水系」で整理
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」て整理（「66－5－4 原子炉補機代替泠却水系」で他表を参照）
			残留熱除去系ポンプ		第39条	「第39条 非常用炉心浍却系その1」で整理
			サプレツションチェンバ		第46条	「第46条 サプレッションプールの水位」で整理
			残留熱除去系熱交換器		第39条	「第39条 非常用炉心泠却系をの1」で整理（系に含まれる）
			残留熱除去系 配管•弁・ストレーナ		第39条	「第39条 非常用炉心冷却系その1」で整理（系に含まれる）
			スプレイ管		第39条	「第39条 非常用炉心冷却系をの1」で整理（系に含まれる）
			原子炉格納容器		第43条	「第43条 格納容器および格納容器隔離分」で整理
			原子炉補機冷却水系（ 原子炉補機冷却海水系を含む。）		第52条	「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」で整理
			非常用取水設備		第52条	「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」で整理（系に含まれる）
		常設代替交流電源設備による残留熱除去系（サフ）水泠却モード）復旧	原子炬補機代替冷却水系	連転，起動及び高温停止	66－5－4	「66－5－4 原子炉補機代替泠却水系」で整理
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」て整理（「66－5－4 原子炉補機代替泠却水系」で他表を参照）
			残留熱除去系ポンプ		第39条	「第39条 非常用炉心冷却系その1」で整理
			サプレツションチェンバ		第46条	「第46条 サプレッションプールの水位」で整理
			残留熱除去系熱交換器		第39条	「第39条 非常用炬心椧却系その1」で整理（系に含まれる）
			残留熱除去系 配管•弁・ストレーナ		第39条	「第39条 非常用炉心冷却系をの1」で整理（系に含まれる）
			原子炉格納容器		第43条	「第43条 格納容器および格納容器隔離分」で整理
			原子炉補機冷却水系（ 原子炉補機冷却海水系を含む。）		第52条	「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」で整理
			非常用取水設備		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理（系に含まれる）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．7／50条 原子炉格納容器の過圧破損を防止するための設備】

分類	$\begin{gathered} \text { 機能噩失を } \\ \text { 想定するDB設備 } \end{gathered}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \end{gathered}$	保安規定	備考
原	－	原子炉格納容器負圧破損の防止	可般型空素がス供給装置	連転，起動及び高温脝止	66－5－3	「66－5－3 可搬型坴素がス供給装置」で整理
炉			ホース・窒素供給用ヘッダ・接続口		66－5－3	「66－5－3 可搬型窒素がス供給装置」で整理（系に含まれる）
納			原子炉格納容器調気系 配管•弁		66－5－3	「66－5－3 可搬型室素がス供給装置」で整理（系に含まれる）
器			原子炉格納容器フイルダント系 配管・ベント		66－5－3	「66－5－3 可搬型室素がス供給装置」で整理（系に含まれる）
過			原子炬格納容器		第43条	「第43条 格納容器および格納容器隔離弁」で整理
破			フィルタ装置		66－5－1	「66－5－1 原子炉格納容器フィルタバント系」で整理
防			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」て整理
止			燃料補給設備		66－12－7	「66－12－7 繎料補給設備ひで整理

分類	$\begin{gathered} \text { 機能啧失を } \\ \text { 想定するD設備 } \end{gathered}$	対応手段	LCO対象SA設備	$\begin{aligned} & \text { 止適用される } \\ & \text { 原子炉の状態 } \end{aligned}$	保安規定	備考
	－	低圧代替注水系常設）（復水移送 ポンプ）による原子炉圧力容器への注水注水	復水移送ポンプ	運転，起動及び高温停止	66－4－1	「66－4－1 低圧代替注水系（常設）」で整理
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源くて整理（「66－4－1 低圧代替注水系（常設）」で他表を参照）
			補給水系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）」で整理（系に含まれる）
			残留熱除去系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）」で整理（系に含まれる）
			高圧炉心スプレイ系 配管•弁		66－4－1	「66－4－1 低圧代替注水系（常設）」で整理（系に含まれる）
			燃料プール補給水系 弁		66－4－1	「66－4－1 低圧代替注水系（常設）」で整理（系に含まれる）
			原子炉圧力容器		66－4－1	「66－4－1 低圧代替注水系（常設）」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－4－1 低圧代替注水系（常設）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備しで整理（「66－4－1 低圧代替注水系（常設）」で他表を参昭）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備」て整理（「66－4－1 低圧代替注水系（常設）」で゙他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」で整理（「66－4－1 低圧代替注水系（常設）」で他表を参照）
			大容量送水ポンプ（タイプ I）	連転，起動及び高温脝止	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			ホース・注水用ヘッダ・接続口		$\begin{array}{\|l\|} \hline 66-4-3 \\ 66-19-1 \\ \hline \end{array}$	「66－4－3 低圧代替注水系（可搬型）」で整理（系に含まれる） 「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（系に含まれる）
			補給水系 配管•弁		66－4－3	「66－4－3 低圧代替注水系（可般型）」で整理（系に含まれる）
			残留熱除去系 配管•弁		66－4－3	「66－4－3 低圧代替注水系（可搬型）」で整理（系に含まれる）
			原子炉圧力容器		66－4－3	「66－4－3 低圧代替注水系（可搬型）」で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
			然料補綌設備		66－12－7	「66－12－7 燃料補綌設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）
		代替循環冷却系 による原子炉圧力容器への注水	代替看環浍却ポンプ	連転，起動及び高温停止	66－5－5	「66－5－5 代替循環冷却系」で整理
			サプレッションチェンバ		第46条	「第46条 サプレッションプールの水位」で整理（「66－5－5 代替循環浍却系」で他条文を参照）
			残留熱除去系熱交換器		66－5－5	「66－5－5 代替循環冷却系」で整理（系に含まれる）
			残留熱除去系 配管•弁・ストレーナ		66－5－5	「66－5－5 代替循環泠却系」で整理（系に含まれる）
			原子炉圧力容器		66－5－5	「66－5－5 代替循環冷却系」で整理（系に含まれる）
			原子炉補機代替冷却水系		66－5－4	「66－5－4 原子炉補機代替冷却水系」で整理（「66－5－5 代替循環冷却系」で他表を参照）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－5－5 代替循環冷却系」で他表を参照）
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備」て整理（「66－5－5 代替看䍗冷却系」で他表を参照）
			原子炉補機冷却水系（ 原子炉補機冷却海水系を含む。）		第52条	「第52条 原子炉補機泠却水系および原子炉補機冷却海水系」で整理
			非常用取水設備		第52条	「第52条 原子炉補機泠却水系および原子炉補機浍却海水系」で整理（系に含まれる）

分類	$\begin{gathered} \text { 機能埄失を } \\ \text { 想定するD設備 } \\ \hline \end{gathered}$	対応手段	LCO 対象SA設備	$\begin{gathered} \text { 正適用される } \\ \text { 原子炉の状態 } \end{gathered}$	保安規定	備考
	－	高圧代替注水系 による原子炉圧力容器への注水	高圧代替注水系ポンプ	運転，起動及び高温停止（原子炉圧力が 1.04 MPa ［gage］以上かつ原子炉起動時に実施 する運転確認終了後）	66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理
			復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」て整理（「66－2－1高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
			高圧代替注水系（蒸気系）配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			主蒸気系 配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			原子炉隔離時泠却系（蒸気系）配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			高圧代替注水系（注水系）配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			補給水系 配管		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			高圧灲心スプレイ系 配管•弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			燃料プール補給水系 弁		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			原子炉冷却村浄化系 配管		$66-2-1$	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			復水給水系 配管•弁・スパージャ		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			原子炻圧力容器		66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で整理（系に含まれる）
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備ひで整理（「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
			常設代替直流電源設備		66－12－4	「66－12－4 常設代替直流電源設備」で整理（「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
			可搬型代替直流電源設備		66－12－5	「66－12－5 可搬型代替直流電源設備」て整理（「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」て整理（「66－2－1 高圧代替注水系（中央制饰室からの遠隔起動）」で他表を参照）
		ほう酸水注入系 による原子炉圧 力容器へのほう 酸水注入	ほう酸水注入系ポンプ	運転，起動及び高温停止	66－2－3	保安規定の既存条文「第24条 ほう酸水注入系」よりも要求が拡張されたことから，第66条で新たにLCO等を定める「66－2－3 ほう酸水注入系（重大事故等対処設備）」で整理
			ほう酸水注入系貯蔵タンク		66－2－3	保安規定の既存条文「第24条 ほう酸水注入系」よりも要求が拡張されたことから，第 66 条で新たにLCO 等を定める 「66－2－3ほう酸水注入系（重大事事故等対処設備）」で整理
			ほう酸水注入系 配管•弁		66－2－3	「66－2－3 ほう酸水注入系（ 重大事故等対処設備）」（整理（系に含まれる）
			原子涙圧力容器		66－2－3	「66－2－3 ほう酸水注入系（重大事故等対処設備）」 で整理（系に含まれる）
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－2－3 ほう酸水注入系（ 重大事故等対処設備）」で他表を参照）
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備で整理（「66－2－3 ほう酸水注入系（重大事故等対処設備）」で他表を参照）

分類	$\begin{aligned} & \text { 想機能囁失を } \\ & \text { 隹 } \end{aligned}$	対応手段	LCO対象SA設備	適用される原子炉の状態	保安規定	備考
	残留熱除去系（燃料プー ル水の補給） 燃料プール泠却浄化系		大容量送水术ンプ（タイプ I）	使用済燃料プールに照射さ れた燃料を貯蔵している期間	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（「66－9－1 然料プール代替注水系」で他表を参照）
は罿			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
用楀			ホース・注水用ヘッダ・接続口		$\begin{array}{\|l\|} \hline 66-9-1 \\ 66-19-1 \\ \hline \end{array}$	
燃ル			㜣料プール浍却浄化系配管•弁		66－9－1	「66－9－1 燃料プール代替注水系」で整理（系に含まれる）
プの			使用済燃料プール		66－9－1	「66－9－1 繎料プール代替注水系」で整理（系に含まれる）
儿却			燃料補給設備		66－12－7	「66－12－7 燃料補給設備」て整理（「66－9－1 然料プール代替注水系」で他表を参照）
小又		$\begin{aligned} & \text { 燃籼プール代替 } \\ & \text { 注水系(可䑮) } \\ & \text { による使斎炈 } \\ & \text { 料プールルの注 } \\ & \text { 水 } \end{aligned}$	大容量送水ポンプ（タイプ I）	使用済燃料プールに照射さ れた燃料を貯蔵している期間	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（「66－9－1 然料プール代替注水系」で他表を参照）
棋は告			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
な水			ホース・注水用ヘッダ		$\begin{aligned} & 66-9-1 \\ & 66-19-1 \end{aligned}$	「66－9－1 燃料プール代替注水系」で整理（系に含まれる）「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（系に含まれる）
いの			使用済然料プール		66－9－1	「66－9－1 繎料プール代替注水系」で整理（系に含まれる）
苼失			燃料補給設備		66－12－7	「66－12－7 燃料補給設備」で整理（「66－9－1 燃料プール代替注水系」で他表を参照）
時時 又 又	－		サイフォン防止機能	使用済燃料プールに照射さ れた燃料を貯蔵している期間	66－9－1	「66－9－1 繎料プール代替注水系」で整理（系に含まれる）
	－	$\begin{aligned} & \text { 燃料プールスプ } \\ & \text { Lイ常設配 } \\ & \text { 管によよる使用済 } \\ & \text { 然籼プールレー } \\ & \text { スプレイ } \end{aligned}$	大容量送水ポンプ（タイプ I）	使用済峡料プールに照射された一怢料を眝蔵している期間 れた燃料を貯蔵している期間	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（「66－9－2 然料プールスプレイ系」で他表を参照）
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			ホース・注水用ヘッダ・接続口		$\begin{array}{\|l\|} \hline 66-9-2 \\ 66-19-1 \end{array}$	$\begin{aligned} & \text { 「66-9-2 燃料プールスプレイ系」で整理(系に含まれる) } \\ & \text { 「66-19-1 大容量送水ポンプ (タイブ I) 」で整理 (系に含まれる) } \end{aligned}$
			燃料プール泠却浄化系配管•弁		66－9－2	「66－9－2 燃料プールスプレイ系」で整理（系に含まれる）
			スプレイノズル		66－9－2	「66－9－2 燃料プールスプレイ系」で整理
			使用済然料プール		66－9－2	「66－9－2 燃料プールスプレイ系」で整理（系に含まれる）
			燃料補綌設備		66－12－7	「66－12－7 然料補殓設備しで整理（「66－9－2 然料プールスプレイ系」で他表を参照）
			大容量送水ポンプ（タイプ I）	使用済燃料プールに照射さ れた燃料を貯蔵している期間	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（「66－9－2 然料プールスプレイ系」で他表を参照）
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			スプレイズル		66－9－2	「66－9－2 燃料プールスプレイ系」で整理
			ホース・注水用ヘッダ		$\begin{array}{\|l\|} \hline 66-9-2 \\ 66-19-1 \\ \hline \end{array}$	$\begin{aligned} & \text { 「66-9-2 燃料プールスプレイ系」で整理 (系に含まれる) } \\ & \text { 「66-19-1 大容量送水ポンプ (タイブ I) 」で整理 (系に含まれる) } \\ & \hline \end{aligned}$
			使用済然料プール		66－9－2	「66－9－2 燃料プールスプレイ系」で整理（系に含まれる）
			燃料補給設備		66－12－7	「66－12－7 繎料袆給設備厂で整理（「66－9－2 繎料プールスプレイ系」で他表を参照）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．11／54条 使用済燃料プールの冷却等のための設備】

分頝		対応手段	LCO対象SA設備		保安摫定	備考
	--		大容量送水ポンプ（タイプII）	運転，起動，高温停止，浍温停止及び燃料交換	66－19－2	「66－19－2 大容量送水ポンプ（タイブI）」で整理（T66－10－1 大気への放射性物質の拡散抑制，航罕機燃料火災への泡消火」で他表を参照）
			放水砲		$66-10-1$	
			ホース延長回收車		66－19－2	「66－19－2 大容量㮸水术ンブ（タイブリ）」を整理（系に合まれる）
			＊ース		$\left\lvert\, \begin{aligned} & 66-10-1 \\ & 66-19-2 \end{aligned}\right.$	「66－10－1 大気への放射性物質の扰散抑制，航空機煤料火災への泡消火」で整理（系に含まれる）「66－19－2 大容量送水ボンプ（タイプ II）」で整理（系に含まれる）
					66－12－7	
			晾留医		66－19－2	「66－19－2 大容量逆水术ンブ（タイブロ）」を整理（系に合まれる）
			取水口		66－19－2	「66－19－2 大容量送水术ンプ（タイプI）」を整理（系に合まれる）
			取水路		66－19－2	「66－19－2 大容量送水术ンプ（タイプリ）」を整理（系に合まれる）
			海水术ンフ室		66－19－2	
	－		使用斎燃料フール水位ノ温度（ヒートサーモ式）	使用済然料プールに照射さ れた燃料を貯蔵している期	66－9－4	
故					66－9－4	
筹					66－9－4	
に					66－9－4	
		代替電源による 給电	常設代替交流電源設漋	使用済燃料プールに照射さ れた燃料を貯蔵している期間	66－12－1	
備					66－12－2	
然					66－12－3	
$\stackrel{\text { 米 }}{ }$			常設代替直流電源設儥		66－12－4	
ル					66－12－5	
	全交流動力需源 （原子炬補機冷却海水系含む）		然料フール浍却浄化系ポンプ	使用済然料プールに照射さ れた燃料を貯蔵している期間	66－9－3	
					66－9－3	
					66－9－3	「66－9－3 使用济絲料ち一ルの除絡くて整理（系に含まれる）
			使用斎䊏料ブール		66－9－3	
			原子效效機代代替念却水系		66－5－4	
			常設代替交流電源設䚚		66－12－1	
					66－12－2	

分類	機能喪失を想定するDB設備	対応手段	LCO対象SA設備	適用される	保安規定	備考
又 炬			大容量送水术ンプ（タイプII）		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で他表を参照）
使の著			ホース延長回収車		66－19－2	「66－19－2 大容量送水パンプ（タイプII）」で整理（系に含まれる）
瀤い			ホース		66－19－2	「66－19－2 大容量送水ポンプ（タイプI）」で整理（系に含まれる）
			放水砲		66－10－1	「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で整理
損儿び	－	物質の拡散抑制	館留塸	停止及び燃料交換	66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
傷内场			取水口		66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」で整理（系に含まれる）
			取水路		66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」で整理（系に含まれる）
体納			海水ポンプ室		66－19－2	「66－19－2 大容量送水パンプ（タイプII）」で整理（系に含まれる）
著の			燃料補給設備		66－12－7	「66－12－7 燃料補給設備」て整理（「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で他表を参照）
い破買		海洋への放射性 物質の拡散抑制	シルトフェンス	運転，起動，高温停止，冷温停止及び燃料交換	66－10－2	「66－10－2 海洋への放射性物質の拡散抑制」で整理
原			大容量送水ポンプ（タイプ II）		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で他 表を照）
建			ホース延長回収車		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
$\begin{aligned} & \text { 簓 } \end{aligned}$			ホース		$\begin{array}{\|l\|} \hline 66-10-1 \\ 66-19-2 \\ \hline \end{array}$	「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で整理（系に含まれる） 「66－19－2 大容量送水ボンプ タイプ II）」」で整理（系に含まれる）
空に			放水砲		66－10－1	「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で整理
燃け	－	航空機燃料火災	泡消火薬剂混合装置	起動，高温停止，浍温	66－10－1	「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で整理
炎航			館留堰		66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」で整理（系に含まれる）
機			取水口		66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」を整理（系に含まれる）
㰫			取水路		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」を整理（系に含まれる）
ょ			海水ポンプ室		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
航			燃料補給設備		66－12－7	「66－12－7 燃料補給設備」で整理（「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で他表を参照）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．13／56条 重大事故等の収束に必要となる水の供給設備】

分類	機能唑失を想定するDB設備	対応手段	LCO対象SA設備	皆適用される炉の状態	保安規定	備考
	サプレツション・チェンバ		復水貯蔵タンク	運丕，起動，高温停些，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が門の場合	66－11－1	「66－11－1 重大事故等収束のための水源」で整理
			高圧代替注水系（高圧代替注水系ポンプ）	運転，起動及び高温停止（原	66－2－1	「66－2－1 高圧代替注水系（中央制御室からの遠隔起動」で整理
			原子炉隔離時泠却系（原子炬隔離時冷却系ポンプ）	する運転碓認終了後）	第41条	「第41条 原子炉隔離時浍却系」で整理
			高圧炬心スプレイ系（高压炉心スプレイ系ポンプ）	運転，起動及び高温停止	第39条	「第39条 非常用炉心浍却系その1」で整理
		To	復水貯蔵タンク	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と	66－11－1	「66－11－1 重大事故等収束のための水源」て整理
				ゲートが開の場合 （2）烺原炉内燃料が取出され，かつプールゲート が閉の場合	66－4－1	「66－4－1 低厈代替注水系（常設）（復水移送ポンプ）」で整理
			低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）	運転，起動及び高温停止	66－4－2	「66－4－2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）」で整理
		原子炉格納容器内の冷却	復水貯蔵タンク	運転，起動，高温停止，爷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が闌の場合	66－11－1	「66－11－1 重大事故等収束のための水源」て整理
			原子炉格納容器代替スプレイ佮却系（常設）（復水移送ス゚ンプ）	連転，起動及び高温停止	66－6－1	「66－6－1 原子炉格納容器代替スプレイ浍却系（常設）」で整理
	－	原子炉格納容器下部への注水	復水貯蔵タンク	運転，起動，高温停止，爷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全然料が取出され，かつプールゲート が門の場合	66－11－1	「66－11－1 重大事故等収束のための水源」て整理
			原子炉格納容器下部注水系（常設）（復水移送ポンプ）	連転，起動及び高温停止	66－7－1	「66－7－1 原子炉格納容器下部注水系（常設）（復水移送ポンプ）」で整理
					66－6－1	「66－6－1 原子炉格納容器代替スプレイ浍却系（常設）」で整理
\#	復水貯蔵タンク		サプレッションチェンバ	連転，起動及び高温停止	第46条	「第46条 サプレツションプールの水位」で整理
$\begin{aligned} & \text { 永し, } \\ & \text { 源 } \end{aligned}$			高圧炉心スプレイ系（高圧炉心スプレイ系ポンプ）		第39条	「第39条 非常用炉心冷却系その1」で整理
と，			サプレツションチェンバ	連転，起動及び高温停止	第46条	「第46条 サプレッションプールの水位」で整理
			残留熱除去系（ 残留熱除去系ポンプ）		第39条	「第39条 非常用炉心浍却系その1」で整理
			低王炉心スプレイ系（低圧炉心スプレイ系ポンプ）		第39条	「第39条 非常用炉心浍却系その1」で整理

分類	$\begin{gathered} \text { 機能㙅失を } \\ \text { 想定するDB設備 } \end{gathered}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適甪されでさを } \\ \text { 原子炉の状態 } \\ \hline \end{gathered}$	保安規定	備考
	復水貯蔵タンク		代替循環泠却系（代替循環泠却ポンプ）	蓮転，起動及び高温停止	66－5－5	「66－5－5 代替循環冷却系」で整理
		原子炉格納容器内の除熱	サプレツションチェンバ	連転，起動及び高温停止	第46条	「第46条 サプレツションプールの水位」で整理
			残留熱除去系（残留熱除去系ポンプ）		第39条	「第39条 非常用炬心椧却系その1」で整理
			サプレッションチェンバ	運転，起動及び高温停止	第46条	「第46条 サプレッションプールの水位で整理
	－	原子炉圧力容器 への注水及び原子炉格納容器内 の除熱	代替循環冷却系（代替循環冷却ポンプ）	運転，起動及び高温停止	66－5－5	「66－5－5 代替循環冷却系」で整理
	復水貯蔵タンク	原子炉格納容器下部への注水	サプレッションチェンバ	運転，起動及び高温停止	第46条	「第46条 サプレツションプールの水位てて整理
			代替循環泠却系（代替循環冷却ポンプ）		66－5－5	「66－5－5 代替循環冷却系」で整理
			原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）		66－7－2	「66－7－2 原子炉格納容器下部注水系（常設）（代替循環泠却ポンプ）」で整理

分類		対応手段	LCO対象SA設備		保安規定	備考
	復水貯蔵タンク サプレッション・チェンバ	大容量送水ポン プ（タイプI）によ る送水	大容量送水ポンプ（タイプ I）	運転，起動，高温停止，冷温停止，燃料交換及び使用済燃料プールに照射された燃料を貯蔵している期間 を貯䦎している期間	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（各表で他表を参照）
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			ホース・注水用ヘッダ・接続口	各表で要求される期間	$\begin{aligned} & 66-4-3 \\ & 66-6-2 \\ & 66-7-3 \\ & 66-9-1 \\ & 66-9-2 \\ & 66-11-2 \\ & 66-19-2 \\ & 66-19-1 \end{aligned}$	各表の系に含まれる
			燃料補給設備	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 撚料補殓設備」で整理
			低圧代替注水系（可搬型）（大容量送水ポンプ（タイプI）， ホース延長回収車，ホース・注水用ヘッダ・接続口等）	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	$\left\lvert\, \begin{aligned} & 66-19-1 \\ & 66-4-3 \end{aligned}\right.$	「66－19－1 大容量送水ポンプ（タイプI）」で整理 「66－4－3 低圧代替注水系（可搬型）」で整理（系に含まれる）
		$\begin{array}{\|l\|} \left\lvert\, \begin{array}{l} \text { 原子炉格納容器 } \\ \text { 内の泠却 } \end{array}\right. \\ \hline \end{array}$	原子炉格納容器代替スブレイ冷却系（可搬型）（大容量送水ポ ンプ（タイプI），ホース延長回収車，ホース・注水用ヘッダ・接続口等）	運転，起動及び高温停止	$\begin{array}{\|l\|l\|} \hline 66-19-1 \\ 66-6-2 \\ \hline \end{array}$	「66－19－1 大容量送水ポンプ（タイプ I）」で整理 「66－6－2 原子炉格納容器代替スプレイ冷却系（可搬型）」で整理（系に含まれる）
	－	原子炉格納容器 フィルタベント系 フィルタタ装置への水補給	大容量送水ポンプ（タイプ I）	運転，起動及び高温停止	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（「66－5－1 原子炉格納容器フイルタベント系」で他表を参照）
			ホース延長回収車	運転，起動及び高温停止	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			ホース・注水用ヘッダ・接続口	運転，起動及び高温停止	$\begin{aligned} & 66-5-1 \\ & 66-19-1 \end{aligned}$	「66－5－1 原子炉格納容器フイルタバント系」で整理（系に含まれる）「66－19－1 大容量送水ポンプ（タイプI）」で整理（系に含まれる）
			燃料補給設備	$\begin{aligned} & \text { 運転, 起㗢, 高温停止, 冷温 } \\ & \hline \end{aligned}$	66－12－7	「66－12－7 败料補綌設備」で整理
	復水館蔵タンク	原子炉格納容器 下部への注水	原子炉格納容器下部注水系（可搬型）（大容量送水ポンプ（タ イブ I），ホース延長回収車，ホース・注水用ヘッダ・接続口等）	運転，起動及び高温停止	$\left\lvert\, \begin{aligned} & 66-19-1 \\ & 66-7-3 \end{aligned}\right.$	「66－19－1 大容量送水ポンプ（タイプ I ）」で整理 「66－7－3 原子炉格納容器下部注水系（可搬型）」で整理（系に含まれる）
			原子炉格納容器代替スプレイ冷却系（可搬型）（大容量送水ポ ンプ続口等）		$\left\lvert\, \begin{aligned} & 66-19-1 \\ & 66-6-2 \end{aligned}\right.$	「66－19－1 大容量送水ポンプ（タイプ I）」で整理 「66－6－2 原子炉格納容器代替スプレイ椧却系（可搬型）」で整理（系に含まれる）
	－		燃料プール代替注水系（常設配管）（大容量送水ポンプ（タイプ I），ホース延長回収車，ホース・注水用ヘッダ・接続口等）	使用済燃料プールに照射さ れた燃料を貯蔵している期間	$\begin{array}{\|c\|c\|} 66-9-1 \\ 66-19-1 \end{array}$	「66－9－1 燃料プール代替注水系」で整理（系に含まれる）「66－19－1 大容量送水ポンプ（タイプI）」で整理
			然料プール代替注水系（可搬型）（大容量送水ポンプ（タイプ I），ホース延長回収車，ホース・注水用ヘッダ等）		$\left\lvert\, \begin{aligned} & 66-9-1 \\ & 66-19-1 \end{aligned}\right.$	「66－9－1 燃料プール代替注水系」で整理（系に含まれる）「66－19－1 大容量送水ポンプ（タイプ I ）」で整理
			燃料プールスプレイ系（常設配管）（大容量送水ポンプ（タイプ I），ホース延長回収車，ホース・注水用ヘッタタ・接続ロ，スプ レイノズル等）		$\left\lvert\, \begin{aligned} & 66-9-2 \\ & 66-19-1 \end{aligned}\right.$	「66－9－2 燃料プールスプレイ系」で整理（系に含まれる） 「66－19－1 大容量送水ポンプ（タイプ I ）」で整理
			撚料プールスプレイ系（可搬型）（大容量送水ポンプ（タイプ I），ホース延長回収車，ホース・注水用ヘッダ，スプレイノズ ル等）		$\left\lvert\, \begin{aligned} & 66-9-2-2 \\ & 66-19-1 \end{aligned}\right.$	「66－9－2燃料プールスス゚レイ系」で整理（系に含まれる）「66－19－1 大容量送水ポンプ（タイプ I ）」で整理

分類	$\begin{aligned} & \text { 機能噩失を } \\ & \text { 想定するDB設備 } \end{aligned}$	対応手段	LCO対象SA設備		保安規定	備考
	復水貯蔵タンク サプレッションチェンバ	大容量送水ポン プによる送水（各種注水）	大容量送水ポンプ（タイプ I ）	運転，起動，高温停止，冷温停止燃料交換及び使用済燃料プールに照射された燃料を	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			館留塸		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			取水口		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			取水路		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			海水ポンプ室		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			ホース・注水用ヘッダ・接続口	各表で要求される期間	$66-4-3$ $66-6-2$ $66-7-3$ $66-9.1$ $66-9-2$ $66-11-2$ $66-1-3$ $66-19-1$	各表の系に含まれる
			燃料補給設備	運転，起動，高温停止，冷温 虽止及び燃料交換	66－12－7	「66－12－7 然料袢給設備」で整理（「66－11－3 海水移送設備」で他表を参照）
		大容量送水ポン づによる送水（各種供給）	大容量送水ポンプ（タイプ I ）	運転，起動，高温停止，冷温停止燃料交換及び使用済燃料プールに照射された燃料を貯蔵している期間	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I ）」で整理
			大容量送水ポンプ（タイプII）	運転，起動，高温停止，冷温停止及び燃料交換	66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」で整理
			ホース延長回収車	各表で要求される期間	$\begin{array}{\|l\|l\|} \hline 66-19-1 \\ 66-19-2 \end{array}$	各表の系に含まれる
			館留堰	各表で要求される期間	$\begin{aligned} & 66-19-1 \\ & 66-9-2 \\ & 66-19-1 \\ & 66-19-2 \\ & \hline \end{aligned}$	各表の系に含まれる
			取水口			各表の系に含まれる
			取水路		$\begin{aligned} & \frac{66-19-1}{66-19-2} \\ & \frac{66-10-1}{6-10-1} \end{aligned}$	各表の系に含まれる
			海水ポンプ室		$\begin{array}{\|} \hline 66-19-1 \\ 66-19-2 \\ \hline \end{array}$	各表の系に含まれる
			ホース・接続口	各表で要求される期間	$66-9-2$ $66-5-4$ $66-10-1$ $66-11-3$ $66-19-1$ $66-19-2$	各表の系に含まれる
			燃料補給設備	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 撚料補給設備」で整理（「66－11－3 海水移送設備」で他表を参照）
		原子炉洽却材圧 カバウンダリ低圧時の原子炬圧力容器への注水	低圧代替注水系（可般型）（大容量送水ポンプ（タイプ I）， ホース延長回収車，ホース・注水用ヘッダ・接続口等）	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	$\left\lvert\, \begin{aligned} & 66-19-1 \\ & 66-4-3 \end{aligned}\right.$	「66－19－1 大容量送水ポンプ（タイプ I ）」で整理 「66－4－3 低圧代替注水系（可搬型）」で整理（系に含まれる）
		原子炬格納容器内の椧却	原子炉格納容器代替スプレイ冷却系（可搬型）（大容量送水ポ ンプ（タイプ I），ホース延長回収車，ホース・注水用ヘッダ・接続口等）	連転，起動及び高温停止	$\left\lvert\, \begin{aligned} & 66-19-1 \\ & 66-6-2 \end{aligned}\right.$	

分類	$\underset{\text { 相機能喪失を }}{\text { 场 }}$	対応手段	LCO対象SA設備	適用される原子炉の状態	保安規定	備考
	復水貯蔵タンク	原子炉格納容器下部への注水	原子炉格納容器下部注水系（可搬型）（大容量送水ポンプ（タ イプ I ），ホース延長回収車，，ホース・注水用ヘッダ・接続口等）	運転，起動及び高温停止	$\left\lvert\, \begin{aligned} & 66-19-1 \\ & 66-7-3 \end{aligned}\right.$	
			原子炉格納容器代替スプレイ冷却系（可搬型）（大容量送水ポ ンプ（タイプI），ホース延長回収車，ホース・注水用ヘッダ・接続口等）		$\left\lvert\, \begin{aligned} & 66-19-1 \\ & 66-6-2 \end{aligned}\right.$	
	－		燃料プール代替注水系（常設配管）（大容量送水ポンプ（タイプ I），ホース延長回収車，ホース・注水用ヘッダ・接続口等）	使用済燃料プールに照射さ れた燃料を貯蔵している期間	$\left\lvert\, \begin{aligned} & 66-9-1 \\ & 66-19-1 \end{aligned}\right.$	
			燃料プール代替注水系（可搬型）（大容量送水ポンプ（タイプ I），ホース延長回収車，ホース・注水用ヘッダ等）		$\left\lvert\, \begin{aligned} & 66-9-1 \\ & 66-19-1 \end{aligned}\right.$	
			燃料プールスプレイ系（常設配管）（大容量送水ポンプ（タイプ I），ホース延長回収車，ホース・注水用ヘッダ・接続ロ，スプ レイノズル等）		$\left\lvert\, \begin{aligned} & 66-9-2 \\ & 66-19-1 \end{aligned}\right.$	
			然料プールスプレイ系（可搬型）（大容量送水ポンプ（タイプ I），ホース延長回収車，ホース・注水用ヘッタタ，スプレイノズ ル等）		$\left\lvert\, \begin{aligned} & 66-9-2 \\ & 66-19-1 \end{aligned}\right.$	「66－9－2 燃料ブールスプレイ系」で整理（料フールスプレイ系」整理（系に含まる） 「66－19－1 大容量送水ポンプ（タイプ I ）」で整理 「66－19－1 大容量送水ポンプ（タイプI）」で整理（系に含まれる）
		原子炉補機冷却水系（原子炉補機冷却海水系を含む。）による補機冷却水確保	原子炉補機冷却水系（原子炉補機冷却海水系を含む。）（原子炉補機冷却水ポンプ及び原子炉補機冷却海水ポンプ）	連転，起動及び高温停止	第52条	「第52条 原子炉補機泠却水系および原子炉補機泠却海水系」で整理
		最終ヒートシンク へ（海）への代替熱輸送	原子炉補機代替冷却水系（大容量送水ポンプ（タイプ I），熱交換器ユニット，ホース延長回収車，ホース・除熱用ヘッダ・接続口等）	運転，起動，高温停止，冷温停止及び燃料交換	$\begin{array}{\|c\|} 66-5-4 \\ 66-19-1 \end{array}$	
		大気への放射性物質の拡散抑制	大容量送水ポンプ（タイブII）	運転，起動，高温停止，冷温停止及び燃料交換	66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で他表 を照）
			ホース延長回収車		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
			放水砲		66－10－1	「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で整理
			ホース		66－19－2	「66－19－2 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			館留塸		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
			取水口		66－19－2	「66－19－2 大容量送水ポンプ（タイプI）」とで整理（系に含まれる）
			取水路		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
			海水ポンプ室		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
			燃料補給設備		66－12－7	「66－12－7 繎料袆給設備」で整理（「66－10－1 大気への放射性物質の拡散抑制，航空機㜣料火災への泡消火」で他表を参照）
		航空機燃料火災への泡消火	大容量送水过ンプ（タイプ I ）	運転，起動，高温停止，冷温停止及び燃料交換	66－19－2	「66－19－2 大容量送水ポンブ（タイブII）」で整理（「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で他表 表
			ホース延長回収車		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
			放水砲		66－10－1	「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で整理
			泡消火薬剂混合装置		66－10－1	「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で整理
			ホース		$\begin{aligned} & \hline 66-10-1 \\ & 66-19-2 \\ & \hline \end{aligned}$	「66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火」で整理（系に含まれる）
			堲留堰		66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」で整理（系に含まれる）
			取水口		66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」で整理（系に含まれる）
			取水路		66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」で整理（系に含まれる）
			海水ポンプ室		66－19－2	「66－19－2 大容量送水ポンプ（タイプI）」）で整理（系に含まれる）
			燃料補給設備		66－12－7	「66－12－7 燃料補給設備」て整理（66－10－1 大気への放射性物質の拡敨抑制，航空機然料火災への泡消火」で他表を参照）

分類	$\begin{aligned} & \hline \text { 機能噩失を } \\ & \text { 想定するDB設備 } \\ & \hline \end{aligned}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \\ \hline \end{gathered}$	保安規定	備考
とン入ほ			ほう酸水注入系貯蔵タンク	連転 起動及で高泹停止	$\left\lvert\, \begin{aligned} & \text { 第24条 } \\ & 66-2-3 \end{aligned}\right.$	「第24条 ほう酸水注入系」で整理「66－2－3 ほうう酸水注入系（重大事故等対処設備）」で整理
対水蔵水応源夕注	－		ほう酸水注入系（ほうう酸水注入系ポンプ）	連転，起動及ひ高滥停止	$\begin{array}{\|l\|} \text { 第24条 } \\ 66-2-3 \end{array}$	「第24条 ほう酸水注入系」で整理「66－2－3 ほうう酸水注入系（重大事故等対処設備）」で整理
	－	淡水貯水槽を水源とした大容量送水ポンプ（タイ プ I）による復水給	復水的蔵タンク	運転，起動，高温停止，冷温停止及び燃料交換（原子炉が次に示す状態となった場合は適用しない。（1）原子伷水位 で，かつプールゲートが開の場合（2）原子炉内から全燃料が取出され，かつプール ゲートが閉の場合）	66－11－1	「66－11－1 重大事故等収束のための水源」で整理（「66－11－2 復水貯蔵タンクへの供給設備」で他表を参照）
			大容量送水ポンプ（タイプ I）		66－19－1	「66－19－1 大容量送水パンプ（タイプ I）」で整理（「66－11－2 復水貯蔵タンクへの供綌設備」で他表を参照）
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			ホース・注水用ヘッダ・接続口		$\begin{array}{\|c} 66-11-2 \\ 66-19-1 \\ \hline \end{array}$	「66－11－2 復水貯蔵タンクへの供給設備」で整理（系に含まれる）「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（系に含まれる）
			補給水系 配管•弁		66－11－2	「66－11－2 復水貯蔵タンクのの供給設備」で整理（系に含まれる）
			然料補綌設備		66－12－7	「66－12－7 燃料補給設備」て整理（「66－11－2 復水貯蔵タンクへの供給設備」で他表を参照）
		海を水源とした大容量送水ポンプ （タイプ I）による复水貯蔵タンクヘ の補給	復水貯蔵タンク		66－11－1	「66－11－1 重大事故等収束のための水源」で整理（「66－11－2 復水貯蔵タンクへの供給設備しで他表を参照）
			大容量送水ポンプ（タイプ I）		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（「66－11－2 復水貯蔵タンクへの供綌設備」で他表を参照）
			ホース延長回収車		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			ホース・注水用ヘッダ・接続口		$\left\{\begin{array}{l} 66-11-2 \\ 66-19-1 \end{array}\right.$	「66－11－2 復水貯蔵タンクへの供給設備」で整理（系に含まれる）「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（系に含まれる）
			補給水系 配管•弁		66－11－2	「66－11－2 復水貯蔵タンクへの供殓設備」で整理（系に含まれる）
			館留塸		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			取水口		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			取水路		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			海水ポンプ室		66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			然料補綌設備		66－12－7	「66－12－7 燃料補給設備」て整理（「66－11－2 復水貯蔵タンクへの供給設備」で他表を参照）
	－	海を水源とした大容量送水ポンプ （タイプII）による淡水貯水槽への補給	大容量送水ポンプ（タイプII）	運転，起動，高温停止，冷温停止及び燃料交換	66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（「66－11－3 海水供綌設備」で他表を参昭）
			ホース延長回収車		66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」で整理（系に含まれる）
			ホース		66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」で整理（系に含まれる）
			館留堰		66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」で整理（系に含まれる）
			取水口		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
			取水路		66－19－2	「66－19－2 大容量送水ポンプ（タイプII）」で整理（系に含まれる）
			海水ポンプ室		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
			燃料補給設備		66－12－7	「66－12－7 繎料補給設備」て整理（「66－11－3 海水供給設備」で他表を参照）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．13／56条 重大事故等の収束に必要となる水の供給設備】

分類	$\begin{gathered} \text { 機能培失を } \\ \text { 想定するDB設備 } \end{gathered}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適企されで } \\ \text { 原子炉の状態 } \\ \hline \end{gathered}$	保安規定	備考
	－	高圧炉ふスプレ イ系の水源の切替え	復水貯蔵タンク	運転，起動，高温停止，冷温停止及び燃料交換（原子炉が次に示す状態となった場合は適用しない。（1）原子炉水位 がオーバーフロー水位付近 で，かつプールゲートが開の場合（2）原子炉内から全燃料が取出され，かつプール ゲートが閉の場合）	66－11－1	「66－11－1 重大事故等収束のための水源」て整理
			サプレッションチェンバ	邉転，起動及び高温停止	第46条	「第46条 サプレツションプールの水位」で整理
			高圧炬心スプレイ系（高圧炉心スプレイ系ポンプ）	運転，起動及び高温停止	第39条	「第39条 非常用炉心浍却系その1」で整理
		淡水から海水へ の切替え（復水眝蔵タンクへ補給す る水源の切替え （淡水眝水槽からら合）	大容量送水ポンプ（タイプ I）	運転，起動，高温停止，冷温停止及び燃料交換	66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（「66－11－3 海水供給設備」で他表を参照）
			ホース延長回収車		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
			ホース		66－19－2	「66－19－2 大容量送水ポンプ（タイプ゙I）」で整理（系に含まれる）
			館留塸		66－19－2	「66－19－2 大容量送水ポンプ（タイプ I）」とで整理（系に含まれる）
			取水口		66－19－2	「66－19－2 大容量送水ポンプ（タイプ II）」で整理（系に含まれる）
			取水路		66－19－2	「66－19－2 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）
			海水ポンプ室		66－19－2	「66－19－2 大容量送水ポンプ（タイプ゙I）」で整理（系に含まれる）
			燃料補給設備		66－12－7	「66－12－7 燃料補給設備」で整理（「66－11－2 復水貯蔵タンクへの供給設備して他表を参照）
		外部水源から内部水源への切替 え（外部水源（復水貯蔵タンク）か ら内部水源（サブ レッションチェン バ）への切替え）	復水貯蔵タンク	運転，起動，高温停止，冷温停止及び燃料交換（原子炉か次に示す状態となった場合は適用しない。（1）原子炉水位 で，かつプールゲートが開の場合（2）原子炉内から全燃料が取出され，かつプール ゲートが閉の場合）	66－11－1	「66－11－1 重大事故等収束のための水源」て整理
			サプレッションチェンバ	邉転，起動及び高温停止	第46条	「第46条 サプレッションプールの水位」で整理
			低圧代替注水系（常設）（復水移送ポンプ）	運転，起動，高温停止，冷温停止及び燃料交換（原子炉か次に示す状態となった場合は適用しない。（1）原子炉水位 がオーバーフロー水位付近場合（2）原子炉内から全燃料が取出され，かつプール ゲートが閉の場合）	66－4－1	「66－4－1 低圧代替注水系（常設）」で整理
			代替循環冷却系（代替循環冷却ポンプ）	邉転，起動及び高温停止	66－5－5	「66－5－5 代替循環冷却系」で整理

女川原子力発電所2号炉 重大事故等対処設備整理表【1．14／57条 電源設備】

分類	機能啔失を想定するDB設備	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状熊 } \end{gathered}$	保安規定	備考
重 事 克 等 効 処 設 備 設 計 睢 拡 張		非常用交流電源設備による給電	非常用ディーゼル発電機	運転，起動，高温停止，冷温停止及び燃料交換	$\begin{array}{\|l\|} \hline \text { 䇫59条 } \end{array}$	「第59条 非常用デイーゼル発電機その1」，「第60条 非常用ディーゼル発電機その2」で整理
			高圧炉心スプレイ系ディーゼル発電機	運転，起動，高温停止，泠温停止及び燃料交換	$\begin{aligned} & \text { 第59条 } \end{aligned}$	「第59条 非常用デイーゼル発電機その1」，「第60条 非常用デイーゼル発電機その2」で整理
			非常用デイーゼル発電設備燃料デイタンク	運転，起動高高温停止，泠温停止及び燃料交換	$\begin{array}{\|l\|} \hline \text { 第59条 } \\ \text { 第60条 } \end{array}$	「第59条 非常用ディーゼル発電機その1」，「第60条 非常用ディーゼル発電機その2」で整理
			高圧炉心スプレイ系ディーゼル発電設備然料デイタンク	運転，起動，高温停止，冷温停止及び燃料交換	$\begin{array}{\|l\|} \hline \text { 第59条 } \\ \text { 第60 } \end{array}$	「第59条 非常用ディーゼル発電機その1」，「第60条 非常用デイーゼル発電機その2」で整理
			非常用デイーゼル発電設備燃料移送ポンプ		第61条	「第61条 非常用ディーゼル発電機燃料油等」で整理
			高圧炬心スプレイ系ディーゼル発電設供燃料移送ポンプ	運転，起動，高温停止，冷温 停止及び燃料交換	第61条	「第61条 非常用ディーゼル発電機燃料油等」で整理
			非常用ディーゼル発電機～非常用高圧母線2C系及び非常用高圧母線2D系電路	$\left\lvert\, \begin{aligned} & \text { 運転，起動，高温停止，冷温 } \\ & \text { 停止及び燃料交換 }\end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { 第59条 } \\ \text { 第60 } \\ \hline \end{array}$	「第59条 非常用ディーゼル発電機その1」，「第60条 非常用ディーゼル発電機その2」で整理（系に含まれる）
			高圧烼心スプレイ系ディーゼル発電機～非常用高圧母線2H系	運転，起動，高温停止，冷温	$\begin{array}{\|l\|} \hline \text { 第 } 59 \text { 条 } \end{array}$	「第59条 非常用ディーゼル発電機その1」，「第60条 非常用ディーゼル発電機その2」で整理（系に含まれる）
			軽油タンク	運転，起動，高温停止，冷温停止及び燃料交換	第61条	「第61条 非常用ディーゼル発電機燃料油等」で整理
			非常用デイーゼル発電設供䀆料移送系配管•弁	運転，起動，高温停止，冷温停止及び燃料交換	第61条	「第61条 非常用ディーゼル発電機㜣料油等」で整理（系に含まれる）
			高圧炬心スプレイ系デイーゼル発電設供燃料移送系配管•弁	運転，起動，高温停止，冷温停止及び燃料交換	第61条	「第61条 非常用ディーゼル発電機燃料油等」で整理（系に含まれる）
		非常用直流電源設備による給電	$125 V$ 蓄電池 2 H	運転，起動，高温停止，冷温停止及び燃料交換	第62条63	「第62条 直流電源その1」，「第63条 直流電源その2」を整理
			125 V 充電器 2 H	運転，起動，高温停止，泠温停止及び燃料交換	$\begin{array}{\|l\|} \hline \text { 第62条 } \\ \text { 第63条 } \end{array}$	「第62条 直流電源その1」，「第63条 直流電源その2」で整理
			125 V 蓄電池 2 H 及び 125 V 充電器 $2 \mathrm{H} \sim 125 \mathrm{~V}$ 直流主母線盤 2 H 電路	運転，起動，高温停止，冷温停止及び燃料交換	第62条 63 条	「第62条 直流電源その1」，「第63条 直流電源その2」で整理（系に含まれる）
			$125 V$ 蓄電池2A		$\begin{array}{\|l\|} \hline \text { 第62条 } \\ \text { 第63 } \end{array}$	「第62条 直流電源その1」，「第63条 直流電源その2」を整理
			$125 V$ 蓄電池2B	運転，起動，高温停止，冷温 侱止及《゙燃料交換	$\begin{array}{\|l\|l} \text { 筐62条 } \end{array}$	「第62条 直流電源その1」，「第63条 直流電源その2」を整理
			125 V 充電器2A	運転，起動，高温停止，冷温 侱止及び燃料交換	$\begin{array}{\|l\|} \hline \text { 籃62条 } \end{array}$	「第62条 直流電源その1」，「第63条 直流電源その2」を整理
			125 V 充電器2B	運転，起動，高温停止，冷温 停止及び燃料交換	$\begin{array}{\|l\|} \hline \text { 第62条 } \\ \text { 第63 } \end{array}$	「第62条 直流電源その1」，「第63条 直流電源その2」を整理
			125V蓄電池2A及ぴ 125 V 充電器2A～125V直流主母線盤2A及 ぴ125直流主母線艦2A－1電路	$\begin{aligned} & \text { 運転, 起動, 高温停止, 冷温 } \\ & \text { 停止及び燃料交換 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 䇫62条 } \\ \text { 第 } \end{array}$	「第62条 直流電源その1」，「第63条 直流電源をの2」で整理（系に含まれる）
			125V蓄電池 2 B及び $25 V$ 充電器 $2 B \sim 125 V$ 直流主母線盤 $2 B$ 及 ぴ125V直流主母線盤2 2 － 1 電路	運転，起動，高温停止，冷温 停止及び燃料交換	$\begin{array}{\|l\|l} \text { 䇫62条 } \\ \text { 第 } \end{array}$	「第62条 直流電源その1」，「第63条 直流電源その2」で整理（系に含まれる）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．14／57条 電源設備】

分類		対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \end{gathered}$	保安規定	備考
	非常用交流電源設備 （全交流動力電源喪失）	$\begin{array}{\|l\|} \mid \text { 常設代替交流電 } \\ \text { 源設備による } \\ \hline \text { 電 } \end{array}$	ガスタービン発電機	運転，起動，高温停止，冷温停止及び燃料交換	66－12－1	「66－12－1 常設代替交流電源設備」で整理
			ガスタービン発電設備軽油タンク	運転，起動，高温停止，泠温停止及び燃料交換	66－12－7	「66－12－7 燃料補給設備」で整理（「66－12－1 常設代替交流電源設備」で他表を参照）
			タンクローリ	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 燃料補給設備しで整理（「66－12－1 常設代替交流電源設備」で他表を参照）
			軽油タンク	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 然料袆給設備しで整理（「66－12－1 常設代替交流電源設備」で他表を参照）
			ガスタービン発電設備燃料移送パンプ	運転，起動，高温停止，冷温 倍	66－12－1	「66－12－1 常設代替交流電源設備して整理
			ガスタービン発電設債然料移送系配管•弁	運転，起動，高温停止，泠温停止及び燃料交換	66－12－7	「66－12－7 繎料補給設備」で整理（系に含まれる）
			ホース	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 繎料補給設備」で整理（系に含まれる）
			非常用ディーゼル発電設備然料移送系配管•弁	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 撚料補給設備」で整理（系に含まれる）
			高圧灯ふスプレイ系ディーゼル発電設供燃料移送系配管•弁	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 繎料補給設備しで整理（系に含まれる）
			ガスタービン発電機～非常用高圧母線2C系及び非常用高圧 母線2D系電路	運転，起動，高温停止，冷温 止及《゙燃料交換	$\begin{array}{\|l\|} \hline 66-12-1 \\ 66-12-6 \\ \hline \end{array}$	「66－12－1 常設代替交流電源設備」，「66－12－6 代替所内電気設備」で整理（系に含まれる）
			ガスタービン発電機～緊急用低圧母線2G系電路		$\begin{array}{\|c\|} \hline 66-12-1 \\ 66-12-6 \\ \hline \end{array}$	「66－12－1 常設代替交流電源設備」，「66－12－6 代替所内電気設備」で整理（系に含まれる）
			電源車	運転，起動，高温停止，冷温停止及び燃料交換	66－12－2	「66－12－2 可般型代替交流電源設備」で整理
			軽油タンク	運転，起動，高温停止，冷温 停止及び燃料交換	66－12－7	「66－12－7 燃料補給設備して整理（「66－12－2 可搬型代替交流電源設備しで他表を参照）
			ガスタービン発電設備軽油タンク	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 燃料補給設備」て整理（「66－12－2 可搬型代替交流電源設備」で他表を参照）
			タンクローリ	$\begin{aligned} & \text { 運転, 起動, 高淐停止, 冷温 } \\ & \text { 停止及び燃料交換 } \end{aligned}$	66－12－7	「66－12－7 燃料補給設備」て整理（「66－12－2 可搬型代替交流電源設備」て他表を参照）
			非常用ディーゼル発電設備燃料移送系配管•弁	運転，起動，高温停止，冷温 停止及び燃料交換	66－12－7	「66－12－7 繎料補給設備」で整理（系に含まれる）
			高圧炉心スプレイ系ディーゼル発電設備然料移送系配管•弁	運転，起動，高温停止，泠温停止及び燃料交換	66－12－7	「66－12－7 絓料補給設備」で整理（系に含まれる）
			ガスタービン発電設備然料移送系配管•弁	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 絓料補給設備」で整理（系に含まれる）
			\|ホース		66－12－7	「66－12－7 燃料補給設備」で整理（系に含まれる）
			電源車～電源車接続口（原子炉建屋）電路	運転，起動，高温停止，冷温停止及び燃料交換	66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（系に含まれる）
			䨋源車接続口（原子炉建屋）～非常用高圧母線2C系及び非常 周高母線2D系電路	$\begin{aligned} & \text { 運転, 起動, 高温停止, 冷温 } \\ & \text { 咛止及び燃料交換 } \end{aligned}$	66－12－6	「66－12－6 代替所内電気設備」で整理（系に含まれる）
			電源車接続口（原子炬建屋）～緊急用低圧母線2G系電路	運転，起動，高温停止，冷温停止及び燃料交換	66－12－6	「66－12－6 代替所内電気設備しで整理（系に含まれる）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．14／57条 電源設備】

分類	$\begin{aligned} & \text { 機能壦失を } \\ & \text { 想定するD設備 } \end{aligned}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \\ \hline \end{gathered}$	保安規定	備考
代替直流震設備床よJ給		所内常設蓄電式直流電源設備に よる給電	125V蓄電池2A	運転，起動，高温停止，冷温停止及び燃料交換	66－12－3	${ }^{\text {¢ }}$ 66－12－3 所内常設蓄電式直流電源設備」で整理
			125 V蓄電池2B	運転，起動，高温停止，冷温停止及び燃料交換	66－12－3	「66－12－3 所内常設蓄電式直流電源設備」て整理
			125 V 充電器2 2	運転，起動力高温停止，冷温停止及び燃料交換	66－12－3	「66－12－3 所内常設蓄電式直流電源設備」て整理
			125 V 充電器2B	運転，起動，高温停止，冷温停止及び燃料交換	66－12－3	「66－12－3 所内常設蓄電式直流電源設備」て整理
			125V蓄電池2A及び125V充電器2A～125V直流主母綵盤2A及 び125V直流主母線艦2A－1電路	運転，起動，高温停止，泠温停止及び燃料交換	66－12－3	「66－12－3 所内常設蓄電式直流電源設備して整理（系に含まれる）
			$125 V$ 蓄電池 $2 B$ 及び $125 V$ 充電器 $2 B \sim 125 V$ 直流主母線盤 $2 B$ 及 び125V直流主母線艦2B－1電路	運転，起動，高温停止，冷温停止及び燃料交換	66－12－3	「66－12－3 所内常設蓄電式直流電源設備して整理（系に含まれる）
		$\begin{aligned} & \text { 常設代替直流電 } \\ & \text { 源設備による給 } \\ & \text { 電 } \end{aligned}$	125V代替蓄電池		66－12－4	「66－12－4 常設代替直流電源設備しで整理
			250V蓄電池	運転，起動及び高温停止	66－12－4	「66－12－4 常設代替直流電源設備」で整理
			$125 V$ 代替蓄電池～125V直流主母線盤2A－1及び125V直流主 母線盤2B－1電路	運転，起動，高温停止，冷温停止及び燃料交換	66－12－4	「66－12－4 常設代替直流電源設備で整理（系に含まれる）
			$250 V$ 蓄電池 $\sim 250 V$ 直流主母線盤需路	運転，起動及び高温停止	66－12－4	「66－12－4 常設代替直流電源設備しで整理（系に含まれる）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．14／57条 電源設備】

分類	$\begin{gathered} \text { 機能噩失を } \\ \hline \text { 想定するDB設備 } \end{gathered}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \end{gathered}$	保安規定	備考
$\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 流 } \\ & \text { 霫 } \\ & \text { 設 } \\ & \text { 備 } \\ & \text { よ } \\ & \text { J } \\ & \text { 給 } \end{aligned}$	非常用交流電源設備 （全交流動力電源喪失）非常用直流電源設備 （常設直流電源系統喪失）		125V代替蓄電池	運転，起動，高温停止，冷温停止及び燃料交換	66－12－4	「66－12－4 常設代替直流電源設備」で整理（「66－12－5 可搬型代替直流電源設備」で他表を参照）
			$250 V$ 蓄電池	運転，起動及び高温停止	66－12－4	「66－12－4 常設代替直流電源設備」で整理（「66－12－5 可搬型代替直流電源設備」で他表を参照）
			125V代替充電器	運転，起動，高温停止，泠温停止及び燃料交換	66－12－5	「66－12－5 可搬型代替直流電源設備」で整理
			250 V 充電器	運転，起動及び高温停止	66－12－5	「66－12－5 可搬型代替直流電源設備」で整理
			電源車	運転，起動，高温停止，冷温停止及び燃料交換	66－12－2	「66－12－2 可搬型代替交流電源設備」て整理（ $566-12-5$ 可搬型代替直流電源設備」で他表を参照）
			軽油タンク	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 燃料補綌設備」て整理（「66－12－5 可搬型代替直流電源設備」で他表を参照）
			ガスタービン発電設備軽油タンク	運転，起動，高温停止，泠温停止及び燃料交換	66－12－7	「66－12－7 燃料補給設備で整理（「66－12－5 可般型代替直流電源設備」で他表を参照）
			タンクローリ	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 燃料補給設備で整理（「66－12－5 可搬型代替直流電源設備して他表を参照）
			非常用ディーゼル発電設備燃料移送系配管•弁	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 然料補殓設備しで整理（系に含まれる）
			高圧炉心スプレイ系ディーゼル発電設備燃料移送系配管•弁	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 燃料補給設備しで整理（系に含まれる）
			ガスタービン発電設備然料移送系配管•弁	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 燃料補給設備しで整理（系に含まれる）
			ホース	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 燃料補給設備」で整理（系に含まれる）
			125 V 代替蓄電池及び 125 V 代替充電器～125V直流主母線盤 2A－1及び125V直流主母線盤2B－1電路	運転，起動，高温停止，冷温停止及び燃料交換	66－12－4	「66－12－4 常設代替直流電源設備で整理（系に含まれる）
			$250 V$ 蓄電池及ぴ 250 V 交電器～250V直流主母線盤電路	運転，起動及び高温停止	66－12－4	「66－12－4 常設代替直流電源設備」て整理（系に含まれる）
			電源車～電源車接続口（ （原子炬建屋）電路	運転，起動，高温停止，冷温停止及び燃料交換	66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（系に含まれる）
			電源車接続口（原子炉建屋）～ 125 V直流主母線盤 2 A 1 及ひひ ${ }^{125 V}$ 直流主母線縏2B－1電路	運転，起動，高温停止，泠温停止及び燃料交換	$\begin{aligned} & 66-12-4 \\ & 66-12-6 \end{aligned}$	「66－12－4 常設代替直流電源設備」で整理（系に含まれる）「66－12－6 代替所内電気設備」で整理（系に含まれる）
			電源車接続口（原子炉建屋）$\sim 250 V$ 直流主母線盤電路	連転，起動及び高温停止	$\left\lvert\, \begin{aligned} & 66-12-4 \\ & 66-12-6 \end{aligned}\right.$	「66－12－4 常設代替直流電源設備」で整理（系に含まれる）「66－12－6 代替所内電気設備」で整理（系に含まれる）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．14／57条 電源設備】

分類	$\begin{aligned} & \text { 機能唯失を } \\ & \text { 想定するB設備 } \\ & \hline \end{aligned}$	対応手段	LCO対象SA設備	$\begin{gathered} \text { 土適用される } \\ \text { 原子炉の状態 } \end{gathered}$	保安規定	備考
	非常用所内電気設備	代替所内電気設備による給電	ガスタービン発電機接続盤	運転，起動，高温停止，冷温停止及び燃料交換	66－12－6	「66－12－6 代替所内電気設備」で整理
			緊急用高圧母緑2F系	運転，起動，高温停止，冷温停止及び燃料交換	66－12－6	「66－12－6 代替所内電気設備」で整理
			緊急用高圧母綵2G系	運転，起動，高温停止，泠温停止及び燃料交換	66－12－6	「66－12－6 代替所内電気設備して整理
			緊急用動力変圧器2G系	運転，起動，高温停止，冷温停止及び燃料交換	66－12－6	${ }^{\text {「66－12－6 代替所内電気設備Jで整理 }}$
			緊急用低圧母線2G系	$\begin{aligned} & \text { 運転, 起動, 高温停止, 冷温 } \\ & \text { 停止及《゙燃料交換 } \end{aligned}$	66－12－6	「66－12－6 代替所内電気設備して整理
			緊急用交流電源切替盤2G系	運転，起動，高温停止，冷温停止及び燃料交換	66－12－6	「66－12－6代替所内電気設備して整理
			緊急用交流電源切替盤2C系	$\begin{array}{\|l} \text { 運転, 起動, 高温停止, 冷温 } \\ \text { 停止及《燃料交換 } \end{array}$	66－12－6	「66－12－6 代替所内電気設備で整理
			緊急用交流電源切替盤2D系	運転，起動，高温停止，冷温停止及び燃料交換	66－12－6	「66－12－6 代替所内電気設備」で整理
			非常用高圧母線2C系	運転，起動，高温停止，冷温停止及び燃料交換	66－12－6	「66－12－6 代替所内電気設備」で整理（系に含まれる）
			非常用高圧母綵2D系	運転，起動，高温停止，冷温停止及び燃料交換	66－12－6	「66－12－6 代替所内電気設備」で整理（系に含まれる）
$\begin{aligned} & \text { 然 } \\ & \text { 料 } \\ & \text { 補 } \end{aligned}$	－	$\begin{aligned} & \text { 燃料褳殓設備に } \\ & \text { 補絸 } \end{aligned}$	軽油タンク	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 繎料補給設備」で整理
			ガスタービン発電設備軽油タンク	運転，起動，高温停止，泠温停止及び燃料交換	66－12－7	「66－12－7 絓料補給設備」で整理
			タンクローリ	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 繎料袆給設備」で整理
			非常用デイーゼル発電設備然料移送系配管•弁	運転，起動，高温停止，椧温 停止及ひひ燃料交換	66－12－7	「66－12－7 繎料袆給設備」で整理（系に含まれる）
			高圧炉心スプレイ系ディーゼル発電設備燃料移送系配管•弁	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 繎料補給設備しで整理（系に含まれる）
			ガスタービン発電設備然料移送系配管•弁	$\begin{aligned} & \text { 運転, 起動, 高温停止, 冷温 } \\ & \text { 停止及び燃料交換 } \end{aligned}$	66－12－7	「66－12－7 繎料補給設備しで整理（系に含まれる）
			ホース	運転，起動，高温停止，冷温停止及び燃料交換	66－12－7	「66－12－7 繎料袆給設備しで整理（系に含まれる）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．15／58条 計装設備（1）】

分類	$\begin{gathered} \text { 機能哏失を } \\ \text { 想定するDB設備 } \end{gathered}$	対応手段	LCO対象SA設備	適用される原子炉の状態	保安規定	備考
	計器の故障	$\begin{aligned} & \begin{array}{l} \text { 他チャンネルによ } \\ \text { る計測 } \end{array} \end{aligned}$	当該パラメータの他チャンネルの重要計器「1．15／58条 計装設備（2）」 参照	各計器が要求される原子炉 の状態に従う	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
		$\begin{aligned} & \text { 代替パラメータに } \\ & \text { よる推定 } \end{aligned}$	重要代替計器 「1．15／58条 計装設備（2）」参照	各計器が要求される原子炉 の状態に従う	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
	計器の計測範囲（把握能力）を超えた場合	$\begin{aligned} & \text { 代替パラメータに } \\ & \text { よる推定 } \end{aligned}$	重要代替計器 「1．15／58条 計装設備（2）」参照	各計器が要求される原子炉 の状態に従う	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
		$\begin{aligned} & \text { 可搬型計測器に } \\ & \text { よる計測 } \end{aligned}$	可搬型計測器	運転，起動，高温停止，冷温停止及び燃料交換	66－13－3	「66－13－3 可搬型計測器」で整理
	全交流動力電源喪失直流電源喪失	$\begin{aligned} & \text { 垈替䨓源(交流) } \end{aligned}$	常設代替交流電源設備	運転，起動，高温停止，冷温停止及び燃料交換	66－12－1	「66－12－1 常設代替交流電源設備」て整理
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理
		代替電源（直流）からの給電	所内常設蓄電式直流電源設備	運転，起動，高温停止，冷温俭	66－12－3	「66－12－3 所内常設蓄電式直流電源設備して整理
			常設代替直流電源設備		66－12－4	「66－12－4 常設代替直流電源設備」て整理
			可搬型代替直流電源設備		66－12－5	「66－12－5 可搬型代替直流電源設備」で整理
		$\begin{aligned} & \begin{array}{l} \text { 代替所内電気設 } \\ \text { 備によるる給電 } \end{array} \\ & \hline \end{aligned}$	代替所内電気設備	運転，起動，高温停止，冷温停止及び燃料交換	66－12－6	「66－12－6 代替所内電気設備しで整理
		$\begin{aligned} & \text { 可搬型計測器に } \\ & \text { よる計 } \end{aligned}$	可搬型計測器	運転，起動，高温停止，冷温停止及び燃料交換	66－13－3	「66－13－3 可搬型計測器」で整理
－	－	パラメータ記録	安全パラメータ表示システム（SPDS）（データ収集装置，SPDS 伝送装 1 置 1 SPDS表装置）		66－17－1	「66－17－1通信連絡設備」で整理（「66－13－4パラメータ記録」で他表を参照）
	－	－	6－2F－1母線電圧	運転，起動，高温停止，冷温	66－13－2	「66－13－2 補助パラメータ」で整理
			6－2F－2母線電圧		66－13－2	「66－13－2 補助パラメータ」で整理
			6－2C母緑電圧		66－13－2	「66－13－2 補助パラメータ」で整理
			6－2D母線電圧		66－13－2	「66－13－2 補助パラメータ」で整理
			6－2H母線電圧		66－13－2	「66－13－2 補助パラメータ」で整理
			4－2C母線電圧		66－13－2	「66－13－2 補助パラメータ」で整理
			4－2D母線電圧		66－13－2	「66－13－2 補助パラメータ」で整理
			125V直流主母線2A電圧		66－13－2	「66－13－2 補助パラメータ」で整理
			125V直流主母線2B電圧		66－13－2	「66－13－2 補助パラメータ」で整理
			$125 V$ 直流主母線2A－1電圧		66－13－2	「66－13－2 補助パラメータ」で整理
			125V直流主母線2B－1電圧		66－13－2	「66－13－2 補助パラメータ」で整理
			HPCS $125 V$ V直流主母線電圧		66－13－2	「66－13－2 補助パラメータ」で整理
			250 V 直流主母線電圧	運転，起動及び高温停止	66－13－2	「66－13－2 補助パラメータコで整理
			高圧室素がス供給系 ADS入口圧力	運転，起動及び高温停止	66－13－2	「66－13－2 補助パラメータ」で整理
			代替高圧窒素がス供給系窒素がス供給止め弁入口圧力		66－13－2	「66－13－2補助パラメータ」で整理

女川原子力発電所2号炉 重大事故等対処設備整理表【1．15／58条 計装設備（2）】

分類		【代替パラメータ1 ※ LCO対象SA設備 ※代替パラメー外記載する番号は優先順位であり，代替パラメータが複数あることを示す	適用される原子炉の状態	保安摫定	備考
	原子炬圧力容器温度	（1）主要パラメータの他の検出器 （2）原子炉圧力 （2）原子炉圧力（SA） （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炉水位（SA燃料域） （3）残留熱除去系熱交換器入口温度	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
$\begin{aligned} & \text { 原子炉压力 } \\ & \text { 筘内の } \end{aligned}$	原子炉圧力	（1）主要パラメータの他チャンネル （2）原子炉圧力（SA） （3）原子炉水位（広帯域） 3）原子炉水位（燃料域） （3）原子炉水位（SA広帯域） （3）原子炉水位（SA燃料域） （3）原子炉圧力容器温度	運転，起動，高温停止及び泠	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	原子炉圧力（SA）	（1）主要パラメータの他チャンネル （2）原子炉圧力 （3）原子炉水位（広帯域） （3）原子炉水位（燃料域） （3）原子炉水位（SA広帯域） （3）原子炉水位（SA＊＊＊料域） （3）原子炉圧力容器温度		66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
$\substack{\text { 原子炉圧力 } \\ \text { 容器内の水 } \\ \text { 位 }}$	原子炉水位（広帯域）原子炉水位（燃料域）	（1）主要パラメータの他チャンネル 2原子炉水位（SA広帯域） （2）原子炉水位（SA燃料域） （3）高圧代替注水系ポンプ出口流量 （3）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイ ライン洗浄流量） （3）残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器 冷却ライン洗浄流量） （3）直流駆動低圧注水系ポンプ出ロ流量 （3）代替循環冷却ポンプ出ロ流量 （3）原子炉隔離時冷却系ポンプ出ロ流量 （3）高圧炉心スプレイ系ポンプ出口流量 （3）残留熱除去系ポンプ出ロ流量 （3）低圧炉心スプレイ系ポンプ出口流量 （4）原子炉圧力 （4）原子炉圧力（SA） （4）圧力抑制室圧力	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ口ー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	$\underbrace{66-13-1}$	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	原子炬水位（SA広帯域）原子炉水位（SA燃料域）	（1）原子炉水位（広帯域） （1）原子炉水位（燃料域） （2）高圧代替注水系ポンプ出口流量 （2）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイ ライン洗浄流量） （2）残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器 冷却ライン洗浄流量） （2）直流駆動低圧注水系ポンプ出口流量 （2）代替循環冷却ポンプ出口流量 （2）原子炉隔離時冷却系ポンプ出口流量 （2）高圧炉心スプレイ系ポンプ出口流量 （2）残留熱除去系ポンプ出ロ流量 （2）低圧炉心スプレイ系ポンプ出口流量 （3）原子炉圧力 （3）原子炉圧力（SA） （3）圧力抑制室圧力		66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$

女川原子力発電所2号炉 重大事故等対処設備整理表【1．15／58条 計装設備（2）】

分類		【代替パラメータ1 ※ LCO対象SA設備 ※代替パラメー外に記載する代番品は優先順位であり，代替パラメータが複数あることを示す	適用される原子炉の状態	保安規定	備考
$\begin{aligned} & \text { 原子炉圧力 } \\ & \text { 容器への注 } \\ & \text { 水量 } \end{aligned}$	高圧代替注水系ポンプ出口流量	（1）復水貯蔵タンク水位 （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炉水位（SA広帯域）	運転，起動及び高温停止※ ※原子炉圧力が $1.04 \mathrm{MPa}[\mathrm{g}$ age］以上の場合に適用する	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
	残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイラ イン洗浄流量） 残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器泠却ライン洗浄流量）	（1）復水貯蔵タンク水位 （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炉水位（SA広帯域）	運転，起動，高温停止，泠温停止及び燃料交換※ ※原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ －水位付近で，かつプール ゲートが開の場合又は （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	直流駆動低圧注水系ポンプ出口流量	（1）復水貯蔵タンク水位 （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） （2） 原子炉水位（SA燃料域）	運転，起動及び高温停止	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	代替循環泠却ポンプ出口流量	（1）圧力抑制室水位 （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炉水位（SA峡料域） （2）原子炉水位（SA燃料域）		66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	原子炉隔離時冷却系ポンプ出口流量	（1）復水貯蔵タンク水位 （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炉水位（SA燃料域）	運転，起動及び高温停止 ※ ※原子炉圧カが $1.04 \mathrm{MPa}[\mathrm{g}$ age］以上の場合に適用する	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	高圧炉心スプレイ系ポンプ出口流量	（1）復水貯蔵タンク水位 （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） 2） 原子炉水位（SA料料域）	運転，起動及び高温停止 $※$ ※原子炉圧力が $1.04 \mathrm{MPa}[\mathrm{g}$ age］以上の場合に適用する	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	残留熱除去系ポンプ出口流量	（1）圧力抑制室水位 （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） ②原子炉水位（SA広帯域） （2） 原子炉水位（SA燃料域） （2）原子炉水位（SA燃料域）	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	低圧炉心スプレイ系ポンプ出口流量	（1）圧力抑制室水位 （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炉水位（SA燃料域）	$\begin{aligned} & \text { (2) 原子炉内から全燃料が } \\ & \text { 取出れ, かつプールデート } \\ & \text { か閉の場合 } \end{aligned}$	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$

女川原子力発電所2号炉 重大事故等対処設備整理表【1．15／58条 計装設備（2）】

分類		［代替パラメータ1 ※ LCO対象SA設備 ※代替パラメー外記載する番号は優先順位であり，代替パラメータが複数あることを示す	適用される原子炉の状態	保安規定	
$\begin{aligned} & \text { 原子炉格納 } \\ & \text { 容器への注 } \\ & \text { 水量 } \end{aligned}$	残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイラ イン洗浄流量） 残留熱除去系洗浄ライン流量（ 残留熱除去系B系格納容器泠却ライン洗浄流量）	（1）復水貯蔵タンク水位 （2）原子炉格納容器下部水位 2ドライウェル水位 3ドライウェル温度 3ドライウェル圧力 （3）圧力抑制窒圧力	運転，起動及び高温停止	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	原子炉格納容器代替スプレイ流量	（1）原子炉格納容器下部水位 （1）ドライウェル水位 2ドライウェル温度 （2）ドライウェル圧カ （2）圧力抑制室圧力		66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	代替循環泠却ポンプ出口流量	（1）原子炉格納容器下部水位 （1）ドライウェル水位 2ドライウェル温度 （2）ドライウェル圧力 （2）圧力抑制室圧力		66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	原子炉格納容器下部注水流量	（1）復水貯蔵タンク水位 （2）原子炉格納容器下部水位 （2）ドライウェル水位		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
$\begin{array}{\|l\|} \text { 原子炉格納 } \\ \text { 容器内の温 } \end{array}$	ドライウェル温度	（1）主要パラメータの他の検出器 （2）ドライウェル圧カ （3）圧力抑制室圧力	運転，起動及び高温停止	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理 $^{\text {a }}$
	圧力抑制室内空気温度	（1）主要パラメータの他の検出器 （2）サプレッションプール水温度 （3）圧力抑制室圧力		66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	サプレッションプール水温度	（1）主要パラメータの他の検出器 （2）圧力抑制室内空気温度		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理 $^{\text {a }}$
	原子炉格納容器下部温度	（1）主要パラメータの他チャンネル		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
$\begin{array}{\|l\|} \hline \text { 原子炉格納 } \\ \text { 容器内圧 } \\ \text { 力 } \end{array}$	ドライウェル圧カ	（1）圧力抑制室圧力 （2）ドライウェル温度 （3）［ドライウェル圧カ］	運転，起動及び高温停止	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
	圧力抑制室圧力	（1）ドライウェルエカ （2）圧力抑制室内空気温度 （3）［圧力抑制室圧力］		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理 $^{\text {a }}$

女川原子力発電所2号炉 重大事故等対処設備整理表【1．15／58条 計装設備（2）】

女川原子力発電所2号炉 重大事故等対処設備整理表【1．15／58条 計装設備（2）】

分類		【代替パラメータ1 ※ LCO対象SA設備 ※代替パラメー外記載する番号は優先順位であり，代替パラメータが棬数あることを示す	適用される原子炉の状態	保安規定	備考
	サプレッションプール水温度	（1）主要パラメータの他の検出器 2）圧力抑制室内空気温度	運転，起動及び高温停止	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
	残留熱除去系熱交換器入口温度	（1）サプレツションプール水温度		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
	代替循環冷却ポンプ出口流量（原子炉圧力容器への注水）			66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	代替循環冷却ポンプ出口流量（原子炉格納容器への注水）	（1） 原子炉格納容器下部水位 1 ドライウェル水位 （2）ドライウェル温度 （2）ドライウェルエカ （2）圧力抑制室圧力		66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	フィルタ装置水位（広帯域）	（1）主要パラメータの他チャンネル	運転，起動及び高温停止	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
	フィルタ装置入口圧力（広帯域）	（1）ドライウェル圧カ （1）圧力抑制室圧力		66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	フィルタ装置出口圧力（広帯域）	（1）ドライウェル圧カ （1）圧力抑制窒圧力		66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	フィルタ装置水温度	（1）主要パラメータの他チャンネル		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
	フィルタ装置出口放射線モ二タ	（1）主要パラメータの他チャンネル		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
	フィルタ装置出口水素濃度	（1）格納容器内水表濃度（D／W） （1）格納容内水素婊度（S／C） （1）格納容器内水素濃度（S／C）		66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	耐圧強化ベント系放射線モ二タ	（1）主要パラメータの他チャンネル	運転，起動及び高温停止	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
$\begin{aligned} & \text { 最終ヒートジード } \\ & \text { 分の確保 } \\ & \text { (残留熱去 } \\ & \text { 叐 } \end{aligned}$	残留熟除去系熱交換器入口温度	（1）原子炉圧力容器温度 （1）サプレッションプール水温度	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	残留熱除去系熱交換器出口温度	（1）残留熱除去系熱交換器入口温度 （2）原子炉補機冷却水系系統流量 （2）残留熱除去系熱交換器冷却水入口流量		66－13－1	「66－13－1主要パラメータおよび代替パラメータ」で整理
	残留熱除去系ポンプ出口流量	（1）圧力抑制室水位 （2）残留熱除去系ポンプ出ロ圧カ		66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
$\begin{aligned} & \text { 格納容器バイ } \\ & \text { ハススの覧 } \\ & \text { (原子炉圧力 } \\ & \text { 器内の状 } \\ & \text { 態) } \end{aligned}$	原子炉水位（広帯域） 原子炬水位 4 蜼料域）原子炉水位（燃料域）	（1）主要パラメータの他チャンネル （2）原子炉水位（SA広帯域） （2）原子炉水位（SA燃料域）	運転，起動及び高温停止	66－13－1	「66－13－1主要パラメータおよび代替パラメータ」で整理
	原子炬水位（SA広帯域） 原子炬水位（SA燃料域）			66－13－1	「66－13－1主要パラメータおよび代替パラメータ」で整理
	原子炉圧力			66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	原子炉圧力（SA）			66－13－1	「66－13－1主要パラメータおよび代替パラメータ」で整理

女川原子力発電所2号炉 重大事故等対処設備整理表【1．15／58条 計装設備（2）】

分類	```\主要パラメータ! LCO対象SA設備 自主対策設侟([]記載)※ ※LCO対象SA設備(代替パラメータ)の機能を满足す る碓認計器として記載.,連転上の制限は適用しない```	【代替パラメータ1 ※ LCO対象SA設備 ※代替パラメー外に記載する代番规は優先順位であり，代替パラメータが複数あることを示す	適用される原子炉の状態	保安規定	備考
格納容器バイハススの監視（原子炉格納容器内の状態）	ライウェル温度	（1）主要パラメータの他の検出器 （2）ドライウェル圧カ	邉転，起動及び高温停止	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
	ドライウェル圧カ			66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」て整理
	高圧棙心スプレイ系ポンプ出口圧カ		邉転，起動及び高温信止	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
	残留熱除去系ポンプ出口圧力			66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
	低圧炉心スプレイ系ポンプ出口圧カ			66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理
水源の確保	復水貥藏タンク水位	（1）高圧代替注水系ポンプ出口流量 （1）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイ ライン洗浄流量） （1）残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器泠却ライン洗浄流量） （1）直流駆動低圧注水系ポンプ出口流量 （1）原子炉隔離時冷却系ポンプ出口流量 （1）高圧炉心スプレイ系ポンプ出口流量 （1）原子炉格納容器下部注水流量 （2）高圧代替注水系ポンプ出口圧力 （2）直流駆動低圧注水系ポンプ出口圧力 （2）原子炉隔離時冷却系ポンプ出口圧力 （2）高圧炉心スプレイ系ポンプ出口圧力 （2）復水移送ポンプ出口圧力 （3）原子炉水位（広帯域） （3）原子炉水位（燃料域） （3）原子炉水位（SA広帯域） （3）原子炉水位（SA燃料域）	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	圧力抑制室水位	（1）主要パラメータの他チャンネル （2）代替循環冷却ポンプ出口流量 （2）残留熱除去系ポンプ出口流量 （2）低圧炉心スプレイ系ポンプ出口流量 （3）代替循環冷却ポンプ出口圧力 （3）残留熱除去系ポンプ出口圧力 （3）低圧炉心スプレイ系ポンプ出口圧力	運転，起動及び高温停止	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」を整理
原子炬建屋 内の水素濃 度	原子炉建屋水素濃度	（1）主要パラメータの他チャンネル （2）静的触蝶式水素再結合装置動作監視装置	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲート が閉の場合	66－8－2	「66－8－2 原子炉建屋内の水素濃度監視」で整理（「66－13－1 主要パラメータおよび代替パラメータ」で他条文を参照）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．15／58条 計装設備（2）】

分類	```\主要パラメータ】 LCO対象SA設備 自主対策設㑊([㣩載)* ※LCO対象SA設犕(代替倡メータ)の機能を满足す る碓認計器として記載,連転上の制限は適用しない```	【代替パラメータ1 ※ LCO対象SA設備 ※代替パラメー外記載する番号は優先順位であり，代替パラメータが笋数あることを示す	適用される原子炉の状態	保安摫定	備考
$\begin{aligned} & \text { 原子炉格納 } \\ & \text { \|容器内酸 } \\ & \text { 素濃度 } \end{aligned}$	格納容器内雰囲気酸素濃度		邉転，起動及び高温停止	66－13－1	「66－13－1 ${ }^{\text {主要パラメータおよび代替パラメータ」で整理 }}$
	使用済燃料プール水位 $/$ 温度（ヒートサーモ式）	（1）使用済然料ブール水位／温度（ガイドパルス式） （2）使用済燃料プール上部空間放射線モニタ（高線量，低線量） （2）使田斎料料プール臨視力メラ	使用済燃料プールに照射さ れた燃料を貯蔵している期間	66－9－4	「66－9－4 使用斎然料プール監視設備で整理（「66－13－1 主要パラメータおよび代替パラメータ」で他表を参照）
	使用斎燃料プール水位 $/$ 温度（ガイドパルス式）	（1）使用済燃料ブール水位／温度（ヒートサーモ式） （2）使用済燃料プール上部空間放射線モニタ（高線量，低線量） （2）使用斎燃料プール監視カメラ		66－9－4	「66－9－4 使用済然料プール監視設備で整理（「66－13－1 主要パラメータおよび代替パラメータ」で他表を参照）
	使用済燃料プール上部空間放射線モ二タ（高線量，低線量）	（1）使用㵒然料ブール水位／温度（ヒートサーモ式） （1）使用済燃料プール水位 $/$ 温度（ガイドパルス式） （2）使用済燃料プール監視カメラ		66－9－4	「66－9－4 使用斎然料プール監視設備で整理（「66－13－1 主要パラメータおよび代替パラメータ」で他表を参照）
	使用斎燃料プール監視力メラ	（1）使用済然料ブール水位／温度（ヒートサーモ式） （1）使用済然料プール水位／温度（ガイドパルス式） （1）使用済燃料プール上部空間放射線モニ夕（高線量，低線量）		66－9－4	「66－9－4 使用斎然料プール監視設備で整理（「66－13－1 主要パラメータおよび代替パラメータ」で他表を参照）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．17／60条 監視測定設備】

分類		対応手段	LCO対象AA設偗		保安娊定	偳考
		放射線量の代替 則正 測定	可败型も二タリングポスト	運転，起動，高温停止，泠温停止及び燃料交換	66－15－1	
					66－15－1	「66－15－1 監䘽則定設偳しく整理（系に合まれる）
	放射能観測車（空気中放射性物質の濃度の測定）	空気中の放射性物質の濃度の代替測定			66－15－1	
			r蝺サーベイメータ		66－15－1	
			ア線サーベイメータ		66－15－1	
$\begin{aligned} & \text { 風向, 風速z } \\ & \text { 条倠の測定 } \end{aligned}$	気氟钼測設備（風向，風速その他の気象条件の測定）				66－15－1	
					${ }^{66-15-1}$	「66－15－1監䘽測定設偳くで整理（系に合まれる）
測资	－	放妃紼量の澵定	可搬型モ二夺ングポスト		66－15－1	
					$66-15-1$	「66－15－1 監䘽測定設俍くて整理（系に合まれる）
					66－15－1	
			可笅型タスト・よう素サンブラ		66－15－1	
	－	放射性物質の潩 度（ 空気中，水	r䌊サーベイメータ		66－15－1	
		$\text { 中, 虫, 土墥中)の測 } \mid$	B蝺サーベイメータ		$66-15-1$	
			の緷サーベイメータ		$66-15-1$	
			小型服的		$66-15-1$	
					$66-15-1$	
	－		r䌊サーベイメータ		$66-15-1$	
		海上も二ダアブ	ア蝺サーベイメータ		66－15－1	
			α 蝺サーベイメータ		$66-15-1$	
			電簋筹サーベイメータ		$66-15-1$	
	無信電震源装置	源からの給電			${ }^{66-12-1}$	

女川原子力発電所 2 号炉 重大事故等対処設備整理表【1．18／61条 緊急時対策所】

分類		対応手段		適用される原子炉の状態	保安規定	億考
－	－	居住性の礶保		運転，起娠，高温信止，泠温停止及び㷛料交換	遮菆（建物の譬等）	
			緊急時文策所非常用送䖯機		66－16－1	「66－16－1 緊急時文策所の居倠性碓保厂整理
			緊急時文文策所非常用フイルタ装蔞		66－16－1	「66－16－1 緊急時文策所の居珄性碓保厂整理
			聅急時対策所非常界給拱気鳥管•并		66－16－1	「66－16－1緊急時対策所の居住性碓保くて整理（奚に合まれる）
					66－16－1	「66－16－1 緊急時対策所の居倠性碓保を整理
					66－16－1	「66－16－1緊急時対策所の居住性碓保くを整理（系に合まれる）
			䜿急時対策所可敏型工リアモニタ	$\|$䆃転，起動高温停止，冷温	66－16－1	「66－16－1 繁攵時文策所の居珄碓倠保厂整理
			可般型モニタリングホスト		66－15－1	
			酸素濃度効		66－16－1	「66－16－1緊复時文文策所の居珄碓碓保厂整理
			二酸化岗素襄度計		66－16－1	
			差珃計		66－16－1	
	－		安全パラメータ表示システム（SPDS）		66－17－1	
					66－17－1	「66－17－1 通信連絡設備」整理
					66－17－1	
					66－17－1	
					66－17－1	
					66－17－1	
			無線通信装賋		66－17－1	「66－17－1通信連絡設偳くて整理（系に合まれる）
					66－17－1	「66－17－1通信連絡設侕しを整理（系に合まれる）
					66－17－1	
			筒星通信装置		66－17－1	「66－17－1通信連絡設霛をで整理（系に合まれる）
			有綵（建屋内）		66－17－1	「66－17－1通信連絡設備をで整理（系に合まれる）

女川原子力発電所2号炉 重大事故等対処設備整理表【1．18／61条 緊急時対策所】

分類		対応手段	LCO対象SA設備	$\begin{aligned} & \text { 適用される } \\ & \text { 原子炉の状態 } \end{aligned}$	保安規定	備考
－	緊急時対策所全交流動力電源	代替電源設備か らの給電	ガスタービン発電機	運転，起動，高温停止，冷温停止及び燃料交換	66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－16－2 緊急時対策所の代替電源設備して他表を参照）
			ガスタービン発電設備軽油タンク		66－12－7	「66－12－7 䄻料補給設備で整理（「66－16－2 緊急時対策所の代替電源設備しで他表を参照）
			タンクローリ		66－12－7	「66－12－7 燃料補給設備で整理（「66－16－2 緊急時対策所の代替電源設備」で他表を参照）
			軽油タンク		66－12－7	「66－12－7 然料補綌設備てて整理（「66－16－2 緊急時対策所の代替電源設備しで他表を参照）
			ガスタービン発電設備然料移送ス゚ンプ		66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－16－2 緊急時対策所の代替電源設備で他表を参照）
			ガスタービン発電設供燃料移送系配管•弁		66－12－7	「66－12－7 然料袆給設備」で整理（系に含まれる）
			ホース		66－12－7	「66－12－7 繎料袆給設備」で整理（系に含まれる）
			非常用ディーゼル発電設備然料移送系配管•弁		66－12－7	「66－12－7 絓料袆給設備しで整理（系に含まれる）
			高圧炉心スプレイ系ディーゼル発電設備然料移送系配管•弁		66－12－7	「66－12－7 繎料袢給設備厂で整理（系に含まれる）
			ガスタービン発電機接続盤		66－12－6	「66－12－6 代替所内電気設備」で整理（「66－16－2 緊急時対策所の代替電源設備」で他表を参照）
			緊急用高圧母線2F系		66－12－6	「66－12－6 代替所内電気設備」で整理（「66－16－2 緊急時対策所の代替電源設備」で他表を参照）
			電源車（緊急時対策所用）		66－16－2	「66－16－2 緊急時対策所の代替電源設備」で整理
			緊急時対策所軽油タンク		66－16－2	「66－16－2 緊急時対策所の代替電源設備」て整理
			緊急時対策所燃料移送系配管•弁		66－16－2	「66－16－2 緊急時対策所の代替電源設備」て整理（系に含まれる）
			緊急時対策所用高圧母線J系		66－16－2	「66－16－2 緊急時対策所の代替電源設備」て整理
			ガスタービン発電機～緊急時対策所用高圧母綵 $~$ 系電路		66－16－2	「66－16－2 緊急時対策所の代替電源設備」て整理（系に含まれる）
			電源車（緊急時対策所用）～電源車接続口（緊急時対策建屋）電路		66－16－2	「66－16－2 緊急時対策所の代替電源設備」て整理（系に含まれる）
			電源車接続口（緊急時対策建屋）～緊急時対策所用高圧母線		66－16－2	「66－16－2 緊急時対策所の代替電源設備」て整理（系に含まれる）

女川原子力発電所 2 号炉 重大事故等対処設借整理表 $1.19 / 622$ 条 通信連絡設備 $]$

分類	$\begin{gathered} \text { 機能售失を } \\ \hline \text { 想定するB設備 } \end{gathered}$	対応手段	LCO対象SA設備	$\begin{aligned} & \text { 適用される } \\ & \text { 原子炉の状態 } \end{aligned}$	保安規定	備考
－	-	登電所絡内の通信	㦣星電話設備（固定型）	運転，起動，高温停止，冷温停止及び燃料交換	66－17－1	「66－17－1通信連絡設備なで整理
			無線連絡設備（固定型）		66－17－1	「66－17－1 通信連絡設備なで整理
			衛星電話設備（携帯型）		66－17－1	「66－17－1 通信連絡設備」で整理
			無線連絡設備（携帯型）		66－17－1	「66－17－1 通信連絡設備ひで整理
			鹪行型通話装置		66－17－1	「66－17－1 通信連絡設備で整理
			安全パラメータ表示システム（SPDS）		66－17－1	「66－17－1 通信連絡設備しで整理
			無緟連絡設備（屋外アンテナ）		66－17－1	「66－17－1通信連絡設備なで整理（系に含まれる）
			衛星電話設備（屋外アンテナ）		66－17－1	「66－17－1 通信連絡設備」で整理（系に含まれる）
			無線通信装置		66－17－1	「66－17－1 通信連絡設備」で整理（系に含まれる）
			有線（建屋内）		66－17－1	「66－17－1 通信連絡設備」で整理（系に含まれる）
	全交流動力電源	代替電源設備か らの給電の確保	緊急時対策所用代替交流電源設備	運転，起動，高温停止，泠温停止及び燃料交換	66－16－2	「66－16－2 緊急時対策所の代替電源設備」て整理
			緊急時対策所用高圧母線U系		66－16－2	「66－16－2 緊急時対策所の代替電源設備」で整理
			可搬型代替交流電源設備		66－12－2	「66－12－2 可搬型代替交流電源設備」で整理
			常設代替交流電源設備		66－12－1	「66－12－1 常設代替交流電源設備」で整理
			代替所内電気設備		66－12－6	「66－12－6 代替所内電気設備して整理
			所内常設蓄電式直流電源設備		66－12－3	「66－12－3 所内常設蓄電式直流電源設備」て整理

女川原子力発電所2号炉 重大事故等対処設備整理表【その他の設備】

分類		対応手段	LCO 対象SA設荗		保安規定	峸考
$\left\|\begin{array}{c} \text { アィセスルース碓保 } \end{array}\right\|$	－	アクセスて碓保-トの\|	ブルドーザ	鹤転，起動，高温停止，浍温	${ }^{66-18-1}$	「66－18－1 ブルドーザおよびバッホウウ」で整理
			ハッッチウ		66－18－1	「66－18－1 ブルドーザおよびハックホウ」を整理
	－	重大事故等時に対迅をるための入先，排出元等	原子嫁理容器	各表で要求される期間	$\begin{aligned} & \text { 第24条 } \\ & \text { 第34条 } \\ & \text { 第35条 } \\ & \text { 第36条 } \\ & \text { 第39条 } \\ & \text { 第41条 } \\ & 66-2-1,3 \\ & 66-4-1,2,3 \\ & 66-5-5 \end{aligned}$	各条文（表）の系に倉まれる
			原子炣格絞容器	運动，起䣦及ひ高温信止	第33条	
			使用斎賴料ブール	使用済燃料プールに照射さ れた燃料を貯蔵している期間	$\left\{\begin{array}{l} 66-9-9 \\ 66-9 .-2 \\ 66-9-3 \end{array}\right.$	各表の系に合まれる
			原子妨建建原子妨桻	運転，起動，高温停止及び炉心変更時※又は原子炉建屋原子炉等内で照射された燃料に係る作業時 1本の挿入•引抜を除く。	第99条	「第49条 原子炉建屋」で整理 原子炉建屋ブローアウトパネル再閉止装置については，「66－14－2 原子炉建屋ブローアウトパネル」で整理
非償用取水	－	非常用取水設備	晾留㨟	各表で要求される期間		
			取水口	各表で要求される期間	$\left\|\begin{array}{l} \text { 第5条 } 5 \text { 备 } \\ 66-19-19-2 \end{array}\right\|$	
			取水路	各表で要求される期間	$\left\lvert\, \begin{aligned} & \text { 第52条 } \\ & 62-19-1 \\ & 66-19-2 \end{aligned}\right.$	
			海水ポンフ室	各表で要求される期間	第52条 66－19－1 66－19－2	

資料1．（2）重大事故等対処設備代替設備整理表（保安規定第 66 条 各表）

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－1 緊急停止失敗時に発電用原子炉を未臨界にするための設備】

表No．		対応手段	LCO 対象SA設備	$\begin{aligned} & \text { 適用される } \\ & \text { 子炉の状態 } \end{aligned}$	所要数	常設，可般	N，2N	保安規定		$\begin{gathered} \text { 対拡するDB設備 } \\ \text { AOT N:3日 } \\ \text { 2N: } 10 \text { 日 } \end{gathered}$	【】 LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	$\begin{gathered} \text { [D] } \\ \begin{array}{c} \text { 代措置 } \\ \text { AOT } \\ \text { 2N: } \mathrm{N}: 10 \mathrm{BO} \end{array} \end{gathered}$
ATWS緩和設備（代替制御棒捙入機能）	1.1	ATWS緩和設備（代替制御棒挿入機能）によ る制御棒緊急挿入	ATWS緩和設備（代替制御枰插入機能）	邉転及び起動	1個	常設	N	66－1－1	－	－	ATWS緩和設備（代替原子炉再循 環ポンプトリップ機能） ATWS緩和設備（自動減圧系作動 阻止機能） ほう酸水注入系	－
			制御棒		－	－	－	第22条	「第22条 制御枰のスクラム機能をて整理			
			制御橑騳動機構		－	－	－	第22条				
			制御㭳䨝動水圧系水圧制御ユニット		－	－	－	第22条				
			制御枰䭼動水圧系配管		－	－	－	第22条	「第22条 制御棒のスクラム機能」を整理（系に含まれる）			
			非常用交流電源設備		－	－	－	第59条	「第59条 非常用ディーゼル発電機その1」で整理			
66－1－2 ATWS緩和設備（代替原子 ンプトリップ機能）	1.1	原子炉再循環ポンプ停牟による原子炉出力扣制	ATWS緩和設備（代替原子炉再循䝶ポンプトリップ機能）	䆃転及び起動	1個	常設	N	66－1－2	－	－	ATWS緩和設備（（代替制御棒挿入 能	－
			非常用交流電源設備		－	－	－	第59条	「第59条 非常用ディイゼル発電機その1」で整理			
	1.1		ATWS綬和設備（自動唦圧系作動阻止機能）	運転，起動及び高温停止（原子炉圧力が $0.77 \mathrm{MPa[gage]}$ 以上）	1個	常設	N	66－1－3	－	－	ATWS緩和設備（代替制御棒捙入機能）	－
			非常用交流電源設備		－	－	－	第59条	「第59条 非常用デイーゼル発電機その1」で整理			

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－2原子炉冷却材圧カバウンダリ高圧時に発電用原子炉を冷却するための設備】

表No．		対応手段	LCO 対象SA設備	適用される 原子炉の状態	所要数	常設，可搬	N，2N	保安規定		$\begin{aligned} & \text { 対拡するDB設備 } \\ & \text { AOT N:3日 } \\ & 2 N: 10 \text { 日 } \end{aligned}$	C】 LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	
高圧代替注 水系（中央制镉起が動）	$\begin{aligned} & 1.2 \\ & 1.8 \\ & 1.13 \end{aligned}$	1.2 高圧代替注水系の中央制御室からの操作による発電用原子炉 の冷却 1.8 高压代替注水系に よる原子炉圧力容器へ の注水 1.13 原子炉冷却村圧 カバウンダリ高圧時の原子炉圧力容器への注水	高圧代替注水系ポンプ		1台	常設	N	66－2－1	－	高圧炉心スプレイ系（高圧炉心ス プレイ系ディーゼル発電機含 む。）	原子炉隔離時浍却系（中央制御室 から動	－
			復水館蔵タンク		－	－	－	66－11－1	「66－11－1 重大事故等収束のため¢	のの水源ぐ整理（66－2－1 高圧代替	替注水系（中央制御室からの遠隔起動）	表を参照）
			高圧代替注水系（ （蒸氛系）配管•升		－	常設	N	66－2－1				
			主蒸気系配管•弁		－	常設	N	66－2－1				
			原子炻隔離時浍却系（（蒸気系）配管•并		－	常設	N	66－2－1				
			高圧代替注水系（注水系）配管•弁		－	常設	N	66－2－1				
			補給水系 配管		－	常設	N	66－2－1				
			高圧炉心スプレイ系 配管•升		－	常設	N	66－2－1				
			然料プール袢給水系 弁		－	常設	N	66－2－1				
			原子炉浍却材浄化系 配管		－	常設	N	66－2－1				
			復水給水系 配管•升・スパージャ		－	常設	N	66－2－1				
			原子涙圧力容器		－	常設	N	66－2－1				
			所内常設蓄電式直流電源設備		－	－	－	66－12－3	「66－12－3 所内常設蓄電式直流電	電源設備」で整理（66－2－1 高压代替	替注水系（中央制御室からの遠隔起理）	表を参照）
			常設代替直流電源信備		－	－	－	66－12－4	「66－12－4 常設代替直流電源設備I	備して整理（66－2－1 高圧代替注水系	系（中央制御室からの遠隔起動）」でせ	
			可般型代替直流電源設備		－	－	－	66－12－5	「66－12－5 可搬型代替直流電源設	備たで整理（66－2－1 高圧代替注水	水系（中央制御室からの遥隔起動）」で	
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備	Jで整理（66－2－1 高圧代替注水系	系（中央制御室からの遠隔起動）」で他	
			可般型代替交流電源設備		－	－	－	66－12－2	「66－12－2 可般型代替交流電源設	段備たで整理（66－2－1 高圧代替注水	水系（中央制御室からの遠隔起動）」で	

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－2 原子炉冷却材圧カバウンダリ高圧時に発電用原子炉を冷却するための設備】

表No．		対応手段	LCO対象SA設備	適用される原子炉の状態	所要数	常設，可般	N，2N	保安㚘定		$\begin{gathered} \text { 対応するDB設編 } \\ \text { AOT N: } \\ \text { 2N: } 10 \text { 日 } \end{gathered}$	［c］ LCO対象SA設備の機能全て※を 満足するSA設備 （基準要求を满足できない場合） ※：事前準備等の補完措置含む AOT：30日	$\begin{gathered} \text { [D] } \\ \text { 代替措置 } \\ \text { AOT N } 110 \text { O } \\ 2 \mathrm{~N}: 30 \text { 日 } \end{gathered}$			
66－2－2 高圧代替注水系およく炉隔離時冷却系（現場起動）	1.2	1．2高圧代替注水系の現場操作による発電用原子炉の冷却	高圧代替注水系ポンプ		1台	常設	N	66－2－1		高再炬心スプレ係		－			
			徰水师藏タンク		－	－	－	66－11－1	「66－11－1 重大事故等収束のための水源ひて整理						
			高圧代替注永系（（蒸気系）配管•并		－	常設	N	66－2－1	本表は必要な電動弁の手動操作用しバーおよびハンドルの操作により現場起動できることを要求 ポンプ等の系統設備は，「66－2－1 高圧代替注水系（中央制御室からの遠隔起動）で整理						
			主蒸気系 配管•升		－	常設	N	66－2－1							
					－	常設	N	66－2－1							
			高圧代替注水系（ 注水系）配管，弁		－	常設	N	66－2－1							
			補給水系配管		－	常設	N	66－2－1							
			高圧炉心スプレイ系 配管•升		－	常設	N	66－2－1							
			然料プール袆給水系 弁		－	常設	N	66－2－1							
			原子炬冷却林浄化系 配管		－	常設	N	66－2－1							
			復水給水系 配管•升・スパージャ		－	常設	N	66－2－1							
			原子涙压力容器		－	常設	N	66－2－1							
		1.2 原子炉隔離時冷却系の現場操作による発電用原子炉の泠却	原子炉隔㒕時泠却系ポンプ		1台	常設	N	第41条	高圧代替注水系 （現場起動）	高圧炉心スプレイ系		－			
			復水時蔵タンク		－	－	－	66－11－1	「66－11－1 重大事故等収束のための水源で整理						
			原子炉隔雜時泠却系（ （蒸気系）配管•升		－	常設	N	第41条	本表は必要な電動弁の手動操作用しバー及びハンドルの操作により現場起動できることを要求 ポンプ等の系統設備は「第41条 原子炉隔離時椧却系」で整理						
			主蒸気系 配管•弁		－	常設	N	第41条							
			原子炻隔㒕時泠却系（注水系）配管•弁		－	常設	N	第41条							
			補給水系 配管		－	常設	N	第41条							
			高圧炉心スプレイ系 配管•弁		－	常設	N	第41条							
			原子炉冷却村浄化系配管		－	常設	N	第41条							
			復水給水系 配管•升・スパージャ		－	常設	N	第41条							
			原子涙圧力容器		－	常設	N	第41条							
系（重大事故等对班調	$\left\{\begin{array}{l} 1.2 \\ 1.8 \\ 1.13 \end{array}\right.$	1．2 ほう酸水注入系に よる進展抑制（ほう酸水注入） 1.8 ほう酸水注入系に よる原子炬圧力容器へ のほう酸水注入 	ほう酸水注入系ポンプ	運転，起動及で高温停止	1台	常設	N	66－2－3	－		－	－			
			ほう蝺水注入系貥蔵タンク		1基	常設	N	66－2－3							
			ほう酸水注入系 配管•升		－	常設	N	66－2－3	「66－2－3 ほう酸水注入系（（重大事故等対処設備）」ど整理（系に含まれる）						
			原子涙圧力容器		－	常設	N	66－2－3							
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備」で整理（66－2－3ほう酸水注入系（ 重大事故等対処設備）」で他表を参照）						
			可般型代替交流電源設備		－	－	－	66－12－2	「66－12－2 可般型代替交流電源設備」を整理（66－2－3ほう酸水注入系（重大事故等文尤処設備）」で他表を参照）						

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－3原子炉冷却村圧カバウンダリを減圧するための設備】

表No．	$\begin{aligned} & \text { 技椕的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO 対象SA設備	適用される	所要数	常設，可般	N，2N	保安娊定			【c】 LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	LD】 代替措置 AOT AOT 10 ． 2N： 30 日
66－3－1 代替自動減圧機能	1.3	1.3 滅王の自動化	代替自動減圧回路（代替自動減圧機能）	運転，起動及び高温停止（原子炉圧力が0．77MPa［gage］以上）	1系（論理每）	常設	N	66－3－1	－	－	主蒸気逃がし安全弁（手動減圧）	－
					1個	常設	N	66－1－3	「66－1－3 ATWS緩和設備（自動減	圧系作動阻止機能）」 くて整理（「	66－3－1 代替自動墄圧機能」で他表を参	
			主蒸気泩がし安全弁（血動㳚压機能）（C，Hの2個）		2個	常設	N	第39条	「第39条 非常用炉心桧却系をの1	1」を整理		
			主蒸気系 配管・クエンチャ		－	常設	N	第39条	「第39条 非常用炉心桧却系をの1	1」で整理（系に含まれる）		
			主蒸気逖がし安全弃自動減圧機能用アキュムレータ		2個	常設	N	第39条	「第39条 非常用炉心冷却系をの1	1」で整理（系に含まれる）		
			非常用交流電源設備		－	－	－	第59条	「第59条 非常用デイーゼノ発電检	兼その1」で整理		
$66-3-2$主蒸気逃がし安全弁（手動滅圧）	1.3	1.3 手動操作による減圧（主蒸気逃がし安全弁） 1.3 高圧溶融物放出格納容器雰囲気直接加熱の防止 1.3 発電用原子炉の減圧（インターフェイスシ ステムLOCA発生時）	主蒸気肶がし安全弁	運転，起動及蒿温停止	6 偉	常設	N	66－3－2	－	高圧炉心スプレイ系原子炉隔離時冷却系	－	－
			主蒸気系 配管・クエンチャ		－	常設	N	66－3－2		動㳚压）」で整理（系に含まれる）		
			主蒸気逃がし安全升逃かし升機能用アキュムレータ		6 個	常設	N	66－3－2		動㳚压）」で整理（系に含まれる）		
			主蒸気䓕がし安全弁自動減圧機能用アキュムータ		6 俱	常設	N	66－3－2	「66－3－2 主蒸気䛧がし安全并（手	動減圧）」を整理（系に含まれる）		
			所内常設蓄電式直流電源設備		－	－	－	66－12－3	${ }^{\text {P }}$ 6－12－3 所内常設蓄電式直流電	源設備して整理（「66－3－2 主蒸年	気逃がし安全弁（手動減厓）」で他表を空	
			常設代替直流電源設備		－	－	－	66－12－4	${ }^{\text {P } 66-12-4 ~}$ 常設代替直流電源設備	有」で整理（「66－3－2 主蒸気逃が	し安全弁（手動減圧）」て他表を参照）	
			可般型代替直流電源設備		－	－	－	66－12－5			がし安全弁（手動減压）」で他表を参照）	
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備	有」で整理（「66－3－2 主蒸気逃が $^{\text {a }}$	し安全弁（手動減圧）」で他表を参照）	
			可般型代替交流電源設備		－	－	－	66－12－2	「66－12－2 可般型代替交流電源喭	糒じ整理（「66－3－2 主蒸気逃	がし安全弁（手動減压）」で他表を参照）	

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－3原子炉冷却村圧カバウンダリを減圧するための設備】

表No．		対応手段	LCO対象SA設備	適用される原子炉の状態	所要数	常設，可搬	N，2N	保安㚘定	［B］	$\begin{gathered} \text { 対応するDB設備 } \\ \text { AOT N:3日 } \\ 2 N: 10 \text { 日 } \end{gathered}$	［C］ LCO対象SA設備の機能全で世を満足するSA設復 （基準要求を满足できない場合） ※：事前準備等の補完措置含む AOT：30日	
$\left\lvert\, \begin{aligned} & \text { 66-3-3 } \\ & \text { 主蒸気逃がし } \\ & \text { 㕕能機 } \\ & \text { 能回復 } \end{aligned}\right.$	1.3		可般型代替直流電源設備	運転，起動及び高温停止	－	－	－	66－12－5	「66－12－5 可般型代替直流電源設備」で整理（「66－3－3 主蒸気逃がし安全弁の機能回復して他表を参照）			
			125V直流電源切替盤		1個	常設	N	66－3－3	$\begin{aligned} & \text { 主蒸气逃がし安全充用可搬型蓄 } \\ & \text { 機能回復 } \end{aligned}$	常用直流電源設備	－	代替品の補充等
			主蒸気蒾がし安全弁（自動減圧機能）		6個	常設	N	66－3－2	「66－3－2 主蒸気㜆がし安全弁（手動滅匟）」で整理			
			主蒸気系 配管・クエンチャ		－	常設	N	66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）			
			主蒸気肶がし安全弁自動減压機能用アキュムレータ		6個	常設	N	66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）			
		1.3 主蒸気逃がし安全弁用可搬型蓄電池に よる主蒸気逃がし安全弁機能回復	主蒸気䛧がし安全弁用可般型萻電池	運転，起動及畐高温停止	1組	可般	N	66－3－3	可搬型代替直流電源設備による主蒸気逃がし安全弁機能回復	常用直流電源設備	－	代替品の補充等
			主蒸気䛧がし安全弁（自動唦厓機能）		2個	常設	N	66－3－2				
			主蒸気系 配管・クエンチャ		－	常設	N	66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）			
			主蒸気逃がし安全弁自動滅圧機能用アキュムレータ		2個	常設	N	66－3－2	「66－3－2 主蒸気逃がしし安全弁（手動減圧）」を整理（系に含まれる）			
		$\left.\begin{array}{\|l} 1.3 \text { 高压空素がス供給 } \\ \text { 系(非常用)による窒素 } \end{array} \right\rvert\,$	高圧室素がスボンベ	運転，起動及び高温停止	8 8本	可般	N	66－3－3	－	アキュムレー外压カ	－	代替品の補充等
			高圧窒素がス供給系 配管•卉		－	常設	N	66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復くて整理（系に含まれる）			
			主蒸気系 配管•弁		6個	常設	N	66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）			
			主蒸气氹がし安全弁自動減压機能用アキュムレータ		6個	常設	N	66－3－2	「66－3－2 主蒸気逃がし安全弁（手動減圧）」で整理（系に含まれる）			
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備で整理（「66－3－3 主蒸気逃がし安全弁の機能回復」で他表を参照）			
			可般型代替交流電源設備		－	－	－	66－12－2	「66－12－2 可般型代替交流電源設備」で整理（566－3－3 主蒸気逃がし安全弁の機能回復して他表を参照）			
			非常用交流電源設備		－	－	－	第59条	「第59条 非常用テイーゼん発電機その1」で整理			
			高圧䘖素ガスボンベ	－運転，起動及び高温停止	3本	可般	N	66－3－3	－	アキュムレーダ压カ	－	代替品の補充等
			ホース・弁		2本	可般	N	66－3－3	「66－3－3 主䒱気逃がしし安全弁の機能回後ぐ整理（系に含まれる）			
			代替高圧室素がス供給系 配管，弁		－	常設	N	66－3－3	「66－3－3 主蒸気逃がし安全弁の機能回復くて整理（系に含まれる）			
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備くて整理（「66－3－3 主蒸気㮸がし安全弁の機能回復」で他表を参照）			
			可般型代替交流電源設備		－	－	－	66－12－2	「66－12－2 可般型代替交流電源設備」で整理（「66－3－3 3 主蒸気逃がし安全弁の機能回復して他表を参昭）			
			代替所内電気設備		－	－	－	66－12－6	「66－12－6 代替所内電気設備」て整理（「66－3－3 主蒸気肶がし安全弁の機能回後しで他表を参照）			

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－4 原子炉冷却材圧カバウンダリ低圧時に発電用原子炉を冷却するための設備】

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－4 原子炉冷却材圧カバウンダリ低圧時に発電用原子炉を冷却するための設備】

表No．	$\begin{aligned} & \text { 接䢤的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO対象SA設備	適用される 皂子炬の状態	所要数	常設，可般	N，2N	保安規定		対応するDB設㣁 AOT N： 2N： 10 日	（c） LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	
	$\left[\begin{array}{l} 1.4 \\ 1.8 \\ 1.13 \end{array}\right.$	1.4 低圧代替注水系 （可搬型）による発電用原子炉の浍却（原子涙運転中】 1.4 低圧代替注水系 （可搬型）によるる残存溶融紬心の泠却		運転，起動及び高温停止	2 台 $\times 2$	可般	2 N	$\left\lvert\, \begin{aligned} & ※ 1 \\ & 66-4-3 \\ & 66-19-1 \end{aligned}\right.$			低圧代替注水系（常設）（復水移送 ポンプ）低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）	－
			大容量送水ポンブ（タイプ I ）	冷温停止及び㜣料交換※ ※原子炉が次に示す状態と なった場合は领適解しない。 可一水位代近で，かつプール （2）原子炉内から全然料か取世され，かつプールゲートが閉の場合	2 台 $\times 2$	可般	2 N	$\left\lvert\, \begin{aligned} & ※ 1 \\ & 66-4-3 \\ & 66-19-1 \end{aligned}\right.$	－	非常用炉心泠却系（自動減圧系 を除く）（非常用ディーゼル発電機含む）	低圧代替注水系（常設）（復水移送 ポンプ）	－
		止中1	ホース延長回収車	運転，起動高高湜停止，泠温	2台 $\times 2$	可般	2 N	66－19－1	「66－19－1 大容量送水戈ンプ（タイプ I）」で整理（系に含まれる）			
		停止中】 1.8 低圧代替注水系 （可般型）による原子炉圧力容器への注水 1．13 原子炉冷却材圧 カバウンダリ低圧時の原子炉圧力容器への注水	ホース・注水用へツダ・接続口		－	可般／常設	2N／N	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} 66-4-3-1 \end{array}$	「66－19－1 大容量送水ポンプ（タイプI））で整理（系に含まれる）			
			禈給水系 配管•弁		－	常設	N	66－4－3	「66－4－3 低圧代替注水系（可般型）」で整理（系に含まれる）			
			残留䫏除去系 配管•交		－	常設	N	66－4－3				
			原子炉圧力容器		－	常設	N	66－4－3				
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－4－3 低圧代替注水系（可般型）」で他表を参照）			
			可般型代替交流電源設備		－	－	－	66－12－2	「66－12－2 可搬型代替交流電源設備」で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）			
			代替所内電気設備		－	－	－	66－12－6	「66－12－6 代替所内電気設備で整理（「66－4－3 低圧代替注水系（可搬型）」で他表を参照）			
			然料補䜌設備		－	－	－	66－12－7				
			非常用交流電源設備		－	－	－	第59条	「第59条 非常用デイーゼル発電機その11」「第60条非常用デイーゼル発電機その2」で整理			

表No．	$\begin{aligned} & \text { 接術的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO 対象SA設備	適用される 竍子哣の状能	所要数	常設，可般	N，2N	保安㚘定		$\begin{aligned} & \text { 対応するDB設備 } \\ & \text { AOT N:3日 } \\ & \text { 2N: } 10 \text { 日 } \end{aligned}$	【C】 LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日				
	$\begin{aligned} & 1.5 \\ & 1.7 \\ & 1.9 \\ & 1.10 \\ & 1.13 \end{aligned}$	1.5 原子炉格納容器 フィルタベント系による原子炉格納容器内の減圧及び除熱 1.7 原子炉格納容器 フィルタベント系による原子炉格納容器内の減圧及び除熱 1.9 原子炉格納容器 フィルタベント系による原子炉格納容器内の水素及び酸素の排出 1.10 原子炉格納容器 フィルタベント系による原子炉格納容器内の水素の排出 1.13 原子炉格納容器 夕装置への水補給	フィルタ装置	運転，起動及び高温停止	3 個	常設	N	66－5－1	－	残留熱除去系（低圧注水モード格納容器スプレイ冷却モード，サ プレッションプール水冷却モード）炬補機冷却水系，原子炉補機冷却海水系含む）可燃性ガス濃度制御系	－	－			
			フィルタ装置出口側圧力開放板		1個	常設	N	66－5－1							
			遠隔手動卉操作設備		4直	常設	N	66－5－1	「66－5－1 原子炣格納容器フイルタタベント系」で整理（系に含まれる）						
			原子炉格納容器（真空破表洺装を置を合む）		－	常設	N	第43条							
			原子炉格納容器調気系 配管•并		－	常設	N	66－5－1	「66－5－1原子炉格納容器フイルタベント系」を整理（系に含まれる）						
			原子炉格納容器フイルタイ゙ント系 配管•弁		－	常設	N	66－5－1	「66－5－1 原子炉格納容器フイルルダント卜系」を整理（系に含まれる）						
			可般型塞素がス供給装置		1台	可般	N	66－5－3	「66－5－3 可搬型铨素がス供給装置」て整理（「66－5－1 原子炉格納容器フイルタバント系」で他表を参照）						
			ホース－窒素供給用ヘッハタ・接続口		－	可搬常設	N	66－5－3	「66－5－3 可般型空素がス供給装置」て整理（「66－5－1 原子炉格納容器フイルタバント系」で他表を参照）（系に含まれる）						
			木ース・注水用へッダ・接続口		－	可般／常設	2N／N	$\begin{aligned} & 66-5-1 \\ & 66-19-1 \end{aligned}$	「66－5－1原子炉格納容器フイルタベント系」で整理（系に含まれる）「66－19－1 大容送送水ポンプ（タイプ I）」で整理（系に含まれる）						
			大容量送水ポンブ（タイブ I）		2台 $\times 2$	可般	2 N	66－19－1	「66－19－1 大容量送水ポンプ（タイプI）」と整理（「66－5－1 原子炉格納容器フイルタバント系」で他表を参照）						
			ホース延長回収車		2 台 $\times 2$	可般	2 N	66－19－1	「66－19－1 大容量送水ポンプ（タイプ））」で整理（系に含まれる）						
			所内常設蓄電式直流電源設備		－	－	－	66－12－3	「66－12－3 所内常設蓄電式直流電源設備」で整理（「66－5－1 原子炉格納容器フイルレイ゚ント卜系」で他表を参照）						
			可般型代替直流電源設備		－	－	－	66－12－5	「66－12－5 可搬型代替直流電源設簤で整理（566－5－1 原子炉格納容器フイルダント系」で他表を参照）						
			然料裱䜌設備		－	－	－	66－12－7	「66－12－7 然料補綌設備して整理（「66－5－1 原子炉格納容器フイルタダント系」で他表を参照）						
			常設代替直流電源設備		－	－	－	66－12－4	「66－12－4常設代替直流電源設備」て整理（「66－5－1 原子炉格納容器フイルタバント系」で他表を参照）						
			フイルタ装置出口放射綵モ二タ		2個	常設	N	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理（「66－5－1 原子炉格納容器フイルタベント系」で他表を参照）						
			フィルタ装置出口水素濃度		2個	常設	N	66－13－1							

表No．	$\begin{aligned} & \text { 技術的的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO 対象SA設備	適用される 偣子哣の状能原子炉の状態	所要数	常設，可般	N，2N	保安規定		$\begin{aligned} & \text { 対応するDB設備 } \\ & \text { AOT N:3日 } \\ & \text { 2N: } 10 \text { 日 } \end{aligned}$	【C】 LCO対象SA設備の機能全て※を 満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	【D】 代替措置 AOT N：10日 AN： 30 日
$\left\lvert\, \begin{aligned} & 66-5-2 \\ & \text { 耐少強化ベン } \\ & \text { 系 } \end{aligned}\right.$	1.5		耐圧強化ベント系	運転，起動及び高温停止	－	－	－	66－5－2	原子炻格納容器フイルダント系	残留熱除去系（低圧注水モード，格納容器スプレイン冷却モード，サ プレツションプール水冷却モード） （非常田ディーゼル発機一原子炉補機浍却水系，原子炉補機冷却海水系含む	－	－
			原子炉格納容器調気系 配管•弁		－	常設	N	66－5－2				
			這隔手動弁操作設備		4個	常設	N	66－5－2				
			非常用がス処理系 配管•异		－	常設	N	66－5－2				
			排気筒		－	常設	N	66－5－2				
			原子炉格納容器（真空破㖶装置含む）		－	常設	N	第43条条		器隔離弁」で整理 バからドライウェルへの真空破壊弁	で整理	
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備	㢼」で整理（566－5－2 耐圧強化ベン	ト系」で他表を参照）	
			可般型代替交流電源設備		－	－	－	66－12－2	「66－12－2 可般型代替交流電源設		（1）	
			代替所内電気設備		－	－	－	66－12－6	「66－12－6 代替所内電気設備しで鋉	整理（「66－5－2 耐圧弦化ペント系，	」で他表を参照）	
			所内常設蓄電式直流電源設備		－	－	－	66－12－3		設備で整理（「66－5－2 耐压強化	－ベント系くて他表を参照）	
			常設代替直流電源設備		－	－	－	66－12－4	${ }^{\text {「66－12－4 }}$ 常設代替直流電源設借	備して整理（「66－5－2 耐圧強化ベン	－ト系」で他表を参照）	
			可般型代替直流電源設備		－	－	－	66－12－5	${ }^{\text {P } 66-12-5 ~}$ 可般型代替直流電源設 $^{\text {a }}$	設備して整理（「66－5－2 耐圧強化べ	（1）	
66－5－3可般型窒素 ガス供給装置	$\left\lvert\, \begin{aligned} & 1.7 \\ & 1.9 \end{aligned}\right.$	1.7 不活性ガス（窒素） による系統内の置換 1.7 原子炉格納容器負圧破損の防止 1．9可般型窒素ガス供緰装置による原子㳓格納容器水素爆発防止	可般型坚素がス供給装置	運転，起動及び高温停止	1台	可般	N	66－5－3	$-$		－	代替品の補交等
			ホース・窒素供給用ヘッダ・接続口		－	可搬常設	N	66－5－3	「66－5－3 可捄型空素ガス供給装道	置」で整理（系に含まれる）		
			原子炉格納容器調気系 配管•并		－	常設	N	66－5－3	「66－5－3 可搬型室素がス供給装置	置」で整理（系に含まれる）		
			原子炉格納容器フイルタイ゙ント系 配管•并		－	常設	N	66－5－3	「66－5－3 可搬型空素がス供給装置	置」ぐ整理（系に含まれる）		
			原子炉格納容器		－	常設	N	第43条	「第43条 格納容器および格納容	器融雜弁」で整理		
			フィルタ装置		3 3固	常設	N	66－5－1	「66－5－1 原子炉格納容器フイルタ	タベント系しで整理		
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備		がス供給装置」で他表を参照）	
			然料裱䜌設備		－	－	－	66－12－7	「66－12－7 然料袆䜌設備」で整理		置置して他表を参照）	

表No．	$\begin{aligned} & \text { 技㣩的的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO 対象SA設備	適用される 偣子哣の状能	所要数	常設，可般	N，2N	保安規定			【C】 LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日 AOT：30日	
66－5－4代替椧却水系	$\left\lvert\, \begin{aligned} & 1.5 \\ & 1.13 \end{aligned}\right.$	1．5－原子炉補機代替冷却水系による除熱 1.13 最終ヒートシンク （海）への代替熱輸送	熱交換器ユニット	運転，起動，高温停止，泠温停止及び燃料交換	1台 $\times 2$	可般	2 N	66－5－4	－	（運転，起動，高温停止のみ）原子炉補機冷却水系 （原子炉補機冷却海水系，非常用ディーゼル発電機を含む）	－	代替品の補充等 大容量逆水ポンプ（タタプI）を使用した海水直接通水による除熱
			大容量送水ポンプ（タイプ I）		2台 $\times 2$	可般	2N	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（「66－5－4 原子炉補機代替泠却水系して他表を参照）			
			ホース延長回収車		2 台 $\times 2$	可般	2 N	66－19－1	「66－19－1 大容量送水术ンプ（タイプ I）」で整理（系に含まれる）			
			ホース・除熱用ヘッダ・接続口		－	可般常設	$2 \mathrm{~N} / \mathrm{N}$	$\begin{array}{\|l\|l} \hline 66-5-4 \\ 66-19-1 \\ \hline \end{array}$	「66－5－4 原子炬補機代替冷却水系」で整理（系に含まれる）「66－19－1 大容量送水ポンプ（タイプI）」で整理（系に含まれる）			
			原子炉補機幾却放系配管•升・サージタンク		－	常設	N	66－5－4	「66－5－4 原子炉補機代替浍却水系」（整理（系に含まれる）			
			残留熱除去系熱交換器		－	常設	N	66－5－4				
			拧留堰		－	常設	N	66－19－1	「66－19－1 大容量送水戈ンプ゙タイプ I）」で整理（系に含まれる）			
			取水口		－	常設	N	66－19－1				
			取水路		－	常設	N	66－19－1				
			海水过ンプ室		－	常設	N	66－19－1				
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備なで整理（566－5－4 原子炉補機代替冷却水系」で他表を参照）			
			然料補綌設備		－	－	－	66－12－7				
$\left\lvert\, \begin{aligned} & 66-5-5 \\ & \text { 代替循䍗冷 } \end{aligned}\right.$却系	$\left\lvert\, \begin{aligned} & 1.4 \\ & 1.7 \\ & 1.8 \\ & 1.113 \end{aligned}\right.$	1.4 代替循環冷却系に よる残存溶融炉心の泠 1.7 代替循環冷却系に の減圧及び除熱 1.8 代替循環冷却系に よる原子炉格納容器下部への注水 1.8 代替循環冷却系に よる原子炉圧力容器へ の注水 1.13 原子炉冷却材圧 カバウンダリ低圧時の原子炉圧力容器への注水 1．13原子炉圧力容器へ の注水及び原子炉格納容器内の除熱 1.13 原子炉格納容器下部への注水 1.13 外部水源から内部水源への切替え（外部水源（復水貯蔵タン レッションチェンバ）へ の切替え）	代替循環泠却ポンプ	䆃転，起動及び高温停止	1台	常設	N	66－5－5			－－	－
			残留熱除去系熱交換器		－	常設	N	66－5－5	「66－5－5 代替循環浍却系」で整理（系に含まれる）			
			残留熱除去系 配管•弁・ストレーナ		－	常設	N	66－5－5				
			袆給水系 配管•异		－	常設	N	66－5－5				
			スプレイ管		－	常設	N	66－5－5				
			ホース・接続口		－	可般 $/$ 常設	$2 \mathrm{~N} / \mathrm{N}$	66－5－4	「66－5－4 原子炉辣機代替朎却水	系」ぐ整理（系に含まれる）		
			原子涙圧力容器		－	常設	N	66－5－5	「66－5－5 代替㔼䍗浍却系」て整理	（系に含まれる）		
			原子炣格納容器		－	常設	N	第43条	「第43条 格納容器および格納容器	器限離矣」をで整理		
			サプレッションチェンバ		$2850 \mathrm{~m}^{3}$	常設	N	第46条	「第66条 サプレッションプールの水	水位ひで整理		
			原子炉補機代替冷却水系		－	－	－	66－5－4	「66－5－4 原子炻補機代替冷却水	水系」て整理（「66－5－5 代替㔼環泠	会却系」で他表を参照）	
			大容量送水ポンプ（タイプ I）		2 台 $\times 2$	可般	2N	66－19－1	「66－19－1 大容量送水ポンプ（タイフ	フプ ）」とで整理		
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1常設代替交流電源設備		制系して他表を参照）	
			代替所内電気設備		－	－	－	66－12－6	「66－12－6 代替所内電気設備」て奨	整理（「66－5－5 代替循䍗泠却系」	で他表を参照）	
			然料補䜌設備		－	－	－	66－12－7	「66－12－7 然料袆給設備して整理	（「66－5－5 代替循䝶冷却系」で他	表を参照）	
			原子炉補機浍却水系（ 原子炉補機浍却海水系を含む。）		－	－	－	第52条	「第52条 原子炉補機冷却水系お敉	よひび原子炉補機浍却海水系」で整		
			非常用取水設備		－	－	－	第52条		よひび原子炉補機泠却海水系」で整閏	理（系に含まれる）	

表No．	$\begin{aligned} & \text { 接徚的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO対象SA設備	適用される 快の状能	所要数	常設，可搬	N，2N	保安規定		$\begin{gathered} \text { 対応するDB設備 } \\ \text { AOT N:3日 } \\ \text { 2N: } 10 \text { 日 } \end{gathered}$	［c］ LCO対象SA設備の機能全で※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	
	1.9	1.9 格納容器内雰囲気計装による原子炉格納容器内の水素濃度及 ひ酸素濃度監視	格納容器内水素㜊度（D／W）	運転，起動及び高温停止	1チャンネル	常設	N	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理（「66－5－6 格納容器内の水素浱度およよで酸素濃度の監視」で他表を参照）			
			格納容器内水素漊度（S／C）		1チャンネル	常設	N	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理（「66－5－6 格納容器内の水素濃度および酸素濃度の監視」で他表を参照）			
			格紡容器内雰囲気水素濃度		1チャンネル	常設	N	66－13－1	「66－13－1 主要パラメータおよび代替パラメータ」で整理（「66－5－6 格納容器内の水素洪度および酸素濃度の監視」で他表を参照）			
			格納容器内雰囲気酸素濃度		1チャンネル	常設	N	66－13－1				
			原子炉補機代替冷却水系		－	－	－	66－5－4	「66－5－4 原子炉䪔機代替冷却水系」で整理			
			原子炉補機浍却水系（ 原子炉補機浍却海水系を含む。）		－	－	－	第22条	「第52条 原子炉袆機浍却水系および原子炉補機浍却海水系して整理			
			非常用取水設備		－	－	－	第22条	「第52条 原子炉補機冷却水系および原子炉補機泠却海水系」で整理（系に含まれる）			

女川原子力発電所 2 号炉 重大事故等対処設備代替設備整理表【表66－6 原子炉格納容器内の椧却等のための設備】

表No．	$\begin{aligned} & \text { 技術的的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO 対象SA設備	$\begin{aligned} & \text { 適用される } \\ & \text { 子炉の状態 } \end{aligned}$	所要数	常設，可般	N，2N	保安㚘定		$\begin{gathered} \text { 対応するDB設備 } \\ \text { AOT N:3日 } \\ \text { 2N:10日 } \end{gathered}$		$\begin{gathered} \text { [D] } \\ \text { 代替措置 } \\ \text { AOT } \mathrm{N} 10 \mathrm{~B} \\ 2 \mathrm{~N}: 30 \text { 日 } \end{gathered}$
	$\begin{aligned} & 1.6 \\ & 1.8 \\ & 1.13 \end{aligned}$	1.6 原子炉格納容器代替スプレイ冷却系（常 ｜設器内の却炉心炉唄傷前） 1.6 原子炉格納容器代替スプレイ椧却系（常 ｜設によるる原子炉格納傷後） 1.8 原子炉格納容器代替スプレイ浍却系（党容器下部への注水 1.13 原子炉格納容器内の泠却 1.13 原子炉格納容器 下部へ下部への注水	復水移送ポンプ	運転，起動及び高温停止	2台	常設	N	66－6－1	－	残留熱除去系（格納容器スプレ イ冷却モード） （非常用ディーゼル発電機含む）	原子炬格納容器代替スプレイ冷却 系（可搬型）	－
			袆給水系 配管•弁		－	常設	N	66－6－1	「66－6－1原子炉格納容器代替スプレイ（领却系（常設）」を整理（系に含まれる）			
			高圧炉心スプレイ系 配管•并		－	常設	N	66－6－1				
			残留熱除去系 配管•升		－	常設	N	66－6－1				
			スプレイ管		－	常設	N	66－6－1				
			然料プール袆給水系 弁		－	常設	N	66－6－1				
			原子炉格納容器		－	常設	N	第33条	「第43条 格納容器および格納容器隔離矣分」で整理			
			復水館蔵タンク		$948 \mathrm{~m}^{3}$	常設	N	66－11－1	「66－11－1 重大事故等収束のための水源」を整理（「66－6－1 原子炉格納容器代替スフレイイ会却系（常設）」で他表を参照）			
			常設代替交流電源設犕		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備で整理（「66－6－1原子炉格納容器代替スプレイ冷却系（常設）」で他表を参照）			
			可搬型代替交流電源設備		－	－	－	66－12－2	「66－12－2 可般型代替交流電源設備」て整理（「66－6－1 原子炉格納容器代替スプレイ佮却系（常設）」で他表を参昭）			
			所内常設蓄電式直流電源設備		－	－	－	66－12－3	「66－12－3 所内常設蓄電式直流電源設備」（「66－6－1 原子炉格納容器代替スプレイ冷却系」で他表を参照）			
			代替所内電気設備		－	－	－	66－12－6	「66－12－6 代替所内電気設備」で整理（「66－6－1 原子妒格納容器代替スプレイイ泠却系（常設）」で他表を参照）			
			非常用交流電源設備		－	－	－	第59条	「第59条 非常用ディーゼル発電機その1」で整理			
	$\left\lvert\, \begin{aligned} & 1.6 \\ & 1.8 \\ & 1.13 \end{aligned}\right.$		大容量送水ポンプ（タイプ I ）	運転，起動及び高温停止	2 台 $\times 2$	可般	2 N	$\begin{aligned} & \hline ※ 1 \\ & 66-6-2 \\ & 66-19-1 \end{aligned}$			原子炉格納容器代替スプレイ冷却 索	－
			ホース延長回収車		2 台 $\times 2$	可般	${ }^{2 N}$	66－19－1	「66－19－1 大容量送水术ンプ（タイプ I）」で整理（系に含まれる）			
			ホース・注水用ヘッダ・接続口		－	可般／常設	2N／N	$\begin{aligned} & 66-6-2 \\ & 66-19-1 \end{aligned}$	「66－6－2 原子炉格納容器代替スプレイ冷却系（可搬型）」で整理（系に含まれる）「66－19－1 大容量送水ポンプ（タイプI）」で整理（系に含まれる）			
			残留尌除去系 配管•弁		－	常設	N	66－6－2	「66－6－2 原子炣格納容器代替スプレイ佮却系（可般型）」で整理（系に含まれる）			
			スプレイ管		－	常設	N	66－6－2				
			原子炉格納容器		－	常設	N	第43条	「第43条 格納容器および格納容器隔敨矣」」で整理			
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－6－2 原子炻格納容器代替スプレイ冷却系（可般型）」で他表を参照）			
					－	－	－	66－12－2				
					－	－	－	66－12－6	「66－12－6 代替所内電気設備」で整理（566－6－2 原子如格納容器代替スプレイ佮却系（可搬型）」で他表を参照）			
			燃料禣綌設備		－	－	－	66－12－7	「66－12－7 整料禣綌設備厂で整理（ $566-6-2$ 原子炉格納容器代替スプレイ椧却系（可搬型）」で他表を参照）			
			非常用交流電源設備		－	－	－	第59条	「第59条 非常用ディーゼル発電機その1」を整理			

[^0]女川原子力発電所 2 号炉 重大事故等対処設備代替設備整理表【表66－7原子炉格納容器下部の溶融炉心を泠却するための設備】

表No．	$\begin{aligned} & \text { 接䢞的的 } \end{aligned}$	対応手段	LCO対象SA設備	適用される 皂子炬の状態	所要数	常設，可般	N，2N	保安規定		$\begin{aligned} & \text { 対応するDB設備 } \\ & \text { AOT N:3日 } \\ & 2 \mathrm{~N}: 10 \text { 日 } \end{aligned}$	【C】 LCO対象SA設備の機能全て※を 満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	AOT N：10日 $2 \mathrm{~N}: 30$ 日
66－7－1原子炣格納容鹳下部注 シブ	$\left\lvert\, \begin{aligned} & 1.8 \\ & 1.11 \end{aligned}\right.$	1.8 原子炉格納容器下部注水系（掌設）（復水移送ポンプ）による原子炉格納容器下部へ の注水 1.13 原子炉格納容器下部への注水	復水移送ポンプ	運転，起動及び高温停止	1台	常設	N	66－7－1	－	残留熱除去系（低圧注水モ一ド） （非常用ディーゼル発電機含む）	原子炉格納容器下部注水系（常設）（代替循環椧却ポンプ） （時間短縮の補完措置含む）	－
			袆給水系 配管•弁		－	常設	N	66－7－1	「66－7－1 原子炉格納容器下部注水系（常設）（復水移送戈ンプ）」（系に含まれる）			
			高圧炉心スブレイ系 配管•升		－	常設	N	66－7－1				
					－	常設	N	66－7－1				
			原子炻格納容器		－	常設	N	第43条	「第43条 格納容器および格納容器嗝離亚」」て整理			
			復水館蔵タンク		$\begin{array}{\|} 948 \mathrm{~m}^{3} \\ 942 \mathrm{~m}^{3} \\ \hline \end{array}$	常設	N	66－11－1	「66－11－1 重大事故等収束のたための水源」で整理（566－7－1 原子炉格納容器下部注水系（常設）（隽水移送ポンプ）」で他表を参照）			
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備で整理（「66－7－1 原子炬格納容器下部注水系（常設）（復水移送术ンプ）」で他表を参照）			
			可般型代替交流電源設備		－	－	－	66－12－2	「66－12－2 可般型代替交流電源設備」で整理（566－7－1 原子炉格納容器下部注水系（常設）（復水移送ポンプ）」で他表を参照）			
			所内常設蓄電式直流電源設犕		－	－	－	66－12－3	「66－12－3 所内常設蓄電式直流電源設備」で整理（「66－7－1 原子炉格納容器下部注水系（常設）（復水移送ポンプ）」で他表を参照）			
			代替所内電気設備		－	－	－	66－12－6	「66－12－6 代替所内電気設備して整理（「66－7－1 原子炉格納容器下部注水系（常設）（復水移送术ンプ）」で他表を参照）			
66－7－2原子炉格納容器下部注水系 （代替循環冷却ポンプ）	$\begin{aligned} & 1.8 \\ & 1.13 \end{aligned}$	1.8 原子炉格納容器下部注水系（ 常設）（代替循環泠却ポンブ）によ る原子烠格納容器下部への注水 1.13 原子炉格納容器下部への注水	代替贋環浍却ポンプ	運転，起動及び高温停止	1台	常設	N	66－7－2	－	$\left.\begin{array}{l}\text { 残留熱除去系（低圧注水モード）} \\ \text {（非常用ディーゼル発機含む）}\end{array}\right)$	原子炉格納容器下部注水系（常設）（復水移送ポンプ）	－
			サプレッションチェンバ		$2850 \mathrm{~m}^{3}$	常設	N	第46条	「第46条 サプレツションプールの水位」で整理			
			残留熹除去系熱交換器•配管•升・ストレーナ		－	常設	N	66－7－2	「66－7－2 原子炉格納容器下部注水系（代替循罧浍却ポンプ）」で整理（系に含まれる）			
			袆給水系 配管．弁		－	常設	N	66－7－2				
			原子炣格納容器		－	常設	N	第43条	「第43条 格納容器およで格納容器㟲離弁」て整理			
			原子炉補機代替冷却水系		－	－	－	66－5－4	「66－5－4－原子炣補機代替冷却水系」て整理（「66－5－5 代替循環泠却系」を他表を参照）			
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備で整理（ $566-5-5$ 代替循環冷却系」で他表を参照）			
			代替所内電気設備		－	－	－	66－12－6	「66－12－6 代替所内電気設備しで整理（「66－5－5 代替循罧㸮却系」で他表を参照）			
			原子炉補機泠却水系（ 原子炉補機浍却海水系を合む。）		－	－	－	第52条	「第52条 原子炉補機冷却水系およくで原子炉補機会却海水系」で整理			
			非常用取水設備		－	－	－	第52条	「第52条 原子炉補機冷却水系およよで原子炉補機浍却海水系」て整理（系に合まれる）			

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－7 原子炉格納容器下部の溶融炉心を冷却するための設備】

表No．	$\begin{aligned} & \text { 拉稛的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO 対象SA設備	適用される 快の状能	所要数	常設，可搬	N，2N	保安規定		対応するDB設備 AOT N： 2N： 10 日	［C］ LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む АОТ：30日	
	$\begin{aligned} & 1.8 \\ & 1.11 \end{aligned}$	1.8 原子炉格納容器下部注水系（可搬型によ る原子炉格納容器下部への注水 1．13 原子炉格納容器下部への注水	大容量送水术ンブ（タイプ I ）	運転，起動及び高温停止	2 台 $\times 2$	可般	2 N	$\begin{array}{\|l\|} ※ 1 \\ 66-7-3 \\ 66-19-1 \end{array}$	－	残留䞇除去系（低压注水モード） （非常用ディーゼル発電機含む）		－
			木ース延長回収車		2台 $\times 2$	可般	2N	66－19－1	「66－19－1 大容量送水ポンプ（タイフ	（1）」を整理（系に合まれる）		
			ホース・注水用ヘッダ・接続口		－	可般／常設	2N／N	$\left\lvert\, \begin{aligned} & 66-7-3 \\ & 66-19-1 \end{aligned}\right.$	「66－7－3 原子㷧格納容器下部注 $「 66-19-2$ 大容量送水ポンプタター	水系（可搬型）」で整理（系に含まれ	そ）	
			補給水系 配管•弁		－	常設	N	66－7－3	「66－7－3 原子炉格納容器下部注水	水系（可般型）」で整理（系に含まれ	そる）	
			原子炉格納容器		－	常設	N	第43条	「第43条 格絃容器およひ格納容	哭滴誰尣」で整理		
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備	」と整理（「66－7－3 原子炉格納容	容器下部注水系（可搬型）」で他表を㝑	
			可般型代替交流電源設備		－	－	－	66－12－2	「66－12－2 可般型代替交流電源設	備せで整理（「66－7－3）原子炉格綡	納容器下部注水系（可般型）」で他表	
			代替所内電気設備		－	－	－	66－12－6	「66－12－6 代替所内電気設備で鋉	整理（566－7－3 原子炉格紋容器	下部注水系（可搬型）」で他表を参照）	
			燃料補綌設備		－	－	－	66－12－7	「66－12－7 然料袆綌設備」て整理	（ $566-7-3$ 原子炻格納容器下部シ	注水系（可搬型）」で他表を参照）	

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－8水素爆発による原子炉建屋等の破損を防止するための設備】

表No．		対応手段	LCO 対象SA設備	$\begin{aligned} & \text { 適用される } \\ & \text { 子炉の状態 } \end{aligned}$	所要数	常設，可般	N，2N	保安規定		$\begin{aligned} & \text { 対拡するDB設備 } \\ & \text { AOT N:3日 } \\ & 2 N: 10 \text { 日 } \end{aligned}$	［c］ LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	
66－8－1静的触媒式装置	1.10	1．10 静的触媒式水素再結合器装置による水素濃度抑制		運転，起動，高温停止	19個	常設	N	66－8－1	－	残留熱除去系（低圧注水モード） （非常用ディーゼル発電機，原子炉補機冷却水系，原子炉補機冷却海水系含む	－	原子哣建屋ベント設偗
			静的触媒式水素再結合装置	冷温停止及ひひ燃料交換 ※：原子炬が次に示す状態と なった場合は適用しない。 －ー水位付近で，かつづール 2）な桷内場合 せされ，かつプールデー閉の場合	19個	常設	N	66－8－1	$-$	非常用炉心冷却系（自動減圧系 を除く）（非常用ディーゼル発電機，原子炉補機冷却水系，原子炉補機冷却海水系含む） 使用済燃料プール温度，水位監視	－	原子妸建屋ぐント設偗
			静的的媒侙水素再結合装置動作監視装置	運転，起動，高温停止，泠温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。	$\begin{aligned} & 1 \text { チャンネル } \\ & \text { ※1 } \end{aligned}$	常設	N	66－13－1	「66－13－1 主要パラメータおよび代	替パラメータ」を整理（「66－8－1 静	静的触蝶式水素再結合装置」で他表を	閨参照）
			原子炉建屋原子炉煉		－	常設	N	$\begin{array}{\|l\|l\|} \hline \text { 第 } 46-149-14-2 \end{array}$	\mid 「第49条	止装置については，「表66－14－2 原	原子炉建屋ブローアウトパネル」で整	
－度監視	1.10		原子炉建屋内水素濃度	運転，起動，高温停止，冷温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合出され かつプら全然料が取閉の場合	7チャンル	常設	N	66－8－2	－	$-$		－

※1：1チャンネルとは1個の静的触蝶式水素再結合装置の出入口に設置している2個の静的触媒式水素再結合装置動作監視装置をいう。

女川原子力発電所 2 号炉 重大事故等対処設備代替設備整理表【表66－9 使用済燃料ブールの泠却等のための設備】

表No．	$\begin{aligned} & \text { 技術的的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO 対象SA設備	$\begin{aligned} & \text { 適用される } \\ & \text { 子炉の状態 } \end{aligned}$	所要数	常設，可般	N，2N	保安規定		$\begin{gathered} \text { 対応するDB設編 } \\ \text { AOT N: } \\ \text { 2N: } 10 \text { 日 } \end{gathered}$	C】 LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日			
替注水系	$\left\{\begin{array}{l} 1.11 \\ 1.13 \end{array}\right.$	1.11 燃料プール代替注水系（常設配管）に よる使用済燃料プール への注水 1.11 燃料プール代替注水系（可搬型）による使用済燃料プールヘ の注水 1.13 使用済燃料プー ルへの注水／スプレイ	大容量遂水ポンプ（タイプ I ）	使用済燃料プールに照射された燃料を即蔵している期間	2 台 $\times 2$	可般	${ }^{2 N}$	$\left\lvert\, \begin{aligned} & ※ 1 \\ & 66-9-9 \\ & 66-19-1 \end{aligned}\right.$	－	使用済燃料プール温度，水位監視	燃料プール代替注水系（可搬型） 燃料プール代替注水系（常設配 管）	3過水系による注水		
			木ース延長回収車		2 台 $\times 2$	可般	${ }^{2 N}$	66－19－1	「66－19－1 大容量送水戈ンプ（タイプ I）」で整理（系に含まれる）					
			ホース・注水用ヘッダ・接続口		－	可般／常設	2N／N	$\begin{aligned} & 66-9-1 \\ & 66-19-1 \\ & \hline \end{aligned}$	「66－9－1 燃料プール代替注水系」で整理（系に含まれる）「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（系に含まれる）					
			燃料プール冷却漁化系配管•卉		－	常設	N	66－9－1	「66－9－2 桇料フールスプレイ系」て整理（系に含まれる）					
			使用斎然料プール		－	常設	N	66－9－1						
			然料補綌設備		－	－	－	66－12－7	「66－12－7 然料袆䜌設備」て整理（「66－9－1 燃料プール代替注水系しで他表を参照）					
	1.11	－ 1.11 使用济然粀フ一	サイフォン防止機能	使用済燃料プールに照射され だ然料を販蔵している期間	－	常設	N	66－9－1	「66－9－1 燃料プール代替注水系」	」で整理（系に含まれる）				
	$\left\{\begin{array}{l} 1.11 \\ 1.13 \end{array}\right.$	1.11 燃料プールスプレ イ系（常設配管）による使用済燃料プールヘ のスプレイ 1.11 燃料プールスプレ イ系（可搬型）による使用済燃料プールへのス プレイ 1.13 使用済燃料プー ルへの注水／スプレイ	大容量送水ポンブ（タイプ I ）	使用済燃料プールに照射された然料を䗆蔵している期間	2 台 $\times 2$	可般	${ }^{2 N}$	$\left\lvert\, \begin{aligned} & ※ 1 \\ & 66-9-9 \\ & 66-19-1 \end{aligned}\right.$	－	使用済燃料プール温度，水位監	燃料プールスプレイ系（可搬型） 料	化学消防自動車及び大型化学高所放水車		
			ホース延長回収車		2 台 $\times 2$	可般	${ }^{2 N}$	66－19－1	「66－19－1 大容量送水过フブ（タイプ I）」で整理（系に含まれる）					
			スプレイズル			可般	${ }^{2 N}$	66－9－2	「66－9－2 燃料プールスプレイ系」ぐ整理					
			ホース・注水用へツダ・接続口		－	可般／常設	2N／N	$\begin{aligned} & 66-9-2 \\ & 66-19-1 \end{aligned}$	「66－9－2 然料プールスプレイ系」で整理（系に含まれる） 「66－19－1 大容量送水ポンプ（タイプI）」で整理（系に含まれる）					
			燃料プール冷却浄化系配管．弁		－	常設	N	66－9－2	「66－9－2 然料プールスプレイ系」で整理（系に含まれる）					
			使用济然料ブール		－	常設	N	66－9－2						
			然料補䜌設備		－	－	－	66－12－7						
$\left\lvert\, \begin{aligned} & 66-9-3 \\ & \text { 使用済燃料 } \\ & \text { 熱 } \end{aligned}\right.$	1.11	$\begin{aligned} & 1.11 \text { 燃料プール浍却 } \\ & \text { 津化によるる使湴 } \\ & \text { 料プールの除 } \end{aligned}$	然料プール浍却浄化系ポンプ	た然料を貯蔵している期間	1台	常設	N	66－9－3	－	齐燃料ブールの温度上昇評	－	燃料プール代替注水系（常設配管）又は（可般型）（補完措置含 む）残留熱除去系（燃料プール浍却）		
			然料プール浍却浄化系熱交换器		$1{ }^{\text {基 }}$	常設	N	66－9－3						
			燃料プール泠却浄化系配管•弁・スキマサージタンク・ディ		－	常設	N	66－9－3	「66－9－3 使用济燃料プールの除鴣」で整理（系に合まれる）					
			使用斎燃料ブール		－	常設	N	66－9－3						
			原子炉補機代替朎却水系		－	－	－	66－5－4	「66－5－4 代替原子炉補機代替椧却水系」で整理（「66－9－3 使用済焱料ブールの除熱」で他表を参照）					
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備なて整理（「66－9－3 使用济燃料ブールの除熱で他表を参照）					
			可般型代替交流電源設備		－	－	－	66－12－2	「66－12－1 常設代替交流電源設備」で整理（「66－9－3 使用济燃料プールの除熟で他表を参昭）					

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－9 使用済燃料ブールの冷却等のための設備】

表No．	$\begin{aligned} & \text { 拉稛的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO対象SA設備	適用される 快の状能	所要数	常設，可搬	N，2N	保安規定		$\begin{gathered} \text { 対応するDB設備 } \\ \text { AOT N:3日 } \\ \text { 2N: } 10 \text { 日 } \end{gathered}$	［c］ LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	
	11	1.11 使用済燃料プー ルの監視 1.11 代替電源による給 \qquad	使用斎䊁料プール水位／温度（ヒートサーモ式）	使用済然料プールに照射され た燃料を販蔵している期間	1チャンネル	常設	N	66－9－4	－	使用済然料プール温度，水位監視	代替パラメータ	－
			使用済然料プール水位 $/$ 温度（ガイドパルスス式）		1チャンネル	常設	N	66－9－4				
			使用淢然料プール上部空間放射線モ二夕（高線量，低綵量）		1チャンネル	常設	N	66－9－4				
			使用剤覢料ブール監視力メラ		1チャンネル	常設	N	66－9－4				
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設犕で整理（「66－9－4 使用流塐料プール監視設備ひで他表を参照）			
			可般型代替交流電源設備		－	－	－	66－12－2	「66－12－2 可般型代替交流電源設備」で整理（566－9－4 使用斎然料プール監祝設備で他表を参照）			
			所内常設蓄電式徝流電源設備		－	－	－	66－12－3	「66－12－3 所内常設蓄電式直流電源設備」で整理（566－9－4 使用汶然料プール監視設備」で他表を参照）			
			常設代替直流電源設備		－	－	－	66－12－4	「66－12－4 常設代替直流電源設備」で整理（「66－9－4 使用済然料プール監視設備でく他表を参照）			
			可般型代替直流電源設備		－	－	－	${ }^{66-12-5}$	「66－12－5 可般型代替直流電源設備しで整理（「66－9－4 使用济然料プール監視設備で他表を参照）			

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－10発電所外への放射性物質の拡散を抑制するための設備】

表No．	$\begin{aligned} & \text { 技術的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO対象SA設備	$\begin{aligned} & \text { 適用される } \\ & \text { 皂子炉の状態 } \end{aligned}$	所要数	常設，可搬	N，2N	保安規定		$\begin{gathered} \text { 対応するDB設編 } \\ \text { AOT N: } \\ \text { 2N: } 10 \text { 日 } \end{gathered}$	［c］ LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	【D】 代替措置 AOT N：10日 AN： 30 日			
66－10－1 大気への放射性物質抑制，航 空機燃料火 炎	$\begin{aligned} & 1.11 \\ & 1.12 \\ & 1.13 \end{aligned}$	1.11 大気への放射性物質の拡散抑制 1.12 大気への放射性物質の拡散抑制 1.12 航空機燃料火災 への泡消火 1.13 大気への放射性物質の拡散抑制 1.13 航空機燃料火災 への泡消火	大容量送水过フブイタイブII）	運転，起動，高温停止，泠温停止及び燃料交換	2台	可般	N	$\begin{aligned} & e_{66-19-2}^{*} \end{aligned}$	－	（運転，起動，高温停止のみ）残留熱除去系（低圧注水モード，格納容器スプレイン冷却モード，サプ レッションプール水冷却モード） 使用済燃料プール温度，水位監視	－	代替品の補充等			
			放水砲		1台	可般	N	66－10－1							
			泡消火薬绪混合装置		1台	可般	N	66－10－1							
			ホース延長回収車		2台 $\times 2$	可般	2 N	66－19－2	「66－19－2 大容量送水术ンプ（タイプI）」で整理（系に含まれる）						
			ホース		－	可般	N	$\begin{array}{\|l\|} \hline 66-10-1 \\ 66-19-2 \\ \hline \end{array}$	「66－10－1 大気への放射性物質の应散抑制。航空機燃料火災への泡消火」で整理（系に含まれる）「66－19－2 大容量送水ボンプ（タイプII）」で整理（累に含まれる）						
			然料補䜌設備		－	－	－	66－12－7	「66－12－7 然料補給設備で整理（「66－10－1 大気への放射性物質の应散抑制，航空機㜣料火災への泡消火」で他表を参照）						
			拧留晨		－	－	－	66－19－2	「66－10－1 大⿹气㐅入への放射性物質の拡散抑制，航空機燃料火災への泡消火」で整理（系に含まれる）						
			取水口		－	－	－	66－19－2							
			取水路		－	－	－	66－19－2							
			海水ポンプ室		－	－	－	66－19－2							
66－10－2海洋への放拡散抑制	1.12	1.12 海洋への放射性物質の拡散抑制	シルトフェンス	進転，起䣦，高温停止，泠温停止及び然料交換		可般	N	66－10－2	－	（運転，起動，高温停止のみ）残留熱除去系（低圧注水モード，格納容器スプレイイ冷却モード，サプ レッションプール水冷却モ一ド） 使用済燃料プール温度，水位監視	－	代替品の補充等放射性物質吸着林			

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－11重大事故等の収束に必要となる水の供䜌設備】

表No．	$\begin{aligned} & \text { 技術的的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO 対象SA設備	適用される	所要数	常設，可般	N，2N	保安摫定			【c】 LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	
66－11－1 重大事故等収束のため の水源	1.13	復水貯蔵タンク 保有	復水館蔵夕ン	運転，起動，高温停止，泠温停止及び燃料交換※ ※原子炉が次に示す状態と なった場合は適用しない。 （1）原子炬水位がオーパーフ －水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲートが	$\begin{aligned} & 948 \mathrm{~m}^{3} \\ & 622 \mathrm{~m}^{3} \end{aligned}$	常設	N	66－11－1	－	サプレッションプール水位（水位碓認） 低圧注水系（冷温停止又は燃料交換時については，非常用炉心冷却系（自動減圧系を除く））	大容量送水ポンプ（タイプ I ）を用 いた復水館蔵タンクへの供給手段 （時間短縮の補完措置含む）	－
	1.13		大容量送水术ンブタタイプ I ）		2台 $\times 2$	可般	${ }^{2 N}$	$\left.\right\|_{61} ^{*-19-1}$	－	復水貯蔵タンク（水位碓認） （冷温停止又は燃料交換時につ いては， $942 \mathrm{~m}^{3}$ 以上となるように補給する又は942 ${ }^{3}$ 以上であるこ とを碓認する。）	－	代替品の補充等
			ホース延長回収車		2 台 $\times 2$	可般	2 N	66－19－1	「66－19－1 大容量送水ポンブ（タイブ I ）」で整理（系に含まれる）			
			ホース・注水用ヘッダ・•接続口		－	可般／常設	2N／N	$\begin{aligned} & 66-11-2 \\ & 66-19-1 \end{aligned}$	「66－11－2 復水貯蔵タンクへの供給設備」で整理（系に含まれる）「66－19－1 大容量送水ポンプ（タイプ I ）」で整理（系に含まれる）			
			補紛水系 配管•弁		－	常設	N	66－11－2	「66－11－2 復水貯蔵夺ンクへの供綌設備で整理（系に含まれる）			
			館留塸		－	常設	N	66－19－1	「66－19－1 大容量送水ポンプ（タイプ I）」で整理（系に含まれる）			
			取水口		－	常設	N $\quad 66$－19－1					
			取水路		－	常設	N	66－19－1				
			海水ポンプ室		－	常設	N	66－19－1				
			後水館蔵タンク		－	常設	N	66－11－1	「66－11－1 重大事故等収束のための水源」て整理（「66－11－2 復水师蔵タンクへの供殓設備で他表を参照）			
			然料補䜌設備		－	－	－	66－12－7				

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－11重大事故等の収束に必要となる水の供給設備】

表No．	$\begin{aligned} & \text { 技術的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO 対象SA設備	適用される	所要数	常設，可搬	N，2N	保安規定		$\begin{gathered} \text { 対応するDB設編 } \\ \text { AOT N: } \\ \text { 2N: } 10 \text { 日 } \end{gathered}$	［c］ LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※ ：事前準備等の補完措置含む AOT：30日	$\begin{gathered} \text { [D] } \\ \begin{array}{c} \text { 代替罣置 } \\ \text { AOT } \\ \text { 2N: } 10 \text { : } 0 \text { 日 } \end{array} \end{gathered}$	
66－11－3海水供給設	1.13	1.13 大容量送水ポンプ による送水（各種注水） 1.13 大容量送水ポンフ による送水（各種供給） 1.13 海を水源とした大容量送水車ポンプ（タ イプII）による淡水貯水槽への補給 1．13淡水から海水への切替え	大容量送水戈ンプ（タイプ I）	運転，起動高高温停止，冷温停止及び燃料交換	2 台 $\times 2$	可般	${ }^{2 N}$	${ }_{61}^{※-19-1}$	－	（運転，起動，高温停止のみ）サ プレッションプール（水位碓認） 復水館蔵タンク （冷温停止又は燃料交換時につ いては， $942 \mathrm{~m}^{3}$ 以上となるように補給する又は942 ${ }^{3}$ 以上であるこ とを碓認する。）			
			大容量送水ポンブ（タイプ II）		2 台	可般	N	${ }_{66}^{※ 2}$					
			ホース延長回収車		2 台 $\times 2$	可般	${ }^{2 N}$	$\begin{aligned} & 66-19-1 \\ & 66-19-2 \end{aligned}$	「66－19－1 大容量送水ポンプ（タイプI））で整理（系に含まれる）「66－19－2 大容量送水ポンプ（タイプII）」で整理（系に含まれる）				
			ホース・注水用ヘッリタ・接続口		－	可般／常設	2N／N	$66-4-3$ $66-5-4$ $66-6-2$ $66-7.3$ $66-9$ $66-9-2$ $6-9-2$ $66-10-1$ $661-2$ $66-1-3$ $66-1-3-1$ $66-19-2$	各表で整理（系に含まれる）				
			館留塸		－	常設	N	$\begin{aligned} & 66-19-1 \\ & 66-19-2 \end{aligned}$	「66－19－1 大容量送水ポンプ（タイプI）」で整理（系に含まれる） $「 66-19-2$ 大容量送水ポンプ（タイプII）」で整理（系に含まれる）				
			取水口		－	常設	N	$\begin{aligned} & 66-19-1 \\ & 66-19-2 \end{aligned}$					
			海水术ンプ室		－	常設	N	$\begin{aligned} & 66-19-1 \\ & 66-19-2 \end{aligned}$					
			取水路		－	常設	N	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 66-19-2 \end{array}$					
			然料䍣綌設備		－	－	－	66－12－7	「66－12－7 敉料補綌設備で整理（「66－11－3 海水供綌設備して他表を参照）				

※1：大容量送水ポンプ（タイプ I）については，他手段と兼用であるため「66－19－1 大容量送水ポンプ（タイプI）」で整理する。系統としての要求事項等については，本表にて整理する。

表No．	$\begin{aligned} & \text { 接術的能能力 } \end{aligned}$	対応手段	LCO 対象SA設備	適用される	所要数	常設，可般	N，2N	保安摫定	［B］ CO対象SA設備の機能全てを満足するSA設備 （基準要求を維持できる場合） LCO逸脱なし	対椨するDB設備 AOT N： 2N： 10 日	［c］ LCO対象SA設犕の機能全で※を 満足するSA設傏 （基準要求を満足できない場合） ※：事前準偄等の補完措薔含む АОТ：30日	2N：30日
66－12－1常設代替交流電源設備	1.14	1.14 常設代替交流電源設備による給電	ガスタービン発電機	$\|$運転，起動，高温停止，冷温	2台	常設	N	66－12－1	－	非常用交流電源設備 （非常用ディーゼル発電機）	－	号炉間電力融通設復（時間短縮 の補完措置含む）
			ガスタービン発電設偖然料移送术ンプ		2台	常設	N	66－12－1				
					2，080mm	常設	N	66－12－7				
			タンクローリ		2台	可般	N	66－12－7				
			軽油タンク		$2,770 \mathrm{~mm}$ $3,140 \mathrm{~mm}$	常設	N	66－12－7	「66－12－7 慗料袆綌設備」て整理（「66－12－1 常設代替交流電源設備厂で他表を参照）			
			ガスタービン発電設備然料移送系配管•弁		－	茦設	N	66－12－7	「66－12－7 眾料神綌設備して整理（系に含まれる）			
			ホース		－	可般	N	66－12－7	「66－12－7 然料補綌設備」て整理（系に含まれる）			
			非常用デイーゼル発電設備㷊料移送系配管•升		－	常設	N	66－12－7	「66－12－7 然料補䜌設備たて整理（系に含まれる）			
			高圧炉心スプレイ系デイーゼル発電設備燃料移送系配管•升		－	常設	N	66－12－7	「66－12－7 然料神綌設備せで整理（系に含まれる）			
			ガスタービン登電機～非常用高圧母線2C系及び非常用高圧 母線2D系電路		－	常設	N	$\begin{aligned} & 66-12-1 \\ & 66-12-6 \end{aligned}$	「66－12－1 常設代替交流電源設備」，「66－12－6 代替所内電気設備」を整理（系に含まれる）			
			ガスタービン発電機～緊急用低圧母線2G系電路		－	常設	N	$\begin{array}{\|l\|} \hline 66-12-1 \\ 66-12-6 \end{array}$	${ }^{\text {a }}$ 「6－12－1 常設代替交流電源設備」，「66－12－6 代替所内電気設備」て整理（系1含まれる）			
66－12－2可搬型代替交流電源設	1.14	1.14 可搬型代替交流 電源伇憊による給雨	電源車	運転，起動，高温停止，泠温停止及び繎料交換	2台 $\times 2$	可般	${ }^{2 N}$	66－12－2	－	非常用交流電源設備 （非常用デイーゼル等電機）	常設代替交流電源設備	代替品の補充等 傅完措䀃合む）
			軽油タンク		$2,770 \mathrm{~mm}$ 3.140 mm	常設	N	66－12－7	「66－12－7 然料神䜌設備して整理（566－12－2 可般型代替交流電源信備して他表を参照）			
			ガスタービン発電設偄軽油タンク		2.080 mm	常設	N	66－12－7	「66－12－7 然料禣綌設備」で整理（「66－12－2 可搬型代替交流電源設備して他表を参昭）			
			タンクローリ		2台	可般	N	66－12－7	「66－12－7 然料袢䜌設備」で整理（「66－12－2 可搬型代替交流電源没備して他表を参昭）			
			電源車～電源車接続口（原子炬建屋）電路		－	可般	${ }^{2 N}$	66－12－2	「66－12－2 可般型代替交流電源設㛓しで整理（系に含まれる）			
			非常用ディーゼル発事設備㷦料移送系配管．弁		－	常設	N	66－12－7	「66－12－7 然料缚綌設備せで整理（系に含まれる）			
					－	常設	N	66－12－7	「66－12－7 然料神綌設備」で整理（系に含まれる）			
			ガスタービン発電設犕然料移送系配管•弁		－	常設	N	66－12－7	「66－12－7 然料神綌設備せで整理（系に含まれる）			
			ホース		－	可般	N	66－12－7	「66－12－7 然料神綌設備して整理（系に含まれる）			
			電源車接続口（原子炉建屋）～非常用高圧母線2C系及び非常用高圧母線2D系電路		－	常設	N	${ }^{66-12-6}$	「66－12－6 代替所内電気設備なで整理（系に合まれる）			
			電源車接続口（原子炉建屋）～緊急用低圧母綵2G系電路		－	常設	N	66－12－6	「66－12－6 代替所内電気設備」で整理（系に含まれる）			

表No．	$\begin{aligned} & \text { 㧠庥的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO 対象SA ${ }^{\text {設備 }}$	$\begin{aligned} & \text { 適用される } \\ & \text { 原子炉の状態 } \end{aligned}$	所要数	常設，可般	N．2N	保安規定	【B】 LCO対象SA設備の機能全てを満足するSA設備 （基準要求を維持できる場合） LCO逸脱なし						
66－12－3所内常設蓄電式直流電源設備	1.14		125 V蓄電池 2 A	連転，起動，高温停止，泠温停止及び然料交換	1組	常設	N	${ }^{66-12-3}$	－		常設代替交流電源設備 125 V 充電器	－			
			$125 V$ 蓄電池 2 B		1組	常設	N	66－12－3							
			125 V 交電器2A		1個	常設	N	${ }^{66-12-3}$	－		常設代替交流電源設備 125 V 充電器	－			
			125 V 公電器2B		1個	常設	N	66－12－3							
			125 V蓄電池 2 A及び 125 V 充電器 2 A～$\sim 125 V$ 直流主母線盤 2 A及 び125V直流主母線盤2A－1電路		－	常設	N	66－12－3	「66－12－3 所内常設蓄電式直流電源段備」て整理（（系に含まれる）						
			125 V 蓄電池 2 B 及び 125 V 充電器 $2 \mathrm{~B} \sim 125 \mathrm{~V}$ 直流主母線盤2B及 び125V直流主母線盤2B－1電路		－	常設	N	${ }^{66-12-3}$							
66－12－4流䉓源設備	1.14		125V代替蕃電池	䆃転，起動，高温停止，泠温停止及び燃料交換	1組	常設	N	66－12－4	－			－			
			125 V 代替蓄電池 $\sim 125 \mathrm{~V}$ 直流主母線盤 $2 \mathrm{~A}-1$ 及び 25 V 直流主母線盤2B－1電路		－	常設	${ }^{\text {N }}$	${ }^{66-12-4}$	「66－12－4 常設代替直流電源設備」て整理（系しこ含まれる）						
			250V著電池	邉転，起動，高温傍止	1組	常設	N	66－12－4	－		常設代替交流電源設備 250V充電器	－			
			250V蓄電迆～250V直流主母舷盤電路		－	常設	N	66－12－4	「66－12－4 常設代替直流電源設備せて整理（系に含まれる）						

表No．	$\begin{aligned} & \text { 技術的 } \\ & \text { 竼 } \end{aligned}$	対応手段	LCO 対象SA設犕	$\begin{gathered} \text { 適用される } \\ \text { 原子炉の状態 } \end{gathered}$	所要数	常設，可般	N，2N	保安規定	［B］ LCO対象SA設備の機能全てを満足するSA設備 （基準要求を維持できる場合） LCO逸脱なし		【叹 LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を满足できない場合） ※：事前準備等の補完措置含む AOT：30日				
	1.14	1．14可般型代替直流電源設備による給電	125 V 代替蓄電池	運転，起動，高温停止，椧温停止及び燃料交換	1組	常設	N	66－12－4							
			125 V 代替充電器		1個	常設	N	66－12－5	－		常設代替交流電源設備 125 V 充電器	－			
			電源車		2台 $\times 2$	可般	${ }^{2 N}$	66－12－2							
			軽油タンク		$\begin{aligned} & 2,770 \mathrm{~mm} \\ & 3,140 \mathrm{~mm} \\ & \hline \end{aligned}$	常設	N	66－12－7	「66－12－7 敬料補綌設備」を整理（566－12－5 可般型直流電源設備して他表を参照）						
			ガスタービン発電設輱軽油タンク		2.080 mm	常設	N	66－12－7							
			タンクローリ		2台	可般	N	66－12－7							
			非常用ディーゼル発電設恠䊏料移送系配管•升		－	常設	N	66－12－7	「66－12－7 然料袆唂設備して整理（系に含まれる）						
			高圧炉心スプレイ系ディーゼノ発電設備然料移送系配管•弁		－	常設	N	66－12－7	「66－12－7 然料袆䜌設備で整理（系に合まれる）						
			ガスタービン発電設犕暽料移送系配管•弁		－	常設	N	66－12－7	「66－12－7 然料補綌設備して整理（系に含まれる）						
			ホース		－	可般	N	66－12－7	「66－12－7 然料袆綌設備て整理（系に含まれる）						
			125V代替蓄電池及び125V代替充䨋器～125V直流主母線盤 $2 \mathrm{~A}-1$ 及		－	常設	N	66－12－4	「66－12－4常設代替直流電源設備｣で整理（系に含まれる）						
			電源車～電源車接続口（原子炉建屋）電路		－	可般	N	66－12－2	「66－12－2 可般型代替交流電源钤備して整理（系に合まれる）						
			電源車接続口（原子炉建㞗）～125V直流主母線盤2A－1及び 125V直流主母母線盤2B－1		－	常設	N	$\begin{array}{\|c} 66-12-4 \\ 66-12-6 \\ \hline \end{array}$							
			$250 V$ 蓄電池	運転，起動，高温停止	1組	常設	N	66－12－4							
			250V充電器		1個	常設	N	66－12－5	－		$\underset{\text { 常設代㷊交流電源設備 }}{125 \mathrm{~V} \text { 充電器 }}$	－			
			250V蓄電池及び250V交電器～250V直流主母線艋電路		－	常設	N	66－12－4	「66－12－4常設代替直流電源設備」で整理（系に含まれる）						
					－	常設	N	$\begin{array}{\|l\|l\|} \hline 66-12-4 \\ 66-12-6 \\ \hline \end{array}$							
	1.14	1.14 代替所内電気設備による給電	ガスタービン発電機接続盤	運転，起動，高温停止，泠温停止及び燃料交換	2 個	常設	N	66－12－6	－	非常用所内電気設備	－	－			
			緊急用高压母緑2F系		2系列	常設	N	66－12－6							
			緊急用高圧母緑2G系		1系列	常設	N	${ }^{66-12-6}$							
			緊急用動力変圧器2G系		1個	常設	N	66－12－6							
			緊急用低圧母綵2G系		3系列	常設	N	66－12－6							
			緊急用交流電源切替笽2G系		2個	常設	N	66－12－6							
			緊急用交流電源切替笽2C系		1個	常設	N	${ }^{66-12-6}$							
			緊急用交流電源切替笽2D		1個	常設	N	66－12－6							
			非常用高圧母線2系		－	常設	${ }^{\text {N }}$	66－12－6	「66－12－6代替所内電気設備」で整理（系に含きれる）						
			非常用高压母緑2D系		－	常設	N	66－12－6							

表No．	$\begin{aligned} & \text { 㧠庥的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO 対象SA設備	適用される	所要数	常設，可搬	N，2N	保安規定	［B］ LCO対象SA設備の機能全てを满足するSA設侢基準要求を維持できる場合） CO选摬なし	$\begin{gathered} \text { 対応するDB設備爵T N:3日 } \\ \text { 2N: } 10 \text { 日 } \end{gathered}$	［c］ LCO対象SA設備の機能全て※を 満足するSA設備 (基漼要求を满呈できない㣁等の合) AOT:30日	
66－12－7 燃料補給設 備	1.14	$\begin{array}{\|l} 1.14 \text { 燃粎補給設備に } \\ \text { よる } \end{array}$	軽油タンク	連転，起動，高温停止，泠温停止及び㜣料交換	$2,770 \mathrm{~mm}$	常設	N	66－12－7	－	－	－	－
			ガスタービン発電設墭軽油タンク		2，080mm	常設	N	66－12－7	－	－	－	－
			タンクローリ		2台	可般	N	66－12－7	－	－	－	代替品の補充等
			非常用デイーゼル発電設備然料移送系配管•并		－	常設	N	66－12－7	「66－12－7 然料補綌設備して整理（系に含まれる）			
			高圧炉ふスコ゚イイ系デイーゼル発電設備㬗料移送系配管•并		－	常設	N	66－12－7				
			ガスタービン発電設備然料移送系配管•弁		－	常設	N	66－12－7				
			ホース		－	可般	N	66－12－7				

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－13計装設備】

表No．	$\begin{aligned} & \text { 技㻢的 } \\ & \text { 能力 } \end{aligned}$	項目	LCO対象SA設備※1主要パラメータ有効監視パラメータ自主対策設備（［ ］記載）※2	適用される	所要数	常設，可般	N，2N	保安規定	［B］ LCO対象SA設備の機能全てを満足するSA設備基準要求を維持できる場合） －寏脱なし		【C】 LCO対象SA設備の機能全て※を満足する SA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日 （代替パラメータ※3）	$\begin{gathered} \text { [D] } \\ \text { 代替措置 } \\ \text { AOT }: 10 日 \\ \text { 2N: } 30 \text { 日 } \end{gathered}$
	1.15	原子炉圧力容器内の	原子炉王力容器温度		チャンル	常設	N	66－13－1	－	－	（1）主要パラメータの他の検出器 （2）原子炉圧力 2）原子炉圧力（SA） 2）原子炉水位（SA広带域） （2）原子炬水位（SA然料域） （3）残留熱除去系熱交換器入口温度	－
		坐力容器内の	原子炣圧力	運転，起動，高温停止及び浍温	1チャンネル	常設	N	66－13－1	－	－		－
			原子炉圧力（SA）		1チャンネル	常設	N	66－13－1	－	－		－
		原子炉圧力容器内の	原子炣水位（広帯域）	運転，起動，高温停止，泠温停止及び然料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出 され，かつプールゲートが閉の場合	1チャンル	常設	N	66－13－1	－	－		－
			原子炣水位（＊）＊＊＊＊＊域）		1チャンル	常設	N	66－13－1	－	－	3 1 代替循㻱泠却ポンブ出口流量 3残留熱除去系ポンプ出口流量 3低住梕心ズレイ系ポンプ出口流量 （4）原子炉圧力 4）原子炬压力（SA） （4）圧力抑制室圧力	－
			原子炣水位（SA広带域）		1チャンル	常設	N	66－13－1	－	－	（1）原子炉水位（広帯域） （1）原子炉水位（燃料域） （2）高圧代替注水系ポンプ出口流量 （2）残留熱除去系洗浄ライン流量（残留熱除 去系ヘッドスプレイライン洗浄流量） （2）残留熱除去系洗浄ライン流量（残留熱除 去系B系格納容器冷却ライン洗浄流量） （2）直流駆動低圧注水系ポンプ出ロ流量	－
			原子炉水位（SA然料域）		1チャンネ	常設	N	66－13－1	－	－	（2）高圧炬心スプレイ系ポンプ出口流量 （2）残留熱除去系ポンプ出口流量 2）低圧炉心スプレイ系ポンプ出口流量 （3）原子炉圧力 3）原子炉圧力（SA） （3）圧力抑制室圧力	－

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－13計装設備】

表No．	$\begin{aligned} & \text { 括術的的 } \\ & \text { 能力 } \end{aligned}$	項目	LCO対象SA設備※1 主要パラメータ 有効監視パラメータ自主対策設備（［ ］記載）※2	$\begin{aligned} & \text { 適用される } \\ & \text { 子炉の状態 } \end{aligned}$	所要数	常設，可般	N，2N	保安娊定	【B】 LCO対象SA設備の機能全てを満足するSA設備 （基準要求を維持できる場合） CO逸脱なし		$\begin{gathered} \text { 【C】 } \\ \text { LCO対象SA設備の機能全て※を満足する } \\ \text { (基漼要求を满備できない場合) } \\ \text { ※:事前準備寺の補完措置含む } \\ \text { AOT:30日 } \\ \text { (代替パラメータ※3) } \end{gathered}$	$2 \mathrm{~N}: 30$ 日
	1.15	原子涙圧力容器への注水量	高圧代替注水系ポンプ出口流量	運転，起動及び高温停止※ ※原子炉圧力が $1.04 \mathrm{MPa}[\mathrm{gag}$ e］以上の場合に適用する	1チャンネ	常設	N	66－13－1	－	－		－
			残留䓡除去系洗浄ライン流量（残留然除去系へソドスプレイラ イン洗浄流量）残留懸除去系洗浄ライン流量（残留懸除去系B系格納容器椧却ライン洗浄流量）	運転，起動，高温停止，泠温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出 され，かつプールゲートが閉の場合	チャンネ	常設	N	66－13－1	－	－		－
			直流駩動低圧注水系ポンプ出口流量	連転，起動及び高温停止	1チャンネル	常設	N	66－13－1	－	－		－
			代替循環分却ポンプ出口流量		1チャンネル	常設	N	66－13－1	－	－		－
			原子妒隔維時冷却系ポンプ出口流量	運転，起動及び高温停止 ※原子炉圧力が $1.04 \mathrm{MPa}[\mathrm{gag}$ e］以上の場合に適用する	1チャンネル	常設	N	66－13－1	－	－		－
			高圧炉心スゴレイ系ポンプ出口流量	運転，起動及ひ高温停止	1チャンネル	常設	N	66－13－1	－	－		－
			残留驚除去系ポンプ出口流量	運転，起動，高温停止，泠温停止及び燃料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。	1チャンネル	常設	N	66－13－1	－	－		－
			低圧炉心スプレイ系ポンプ出口流量	\|場合	1チャンネ	常設	N	66－13－1	－	－		－
			残留熟除去系洗浄ライン流量（残留愂除去系ヘッドスプレイラ イン洗浄流量）残留唃除去系洗浄ライン流量（使留然除去系B系格納容器泠却ライン洗浄流量）		1チャンネル	常設	N	66－13－1	－	－		－
			原子炉格納容器代替スゴレイ流量	運転，起動及で高温傍止	1チャンネル	常設	N	66－13－1	－	－		－
			代替循環法却戈ンプ出口流量		1チャンネル	常設	N	66－13－1	－	－		－
			原子炣格納容器下部注水流量		1チャンネル	常設	N	66－13－1	－	－		－

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－13計装設備】

表No．	$\begin{aligned} & \text { 接雬的 } \\ & \text { 能力 } \end{aligned}$	項目	LCO対象SA設備※1主要パラメータ有効監視パラメータ自主対策設備（［ ］記載）※2	適用される	所要数	常設，可般	N，2N	保安規定	［B］ LCO対象SA設備の機能全てを満足するSA設備基準要求を維持できる場合） －寏脱なし		【C】 LCO対象SA設備の機能全て※を満足する SA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日 （代替パラメータ※3）	$\begin{gathered} \text { [D] } \\ \text { 代替措置 } \\ \text { AOT }: 10 日 \\ \text { 2N: } 30 \text { 日 } \end{gathered}$
	1.15	$\left\lvert\, \begin{array}{r\|r} \text { 原㬈涙格納容器内の } \end{array}\right.$	ドライウェル温度	運転，起動及び高温停止	1チヤンネル	常設	N	66－13－1	－	－	11主要パラメータの他の検出器 2ドライウェル圧力 3）圧力抑制窒圧カ	－
			圧力抑制空内空気温度		1チャンネ	常設	N	66－13－1	－	－	（3）原力抑制室圧力	－
			サプレッションプール水温度		チャンネ	常設	N	66－13－1	－	－	1 1 主要ノ゚ラメータの他の検出器	－
			原子炉格納容器下部温度		1チャンネル	常設	N	66－13－1	－	－	11主要バラメータの他チャンネル	
		原子炉格納容器内の	ドライウェル圧力	運転，起動及び高温停止	1チャンス	常設	N	66－13－1	－	－	（1）圧力抑制室圧力 （2）ドライウェル温度 （3）ドライウェル圧カ］	－
			压力抑制室圧力		1チャンス	常設	N	66－13－1	－	－	（1ドライウエル圧力 2） （抑制室内空気温度 （3）压力押制室圧カ？	－
		原子炉格納容器内の水位	压力抑制室水位	運転，起動及び高温停止	1チャンネ	常設	N	66－13－1	－	－		－
			原子炉格納容器下部水位		1チャネル	常設	N	66－13－1	－	－		－
			ドライウェル水位		1チャンネ	常設	N	66－13－1	－	－		

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－13計装設備】

表No．	$\begin{aligned} & \text { 接㣩的的 } \\ & \text { 能力 } \end{aligned}$	項目	LCO 対象SA設備※1 主要パラメータ 有効監視パラメータ自主対策設講（［ ］記載）※2	$\begin{aligned} & \text { 適用される } \\ & \text { 炉の状態 } \end{aligned}$	所要数	常設，可般	N，2N	保安規定	［B］ LCO対象SA設備の機能全てを満足するSA設備 （基準要求を維持できる場合） CO逸脱なし	対応するDB設備 AOT N： 2N： 10 日	$\begin{gathered} \text { 【C】 } \\ \text { LCO対象SA設備の機能全て※を満足する } \\ \text { SA備 } \\ \text { (基漼要求を満足できない場合) } \\ \text { ※:事前準備等の補完措置含む } \\ \text { AOT } \\ \text { (代替パラメータータ3) } \end{gathered}$	
	1.15	原子炉格納容器内の 水素濃度	格納容器内水素濃度（D／W）	運転，起動及び高温停止	1チャンス	常設	N	66－13－1	－	－	（1）主要パラメータの他チヤンネル 2）格納容器内雰囲気水素濃度	－
			格納容器内水素濃度（ $(\mathrm{S} / \mathrm{C})$		1チャンネ	常設	N	66－13－1	－	－		－
			格納容器内雰囲気水素濃度		1チャンネ	常設	N	66－13－1	－	－		－
		$\begin{array}{\|l\|l\|} \hline \text { 原子炉格納容器内の } \\ \text { 放射䋥率辛 } \end{array}$	格納容器内雰囲気故射緑モ二年（ D / W ）	運転，起動及ひ高温停止	1チャンネル	常設	N	66－13－1	－	－		－
			格納容器内雰囲気放射綵モ二タ（S／C）		1チャンネ	常設	N	66－13－1	－	－	（1）主要パラメータの他チャンネル 2）［エリア放射線モ二タ］	－
		${ }^{\text {未視 }}$ 臨界の維持又は監	起動領域モ二タ		1チャンネ	常設	N	66－13－1	－	－		－
			平均出力領域モ二夕	運転及ひ起動	1チャンル	常設	N	66－13－1	－	－		－
			［制御塉位置指示系］	運転及び起動	1チャンネル	常設	N	66－13－1	－	－		－
		最終ヒートシンクの確 保	サプレッションプール水温度	運転，起動及び高温停止	1チャンネル	常設	N	66－13－1	－	－	（1）主要パラメータの他の検出器 2） （抑制室内空気温度	－
			残留繁除去系熱交換器入口温度		1チャネル	常設	N	66－13－1	－	－	11サフレッショョンプール水温度	－
			代替偱環浍却术ンプ出口流量（原子炉圧力容器への注水）		1チャンル	常設	N	66－13－1	－	－		－
			代替偱環浍却术ンプ出口流量（原子炉格納容器への注水）		1チャンネ	常設	N	66－13－1	－	－		－
			フィルタタ装置水位（広帯域）	運転，起動及ひ高温停止	1チャネル	常設	N	66－13－1	－	－	11主要パラメータの他チャンネル	－
			フィルタ装置入口圧力（広带域）		1チャンネル	常設	N	66－13－1	－	－	$\begin{aligned} & \text { (1)ドライウェル圧力 } \\ & \text { (1)圧力抑制室圧力 } \end{aligned}$	－
			フィルタ装置出口圧力（広带域）		1チャンネ	常設	N	66－13－1	－	－	$\begin{aligned} & \text { (1)ドライカェル崖力 } \\ & \text { (1)圧力抑制室圧力 } \end{aligned}$	－
			フィル装置水温度		1チャンネル	常設	N	66－13－1	－	－	11主要パラメータの他チャンネル	－
			フイルタタ装置出口放射線モ二タ		1チャンネル	常設	N	66－13－1	－	－	（1）要パラメータの他チャンネル	－
			フイルタ装置出口水素濃度		1チャンネル	常設	N	66－13－1	－	－	（1）格納容器内水素濃度（D／W） （1）格納容器内水素濃度（S／C）	－
		$\begin{aligned} & \text { 最蔠上ートシンクの確 } \end{aligned}$	耐圧強化ベント系放射緣モ二タ	運転，起動及ひ高温停止	1チャンル	常設	N	66－13－1	－	－	（1）主1要パラータの他チャンネル	－
		最終ヒートシンクの確保（残留熱除去系）	残留熱除去系熱交換器入口温度	運転，起動，高温停止，冷温停止及び然料交換※ ※：原子炉が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ ロー水位付近で かつプール ゲートが開の場合 （2）原子炉内から全燃料が取出 され，かつプールゲートが閉の場合	1チャンネ	常設	N	66－13－1	－	－	（1）原子炉圧力容器温度 （1）サプレッションプール水温度	－
			残留熱除去系熱交換器出口温度		チャンネル	常設	N	66－13－1	－	－	（1）残留熱除去系熱交換器入口温度 （2）原子炉補機冷却水系系䖻流量 （2）残留熱除去系熱交換器冷却水入口流量	－
			残留懸除去系ポンプ出口流量		1チャンネ	常設	N	66－13－1	－	－	（1）圧力抑制室水位 （2）残留熱除去系ポンプ出ロ圧カ	－

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－13計装設備】

表No．	$\begin{aligned} & \text { 接㣩的的 } \\ & \text { 能力 } \end{aligned}$	項目		$\begin{aligned} & \text { 適用される } \\ & \text { 皂子炉の状態 } \end{aligned}$	所要数	常設，可般	N，2N	保安規定	［B】 CO対象SA設備の機能全てを満足するSA設備 （基準要求を維持できる場合） LCO逸脱なし			［D］ 代替措置 AOT $: 10$ ． 2N： 30 日
	1.15	格納容器バイパスの監視（原子炉圧力容器内の状態）	原子炉水位（広茶域）	運転，起動及號温停止	1チャンネ	常設	N	66－13－1	－	－		－
			$\begin{aligned} & \text { 原子炉水位 (SA席带域) } \\ & \text { 皂子炉水位 (SA燃料或) } \end{aligned}$		チャンネ	常設	N	66－13－1	－	－		－
			原子炉圧力		1チャンネ	常設	N	66－13－1	－	－		－
			原子炉圧力（SA）		1チャンネ	常設	N	66－13－1	－	－		－
		格綌器バイパスの監視（原子炉格納容器（状内の状態）	ドライウェル温度	運転，起動及ひ高温停止	1チャンネ	常設	N	66－13－1	－	－		－
			ドライウェル圧カ		1チャンル	常設	N	66－13－1	－	－		－
		格納容器バイパスの臨視（原子炉建屋内の	高压炉心スプレイ系ポンプ出口圧力	運転，起動及信温停止	1チヤンネ	常設	N	66－13－1	－	－		－
			残留熱除去系ポンプ出口圧力		1チャンル	常設	N	66－13－1	－	－	（1）原子恹压力 （2）［エリア放射線毛二タ	－
			低圧炉心スペレイ系ポンプ出圧力		1チャンネ	常設	N	66－13－1	－	－		－
		水源の碓保	復水师蔵タンク水位	運転，起動，高温停止，泠温停止及び燃料交換※ ※原子炬が次に示す状態と なった場合は適用しない。 （1）原子炉水位がオーバーフ －ー水位付近で，かつプール ゲートが開の場合 （2）原子炉内から全然料が取出 され，かつプールゲートが閉の場合	チャンネ	常設	N	66－13－1	－	－	（1）高圧代替注水系ポンプ出口流量 （1）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量） （1）残留熱除去系洗浄ライン流量（残留熱除 去系B系格納容器冷却ライン洗浄流量） （1）直流駆動低圧注水系ポンプ出口流量 （1）原子炉隔離時椧却系ボンプ出口流量 （1）高圧炉心スプレイ系ポンプ出口流量 （1）原子炉格納容器下部注水流量 （2）高代替注水系ポンフ出口压力 （2）直流駆動低圧注水系ポンプ出口圧力 （2）原子炉隔離時冷却系ポンプ出口圧力 （2）高圧炉心スプレイ系ポンプ出口圧力 （2）復水移送ポンプ出口圧力 （3）原子炉水位（広帯域） （3）原子炉水位（燃料域） （3）原子炉水位（SA広帯域）	－
			压力抑制室水位	運転，起動及ひ高温停止	1チャンネ	常設	N	66－13－1	－	－	（1）主要パラメータの他チャンネル （2）代替循環冷却ポンプ出口流量 （2）残留熱除去系ポンプ出口流量 （3）代替炉心スブレイ系ボンブ出口流量 （3）代替循瓃浍却ポンブ出口圧力 	－

表No．	$\begin{aligned} & \text { 接㣩的的 } \\ & \text { 能力 } \end{aligned}$	項目	LCO 対象SA設備※1 主要パラメータ 有効監視パラメータ自主対策設備（［ ］記載）※2	$\begin{aligned} & \text { 適用される } \\ & \text { 皂子炉の状態 } \end{aligned}$	所要数	常設，可般	N，2N	保安規定			LCO対象SA設借の【C】 \qquad SA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日 （代替パラメータ※3）	$\begin{gathered} \text { [D1 } \\ \text { 代替措置 } \\ \text { AOT } \mathrm{N} 110 \mathrm{~B} \\ 2 \mathrm{~N}: 30 \text { 日 } \end{gathered}$
	1.15	原子炉建屋内の水素濃度	原子炉建屋水素濃度		チャンネル	常設	N	66－8－2	「66－8－2 限等を定を炉建屋内の水素	視」において運転上の制	（1）主要パラメータの他チャンネル （2）静的触䗋式水素再結合装置動作監視装置	－
		原子炉格納容器内の 酸内浱度	格納容器内雰囲気酸素濃度	運転，起動及び高温停止	1チャンネ	常設	N	66－13－1	－	－		－
			使用済㬗料プール水位 $/$ 温度（ヒートサーモ式）		1チャンネ	常設	N	66－9－4	「66－9－4 使用済燃料プール監視設備において運転上の制限等を定める。		```(1)使用济然料ブ一ル水位/温度バイドハ ルス式)``` ```夕(高線量,"低線量) (2)使用济㒄料ち-ル監視力メラ```	－
			使用斎然料ブール水位ノ温度（がイベパルス式）		1チャンル	常設	N	66－9－4			```(1)使用済然料プール水位/温度(ヒート サーモ式) (2)使用斎燃料プール上部空間放射線モ二 夕(高線量,低線量) (2)使用済燃料ブール監視カメラ```	
			使用济燃料フール上部空間放射綵モ二タ（高綵量，低綵量）		1チャンネ	常設	N	66－9－4			```(1)使用済燃料プール水位/温度(ヒート サーモ式) (1)使用済燃料プール水位/温度(ガイドパ ルス式) (2)使用済燃料プール監視カメラ```	
			使用济然料プール監視力メラ		1チャンネル	常設	N	66－9－4				

※1：監視パラメータのLCO対象SA設備は「主要パラメータ（重要計器）」及び代替パラメータ（重要代替計器）」とし，「代替パラメータ（重要代替計器）」は［C1列に記事
※2：有効監視ノ゚ラメメータは耐震性またはは耐環境性等はなんかが，監視可能であれば発電用原子炉施設の状態を把握することが可能な計器を示す。有効監視パラメータは運転上の制限を通用しない。

※3：代替パラメー外に記載する番号は優先順位であり，推定方法が複数あることを示す。なお，推定方法が喑数ある場合は，いずれかの方法で推定できればよい。

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－13計装設備】

表No．	$\begin{aligned} & \text { 持術的的能力力 } \end{aligned}$	項目		適用される 快の状能	所要数	常設，可搬	N，2N	保安規定			［c］ LCO対象SA設備の機能全て必を 満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措是含む AOT：30日 （代替パラメータ※3）	
	1.15	電源關係	6－2F－1母綡電圧	運転，起動，高温停止，浍温停止及び燃料交換	1チャンネル	常設	N	66－13－2	－	－	－	代替計器等による監視
			6－2F－2母緑電圧		1チャンネル	常設	N	66－13－2				
			6－2C母綵雨圧		1チャンネル	常設	N	66－13－2				
			6－2D母綵雨圧		1チャンネル	常設	N	66－13－2				
			6－2H母綵電圧		1チャンネル	常設	N	66－13－2				
			4－2C母綵雨圧		1チャンネル	常設	N	66－13－2				
			4－2D母綵電圧		1チャンネル	常設	N	66－13－2				
			$125 V$ 直流主母線2A電圧		1チャンネル	常設	N	66－13－2				
			125V直流主母線28電圧		1チャンネル	常設	N	66－13－2				
			125V直流主母䌊2－1電压		1チャンネル	常設	N	66－13－2				
			125V直流主母䌊2B－1電圧		1チャンネル	常設	N	66－13－2				
			HPCS 125 V直流主母線電圧		1チャンネル	常設	N	66－13－2				
			250V直流主母線電圧	運転，起動及び高温停止	1チャンネル	常設	N	66－13－2				
		その他	高圧离素がス供給系 ADS入口圧力	運転，起動及音高温停止	1チャンネル	常設	N	66－13－2				
			代替高圧室素がス供給系窒素がス供給止め弁入口圧力		1チャンネル	常設	N	66－13－2				
	1.15	$\begin{aligned} & 1.15 \text { 可搬型計測器に } \\ & \text { よる計測 } \end{aligned}$	可般型計測器	運転，起動 高温停止，冷温停止及び燃料交換	25個	可般	N	66－13－3	－	－	－	代替品の補充等
$\left\lvert\, \begin{aligned} & 66-13-4 \\ & \text { 録 } \end{aligned}\right.$	1.15	1．15パラメータ記録	安全パラメータ表示システム（SPDS）（データ収集装置，SPDS伝送装置，SPDS表示装置）	運転，起動，高湜停止，冷温停止及び燃料交換	1 式	常設	N	66－17－1	「66－17－1 通信連絡設備」で整理	（566－13－4パラメー女記録．	表を参照）	

表No．	$\underset{\text { 技杹的 }}{\text { 能力 }}$	対応手段	LCO 対象SA設備	適用される 偣子哣の状能原子炉の状態	所要数	常設，可般	N，2N	保安規定	$\begin{gathered} \text { [B] } \\ \text { LCO対象SA設備の機能全てを満 } \\ \text { (基準要求を維詩で犕きる場合) } \\ \text { LCO选脱なくし } \end{gathered}$	$\begin{aligned} & \text { 対応するDB設備 } \\ & \text { AOT N:3日 } \\ & \text { NN: } 10 \text { 日 } \end{aligned}$	（c） LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を满足できない場合） ※：事前準備等の補完措置含む AOT：30日	$2 \mathrm{~N}: 30$ 日				
66－14－1中央制御室 の居住性確保	1.16	1.16 居住性の磼保	中央制御室送風機	 係る作業時 ※停止余䛦礁認後の制值棒 1本の捙入－引抜を除く。	1台	常設	N	66－14－1	$-$		－	－				
			中央制御室排風機		1台	常設	N	66－14－1								
			中央制御室再循顼送風機		1台	常設	N	66－14－1								
			中央制御室再看罥フイルタ装置		1 基	常設	N	66－14－1								
			中央制御宔换気空調系ダクト・ダンパ		－	常設	N	66－14－1	「66－14－1 中央制御室の居住性碓保」て整理（系に含まれる）							
			中央制御室待避所加圧設犕（空気术ンベ）		40本	可般	N	66－14－1	－		－	代替品の補充等				
					－	常設	N	66－14－1	「66－14－1 中央制御室の居住性碓保」て整理（系に含まれる）							
			差圧計（中央制御室待逽所用）		1台	常設	N	66－14－1	－	－	－	代替品の補交等				
			酸素濃度計（中央制御室用）		2個	可般	N	66－14－1								
			二酸化宸素源度計（中央制御室用）		2個	可般	N	66－14－1								
			データ表示装置（ （待避所）		1台	常設	N	66－14－1								
			中央制御室遮葹		遮蔽（建物の壁等）については，運用による厚さの変化や故障等により機能悪失するものではないことからLCo対象とはしない（保安規定変更に係る基本方鉎4．3－（1））											
			中央制御室待避所遮蔽													
			（無線連絡設備（固定型）	運転，起動，高温停止，泠温停止及び燃料交換	－	－	－	66－17－1	「66－17－1 通信連絡設備」で整理（「66－14－1 中央制御室の居住性磪保」で他表を参照）							
			衙星電話設備（固定型）		－	－	－	66－17－1								
			無線連絡設備（屋外アンテナ）		－	－	－	66－17－1	「66－17－1 通信連絡設備｣く整理（系に含まれる）							
			斎星電話設備（屋外アンテナ）		－	－	－	66－17－1								
			可般型昭明（SA）		6 個	可般	N	66－14－1	－	－	－	代替品の補充等				
			常設代替交流電源設備		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備」を整理（566－14－1 中央制御室の居住性碓保」て他表を参照）							
	1.16	1.16 被ばく線量の低減	原子炬建屋ブローアウトパネル閉止装置	運転，起動及び高温停止	24台	常設	N	66－14－2	$-$	原子炉建屋ブローアウトパネル	－	手動操作等による閉止手段の確				

表No．	$\begin{aligned} & \text { 接䢞的的 } \end{aligned}$	対応手段	LCO 対象SA設備	適用される 皂子炬の状態	所要数	常設，可般	N，2N	保安規定		$\begin{gathered} \text { 対応するDB設備 } \\ \text { AOT N:3日 } \\ \text { 2N: } 10 \text { 日 } \end{gathered}$	［C】 LCO対象SA設備の機能全て※を満足するSA設備 （基準要求を満足できない場合） ※：事前準備等の補完措置含む AOT：30日	AOT $2 \mathrm{~N}: 30$ 日
66－15－1 監視測定設 備	1.17	1.17 放射線量の代替測定 1.17 空気中の放射性物贊の濃度の代替測定 1．17気象钫測項目の代替測定	r 線サーベイメータ	運転，起動，高温停止，冷温停止及び燃料交換	2台	可般	N	66－15－1	－	－	－	代替品の補充等
			β 線サーベイメータ		2台	可般	N	66－15－1				
			α 線べイメータ		1台	可般	N	66－15－1				
			電唯箱サーベイメータ		2台	可般	N	66－15－1				
			可般型ダスト・よう素サンプラ		2台	可般	N	66－15－1				
		1.17 放射線量の測定 1.17 放射性物質の濃度（空気中，水中，土壌中）の測定 1.17 海上モニタリング 1.17 モニタリング・ポス トの代替交流電源から の給電	可般型も二舛ングポイト		9台	可般	N	66－15－1				
			代替気象镜剆設備		1台	可般	N	66－15－1				
			小型船舶		1艇	可般	N	66－15－1				
			常設代替交流電源設犕		－	－	－	${ }^{66-12-1}$	「66－12－1常設代替交流電源設備」で整理（「66－15－1監視測定設喏」で他表を参照）			
			デー多処理装置		－	常設	N	66－15－1	系に含まれる（可般型モニタリングポスト，代替気象観邀設備）			

表No．	$\begin{aligned} & \text { 技術的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO対象SA設備	$\begin{aligned} & \text { 適用される } \\ & \text { 子炉の状態 } \end{aligned}$	所要数	常設，可般	N，2N	保安規定	［B］ LCO対象SA設備の機能全てを満足するSA設備 （基準要求を維持できる場合） LCO逸脱なし	$\begin{aligned} & \text { 対拡するDB設備 } \\ & \text { AOT N:3日 } \\ & \text { 2N: } 10 \text { 日 } \end{aligned}$	［c］ LCO対象SA設備の機能全で世を満足するSA設備 （基準要求を満足できない場合） ※：事前準僙等の䋠完措置含む АОТ：30日	AOT N：10日 $2 N: 30$ 日
66－16－1 緊急時対策所の居住㤝確保	1.18	1.18 居住性の礶保	緊急時対策所遮蔽	運転，起動，高温停止，冷温停止及ひ燃料交換	遮荍（建物の壁等）については，運用による厚さの変化や故障等により機能啔失するものではないことからLCo対象とはしない（保安規定変更に係る基本方鉃4．3－（1））							
			緊急時対策所非常用送塢機		1台	常設	N	66－16－1	－	－	－	－
			緊急時対策所非常用フイルタ装置		1 基	常設	N	66－16－1	－	－	－	－
			緊急時文策所非常用給排気配管•交		－	常設	N	66－16－1	「66－16－1 緊急時対策所の居住性䂠保」で整理（系に合まれる）			
			緊急時対策所加侕設備（空気ボンベ）	連転，起䣦，高温停止，炬心変更時※又は原子炉建㞗原子小炉諫内で照射された燃料 に係る作業時 ※漳止余瑢確㱍後の制御 棒1 1 本の挿入－引抜を除 ${ }^{\circ}$	415本	可般	N	${ }^{66-16-1}$	－	－	－	代替品の補充等
			緊急時対策所加圧設偁（配管•升）		－	常設	N	${ }^{66-16-1}$	「66－16－1 緊急時対策所の居住性碓保」で整理（系に含まれる）			
			緊急時対策所可般型エリアモニタ	運転，起動，高温停止，泠温	1台	可般	N	66－16－1	－	－	－	代替品の補充等
			可般型モ二少ングポスト		－	－	－	66－15－1	「66－15－1 監視測定設備なで整理（566－16－1 緊急時対策所の居住性硂保（対策本部）」で他表を参照）			
			酸素濃度計		1個	可般	N	66－16－1	－	－	－	代替品の補充等
			二酸化崖素濃度計		1個	可般	N	66－16－1				
			差圧計		1個	常設	N	66－16－1				
66－16－2緊急時対策源設備	1.18	1.18 代替電源設備からの給军	ガスタービン発電機	運転，起動，高温停止，冷温	－	－	－	66－12－1	「66－12－1 常設代替交流電源設備して整理（「66－16－2 緊急時対策所の代替電源設備しで他表を参照）			
			ガスタービン発電設㑮軽油タンク		－	－	－	66－12－7	「66－12－7 然料補綌設備で整理（「66－16－2 緊急時対策所の代替電源設備して他表を参照）			
			タンクローリ		－	－	－	66－12－7	「66－12－7 撚料補給設備して整理（「66－16－2 緊急時対策所の代替電源設備で他表を参照）			
			軽油タンク		－	－	－	66－12－7	「66－12－7 然料補給設備して整理（「66－16－2 緊急時対策所の代替電源設備して他表を参照）			
			ガスタービン発電設滞然料移送术ンプ		－	－	－	66－12－1	「66－12－1 常設代替交流電源設備」で整理（「66－16－2 緊急時対策所の代替電源設備しで他表を参照）			
			ガスタービン発電設供然粎移送系配管•弁		－	－	－	66－12－7	「66－12－7 燃料補綌設備」で整理（系に含まれる）			
			ホース		－	－	－	66－12－7	「66－12－7 败粎袢給設備しで整理（系に含まれる）			
			非常用デイーゼル発電設備然料移送系配管•卉		－	－	－	66－12－7				
			高圧涙心スプレイ系ディーゼル発電設備然料移送系配管•弁		－	－	－	66－12－7	「66－12－7 綮粎補給設備」て整理（系に含まれる）			
			ガスタービン発電機接続僌		－	－	－	66－12－6	「66－12－6 代替所内電気設備ぐ整理（「66－16－2 緊急時対策所の代替電源設備で他表を参照）			
			緊急用高圧母線2F系		－	－	－	66－12－6	「66－12－6 代替所内電気設犕ぐ整理（「66－16－2 緊急時対策所の代替電源讳備で他表を参照）			
			電源車（緊急時対策所用）		1台	可般	N	66－16－2	－	－	－	予備電源車 電源車接続口（緊急時対策建屋再賏 代替品の補充等
			緊急時対策所軽油タンク		2.410 mm	常設	N	66－16－2	－	－	－	代替品の補交等
			緊急時対策所橪料移送系配管•卉		－	常設	N	66－16－2	「66－16－2 緊急時対策所の代替電源設備」て整理（系に含まれる）			
			緊急時対策所用高圧母綵U系		2系列	常設	N	66－16－2	－－	－	－	1代替品の補充等
			ガスタービン発電機～緊急時対策所用高圧母線系電路		－	常設	N	66－16－2	「66－16－2 䑐急時対策所の代替電源設窚しで整理（系に含まれる）			
			電源車（緊急時対策所用）～電源車接続口（緊急時対策建 屋）電路		－	常設	N	${ }^{66-16-2}$	「66－16－2 緊急時対策所の代替電源設備」で整理（系に合まれる）			
			電源車接続口（緊急時対策建屋）～緊急時対策所用高圧母母線		－	常設	N	166－16－2	「66－16－2 緊急時対策所の代替電源設備」で整理（系に含まれる）			

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－17通信連絡設備】

表No．	$\begin{aligned} & \text { 技裇的力 } \end{aligned}$	対応手段	LCO 対象SA設備			所要数	常設，可搬	N，2N	保安規定	［B］ LCO対象SA設備の機能全てを満足するSA設備 （基準要求を維持できる場合） LCO逸脱なし	$\begin{gathered} \text { 対応するDB設犕 } \\ \text { AOT N:3日 } \\ \text { 2N: } 10 \text { 日 } \end{gathered}$	［c］ LCO対象SA設備の機能全で※を満足するSA設備 基準要求を満足できない場合 ※：事前準備等の補完措置含む AOT：30日				
	$\begin{aligned} & 1.18 \\ & 1.19 \end{aligned}$	1.18 必要な指示およ び通信連絡 1.19 発電所内の通信 連絡連絡	$\begin{aligned} & \text { 安全パラメータ表示システ } \\ & \text { 4(SPDSS) } \end{aligned}$	データ収集装置	運転，起動，高温停止，椧温停止及び燃料交換	1 式	常設	N	66－17－1	－	－	－	連絡要員の㧞保等			
				SPDS伝送装置		1 式	常設	N	66－17－1							
				SPDS 表示装置		1台	常設	N	66－17－1	－	－	－	連絡要員の追加 同種通信機の器の追加他種通信機器による通信手段確葆 こ録要員の確保等			
			統合原子力防災ネットワー	テレビ会識システム		1台	常設	N	66－17－1	－	－	－	通信機器の補交等			
				IP電話		6台	常設	N	66－17－1							
				IP－FAX		3台	常設	N	66－17－1							
			無線連絡設備（固定型）			6台	常設	N	66－17－1	－	－	－				
			無䌐連絡設備（推带型）			43台	可般	N	66－17－1							
			簿星電話設備（固定型）			6台	常設	N	66－17－1							
			暘星電話設備（携帯型）			10台	可般	N	66－17－1							
			携行型通話装置			10台	可般	N	66－17－1							
			無線連絡設備（屋外アンテナ）			－	常設	N	66－17－1	「66－17－1通信連絡設備しで整理（系に含まれる）						
			耐星電話設備（屋外アンテナ）			－	常設	N	66－17－1							
			無線通信装置			－	常設	N	66－17－1							
			簿星通信装置			－	常設	N	66－17－1							
			有緑（建屋内）			－	常設	N	66－17－1							

女川原子力発電所2号炬 重大事故等対処設備代替設備整理表【表66－18 アクセスルートの碓保】

表No．	$\begin{aligned} & \text { 技術的 } \\ & \text { 能力 } \end{aligned}$	対応手段	LCO対象SA設備	適用される原子炉の状態	所要数	常設，可般	N，2N	保安㚘定		$\begin{aligned} & \text { 対拡するDB設備 } \\ & \text { AOT N:3日 } \\ & \text { 2N: } 10 \text { 日 } \end{aligned}$		
	1.0	アクセスルート碓保	ブルドーザ	連転，起動，高温停止，冷温停止及び燃料交換	1台	可般	N	66－18－1	－	－	－	代替品の補充等
			パッカーウ		1台	可般	N	66－18－1	－	－	－	代替品の補充等

女川原子力発電所2号炉 重大事故等対処設備代替設備整理表【表66－19 大容量送水ポンブ】

資料1．（5）運転上の制限に係る重大事故等対処設備の系統毎の括り方について

運転上の制限に係る重大事故等対処設備の系統毎の括り方について

重大事故等対処設備（以下，SA 設備）に対する運転上の制限（以下，LCO）を設定するに当たり，設置許可基準規則，技術基準規則及び技術的能力の審査基準の要求 を踏まえた多様な目的に対して，同一系統を使用するものが少なくない。LCO 設定 に関しては，保安規定の運用面を考慮し，多様な目的に対して同一系統は一括りにし て整理することができることとする。以下にその配慮事項を取り纏め，詳細な内容を整理する。

1．配慮事項
－技術基準規則，設置許可基準規則及び技術的能力審查基準の要求を満足するよ ら LCO を設定する。
－取りまとめの範囲を明確にし，要求事項を満足するLCO 設定であること。
例）技術基準規則（技術的能力審査基準）の 60 条（1．2）「原子炉冷却材圧力バ ウンダリ高圧時に発電用原子炉を冷却するための設備」～71条（1．13）「重大事故等の収束に必要となる水の供給設備」を対象とし，多様な目的に対して同一系統で使用するものを，系統毎に一括りとする。
※その他の条文に係るSA設備は，設備上の観点より多様な目的のために使用する場合が無いため，対象外とする。
－重大事故等の処置に使用する配管等は，必ずどれかの SA 設備と紐付けし，必 ず LCO 設定範囲に入るよう配慮する。

2．別紙
（1）保安規定における重大事故等対処設備の運転上の制限及び完了時間整理表

$\stackrel{\circ}{8}$

	分数1						B設備 LCO逸脱したSA設備と 同等の機能を有する								（	L000経走	的考
${ }_{66-6-1}$	PCVY＊${ }^{\text {a }}$			（20分以内）	㡲		－	残留熱除去系 （格紋容スペレイ冷却モード） （非常用ディーゼル発雨機を含 （非常	 	－		0.00		－			
							－		 	－		7		－			
					1.818	 	－	$\begin{aligned} & \text { 残留熱除去系 } \\ & \text { (非常用ディイーゼルル冷却モー発機を含) } \end{aligned}$ $\left\lvert\, \begin{aligned} & \text { (非'吊 } \\ & \text { (} \end{aligned}\right.$	 	－		10.10		－			
${ }_{66-6-2}$	PCVM去却						－			－		O°		－			
				$\left\lvert\, \begin{aligned} & \text { 建屋外準備•送水（385 } \\ & \text { 分）} \\ & \text {（23時聞 }\end{aligned}\right.$ 【23時間】（DCH等）			－	残留熱除去系 （残留熱除去系 （格納容器スプレイ冷却モード） （非常用ディーゼル発電機を含 む）	原子炉格納容器代替スプレイ 冷却系（常設）（20分） 令却系（常設）（20分）	－		10		－			
					1.818		－	$\operatorname{sic}_{(i)}$		－		0.00		－			
第3薬	Pov＊＊		 	－							－			－			
第3荣	PCV率却	残留熱除去系（サプレッ シヨンプール水冷却モー \qquad		－	1.6	 					－	1.010	－	－			
${ }_{66-71}$				初期水張り（15分） 注水（5分） （5．4時間）（DCH 等）			－			－		\circ－\circ	－	－			
66－7－2					1.8		－		原子炉格納容器下部注水系 分） ，	－	$\times 10$	$\circ \circ \circ$	－	－			
${ }_{66-7-3}$							－			－		$\text { . } \circ \text { \|O }$		－			
66－8－1	建这水粦		－	－		静的触媒式水素再結合器により，原子炉建屋 制する。	－		－			－○ ○					

옹

	分颁1					きな用迬（手牦树要）		 LCO造涫時のAOT半断 （二重下下線は機能表失想		D（自主対策設滞 or 代替品） LCO；选榎時のAOT判断 2N以外 $\cdots 10$ 日， $2 \mathrm{~N} \cdots 30$ 日）	哭					LOOの歓定	微考
66－11－3					1.13	海を水源とした大容量送水ポンブは イブ I）による各種注水			－	－		$\times 0.0$	$\bigcirc \bigcirc$	－		水の供絡設淪としては，後水門宁蔵多ンク 	［ γ 設備］ クについては $942 \mathrm{~m}^{3}$ 以上となるように補給 する又は $942 \mathrm{~m}^{3}$ 以上であることを碓認す
		海水俔綌䋁湩	大容量送水ポンプによる送水（（各褈供給）	取水口取水（540分） 潅水バンナ室取水 ［解析文象外1	1.13	海を水源とした大容量送水ポンプは多 II）よる客種供給	－		－	－	\times	$\times 0.0$	$\bigcirc \bigcirc$	－		水の供給設備としては，復水貯蔵タンク の供給と海水からの供紿があり，各機能を一括りにしてLCO設定する。	
		海水俔綌設湩		取水口取水（270分）海水ポンプ室取水 ［解析対 ［解析対象外】	1.13		－	サプレッションプール（水位碓認）	－	－		$\bigcirc \bigcirc 0$	$\bigcirc \bigcirc$	－			
		海水俔綌䋁偳		取水口取水（270分）海水ボンフ室取水【解析対象外】	1.13	淡水から海水への切畮元	－	 サプレッションプール（水位確認）	－	－	\times	$\times 0.0$	$\bigcirc \circ$	－			
		低厈代替注水系（可般			1.4	 より，原子枦へ注水きる。	－		低压代替注水系（常設）（復水 谏䡃低压注水系ボンフ）	－	\times	$\bigcirc \bigcirc \bigcirc$	－	－		 置力要冰される。	
					1.4	低圧代替注水系（可㸷型）により，残存溶虽炉心を椧却する。	低圧代替注水系（常設）（復水移送ポンブ） 代替循環冷却系		低压代替洼水系常設）（復水 	－	\times		$0 \times$				
					1.4	原子炉停止中にRHR（原子炉停止時浍却モード）が故障した場合，低圧代 替注水系（可搬型）により，原子恼へ注水する。	－	非虽用炬心冷却系（自動堿圧系部除く 非賞用ディーゼル発電機合ず）	低圧代替注水系（常設）（復水移送ボンブ）（15分以内）	－	\times	1	$\bigcirc *$				
				建屋外準備•送水（385 ［畕）	1.8	溶融炉心の原子炉格納容器下部へ の落下を遅延又は防止し，原子炉圧 する。	－		低压代替注水系（ 常設）（復水移送ボンブ）（15分以内）	－	\times	1000	$1-$	－－			

			艮展手段											をわらす！	の＊＊			
表No．	分類 1					主な用迬（手体瀶要）	B設微 LCO逸脱したSA設備と同等の機能を有する	r 設洪 CO逸脱時のAOT判断 （2N以外‥3日，2N $\cdots 10$ 日）三重下線は機能喪失想定DB設備以外）	$\begin{gathered} \text { C(代替手段) } \\ \text { LCO逸脱時のAOTOT判断 } \\ \left(\begin{array}{l} \text { (10日) } \end{array}\right. \end{gathered}$	D（自主対策段沙 or LCO；选脂時のAOT判盺 （2N以外N10日，2N $\cdots 30$日）					$\begin{aligned} & \text { 涤件 } \end{aligned}$	（ex		微考
66－19－2				海水枤ンフ室（280分）取水口（325分） 395八） ートは ［解析対象外1	1.11	使用済燃料プール内の燃料倠等の 散抑制定行う。	－		－		\times	$\bigcirc \bigcirc$	\bigcirc	－	－		 ＊されていない －21においてLCOを股定する。	大気への放射珄物質の拡散抑制及び航 えで設定できることから，1つの条文にま とめて整理する。
			$\underset{\text { 大気への放射性物質の拡 }}{\text { 散抑制 }}$	海水术ン室（280分） 395分） ［解析対象象 1	1.12	 性物質の払敃抑制洔行う。	－	残留熱除去系 （格納容器スプレイ冷却モード） （サプレッションプール水冷却モード） （低圧注水モード） 使用漨紫料プール温度，水位監	－	代替㫛可曒型术ン等）	\times	$\bigcirc \bigcirc$	\bigcirc		－			
		航窨機燃料火㜽への泡	航空機燃料火災への泡消 火	$\left[\begin{array}{l} (205 \text { 分) } \\ \text { (解析対象外 } 1 \end{array}\right.$	1.12	原子炉建屋周辺において航空機燃料火災が発生した場合に，泡消火を行う。	－	残留熱除去系 （格納容器スプレイ冷却モード） （サプレッションプール水冷却モード） （低圧注水モード） 使用済燃料プール温度，水位監 退	－	代替品可雅型术ンフ等）	\times	$\bigcirc \bigcirc$	\bigcirc	\bigcirc	－			
		海水供绤設偳		取水口取水（540分）海水ボンプ室取水 ${ }^{4}$ ［解析対象外］	1.13	海を水源とした大容量送水ポンプタタ イブI）による各種供給	－	復水拧藏槽夕ンク（水位砤認） サブレッションプール（水位碓記）	－	代替品可般型术ンフ等）	\times	$\bigcirc \bigcirc$	\bigcirc	\bigcirc	－		機能を一搘りにしてLCO設定する。	タミついては942 3 以 上となるように補給
		海水供綌設偳		取水口取水（270分） 海水ポンプ室取水 （295分） 【解析対象外】	1.13		－	 サプレッションプール（水位磼認）	－	代替㫛可曒型术ンフ等）	\times	$\bigcirc \bigcirc$	$\bigcirc 0$	\bigcirc	－	－		
		海水供給設偳		取水口取水（270分）海水ポンプ室取水 （295分）【解析対象外】	1.13	淡水から海水への切澘え	－	 サプレッショョンプール（水位煺認）	－	代替㫛可曒型术ンフ等）	\times	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	\bigcirc	－	－		

\square
資料2．（2）保安規定第66条 運転上の制限等について

66－1－1	A TWS 緩和設備（代替制御棒挿入機能）
66－1－2	ATWS緩和設備 （代替原子炉再循環ポンプトリップ機能）
66－1－3	A TWS緩和設備（自動減圧系作動阻止機能）
66－2－1	高圧代替注水系（中央制御室からの遠隔起動）
$66-2-2$	高圧代替注水系および原子炬隔離時冷却系 （現場起動）
$66-2-3$	ほう酸水注入系（重大事故等対処設備）
66－3－1	代替自動減圧機能
66－3－2	主蒸気逃がし安全弁（手動減圧）
66－3－3	主蒸気逃がし安全升の機能回復
6 6－4－1	低圧代替注水系（常設）（復水移送ポンプ）
$66-4-2$	低圧代替注水系（常設） （直流駆動低圧注水系ポンプ）
$66-4-3$	低圧代替注水系（可搬型）
66－5－1	原子炉格納容器フィルタベント系
66－5－2	耐圧強化ベント系
66－5－3	可搬型窒素ガス供給装置
66－5－4	原子炉補機代替冷却水系
$66-5-5$	代替循環冷却系
66－5－6	格納容器内の水素濃度 および酸素濃度の監視
6 6－6－1	原子炉格納容器代替スプレイ冷却系（常設）
66－6－2	原子炉格納容器代替スプレイ冷却系（可搬型）
$66-7-1$	原子炉格納容器下部注水系（常設） （復水移送ポンプ）
$66-7-2$	原子炉格納容器下部注水系（常設） （代替循環冷却ポンプ）
$66-7-3$	原子炉格納容器下部注水系（可搬型）

66－8－1 静的触媒式水素再結合装置
$66-8-2$ 原子炉建屋内の水素濃度監視

66－9－1 燃料プール代替注水系
66－9－2 燃料プールスプレイ系

66－9－3 使用済燃料プールの除熱
66－9－4 使用済燃料プール監視設備
66－10－1 大気への放射性物質の拡散抑制，航空機燃料火災への泡消火
$66-10-2$ 海洋への放射性物質の拡散抑制
66－1 1－1 重大事故等収束のための水源
66－11－2復水貯蔵タンクへの供給設備
$66-11-3$ 海水供給設備
66－12－1 常設代替交流電源設備
66－12－2 可搬型代替交流電源設備
66－1 2－3 所内常設蓄電式直流電源設備
66－12－4 常設代替直流電源設備
66－12－5 可搬型代替直流電源設備
66－1 2－6 代替所内電気設備
66－1 $2-7$ 燃料補給設備
66－13－1 主要パラメータおよび代替パラメータ
66－13－2 補助パラメータ
$66-13-3$ 可搬型計測器
$66-13-4$ パラメータ記録

66－14－1 中央制御室の居住性確保
66－14－2原子炉建屋ブローアウトパネル
$66-15-1$ 監視測定設備

66－16－1 緊急時対策所の居住性確保
$66-17-1$ 通信連絡設備
$66-18-1$ ブルドーザおよびバックホウ
66－19－1 大容量注水ポンプ（タイプI）
66－19－2 大容量送水ポンプ（タイプII）

保安規定第66条
表66－5「最終ヒートシンクへ熱を輸送するための設備」
「原子炉格納容器の過圧破損を防止するための設備」
「水素爆発による原子炉格納容器の破損を防止するための設備」
「水素爆発による原子炉建屋等の損傷を防止するための設備」
$66-5-4$ 「原子炉補機代替冷却水系」

運転上の制限等について

1．保安規定記載内容の説明

2．添付資料
添付－1 運転上の制限を設定するSA設備の選定
（1）設置変更許可申請書 添付十追補 1 （系統図）

添付－2 運転上の制限に関する所要数，必要容量
（1）設置変更許可申請書 添付八（所要数，必要容量）
（2）設置変更許可申請書 添付八（設備仕様）
（3）設計及び工事計画認可申請書 説明書（設定根拠）

（1）設置亪更許可中請書 添付中追補1（自主対策設備に関する説明）
（2）設置亪更許可申請書 添付十追補1（準備㭙間）

保安規定 第66条 条文	
66－5－4 原子炉補機代替冷却水系（1）	
（1）運転上の制限	
項 目（2）	運転上の制限（3）
原子炉補機代替冷却水系	原子炉補機代替冷却水系 2 系列 ${ }^{*} 1$ が動作可能であること ${ }^{\text {a }}$

適用される原子灲の状態（4）	設 備（5）	所要数（6）
運 転 起 動高温停止泠温停止燃料交換	大容量送水ポンプ（タイプ I）	※3
	熱交換器ユニット	1 台 $\times 2 * 4 * 5$
	常設代替交流電源設備	※6
	燃料補給設備	$※ 7$

※ 1：1 系列とは，熱交換器ユニット 1 台およびホースをいう。

※2：動作可能とは，当該系統に期待されている機能を達成するための原子炉補機冷却水系 ${ }^{*} 8$
の A 系および B 系のループ配管，残留熱除去系熱交換器，サージタンク，主要配管上の手
動弁，電動弁および接続口を含む流路を構成できることを含む。
なお，動作可能であるべき原子炉補機冷却水系（接続口含む。）は，原子炉の状態が運
転，起動および高温停止においては，A系およびB系の計 2 系列，原子炉の状態が泠温停
止および燃料交換においては，A系またはB系どちらか 1 系列とする。
※ 3：「66－19－1 大容量送水ポンプ（タイプ I）」において運転上の制限等を定める。
※ 4 ：熱交換器ユニットは，第 1 保管エリアおよび第 3 保管エリアに 1 セットずつ分散配置され ていること。
※5：淡水ポンプおよび除熱ヘッダを含む。
※6：「66－12－1 常設代替交流電源設備」において運転上の制限等を定める。 ※ 7：「66－12－7 燃料補給設備」において運転上の制限等を定める。
※8：原子炉補機冷却水系のA系の泠却ラインは，「66－5－5 代替循環冷却系」と兼ねる。動作不能時は，「66－5－5 代替循環冷却系」の運転上の制限も確認する。
また，当該系統が動作不能時は，「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」の運転上の制限も確認する。
（1）設置許可基準規則（技術的能力審査基準）第四十八条（1．5）
が該当する。
また，技術的能力審査基準1．13の手順で使用する。
運転上の制限の対象となる系統•機器（添付 -1 ）
（3）以下の条文要求が運転段階でも維持できるよう，可搬型重大事故等対処設備である原子炉補機代替冷却水系 2 系列が動作可能であることを運転上の制限とする。（保安規定変更に係る基本方針4．3（1））
－設置許可基準規則（技術的能力審査基準）第四十八条（1．5）
「最終ヒートシンクへ熱を輸送するための設備（手順等）」として，設計基準事故対処設備が有する最終ヒートシンク～熱を輸送する機能が喪失した場合において炉心 の著しい損傷及び原子炉格納容器の破損を防止するため，最終ヒートシンクへ熱を輸送するために必要な設備を設ける（手順等を定める）こと。
－技術的能力審査基準 1 。 13
「重大事故等の収束に必要となる水の供給手順等」として設計基準事故の収束に必要な水源とは別に，重大事故等の収束に必要となる十分な量の水を確保することに加えて，設計基準事故及び重大事故等対処設備に対して重大事故等の収束に必要と なる十分な量の水を供給するために，必要な手順等を定めること。

熱交換器ユニットを接続する原子炉補機冷却水系の流路について，原子炉の状態が「運転，起動，高温停止」においては A 系•B系共に必要だが，「冷温停止，燃料交換」に おいては，A系又はB系どちらかが使用可能であればよい。
（4）原子炉補機代替冷却水系は，設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合において必要な設備であり，原子炬内に燃料が装荷され ている期間及び使用済燃料プールに照射された燃料体を貯蔵している期間を機能維持期間として適用する必要があることから，適用される原子炉の状態は「運転，起動，高温停止，冷温停止及び燃料交換」とする。（保安規定変更に係る基本方針4．3（1））

⑤（2）に含まれる設備

（6）大容量送水ポンプ（タイプ I）は他表にて運転上の制限を記載する。熱交換器ユニッ トは， 1 セット 1 台で必要なポンプ容量及び伝熱容量を確保できる設計としている。 また，熱交換器ユニットは，可搬型重大事故等対処設備のうち可搬型注水設備（原子炉建屋の外から水を供給するもの）であり 2 N 要求設備に該当することから，所要数 は2セット 2 台とする。（保安規定変更に係る基本方針 4 ．3（1），添付－2）

第52条 原子炬補機冷却水系との共用ライン｜
第1．5－20図 原子炉補機代替冷却水系A系による補機冷却水確保 概要図（1／2）

操作手順	弁名称
運転員（4）${ }^{\text {\＃1 }}$	RCW 代替冷却水不要負荷分離弁（A）
運転員（4）${ }^{\text {\＃2 }}$	非常用 D／G（A）冷却水出口弁（A）
運転員（4）${ }^{\text {\＃3 }}$	非常用 D／G（A）冷却水出口弁（C）
運転員（4）${ }^{\text {\＃4 }}$	RCW 常用冷却水供給側分離弁（A）
運転員（4）${ }^{\text {\＃5 }}$	RCW 常用冷却水戻り側分離弁（A）
運転員（10）${ }^{\text {a }}$（14）${ }^{\text {a\＃1 }}$	RCW 代替冷却水 RHR 負荷戻り側連絡弁（A）
運転員（10）$\left.{ }^{\text {b }} 14\right)^{\text {b\＃\＃}}$	RCW 代替冷却水 RHR 負荷戻り側連絡弁（C）
運転員（14）${ }^{\text {a\＃2 }}$	RCW 代替冷却水 RHR 負荷供給側連絡弁（A）
運転員（14）${ }^{\text {ax3 }}$	RCW 代替冷却水 FPC 他負荷供給側連絡弁（A）
運転員（14）${ }^{\text {a\＃4 }}$	RCW 代替冷却水 FPC 他負荷戻り側連絡弁（A）
運転員（14）${ }^{\text {b\＃\＃}}$	RCW 代替冷却水 RHR 負荷供給側連絡弁（C）
運転員（14）${ }^{\text {b\＃3 }}$	RCW 代替冷却水 FPC 他負荷供給側連絡弁（C）
	RCW 代替冷却水 FPC 他負荷戻り側連絡弁（C）
運転員（19）${ }^{\text {\＃1 }}$	RHR 熱交換器（A）冷却水出口弁
運転員（19）${ }^{\text {2 }}$	FPC 熱交換器（A）冷却水出口卉
重大事故等対応要員（13）	淡水ポンプ出口卉

\＃1～：同一操作手順番号内に複数の操作又は確認を実施する弁があることを示す。

第1．5－20図 原子炉補機代替冷却水系A系による補機冷却水確保 概要図（2／2）

第1．5－24図 原子炉補機代替冷却水系 B 系による補機冷却水確保 概要図（1／2）

操作手順	卉名称
運転員（4）${ }^{\text {\＃1 }}$	RCW 代替冷却水不要負荷分離弁（B）
運転員（4）${ }^{\text {\＃2 }}$	非常用 D／G（B）冷却水出口弁（B）
運転員（4）${ }^{\text {\＃3 }}$	非常用 D／G（B）冷却水出口弁（D）
運転員（4）${ }^{\text {\＃4 }}$	RCW 常用冷却水供給側分離弁（B）
運転員（4）${ }^{\text {\＃5 }}$	RCW 常用冷却水戻り側分離弁（B）
運転員（10）${ }^{\text {a }}$（14）${ }^{\text {a\＃1 }}$	RCW 代替冷却水 RHR 負荷戻り側連絡弁（B）
運転員（14）${ }^{\text {a＊2 }}$	RCW 代替冷却水 RHR 負荷供給側連絡弁（B）
運転員（14）${ }^{\text {a＊3 }}$	RCW 代替冷却水 FPC 他負荷供給側連絡弁（B）
運転員（14）${ }^{\text {a\＃4 }}$	RCW 代替冷却水 FPC 他負荷戻り側連絡弁（B）
運転員（19）${ }^{\text {\＃1 }}$	RHR 熱交換器（B）冷却水出口弁
運転員（19）${ }^{\text {2 }}$	FPC 熱交換器（B）冷却水出口弁
重大事故等対応要員（13）	淡水ポンプ出口弁

\＃1～：同一操作手順番号内に複数の操作又は確認を実施する弁があることを示す。

第 1．5－24 図 原子炉補機代替冷却水系 B 系による補機冷却水確保 概要図（2／2）

第5．10－1 表 最終ヒートシンクへ熱を輸送するための設備の主要機器仕様
（1）原子炉格納容器フィルタベント系
a．フィルタ装置
第 9．3－1 表 原子炉格納容器の過圧破損を防止するための設備の主要機器仕様に記載する。
b．フィルタ装置出口側圧力開放板
第 9．3－1 表 原子炉格納容器の過圧破損を防止するための設備の主要機器仕様に記載する。
c．遠隔手動弁操作設備
第 9．3－1 表 原子炉格納容器の過圧破損を防止するための設備の主要機器仕様に記載する。
d．可搬型窒素ガス供給装置
第 9．5－1 表 水素爆発による原子炉格納容器の破損を防止するため の設備の主要機器仕様に記載する。
（2）耐圧強化ベント系

系 統 数 1

系統設計流量

約 $10.0 \mathrm{~kg} / \mathrm{s}$
（3）原子炉補機代替冷却水系
a．熱交換器ユニット
兼用する設備は以下のとおり。
－原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却するため の設備

- 原子炉格納容器の過圧破損を防止するための設備
- 原子炬格納容器下部の溶融炉心を泠却するための設備
- 使用済燃料プールの冷却等のための設備
台 数
2 （予備1）

熱交換器
組 数
1
伝熱容量
約 20MW（1 組当たり）
（海水温度 $26^{\circ} \mathrm{C}$ において）
淡水ポンプ
台 数 1
容 量
約 $730 \mathrm{~m}^{3} / \mathrm{h}$
揚 程
約 70 m
b．大容量送水ポンプ（タイプI）
第 4．3－1 表 使用済燃料プールの冷却等のための設備の主要機器仕様に記載する。

名	称	原子灯補機代替冷却水系熱交換器ユニット（熱交換器）
容量（設計熱交換量）	MW／台	$\square 以 上(20.0)$
最高使用圧ノ	MPa	淡水側 1.18 ／海水側 1.20
最高使用温度	${ }^{\circ} \mathrm{C}$	淡水側 70 ／海水側 50
伝 熱 面 積	$\mathrm{m}^{2} /$ 台	$\square \text { 以上 (} \square \text {) }$
個 数	－	6 （予備3）
車 両 個 数	－	2 （予備 1）
－		
【設定根拠】 （概要）		

重大事故等時に，原子炉冷却系統施設のうち原子炉補機冷却設備（原子炉補機代替冷却水系） として使用する原子炉袖機代替椧却水系熱交換器ユニット（熱父換器）は，以下 σ 機能を有す る。

原子炉補機代替冷却水系熱交換器ユニット（熱交換器）は，原子炉冷却材圧カバウンダリが低圧の状態であって，設計基準対象施設が有する発電用原子炉の冷却機能が喪失した場合におい ても炉心の著しい損傷及び原子炉格納容器の破損を防止するために設置する。

系統構成は，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプI）により原子炉補機代替冷却水系熱交換器ユニット（熱交換器）に海水を送水することで，残留熱除去系等の機器で発生した熱を最終ヒートシンクである海へ輸送 できる設計とする。

原子炉補機代替冷却水系熱交換器ユニット（熱交換器）は，設計基準対象施設が有する最終ヒ ートシンクへ熱を輸送する機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器 の破損（炉心の著しい損傷が発生する前に生ずるものに限る。）を防止するため，最終ヒートシ ンクへ熱を輸送するために設置する。

系統構成は，原子炉補機冷却水系（原子炉補機冷却海水系を含を。）の故障又は全交流動力電源の喪失により，最終ヒートシンクへ熱を輸送する機能が啔失した場合において，サブレッシ ョンチェンバへの熱の蓄積により原子炉冷却機能が碓保できる一定の期問内に，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプI）に より原子炬補機代品冷却水系熱交換器ユニット（熱交換器）に海水を送水することで，残留熱除去系等の機器で発生した熱を最終ヒートシンクである海へ輸送できる設計とする。

原子炉補機代替冷却水系熱交換器ユニット（熱交換器）は，設計基準対象施設が有する原子炉格納容器内の泠却機能が喿失した場合において炉心の著しい損傷を防止するため，原子炉格納容器内の圧力及び温度を低下させるため，原子炉格納容器内の圧力及び温度並びに放射性物質 の濃度を低下させるために設置する。

系統構成は，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプ I ）により原子炉補機代替冷却水系熱交換器ユニット（熱交換器）に海水を送水することで，残留熱除去系等の機器で発生した熱を最終ヒートシンクである海へ輸送 できる設計とする。

原子炉補機代替冷却水系熱交換器ユニット（熱交換器）は，炉心の著しい損傷が発生した場合 において原子炉格納容器の過圧による破損を防止するため，原子炉格納容器バウンダリを維持 しながら原子炉格納容器内の圧力及び温度を低下させるために設置する。

系統構成は，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンブ（タイブ I ）により原子炉補機代替冷却水系熱交換器ユニット（熱交換器）に海水を送水することで，残留熱除去系等の機器で発生した熱を最終ヒートシンクである海へ輸送 できる設計とする。

原子炉補機代替冷却水系熱交換器ユニット（熱交換器）は，炉心の著しい損傷が発生した場合 において原子炉格納容器の破損を防止するため，溶融し，原子炉格納容器の下部に落下した炉心を冷却するために設置する。

系統構成は，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプI）により原子炉補機代替冷却水系熱交換器ユニット（熱交換器）に海水を送水することで，残留熱除去系等の機器で発生した熱を最終ヒートシンクである海へ輸送 できる設計とする。

原子炉補機代替冷却水系熱交換器コニット（熱交換器）は，使用済燃料プールの冷却機能又は注水機能が喪失し，又は使用済燃料プールからの水の漏えいその他の要囚により当該使用済燃料プールの水位が低下した場合において使用済燃料プール内燃料体等を泠却し，放射線を遮蔽 し，及び臨界を防止するために設置する。

系統構成は，使用済燃料プールから発生する水蒸気による悪影響を防止するために，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンブ（タイ プ I ）により原子炉補機代替冷却水系熱交換器ユニット（熱交換器）に海水を送水することで，燃料プール泠却浄化系熱交換器等で発生した熱を最終ヒートシンクである海へ輸送できる設計 とする。

1．容量の設定根拠
原子炉補機代替冷却水系熱交換器ユニット 1 台に設置される熱交換器 3 個の合計の容量は，原子炬補機代替冷却水系を用いた残留熱除去系を運転する場合として，有効性評価解析（原子炉設置変更詐可申請書添付書類十）において確認されている残留熱除去系等の機器で発生した熱を除去可能な容量を基に設定しており，有効性評価解析（原子炉設置変更許可申請書添付書類十）において確認されている容量が 18.3 MW であるため $\square \mathrm{MW} /$ 台以上とする。

公称値については，
20．0 MW／台とする。
2．最高使用圧力の設定根拠
2.1 淡水側の最高使用圧力 1.18 MPa

原子炉補機代替冷却水系熱交換器ユニット（熱交換器）を重大事故等時において使用する場合の淡水側の圧力は，原子炉補機代替冷却水系熱交換器ユニット（ポンブ）の最高使用圧力 と同じ 1.18 MPa とする。
2.2 海水側の最高使用圧力 1.20 MPa

原子炉補機代替冷却水系熱交換器ユニット（熱交換器）を重大事故等時において使用する場合の海水側の圧力は，大容量送水ボンブ（タイブ I ）の最高使用圧力と同じ 1.20 YPa とす る。

3．最高使用温度の設定根拠
3.1 淡水側の最高使用温度 $70^{\circ} \mathrm{C}$

原子炉補機代替冷却水系熱交換器ユニット（熱交換器）を重大事故等時において使用する場合の淡水側の温度は，接続先である原子炉補機冷却水系の最高使用温度と同じ $70^{\circ} \mathrm{C}$ とする。
3.2 海水側の最高使用温度 $50^{\circ} \mathrm{C}$

原子炉補機代替冷却水系熱交換器ユニット（熱交換器）を重大事故等時において使用する場合の海水側の温度は，海水出口温度約 $46^{\circ} \mathrm{C}$ を上回る $50^{\circ} \mathrm{C}$ とする。

4．伝熱面積の設定根拠
原子炬補機代替冷却水系熱交換器ユニット（熱交換器）を重大事故等時において使用する場合の伝熱面積は，要求される容量 MW／台を満足するために必要な伝熱面積 m^{2}／台以上 とする。

公称値については，要求される伝熱面積と同じ $\square \mathrm{m}^{2} /$ 台とする。
5．個数の設定根拠
原子炉補機代替冷却水系熱交換器ユニット（熱交換器）は，重大事故等対処設備として炉心 の著しい損傷及び原子炬格納容器の破損を防止するために必要な個数である 3 個を車両ごとに設置する。

6．車両個数の設定根拠
原子炉補機代替冷却水系熱交換器ユニットの車両個数は，重大事故等対処設備としての炉心 の著しい損傷及び原子炉格納容器の破損を防止するために必要な車両個数として 2 台，故障時及び保守点検による待機除外時のバックアップ用として 1 台の合計 3 台を設置する。

名	称	原子炬補機代替冾却水系熱交換器ユニット（ポンプ）
容 量	$\mathrm{m}^{3} / \mathrm{h} /$ 個	〕以上（730）
揚 程	m	】以上（ 70 ）
最高使用圧力	MPa	1． 18
最高使用温度	${ }^{\circ} \mathrm{C}$	70
原動機出力	kW／個	
個 数	－	2 （予備 1）
－		
【設定根拠】 （概要）		

として使用する原子炬補機代替冷却水系熱交換器ユニット（ポンブ）は，以下の機能を有する。
原子炉補機代替冷却水系熱交換器ユニット（ポンプ）は，原子炉冷却材圧力バウンダリが低圧 の状態であって，設計基準対象施設が有する発電用原子炉の泠却機能が喪失した場合において も炬心の著しい損傷及び原子炉格納容器の破損を防止するために設置する。

系統構成は，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，原子炬補機代替冷却水系熱交換器ユニット（ポンプ）にて循環運転を行うとともに，大容量送水ポ ンプ（タイプ I）により原子炉補機代替冷却水系熱交換器ユニット（熱交換器）に海水を送水す ることで，残留熱除去系等の機器で発生した熱を最終ヒートシンクである海へ輸送できる設計 とする。

原子炉補機代替泠却水系熱交換器ユニット（ポンプ）は，設計基準対象施設が有する最終ヒー トシンクへ熱を輸送する機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生する前に生ずるものに限る。）を防止するため，最終ヒートシン クへ熱を輸送するために設置する。

系統構成は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）の故障又は全交流動力電源の喪失により，最終ヒートシンクへ熱を輸送する機能が喪失した場合において，サプレッシ ョンチェンバへの熱の蓄積により原子炉冷却機能が確保できる一定の期問内に，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，原子炉補機代替冷却水系熱交換器ユニット（ポンプ）にて循環運転を行うとともに，大容量送水ポンプ（タイプI）により原子炬補機代替冷却水系熱交換器ユニット（熱交換器）に海水を送水することで，残留熱除去系等の機器で発生した熱を最終ヒートシンクである海へ輸送できる設計とする。

原子炬補機代替冷却水系熱交換器ユニット（ポンプ）は，設計基準対象施設が有する原子炉格納容器内の冷却機能が喪失した場合において炉心の著しい損傷を防止するため，原子炉格納容器内の圧力及び温度を低下させるため，原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させるために設置する。

系統構成は，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，原子炉補機代替冷却水系熱交換器ユニット（ポンプ）にて循環運転を行うとともに，大容量送水ポ ンブ（タイプ I ）により原子炉補機代替冷却水系熱交換器ユニット（熱交換器）に海水を送水す ることで，残留熱除去系等の機器で発生した熱を最終ヒートシンクである海へ輸送できる設計

とする。

原子炉補機代替冷却水系熱交換器ユニット（ポンプ）は，炉心の著しい損傷が発生した場合に おいて原子炉格納容器の過圧による破損を防止するため，原子炉格納容器バウンダリを維持し ながら原子炉格納容器内の圧力及び温度を低下させるために設置する。

系統構成は，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，原子炉補機代替冷却水系熱交換器ユニット（ポンプ）にて循環運転を行うとともに，大容量送水ポ ンプ（タイプ I ）により原子炉補機代替冷却水系熱交換器ユニット（熱交換器）に海水を送水す ることで，残留熱除去系等の機器で発生した熱を最終ヒートシンクである海へ輸送できる設訃 とする。

原子炉補機代替冷却水系熱交換器ユニット（ポンプ）は，炉心の著しい損傷が発生した場合に おいて原子炉格納容器の破損を防止するため，溶融し，原子炉格納容器の下部に落下した炉心 を冷却するために設置する。

系統構成は，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，原子炬補機代替冷却水系熱交換器ユニット（ポンプ）にて循環運転を行うとともに，大容量送水ボ ンプ（タイプ I ）により原子炉補機代替冷却水系熱交換器ユニット（熱交換器）に海水を送水す ることで，残留熱除去系等の機器で発生した熱を最終ヒートシンクである海へ輸送できる設計 とする。

原子炉補機代替冷却水系熱交換器ユニット（ポンプ）は，使用済燃料プールの泠却機能又は注水機能が喪失し，又は使用済燃料ブールからの水の漏えいその他の要因により当該使用済燃料 プールの水位が低下した場合において使用済燃料プール内燃料体等を椧却し，放射線を遮蔽し，及び臨界を防止するために設置する。

系統構成は，使用済燃料プールから発生する水蒸気による悪影響を防止するために，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，原子炉補機代替冷却水系熱交換器ユニット（ポンプ）にて循環運転を行うとともに，大容量送水ポンブ（タイプ I）によ り原子炉補機代替椧却水系熱交換器ユニット（熱交換器）に海水を送水することで，燃料ブール椧却浄化系熱交換器等で発生した熱を最終ヒートシンクである海へ輸送できる設計とする。

1．容量の設定根拠
原子炉補機代替冷却水系熱交換器ユニット（ポンプ）を重大事故等時において使用する場合 の容量は，最大必要冷却水量となる原子炉補機冷却水熱交換器ユニットを原子炉建屋北側付近 で使用する場合の残留熱除去系熱交換器（A），燃料プール泠却浄化系熱交換器（A），補機等に必要な冷却水を同時に供給できる容量とする。
（1）残留熱除去系熱交換器（A）
（2）燃料プール泠却浄化系熱交換器（A）
（3）補機等

- 残留熱除去系ポンプ（A）メカシール泠却器
- 残留熱除去系ポンプ（A）モータ軸受冷却器
- 燃料プール椧却浄化系ポンプ（A）軸受椧却器
- その他換気空調系
（4）合訃 ：$\square \mathrm{m}^{3} / \mathrm{h} /$ 個
上記より，原子炬補機椧却水熱交換器ユニット（ポンプ）の容量は，$\square \mathrm{m}^{3} / \mathrm{h} /$ 個を上回る $\square \mathrm{m}^{3} / \mathrm{h} /$ 個以上とする。
公称値については，
$730 \mathrm{~m}^{3} / \mathrm{h} /$ 個とする。

2．揚程の設定根拠
原子灲補機代替椧却水系熱交換器ユニット（ポンプ）を重大事故等時において使用する場合 の揚程は，下記を考慮する。
（1）原子炉補機代替冷却水系熱交換器ユニット内圧力損失
（2）ホース等の圧力損失
（3）配管•機器圧力損失
（4）合計

上記より，原子炉補機代替冾却水系熱交換器ユニット（ポンブ）を重大事故等時において使用 する場合の揚程は，$\square \mathrm{m}$ を上回る $\square \mathrm{m}$ 以上とする。

公称値については，$\square 70 \mathrm{~m}$ とする。
3．最高使用圧力の設定根拠
原子炉補機代替冷却水系熱交換器ユニット（ポンプ）を重大事故等時において使用する場合 の圧力は，接続先である原子炉補機冷却水系の最高使用圧力と同じ 1.18 MPa とする。

4．最高使用温度の設定根拠
原子炉補機代替冷却水系熱交換器ユニット（ポンプ）を重大事故等時において使用する場合 の温度は，接続先である原子炬補機冷却水系の最高使用温度と同じ $70^{\circ} \mathrm{C}$ とする。

5．原動機出力の設定根拠
原子炉補機代替冷却水系熱交換器ユニット（ポンプ）を重大事故等時において使用する場合 の原動機出力は，下記の式により，容量及び揚程を考慮し決定する。
$\mathrm{P} \mathrm{w}=10^{-3} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{Q} \cdot \mathrm{H}$
$\eta=\frac{\mathrm{P} \mathrm{w}}{\mathrm{P}} \cdot 100$
（引用文献：J I S B 0131－2002 ターボポンプ用語）
$\mathrm{P}=\frac{10^{3} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{Q} \cdot \mathrm{H}}{\eta / 100}$
ここで，
$\mathrm{P}:$ 軸動力 $(\mathrm{kW} /$ 個）
P_{w} ：水動力 $(\mathrm{kW} /$ 個）
$\rho \quad$ ：密度 $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=1000$
$\mathrm{g} \quad$ ：重力加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)=9.80665$
$\mathrm{Q}:$ 容量 $\left(\mathrm{m}^{3} / \mathrm{s} /\right.$ 個）$=730 / 3600$
$\mathrm{H} \quad:$ 揚程 $(\mathrm{m})=70$
$\eta \quad:$ ポンプ効率（\％）$\quad \square$（設計計画値）

上記より，原子炉補機代替冷却水系熱交換器ユニット（ポンブ）を重大事故等時において使用 する場合の原動機出力は必要軸動力を上回る出力として $\square \mathrm{kW} /$ 個とする。

6．個数の設定根拠
原子炉補機代替冷却水系熱交換器ユニット（ポンプ）は，重大事故等対処設備として炉心の著しい損傷及び原子炉格納容器の破損を防止するために必要な倜数である 2 個，故障時及び保守点検による待機除外時のバックアッブ用として 1 侗の合計 3 倜設置する。

場合は，常設代替交流電源設備を用いて非常用高圧母線へ電源を
供給することで残留熱除去系を復旧する。
残留熱除去系による除熱で使用する設備は以下のとおり。

- 残留熱除去系（原子炉停止時冷却モード）
- 残留熱除去系（サプレッションプール水冷却モード）
- 残留熱除去系（格納容器スプレイ冷却モード）
（b）重大事故等対処設備と自主対策設備
原子灲補機代替泠却水系による除熱で使用する設備のうち，熱交換器ユニット，大容量送水ポンプ（タイプI），ホース延長回収車， ホース・除熱用ヘッ成•接続口，原子炉補機冷却水系配管•弁・サ ージタンク，残留熱除去系熱交換器，貯留堰，取水口，取水路，海水ポンプ室，常設本ページ削除び燃料補給設備は重大事故等対処設備として位置付ける。

原子炉補機代替泠倖水系と併せ 使用する設備のらち，常設代替交流電源設備は重人事故等対処設備己して位置付ける。

また，残留勢除去系（原子炉停止時冷邦モード，サプレッション プール水冷都モード及び格納容器スプレイ却モード）は重大事故等対処設備（設計基準拡張）として位置付け

これらの機能喪失原因対策分析の結果により選定した設備は，「審査基準」及び「基準規則」に要求される設備が全て網維されている。

以上の重大事故等対処設備により，最終ヒートシンク～熱を輸送 できない場合においても，炉心の著しい損傷及び原子炉格納容器の破損を防止できる。また，以下の設備はプラント状況によっては事故対応に有効な設備であるため，自主対策設備として位置付ける。あ

保安規定第 66 条
表66－8「水素爆発による原子炉建屋等の破損を防止するための設備」
66－8－1 「静的触媒式水素再結合装置」

運転上の制限等について

1．保安規定記載内容の説明

2．添付資料
添付－1 運転上の制限を設定するS A 設備の選定
（1）設置変更許可申請書 添付八（系統図）

添付－2 運転上の制限に関する所要数，必要容量
（1）設置変更許可申請書 添付八（所要数，必要容量）
（2）設置変更許可申請書 添付八（設備仕様）

添付－3 同等な機能を有することの説明

（1）設置変更許可中請書 添付十追補 1 （自主対策設備に関する説明）

保安規定 第66条 条文	
表66－8 水素爆発による原子炉建屋等の損傷を防止するための設備	
66－8－1 静的触媒式水素再結合装置（1）	
（1）運転上の制限	
項 目（2）	運転上の制限（3）
静的触媒式水素再結合装置	静的触媒式水素再結合装置の所要数が動作可能であること

$\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { 適用される } \\ \text { 原子炉の状態（4）}\end{array} & \text { 設 備（5）} & \text { 所要数（6）} \\ \hline \begin{array}{c}\text { 運 転 } \\ \text { 起 動 } \\ \text { 高温停止 } \\ \text { 冷温停止 } \\ \text { 燃料交換※1 }\end{array} & \text { 静的触媒式水素再結合装置 } & 19 \text { 個 } \\$\cline { 2 - 3 } \& 静的触媒式水素再結合装置動作監視装置\end{array}$]$
※ 1 ：原子炉が次に示す状態となった場合は適用しない。
（1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合
（2）原子炉内から全燃料が取出され，かつプールゲートが閉の場合
※2：「66－13－1 主要パラメータおよび代替パラメータ」において運転上の制限等を定める。

項 目（7）	頻 度	担 当
1．静的触媒式水素再結合装置が動作可能であることを確認する。	定事検停止時	原子炉課長
2．原子炉の状態が運転，起動，高温停止，泠温停止お よび燃料交換 ${ }^{*}{ }^{3}$ において，所要数の静的触媒式水素再結合装置が動作可能であることを外観点検により確認する。	1ヶ月に1回	発電課長

※3：原子炉が次に示す状態となった場合は適用しない。
（1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合
（2）原子炉内から全燃料が取出され，かつプールゲートが閉の場合
（1）設置許可基準規則（技術的能力審査基準）第五十三条（1．10）が該当する。
（2）運転上の制限の対象となる系統•機器（添付 -1 ）

③ 以下の条文要求が運転段階でも維持できるよう，常設重大事故等対処設備である静的触媒式水素再結合装置の所要数が動作可能であることを運転上の制限とする。（保安規定変更に係る基本方針4。3（1））
－設置許可基準規則（技術的能力審査基準）第五十三条（1．10）
「水素爆発による原子炉建屋等の損傷を防止するための設備（手順等）」として，炉心の著しい損傷が発生した場合において，水素爆発による原子炉建屋等の損傷を防止するために必要な設備を設ける（手順を定める）こと。
（4）静的触媒式水素再結合装置及び静的触媒式水素再結合装置動作監視装置は，炬心の著 しい損傷が発生した場合に，水素爆発による原子炉建屋等の損傷を防止するための設備であり，原子灲内に燃料を装荷している期間及び使用済燃料プールに照射された燃料を貯蔵している期間を機能維持期間とするが，原子炉の状態が燃料交換において原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合は，保有水量が多く燃料プール代替注水系にて注水可能であること，また原子炉内から全燃料が取出 され，かつプールゲートが閉の場合は，燃料プール代替注水系により使用済燃料プー ル水位が維持可能であるため除くこととし，適用される原子炉の状態は「運転，起動，高温停止，泠温停止及び燃料交換（原子炉が次に示す状態となった場合は適用しない。 （1）原子炬水位がオーバーフロー水位付近で，かつプールゲートが開の場合又は（2）原子灲内から全燃料が取出され，かつプールゲートが閉の場合）」とする。（保安規定変更に係る基本方針4。3（1））
（5）（2）に含まれる設備
（6）静的触媒式水素再結合装置は，原子炉格納容器からの水素ガス漏えい量を想定し，1 9個設置されている。（保安規定変更に係る基本方針4．3（1），添付－2）

⑦適用される原子炉の状態における確認事項を記載する。（保安規定変更に係る基本方針 4．2）
a．性能確認（機能•性能が満足していることを確認する。）
項目1が該当。
静的触媒式水素再結合装置の定事検停止時の確認事項は，触媒カートリッジの機能確認を行い水素処理能力を確認する
b．動作確認（運転上の制限を満足していることを定期的に確認する。）
項目2が該当。
「保安規定変更に係る基本方針」の重大事故等対処設備のサーベイランス頻度の考え方に基づき常設設備は1ヶ月に1回，外観点検にて動作可能であることを確認する。

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{保安規定 第66条 条文} \& 記載の説明 \& 備考 \\
\hline \multicolumn{4}{|l|}{（3）要求される措置} \& \multirow[t]{6}{*}{\begin{tabular}{l}
（8）運転上の制限を満足していない場合の条件を記載する。 \\
静的触媒式水素再結合装置及び静的触媒式水素再結合装置動作監視装置は， 1 N 要求設備であるため，動作可能な個数が所要数未満となった場合を条件として記載する。 \\
（9）要求される措置について記載する。（保安規定変更に係る基本方針4．3（2），（3）） \\
【運転，起動及び高温停止】 \\
A1．重大事故等対処設備が動作不能となった場合は，対応する設計基準事故対処設備 が動作可能であることを確認することが基本的な考え方であるが，静的触媒式水素再結合装置は重大事故等緩和設備のため，もともとの設計基準事故対処設備に該当するものがない。このため，静的触媒式水素再結合装置に期待する機能であ る「炉心の著しい損傷が発生した場合において，水素爆発による原子炉建屋等の損傷を防止する」ことの前段階である炉心損傷防止の観点で最も実効的な設計基準事故対処設備を確認対象として選定することとし，具体的には低圧注水系が動作可能であることを＂速やかに＂確認する。なお，原子炉水位の回復には残留熱除去系 3 系列以上必要となることから，起動する残留熱除去系については 3 系列 とする。 \\
A2．動作不能となった重大事故等対処設備の機能を補完する自主対策設備（原子炬建屋ベント）が動作可能であることを目視点検等により碓認する。完了時間は設計其淮事敃対処設備が動作可能である場合のAOT上限（1 N未满）である「3且間」とする。 \\
放し，原子炬建屋燃料取替床天井部に滞留した水素を大気へ排出することで，原子炉建屋内における水素の滞留を防止できるため，静的触媒式水素再結合装置の㙨能を代替できる。（添付一 3） \\
A23．当該設備を動作可能な状態に復旧する。完了時間は，設計基準事故対処設備当謓幾能を補完于る白主対策設備が動作可能である場合のAOT上限（1 N 未満）で ある「310日間」とする。 \\
B1．，B2．既保安規定と同様の規定とする。 \\
【泠温停止及び燃料交換（原子炉が次に示す状態となった場合は適用しない。（1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合又は（2）原子炉内から全燃料が取出され，かつプールグートが閉の場合）】 \\
A1．当該設備を動作可能な状態に復旧する措置を＂速やかに＂開始する。 \\
A2．【運転，起動及び高温停止】におけるA1．と同様の考え方で，炉心損傷防止の観点 から，保安規定第 40 条（非常用炉心冷却系その 2 ）で要求される非常用炉心冷却系が動作可能であることを＂速やかに＂確認する。 \\
A3．動作不能となった重大事故等対処設備の機能を補完する自主対策設備が動作可能 であることを目視点検等により＂速やかに＂確認する。 \\
A34．原子炉内から全燃料が取出された場合も考慮し，使用済燃料プールの水位及び温度の確認を＂速やかに＂行い使用済燃料プールに異常がないことを確認する。
\end{tabular}} \& \\
\hline 適用される
原子 炉
の
状 態 \& 条 件（8） \& 要求される措置（9） \& 完了時間 \& \& 運転上の制限を逸脱した場合における要求される措置等の変更 \\
\hline \[
\begin{array}{ll}
\text { 運 } \& \text { 転 } \\
\text { 起 } \& \text { 動 }
\end{array}
\]
高温停止 \& A．動作可能な静的触媒式水素再結合装置が所要数 を満足していな い場合 \& \begin{tabular}{l}
A1．発電課長は，低圧注水系 3 系列を起動し，動作可能であることを確認する 44 ととも に，その他の設備 \({ }^{*} 5\) が動作可能であること を確認する。 \\
および \\
A2．発電課長は，当該機能を補完する自主対策設備＊＊＊が動作可能であることを確認する。 および \\
A2る．発電課長は，当該設備を動作可能な状態 に復旧する。
\end{tabular} \& 速やかに

3 日開

310 日闡 \& \&

\hline \& B．条件 A で要求さ れる措置を完了時間内に達成で きない場合 \& $$
\begin{aligned}
& \hline \text { B1. 発電裸長は, 高温停止にする。 } \\
& \text { および } \\
& \text { B2. 発電課長は, 洽温停止にする。 }
\end{aligned}
$$ \& 24時間 \& \&

\hline 泠温停止燃料交換 $* 6=$ \& A．動作可能な静的触媒式水素再結合装置が所要数 を満足していな い場合 \& | A1．発電課長は，当該設備を動作可能な状態に復旧する措置を開始する。 |
| :--- |
| および |
| A2．発電課長は，第 40 条で要求される非常用炉心冷却系 1 系列を起動し，動作可能であ ることを確認する ${ }^{4} 4$ とともに，残りの非常用炉心冷却系が動作可能であることを確認 する 7 7 |
| および |
| A3．発電課長は，当該機能を補完する自主対策設備＊6が動作可能であることを確認する。 まよび |
| A34．発電課長は使用済燃料プール水位がオー バーフロー水位付近であることおよび水温 が $65^{\circ} \mathrm{C}$ 以下であることを確認する。 | \& \& \&

\hline \multicolumn{4}{|l|}{| ※ 4 ：運転中のポンプについては，運転状態により確認する。 |
| :--- |
| ※5：非常用ディーゼル発電機 2 台（A系および B 系），原子炉補機泠却水系 2 系列および原子炬補機冷却海水系 2 系列をいい，至近の記録等により動作可能であることを碓認する。 |
| ※6：原子师建屋ベント設備をいう。 |
| ※67：原子炉が次に示す状態となった場合は適用しない。 |
| （1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合 |
| （2）原子炬内から全燃料が取出され，かつプールグートが閉の場合 |
| ※78：「動作可能であること」の碓認は，至近の記録等により動作可能であることを確認する。 |} \& \&

\hline
\end{tabular}

（注）19個のうち 4 個の静的触媒式水素再結合装置の入口側及び出口側に熱電対を設置

第 9．6－2 図 水素爆発による原子炉建屋等の損傷を防止するための設備系統概要図（静的触媒式水素再結合装置による水素濃度の上昇抑制）

9．6．2．2 悪影響防止

基本方針については，「1．1．7．1 多様性，位置的分散，悪影響防止等」 に示す。

静的触媒式水素再結合装置は，原子炉建屋燃料取替床壁面近傍に設置し，他の設備と独立して作動する設計とするとともに，重大事故等時の再結合反応による温度上昇が重大事故等時に使用する他の設備に悪影響を及ぼさない設計とする。

静的触媒式水素再結合装置動作監視装置及び原子炉建屋内水素濃度は，他 の設備と電気的な分離を行うことで，他の設備に悪影響を及ぼさない設計と する。また，静的触媒式水素再結合装置動作監視装置は，静的触媒式水素再結合装置内の水素流路を妨げない配置及び寸法とすることで，静的触媒式水素再結合装置の水素処理性能に悪影響を及ぼさない設計とする。

9．6．2．3 容量等

基本方針については，「1．1．7．2 容量等」に示す。
静的触媒式水素再結合装置は，想定される重大事故等時において，有効燃料部の被覆管がジルコニウムー水反応により全て反応したときに発生する水素（約 990 kg ）が，原子炉格納容器の最高使用圧力の 2 倍における原子炉格納容器漏えい率に対して保守的に設定した漏えい率（ $10 \% /$ 日）で漏えいし た場合において，ガス状よう素による性能低下及び水素再結合反応開始の不確かさを考慮しても，原子炬棟内の水素濃度及び酸素濃度が可燃領域に達す ることを防止するために必要な水素処理容量を有する設計とする。

また，静的触媒式水素再結合装置は，原子炉棟内の水素の効率的な除去を考慮して分散させ，適切な位置に配置する。

静的触媒式水素再結合装置動作監視装置は，静的触媒式水素再結合装置作

第 9．6－1 表 水素爆発による原子炉建屋等の損傷を防止するための設備の主要機器仕様
（1）静的触媒式水素再結合装置

種 類	触媒式
個 数	19
水素処理容量	約 $0.5 \mathrm{~kg} / \mathrm{h}(1$ 個当たり）
	（水素濃度 $4.0 \mathrm{vol} \%, 100^{\circ} \mathrm{C}$ ，大気圧
	において）

（2）静的触媒式水素再結合装置動作監視装置
第 6．4－1 表 計装設備（重大事故等対処設備）の主要機器仕様に記載す る。
（3）原子炉建屋内水素濃度
第 6．4－1 表 計装設備（重大事故等対処設備）の主要機器仕様に記載す る。

- 可搬型代替交流電源設備
- 燃料補給設備

なお，原子炉格納容器頂部注水系（可搬型）による原炉ウェ ルへの注水は，淡水貯水槽の淡水だけでなく，淡水タックの淡水又は海水も利用できる。
（c）水素排出による原子炉建屋等の損傷防止
i ．原子炬建屋ベント設備による水素排出
原子炉建屋原子炉棟内に水素が漏えい儿，原子炉建屋原子炉棟内の水素濃度が上昇した場合，原子炉建屋ベント設備を開放し，原子炉建屋燃料取替床天井部の水素を大気へ排出することで，原子炉建屋原子炉棟內における水集の滞留を防止する手段がある。

原子炉建屋ベント識備による水素排出で使用する設備は以下 のとおり。

本ページ削除

- 原子炉建屋ベン 艮設備
- 大容量送水ポ プ（タイブI）
- ホース延長回収車
－ホース
- 放水砲
- 㡜料補給設備
（d）重事故等対処設備と自主対策設備
水素濃度制御による原子炉建屋等の損傷防止で使成する設備のう ち，静的触媒式水素再結合装置，静的触媒式水素再結合装置動作監視装置，原子炉建屋原子炉棟，原子炉建屋内水素濃度，常課代替交流電源設備，可搬型代替交流電源設備，代替所内電気設備，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直㳘

電源設備は重大事故等対処設備として位置づける。
これらの選定した設備は，「審査基準」及び「基準規則」に要求さ れる設備が全て網羅されている。

以上の重大事故等対処設備により，炉心の著しい損傷が牪生した場合に紈いて，水素爆発による原子炉建屋等の損傷を防州することがで きる。

また，以下の設備はプラント状況によっては事故対応に有効な設備 であるため，目主対策設備と位置づける。あわゃて，その理由を示す。
－原子炉ウェルに注水するための設備（原子炉格納容器頂部注水系
（常設）及び原子炉格納容器頂部沙水系（可搬型））
原子炉格納容器からの水素漏えいを防止する効果に不確かさ はあるが，原子炉格納容器頂部を冷却してドライウェル主フラン ジのシール材の本ページ削除 とにより，原子炉建屋原子炉棟内への水素漏えいを枊制てきることから有効である。
－原子炉建屋ベント談備
原子炉建屋燃料取替床の天井部烕放する操作であり放射性物質を低減する機能はないが，仮に原子炉建屋原子炉棟内に漏えい した水素㿪静的触媒式水素再結合装置で処理しきれない場合にお いて，水素を排出することで，原子炉建屋原子炉棟内における水素か滞留を防止する手段として有効である。
b．手煩等
上記「 a 。水素爆発による原子炉建屋等の損傷を防止するための対
応手段及び設備」により選定した対応手段に係る手順を整備鸟る。
これらの手順は，運転員及び重大事故等対応要員の対応とし非常時操作手順書（シビアアクシデント），非常時操作手順書（設備別

保安規定第66条
表66－10「発電所外への放射性物質の拡散を抑制するための設備」
66－10－2「海洋への放射性物質の拡散抑制」

運転上の制限等について

1．保安規定記載内容の説明

2．添付資料
添付－1 運転上の制限を設定するSA設備の選定
（1）設置変更許可申請書 添付十追補1（設置箇所）

添付－2 運転上の制限に関する所要数，必要容量
（1）設置変更許可申請書 添付八（所要数，必要容量）
（2）設置変更許可申請書 添付八（設備仕様）
（3）設計及び工事計画認可申請書 説明書（設定根拠）

保安規定 第66条 条文		
$66-10-2$ 海洋への放射性物質の拡散抑制（1）		
（1）運転上の制限		
項 目（2）	運転上の制限（3）	
海洋ヘの拡散抑制設備 （シルトフェンス）	所要数が使用可能であること	

適用される 原子炉の状態（4）	設 備（5）	所要数（6）
運 転 起 動 高温停止 泠温亭止 燃料交換	シルトフェンス※1	

※ 1 ：南側排水路排水桝用（高さ $5 \mathrm{~m} \times$ 幅 5 m ）： 2 本，タービン補機放水ピット用（高さ $7 \mathrm{~m} \times$ 幅 $5 \mathrm{~m}): 2$ 本，北側排水路排水桝用（高さ $6 \mathrm{~m} \times$ 幅 11 m ）： 2 本，取水口用（高さ $12 \mathrm{~m} \times$ 幅 20 m ）： 6 本

（2）確認事項

（2）確認事項

項 目（7）	頻 度	担 当
1．シルトフェンスについて，所要数が使用可能であること を外観点検により確認する。	3 ヶ月に 1 回	防災課長

（1）設置許可基準規則（技術的能力審査基準）第五十五条（1．12）が該当する。
（2）運転上の制限の対象となる系統•機器（添付－1）
（3）以下の条文要求が運転段階においても維持できるよう，可搬型重大事故等対処設備で ある海洋拡散抑制設備の所要数が使用可能であることを運転上の制限とする。（保安規定変更に係る基本方針4．3（1））
－設置許可基準規則（技術的能力審査基準）第五十五条（1．12）
「工場等外への放射性物質の拡散を抑制するための設備（手順等）」として，炉心の著しい損傷及び原子炉格納容器の破損又は使用済燃料プール内の燃料集合体等の著しい損傷に至った場合において工場等外への放射性物質の拡散を抑制するため に必要な設備を設ける（手順等を定める）こと。
（4）海洋への拡散抑制設備は，炉心の著しい損傷及び原子炉格納容器の破損又は使用済燃料プール内の燃料集合体等の著しい損傷により発電所外へ放射性物質が拡散するこ との抑制のために必要な設備であり，原子炉格納容器破損に至る可能性のある原子炉 の状態及び使用済燃料プールに照射された燃料を貯蔵している期間において待機が必要な設備であることから，適用される原子炉の状態は「運転，起動，高温停止，冷温停止及び燃料交換」とする。（保安規定変更に係る基本方針4．3（1））
（5）②に含まれる設備
⑥ シルトフェンスは， 1 N 要求設備である。南側排水路排水桝用（高さ $5 \mathrm{~m} \times$ 幅 5 m ）は 1本で 1 組として 2 組（ 2 本），タービン補機放水ピット用（高さ $7 \mathrm{~m} \times$ 幅 5 m ）は 1 本で 1 組として 2 組（ 2 本），北側排水路排水桝用（高さ $6 \mathrm{~m} \times$ 幅 11 m ）は 1 本で 1 組として 2 組（ 2 本）及び取水口用（高さ $12 \mathrm{~m} \times$ 幅 20 m ）は 3 本で 1 組として 2 組（ 6 本）を設置するため，所要数を 12 本とする。（保安規定変更に係る基本方針 4 3（1），添付－2）
（7）適用される原子炉の状態における確認事項を記載する。（保安規定変更に係る基本方針 4．2）
a．動作確認（運転上の制限を満足していることを定期的に確認する。）項目 1 が該当。
「保安規定変更に係る基本方針」の可搬型重大事故等対処設備のサーベラインス頻度の考え方に基づき 3 ヶ月に 1 回，使用可能であることを確認する。

設備については，3ヶ月に 1 回の外観点検等により，必要な機能を満足している ことを確認する。

保安規定 第66条 条文				記載の説明	備考
（3）要求される措置				（8）運転上の制限を満足しない場合の条件を記載する。海洋への拡散抑制設備（シルトフ ェンス）は 1 N 要求設備であるため，所要数が 1 N 未満となった場合を条件として記載する。 （9）要求される措置について記載する。（保安規定変更に係る基本方針4．3（2），（3））【運転，起動及び高温停止】 A1．，A2．重大事故等対処設備が動作不能となった場合は，対応する設計基準事故対処設備が動作可能であることを確認することが基本的な考え方であるが，海洋への拡散抑制設備（シルトフェンス）は緩和設備のため，設計基準事故対処設備に該当 するものがない。このため，当該設備に期待する機能である「炉心の著しい損傷及 び原子炉格納容器の破損又は使用済燃料プール内の燃料集合体等の著しい損傷に至った場合において工場等外への放射性物質の拡散を抑制する」ことの前段階で ある原子炉格納容器破損防止及び使用済燃料プールの健全性確保の観点で最も実効的な設計基準事故対処設備を確認対象として選定することとし，具体的には残留熱除去系（低圧注水モード，格納容器スプレイ冷却モード，サプレッションプー ル水泠却モード）が動作可能であること，使用済燃料プールの水位及び水温が保安規定第54条（使用済燃料プールの水位•水温）に定められている制限値を満足し ていることを確認する。完了時間は＂速やかに＂とする。 A3．1．当該設備の機能を補完する代替措置（フェンスの補充等）を検討し，原子炉主任技術者の確認を得て実施する。完了時間は設計基準事故対処設備が動作可能であ る場合のAOT上限（1 N未満）である「3日間」とする。 A3．2．当該設備の機能を補完する自主対策設備が動作可能であることを確認する。対 象となる設備は「設置変更許可申請書（添付書類十）」の技徍的能力で整理した「族 射性物質吸着材」が該当し，完了時間は設計基準事故対処設備が使用可能である場 合の $10 T$ 上限（ 1 N 未满）である「3日間」とする。 A4．当該系統を使用可能な状態に復旧する。完了時間は代替措置を実施した場合の A OT上限の「10日間」とする。 B1．，B2．既保安規定と同様の設定とする。 【冷温停止及び燃料交換】 A1．当該系統を使用可能な状態に復旧する措置を＂速やかに＂開始する。 A2．【運転，起動及び高温停止】におけるA2．と同様。ただし，泠温停止及び燃料交換 であることから，完了時間は＂速やかに＂とする。 A3．1．【運転，起動及び高温停止】におけるA3．1．と同様。ただし，椧温停止及び燃料交換であることから，実施する措置を＂速やかに＂開始する。 A3．2．【運転，起動及び高温停止】におけるA3．2．と同様。ただし，冷温停止及び燃料交換であることから，実施する措置を＂速やかに＂開始する。	
適用される 原 の 状 能	条 件（8）	要求される措置（9）	完了時間		運転上の制限を逸脱した 場合になける要求される 措置等の変更
$\begin{array}{ll} \text { 運 } & \text { 転 } \\ \text { 起 } & \text { 動 } \end{array}$ 高温停止	A．海洋への拡散抑制設備（シルト フェンス）が所要数を満足して いない場合	A1．発電課長は，残留熱除去系 1 系列を起動し，動作可能であることを確認する 2 とともに， その他の設備＊${ }^{3}$ が動作可能であることを碓認 する。 および A2．発電課長は，使用済燃料プールの水位がオー バーフロー水位付近にあることおよび水温が $65^{\circ} \mathrm{C}$ 以下であることを確認する。 および A3．1．防災課長は，代替措置＊${ }^{*}$ を検討し，原子炉主任技術者の確認を得て実施する。 または \qquad設備少がが使用可能であることを確認する。 および A4．防災課長は，当該設備を使用可能な状態に復旧する。			
	B．条件 A で要求さ れる措置を完了時間内に達成で きない場合	B1．発電課長は，高温停止にする。 および B2．発電課長は，泠温停止にする。	24 時間 36 時間		
椧温停止燃料交換	A．海洋への拡散抑制設備（シルト フェンス）が所要数を満足して いない場合	A1．防災課長は，当該設備を使用可能な状態に復旧する措置を開始する。 および A2．発電課長は，使用済燃料プールの水位がオー バーフロー水位付近にあることおよび水温が $65^{\circ} \mathrm{C}$ 以下であることを確認する。 および A3．1．防災課長は，代替措置＊${ }^{*}$ を検討し，原子炉主任技術者の確認を得て実施する措置を開始 する。 または 			
※2：運転中のポンプについては，運転状態により確認する。 ※ $3:$ 残りの残留熱除去系 2 系列をいい，至近の記録等により動作可能であることを碓認する。 ※ 4 ：代替品の補充等をいう。 ※5：放射牲物質吸着林をいう。					

第 1.12-8図 シルトフェンスの設置位置図

放水設備（大気への拡散抑制設備），放水設備（泡消火設備）又は海洋へ の拡散抑制設備（シルトフェンス）である大容量送水ポンプ（タイプII），放水砲，泡消火薬剤混合装置及びシルトフェンスは，他の設備から独立して保管及び使用することで，他の設備に悪影響を及ぼさない設計とする。

放水砲は，放水砲の使用を想定する重大事故等時において必要となる屋外 の他の設備に悪影響を及ぼさない設計とする。

大容量送水ポンプ（タイプII），放水砲及び泡消火薬剤混合装置は，輪留 めによる固定等をすることで，他の設備に悪影響を及ぼさない設計とする。

大容量送水ポンプ（タイプ II）は，飛散物となって他の設備に悪影響を及 ぼさない設計とする。

9．7．2．3 容量等

基本方針については，「1．1．7．2 容量等」に示す。
放水設備（大気への拡散抑制設備）又は放水設備（泡消火設備）である大容量送水ポンプ（タイプ II），放水砲及び泡消火薬剤混合装置は，想定され る重大事故等時において，大気への放射性物質の拡散抑制又は航空機燃料火災への対応に対して，放水砲による直状放射により原子炉建屋の最高点であ る屋上に放水又は噴霧放射により広範囲に放水するために必要な容量を有す るものを 1 セット 1 台使用する。また，大容量送水ポンプ（タイプII）は，淡水貯水槽への水の供給設備との同時使用時には更に 1 台使用する。大容量送水ポンプ（タイプ II）の保有数は，1セット 2 台に加えて，故障時及び保守点検による待機除外時のバックアップ用として 1 台の合計 3 台を保管する。放水砲及び泡消火薬剤混合装置の保有数は，1セット 1 台に加えて，故障時及び保守点検による待機除外時のバックアップ用として 1 台の合計 2 台を保管する。

海洋への拡散抑制設備（シルトフェンス）であるシルトフェンスは，想定 される重大事故等時において，海洋への放射性物質の拡散を抑制するため，設置場所に応じた高さ及び幅を有する設計とする。保有数は，各設置場所の幅に応じた必要な本数 2 組に加えて，故障時及び保守点検による待機除外時 のバックアップ用として各設置場所に対して 1 組の合計 3 組を保管する。

9．7．2．4 環境条件等

基本方針については，「1．1．7．3 環境条件等」に示す。
放水設備（大気への拡散抑制設備），放水設備（泡消火設備）又は海洋へ の拡散抑制設備（シルトフェンス）である大容量送水ポンプ（タイプ II），放水砲，泡消火薬剤混合装置及びシルトフェンスは，屋外に保管及び設置し，想定される重大事故等時における環境条件を考慮した設計とする。

大容量送水ポンプ（タイプ II），放水砲及び泡消火薬剤混合装置の接続及 び操作は，想定される重大事故等時において，設置場所で可能な設計とする。大容量送水ポンプ（タイプII），放水砲及び泡消火薬剤混合装置は，使用時に海水を通水するため，海水影響を考慮した設計とする。

大容量送水ポンプ（タイプII）は，海水を直接取水する際の異物の流入防止を考慮した設計とする。

シルトフェンスは海に設置するため，耐腐食性材料を使用する設計とする。

9．7．2．5 操作性の確保

基本方針については，「1．1．7．4 操作性及び試験•検査性」に示す。放水設備（大気への拡散抑制設備），放水設備（泡消火設備）又は海洋へ の拡散抑制設備（シルトフェンス）である大容量送水ポンプ（タイプ II），放水砲，泡消火薬剤混合装置及びシルトフェンスは，想定される重大事故等

第 9．7－1 表 発電所外への放射性物質の拡散を抑制するための設備の主要機器仕様
（1）放水設備（大気への拡散抑制設備）及び放水設備（泡消火設備）
a ．大容量送水ポンプ（タイプII）
第 5．7－1 表 重大事故等の収束に必要となる水の供給設備の主要機器仕様に記載する。
b ．放水砲
兼用する設備は以下のとおり。
－使用済燃料プールの泠却等のための設備
台 数
1 （予備1）
c．泡消火薬剤混合装置
容 量
1，000L
台 数
1 （予備1）
（2）海洋への拡散抑制設備（シルトフェンス）
a．シルトフェンス
（a）南側排水路排水桝用

組 数	2 （予備1）	
高	さ	約 5 m
幅		約 5 m （1組当たり）

（b）タービン補機放水ピット用
組 数
2 （予備1）
高 さ
幅
約 7 m
約 5 m （1組当たり）
（c）北側排水路排水桝用
組 数
高 さ
幅
2 （予備1）
約 6 m
約 11 m （ 1 組当たり）
（d）取水口用

組 数
高 さ
幅

2 （予備1）
約 12 m
約 60 m （1組当たり）

> 設定根拠
> 関連個所を下線にて示す

2.4 原子炉格納施設

2．4．1 シルトフェンス

名 称			シルトフェンス
$\begin{aligned} & \text { 高 } \\ & さ \end{aligned}$	南 側 排 水 路 排 水 桝 用	m	約 5
	タービン補機放水ピット用	m	約7
	北 側 排 水 路 排 水 桝 用	m	約 6
	取 水 口 用	m	約 12
幅	南 側 排 水 路 排 水 桝 用	m／本	約 5
	タービン補機放水ピット用	m ／本	約 5
	北 側 排 水 路 排 水 栘 用	m／本	約 11
	取 水 口 用	m／本	約 20
個 数	南 側 排 水 路 排 水 栘 用	－	2 （予備 1）
	タービン補機放水ピット用	－	2 （予備 1）
	北 側 排 水 路 排 水 栘 用	－	2 （予備 1）
	取 水 口 用	－	6（予備 3）

【設定根拠】

（概要）
重大事故等時に核燃料物質の取扱施設及び貯蔵施設のうち放射性物質拡散抑制系として使用す るシルトフェンスは，以下の機能を有する。

シルトフェンスは，炉心の著しい損傷及び原子炉格納容器の破損又は使用済燃料プール内の燃料体等の著しい損傷に至った場合において，重大事故等対処設備として海洋への放射性物質の拡散を抑制するために設置する。

シルトフェンスは，汚染水が発電所から海洋に流出する 4 箇所（南側排水路排水桝，タービン補機放水ピット，北側排水路排水桝及び取水口）に設置することで，大気への放射性物質の拡散 を抑制するための放水砲による放水を実施した場合において，放水によって取り込まれた放射性物質の海洋への拡散を抑制できる設計とする。

重大事故等時に原子炉格納施設のうち放射性物質拡散抑制系として使用するシルトフェンス は，以下の機能を有する。

シルトフェンスは，炉心の著しい損傷及び原子炉格納容器の破損又は使用済燃料プール内の燃料体等の著しい損傷に至った場合において，重大事故等対処設備として海洋への放射性物質の拡散を抑制するために設置する。

シルトフェンスは，汚染水が発電所から海洋に流出する 4 箇所（南側排水路排水桝，タービン補機放水ピット，北側排水路排水桝及び取水口）に設置することで，大気への放射性物質の拡散 を抑制するための放水砲による放水を実施した場合において，放水によって取り込まれた放射性物質の海洋への拡散を抑制できる設計とする。

シルトフェンスの設置位置図を図 1 に示す。

1．高さの設定根拠

1.1 南側排水路排水桝用

重大事故等時に南側排水路排水桝に設置するシルトフェンスの高さは，フロート式（カーテ ン付）であることから，排水桝の水深を考慮し，南側排水路排水栘の底部まで届く高さである約5mとする。
1.2 タービン補機放水ピット用

重大事故等時にタービン補機放水ピットに設置するシルトフェンスの高さは，フロート式（カ ーテン付）であることから，放水ピットの水深を考慮し，タービン補機放水ピットの底部まで届く高さである約7m とする。
1.3 北側排水路排水桝用

重大事故等時に北側排水路排水桝に設置するシルトフェンスの高さは，フロート式（カーテ ン付）であることから，排水桝の水深を考慮し，北側排水路排水桝の底部まで届く高さである約 6 m とする。
1.4 取水口用

重大事故等時に取水口に設置するシルトフェンスの高さは，フロート式（カーテン付）であ ることから，取水口の水深を考慮し，取水口の底部まで届く高さである約 12 m とする。

2．幅の設定根拠
2.1 南側排水路排水桝用

重大事故等時に南側排水路排水桝に設置するシルトフェンスの幅は，南側排水路排水桝の幅 を考慮し，約 5 m とする。

南側排水路排水桝用のシルトフェンスは，1 本当たりの幅を約 5 m として， 1 本 1 組で使用す る。
2.2 タービン補機放水ピット用

重大事故等時にタービン補機放水ピットに設置するシルトフェンスの幅は，タービン補機放水ピットの幅を考慮し，約 5 m とする。

タービン補機放水ピット用のシルトフェンスは，1 本当たりの幅を約 5 m として， 1 本 1 組で使用する。
2.3 北側排水路排水桝用

重大事故等時に北側排水路排水桝に設置するシルトフェンスの幅は，北側排水路排水桝の幅 を考慮し，約 11 m とする。

北側排水路排水桝用のシルトフェンスは，1 本当たりの幅を約 11 m として， 1 本 1 組で使用 する。
2.4 取水口用

重大事故等時に取水口に設置するシルトフェンスの幅は，取水口を囲うために必要な幅を考慮し，約 60m とする。

取水口用のシルトフェンスは， 1 本当たりの幅を約 20 m として， 3 本 1 組で使用する。

3．個数の設定根拠

シルトフェンスは，放射性物質拡散抑制機能の信頼性向上のため，それぞれの設置場所に二重 に設置することとし，各設置場所に対して 2 組の合計 12 本を使用する設計とする。

予備については，破れ等の破損時のバックアップとして，各設置場所に対して 1 組の合計 6 本 を保管する。
シルトフェンスの個数の内訳について表 1 に示す。

表1 シルトフェンスの個数

名 称	個数（本）		
	必要数	予備	合計
南側排水路排水桝用	2	1	3
タービン補機放水ピット用	2	1	3
北 側 排 水 路 排 水 桝 用	2	1	3
取 水 口 用	6	3	9
合 計	12	6	18

図1 シルトフェンスの設置位置図

保安規定第66条
表66－1 2 「電源設備」
66－12－1「常設代替交流電源設備」

運転上の制限等について

1．保安規定記載内容の説明

2．添付資料
添付－ 1 運転上の制限を設定するSA設備の選定
（1）設置変更許可申請書 添付八（電源系，燃料移送系 系統図）

添付－2 運転上の制限に関する所要数，必要容量
（1）設置変更許可申請書 添付八（所要数，必要容量）
（2）設置変更許可申請書 添付八（設備仕様）

添付 -3 同等な機能を有する説明

（1）設置変更許可申請書 添付十追補1（準備時間）

保安規定 第66条 条文	
表66－12 電源設備	
66－12－1 常設代替交流電源設備（1）	
（1）運転上の制限	
項 目（2）	運転上の制限（3）
常設代替交流電源設備	常設代替交流電源設備が動作可能であること ${ }^{\text {c }}$

適用される原子炉の状態（4）	設 備（5）	所要数（6）
運 転 起 動 高温停止 椧温停止 燃料交換	ガスタービン発電機	2 台
	ガスタービン発電設備軽油タンク	※2
	ガスタービン発電設備燃料移送ポンプ	2 台
	タンクローリ	※2
	軽油タンク	※2

※1：当該系統が動作不能時は，「66－16－2 緊急時対策所の代替電源設備」の運転上の制限 も確認する。
※2：「66－12－7 燃料補給設備」において運転上の制限等を定める。
（2）確認事項

| 項 目（7） | 頻 度 | 担 当 |
| :---: | :---: | :---: | :---: |
| 1．ガスタービン発電機が模擬信号で作動することおよび運
 転状態（電圧等）に異常のないことを確認する。 | 定事検停止時 | 電気課長 |
| 2．ガスタービン発電機を起動し，動作可能であることを確
 認する。 | 1 ヶ月に 1 回 | 発電課長 |
| 3．ガスタービン発電設備燃料移送ポンプを起動し，動作可
 能であることを確認する。 | 1 ヶ月に 1 回 | 発電課長 |

（1）設置許可基準規則（技術的能力審査基準）第五十七条（1．14）が該当する。
（2）運転上の制限の対象となる系統•機器（添付－1）
③ 以下の条文要求が運転段階においても維持できるよう，常設代替交流電源設備が動作可能であることを運転上の制限とする。（保安規定変更に係る基本方針4．3（1）） －設置許可基準規則（技術的能力審査基準）第五十七条（1．14）

「電源設備（手順等）」では，電源が喪失したことにより重大事故等が発生した場合 において炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中における原子炉内の燃料体の著しい損傷を防止する ために必要な電力を確保するために必要な設備を設置する（手順を定める）こと。
（4）常設代替交流電源設備は，非常用電源が喪失した場合に重大事故等の防止•緩和に必要な設備に対し給電を行うために必要な設備であり，原子炉内に燃料が装荷されてい る期間及び使用済燃料プールに照射された燃料を貯蔵している期間を機能維持期間 として適用する必要があることから，適用される原子炉の状態は「運転，起動，高温停止，泠温停止及び燃料交換」とする。（保安規定変更に係る基本方針4．3（1））
（5）②に含まれる設備
ガスタービン発電機は，想定される重大事故等時において，必要な電力を確保するた め， 2 台を所要数とする。
ガスタービン発電設備燃料移送ポンプは，想定される重大事故等時において，ガスタ ービン発電機の運転に必要な燃料を補給するため 2 台を所要数とする。（保安規定変更に係る基本方針4．3（1），添付 -2 ）
（7）適用される原子炉の状態における確認事項を記載する。（保安規定変更に係る基本方針4．2）
a ．性能確認（機能•性能が満足していることを確認する。）
項目1が該当。
定事検停止時の点検に合わせ，性能確認を実施する。
b．動作確認（運転上の制限を満足していることを定期的に確認する。）項目2，3が該当。
「保安規定変更に係る基本方針」の重大事故等対処設備のサーベイランス頻度の考 え方に基づき常設設備は1ヶ月に1回，動作可能であることを確認する。


```
66-12-6 にて整理
```

$8-10-224$

第 10．2－1 図 代替電源設備系統概要図（常設代替交流電源設備による給電）（ガスタービン発電機から非常用所内電気設備を経由して給電）

第 10．2－2 図 代替電源設備系統概要図（常設代替交流電源設備による給電）（ガスタービン発電機から代替所内電気設備 を経由して給電）

第 10．2－3図 代替電源設備系統概要図（常設代替交流電源設備による給電）（ガスタービン発電機の燃料系統）

第 10．2－14図 代替電源設備系統概要図（燃料補給設備による給油）（軽油タンクからガスタービン発電設備軽油タンクヘ の補給）

事故等時に弁操作等により重大事故等対処設備としての系統構成とするこ とで，他の設備に悪影響を及ぼさない設計とする。

タンクローリは輪留めによる固定等をすることで，他の設備に悪影響を及 ぼさない設計とする。

10．2．2．3 容量等

基本方針については，「1．1．7．2 容量等」に示す。
ガスタービン発電機は，想定される重大事故等時において，炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するために必要な容量を有する設計とする。

ガスタービン発電設備軽油タンクは，想定される重大事故等時において， その機能を発揮することが必要な重大事故等対処設備が，事故後 7 日間連続運転するために必要となる燃料を補給可能な容量を，軽油タンクよりタンク ローリを用いて補給する容量を考慮して有する設計とする。

ガスタービン発電設備燃料移送ポンプは，想定される重大事故等時におい て，ガスタービン発電機の運転に必要な燃料を補給できるポンプ容量を有す る設計とする。

電源車は，想定される重大事故等時において，最低限必要な設備に電力を供給できる容量を有するものを1セット 2 台使用する。保有数は， 2 セット 4 台に加えて，故障時及び保守点検による待機除外時のバックアップ用とし て 1 台の合計 5 台を保管する。

なお，バックアップ用の 1 台は，緊急時対策所用代替交流電源設備の電源車（緊急時対策所用）の予備としても使用する。

125 V 蓄電池 2 A 及び 125 V 蓄電池 2 B は，想定される重大事故等時において，

第 10．2－1 表 代替電源設備の主要機器仕様
（1）常設代替交流電源設備
a．ガスタービン発電機
ガスタービン

台 数 2
使用燃料 軽油
出 力 約 3，600kW（1台当たり）
発電機
台 数
2

種 類
三相同期発電機
容 量
約4，500kVA（1台当たり）
力 率
0．80（遅れ）
電 圧
6． 9 kV
周 波 数
50Hz
b．ガスタービン発電設備軽油タンク
基 数
3
容 量約 110kL（1 基当たり）
c．ガスタービン発電設備燃料移送ポンプ

| 台 数 | 2 |
| :--- | :--- | :--- |
| 容 量 | 約 $3.0 \mathrm{~m}^{3} / \mathrm{h} ~(1$ 台当たり） |
| 全 圧 力 | 約 0.5 MPa ［gage］ |

保安規定第66条
表66－12「電源設備」
66－12－2「可搬型代替交流電源設備」

運転上の制限等について

1．保安規定記載内容の説明

2．添付資料
添付－1 運転上の制限を設定するSA設備の選定
（1）設置変更許可申請書 添付八（系統図）

添付－2 運転上の制限に関する所要数，必要容量
（1）設置変更許可申請書 添付八（所要数，必要容量）
（2）設置変更許可申請書 添付八（設備仕様）

添付一 3 同等な機能を有する説明

（1）設置変更許可申請書 添付十追補 1 （準備時間）

保安規定 第66条 条文		
$66-12-2$ 可搬型代替交流電源設備（1）		
（1）運転上の制限		
項 目（2）	運転上の制限（3）	
可搬型代替交流電源設備	可搬型代替交流電源設備2系列※1が動作可能であること※2	

| $\begin{array}{c}\text { 適用される } \\ \text { 原子炉の状態（4）}\end{array}$ | 設 備（5） | |
| :---: | :--- | :---: |$]$ 所要数（6）

※ 1：1 系列とは，電源車 2 台をいう。
※2：動作可能とは，電源車接続口（原子炉建屋西側）または電源車接続口（原子炉建屋東側）に接続 できることを含む。
※3：電源車は，第 2 保管エリアおよび第 3 保管エリアに分散配置されていること。
※ 4：「66－12－7 燃料補給設備」において運転上の制限等を定める。
（2）確認事項

| 項 目（7） | 頻 度 | 担 当 |
| :---: | :---: | :---: | :---: |
| 1．電源車を起動し，運転状態（電圧等）に異常のないこ
 とを確認する。 | 2 年に 1 回 | 防災課長 |
| 2. 電源車を起動し，動作可能であることを確認する。 | 3 ヶ月に 1 回 | 防災課長 |

（1）設置許可基準規則（技術的能力審査基準）第五十七条（1．14）が該当する。
（2）運転上の制限の対象となる系統•機器（添付－1）
（3）以下の条文要求が運転段階においても維持できるよう，可搬型代替交流電源設備 2 系列が動作可能であることを運転上の制限とする。（保安規定変更に係る基本方針4．3 （1））
－設置許可基準規則（技術的能力審査基準）第五十七条（1．14）
「電源設備（手順等）」では，電源が喪失したことにより重大事故等が発生した場合 において炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中における原子炉内の燃料体の著しい損傷を防止する ために必要な電力を碓保するために必要な設備を設置する（手順を定める）こと。
（4）可搬型代替交流電源設備は，非常用電源が喪失した場合に重大事故等の防止•緩和に必要な設備に対し給電を行うために必要な設備であり，原子炉内に燃料が装荷されて いる期間及び使用済燃料プールに照射された燃料を貯蔵している期間を機能維持期間として適用する必要があることから，適用される原子炉の状態は「運転，起動，高温停止，冷温停止及び燃料交換」とする。（保安規定変更に係る基本方針4．3（1））
（5）②に含まれる設備
（6）電源車は，可搬型重大事故等対処設備のうち可搬型代替電源設備（原子炉建屋の外か ら電気を供給するもの）であり 2 N 要求設備に該当する。想定される重大事故等時に おいて，最低限必要な設備に電力を供給できる容量を有するもの1 想定さット 2 台とし て，2セット 4 台を所要数とする。（保安規定変更に係る基本方針 4．3（1），添付 -2 ）
（7）適用される原子炉の状態における確認事項を記載する。（保安規定変更に係る基本方針4．2）
a．性能確認（機能•性能が満足していることを確認する。）
項目 1 が該当。
「保安規定変更に係る基本方針」の可搬型重大事故等対処設備のサーベイランス頻度の考え方に基づき 2 年に 1 回，性能確認を実施する。
b．動作確認（運転上の制限を満足していることを定期的に確認する。）項目2が該当。
「保安規定変更に係る基本方針」の重大事故等対処設備のサーベイランス頻度の考 え方に基づき可搬型設備は 3 ヶ月に 1 回，動作可能であることを確認する。

保安規定 第66条 条文			
（3）要求される措置			
適用される 原 子 炬 の状能	条 件（8）	要求される措置（9）	完了時間
$\begin{array}{ll} \text { 運 } & \text { 転 } \\ \text { 起 } & \text { 動 } \end{array}$ 高温停止	A．動作可能な可搬型代替交流電源設備 が 2 系列未満 1 系列以上の場合	A1．防災課長は，残りの可搬型代替交流電源 設備が動作可能であることを確認する。 および A2．発電課長は，非常用ディーゼル発電機 1台（A采，B系または高圧炉心スプレイ系）を起動し，動作可能であることを確認するとともに，その他の設備 ${ }^{* 5}$ が動作可能であることを確認する。 および A3．1．発電課長は，当該機能と同等な機能を持つ重大事故等対処設備 ${ }^{6} 6$ が動作可能 であることを確認する。 または A3．2．防災課長は，当該機能を補完する自主 認する。 または A3．23．防災課長は，代替措置 $\% 78$ を検討し，原子炉主任技術者の碓認を得て実施す る。 および A4．防災課長は，当該系統を動作可能な状態 に復旧する。	速やかに 速やかに 10日間 10月聞 10 日間 30 日間

（8）運転上の制限を満足していない場合の条件を記載する。
可搬型代替交流電源設備は 2 N 要求設備であるため，運転，起動及び高温停止におい ては，動作可能な系統数が 2 N 未満（ 1 N 以上）となった場合と 1 N 未満となった場合を条件として設定する。
泠温停止及び燃料交換においては， 2 N 未満（ 1 N 以上）と 1 N 未満となった場合と で要求される措置が同じになるため， 2 N 未満となった場合を条件として設定する。
（9）要求される措置について記載する。（保安規定変更に係る基本方針4．3（2），（3））【運転，起動及び高温停止】
A1．動作可能な可搬型代替交流電源設備が 2 系列未満 1 系列以上となった場合には，残りの可搬型代替交流電源設備が動作可能であることを確認する。動作確認の結果，動作可能な可搬型代替交流電源設備が 1 系列以上の場合には，条件 A で要求 される措置を継続して実施し， 1 系列未満の場合には条件 B へ 移行し，条件 B で要求される措置を実施する。なお，完了時間は＂速やかに＂とする。

A2．重大事故等対処設備が動作不能となった場合は，対応する設計基準事故対処設備 が動作可能であることを確認する。対象となる設備は「設置変更許可申請書（添付書類十）」の技術的能力で整理した＂機能㙄失を想定する設計基準事故対処設備＂ である非常用ディーゼル発電機（A系，B系及び高圧炉心スプレイ系）が該当し，完了時間は＂速やかに＂とする。

A3．1．動作不能となった重大事故等対処設備と同等の機能を有する重大事故等対処設備が動作可能であることを＂速やかに＂確認する。対象となる設備は「設置変更許可申請書（添付書類十）」の技術的能力で整理した常設代替交流電源設備が該当 し，完了時間は対応する設計基準事故対処設備が動作可能である場合のAOT上限（ 2 N 未満（ 1 N 以上）である「 10 日間」とする。

A3．2．動作不能となった重大事故等対処設備の機能を補完する自主対策設備が使用可能であることを硙認する。対象となる設備は「設置奕更許可申請書（添付書類十） の技術的能力で整理した「号炬間電力融通設備」が該当し，完了時間は対応する設計基準事故対処設備が動作可能である場合のAOT上限（ 2 N 未満（ 1 N 以上） である「10日聞」とする。

```
\必要容量】
    3号焐からの電力融通に期待する場会,3号烦の非常用ディーゼル発電機は1
        基あたり約6,100kWWであり,電源車よりも大容量であるため,必要容量を满足
        する。
    [準備時開\
    電源車による受電まで約125分であるのに対して,号覑閫電力融通ケーブル
```



```
        (常設)の場合は30分であり,電源車よりも短時闁で準備できることから,
        *開短縮の補完措置は不要である。
        また, 号炬開電力融通ケーブル(可搬型)による受電の場合は約 2 2 5 分かか
        ることから, 事前漼備等の時聞短綋措置を行い, 125分以内に受電できる体
        制を整える。(添付一3)
```

A3．23．動作不能となった重大事故等対処設備の機能を補完する代替措置（発電機の補充等）を検討し，原子炉主任技術者の確認を得て実施する。完了時間は設計基準

保安規定 第66条 条文				記載の説明 事故対処設備が動作可能である場合のAOT上限（2 N未満（1 N以上））である「10日間」とする。 A4．当該系統を動作可能な状態に復旧する。完了時間は同等の機能を有する重大事故等対処設備が動作可能な場合，補完する自主対策設備が動作可能であることを確認した場合又は代替措置を実施した場合のAOT上限の「30日間」とする。	備考
					運転上の制限を逸脱した
適用される 原子炉 の状態	条 件（8）	要求される措置（9）	完了時間		場合における要求される措置等の変更
$\begin{array}{ll} \text { 運 } & \text { 転 } \\ \text { 起 } & \text { 動 } \end{array}$高温停止	B．動作可能な可搬型代替交流電源設備 が 1 系列未満の場合	B1．1．発電課長は，非常用ディーゼル発電機 1 台（A系，B系または高圧炉心スプレ イ系）を起動し，動作可能であることを確認するとともに，その他の設備 ${ }^{*} 5$ が動作可能であることを確認する。 および	速やかに	B1．1．，B2．1．A2．と同様。 B1．2．A3．1．と同様。ただし，完了時間は 1 N 未満のため「 3 日間」とする。 B1．3．A4．と同様。	
		B1．2．発電課長は，当該機能と同等な機能を持つ重大事故等対処設備 ${ }^{6} 6$ が動作可能 であることを確認する。 および	3 日間	B2．2．2．A3．23．と同様。ただし，完了時間は 1 N 未満のため「3日間」とする。	
		B1．3．防災課長は，当該系統を動作可能な状態に復旧する。 または	30日間	B2．3．A4．と同様。ただし，完了時間は 1 N 未满のため「 10 日間」とする。 C1．，C2．既保安規定と同様の設定とする。	
		B2．1．発電課長は，非常用ディーゼル発電機 1台（A系，B系または高圧炉心スプレ イ系）を起動し，動作可能であることを確認するとともに，その他の設備＊5が動作可能であることを確認する。 および	速やかに		
		 主対策設侟＂7が使用可能であることを碓認する。 または B2．2．2．防災課長は，代替措置 $\%$ なを検討 し，原子炉主任技術者の確認を得て実施 する。 および B2．3．防災課長は，当該系統を動作可能な状態に復旧する	3 日聞 3 日間 10日間		
	C．条件 A または B で要求される措置を完了時間内に達成 できない場合	$\begin{aligned} & \text { C1. 発電課長は, 高温停止にする。 } \\ & \text { および } \\ & \text { C2. 発電課長は, 泠温停止にする。 } \end{aligned}$	$\begin{aligned} & 24 \text { 時間 } \\ & 36 \text { 時間 } \end{aligned}$		

共

－
 $\frac{\text { 㽞 }_{6.9 \mathrm{kv}} \mathrm{M}}{\text { 回 }}$

第 10．2－4 図 代替電源設備系統概要図（可搬型代替交流電源設備による給電）（電源車から非常用所内電気設備を経由し
て給電）

第 10．2－5 図 代替電源設備系統概要図（可搬型代替交流電源設備による給電）（電源車から代替所内電気設備を経由して給電）

第 10．2－11 図 代替電源設備系統概要図（可搬型代替直流電源設備による給電）（電源車から代替所内電気設備を経由し
て給電 (125V 系統))

第 10．2－12 図 代替電源設備系統概要図（可搬型代替直流電源設備による給電）（電源車から代替所内電気設備を経由し
て 給電 (250V 系統))

第 10．2－3図 代替電源設備系統概要図（常設代替交流電源設備による給電）（ガスタービン発電機の燃料系統）

第 10．2－14 図 代替電源設備系統概要図（燃料補給設備による給油）（軽油タンクからガスタービン発電設備軽油タンクへ の補給）

事故等時に弁操作等により重大事故等対処設備としての系統構成とするこ とで，他の設備に悪影響を及ぼさない設計とする。

タンクローリは輪留めによる固定等をすることで，他の設備に悪影響を及 ぼさない設計とする。

10．2．2．3 容量等

基本方針については，「1．1．7．2 容量等」に示す。
ガスタービン発電機は，想定される重大事故等時において，炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するために必要な容量を有する設計とする。

ガスタービン発電設備軽油タンクは，想定される重大事故等時において， その機能を発揮することが必要な重大事故等対処設備が，事故後7日間連続運転するために必要となる燃料を補給可能な容量を，軽油タンクよりタンク ローリを用いて補給する容量を考慮して有する設計とする。

ガスタービン発電設備燃料移送ポンプは，想定される重大事故等時におい て，ガスタービン発電機の運転に必要な燃料を補給できるポンプ容量を有す る設計とする。

電源車は，想定される重大事故等時において，最低限必要な設備に電力を供給できる容量を有するものを1セット 2 台使用する。保有数は，2セット 4台に加えて，故障時及び保守点検による待機除外時のバックアップ用とし て 1 台の合計 5 台を保管する。

なお，バックアップ用の 1 台は，緊急時対策所用代替交流電源設備の電源車（緊急時対策所用）の予備としても使用する。

125 V 蓄電池 2 A 及び 125 V 蓄電池 2 B は，想定される重大事故等時において，
d．軽油タンク
第 10．1－5 表 非常用ディーゼル発電機（高圧炉心スプレイ系ディー ゼル発電機を含む。）の主要機器仕様に記載する。
e．タンクローリ

台 数
容 量

2 （予備1）
約 4．0kL（1台当たり）
（2）可搬型代替交流電源設備
a．電源車
エンジン
台 数 4 （予備 ${ }^{* 1}$ ）
使用燃料軽油

発電機
台 数
4 （予備 ${ }^{*}{ }^{1}$ ）
種 類
三相同期発電機
容 量
約 400kVA（1台当たり）
力 率
0.85 （遅れ）

電 圧
6． 9 kV
周 波 数
50 Hz
※1：可搬型代替交流電源設備の電源車，可搬型代替直流電源設備の電源車又は緊急時対策所用代替交流電源設備の電源車（緊急時対策所用）として使用する。

保安規定第66条
表66－1 3 「計装設備」
66－13－1「主要パラメータおよび代替パラメータ」

1．保安規定記載内容の説明

2．添付資料
添付－1 運転上の制限を設定するSA設備の選定
（1）設置変更許可申請書 添付八（系統図）

添付－2 運転上の制限に関する所要数，必要容量
（1）設置変更許可申請書 添付八（所要数，必要容量）
（2）設置変更許可申請書 添付十（所要数，必要容量）

添付－3 同等な機能を有することの説明
（1）設置変更許可申請書 添付八 （代替パラメータによる主要パラメータの推定）

保安規定 第66条 条文				記載の説明	備考
適用される原子炉の状態（4）	主要パラメータ	代替パラメータ		（4）各計器が要求される原子炉の状態を記載する。（保安規定変更に係る基本方針4．3（1）） 【原子炉圧力容器への注水量】 各設備が機能していることを確認するために必要な設備であり，原子炉内に燃料が装荷 されている期間を機能維持期間とするが，原子炉の状態が燃料交換において原子炉水位 がオーバーフロー水位付近で，かつプールゲートが開の場合は，保有水量が多く燃料プー ル代替注水系にて注水可能であること，また原子炬内から全燃料が取出され，かつプール ゲートが閉の場合は，原子炉への注水が不要となるため除くこととし，適用される原子炉 の状態は「運転，起動，高温停止，泠温停止及び燃料交換（原子炉が次に示す状態となっ た場合は適用しない。（1）原子炉水位がオーバーフロー水位付近で，かつプールゲート が開の場合又は（2）原子炬内から全燃料が取出され，かつプールゲートが閉の場合）」 とする。	
	要素	要素	推定方法		
$\begin{array}{ll}\text { 運 } & \text { 転 } \\ \text { 起 } & \text { 動 }\end{array}$ 高温停止 泠温停止 燃料交換 ${ }^{*}$ 7	残留熱除去系洗浄ライン流量（残留熱除去系へッ ドスプレイライ ン洗浄流量）	（1）復水貯蔵タンク水位	水源である復水貯蔵夕 ンク水位の変化量によ り注水量を推定する。な お，復水貯蔵タンクの補給状況も考慮した上で注水量を推定する。		
		（2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炉水位（SA燃料域）	原子炉水位の変化量に より注水量を推定する。		
	残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器洽却ラ イン洗浄流量）	（11復水貯蔵タンク水位	水源である復水貯蔵夕 ンク水位の変化量によ り注水量を推定する。な お，復水貯蔵タンクの補給状況も考慮した上で注水量を推定する。		
		（2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（S A広帯域） （2）原子炉水位（S A 燃料域）	原子炉水位の変化量に より注水量を推定する。		
	残留熱除去系 ポンプ出口流量	（1）圧力抑制室水位	水源である圧力抑制室水位の変化量により注水量を推定する。		
			原子炉水位の変化量に より注水量を推定する。		
	低圧炬心スプレ イ系ポンプ出口流量	（1）圧力抑制室水位	水源である圧力抑制室水位の変化量により注水量を推定する。		
		（2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炉水位（SA燃料域）	原子炉水位の変化量に より注水量を推定する。		
※ 7 ：原子炬が次纪示す状態となった場合は適用しない。 （1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲートが閉の場合					

保安規定 第66条 条文				記載の説明	備考
6．格納容器内の温度				（4）各計器が要求される原子炉の状態を記載する。（保安規定変更に係る基本方針4．3（1）） 【格納容器内の温度】 原子炉格納容器の過圧破損防止を把握するために必要な設備であり，原子炉格納容器の破損が発生する可能性のある期間を機能維持期間として適用する必要があることから，適用される原子炉の状態は「運転，起動及び高温停止」とする。	
適用される原子炉の状態（4）	主要パラメータ	代替パラメータ			
	要素	要素	推定方法		
$\begin{array}{ll}\text { 運 } & \text { 転 } \\ \text { 起 } \\ \text { 動 }\end{array}$高温停止	ドライウェル 温度	$\begin{aligned} & \text { (1)主要パラメータの他 } \\ & \text { の検出器 } \end{aligned}$	$\text { ドライウェル温度の } 1 \text { つの }$検出器が故障した場合は，他の検出器により推定す る。		
		（2）ドライウェル圧力	飽和温度／圧力の関係を利用してドライウェル圧力に よりドライウェル温度を推定する。		
		（3）圧力抑制室圧力	飽和温度／圧力の関係を利用して圧力抑制室圧力によ りドライウェル温度を推定 する。		
	圧力抑制室内空気温度	（1）主要パラメータの他 の検出器	圧力抑制室内空気温度の 1 つの検出器が故障した場合 は，他の検出器により推定 する。		
		（2）サプレッションプー ル水温度	サプレッションプール水温度により圧力抑制室内空気温度を推定する。		
		（3）圧力抑制室圧力	飽和温度／圧力の関係を利用して圧力抑制室圧力によ り圧力抑制室内空気温度を推定する。		
	$\begin{aligned} & \text { サプレッションプ } \\ & \text { ール水温度 } \end{aligned}$	$\begin{aligned} & \text { (1)主要パラメータの他 } \\ & \text { の検出器 } \end{aligned}$	サプレッションプール水温度の 1 つの検出器が故障し た場合は，他の検出器によ り推定する。		
		（2）圧力抑制室内空気温度	圧力抑制室内空気温度によ りサプレッションプール水温度を推定する。		
	原子炉格納容器下部温度	$\begin{aligned} & \text { (1)主要パラメータの他 } \\ & \text { チャンネル } \end{aligned}$	原子炉格納容器下部温度の 1 チャンネルが故障した場合は，他チャンネルにより推定する。		

保安規定 第66条 条文				記載の説明	備考
9．格納容器内の水素濃度				（4）各計器が要求される原子炉の状態を記載する。（保安規定変更に係る基本方針4．3（1）） 【格納容器内の水素濃度】 水素爆発による原子炉格納容器の破損を防止するために必要な設備であり，原子炉格納容器の破損が発生する可能性のある期間を機能維持期間として適用する必要があること から，適用される原子炉の状態は「運転，起動及び高温停止」とする。	
適用される原子炉の状態（4）	主要パラメータ	代替パラメータ			
	要素	要素	推定方法		
$\begin{array}{ll} \text { 運 転 } \\ \text { 起 動 } \\ \text { 高温停止 } \end{array}$	格納容器内水素濃度（D／ W）	（1）主要パラメータの他 チャンネル	格納容器内水素濃度（D／W） の1チャンネルが故障した場合は，他チャンネルにより推定する。		
		（2）格納容器内雰囲気水素濃度	格納容器内雰囲気水素濃度に より推定する。		
	格納容器内水素濃度（S／ C）	（1）主要パラメータの他 チャンネル	格納容器内水素濃度（S／C） の1チャンネルが故障した場合は，他チャンネルにより推定する。		
		（2）格納容器内雰囲気水素濃度	格納容器内雰囲気水素濃度に より推定する。		
	格納容器内雾囲気水素濃度	（1）主要パラメータの他 チャンネル	格納容器内雰囲気水素濃度の 1 チャンネルが故障した場合 は，他チャンネルにより推定 する。		
		（2）格納容器内水素濃度 （ D / W ） （2）格納容器内水素濃度 $(\mathrm{S} / \mathrm{C})$	格納容器内水素浱度（D／W） および格納容器内水素濃度 （S C C）により推定する。		

保安規定 第66条 条文				記載の説明	備考
11．末輱の維持または監視				（4）各計器が要求される原子炉の状態を記載する。（保安規定変更に係る基本方針4．3（1）） 【未臨界の維持または監視】 制御棒又はほう酸水により原子炉が停止していることを確認するために必要な設備であ ることから，保安規定第27条に準じた期間とする。	
適用される	主要パラメータ	代替	パラメータ		運転上の制限を逸脱
原子炉の状態（4）	要素	要素	推定方法		求される措置等の
起 動＊${ }^{*}$ 高温停止 泠温停止 燃料交換 ${ }^{*} 9$	起動領域モニタ	（1）主要パラメータの他 チャンネル	起動領域モニタの1チャンネ ルが故障した場合は，他于ャ ンネルにより推定する。		
		（2）平均出力領域モ二タ	平均出力領域モニタにより推定する。		
		（3）［制杵棒位置指示系］			
$\begin{array}{ll} \text { 運 } & \text { 転 } \\ \text { 起 } & \text { 動 } \end{array}$	平均出力領域 モニタ	（1）主要パラメータの他 チャンネル	平均出力領域モニタの1チャ ンネルが故障した場合は，他 チャンネルにより推定する。		
		（2）起動領域モニタ	起動領域モニタにより推定す る。		
		（3）［制御棒位置指示系］			
	$\begin{aligned} & \text { [制御棒位置指 } \\ & \text { 示系] } \end{aligned}$	（1）起動領域モニタ	起動領域モニタにより推定す る。		
		（2）平均出力領域モ二タ	平均出力領域モニタにより推定する。		
※ 8 ：中性子源領域の場合に適用する。 ※9：起動頜域モ二夕周りの燃料が 4 体未满の場合は除く。					

保安規定 第66条 条文				記載の説明	備考
（3）耐圧強化ベント系				（4）各計器が要求される原子炉の状態を記載する。（保安規定変更に係る基本方針4．3（1）） 【最終ヒートシンクの確保（耐圧強化ベント系）】 各設備が機能していることを確認するために必要な設備であることから，各系統•機器が要求される原子炉の状態を対象とする。 耐圧強化ベント系と同様に「運転，起動及び高温停止」とする。	
適用される原子炉の状態（4）	主要パラメータ	代替パラメータ			
	要素	要素	推定方法		
$\begin{array}{ll}\text { 運 } & \text { 転 } \\ \text { 起 } & \text { 動 }\end{array}$高温停止	耐圧強化ベント 系 放射線モ二夕	（1）主要パラメータの他 チャンネル	耐圧強化ベント系放射線モニ タの 1 チャンネルが故障した場合は，他チャンネルにより推定する。		
（4）残留熱除去系					
適用される原子炉の状態（4）	主要パラメータ	代替パラメータ		各計器が要求される原子炉の状態を記載する。（保安規定変更に係る基本方針4．3（1）） 【最終ヒートシンクの確保（残留熱除去系）】 各設備が機能していることを確認するために必要な設備であり，原子炬内に燃料が装荷 されている期間を機能維持期間とするが，原子炉の状態が燃料交換において原子炉水位 がオーバーフロー水位付近で，かつプールゲートが開の場合は，保有水量が多く燃料プー ル代替注水系にて注水可能であること，また原子炉内から全燃料が取出され，かつプール ゲートが閉の場合は，原子炉への注水が不要となるため除くこととし，適用される原子炉 の状態は「運転，起動，高温停止，冷温停止及び燃料交換（原子炉が次に示す状態となっ た場合は適用しない。（1）原子炉水位がオーバーフロー水位付近で，かつプールゲート が開の場合又は（2）原子炉内から全燃料が取出され，かつプールゲートが閉の場合）」 とする。	
	要素	要素	推定方法		
運 転 起 動 高温停止 泠温停止 燃料交換 ${ }^{*} 10$	残留熱除去系熱交 換器入口温度	（1）原子炉圧力容器温度 （1）サプレッションプー ル水温度	原子灲圧力容器温度および サプレッションプール水温度により最終ヒートシンク が確保されていることを推定する。		
	残留熱除去系熱交 換器出口温度	（1）残留熱除去系熱交換器入口温度	残留熱除去系熱交換器の熱交换量評価から残留熱除去系熱交換器入口温度により推定する。		
		（2）原子炬補機冷却水系系䖻流量 （2）残留熱除去系熱交換器冷却水入口流量	原子炬補機冷却水系系統流量および残留熱除去系熱交換器冷却水入口流量により最終ヒートシンクが碓保さ れていることを推定する。		
	残留熱除去系 ポンプ出口流量	（1）圧力抑制室水位	水源である圧力抑制室水位 の変化量により注水量を推定する。		
		（2）残留熱除去系ポンプ出口圧力	残留熱除去系ポンプ出口圧力から残留熱除去系ポンプ の注水特性を用いて，残留熱除去系ポンプ出口流量が確保されていることを推定		
※ 10 ：原子炉が次に示す状態となった場合は適用しない。 （1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合 （2）原子炬内から全燃料が取出され，かつプールゲートが閉の場合					

保安規定 第66条 条文				記載の説明	備考
適用される原子炉の状態（4）	主要パラメータ	代替パラメータ		（4）各計器が要求される原子炉の状態を記載する。（保安規定変更に係る基本方針4．3（1）） 【格納容器バイパスの監視（原子炉圧力容器内の状態）】 原子炉格納容器外にて泠却材漏えい事象が発生しているか確認するために必要な設備で あることから，格納容器バイパスが発生する可能性のある原子炉が高圧の状態である「運転，起動及び高温停止」とする。	運転上の制限を冕脫
	要素	要素	推定方法		
$\begin{array}{ll} \text { 運 } & \text { 転 } \\ \text { 起 } & \text { 動 } \end{array}$高温停止	$\begin{gathered} \text { 原子炉圧力 } \\ (\text { S A) } \end{gathered}$	$\begin{aligned} & \text { (1)主要パラメータの他 } \\ & \text { チャンネル } \end{aligned}$	原子炉圧力（SA）の1チャン ネルが故障した場合は，他于ャ ンネルにより推定する。		
		（2）原子炉圧力	原子炉圧力により推定する。		
		（3）原子炉水位（広帯域） （3）原子炉水位（燃料域） （3）原子炉水位（ SA A広帯域） （3）原子炬水位（S A燃料域） （3）原子㤱厂力容器泪度	原子炉水位から原子炉圧力容器内が飽和状態にあると想定 することで，原子炉圧力容器温度より飽和温度／圧力の関係 を利用して原子炬圧力容器内 の圧力を推定する。		
（2）格納容器内の状態				各計器が要求される原子炉の状態を記載する。（保安規定変更に係る基本方針4．3（1）） 【格納容器バイパスの監視（格納容器内の状態）】 原子炉格納容器外にて冷却材漏えい事象が発生しているか確認するために必要な設備で あることから，格納容器バイパスが発生する可能性のある原子炉が高圧の状態である「運転，起動及び高温停止」とする。	
適用される原子炉の状態（4）	主要パラメータ	代替パラメータ			
	要素	要素	推定方法		
$\begin{array}{ll}\text { 運 } & \text { 転 } \\ \text { 起 } & \text { 動 }\end{array}$高温停止	ドライウェル 温度	（1）主要パラメータの他 の検出器	ドライウェル温度の 1 つの検出器が故障した場合は，他の検出器により推定する。		
		（2）ドライウェル圧力	飽和温度／圧力の関係を利用 してドライウェル圧力により ドライウェル温度を推定す る。		
	$\begin{aligned} & \text { ドライウェル圧 } \\ & \text { 力 } \end{aligned}$	（1）圧力抑制室圧力	圧力抑制室圧力により推定す る。		
		（2）ドライウェル温度	飽和温度／圧力の関係を利用 してドライウェル温度により ドライウェル圧力を推定す る。		
		（3）［ドライウ矿力］	監視可能であればドライウェ凡圧力（常用計器）により， ドライウェル圧力を推定す る。		

$\stackrel{N}{\circ}$

保安規定 第66条 条文				記載の説明	備考
適用される原子炉の状態（4）	主要パラメー 夕	代替パラメータ		（4）各計器が要求される原子炉の状態を記載する。（保安規定変更に係る基本方針4．3（1）） 【水源の碓保】 各設備が機能していることを確認するために必要な設備であることから，各系統•機器が要求される原子炉の状態を対象とする。 保安規定第46条（サプレッションプールの水位）で要求される期間と同様に「運転，起動及び高温停止」とする。	
	要素	要素	推定方法		
		$\begin{aligned} & \text { (1)主要パラメータの他 } \\ & \text { チャンネル } \end{aligned}$	圧力抑制室水位の1チャン ネルが故障した場合は，他 チャンネルにより推定す る。		
	圧力抑制室水位	（2）代替循興洽却ポンプ出口流量 （2）残留熱除去系ポンプ出口流量 （2）低圧炉心スプレイ系 ポンプ出口流量	サプレッションチェンバの プール水を水源とする代替循嘸冷却ポンプ，残留熱除去系ポンプおよび低圧炬心 スプレイ系ポンプの出口流量から，これらのポンプが正常に動作していることを把握することにより水源で ある圧力抑制室水位が碓保 されていることを推定す る。		
		（3）代替循澴椧却ポンプ出口圧力 （3）残留熱除去系ポンプ出口圧力 （3）低圧炉心スプレイ系 ポンプ出口圧力	サプレッションチェンバの プール水を水源とする代替循睘冷却ポンプ，残留熱除去系ポンプおよび低圧炬心 スプレイ系ポンプの出口圧力から，これらのポンプが正常に動作していることを把握することにより水源で ある圧力抑制室水位が碓保 されていることを推定す る。		
※11：原子炬が次に示す状態となった場合は適用しない。 （1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合 （2）原子炬内から全燃料が取出され，かつプールグートが閉の場合					

保安規定 第66条 条文				記載の説明	備考
15．原子炉建屋内の水素濃度				（4）各計器が要求される原子炉の状態を記載する。（保安規定変更に係る基本方針4．3（1）） 【原子炉建屋内の水素濃度】 水素爆発による原子炉建屋等の損傷を防止するために必要な設備であり，原子炉内に燃料 が装荷されている期間及び使用済燃料プールに照射された燃料を貯蔵されている期間を機能維持期間とするが，原子炉の状態が燃料交換において原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合は，保有水量が多く燃料プール代替注水系にて注水可能であること，また原子炉内から全燃料が取出され，かつプールゲートが閉の場合は，原子炉への注水が不要であり，燃料プール代替注水系により使用済燃料プール水位が維持可能であるため除くこととし，適用される原子炉の状態は「運転，起動，高温停止，泠温停止及び燃料交換（原子炉が次に示す状態となった場合は適用しない。（1）原子炉水位 がオーバーフロー水位付近で，かつプールゲートが開の場合又は（2）原子炉内から全燃料が取出され，かつプールゲートが閉の場合）」とする。	
適用される原子炉の状態（4）	主要パラメー 夕	代替パラメータ			
	要素	要素	推定方法		
運 転 起 動 高温停止 冷温停止 燃料交換 ${ }^{*} 12$	原子炉建屋内水素浱度 ${ }^{*}{ }^{13}$	（1）主要パラメータの他于 ャンネル	原子炉建屋内水素濃度の 1チャンネルが故障した場合は，他チャンネルに より推定する。		
		（2）静的触媒式水素再結合装置動作監視装置＊${ }^{*}{ }^{14}$	静的触媒式水素再結合装置動作監視装置（静的触媒式水素再結合装置入口 および出口の差温度から水素濃度を推定）により推定する。		
※12：原子炉が次に示す状態となった場合は適用しない。 （1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合 （2）原子炉内から全燃料が取出され，かつプールゲートが閉の場合 ※13：「66－8－2 原子炉建屋内の水素濃度監視」において運転上の制限等を定める。 ※14：1チャンネルとは 1 個の静的触媒式水素再結合装置の出入口に設置している 2 個 の静的触媒式水素再結合装置動作監視装置をいう。					

保安規定 第66条 条文				記載の説明	備考
17．使用斎燃料プールの監視＊＊15				（4）各計器が要求される原子炉の状態を記載する。（保安規定変更に係る基本方針4．3（1）） 【使用済燃料プールの監視】 使用済燃料プール内の燃料体等の著しい損傷の泠却状況，放射線の遮蔽状況及び臨界の防止状況を把握するために必要な設備であり，使用済燃料プールに燃料を貯蔵している期間を機能維持期間として適用する必要があることから，適用される原子炉の状態は「使用済燃料プールに照射された燃料を貯蔵している期間」とする。	
適用される原子炉の状態（4）	$\begin{gathered} \text { 主要パラメー } \\ \text { 夕 } \end{gathered}$	代替パラメータ			
	要素	要素	推定方法		
使用済燃料プール に照射された燃料 を貯蔵している期間	使用済燃料プ ール水位／温度（ヒートサー モ式）	（1）使用済燃料プール水位 $/$ 温度（ガイ ドパルス式）	使用済燃料プール水位／温度 （ガイドパルス式）により，水位•温度を推定する。		
		（2）使用済燃料プール 上部空開放射線モ 二夕（高線量，低線 量） （2）使用斎燃料プール監視カメラ	使用済燃料プール上部空間放射線モニタ（高線量，低線量） により放射線量／水位の関係 を利用し使用済燃料プール水位を推定するとともに使用済燃料プール監視カメラにて使用済燃料プールの状態を監視 する。		
	$\begin{aligned} & \text { 使用済燃料プ } \\ & \text { ールル水位 } \\ & \text { 度 (ガイドパル } \\ & \text { ス式) } \end{aligned}$	$\begin{aligned} & \text { (1)使用済燃料プール } \\ & \text { 水位/温度 (ヒー } \\ & \text { トサーモ式) } \end{aligned}$	$\begin{aligned} & \text { 使用済燃料プール水位 / 温度 } \\ & \text { (ヒートサーモ式) により, 水 } \\ & \text { 位•温度を推定する。 } \end{aligned}$		
		（2）使用済燃料プール上部空開放射線モ二夕（高線量，低線量） （2）使用斎燃料プール監視カメラ	使用済燃料プール上部空間放射線モ二タ（高線量，低線量） により放射線量／水位の関係 を利用し使用斎燃料プール水位を推定するとともに使用済燃料プール監視カメラにて使用斎燃料プールの状態を監視 する。		
	使用済燃料プ ール上部空間放射線モニタ （高線量，低線量）	（1）使用済燃料プール 水位／温度（ヒー トサーモ式） （1）使用済燃料プール水位／温度（ガイ ドパルス式）	使用済燃料プール水位／温度 （ヒートサーモ式）および使用済燃料プール水位／温度（ガイ ドパルス式）にて水位を計測し た後，水位と放射線量率の関係 により放射線量率を推定する。		
		（2）使用済燃料プール 監視カメラ	使用済燃料プール監視カメラ により，使用済燃料プールの状態を監視する。		

第6．4－1 図 計装設備（重大事故等対処設備）系統概要図（1）（監視機能喪失時に使用する設備）

```
\例】
8 : 原子炉圧力容器温度
    99 : 原子炉圧力
40) : 原子炉圧力 (SA)
(41): 原子炉水位 (広帯域)
(42) 原子炬水位(燃料域)
(43): 原子炉水位(SAL参域)
(44): 原子炉水位(SA燃料域)
(45): ドライウェル温度
(46): 圧力抑制室内空気淐度
(47): サブレッションプー
(48): ドライウェル圧力
(490): 圧力抑制空至水位
(11) 原子炉格納容器下部水位
    原子炉格納容器下部温度
    : ドライウェル水位
(3): 格納容器内坌囲位水素濃度
44): 格納容器内水素湄度(D/W)
(5) 格納容器内水素濃度 (D/W)
(5): 格納容器内水素濃度 (S/C)
(6): 格納容器内雰囲気酸素濃度
8: 格納容器内雰囲気放射線モニ夕 (D/W)
9(9:起動領域モニタ
(9): 平均出力領域モニタ
```


第 6．4－2 図 計装設備（重大事故等対処設備）系統概要図（2）（監視機能喪失時に使用する設備）

第6．4－1 表 計装設備（重大事故等対処設備）の主要機器仕様
（1）原子炉圧力容器温度
個 数
計測範囲
$0 \sim 500^{\circ} \mathrm{C}$
（2）原子炉圧力
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数
2
計測範囲
$0 \sim 10 \mathrm{MPa}$［gage］
（3）原子炉圧力（ S A ）
個 数 2
計測範囲 $0 \sim 11 \mathrm{MPa}$［gage］
（4）原子炉水位（広帯域）
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数
2
計測範囲 $-3,800 \mathrm{~mm} \sim 1,500 \mathrm{~mm}^{* 1}$

所要数•必要容量
関連個所を下線にて示す
（5）原子炉水位（燃料域）
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数
2

計測範囲
$-3,800 \mathrm{~mm} \sim 1,300 \mathrm{~mm}^{* 2}$
（6）原子炉水位（S A 広帯域）
個 数
1

計測範囲 $-3,800 \mathrm{~mm} \sim 1,500 \mathrm{~mm}^{* 1}$
（7）原子炉水位（S A 燃料域）
個 数
1
計測範囲
$-3,800 \mathrm{~mm} \sim 1,300 \mathrm{~mm}{ }^{* 2}$
（8）高圧代替注水系ポンプ出口流量
個 数 1
計測範囲
$0 \sim 120 \mathrm{~m}^{3} / \mathrm{h}$
（9）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）

個 数
1
計測範囲

$$
0 \sim 220 \mathrm{~m}^{3} / \mathrm{h}
$$

（10）残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器泠却ライン洗浄流量）

個 数
計測範囲

$$
0 \sim 220 \mathrm{~m}^{3} / \mathrm{h}
$$

（11）直流駆動低圧注水系ポンプ出口流量
個 数 1
計測範囲 $0 \sim 100 \mathrm{~m}^{3} / \mathrm{h}$
（12）代替循環冷却ポンプ出口流量
個 数 1
計測範囲 $0 \sim 200 \mathrm{~m}^{3} / \mathrm{h}$
（13）原子炉隔離時冷却系ポンプ出口流量
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数 1
計測範囲
$0 \sim 150 \mathrm{~m}^{3} / \mathrm{h}$
（14）高圧炉心スプレイ系ポンプ出口流量
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数
1

計測範囲

$$
0 \sim 1,500 \mathrm{~m}^{3} / \mathrm{h}
$$

所要数•必要容量
関連個所を下線にて示す
（15）残留熱除去系ポンプ出口流量
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数
3
計測範囲
$0 \sim 1,500 \mathrm{~m}^{3} / \mathrm{h}$
（16）低圧炉心スプレイ系ポンプ出口流量
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数
1
計測範囲
$0 \sim 1,500 \mathrm{~m}^{3} / \mathrm{h}$
（17）原子炉格納容器代替スプレイ流量
個 数 2
計測範囲
$0 \sim 100 \mathrm{~m}^{3} / \mathrm{h}$
（18）原子炉格納容器下部注水流量
個 数 1
計測範囲 $0 \sim 110 \mathrm{~m}^{3} / \mathrm{h}$
（19）ドライウェル温度
個 数 11
計測範囲 $0 \sim 300^{\circ} \mathrm{C}$

所要数•必要容量
関連個所を下線にて示す
（20）圧力抑制室内空気温度
個 数 4
計測範囲 $0 \sim 300^{\circ} \mathrm{C}$
（21）サプレッションプール水温度
個 数 16
計測範囲 $0 \sim 200^{\circ} \mathrm{C}$
（22）原子炉格納容器下部温度
個 数 12
計測範囲 $0 \sim 700^{\circ} \mathrm{C}$
（23）ドライウェル圧力
個 数 1
計測範囲 $0 \sim 1 \mathrm{MPa}[\mathrm{abs}]$
（24）圧力抑制室圧力
個 数 1
計測範囲 $0 \sim 1 \mathrm{MPa}[\mathrm{abs}]$
（25）圧力抑制室水位
個 数
2
計測範囲
$0 \sim 5 \mathrm{~m}$（ 0. P．$-3900 \mathrm{~mm} \sim 1100 \mathrm{~mm}) ~ ※ 3$
（26）原子炉格納容器下部水位
個 数
12
計測範囲
$0.5 \mathrm{~m}, \quad 1.0 \mathrm{~m}, \quad 1.5 \mathrm{~m}, \quad 2.0 \mathrm{~m}, \quad 2.5 \mathrm{~m}, \quad 2.8 \mathrm{~m}$
（0．P．$-2000 \mathrm{~mm}, \quad-1500 \mathrm{~mm}, \quad-1000 \mathrm{~mm}$ ，
$-500 \mathrm{~mm}, \quad 0 \mathrm{~mm}, \quad 300 \mathrm{~mm}$ ）＊3
（27）ドライウェル水位
個 数
6
計測範囲
$0.02 \mathrm{~m}, ~ 0.23 \mathrm{~m}, ~ 0.34 \mathrm{~m}$（0．P． 1170 mm ， $1380 \mathrm{~mm}, 1490 \mathrm{~mm}$ ）${ }^{* 3}$
（28）格納容器内水素濃度（D／W）
兼用する設備は以下のとおり。
－水素爆発による原子灲格納容器の破損を防止するための設備
個 数
2
計測範囲
$0 \sim 100$ vol $\%$
（29）格納容器内水素濃度（S／C ）
兼用する設備は以下のとおり。
－水素爆発による原子炉格納容器の破損を防止するための設備

個 数
計測範囲 2
$0 \sim 100$ vol $\%$
（30）格納容器内雰囲気水素濃度
兼用する設備は以下のとおり。

- 原子炉プラント・プロセス計装
- 水素爆発による原子炉格納容器の破損を防止するための設備個 数

4

$0 \sim 30$ vol $\% / 0 \sim 100$ vol $\%$
（31）格納容器内雰囲気放射線モニタ（D／W）
第 8．1－2 表 放射線管理設備（重大事故等時）の主要機器仕様に記載 する。
（32）格納容器内雰囲気放射線モニタ（S／C）
第 8．1－2 表 放射線管理設備（重大事故等時）の主要機器仕様に記載 する。
（33）起動領域モニタ
兼用する設備は以下のとおり。
－原子炉核計装
個 数
8
計測範囲
$10^{-1} \mathrm{cps} \sim 10^{6} \mathrm{cps}$
$\left(1 \times 10^{3} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \sim 1 \times 10^{9} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}\right)$
$0 \sim 40 \%$ 又は $0 \sim 125 \%$
$\left(1 \times 10^{8} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \sim 2 \times 10^{13} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}\right)$

所要数•必要容量
関連個所を下線にて示す

（36）フィルタ装置入口圧力（広帯域）
個 数 1
計測範囲 $\quad-0.1 \sim 1 \mathrm{MPa}$［gage］
（37）フィルタ装置出口圧力（広帯域）
個 数 1
計測範囲 $-0.1 \sim 1 \mathrm{MPa}$［gage］
（38）フィルタ装置水温度
個 数 3
計測範囲
$0 \sim 200^{\circ} \mathrm{C}$
（39）フィルタ装置出口放射線モニタ
第 8．1－2 表 放射線管理設備（重大事故等時）の主要機器仕様に記載 する。
（40）フィルタ装置出口水素濃度
兼用する設備は以下のとおり。
－水素爆発による原子炉格納容器の破損を防止するための設備

個 数 2

計測範囲
$0 \sim 30$ vol $\% ~ / ~ 0 ~ 100$ vol $\%$
（41）耐圧強化ベント系放射線モニタ
第 8．1－2 表 放射線管理設備（重大事故等時）の主要機器仕様に記載 する。
（42）残留熱除去系熱交換器入口温度
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装

個 数
計測範囲
$0 \sim 300^{\circ} \mathrm{C}$
（43）残留熱除去系熱交換器出口温度
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数
2

計測範囲
$0 \sim 300^{\circ} \mathrm{C}$

所要数•必要容量
関連個所を下線にて示す
（44）原子炉補機冷却水系系統流量
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数
2
計測範囲
$0 \sim 4,000 \mathrm{~m}^{3} / \mathrm{h}$
（45）残留熱除去系熱交換器冷却水入口流量
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数
2

計測範囲
$0 \sim 1,500 \mathrm{~m}^{3} / \mathrm{h}$
（46）復水貯蔵タンク水位
個 数 1
計測範囲
$0 \sim 3,200 \mathrm{~m}^{3}$
（47）高圧代替注水系ポンプ出口圧力
個 数 1
計測範囲 $0 \sim 15 \mathrm{MPa}$［gage］
（48）直流駆動低圧注水系ポンプ出口圧力
個 数
1
計測範囲

$$
0 \sim 2 \mathrm{MPa} \text { [gage] }
$$

所要数•必要容量
関連個所を下線にて示す
（49）代替循環冷却ポンプ出口圧力
個 数 1
計測範囲 $0 \sim 4 \mathrm{MPa}$［gage］
（50）原子炉隔離時冷却系ポンプ出口圧力
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数 1
計測範囲
$0 \sim 15 \mathrm{MPa}$［gage］
（51）高圧炉心スプレイ系ポンプ出口圧力
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数
1
計測範囲
$0 \sim 12 \mathrm{MPa}$［gage］
（52）残留熱除去系ポンプ出口圧力
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数 3

計測範囲

$$
0 \sim 4 \mathrm{MPa} \text { [gage] }
$$

所要数•必要容量
関連個所を下線にて示す
（53）低圧炉心スプレイ系ポンプ出口圧力
兼用する設備は以下のとおり。
－原子炉プラント・プロセス計装
個 数 1
計測範囲
$0 \sim 5 \mathrm{MPa}$［gage］
（54）復水移送ポンプ出口圧力
個 数 1
計測範囲 $0 \sim 1.5 \mathrm{MPa}$［gage］
（55）原子炉建屋内水素濃度
兼用する設備は以下のとおり。
－水素爆発による原子炉建屋等の損傷を防止するための設備個 数 7

計測範囲 $0 \sim 10$ vol $\%$
（56）静的触媒式水素再結合装置動作監視装置
兼用する設備は以下のとおり。
－水素爆発による原子炉建屋等の損傷を防止するための設備

個 数
計測範囲
$0 \sim 500^{\circ} \mathrm{C}$
（57）格納容器内雰囲気酸素濃度
兼用する設備は以下のとおり。

- 原子炉プラント・プロセス計装
- 水素爆発による原子炉格納容器の損傷を防止するための設備個 数 2

計測範囲

$$
0 \sim 30 \text { vol } \%
$$

（58）使用済燃料プール水位／温度（ヒートサーモ式）
第 4．3－1表 使用済燃料プールの泠却等のための設備の主要機器仕様 に記載する。
（59）使用済燃料プール水位／温度（ガイドパルス式）
第 4．3－1 表 使用済燃料プールの冷却等のための設備の主要機器仕様 に記載する。
（60）使用済燃料プール上部空間放射線モニタ（高線量，低線量）
第 8．1－2 表 放射線管理設備（重大事故等時）の主要機器仕様に記載 する。
（61）使用済燃料プール監視カメラ
第 4．3－1表 使用済燃料プールの泠却等のための設備の主要機器仕様 に記載する。
b．放水砲
第 9．7－1 表 発電所外への放射性物質の拡散を抑制するための設備 の主要機器仕様に記載する。
（3）使用済燃料プール監視設備
a．使用済燃料プール水位／温度（ガイドパルス式）
兼用する設備は以下のとおり。
－計装設備（重大事故等対処設備）個 数 水位 1

温度 1 （検出点 2 箇所）
計測範囲
水位 $-4,300 \mathrm{~mm} \sim 7,300 \mathrm{~mm}^{* 1}$
（0．P． $21620 \mathrm{~mm} \sim 0$. P． 33220 mm ）
温度 $0 \sim 120^{\circ} \mathrm{C}$
b．使用済燃料プール水位／温度（ヒートサーモ式）
兼用する設備は以下のとおり。
－計装設備（重大事故等対処設備）

個 数
計測範囲
水位 $0 \sim 7,010 \mathrm{~mm}{ }^{* 1}$
（0．P． $25920 \mathrm{~mm} \sim 0$. P． 32930 mm ）
温度 $0 \sim 150^{\circ} \mathrm{C}$
c．使用済燃料プール上部空間放射線モニタ（高線量，低線量）
第 8．1－2 表 放射線管理設備（重大事故等時）の主要機器仕様に記載する。

$$
8-4-57
$$

d．使用済燃料プール監視カメラ
兼用する設備は以下のとおり。
－計装設備（重大事故等対処設備）
個 数
※1：基準点は，使用済燃料貯蔵ラック上端（0．P． 25920 mm ）
（4）燃料プール泠却浄化系
a．燃料プール冷却浄化系ポンプ

台 数
容 量
全 揚 程

1 （予備1）
約 $160 \mathrm{~m}^{3} / \mathrm{h}$
約 80 m
b ．燃料プール泠却浄化系熱交換器

基 数
伝熱容量

1 （予備 1 ）

約 1．26MW
（5）原子炉補機代替冷却水系
a．熱交換器ユニット
第 5．10－1 表 最終ヒートシンクへ熱を輸送するための設備の主要機器仕様に記載する。
b．大容量送水ポンプ（タイプI）
第 4．3－1 表 使用済燃料プールの冷却等のための設備の主要機器仕様に記載する。

$$
8-4-58
$$

（2）プロセス放射線モニタリング設備
a．格納容器内雰囲気放射線モニタ（D／W）
兼用する設備は以下のとおり。

- 原子炉プラント・プロセス計装
- 計装設備（重大事故等対処設備）
- 放射線管理設備（通常運転時等）

個 数 2
計測範囲

$$
10^{-2} \mathrm{~Sv} / \mathrm{h} \sim 10^{5} \mathrm{~Sv} / \mathrm{h}
$$

b．格納容器内雰囲気放射線モニタ（S／C）
兼用する設備は以下のとおり。

- 原子炉プラント・プロセス計装
- 計装設備（重大事故等対処設備）
- 放射線管理設備（通常運転時等）

個 数 2
計測範囲

$$
10^{-2} \mathrm{~Sv} / \mathrm{h} \sim 10^{5} \mathrm{~Sv} / \mathrm{h}
$$

c．フィルタ装置出口放射線モニタ
兼用する設備は以下のとおり。

- 計装設備（重大事故等対処設備）
- 水素爆発による原子炉格納容器の破損を防止するための設備

個 数

計測範囲

2
$10^{-2} \mathrm{mSv} / \mathrm{h} \sim 10^{5} \mathrm{mSv} / \mathrm{h}$
d．耐圧強化ベント系放射線モニタ
兼用する設備は以下のとおり。
－計装設備（重大事故等対処設備）
個 数 2
計測範囲
$10^{-2} \mathrm{mSv} / \mathrm{h} \sim 10^{5} \mathrm{mSv} / \mathrm{h}$
（3）エリア放射線モニタリング設備
a．使用済燃料プール上部空間放射線モニタ（高線量，低線量）
兼用する設備は以下のとおり。

- 使用済燃料プールの泠却等のための設備
- 計装設備（重大事故等対処設備）

高線量
個 数
1

計測範囲
$10^{1} \mathrm{mSv} / \mathrm{h} \sim 10^{8} \mathrm{mSv} / \mathrm{h}$
低線量
個 数
1
計測範囲
$10^{-2} \mathrm{mSv} / \mathrm{h} \sim 10^{5} \mathrm{mSv} / \mathrm{h}$
b 。緊急時対策所可搬型エリアモニタ
兼用する設備は以下のとおり。
－緊急時対策所（重大事故等時）

種 類
計測範囲
台 数

半導体式検出器
0． $01 \mu \mathrm{~Sv} / \mathrm{h} \sim 999.9 \mathrm{mSv} / \mathrm{h}$
1 （予備1）

第5．1－1表 重大事故等対策における手順書の概要（15／19）

```
1.15 事故時の計装に関する手順等
重大事故等が発生し,計測機器の故障等により,当該重大事故等に対処するために監視することが必要
針 なパラメータを計測することが困難となった場合に, 当該パラメータを推定するために有効な情報を把握
目的するため, 計器故障時の対応,計器の計測範囲を超えた場合の対応,計器電源喪失時の対応,計測結果を
記録する手順等を整備する。
重大事故等に対処するために監視することが必要となるパラメータを技術的能力に係る審査基準1．1～ 1．14の手順着手の判断基準及び操作手順に用いるパラメータ並びに有効性評価の判断及び確認に用いる パラメータから抽出し，これを抽出パラメータとする。
抽出パラメータのうち，炉心損傷防止対策及び格納容器破損防止対策等を成功させるために把握するこ とが必要な発電用原子炬施設の状態を直接監視するパラメータを主要パラメータとする。
また，計器の故障，計器の計測範囲（把握能力）の超過及び計器電源の喪失により，主要パラメータを計測することが困難となった場合において，主要パラメータの推定に必要なパラメータを代替パラメータ とする。
一方，抽出パラメータのうち，発電用原子炉施設の状態を直接監視することはできないが，電源設備の受電状態，重大事故等対処設備の運転状態及びその他の設備の運転状態により発電用原子炉施設の状態を補助的に監視するパラメータを補助パラメータとする。
主要パラメータは，以下のとおり分類する。
－重要監視パラメータ
主要パラメータのうち，耐震性，耐環境性を有し重大事故等対処設備としての要求事項を満たした計器を少なくとも 1 つ以上有するパラメータをいう。
－有効監視パラメータ
主要パラメータのらち，自主対策設備の計器のみで計測されるが，計測することが困難となった場合 にその代替パラメータが重大事故等対処設備としての要求事項を満たした計器で計測されるパラメ ータをいう。
代替パラメータは，以下のとおり分類する。
－重要代替監視パラメータ
主要パラメータの代替パラメータを計測する計器が重大事故等対処設備としての要求事項を満たし た計器を少なくとも 1 つ以上有するパラメータをいう。
－有効監視パラメータ
主要パラメータの代替パラメータが自主対策設備の計器のみで計測されるパラメータをいう。
```

$\begin{aligned} & \text { 対 } \\ & \text { 㲊 } \\ & \text { 等 } \end{aligned}$	$\begin{aligned} & \text { 覽 } \\ & \text { 機 } \\ & \text { 賢 } \\ & \text { 時 } \end{aligned}$			主要パラメータを計測する多重化された重要計器が，計器の故障により計測す ることが困難となった場合において，他チャンネルの重要計器により計測できる場合は，当該計器を用いて計測を行う。
				主要パラメータを計測する計器の故障により主要パラメータの監視機能が喪失 した場合は，代替パラメータにより主要パラメータを推定する。 推定に当たり，使用する計器が複数ある場合は，代替パラメータと主要パラメー夕の関連性，検出器の種類，使用環境条件，計測される值の不碓かさ等を考慮し，使用するパラメータの優先順位をあらかじめ定める。
				代替パラメータによる主要パラメータの推定は，以下の方法で行う。 －同一物理量（温度，圧力，水位，放射線量率，水素濃度及び中性子束）により推定。
				- 水位を注水源若しくは注水先の水位変化，注水量又は出口圧力により推定。 - 流量を注水源又は注水先の水位変化を監視することにより推定。
			替	－除熱状態を温度，圧力，流量等の傾向監視により推定。
			玄	－圧力又は温度を水の飽和状態の関係により推定。
			1	－注水量を注水先の圧力及び温度の傾向監視により推定。
			$\begin{aligned} & \text { 名 } \end{aligned}$	－末臨界状態の維持を制御棒の挿入状態により推定。
			$\frac{5}{3}$	－酸素濃度あらかじめ評価したパラメータの相関関係により推定。
			携	－水素濃度を装置の作動状況により推定。
				－エリア放射線モニタの傾向監視により，格納容器バイパス事象が発生したこ と推耍
				－原子炉格納容器への空気（酸素）の流入の有無を原子炉格納容器の圧力によ り推定。
				－使用済燃料プールの状態を同一物理量（水位及び温度），あらかじめ評価した水位と放射線量率の相関関係及びカメラによる監視により，使用斎燃料プー ルの水位又は必要な水遮蔽が碓保されていることを推定。
				－原子炉圧力容器内の圧力と原子炉格納容器内の圧力（圧力抑制室圧力）の差圧により原子炬圧力容器の満水状能を推定。

第 $6.4-3$ 表 代替パラメータによる主要パラメータの推定

分頑	主要パラメータ	代替パラメータ＊1	代替パラメータ推定方法
$\begin{array}{r} \text { 原 } \\ \text { 炬 } \\ \text { 煽 } \\ \text { 温压 } \\ \text { 容 } \\ \text { 噐 } \\ \text { 内 } \\ \text { の } \end{array}$	原子炬圧力容器温度		（1）原子炬圧力容器温度の 1 つの検出器が故障した場合は，他の検出器により推定する。 （2）原子炉圧力容器温度の監視が不可能となった場合は，原子炉水位から原子炉圧力容器内が飽和状態にあると想定することで，原子炉圧力より飽和温度／圧力の関係を利用して原子炉圧力容器内 の温度を推定する。 また，スクラム後，原子炉水位が有効燃料棒頂部に到達するまでの経過時間より原子炉圧力容器内の温度を推定する。 （3）残留熱除去系が運転状態であれば，残留熱除去系熱交換器入口温度により推定する。 推定は，主要パラメータの他の検出器を優先する。
$\begin{aligned} & \text { 原 } \\ & \text { 焍 } \\ & \text { 压 } \\ & \text { 力 } \\ & \text { 瑢 } \\ & \text { 内 } \\ & \text { の } \\ & \text { 圧 } \end{aligned}$	原子炉圧力		（1）原子炉圧力の 1 チャンネルが故障した場合は，他チャンネルにより推定する。 （2）原子炉圧力の監視が不可能となった場合は，原子炉圧力（SA）により推定する。 （3）原子炉圧力の監視が不可能となった場合は，原子炉水位から原子炉圧力容器内が飽和状態にある と想定することで，原子炬圧力容器温度より飽和温度／圧力の関係を利用して原子炉圧力容器内 の圧力を推定する。 推定は，主要パラメータの他チャンネルを優先する。
	原子炬圧力（SA）	（1）主要パラメータの他チャンネル （2）原子炉圧力 （3）原子炉水位（広带域） （3）原子炉水位（燃料域） （3）原子炉水位（SA広带域） （3）原子炉水位（SA燃料域） （3）原子炬圧力容器温度	（1）原子炉圧力（SA）の1チャンネルが故障した場合は，他チヤンネルにより推定する。 ②原子炉圧力（SA）の監視が不可能となった場合は，原子炉圧力により推定する。 （3）原子炉圧力の監視が不可能となった場合は，原子炉水位から原子炉圧力容器内が飽和状態にある と想定することで，原子炉圧力容器温度より飽和温度／圧力の関係を利用して原子炉圧力容器内 の圧力を推定する。 推定は，主要パラメータの他チャンネルを優先する。

```
(つづき)
```

分類	主要パラメータ	代替パラメータ＊1	代替パラメータ推定方法
$\begin{array}{r} \text { 原 } \\ \text { 子 } \\ \text { 炬 } \\ \text { 水压 } \\ \text { 位容 } \\ \text { 㗊 } \\ \text { 内 } \\ \text { の } \end{array}$	原子炉水位（広带域）原子炬水位（燃料域	（1）主要パラメータの他チャンネル （2）原子炬水位（SA広帯域） （2）原子炬水位（SA燃料域） （3）高圧代替注水系ポンプ出口流量 （3）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレ イライン洗浄流量） （3）残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器泠却ライン洗浄流量） （3）直流駆動低圧注水系ポンプ出口流量 （3）代替循環泠却ポンプ出口流量 （3）原子炉隔離時冷却系ポンプ出口流量 （3）高圧炉心スプレイ系ポンプ出口流量 （3）残留熱除去系ポンプ出口流量 （3）低圧炉心スプレイ系ポンプ出口流量 （4）原子炉圧力 （4）原子炉圧力（SA） （4）圧力抑制室圧力	①原子炉水位（広帯域），原子炉水位（燃料域）の1チャンネルが故障した場合は，他チャンネル により推定する。 （2）原子炉水位（広帯域），原子炉水位（燃料域）の監視が不可能となった場合は，原子炉水位（SA広帯域），原子炉水位（SA燃料域）により推定する。 （3）原子炬水位の監視が不可能となった場合は，高圧代替注水系ポンプ出口流量，残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量），残留熱除去系洗浄ライン流量 （残留熱除去系B系格納容器泠却ライン洗浄流量），直流駆動低圧注水系ポンプ出口流量，代替循環冷却ポンプ出口流量，原子炬隔離時冷却系ポンプ出口流量，高圧炉心スプレイ系ポンプ出口流量，残留熱除去系ポンプ出口流量及び低圧炉心スプレイ系ポンプ出口流量のうち，実際の機器動作状態にある注水流量と崩壊熱除去に必要な注水流量により推定する。 （4）原子炉圧力容器への注水により，主蒸気配管より上まで注水し，原子炉圧力，原子炉圧力（SA） と圧力抑制室圧力の差圧から原子炉圧力容器の満水を推定する。 推定は，主要パラメータの他チャンネルを優先する。
	原子炉水位（SA広帯域）原子炉水位（SA燃料域）	（1）原子炉水位（広帯域） （1）原子炉水位（燃料域） （2）高圧代替注水系ポンプ出口流量 （2）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレ イライン洗浄流量） （2）残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器 冷却ライン洗浄流量） （2）直流駆動低圧注水系ポンプ出口流量 （2）代替循環冷却ポンプ出口流量 （2）原子炉隔離時冷却系ポンプ出口流量 （2）高圧炉心スプレイ系ポンプ出口流量 （2）残留熱除去系ポンプ出口流量 （2）低圧炉心スプレイ系ポンプ出口流量 （3）原子炉圧力 （3）原子炉圧力（SA） （3）圧力抑制室圧力	①原子炉水位（SA広帯域），原子炉水位（SA燃料域）の監視が不可能となった場合は，原子炉水位 （広帯域），原子炉水位（燃料域）により推定する。 （2）原子炉水位の監視が不可能となった場合は，高圧代替注水系ポンプ出口流量，残留熱除去系洗浄 ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量），残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器泠却ライン洗浄流量），直流駆動低圧注水系ポンプ出口流量，代替循環冷却ポンプ出口流量，原子炉隔離時冷却系ポンプ出口流量，高圧炉心スプレイ系ポンプ出口流量，残留熱除去系ポンプ出口流量及び低圧炉心スプレイ系ポンプ出口流量のうち，実際の機器動作状態にある注水流量と崩壊熱除去に必要な注水流量により推定する。 （3）原子炉圧力容器への注水により，主蒸気配管より上まで注水し，原子炉圧力，原子炉圧力（SA） と圧力抑制室圧力の差圧から原子炉圧力容器の満水を推定する。 推定は，原子炉圧力容器内の水位を直接計測する原子炉水位（広帯域），原子炉水位（燃料域）を優先する。

（つづき）

分類	主要パラメータ	代替パラメータ＊1	代替パラメータ推定方法
	高圧代替注水系ポンプ出口流量	（1）復水貯蔵タンク水位 （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炬水位（SA燃料域）	（1）高圧代替注水系ポンプ出口流量の監視が不可能となった場合は，水源である復水貯蔵タンク水位 の変化量により注水量を推定する。なお，復水貯蔵タンクの補給状況も考慮した上で注水量を推定する。 （2）高圧代替注水系ポンプ出口流量の監視が不可能となった場合は，原子炉水位の変化量により注水量を推定する。 推定は，環境悪化の影響が小さい復水貯藏タンク水位を優先する。
	残留熱除去系洗浄ライン流量（残留熱除去系ヘッド スプレイライン洗浄流量） 残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器洽却ライン洗浄流量）	（1）復水貯蔵タンク水位 （2）原子炉水位（広帯域） （2）原子炬水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炬水位（SA燃料域）	（1）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量），残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器冷却ライン洗浄流量）の監視が不可能となった場合 は，水源である復水貥藏タンク水位の変化量により注水量を推定する。なお，復水貯蔵タンクの補給状況も考慮した上で注水量を推定する。 （2）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量），残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器椧却ライン洗浄流量）の監視が不可能となった場合 は，原子炉水位の変化量により注水量を推定する。 推定は，環境悪化の影響が小さい復水貥藏タンク水位を優先する。
	直流駆動低圧注水系ポンプ出口流量	（1）復水貯蔵タンク水位 （2）原子炉水位（広帯域） （2）原子炬水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炬水位（ SA 燃料域）	（1）直流駆動低圧注水系ポンプ出口流量の監視が不可能となった場合は，水源である復水貯蔵タンク水位の変化量により注水量を推定する。なお，復水貯蔵タンクの補給状況も考慮した上で注水量 を推定する。 （2）直流駆動低圧注水系ポンプ出口流量の監視が不可能となった場合は，原子炉水位の変化量により注水量を推定する。 推定は，環境悪化の影響が小さい復水貯蔵タンク水位を優先する。
	代替循澴泠却ポンプ出口流量	（1）圧力抑制室水位 （2）原子炉水位（広带域） （2）原子炉水位（燃料域） （2）原子炉水位（ SA 広带域） （2）原子炉水位（SA燃料域）	（1）代替循環冷却ポンプ出口流量の監視が不可能となった場合は，水源である圧力抑制室水位の変化量により注水量を推定する。 （2）代替循環冷却ポンプ出口流量の監視が不可能となった場合は，原子炬水位の変化量により注水量 を推定する。 推定は，水源である圧力抑制室水位を優先する。
	原子炬隔離時冷却系ポンプ出口流量	（1）復水貯蔵タンク水位 （2）原子炬水位（広帯域） （2）原子炬水位（燃料域） （2）原子炬水位（SA広帯域） （2）原子炬水位（ SA 燃料域）	（1）原子炉隔離時冷却系ポンプ出口流量の監視が不可能となった場合は，水源である復水貯蔵タンク水位の変化量により注水量を推定する。なお，復水貯蔵タンクの補給状況も考慮した上で注水量 を推定する。 （2）原子炉隔離時冷却系ポンプ出口流量の監視が不可能となった場合は，原子炉水位の変化量により注水量を推定する。 推定は，環境悪化の影響が小さい復水貯蔵タンク水位を優先する。
	高圧炬心スプレイ系ポンプ出口流量	（1）復水貯蔵タンク水位 （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炉水位（ SA 燃料域）	（1）高圧炉心スプレイ系ポンプ出口流量の監視が不可能となった場合は，水源である復水貯蔵タンク水位の変化量により注水量を推定する。なお，復水貯蔵タンクの補給状況も考慮した上で注水量 を推定する。 （2）高圧炉心スプレイ系ポンプ出口流量の監視が不可能となった場合は，原子炉水位の変化量により注水量を推定する。 推定は，環境悪化の影響が小さい復水貯藏タンク水位を優先する。
	残留熱除去系ポンプ出口流量	（1）圧力抑制室水位 （2）原子炉水位（広帯域） （2）原子炬水位（燃料域） （2）原子炉水位（SA広帯域） （2）原子炉水位（ $S A$ 燃料域）	（1）残留熱除去系ポンプ出口流量の監視が不可能となった場合は，水源である圧力抑制室水位の変化量により注水量を推定する。 （2）残留熱除去系ポンプ出口流量の監視が不可能となった場合は，原子炉水位の変化量により注水量 を推定する。 推定は，水源である圧力抑制室水位を優先する。

```
（つづき）
```

分類	主要パラメータ	代替パラメータ＊1	代替パラメータ推定方法
$\begin{aligned} & \hline \text { 器原 } \\ & \text { へ子 } \\ & \text { の宿 } \\ & \text { 注压 } \\ & \text { 水力量容 } \\ & \hline \end{aligned}$	低圧炉心スプレイ系ポンプ出口流量	（1）圧力抑制室水位 （2）原子炬水位（広帯域） （2）原子炬水位（燃料域） （2）原子炬水位（SA広帯域） （2）原子炉水位（ SA 燃料域）	（1）低圧炉心スプレイ系ポンプ出口流量の監視が不可能となった場合は，水源である圧力抑制室水位 の変化量により注水量を推定する。 （2）低圧炉心スプレイ系ポンプ出口流量の監視が不可能となった場合は，原子炉水位の変化量により注水量を推定する。 推定は，水源である圧力抑制室水位を優先する。
	残留熱除去系洗浄ライン流量（残留熱除去系ヘッド スプレイライン洗浄流量） 残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器泠却ライン洗浄流量）	（1）復水貯蔵タンク水位 （2）原子炉格納容器下部水位 （2）ドライウェル水位 （3）ドライウェル温度 （3）ドライウェル圧力 （3）圧力抑制室圧力	（1）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量），残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器泠却ライン洗浄流量）の監視が不可能となった場合 は，水源である復水貯蔵タンク水位の変化量により注水量を推定する。なお，復水貯蔵タンクの補給状況も考慮した上で注水量を推定する。 （2）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量），残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器泠却ライン洗浄流量）の監視が不可能となった場合 は，原子炉格納容器下部水位，ドライウェル水位の変化量により注水量を推定する。 （3）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量），残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器泠却ライン洗浄流量）の監視が不可能となった場合 は，ドライウェル温度，ドライウェル圧力，圧力抑制室圧力が低下傾向にあることにより注水機能が確保されていることを推定する。 推定は，環境悪化の影響が小さい復水貯蔵タンク水位を優先する。
	原子炬格納容器代替スプレイ流量		（1）原子炉格納容器代替スプレイ流量の監視が不可能となった場合は，原子炉格納容器下部水位， ドライウェル水位の変化量により注水量を推定する。 （2）原子炉格納容器代替スプレイ流量の監視が不可能となった場合は，ドライウェル温度，ドライウ エル圧力，圧力抑制室圧力が低下傾向にあることにより注水機能が碓保されていることを推定 する。 推定は，溶融炉心泠却状態を把握することができ注水先である原子炉格納容器下部水位，ドライ ウェル水位を優先する。
	代替循澴冷却ポンプ出口流量	（1）原子炬格納容器下部水位 （1）ドライウェル水位 （2）ドライウェル温度 （2）ドライウェル圧力 （2）圧力抑制室圧力	（1）代替循環洽却ポンプ出口流量の監視が不可能となった場合は，原子炬格納容器下部水位，ドライ ウェル水位の変化量により注水量を推定する。 （2）代替循環洽却ポンプ出口流量の監視が不可能となった場合は，ドライウェル温度，ドライウェル圧力，圧力抑制室圧力が低下傾向にあることにより注水機能が碓保されていることを推定す る。 推定は，注水先である原子炬格納容器下部水位，ドライウェル水位を優先する。
	原子炬格納容器下部注水流量	（1）復水貯藏タンク水位 （2）原子炉格納容器下部水位 （2）ドライウェル水位	（1）原子炉格納容器下部注水流量の監視が不可能となった場合は，水源である復水貯蔵タンク水位の変化量により注水量を推定する。なお，復水貯蔵タンクの補給状況も考慮した上で注水量を推定 する。 （2）原子炉格納容器下部注水流量の監視が不可能となった場合は，原子炉格納容器下部水位，ドライ ウェル水位の変化量により注水量を推定する。 推定は，環境悪化の影響が小さい復水貯蔵タンク水位を優先する。

分類	主要パラメータ	代替パラメータ＊1	代替パラメー夕推定方法
	ドライウェル温度	（1）主要パラメータの他の検出器 （2）ドライウェル圧力 （3）圧力抑制室圧力	（1）ドライウェル温度の 1 つの検出器が故障した場合は，他の検出器により推定する。 （2）ドライウェル温度の監視が不可能となった場合は，飽和温度／圧力の関係を利用してドライウェ ル圧力によりドライウェル温度を推定する。 （3）ドライウェル温度の監視が不可能となった場合は，圧力抑制室圧力により上記（2）と同様にドライ ウェル温度を推定する。 推定は，主要パラメータの他の検出器を優先する。
	圧力抑制室内空気温度	（1）主要パラメータの他の検出器 （2）サプレッションプール水温度 （3）圧力抑制室圧力	（1）圧力抑制室内空気温度の 1 つの検出器が故障した場合は，他の検出器により推定する。 （2）圧力抑制室内空気温度の監視が不可能となった場合は，サプレッションプール水温度により圧力抑制室内空気温度を推定する。 （3）圧力抑制室内空気温度の監視が不可能となった場合は，飽和温度／圧力の関係を利用して圧力抑制室圧力により圧力抑制室内空気温度を推定する。 推定は，主要パラメータの他の検出器を優先する。
	サプレッションプール水温度	（1）主要パラメータの他の検出器 （2）圧力抑制室内空気温度	（1）サプレッションプール水温度の 1 つの検出器が故障した場合は，他の検出器により推定する。 （2）サプレッションプール水温度の監視が不可能となった場合は，圧力抑制室内空気温度によりサプ レッションプール水温度を推定する。 推定は，主要パラメータの他の検出器を優先する。
	原子炬格納容器下部温度	（1）主要パラメータの他チャンネル	（1）原子炬格納容器下部温度の 1 チャンネルが故障した場合は，他チャンネルにより推定する。
$\begin{array}{r} \text { 原 } \\ \text { 子 } \\ \text { 炬 } \\ \text { 圧格 } \\ \text { 力䋉 } \\ \text { 㗊 } \\ \text { 内 } \\ \text { の } \end{array}$	ドライウェル压力	$\begin{aligned} & \text { (1)圧力抑制室圧力 } \\ & \text { (2)゙ライウェル温度 } \\ & \text { (3) [ドライウエル土 *2 } \end{aligned}$	（1）ドライウェル圧力の監視が不可能となった場合は，圧力抑制室圧力により推定する。 （2）ドライウェル圧力の監視が不可能となった場合は，飽和温度／圧力の関係を利用してドライウェ ル温度によりドライウェル圧力を推定する。 （3）監視可能であればドライウェル圧力（常用計器）により，ドライウェル圧力を推定する。 推定は，真空破壊装置及びベント管を介して均圧される圧力抑制室圧力を優先する。
	压力抑制室圧力	（1）ドライウェル圧力 （2）圧力抑制室内空気温度 （3）［圧力抑制室圧力］＊2	（1）圧力抑制室圧力の監視が不可能となった場合は，ドライウェル圧力により推定する。 （2）圧力抑制室圧力の監視が不可能となった場合は，飽和温度／圧力の関係を利用して圧力抑制室内空気温度により压力抑制室压力を推定する。
			（3）監視可能であれば圧力抑制室圧力（常用計器）により，圧力抑制室圧力を推定する。 推定は，真空破壊装置及びベント管を介して均圧されるドライウェル圧力を優先する。
原 $子$ 子 板 親 容 器 内 の 水 位	压力抑制室水位	（1）主要パラメータの他チャンネル （2）高圧代替注水系ポンプ出口流量 （2）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレ イライン洗浄流量） （2）残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量） （2）直流駆動低圧注水系ポンプ出口流量 （2）原子炉隔離時冷却系ポンプ出口流量 （2）高圧炉心スプレイ系ポンプ出口流量 （2）原子炉格納容器代替スプレイ流量 （2）原子炉格納容器下部注水流量 （3）復水貯蔵タンク水位	（1）圧力抑制室水位の 1 チャンネルが故障した場合は，他チャンネルにより推定する。 （2）圧力抑制室水位の監視が不可能となった場合は，高圧代替注水系ポンプ出口流量，残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量），残留熱除去系洗浄ライン流量 （残留熱除去系 B 系格納容器冷却ライン洗浄流量），直流駆動低圧注水系ポンプ出口流量，原子炉隔離時冷却系ポンプ出口流量，高圧炉心スプレイ系ポンプ出口流量，原子炉格納容器代替スプ レイ流量及び原子炉格納容器下部注水流量により，外部水源を使用した注水量の積算により圧力抑制室水位を推定する。 （3）圧力抑制室水位の監視が不可能となった場合は，水源である復水貯蔵タンク水位の変化量によ り，圧力抑制室水位を推定する。なお，復水貯蔵タンクの補給状況も考慮した上で注水量を推定 する。 （上記（2），（3）の推定方法は，注水流量及び水源の水位変化から算出した水量が全てサプレッショ ンチェンバへ移行する場合を想定しており，圧力抑制室水位の計測目的であるサプレッション チェンバからの原子炉格納容器ベント操作可否判断（通常運転水位＋約 2 m ）から考えると保守的 な評価となることから問題ない。） 推定は，主要パラメータの他チャンネルを優先する。

（つづき）

分類	主要パラメータ	代替パラメータ＊1	代替パラメータ推定方法
$\begin{aligned} & \text { 原 } \\ & 子 \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 嫆 } \\ & \text { 内 } \\ & \propto \\ & \text { 水 } \\ & \text { 位 } \end{aligned}$	原子炬格納容器下部水位	（1）主要パラメータの他チャンネル （2）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレ イライン洗浄流量） （2）残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量） （2）原子炉格納容器代替スプレイ流量 （2）代替循環冷却ポンプ出口流量 （2）原子炉格納容器下部注水流量 （3）復水貯蔵タンク水位	（1）原子炉格納容器下部水位の1チャンネルが故障した場合は，他チャンネルにより推定する。 （2）原子炉格納容器下部水位の監視が不可能となった場合は，残留熱除去系洗浄ライン流量（残留熱除去系へッドスプレイライン洗浄流量），残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器泠却ライン洗浄流量），原子炉格納容器代替スプレイ流量，代替循澴洽却ボンプ出口流量及 び原子炉格納容器下部注水流量により原子炉格納容器下部水位を推定する。 （3）水源である復水貯蔵タンク水位の変化により，原子炉格納容器下部水位を推定する。なお，復水貯蔵タンクの補給状況も考慮した上で注水量を推定する。 推定は，主要パラメータの他チャンネルを優先する。
	ドライウェル水位	（1）主要パラメータの他チャンネル （2）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレ イライン洗浄流量） （2）残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量） （2）原子炉格納容器代替スプレイ流量 （2）代替循環冷却ポンプ出口流量 （2）原子炬格納容器下部注水流量 （3）復水貯蔵タンク水位	（1）ドライウエル水位の 1 チャンネルが故障した場合は，他チヤンネルにより推定する。 （2）ドライウェル水位の監視が不可能となった場合は，残留熱除去系洗浄ライン流量（残留熱除去系 ヘッドスプレイライン洗浄流量），残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器椧却ライン洗浄流量），原子炉格納容器代替スプレイ流量，代替循舞冷却ポンプ出口流量及び原子炉格納容器下部注水流量によりドライウェル水位を推定する。 （3）水源である復水貯蔵タンク水位の変化により，ドライウェル水位を推定する。なお，復水眝藏夕 ンクの補給状況も考慮した上で注水量を推定する。 推定は，主要パラメータの他チャンネルを優先する。
原子炉格納谷器内の水素浀度	格納容器内水素濃度（D／W）	（1）主要パラメータの他チャンネル （2）格納容器内雰囲気水素濃度	①格納容器内水素濃度（D／W）の 1 チャンネルが故障した場合は，他チャンネルにより推定する。 ②格納容器内水素濃度（D／W）の監視が不可能となった場合は，格納容器内雰囲気水素濃度により推定する。 推定は，主要パラメータの他チャンネルを優先する。
	格納容器内水素濃度（S／C）	$\begin{array}{\|l\|} \hline \text { (1) 主要パラメータの他チヤンネル } \\ \text { (2)格納容器内雰囲気水素㶇度 } \\ \end{array}$	（1）格納容器内水素濃度（S／C）の 1 チャンネルが故障した場合は，他チャンネルにより推定する。 ②格納容器内水素濃度（S／C）の監視が不可能となった場合には，格納容器内雰囲気水素濃度により推定する。 推定は，主要パラメータの他チャンネルを優先する。
	格納容器内雰囲気水素濃度	$\begin{aligned} & \text { (1)主要パラメータの他チャンネル } \\ & \text { (2) 格納容器内水素㴞度 (D/W) } \\ & \text { (2) 格納容器内水素灙度 (S/C) } \end{aligned}$	（1）格納容器内雰囲気水素濃度の 1 チャンネルが故障した場合は，他チャンネルにより推定する。 ②格納容器内雰囲気水素濃度の監視が不可能となった場合は，格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）により推定する。 推定は，主要パラメータの他チャンネルを優先する。
$\begin{array}{r} \text { 原 } \\ \text { 放炬 } \\ \text { 射格 } \\ \text { 線縜 } \\ \text { 率器 } \\ \text { 内 } \\ \text { の } \end{array}$	格納容器内雰囲気放射線モニタ（D／W）		（1）格納容器内雰囲気放射線モニタ（D／W）の 1 チャンネルが故障した場合は，他チャンネルにより推 定する。 （有効監視パラメータ）の指示値を用いて原子炉格納容器内の放射線量率を推定する。 推定は，主要パラメータの他チャンネルを優先する。
	格納容器内雰囲気放射線モニタ（S／C）	$\begin{aligned} & \text { (1)主要パラメータの他チャンネル } \\ & \text { (2) [エリア放射線モニタ] *2 } \end{aligned}$	（1）格納容器内雰囲気放射線モニタ（S／C）の1チャンネルが故障した場合は，他チャンネルにより推 定する。 （2）格納容器内雾囲気放射線モニタ（S／C）の監視が不可能となった場合には，エリア放射線モニタ （有効監視パラメータ）の指示値を用いて原子炉格納容器内の放射線量率を推定する。 推定は，主要パラメータの他チャンネルを優先する。

(つづき)

	分類	主要パラメータ	代替パラメータ＊1		代替パラメー夕推定方法
未未臨のの維持又は監視		起動領域モニタ	$\begin{aligned} & \text { (1) 主要パラメータの他チャンネル } \\ & \text { (2)平均出力嗆域モニタ } \\ & \text { (3) [制御样位指示系] *2 } \end{aligned}$		（1）起動領域モニタの1チャンネルが故障した場合は，他チャンネルにより推定する。 （2）起動領域モニタの監視が不可能となった場合は，平均出力領域モニタにより推定する。 （3）起動領域モニタの監視が不可能となっなた場合は，制御棒位置指示系（有効監視パラメータ）によ り全制御棒が全挿入状態にあることが確認できる場合は，未監界状能の維持を推定する り全制御棒が全挿入状態にあることが確認できる場合は，未臨界状態の維持を推定する。 推定は，主要パラメータの他チャンネルを優先する。
		平均出力領域モニタ			（1）平均出力領域モニタの 1 チャンネルが故障した場合は，他チャンネルにより推定する。 （2）平均出力領域モニタの監視が不可能となった場合は，起動領域モニタにより推定する。 （3）平均出力領域モニタの監視が不可能となった場合は，制御棒位置指示系（有効監視パラメータ） により全制御棒が全挿入状態にあることが碓認できる场合は，未臨界状態の維持を推定する。 推定は，主要パラメータの他チャンネルを優先する。
		［制御棒位置指示系］＊2	$\begin{aligned} & \text { (1)起動領域モニタ } \\ & \text { (2)平均出力領域モニタ } \end{aligned}$	素	（1）制御棒位置指示系（有効監視パラメータ）の監視が不可能となった場合は，起動領域モニタによ り推定する。 （2）制御棒位置指示系（有効監視パラメータ）の監視が不可能となった場合は，平均出力領域モ二夕 により推定する。 推定は，低出力領域を監視する起動領域モニタを優先する。
$\begin{aligned} & \text { 最 } \\ & \text { 蔠 } \\ & k \\ & \text { । } \\ & \text { ト } \\ & \text { シ } \\ & \text { n } \\ & \text { の } \\ & \text { 碓 } \\ & \text { 保 } \end{aligned}$	代替循環洽却系	サプレッションプール水温度	（1）主要パラメータの他の検出器 （2）圧力抑制室内空気温度		（1）サプレッションプール水温度の 1 つの検出器が故障した場合は，他の検出器により推定する。 （2）サプレッションプール水温度の監視が不可能となった場合は，圧力抑制室内空気温度により推定 する。 推定は，主要パラメータの他の検出器を優先する。
		残留熱除去系熱交換器入口温度	（1）サプレッションプール水温度	$\begin{aligned} & -x=7 \\ & y ㅍ ㅛ ~ \end{aligned}$	（1）残留熱除去系熱交換器入口温度の監視が不可能となった場合は，サプレッションプール水温度に より残留熱除去系熱交換器入口温度を推定する。
		代替循闤冷却ポンプ出口流量（原子炉圧力容器への注水）	（1）圧力抑制室水位 （2）原子炉水位（広帯域） （2）原子炉水位（燃料域） （2）原子炬水位（SA広帯域） （2）原子炉水位（ SA 燃料域） （3）原子炉圧力容器温度		（1）原子炉圧力容器への注水時において代替循璵洽却ポンプ出口流量の監視が不可能となった場合 は，水源である圧力抑制室水位の変化量により注水量を推定する。 （2）原子炉圧力容器への注水時において代替循閩椧却ポンプ出口流量の監視が不可能となった場合 は，注水先の原子炉水位の水位変化量により代替循環冷却ポンプ出口流量を推定する。 （3）原子炉圧力容器への注水時において代替循擱泠却ポンプ出口流量の監視が不可能となった場合 は，原子炉圧力容器温度により最終ヒートシンクが碓保されていることを確認する。 推定は，水源である圧力抑制室水位を優先する。
		代替循闤冷却ポンプ出口流量（原子炉格納容器への注水）	（1）原子炉格納容器下部水位 （1）ドライウェル水位 （2）ドライウェル温度 （2）ドライウェル圧力 （2）圧力抑制室圧力		（1）原子炉格納容器への注水時において代替循環洽却ポンプ出口流量の監視が不可能となった場合 は，原子炬格納容器下部水位，ドライウェル水位の水位変化により代替循噮椧却ポンプ出口流量を推定する。 （2）原子炉格納容器への注水時において代替循瓌洽却ポンプ出口流量の監視が不可能となった場合 は，ドライウェル温度，ドライウェル圧力，圧力抑制室圧力により最終ヒートシンクが碓保さ れていることを碓認する。 推定は，注水先の原子炉格納容器下部水位及びドライウェル水位を優先する。

(つづき)

分類		主要パラメータ	代替パラメータ＊1	代替パラメー夕推定方法
最終匕11トシシクの確保		フィルタ装置水位（広帯域）	（1）主要パラメータの他チャンネル	（1）フィルタ装置水位（広帯域）の1チャンネルが故障した場合は，他チャンネルにより推定する。
		フィルタ装置入口圧力（広帯域）	（1）ドライウェル圧力 （1）圧力抑制室圧力	（1）フィルタ装置入口圧力（広帯域）の監視が不可能となった場合は，ドライウェル圧力又は圧力抑制室圧力の傾向監視により原子炉格納容器フィルタベント系フィルタ装置の健全性を碓認する。
		フイルタ装置出口圧力（広带域）	（1）ドライウェル圧カ （1）圧力抑制室圧力	（1）フィルタ装置出口圧力（広带域）の監視が不可能となった場合は，ドライウェル圧力又は圧力抑制室圧力の傾向監視により原子炬格納容器フィルタバント系フィルタ装置の健全性を確認する。
		フィルタ装置水温度	（1）主要パラメータの他チャンネル	（1）フィルタ装置水温度の1チャンネルが故障した場合は，他チャンネルにより推定する。
		フィルタ装置出口放射線モ二タ	（1）主要パラメータの他チャンネル	（1）フイルタ装置出口放射線モニタの1チャンネルが故障した場合は，他チャンネルにより推定す
		フィルタ装置出口水素濃度	（1）格納容器内水素濃度（D／W） （1）格納容器内水素濃度（S／C）	（1）フィルタタ装置出口水素榐度の監視が不可能となった場合は，原子炉格納容器内の水素が原子炉格納容器フィルタベント系フィルタ装置の配管内を通過することから，格納容器内水素漫度（D／W）又は格納容器内水素漫度（S／C）により推定する。
	耐 圧 强 华 － シ ト 系	耐圧強化ベント系放射線モニタ	（1）主要パラメータの他のチャンネル	（1）耐圧強化ベント系放射線モニタの1チャンネルが故障した場合は，他チャンネルにより推定す る。
		残留熱除去系熱交換器入口温度	（1）原子炉圧力容器温度 （1）サプレッションプール水温度	（1）残留熱除去系熱交換器入口温度の監視が不可能となった場合は，原子炉圧力容器温度及びサプ レッションプール水温度により最終ヒートシンクが碓保されていることを推定する。
	残 留 熱 除	残留熱除去系熱交換器出口温度	（1）残留熱除去系熱交換器入口温度 （2）原子炬補機冷却水系系統流量 （2）残留熱除去系熱交換器泠却水入口流量	（1）残留熱除去系熱交換器出口温度の監視が不可能となった場合は，残留熱除去系熱交換器の熱交換量評価から残留熱除去系熱交換器入口温度により推定する。 （2）残留熱除去系熱交換器出口温度の監視が不可能となった場合は，原子炉補機冷却水系系統流量及 び残留熱除去系熱交換器洽却水入口流量により最終ヒートシンクが碓保されていることを推定 する。 推定は，残留熱除去系熱交換器入口温度を優先する。
	系	残留熱除去系ポンプ出口流量	（1）圧力抑制室水位	（1）残留熱除去系ポンプ出口流量の監視が不可能となった場合は，水源である圧力抑制室水位の変化量により注水量を推定する。 ②残留熱除去系ポンプ出口流量の監視が不可能となった場合は，残留熱除去系ポンプ出口圧力から残留熱除去系ポンプの注水特性を用いて，残留熱除去系ポンプ出口流量が確保されていることを推定する。 推定は，水源である圧力抑制室水位を優先する。

分類		主要パラメータ	代替パラメータ＊1		代替パラメータ推定方法
	$\begin{array}{\|l\|} \hline \text { 原 } \\ \text { 子 } \\ \text { 炉 } \\ \text { 压 } \\ \text { 力 } \\ \text { 容 } \\ \text { 器 } \\ \text { の } \\ \text { の } \\ \text { 態 } \\ \hline \end{array}$	原子炬水位（広带域）原子炉水位（燃料域）	（1）主要パラメータの他チャンネル （2）原子炉水位（SA広带域） （2）原子炉水位（SA燃料域）		①原子炉水位（広帯域），原子炉水位（燃料域）の1チャンネルが故障した場合は，他チャンネ ルにより推定する。 ②原子炉水位（広帯域），原子炉水位（燃料域）の監視が不可能となった場合は，原子炉水位 （SA広帯域），原子炉水位（SA燃料域）により推定する。 推定は，主要パラメータの他チャンネルを優先する。
		原子炬水位（SA広帯域）原子炬水位（SA燃料域）	（1）原子炬水位（広帯域） （1） 原子炉水位（燃料域）		①原子炉水位（SA広帯域），原子炉水位（SA燃料域）の監視が不可能となった場合は，原子炉水位（広帯域），原子炉水位（燃料域）により推定する。
		原子炉圧力			（1）原子炉圧力の 1 チャンネルが故障した場合は，他チャンネルにより推定する。 （2）原子炉圧力の監視が不可能となった場合は，原子炉圧力（SA）により推定する。 （3）原子炉圧力の監視が不可能となった場合は，原子炉水位から原子炉圧力容器内が飽和状態にある と想定することで，原子炉圧力容器温度より飽和温度／圧力の関係を利用して原子炉圧力容器内 の圧力を推定する。 推定は，主要パラメータの他チャンネルを優先する。
		原子炬圧力（SA）			（1）原子炬圧力（SA）の1チャンネルが故障した場合は，他チヤンネルにより推定する。 （2）原子炉圧力（SA）の監視が不可能となった場合は，原子炉圧力により推定する。 ③原子炉圧力（SA）の監視が不可能となった場合は，原子炉水位から原子炉圧力容器内が飽和状態 にあると想定することで，原子炉圧力容器温度より飽和温度／圧力の関係を利用して原子炉圧力容器内の圧力を推定する。 推定は，主要パラメータの他チャンネルを優先する。
	$\begin{array}{r} \text { 原 } \\ \text { 子 } \\ \text { 炉 } \\ \text { 将 } \\ \text { 格納 } \\ \text { 容 } \\ \text { 器 } \\ \text { 内 } \\ \text { の } \end{array}$	ドライウェル温度	（1）主要パラメータの他の検出器 （2）ドライウェル圧力		（1）ドライウェル温度の 1 つの検出器が故障した場合は，他の検出器により推定する。 （2）ドライウェル温度の監視が不可能となった場合は，飽和温度／圧力の関係を利用してドライウェ ル圧力によりドライウェル温度を推定する。 推定は，主要パラメータの他の検出器を優先する。
		ドライウェル圧力	（1）圧力抑制室圧力 （2）ドライウェル温度 （3）［ドライウェル圧力］＊2		（1）ドライウェル圧力の監視が不可能となった場合は，圧力抑制室圧力により推定する。 （2）ドライウェル圧力の監視が不可能となった場合は，飽和温度／圧力の関係を利用してドライウェ ル温度によりドライウェル圧力を推定する。
					（3）監視可能であればドライウェル圧力（常用計器）により，ドライウェル圧力を推定する。推定は，真空破壊装置及びベント管を介して均圧される圧力抑制室圧力を優先する。
	原 孚 炉 建 屋 内 の 状 態	高圧炬心スプレイ系ポンプ出口压力	（1）原子炉圧力 （1）原子炉圧力（SA） （2）［エリア放射線モニタ］＊2		（1）高圧炉心スプレイ系ポンプ出口圧力の監視が不可能となった場合は，原子炉圧力，原子炉圧力 （SA）の低下により格納容器バイパスの発生を推定する。 （2）高圧炬心スプレイ系ポンプ出口圧力の監視が不可能となった場合は，エリア放射線モニタ（有効監視パラメータ）により格納容器バイパスの発生を推定する。 推定は，原子炉圧力，原子炉圧力（SA）を優先する。
		残留熱除去系ポンプ出口圧力	$\begin{aligned} & \text { (1) 原子炬圧力 } \\ & \text { (1) 原子炉圧力 (SA) } \\ & \text { (2) [エリア放射線モニタ] }{ }^{* 2} \end{aligned}$		（1）残留熱除去系ポンプ出口圧力の監視が不可能となった場合は，原子炉圧力，原子炬圧力（SA）の低下により格納容器バイパスの発生を推定する。 （2）残留熱除去系ポンプ出口圧力の監視が不可能となった場合は，エリア放射線モニタ（有効監視パ ラメータ）により格納容器バイパスの発生を推定する。 推定は，原子炉圧力，原子炬圧力（SA）を優先する。
		低圧炉心スプレイ系ポンプ出口压力	$\begin{aligned} & \text { (1) 原子炬圧力 } \\ & \text { (1) 原子炉圧力 }(\mathrm{SA}) \\ & \text { (2) [エリア放射線モニタ] }{ }^{* 2} \end{aligned}$		（1）低圧炉心スプレイ系ポンプ出口圧力の監視が不可能となった場合は，原子炉圧力，原子炉圧力 （SA）の低下により格納容器バイパスの発生を推定する。 （2）低圧炉心スプレイ系ポンプ出口圧力の監視が不可能となった場合は，エリア放射線モニタ（有効監視パラメータ）により格納容器バイパスの発生を推定する。 推定は，原子炉圧力，原子炉圧力（SA）を優先する。

分類	主要パラメータ	代替パラメータ＊1	代替パラメー夕推定方法
水源信磼保	復水貯蔵タンク水位	（1）高圧代替注水系ポンプ出口流量 （1）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレ イライン洗浄流量） （1）残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器 冷却ライン洗浄流量） （1）直流駆動低圧注水系ポンプ出口流量 （1）原子炬隔離時冷却系ポンプ出口流量 （1）高圧炉心スプレイ系ポンプ出口流量 （1）原子炉格納容器下部注水流量 （2）高圧代替注水系ポンプ出口圧力 （2）直流駆動低圧注水系ポンプ出口圧力 （2）原子炉隔離時冷却系ポンプ出口圧力 （2）高圧炉心スプレイ系ポンプ出口圧力 （2）復水移送ポンプ出口圧力 （3）原子炉水位（広帯域） （3）原子炬水位（燃料域） （3）原子炬水位（SA広帯域） （3）原子炬水位（SA燃料域）	①復水眝蔵タンク水位の監視が不可能となった場合は，高圧代替注水系ポンプ出口流量，残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量），残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器冷却ライン洗浄流量），直流駆動低圧注水系ポンプ出口流量，原子炬隔離時冷却系ポンプ出口流量，高圧炬心スプレイ系ポンプ出口流量及び原子炬格納容器下部注水流量のらち，復水眝蔵タンクを水源として実際の機器動作状態にある流量により推定す る。なお，復水貯藏タンクの補給状沉も考慮した上で水位を推定する。 （2）復水貯蔵タンク水位の監視が不可能となった場合は，復水貯藏タンクを水源とする高圧代替注水系ポンプ出口圧力，直流駆動低圧注水系ポンプ出口圧力，原子炉隔崔時冷却系ポンプ出口圧力，高圧炬心スプレイ系ポンプ出口圧力及び復水移送ポンプ出口圧力が正常に動作していることを把握することにより，水源である復水眝藏タンク水位が碓保されていることを推定する。 （3）注水先の原子炉水位の水位変化により復水貯藏タンク水位を推定する。なお，復水貯藏タンクの補給状況も考慮した上で水位を推定する。 推定は，復水貯藏タンクを水源とするポンプの注水量を優先する。
	压力抑制室水位	（1）主要パラメータの他チャンネル （2）代替循環冷却ポンプ出口流量 （2）残留熱除去系ポンプ出口流量 （2）低圧炝心スプレイ系ポンプ出口流量 （3）代替循環冷却ポンプ出口圧力 （3）残留熱除去系ポンプ出口圧力 （3）低圧炉心スプレイ系ポンプ出口圧力	（1）圧力抑制室水位の1チャンネルが故障した場合は，他チャンネルにより推定する。 （2）圧力抑制室水位の監視が不可能となった場合は，サプレッションチェンバのプール水を水源とす る代替循澴冷却ポンプ，残留熱除去系ポンプ及び低圧炬心スプレイ系ポンプの出口流量から，こ れらのポンプが正常に動作していることを把握することにより水源である圧力抑制室水位が碓保 されていることを推定する。 （3）圧力抑制室水位の監視が不可能となった場合は，サプレッションチェンバのプール水を水源とす る代替循嘸冷却ポンプ，残留熱除去系ポンプ及び低圧炬心スプレイ系ポンプの出口圧力から，こ れらのポンプが正常に動作していることを把握することにより水源である圧力抑制室水位が碓保 されていることを推定する。 推定は，主要パラメータの他チャンネルを優先する。
	原子炬建屋内水素濃度	（1）主要パラメータの他チャンネル （2）静的触媒式水素再結合装置動作監視装置	（1）原子炉建屋内水素漰度の1チャンネルが故障した場合は，他チャンネルにより推定する。 （2）原子炬建屋内水素浱度の監視が不可能となった場合は，静的触媒式水素再結合装置動作監視装置 （静的触媒式水素再結合装置入口及び出口の差温度から水素襄度を推定）により推定する。 推定は，主要パラメータの他チャンネルを優先する。
$\begin{array}{r} \text { 原 } \\ \text { 子 } \\ \text { 酸炉 } \\ \text { 素格 } \\ \text { 浱納 } \\ \text { 彮 } \\ \text { 内 } \\ \text { の } \end{array}$	格納容器内雰囲気酸素濃度	（1）主要パラメータの他チャンネル （2）格納容器内雰囲気放射線モニタ（D／W） （2）格納容器内雰囲気放射線モニタ（S／C） （2）ドライウェル圧力 （2）圧力抑制室圧力	（1）格納容器内雰囲気酸素濃度の 1 チャンネルが故障した場合は，他チャンネルにより推定する。 （2）格納容器内雰囲気酸素濃度の監視が不可能となった場合は，格納容器内雰囲気放射線モニタ（D／ W）又は格納容器内雰囲気放射線モニタ（S／C）にて灲心損傷を判断した後，初期酸素濃度と保守的 なG値を入力とした評価結果（解析結果）により格納容器内雰囲気酸素濃度を推定する。 （2）格納容器内雰囲気酸素濃度の監視が不可能となった場合は，ドライウェル圧力及び圧力抑制室圧 力により原子炉格納容器内の圧力が正圧であることを確認することで，事故後の原子炉格納容器内への空気（酸素）の流入有無を把握し，水素燃焼の可能性を推定する。 推定は，主要パラメータの他チャンネルを優先する。

(つづき)

分類	主要パラメータ	代替パラメータ＊1	代替パラメータ推定方法
	使用済燃料プール水位／温度 （ヒートサーモ式）	（1）使用済燃料プール水位／温度（ガイドパルス式） （2）使用済燃料プール上部空間放射線モニタ（高線量，低線量） （2）使用済燃料プール監視カメラ	（1）使用済燃料プール水位／温度（ヒートサーモ式）の監視が不可能となった場合は，使用済燃料プ一ル水位／温度（ガイドパルス式）により水位•温度を推定する。 （2）使用済燃料プール水位／温度（ヒートサーモ式）の監視が不可能な場合は，使用済燃料プール上部空間放射線モニタ（高線量，低線量）により放射線量／水位の関係を利用し使用済燃料プール水位を推定するとともに使用済燃料プール監視カメラにて使用済燃料プールの状態を監視する。 推定は，計測対象が同一である使用済燃料プール水位／温度（ガイドパルス式）を優先する。
	使用済燃料プール水位／温度 （ガイドパルス式）	（1）使用済燃料プール水位／温度（ヒートサーモ式） （2）使用済燃料プール上部空間放射線モニタ（高線量，低線量） （2）使用済燃料プール監視カメラ	（1）使用済燃料プール水位／温度（ガイドパルス式）の監視が不可能となった場合は，使用済燃料プ ール水位／温度（ヒートサーモ式）により水位•温度を推定する。 （2）使用済燃料プール水位／温度（ガイドパルス式）の監視が不可能な場合は，使用済燃料プール上部空間放射線モニタ（高線量，低線量）により放射線量／水位の関係を利用し使用済燃料プール水位を推定するとともに使用済燃料プール監視カメラにて使用済燃料プールの状態を監視する。 推定は，計測対象が同一である使用済燃料プール水位／温度（ヒートサーモ式）を優先する。
	使用済燃料プール上部空間放射線モニタ （高線量，低線量）	（1）使用斎燃料プール水位／温度（ヒートサーモ式） （1）使用済料フールル水位 $/$ 温度（ガイドパルス式） （2）使用済燃料プール監視カメラ	（1）使用済燃料プール上部空間放射線モニタ（高線量，低線量）の監視が不可能な場合は，使用済燃料プール水位／温度（ヒートサーモ式）及び使用済燃料プール水位／温度（ガイドパルス式） にて水位を計測した後，水位と放射線量率の関係により放射線量率を推定する。 （2）使用済燃料プール監視カメラにより，使用済燃料プールの状態を監視する。 推定は，使用済燃料プールを直接監視する使用済燃料プール水位／温度（ヒートサーモ式）及び使用済燃料プール水位／温度（ガイドパルス式）を優先する。
	使用済燃料プール監視カメラ	（1）使用斎燃料プール水位／温度（ヒートサーモ式） （1） 1 使用済燃料ブールレ水位 $/$ 温度（ガイドパルス式） （1）使用消燃料プール上部空間放射線モニタ（高線量，低線量）	（1）使用済然料プール監視カメラの監視が不可能となった場合は，使用済燃料プール水位／温度（ヒ ートサーモ式），使用済燃料プール水位／温度（ガイドパルス式）及び使用済燃料プール上部空間放射線モニタ（高線量，低線量）により使用済燃料プールの状態を推定する。

＊2：［ ］は有効監視パラメータ又は重要監視パラメータの常用計器（耐震性又は耐擐境性等はないが，監視可能であれば発電用原子炉施設の状態を把握することが可能な計器）を示す

保安規定第 66 条
表66－16「緊急時対策所」
66－16－2「緊急時対策所の代替電源設備」

1．保安規定記載内容の説明

2．添付資料
添付－1 運転上の制限を設定するSA設備の選定
（1）設置変更許可申請書 添付十追補1（系統図）
（2）S A 6 1 条まとめ資料（系統図）

添付－2 運転上の制限に関する所要数，必要容量
（1）設置変更許可申請書 添付八（所要数，必要容量）
（2）設置変更許可申請書 添付八（設備仕様）
（3）設計及び工事計画認可申請書 説明書（設定根拠）

保安規定 第66条 条文			記載の説明	備考
66－16－2 緊急時対策 （1）運転上の制限	の代替電源設備（1）		（1）設置許可基準規則（技術的能力審査基準）第六十一条（1．18）が該当する。 （2）運転上の制限の対象となる系統•機器（添付－1） （3）以下の条文要求が運転段階においても維持できるよう，代替電源設備による電源系が動作可能 であることを運転上の制限とする。（保安規定変更に係る基本方針4．3（1））	
項 目（2）	運転上の制限（3）		（2）運転上の制限の対象となる系統•機器（添付－1） （3）以下の条文要求が運転段階においても維持できるよう，代替電源設備による電源系が動作可能 であることを運転上の制限とする。（保安規定変更に係る基本方針4．3（1））	
緊急時対策所の代替電源設備	緊急時対策所の代替電源設備が動作可能であること＊1＊2			
適用される原子炉の状態（4）	設 備（5）	所要值 \cdot 所要数（6）	－設置許可基準規則（技術的能力審査基準）第六十一条（1．18）	
	ガスタービン発電機	※ 4	重大事故等に対処するために事な指示を行ら要員がとじもり，必要な指示を行らととも	
	ガスタービン発電設備軽油タンク	※5	に，発電所内外の通信連絡をする必要のある場所と通信連絡するために必要な設備を設置す	
	タンクローリ	※5	る（手順等を定める）こと。［本項は代替電源設備からの給電が対象］	
運 転	軽油タンク	※ 5		
起 動	ガスタービン発電設備然料移送ポンプ	※ 4	（4）重大事故等が発生した場合において，緊急時対策所は，必要な要員がとどまることができるよ	
冷温停止	ガスタービン発電機接続盤	※6	う適切な措置を講じたもの，必要な情報を把握できる設備及び発電所内外との連絡を行うため	
燃料交換	緊急用高圧母線2F系	※6	に必要な設厝を設けたものである。重大事故等が発生する可能性のある原子炉の	
	電源車（緊急時対策所用）	1 台	停止及び燃料交換」とする。（保安規定変更に係る基本方針 4 ．3（1））	
	緊急時対策所軽油タンクレベルし3	2，410mm		
	緊急時対策所用高圧母線 J 系	2 系列	（5）（2）に含まれる設備	
	よび配管を含む。 続口（緊急時対策建屋北側）に接続できる レベルとは，緊急時対策所軽油タンク2 代替交流電源設備」において運転上の制輔給設備」において運転上の制限等を定所内電気設備」において運転上の制限等	ことを含む。 基の各々の軽油タンク 等を定める。 る。 定める。	電源車（緊急時対策所用）については，緊急時対策所に給電するために必要な容量を有する 1台を所要数とする。 緊急時対策所軽油タンクは重大事故等時に電源車（緊急時対策所用） 1 台を 7 日間連続定格運転する場合に必要となる燃料 $2,410 \mathrm{~mm}$ を所要值とする。 緊急時対策所用高圧母線 J 系は必要な負荷へ電力を供給するため， 2 系列を所要数とする。 （保安規定変更氾係る基本方針4．3（1），添付一2）	

保安規定 第66条 条文			記載の説明	備考
（2）礶認事項			（7）適用される原子炉の状態における確認事項を記載する。（保安規定変更に係る基本方針 4．2） a．性能確認（機能•性能が満足していることを確認する。） 項目 1 が該当。 「保安規定変更に係る基本方針」の可搬型重大事故等対処設備のサーベイランス頻度の考 え方に基づき 2 年に 1 回，性能確認を実施する。 b．動作確認（運転上の制限を満足していることを定期的に確認する。）項目 $2, ~ 3, ~ 4$ が該当。 項目 2 については，「保安規定変更に係る基本方針」の重大事故等対処設備のサーベイランス頻度の考え方に基づき可搬型設備は 3 ヶ月に 1 回，動作可能であることを確認する。項目 3，4については，「保安規定変更に係る基本方針」の常設設備のサーベイランス頻度の考え方に基づき，1ヶ月に 1 回，動作可能であることを碓認する。	
項 目（7）	頻 度	担 当		
1．電源車（緊急時対策所用）を起動し，運転状態（電庄等）に異常のないことを確認する。	2 年に 1 回	防災課長		
2．電源車（緊急時対策所用）を起動し，動作可能である ことを碓認する。	3 ヶ月に 1 回	防災課長		
3．緊急時対策所軽油タンクレベルが所要値以上であるこ とを確認する。	1ヶ月に1回	防災課長		
4．緊急時対策所用高圧母線 J 系が使用可能であることを外観点検により碓認する。	1ヶ月㲹1回	防災課長		

保安規定 第66条 条文				記載の説明	備考
（3）要求される措置				（8）運転上の制限を满足しない場合の条件を記載する。 代替電源設備による電源系は， 1 N 要求設備であるため，所要数が 1 N 未满となった場合を条件として記載する。	運転上の制限 を逸脱した場合における要求される措置等の変更
適用される 原子 炉 の状態	条 件（8）	要求される措置（9）	完了時間		
	A．代替電源設備が動作不能の場合	A1．1．発電課長は，ガスタービン発電機 が動作可能であることを確認する。 または	速やかに	（9）要求される措置について記載する。（保安規定に変更に係る基本方針4．3（2），（3））緊急時対策所は設計基準事故対処設備としては重要度分類指針において「緊急時対策上重要な もの及び異常状態の把握機能」として「MS－3」に分類されており，従来はLCO設定して いない。緊急時対策所は，運転中／停止中の灲心及び使用済燃料プールの燃料に対して間接的 に安全機能を有する設備であり，事故時に情報収集し必要な指示を行らためのものであること から，「MS－2」の「異常状態への対応上特に重要な構造物，系統及び機器」に分類されて L C O 設定されている保安規定第 27 条（計測および制御設備）の「事故時計装」の要求され る措置／AOTを参考に以下に定める。	
		A1．2．P方災課長は，電源車（緊急時対策	速やかに		
		所用）が動作可能であることを碓認 する。			
		および			
			10日間		
		し，原子炉主仕技術者の確認を得て実施する ${ }^{\text {® }}$ 。 または			
		A2．2．防災課長は，当該系統を動作可能 な状態に復旧する。	10日間	【運転，起動及び高温停止】	
	B．条件 A で要求される措置を完了時間内に達成できない場合	$\begin{array}{\|l} \hline \text { B1. 発電課長は, 高温停止にする。 } \\ \text { および } \\ \text { B2. 発電課長は, 泠温停止にする。 } \end{array}$	24 時間 36 時間	A1．1．，A1．2．代替電源設備が動作不能となった場合は，対応する設計基準事故対処設備が動作可能であることを碓認する。対象となる設備は「設置変更許可申請書（添付書類十）」の技術的能力で整理した機能啔失を想定する設計基準事故対処設備であるガスタービン発電機又	
冷温停止燃料交換	A．代替電源設備が動作不能の場合	A1．1．発電課長は，ガスタービン発電機 が動作可能であることを碓認する。 または	速やかに	は電源車（緊急時対策所用）が該当し，完了時間は＂速やかに＂とする。なお，代替電源設備は，ガスタービン発電機及び電源車（緊急時対策所用）により多様性を有することから， それぞれれ確認を行う。	
		A1．2．防災課長は，電源車（緊急時対策所用）が動作可能であることを碓認 する。	速やかに	A2．1．，A2．2．動作不能となった重大事故等対処設備の機能を補完する自主対策設備が動作可能 ーリ，ドラム缶・トラック・要員の碓保又は発電機若しくはケーブルの補充等）を検討し，	
		および A2．防災課長は，当該系統を動作可能な	速やかに	原子炉主任技術者の碓認を得て速やが江実施又は当該系統を動作可能な状態に腹旧する。完	
		状態に復旧する措置を開始する。 および A3．防災課長は，代替措置＊7を検討し，原子炉主任技術者の碓認を得て実施 する措置を開始する。	速やかに	了時間は，保安規定第 27 条（計測および制御設備）の「事故時計装」の 2 つのチャンネル が動作不能となった場合，少なくとも 1 つのチャンネルを復旧するために認められている完了時間である「10日間」を淮用し，「10日間」とする。	
※7：自主対策設備（子借電源車および電源車接続口（緊急時対策建屋南側））の使用，代替品 の補充等をいう。 ※8：10日間以内に自主対策設備の碓認または代替措置が完了した場合，当該設備が復旧す るまで運転上の制限の逸脱は繙続するが，10日間を超えたとしても条件Bには移行し ない。				B1．，B2．既保安規定と同様の設定とする。 【冷温停止及び燃料交換】 A1．1．，A1．2．【運転，起動及び高温停止】における A1．1．，A1．2．と同様。 A2．当該系統を動作可能な状態に復旧する措置を＂速やかに＂開始する。	

添付－1－（1）設置変更許可申請書 添付十追補 1

第1．18－15図 緊急時対策所 給電系統概要図

図 3．18－3 緊急時対策所の代替交流電源設備系統図（燃料系統）

響を及ぼさない設計とする。

10．9．2．2．3 容量等

基本方針については，「1．1．7．2 容量等」に示す。
緊急時対策所は，想定される重大事故等時において，重大事故等に対処す るために必要な指示を行う要員に加え，原子炉格納容器の破損等による発電所外への放射性物質の拡散を抑制するために必要な対策を行う要員として，緊急時対策所に最大 200 名を収容できる設計とする。また，対策要員等が緊急時対策所に 7 日間とどまり重大事故等に対処するために必要な数量の放射線管理用資機材や食料等を配備できる設計とする。

緊急時対策所の緊急時対策所非常用送風機及び緊急時対策所非常用フィル夕装置は，対策要員の放射線被ばくを低減及び防止するとともに，緊急時対策所内の酸素濃度及び二酸化炭素濃度を活動に支障がない範囲に維持するた めに必要な換気容量を有する設計とし，緊急時対策所非常用送風機 1 台及び緊急時対策所非常用フィルタ装置1基で1セット使用する。保有数は，多重性確保のための 1 セットを加えた合計 2 セットを設置する設計とする。

緊急時対策所非常用フィルタ装置は，身体サーベイ及び作業服の着替え等 を行うための区画を含め緊急時対策建屋内に対して放射線による悪影響を及 ぼさないよう，十分な放射性物質の除去効率及び吸着能力を有する設計とす る。

緊急時対策所加圧設備（空気ボンベ）は，重大事故等時において緊急時対策所の居住性を確保するため，緊急時対策所等を正圧化し，緊急時対策所等内へ希ガスを含む放射性物質の侵入を防止するとともに，酸素濃度及び二酸化炭素濃度を活動に支障がない範囲に維持するために必要な容量に加え，故障時及び保守点検による待機除外時のバックアップを考慮し，十分な容量を

保管する。

酸素濃度計及び二酸化炭素濃度計は，緊急時対策所の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲内であることの測定が可能なものを，それ ぞれ 1 個使用する。保有数は， 1 個に加え，故障時及び保守点検時による待機除外時のバックアップ用として 1 個のそれぞれ合計 2 個を保管する。

差圧計は，緊急時対策所等の正圧化された室内と周辺エリアとの差圧範囲 を監視できるものを， 1 台使用する。保有数は 1 台を設置する。

緊急時対策所可搬型エリアモニタは，重大事故等時において，緊急時対策所内の放射線量の監視に必要な測定範囲を有するものを 1 台使用する。保有数は，緊急時対策所の 1 台に加え，故障時及び保守点検による待機除外時の バックアップ用として 1 台の合計 2 台を保管する。

ガスタービン発電機は2台で緊急時対策所を含む重大事故等時に想定され る負荷へ給電するために必要な容量を有する設計とする。

また，電源車（緊急時対策所用）は 1 台で緊急時対策所に給電するために必要な容量を有する設計とする。保有数は，必要台数 1 台に加え，故障時及 び保守点検による待機除外時のバックアップ用として 1 台の合計 2 台を保管 する。

なお，バックアップ用の 1 台は，可搬型代替交流電源設備である電源車の バックアップ用 1 台と兼用する。

10．9．2．2．4 環境条件等

基本方針については，「1．1．7．3 環境条件等」に示す。
緊急時対策所の遮蔽は緊急時対策建屋と一体設置した設備であり，重大事故等時の環境条件を考慮した設計とする。

緊急時対策所，緊急時対策所非常用送風機，緊急時対策所非常用フィルタ

設備仕様
 関連個所を赤枠にて示す

（2）電源設備
a．電源車（緊急時対策所用）
ディーゼル機関
台 数 1（予備 $1{ }^{* 1}$ ）

使用燃料軽油

発電機
台 数
1 （予備 1 ＊${ }^{\text {）}}$
種 類
三相同期発電機
容 量
約 400 kVA
力 率
0． 85

電 圧
6． 9 kV
周 波 数
50 Hz
※1：電源車（緊急時対策所用）の予備 1 台を電源車の予備と兼用する。
b ．緊急時対策所軽油タンク
基 数
2 （予備1）
容 量
約 10kL（1基当たり）
c．緊急時対策所用高圧母線 J 系
個 数 2
定格電圧 7． 2 kV

定格電流
約 1，200A

名		称
容	量	$\mathrm{m}^{3} /$ 個

【設定根拠】

（概要）
重大事故等時に，その他発電用原子炉の附属施設のうち非常用電源設備として使用する緊急時対策所軽油タンクは，以下の機能を有する。

緊急時対策所軽油タンクは，重大事故等が発生した場合においても緊急時対策所の機能及び居住性の維持に必要な設備に電力を供給する電源車（緊急時対策所用）（内燃機関）の燃料油を貯蔵するために設置する。

系統構成は，緊急時対策所軽油タンクにて電源車（緊急時対策所用）（内燃機関）の燃料油を貯蔵し，必要な設備に電ノを供給－るる電源車（緊急時対策所用）（内燃機関）を運転できる設計どす る。

1．容量の設定根拠
重大事故等時に使用する緊急時対策所軽油タンクの容量は，緊急時対策所軽油タンク 2 個 で電源車（緊急時対策所用） 1 個の定格出力で 7 日間連続運転が可能な容量とする。

上記の条件を満足する緊急時対策所軽油タンクの必要容量は，下記のように求める。

$$
\mathrm{V}=\mathrm{C} \cdot \mathrm{H} \cdot \frac{\mathrm{n}_{1}}{\mathrm{n}^{2}}=\square \times 7 \times 24 \times \frac{1}{2}=\square \mathrm{m}^{3} \text { 個 }
$$

V ：緊急時対策所軽油タンク容量（ m^{3}／個）
C ：燃料消費率（ $\mathrm{m}^{3} / \mathrm{h}$ ）
H：連続運転時間（h）$=7 \times 24$
n 1 ：電源車（緊急時対策所用）個数 $=1$
n2 ：緊急時対策所軽油タンク個数＝$=2$
以上より，緊急時対策所軽油タンクの必要容量は， $\mathrm{n}^{3} /$ 個を上回る容量として $\boldsymbol{n}^{3} /$ 個以上 とする。

公称值については，要求される $\square^{3} /$ 個を上回るものとし， $10 \mathrm{~m}^{3} /$ 個とする。
2．最高使用圧力の設定根拠
重大事故等時に使用する緊急時対策所軽油タンクの最高使用圧力は，緊急時対策所軽油夕 ンクが大気開放であることから静水頭とする。

3．最高使用温度の設定根拠
重大事故等時に使用する緊急時対策所軽油タンクの最高使用温度は，設置場所での環境温度を上回る $50^{\circ} \mathrm{C}$ とする。

4．個数の設定根拠
緊急時対策所軽油タンクは，重大事故等対処設備として電源車（緊急時対策所用）の連続運転に必要な燃料油を貯蔵するために必要な個数として 2 個に，予備 1 個を加えて，合計 3 個設置する。

[^0]: ※1：大容量送水ポンプ（タイプI）については，他手段と兼用であるため「66－19－1 大容量送水ポンプ（タイプ I ）」で整理する。系統としての要求事項等については，本表にて整理する。

