Meeting Material 1-2 of 109 the Committee on Oversight and Evaluation of Specified Nuclear Facilities, 5 Oct 2023 Tentative Translation by NRA

# Analysis result of ALPS treated water

5 October 2023

NRA

Office for Accident Measures of Fukushima-Daiichi Nuclear Power Station

## Purpose

- The NRA inspected TEPCO's organizational framework for analyzing "nuclides to be measured and evaluated" and their quality assurance activities, and confirmed that they are following the approved Implementation Plan.
- Also, considering the statement in the Governmental Policy "monitoring with objectivity and transparency", the NRA confirms the validity of TEPCO's analysis by conducting independent monitoring
- At the Committee meeting held in April this year, the NRA explained the NRA/JAEA NSRC's analysis results for the first batch of release. Similar validation analysis was recently conducted for the second batch of release. This is the report on the results.
- JAEA NSRC analyzed radionuclides in ALPS treated water under the contract from the NRA in the same framework as for the first batch.



Compare the analytical results (radionuclide concentration) by JAEA NSRC and TEPCO with consideration of uncertainty ranges, for supporting the overall oversight by the NRA.

#### Analysis Sample

Sampled on June 26, 2023 at 11:28 AM "ALPS treated water measurement/confirmation tank water (K4 tank C group)"



#### Target nuclides

- Analyzed 7 radionuclides (compared with TEPCO's result)
- Among nuclides mainly detected in ALPS treated water:

Co-60, Ru-106, Sb-125, I-129, Cs-134, Cs-137, C-14

#### \*Reason for selecting those nuclides

Based on the analysis results from the previous batch, for the purpose of more effectively and efficiently confirming the validity of the analysis, the NRA selected the nuclides with comparatively large detected values (I-129 and C-14) excluding tritium, and gamma-ray emitting nuclides (Ge semiconductor measurement) that can be targeted in one measurement.

#### 1. Overview

#### TEPCO

For the 35 nuclides of the nuclides to be measured/assessed and monitored, the analytical results at the ALPS inlet (FY 2021) and ALPS outlet (K4, J1-C, J1-G) are reported based on the results of checking the sum of the ratios to regulatory concentrations limits in the classification in the table below. Note that in the calculation of the regulatory concentration limit ratio of α-nuclides, the total-α value is divided by 4 Bq/L, which is the lowest regulatory concentration limit among the α-nuclides selected.

| Classification<br>Nuclides mainly detected in ALPS treated<br>water |                       | Specific nuclides                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ALPS outlet                                                                 |                       |                     |                     |                     |
|---------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------|---------------------|---------------------|---------------------|
|                                                                     |                       |                                                                                       | ALPS inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K-4                                                                         | J1-C                  | J1-G                |                     |                     |
|                                                                     |                       | 7 major nuclides including<br>radioactive equilibrium Y-90, Te-<br>125 m) C-14, Tc-99 | 1.7E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7E-01                                                                     | <mark>1</mark> .6E-01 | 5.8E-02             |                     |                     |
|                                                                     | α                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U-234, U-238, Np-237, Pu-238, Pu-<br>239, Pu-240, Am-241, Cm-244            | 5.4E+00<br>→1.0E+00   | 8.2E-04<br>→1.6E-04 | 4.2E-02<br>→8.1E-03 | 3.7E-02<br>→7.0E-3  |
| Nuclides<br>rarely<br>detected in<br>ALPS<br>treated<br>water       | Other than a nuclides | Subject<br>ALPS<br>above)                                                             | ct to removal by<br>(other than the<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mn-54, Ni-63, Cd-113m, Ce-144,<br>Pm-147, Sm-151, Eu-154, Eu-155,<br>Pu-241 | 2.2E+00               | 1.4E-03             | 1.3E-02             | 1.2E-02             |
|                                                                     |                       | ubject to                                                                             | A large number of neasurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CI-36, Se-79, Nb-94                                                         | 5.0E-02               | 1.2E-02             | 1.2E-02             | 1.2E-02             |
|                                                                     |                       | an those s<br>removal<br>mber of                                                      | an those s<br>The second | Ba-133                                                                      | 8.7E-03               | 1.5E-03<br>→1.8E-05 | 1.4E-03<br>→1.4E-04 | 1.4E-03<br>→1.3E-04 |
|                                                                     |                       | Other th<br>Small nu                                                                  | [2] Not<br>countable for<br>gross β and<br>Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe-55, Nb-93m, Mo-93                                                        | 2.1E-02               | 9.3E-03             | 6.8E-03             | 6.8E-03             |

\*For J1-C and J1-G, the analysis and evaluation results for CI-36, Se-79, Ba 133, Fe-55, Nb-93 m, and Mo-93 are not available, and the results from the additional ALPS outlet are used.

The Japanese version shall prevail.

Meeting Material 1–1–2 of  $3^{rd}$  Technical Meeting on Specified Nuclear Facility

#### Analytical methods

| Nuclides | Principal<br>radiation<br>emitted | Analytical equipment   | Analytical method<br>(pretreatment)                                                                                                                                                                                      | Basis for Analytical<br>Method                                                 |
|----------|-----------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Co-60    | βγ                                | Ge                     | without pretreatment                                                                                                                                                                                                     | The Series of Environmental<br>Radioactivity Measuring Methods<br>(SERMM) No.7 |
| Ru-106   | β                                 | Ge<br>(Measure Rh-106) | without pretreatment                                                                                                                                                                                                     | SERMM No.7                                                                     |
| Sb-125   | βγ                                | Ge                     | without pretreatment                                                                                                                                                                                                     | SERMM No.7                                                                     |
| I-129    | βγ                                | ICP-MS                 | I was purified with Anion-SR                                                                                                                                                                                             | SERMM No.32                                                                    |
| Cs-134   | βγ                                | Ge                     | without pretreatment                                                                                                                                                                                                     | SERMM No.7                                                                     |
| Cs-137   | βγ                                | Ge                     | without pretreatment                                                                                                                                                                                                     | SERMM No.7                                                                     |
| C-14     | β                                 | LSC                    | 1.5 M HNO <sub>3</sub> was added into sample solution and N <sub>2</sub> gas was insufflated to the solution to evaporate $CO_2$ .<br>CO <sub>2</sub> was tapped by absorbent and absorbent was mixed with scintillator. | JAEA-Technology 2009-051                                                       |

Ge: Ge Semiconductor Detector LSC: Liquid Scintillation Counter ICP-MS: Inductively Coupled Plasma Mass Spectrometry

# Comparison of analytical result(*E*n score)

Evaluated analytical results by using En score shown in B.3 of ISO/IEC17043: 2010(JIS Q 17043:2011), with consideration of uncertainty in analytical results

 $\rightarrow$ If the absolute value of *E*n score exceed 1 (|En|>1), the cause of discrepancy will be investigated.

$$En = \frac{X_{TEPCO} - X_{JAEA}}{\sqrt{U_{TEPCO}^2 + U_{JAEA}^2}}$$

 $X_{TEPCO}$  : Measured value (radionuclide concentration) by TEPCO  $X_{JAEA}$  : Measured value (radionuclide concentration) by JAEA NSRC  $U_{TEPCO}$ : Uncertainty of TEPCO's value  $U_{JAEA}$  : Uncertainty of JAEA NSRC's value

## Analysis result(1/2)

> Nuclides which were <u>not</u> detected in the analysis of JAEA NSRC

| Nuclides | JAEA NSRC<br>(Bq/L) | TEPCO*<br>(Bq/L) | Concentration<br>limit (Bq/L) |
|----------|---------------------|------------------|-------------------------------|
| Ru-106   | <0.81               | <0.21            | 100                           |
| Sb-125   | <0.26               | <0.088           | 800                           |
| Cs-134   | <0.17               | <0.03            | 60                            |

•Any detection limit is lower than 1/100 of regulatory concentration limit

\* : https://www.tepco.co.jp/decommission/data/analysis/pdf\_csv/2023/3q/measurement\_confirmation\_230921-j.pdf

### Analysis result(2/2)

> Nuclides which were detected in the analysis of JAEA NSRC

| Nuclides | JAEA NSRC<br>(Bq/L) | TEPCO <sup>*</sup><br>(Bq/L) | Concentration<br>limit (Bq/L) | <i>E</i> n |
|----------|---------------------|------------------------------|-------------------------------|------------|
| Co-60    | $0.228 \pm 0.035$   | $0.24 \pm 0.049$             | 200                           | 0.20       |
| I-129    | $1.70 \pm 0.12$     | $1.8 \pm 0.092$              | 9                             | 0.66       |
| Cs-137   | $0.445 \pm 0.064$   | $0.45 \pm 0.080$             | 90                            | 0.05       |
| C-14     | $13.19 \pm 0.65$    | $13 \pm 2.3$                 | 2,000                         | 0.08       |

•All of the values of  $|E_n|$  were below 1.

 $*: https://www.tepco.co.jp/decommission/data/analysis/pdf_csv/2023/3q/measurement\_confirmation\_230921-j.pdf$ 

### Analysis result(2/2)



Error bar shows relative expanded uncertainty

## Example of evaluation of uncertainty (H-3)

| Cause of uncertainty                                                     | Relative standard uncertainty*1 | Value (%) |  |  |  |  |
|--------------------------------------------------------------------------|---------------------------------|-----------|--|--|--|--|
| Uncertainty of sample analysis                                           |                                 |           |  |  |  |  |
| <ul> <li>Uncertainty of sample collection</li> </ul>                     | $\mu_{1}$                       | 0.618     |  |  |  |  |
| Uncertainty of equipment calibration                                     |                                 |           |  |  |  |  |
| <ul> <li>Uncertainty of standard source</li> </ul>                       | $\mu_{2}$                       | 2.550     |  |  |  |  |
| <ul> <li>Uncertainty of sampling of standard source</li> </ul>           | $\mu_{3}$                       | 1.020     |  |  |  |  |
| <ul> <li>Uncertainty of counting for standard source</li> </ul>          | $\mu_4$                         | 0.854     |  |  |  |  |
| <ul> <li>Uncertainty due to fitting using calibration formula</li> </ul> | $\mu$ $_{5}$                    | 0.654     |  |  |  |  |
| <ul> <li>Uncertainty for decay correction</li> </ul>                     | $\mu_{6}$                       | 0.004     |  |  |  |  |
| Uncertainty of sample measurement                                        |                                 |           |  |  |  |  |
| <ul> <li>Fluctuation of background</li> </ul>                            | $\mu_7$                         | 2.438     |  |  |  |  |
| <ul> <li>Uncertainty of counting</li> </ul>                              | $\mu_{8}$                       | 0.432     |  |  |  |  |
| <ul> <li>Uncertainty for decay correction</li> </ul>                     | $\mu$ $_{9}$                    | 0.007     |  |  |  |  |

- •Combined standard uncertainty =  $\sqrt{\mu_1^2 + \cdots + \mu_9^2} = 3.9$  (%)
- Relative expanded uncertainty<sup>\*2</sup>=
   (Combined standard uncertainty ) × 2=<u>7.8 (%)</u>; Value of uncertainty is different by each

\* 1: [Relative standard uncertainty (%)] = [standard uncertainty]  $\div$  [analysis result] × 100

\*2: It shows about 95% confidence interval, based on "Guide to the expression of uncertainty in Measurement(1995)".

analysis. Also, if the concentration is very

small, uncertainty becomes large