女川原子力	発電所第2号機 工事計画審査資料
資料番号	02-変 2-工-B-04-0004 改 <mark>2</mark>
提出年月日	2023年 <mark>6</mark> 月 <mark>2</mark> 日
【凡例】	: 前回ヒアリング資料からの変更箇所

VI-3-3-3-3 残留熱除去設備の強度計算書

2023年6月

東北電力株式会社

申請範囲目録

VI-3-3-3-3 残留熱除去設備の強度計算書

VI-3-3-3-3-1 残留熱除去系の強度計算書

VI-3-3-3-3-1-4 弁の強度計算書 (残留熱除去系)

VI-3-3-3-3-1-5 管の強度計算書(残留熱除去系)

VI-3-3-3-3-1-5-2 管の応力計算書 (残留熱除去系)

VI-3-3-3-3 残留熱除去設備の強度計算書

VI-3-3-3-3-1 残留熱除去系の強度計算書

VI-3-3-3-3-1 残留熱除去系の強度計算書

目次

VI-3-3-3-3-1-4 弁の強度計算書 (残留熱除去系)

VI-3-3-3-3-1-5 管の強度計算書 (残留熱除去系)

VI-3-3-3-3-1-4 弁の強度計算書 (残留熱除去系)

まえがき

本計算書は、添付書類「VI-3-1-2 クラス 1 機器の強度計算の基本方針」及び「VI-3-2-3 クラス 1 弁の強度計算方法」並びに「VI-3-1-3 クラス 2 機器の強度計算の基本方針」及び「VI-3-2-5 クラス 2 弁の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。

· 評価条件整理表

1 11	不口正任权																			
			施設時の		クラスアッ	ップするか			条件ア	・ップする	カュ									
	機器名	既設 or	技術基準 に対象と	クラス	施設時			条件	DB ∮	条件	SA ≸	条件	おける	おける	おける		施設時の	評価区分	同等性 評価	評価
	рхин-	新設	する施設 の規定が あるか	ップへ アップ の有無	機器クラス	DB クラス	SA クラス	アップの有無	圧力 (MPa)	温度 (℃)	压力 (MPa)	温度 (℃)	評価結果 の有無	適用規格	AT IIM E-3	区分	クラス			
	E11-F004A, B	既設	有	無	DB-1	DB-1		無	8. 62	302	_		無	S55告示	設計・建設規格 又は告示	-	DB-1			
	E11-F008A, B	既設	有	無	DB-2	DB-2		無	3. 73	186	_	_	無	S55告示	設計・建設規格 又は告示		DB-2			
	E11-F016A, B	既設	有	有*	DB-2	DB-1	ĺ	無	8. 62	302			無	S55告示	設計・建設規格 又は告示	ĺ	DB-1			
	E11-F018A, B	既設	有	有*	DB-2	DB-1		無	10.40	302	_	-	無	S55告示	設計・建設規格 又は告示	-	DB-1			
	E11-F021	既設	有	有*	DB-2	DB-1	_	無	8. 62	302	_	_	無	S55告示	設計・建設規格 又は告示	_	DB-1			

注記*:原子炉冷却材圧力バウンダリ範囲の拡大によるクラスアップ。

目次

1	. <i>5</i>	カラス1弁 ・・・・・・・・	 	 1
	1. 1	設計仕様 · · · · · · · ·	 	
	1.2	強度計算書 · · · · · ·	 	
2	. <i>!</i>	クラス 2 弁 ・・・・・・・・	 	 12
	2. 1	設計仕様 · · · · · · · ·	 	 13
	2. 2	強度計算書	 	 14

クラス 1 弁

1.1 設計仕様

系統:残留熱除去系

機器の	区分		クラス1弁						
弁番号	種類	呼び径							
开留 夕 	1里块	(A)	弁箱	弁ふた	弁体	ボルト			
E11-F004A, B	止め弁	250	SCPH2	SCPH2	SCPH2				
E11-F016A, B	止め弁	350	SCPH2	SCPH2	SCPH2				
E11-F018A, B	止め弁	300	SCPH2	SCPH2	S25C				
E11-F021	止め弁	100	SCPH2	SCPH2	S25C				

1.2 強度計算書

系統:残留熱除去系

弁番号 E11-F004A, B	シート	1
------------------	-----	---

接続性			設計・建設規格	告示第501号			設計・建設規格	告示第501号
機高使用法力P (4Pa) 8.62	設計条件				AMA VL	- V+ + + + + + + + + + + + + + + + + + +		
### SCP12	最高使用圧力	JP (MPa)	8.	62	开箱の一次+	<u></u> 次心刀評価		
接続管好拝	最高使用温度	₹T _m (°C)	302		t _e	(mm)		
接続管外径	弁箱材料		SCP	H2	Т е 1	(mm)		
検討性性性性	接続管材料				Те2	(mm)		
図3-1	接続管外径	(mm)			r i	(mm)		
	接続管内径	(mm)			θ	(°)		
PiEによる弁箱の一次比力評価		図 3-1	(5)	K		1.	00
Phenology	添付図番号	図 3-2	(2)	P _e	(MPa)	113	110
円在による弁希の一次吃力評価		図 3-3	(1),	(2)	$\alpha \times 10^{-6}$	$(mm/mm^{\circ}C)$	12.69	12.63
P ₁ (NPa) 6,64 6,64 AT (C) P ₂ (NPa) 9,95 9,96 C ₄ P ₇₊₁ (NPa) 6,90 6,89 AP _{fm} (MPa) P ₁ (NPa) 10,34 10,35 AT _{fm} (C) P ₂ (NPa) 10,34 10,35 AT _{fm} (C) P ₃ (NPa) 8,96 8,96 S ₂ (NPa) 122 T ₅ (nm) T ₇ (nm) L _A (nm) L _A (nm) A ₄ (nm) S _m (NPa) 13 S _m S _m (NPa) 399 FF S _m (NPa) 13 S _m	内圧による弁	¥箱の一次応力評価				(MPa)		Į.
P₂ (MPa) 9.95 9.96 C₄ P₂,1 (MPa) 6.90 6.89 Δ P₂m (MPa) P₂,2 (MPa) 8.96 8.96 Sn(1) (MPa) 218 d (mm) (mm) Sn(2) (MPa) 122 T, (mm) (mm) 3 · Sm (MPa) 399 T, (mm) A₁ (mm²) Sn(2) ≤ 3 · Sm Sn(2) ≤ 3 · Sm LA (mm) A₁ (mm²) An Sn(1) ≤ 3 · Sm Sn(2) ≤ 3 · Sm LA (mm²) An Sn(1) ≤ 3 · Sm Sn(2) ≤ 3 · Sm Sn(2) ≤ 3 · Sm La (mm²) An Sn(2) ≤ 3 · Sm Sn(2) ≤ 3 · Sm Sn(2) ≤ 3 · Sm F####################################			1					0. 52
MPa	P 1		6.64	6. 64		(℃)		
P · 2			9. 95	9. 96				
P								
d			10.34	10. 35				
T b (mm) T c (mm) L A (mm) L A (mm) A f (mm²) S (MPa) 41 S (MPa) 299 評価: S ≤ S m (MPa) 133 S m (MPa) 187 S m (MPa) 187 S m (MPa) 133 S m (MPa) 187 S m (MPa) 134 S m (MPa) 136 S m (MPa) 137 S m (MPa) 137 S m (MPa) 138 S m (MPa) 137 S m (MPa) 136 S m (MPa) 137 S m (MPa) 138 S m (MPa) 139 S m (MPa) 130 S m (P _s	(MPa)	8.96	8. 96	S _n (1)	(MPa)	218	
Tr (mm) L _Λ (mm) L _N (mm) A _I (mm²) A _m (mm²) R (MPa) 41 S (MPa) 187 S (MPa) 133 2.25 · S _m (MPa) 299 評価: S ≤ S _m よって+分である。 非価: S ≤ 2.25 · S _m よって+分である。 配管反力による弁箱の二次応力評価 起動時及び停止時の繰返しビーク応力強さ A - A 断面の弁外径 (mm²) Q _T (MPa) A ₁ (mm²) S0 (1) (MPa) 136 134 C _b 1.0 1.0 S0 (2) (MPa) 157 154 Z ₁ (mm²) E _m (MPa) 184760 178324 Z ₂ (mm²) N (1) 63031 54985 Z ₂ (mm²) N (2) 36781 34812 S _y (MPa) 113 110 P _b (MPa) 113 110 P _b (MPa) 113 110 1.5 · S _m P _b ≤ 1.5 · S _m P _b ≤ 1.5 · S _m P _b ≤ 1	d	(mm)			S _n (2)	(MPa)	122	
LA (mm) LN (mm) Af (mm²) Af (mm²) Af (mm²) Aff (MPa) 187 Aff (MPa) 187 Aff (MPa) 187 Aff (MPa) 299 Aff (MPa) 299 Aff (MPa) 299 Aff (MPa) 299 Aff (MPa) Aff (MPa) 299 Aff (MPa) Aff (MPa) </td <td>Ть</td> <td>(mm)</td> <td> </td> <td></td> <td>3 · S m</td> <td>(MPa)</td> <td>399</td> <td></td>	Ть	(mm)			3 · S m	(MPa)	399	
L N	T _r	(mm)			評価:	S_n (1) ≤ 3 .	S _m	
A _f (mm²) A _m (mm²) r 1 (mm) S (MPa) 41 S (MPa) 187 S _m (MPa) 133 2.25 S _m (MPa) 299 評価: S ≦ S _m 上って十分である。 配管反力による弁箱の二次応力評価 A - A 断面の弁外径 (mm) A ₁ (mm²) A ₂ (mm²) A ₃ (MPa) 136 134 A ₄ (MPa) 157 154 A ₇ (MPa) 163031 54985 A ₇ (MPa) 133 110 A ₇ (MPa)	LA	(mm)				S_n (2) ≤ 3 •	S _m	
Am (mm²) r 1 (mm) S (MPa) 41 S (MPa) 299 評価: S ≦ S m (MPa) 133 2.25 · S m (MPa) 299 評価: S ≦ S m おって十分である。 配管反力による弁箱の二次応力評価 A - A 断面の弁外径 (mm) A 1 (mm²) A 2 (mm²) A 2 (mm²) C 3 Q T (MPa) 136 134 C b 1.0 1.0 S ℓ (2) (MPa) 157 154 C 1 (mm³) Z 2 (mm²) C 2 (mm²) C 3 (MPa) 184760 178324 C 4 (mm²) C 5 (1) (MPa) 184760 178324 C 5 (1) (MPa) 184760 178324 C 7 (mm²) N (1) 63031 54985 C 8 (MPa) 1 13 110 C 9 (MPa) 1 13 110 C 1.5 · S m (MPa) 1 13 110 C 1.5 · S m (MPa) 1 13 110 C 1.5 · S m (MPa) 1 13 110 C 1.5 · S m (MPa) 1 13 110 C 1.5 · S m (MPa) 1 13 110 C 1.5 · S m (MPa) 1 13 110 C 1.5 · S m (MPa) 1 13 110 C 1.5 · S m (MPa) 1 15 · S	$L_{\rm N}$	(mm)					よって十分	分である。
Ring (mm)	A f	(mm^2)						
R	A_{m}	(mm^2)			4、4、4、4、4、4、4、4、4、4、4、4、4、4、4、4、4、4、4、	次広力証価		
Sm (MPa) 299 評価: S ≤ Sm (MPa) 299 評価: S ≤ 2.25 · Sm おので十分である。 配管反力による弁箱の二次応力評価 起動時及び停止時の繰返しピーク応力強さ A - A 断面の弁外径 (mm) QT (MPa) A1 (mm²) S ℓ (1) (MPa) 136 134 C b 1.0 1.0 S ℓ (2) (MPa) 157 154 Z 1 (mm³) E m (MPa) 184760 178324 Z 2 (mm³) N (1) 63031 54985 Z p (MPa) 200 194 P d (MPa) 55 53 評価: N (1) ≥ 2000 よって十分である。 評価: P d ≤ 1.5 · S m 中 6 ≤ 1.5 · S m よって十分である。 評価: P d ≤ 1.5 · S m ト 6 ≤ 1.5 · S m よって十分である。 評価: P d ≤ 1.5 · S m ト 6 ≤ 1.5 · S m よって十分である。 評価: P d ≤ 1.5 · S m よって十分である。 評価: P d ≤ 1.5 · S m ト 6 を の の の の の の の の の の の の の の の の の の	r 1	(mm)) 4H (>)H) H	シスルロンフ 日 IIII		
評価: $S \leq S_m$	S	(MPa)	41		S	(MPa)	187	
世帯である。	S _m	(MPa)	133		2.25 · S _m	(MPa)	299	
配管反力による弁箱の二次応力評価	評価	: $S \leq S_m$			評価:	S \leqq 2.25 $\boldsymbol{\cdot}$ S $_{m}$		
$A-A$ 断面の弁外径 (nm) A_1 (nm²) A_2 (nm²) A_2 (nm²) A_3 (nm²) A_4 (nm³) A_5 (nm³			よって十分では	ある。			よって十分)である。
A_1 (mm²) Q_T (MPa) A_2 (mm²) $S \ell$ (1) (MPa) $I 136$ $I 134$ $I 136$ $I 136$ $I 134$ $I 136$ $I 136$ $I 134$ $I 136$ $I 136$ $I 136$ $I 134$ $I 136$ $I 136$ $I 136$ $I 134$ $I 136$ $I 134$ $I 136$ $I 134$ $I 136$	配管反力によ	る弁箱の二次応力評価	画		起動時及び停	止時の繰返しピ	ーク応力強さ	
A_1 (mm²) Q_T (MPa) A_2 (mm²) $S \ell$ (1) (MPa) $I 136$ $I 134$ $I 136$ $I 136$ $I 134$ $I 136$ $I 136$ $I 134$ $I 136$ $I 136$ $I 136$ $I 134$ $I 136$ $I 136$ $I 136$ $I 134$ $I 136$ $I 134$ $I 136$ $I 134$ $I 136$	A-A断面の) 分弁外径 (mm)			С 3			
A_2 (mm²)	A 1	(mm ²)	1			(MPa)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1				136	134
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.0	1.0				
Z_2 (mm³) $Z_$		(mm ³)						
Z_{p} (mm³) N (2) 36781 34812 S_{y} (MPa) 200 194 P_{d} (MPa) 55 53 評価: N (1) \geq 2000 P_{b} (MPa) 113 110 N (2) \geq 2000 よって十分である。 1.5・ S_{m} (MPa) 199						V/		
S_y (MPa) 200 194 P d (MPa) 55 53 P b (MPa) 113 110 P t (MPa) 113 110 1.5・ S_m (MPa) 199 評価: $P_d \le 1.5 \cdot S_m$ $P_b \le 1.5 \cdot S_m$ $P_t \le 1.5 \cdot S_m$								
P_d (MPa) 55 53 評価: N (1) \geq 2000 P _b (MPa) 113 110 N (2) \geq 2000 よって十分である。 1.5・S _m (MPa) 199			200	194			<u> </u>	<u>-</u>
P_b (MPa) 113 110 N (2) \geq 2000 よって十分である。 1.5・S $_{\rm m}$ (MPa) 199					評価:	N (1) ≧2000		
P_t (MPa) 113 110 よって十分である。 1.5・ S_m (MPa) 199 評価: $P_d \le 1.5 \cdot S_m$ $P_b \le 1.5 \cdot S_m$ $P_t \le 1.5 \cdot S_m$					H I Ibrel •			
$1.5 \cdot S_{m}$ (MPa) 199 評価: $P_{d} \le 1.5 \cdot S_{m}$ $P_{b} \le 1.5 \cdot S_{m}$ $P_{t} \le 1.5 \cdot S_{m}$, =====	よって十分	うである。
評価: $P_d \le 1.5 \cdot S_m$ $P_b \le 1.5 \cdot S_m$ $P_t \le 1.5 \cdot S_m$			-	110				, G
$P_b \leq 1.5 \cdot S_m$ $P_t \leq 1.5 \cdot S_m$			133					
$P_t \leq 1.5 \cdot S_m$	川山山							
			トって十分では	5.Z				

ı	弁番号	E11-F004A, B	シート	2

m	n	A o	C 5	S (MI		3 ⋅ S m (MPa)		3 ⋅ m ⋅ S _m (MPa)	
3. 00	0. 20	0. 66	0. 96			400		1200	
ΔΤ f	S p	1	К е	Sl		V i	N r i	N _i / N _{r i}	
(℃)	(MPa)		11 e	(MPa)		• 1	111	11/1/11	
	416		_	208				0.0008	
	268		_	134	1			0.0022	
	205		_	103				0.0008	
_									
評価	面:疲労累積	保数 I	$\sum_{i} = \sum_{i} \frac{N_{i}}{N_{r,i}} =$	= 0.0038 ≦	<u> </u>		j	こって十分である。	
	西:疲労累積 世: 世: 世: 世: 世: 世: 世: 世: 世: 世:			= 0.0038 ≦	T	一次応力評値	武 設計・建設		
弁箱の形	状規定 設言			= 0.0038 ≦	T	一次応力評値			
	状規定 設言	十・建設規		= 0.0038 ≦	弁体の	一次応力評値		規格	
弁箱の形 ² r ₁	状規定 設ま (r (r	十・建設規 mm)		= 0.0038 ≦	弁体の-	一次応力評値		規格 SCPH2	
弁箱の形 ² r ₁	状規定 設言 (r (r	十・建設規 mm) mm)		= 0.0038 ≦	弁体の・ 材料 形式 P	一次応力評ff P 1, P 2)	五 設計・建設	規格 SCPH2 W2	
弁箱の形2 r ₁ r ₂ 0.3・t	狀規定 設計 (r (r (r	十・建設規mm) mm) mm)		= 0.0038 ≦	弁体の・ 材料 形式 P		西 設計・建設 (MPa)	規格 SCPH2 W2	
弁箱の形 r ₁ r ₂ 0.3・t 0.05・t	狀規定 設計 (r (r (r	十・建設規mm) mm) mm)		= 0.0038 ≦	弁体の・ 材料 形式 P P。(F		西 設計・建設 (MPa) (N)	規格 SCPH2 W2	
弁箱の形 r ₁ r ₂ 0.3・t 0.05・t 0.1・h	狀規定 設計 (r (r (r	十・建設規 mm) mm) mm) mm)		= 0.0038 ≦	弁体の・ 材料 形式 P P。(F		西 設計・建設 (MPa) (N) (mm)	規格 SCPH2 W2	

よって十分である。

よって十分である。

弁番号	E11-F004A, B	シート	3

設計· 建設規格	告示 第501号			設計・建設規格
-		ネック音	『の厚さ	
0	60	a	(,,,,,,	
0	. 02	a n	(IIIII)	
	202	4 /	4	
,	002	u _n /	u _m	
		t m	(mm)	17. 5
SC	CPH2	t ma	(mm)	
SC	CPH2			
6. 64	_	評価:	t ma≧	it m
9. 95	_			よって十分である。
15. 5	_			
17. 4	_			
16. 7	_			
よって十分	である。			
	建設規格 8 SC SC 6. 64 9. 95 15. 5 17. 4 16. 7	建設規格 第501号 8.62 302 SCPH2 SCPH2 6.64 - 9.95 - 15.5 - 17.4 -	建設規格 第501号 8.62 dn 302 dn tm SCPH2 t ma SCPH2 6.64 - 9.95 - 17.4 - 16.7 - 16.7 - 16.7	建設規格 第501号 Record

5

枠囲みの内容は商業機密の観点から公開できません。

系統:残留熱除去系	弁番号	E11-F004A, B	シート	4

設計条件	びフランジボル		モーメントの	計算	
P _{FD}	(MPa)	11.06	H _D	(N)	1.064×10^{6}
Peq	(MPa)	2.44	h _D	(mm)	72. 0
Γ _m	(°C)	302	M_{D}	(N·mm)	7. 660×10^7
<u></u> И _е	(N·mm)		H_{G}	(N)	6.546×10^{5}
e e	(N)		h _G	(mm)	78. 0
フランジの		JIS B 8265 附属書3 図27)	M_{G}	(N·mm)	5.103×10^{7}
フランジ	1		Нт	(N)	2.847×10^{5}
才料		SCPH2	h T	(mm)	89. 0
ν _{fa}			M_{T}	(N·mm)	2.534×10^{7}
営温(ガスク (20 ℃)	ケット締付時)	160	M _o	(N·mm)	1.530×10^{8}
(20 C) _{f b}	(MPa)		Mg		2.824×10^{8}
	度 (使用状態)	125		0厚さと係数	2.021/10
A	(mm)		t) (mm)	
3	(mm)		K	()	1.77
2	(mm)		h o	(mm)	· · · · · · · · · · · · · · · · · · ·
S 0	(mm)		f		1.00
g ₁	(mm)		F		0.797
1	(mm)		V		0.245
ボルト			е	(mm ⁻¹)	0.00710
才料			d	(mm ³)	2323644
Ta (13)	(MPa)		L		1.69
営温(ガスク (20 ℃)	アット締付時)	242	Т		1.60
(20 С) Г _Б	(MPa)		U		3. 92
	度 (使用状態)	197	Y		3. 57
1			Z		1.94
ł _b	(mm)		応力の計算	草	
ブスケット			σнο	(MPa)	98
 才料	Г		σкο	(MPa)	44
ガスケット	厚さ (mm)		σтο	(MPa)	45
j	(mm)		о _{Н в}	(MPa)	139
n			σкв	(MPa)	81
7	(N/mm^2)		σт	(MPa)	82
) 0	(mm)				
)	(mm)		応力の記	評価: σ _{Нο} ≦1.5・	
1	(mm)			σ _{R o} ≦1.5 •	
) s	(mm)		4	$\sigma_{To} \leq 1.5$	О f b
ボルトの計		2.010		σ _{Hg} ≦1.5・	σ.,
I .	(N)	1. 349×10 ⁶		$\sigma_{\rm Hg} \leq 1.5$ $\sigma_{\rm Rg} \leq 1.5$	
I _p	(N)	6.546×10^5	-	$\sigma_{Tg} \leq 1.5$	
V _{m 1}	(N) (N)	$ \begin{array}{c} 2.003 \times 10^{6} \\ 6.797 \times 10^{5} \end{array} $. s — -	- 4
V _{m 2}	(mm ²)	$\frac{6.797 \times 10^{4}}{1.013 \times 10^{4}}$	-		よって十分である。
A _{m1}	(mm ²)	$\frac{1.013 \times 10}{2.809 \times 10^{3}}$	-		
Λ _{m 2}	(mm ²)	2.809×10 1.013×10^{4}			
ι _m ι _b	(mm ²)	1.015 ^ 10	7		
V _o	(N)	2.003×10^{6}	7		
V g	(N)	3.621×10^{6}			
	V- 17		⊣		

弁番号	E11-F016A, B	シート	1

			設計・建設規格	告示第501号			設計・建設規格	告示第501号
設計条件				· · · · · · · · · · · · · · · · · · ·		1 - W 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		<u> </u>
最高使用圧力	ÞР	(MPa)	8.	62	弁箱の一次-	+二次応力評価		
最高使用温度	ξT _m	(℃)	302		t e	(mm)		
弁箱材料			SCF	PH2	Т е 1	(mm)		
接続管材料					Те2	(mm)		
接続管外径		(mm)			r i	(mm)		
接続管内径		(mm)			θ	(°)		
	図 3-1		(5	5)	K			
添付図番号	図 3-2		(2	2)	P _e	(MPa)	91	89
	図 3-3		(1),	(2)	$\alpha \times 10^{-6}$	$(mm/mm^{\circ}C)$	12. 69	12. 63
内にによるも	a Maria	七十並任			E	(MPa)	187600	181619
内圧による弁	上相の一次が	心力評価			C 2		0.	47
P 1		(MPa)	6.64	6.64	ΔΤ	(℃)		
P 2		(MPa)	9. 95	9. 96	C ₄		l	
P _{r 1}		(MPa)	6. 90	6.89	Δ P $_{\mathrm{f}\ \mathrm{m}}$	(MPa)	l	
P _{r 2}		(MPa)	10. 34	10. 35	Δ T $_{\rm f\ m}$	(℃)		
P _s		(MPa)	8.96	8.96	S _n (1)	(MPa)	180	
d		(mm)			S _n (2)	(MPa)	119	
Ть		(mm)			3 • S m	(MPa)	399	
T _r		(mm)			評価	: S $_n$ (1) $\leqq 3$ •	S _m	
LA		(mm)				S_n (2) ≤ 3 •	S _m	
$L_{ m N}$		(mm)					よって十分	うである。
A f		(mm^2)						
A_{m}		(mm^2)			会体の目却	一次応力評価		
r 1		(mm)			#相り何司	10000000000000000000000000000000000000		
S		(MPa)	48		S	(MPa)	153	
S _m		(MPa)	133		2.25 · S m	(MPa)	299	
評価	: S ≦ S m		よって十分でも	5 ろ。	評価	: $S \leq 2.25 \cdot S_m$	よって十分	うである。 -
配管反力に 』	よる弁箱のこ			<i>.</i>	起動時及び			, (0, 0,
A−A断面の)弁外径	(mm)			Сз			
A A A A A A A A A A A A A A A A A A A	- // / 压	(mm ²)			Q _T	(MPa)	1	
A 2		(mm ²)			S (1)	(MPa)	114	112
Сь		(111111 /	1.0	1.0	S ℓ (2)	(MPa)	129	126
Z ₁		(mm ³)	1. 0	1.0	E m	(MPa)	184760	178324
Z ₁		(mm ³)			N (1)	(mr a/	134683	122777
Z _p		(mm ³)			N (2)		81450	74111
S _y		(MPa)	200	194	1, (4)		1 01100	, 1111
P _d		(MPa)	44	43	評価	: N (1) ≧2000		
P _b		(MPa)	91	89	н і Ііш	N (2) ≥ 2000		
P _t		(MPa)	91	89		(-) ===000	よって十分	うである。
1.5 · S _m		(MPa)	199					= 0
	: P d ≤1.5		100					
н ІЩ	P _b ≤1.5							
	$P_{t} \le 1.5$							
	1 t = 1.0		よって十分でも	ある。				
			о - C Л C O	いる。				

弁番号	E11-F016A, B	シート	2

繰返しと	繰返しピーク応力強さ(疲労累積係数) 告示第501号												
m		n	A	A o C 5		S	n 3 ⋅ S m			3⋅m⋅S _m			
							(MPa)		(MPa)			(MPa)	
3.00		0. 20	0.	. 66	1. 02	2	12	9	400	400		1200	
ΔТ f		S p		K _e Sℓ		Sl		N i		N _{r i}	N_i / N_{ri}		
(℃)		(MPa)		(MPa)								
		803		-	_		402					0.0052	
	740 — 370				370					0.0508			
		235		-	_		118					0.0011	
		212		-	_		106				0.0001		
		182		-			91					0.0004	

評価:疲労累積係数 $I_t = \sum_{N_{ri}}^{N_i} = 0.0576 \le 1$

よって十分である。

弁箱の形状規定 設計・建	設規格	弁体の一次応力評価 設計・建設規格				
r 1 (mm)		材料		SCPH2		
r ₂ (mm)		形式		W2		
0.3 · t (mm)		P	(MPa)	8. 62		
0.05 · t (mm)		P_c (P_1, P_2)	(N)			
0.1 · h (mm)		h	(mm)			
d_{n} / d_{m}		a	(mm)			
評価: r 1 ≥ 0.3 · t		b	(mm)			
r ₂ ≧Max (0.05 •	t, 0.1 · h)	σр	(MPa)	55		
$\frac{d_n}{d_m} < 2$		1.5 · S _m	(MPa)	188		
d _m		評価:σ _D ≦1.5	• S m			
	よって十分である。			よって十分である。		

弁番号	E11-F016A, B	シート	3

		設計・	告示		設計・建設規格		
設計条件		建設規格	第501号	ネック部の厚さ			
最高使用圧 (MPa)	力P	8. 6	52	d n (mm			
最高使用温 (℃)	度T _m	30	2	d n/d m			
弁箱又は弁	ふたの厚さ			t m (mm	n) 21.0		
弁箱材料	•	SCP	H2	t ma (mm	n)		
弁ふた材	·料	SCP	H2				
P 1	P ₁ (MPa)		_	評価: t m	$_{\text{n a}} \geq$ t $_{\text{m}}$		
P 2	(MPa)	9. 95	_		よって十分である。		
d _m	(mm)						
t 1	(mm)	18. 7	_				
t 2	(mm)	22. 5	_				
t	(mm)	21. 0	_				
t a b	(mm)						
t a f	(mm)						
評価: t	a b≧ t						
t	$_{a\ f}\geqq\ t$						
		よって十分で	ある。				

9

枠囲みの内容は商業機密の観点から公開できません。

|--|

系統:残留熱除去系

2計条件			モーメントの)計算	
P _{FD}	(MPa)	12. 11	H_D	(N)	1.373×10^{6}
Peq	(MPa)	3. 49	h _D	(mm)	94. 0
Γ_{m}	(℃)	302	M_{D}	(N·mm)	1.290×10^{8}
Ие	(N·mm)		H_{G}	(N)	8. 337×10^5
T e	(N)		h _G	(mm)	95. 4
フランジの	形式	JIS B 8265 附属書3図27)	$ m M_G$	(N·mm)	7.950×10^{7}
フランジ			Нт	(N)	4.450×10^{5}
才料		SCPH2	h T	(mm)	109.7
σ _{fa}	(MPa)		M_{T}	(N⋅mm)	4.881×10^7
常温(ガスケ (20 ℃)	アット締付時)	160	M _o	(N·mm)	2.573×10^{8}
от f b	(MPa)	105	М д	(N·mm)	4.657×10^{8}
	(使用状態)	125	フランジの	の厚さと係数	
Α	(mm)		t	(mm)	
3	(mm)		K		1.87
2	(mm)		h o	(mm)	
3 0	(mm)		f		1.00
S 1	(mm)		F		0.834
1	(mm)		V		0.309
ドルト			e	(mm ⁻¹)	0.00656
才料	() (=)		d	(mm ³)	2669082
_a 常温(ガスケ	(MPa) [^] ット締付時)	242	L		1.60
(20 ℃)			Т		1. 56
) b 見文は田沢田田	(MPa)	197	U		3. 60
	(使用状態)		Y		3. 27
d _b	(mm)		Z 応力の計算		1.80
コ _ь ガスケット	(111111)				107
			σнο	(MPa)	127
才料			σкο	(MPa)	69
ガスケット			σтο	(MPa)	60
3	(mm)		σнց	(MPa)	191
n	(NT / 9)		σкв	(MPa)	124
7	(N/mm ²)		σтց	(MPa)	109
O o	(mm)		たもの	評価:σ _{нο} ≦1.5 ·	
) V	(mm) (mm)		ルいノナロンド	671Щ: σ _{Нο} ≦1.5° σ _{Rο} ≦1.5°	
3 s	(mm)			$\sigma_{\text{To}} \leq 1.5$	
<u>」。</u> ドルトの計:			4	10-10	
	(N)	1.818×10^{6}		$\sigma_{Hg} \leq 1.5$	σ _{f a}
-I _p	(N)	8.337×10^{5}		$\sigma_{Rg} \leq 1.5$	
V _{m 1}	(N)	2.651×10^{6}		$\sigma_{Tg} \leq 1.5$	σ _{f a}
V _{m 2}	(N)	7.911×10^{5}			
A _{m 1}	(mm^2)	1.341×10^4			よって十分である。
A _{m2}	(mm^2)	3.269×10^3			
A_{m}	(mm^2)	1.341×10^4	_		
A _b	(mm^2)		_		
V o	(N)	2.651×10^{6}			
		4.884×10^{6}	1		

			設計・建設規格	告示第501号			設計・建設規格	告示第501号
設計条件				·			•	
最高使用圧力	JР	(MPa)	10.	40	弁箱の一次-	+二次応力評価		
最高使用温度T _m (℃)			302		t _e	(mm)		
弁箱材料			SCP	H2	Т е 1	(mm)		
接続管材料					Те2	(mm)		
接続管外径		(mm)	1		r i	(mm)		
接続管内径		(mm)			θ	(°)		
	図 3-1		(4	.)	K		1	. 00
添付図番号	図 3-2		(4	.)	P _e	(MPa)	111	108
	⊠ 3-3		(3),	(4)	$\alpha \times 10^{-6}$	(mm/mm°C)	12.69	12. 63
内圧による弁	- 	評価			Е	(MPa)	187600	181619
		(1 m)			C 2	(00)	0). 49
P 1		(MPa)	9. 95	9. 96	ΔΤ	(℃)		
P 2		(MPa)	14. 95	14. 93	C ₄	(17)		
P _{r 1}		(MPa)	10.34	10. 35	ΔP _{fm}	(MPa)		
P _{r 2}		(MPa)	15. 51	15. 51	Δ T _{f m}	(℃)	000	,
P s		(MPa)	10.81	10.81	S _n (1)	(MPa)	228	
d		(mm)	-		S _n (2)	(MPa)	96	
Ть		(mm)	-		3 • S m	(MPa)	399)
T r		(mm)	-		評価	: S _n (1) ≦3 ⋅		
L _A		(mm)	-			S_n (2) ≤ 3 .		(+ 7
L _N		(mm)	-				よって十分	げじめる。
A f		(mm ²)	-					
A _m		(mm ²)	-		弁箱の局部-	一次応力評価		
r 1		(mm)	50			(10)	100	
S		(MPa)	79		S	(MPa)	192	
S _m		(MPa)	133		2. 25 · S m	(MPa)	299	1
評価	: S ≦ S m		よって十分では	ある。	評価	: $S \leq 2.25 \cdot S_m$	よって十分)である。
配管反力によ	にる弁箱の二次	:応力評(価		起動時及び	亭止時の繰返しピ	ーク応力強さ	
A-A断面の)弁外径	(mm)			С 3			
A 1		(mm ²)	1		Q _T	(MPa)		
A 2		(mm ²)	1		S (1)	(MPa)	143	141
Сь			1.0	1.0	S ℓ (2)	(MPa)	158	155
Z ₁		(mm ³)			E _m	(MPa)	184760	178324
Z ₂		(mm ³)			N (1)	<u> </u>	49592	45361
Z _p		(mm ³)			N (2)		35859	33835
S _y		(MPa)	200	194			l .	1
P _d		(MPa)	57	55	評価	: N (1) ≧2000		
P _b		(MPa)	111	108		N (2) ≥ 2000		
P _t		(MPa)	111	108			よって十分	}である。
1.5 · S _m		(MPa)	199					
	: P _d ≦1.5 • S							
	$P_b \leq 1.5 \cdot S$							
	$P_t \leq 1.5 \cdot S$							
			よって十分であ					

弁番号	E11-F018A, B	シート	2

繰返しピーク応力強さ(疲労累積係数) 告示第501号														
m		n	A	A .	C 5		S	n	3 ⋅ S m			3 · m · S m		
							(MPa)		(MPa)			(MPa)		
3.00		0. 20	0.	. 66	0.94	98		3	400			1200		
Δ T _f		S p		ŀ	ζ _e		Sl		N i		N _{r i}	N_i/N_{r_i}		
(℃)		(MPa)				(MPa)								
		559	١	-	_		280					0.0017		
	503			-	_		252					0.0153		
		231		-	_	116		116				0.0010		
		211		-	_		106					0.0001		
		184		-	_		92					0.0005		

評価:疲労累積係数 $I_t = \sum_{N_{r_i}}^{N_i} = 0.0186 \le 1$

よって十分である。

弁箱の形状規定 設計・建設規格	弁体の一次応力評価	弁体の一次応力評価 設計・建設規格			
r ₁ (mm)	材料		S25C		
r ₂ (mm)	形式		G1		
0.3 · t (mm)	Р	(MPa)	10. 40		
0.05 • t (mm)	$P_c (P_1, P_2)$	(N)			
0.1 · h (mm)	h	(mm)			
d n/d m	a	(mm)			
評価: r 1≥0.3 · t	b	(mm)			
r ₂ ≧ Max (0.05 • t, 0.1 • h)	σр	(MPa)	53		
$\frac{d}{d}_{m} < 2$	1.5 · S _m	(MPa)	190		
d _m ~2	評価:σ _D ≦1.5・	S _m			
よって十分である。			よって十分である。		

枠囲みの内容は商業機密の観点から公開できません。

弁番号	E11-F018A, B	シート	3

		設計•	告示			
		建設規格	第501号			設計・建設規格
設計条件				ネック音	部の厚さ	
最高使用圧 (MPa)	力P	10.	40	d n	(mm)	
最高使用温 (℃)	l度T _m	30	2	d n/	d m	
弁箱又は弁	ふたの厚さ			t m	(mm)	25.8
弁箱材料	<u> </u>	SCP	H2	t ma	(mm)	
弁ふた材	† 料	SCP	H2			
P 1	(MPa)	9. 95	_	評価:	: t _{m a} ≧	t _m
P 2	(MPa)	14. 95	_			よって十分である。
d _m	(mm)					
t 1	(mm)	20. 5	_			
t 2	(mm)	30. 2	_			
t	(mm)	21. 4	_			
t a b	(mm)					
t a f	(mm)					
評価: t	ab≧ t					
t	t a f ≧ t					
		よって十分で	ある。			

13

枠囲みの内容は商業機密の観点から公開できません。

弁番号	E11-F018A, B	シート	4
-----	--------------	-----	---

系統:残留熱除去系

	留熱除去系	and the least			
	びフランジボル	トの応力解析		1 Anhr	
設計条件			モーメントの		
P _{FD}	(MPa)	19. 23	H _D	(N)	1. 489×10 ⁶
P _{eq}	(MPa)	8. 83	h _D	(mm)	94. 0
T _m	(℃)	302	M_{D}	(N·mm)	1.400×10^{8}
Ме	(N·mm)		H _G	(N)	9. 616×10 ⁵
F _e	(N)	JIS B 8265 附属書3 図27)	h _G	(mm)	119.6
フランジの	形式	JIS D 0 2 0 3 附属者 3 因 2 ()	M_{G}	(N·mm)	1. 150×10 ⁸
フランジ		CCDHO	H _T	(N)	3.704×10^{5}
材料 σ _{fa}	(MPa)	SCPH2	h T	(mm)	128.8
	(MI a) ケット締付時)	160	M _T	(N·mm)	4.769×10^7
(20 ℃)	, , , , , , , , ,		Мо	(N⋅mm)	3.026×10^{8}
σ f b	(MPa)	105	Mg	(N·mm)	5.656×10^{8}
	度(使用状態)	125		0厚さと係数 _	
A	(mm)		t	(mm)	
В	(mm)		K		2. 16
С	(mm)		h o	(mm)	
g o	(mm)		f		1.00
g ₁	(mm)		F		0.744
h	(mm)		V		0. 154
ボルト	_		е	(mm ⁻¹)	0.00637
材料	L		d	(mm ³)	4225825
σ _a	(MPa)		L		1. 54
常温 (ガスケ (20 °C)	アット締付時)	242	Т		1. 45
σь	(MPa)	105	U		2.94
最高使用温度	度 (使用状態)	197	Y		2. 68
n			Z		1. 55
d _b	(mm)		応力の計算		
ガスケット			σнο	(MPa)	93
材料			σкο	(MPa)	95
ガスケット	厚さ (mm)		σтο	(MPa)	53
G	(mm)		о н _в	(MPa)	133
m			σ _{Rg}	(MPa)	177
У	(N/mm ²)		σтg	(MPa)	98
b o	(mm)			<u></u>	
b	(mm)		応力の詞	評価: он∘≦1.5	• o f b
N	(mm)			σ _{R o} ≦1. 5	
G s	(mm)		_	σ _{T o} ≦1. 5	• Of b
ボルトの計					
Н	(N)	1.860×10^6		σ _{Hg} ≦1.5	
Н р	(N)	9.616×10^{5}		σ _{Rg} ≤1.5	
W _{m 1}	(N)	2.821×10^{6}		$σ$ _{Tg} \leq 1.5	• О f a
W _{m 2}	(N)	5.742×10^5			よって十分である。
A _{m1}	(mm ²)	1.427×10^4			よつ(下方じめる。
A_{m2}	(mm ²)	2.373×10^3			
A_{m}	(mm ²)	1.427×10^4			
A _b	(mm ²)		_		
W _o	(N)	2.821×10^{6}			
W g	(N)	4.731×10^6			
評価: An	$_{\rm m}$ $<$ A $_{\rm b}$				
		よって十分である。			

弁番号	E11-F021	シート	1

設計条件			ネック部	『の厚さ	
最高使用圧 (MPa)	カP	8. 62	d n	(mm)	
最高使用温 (℃)	度Tm	302	d _n /	d m	
弁箱又は弁	ふたの厚さ		t m	(mm)	12. 7
弁箱材料		SCPH2	t ma	(mm)	
弁ふた材	料	SCPH2			
P 1	(MPa)	6. 64	評価:	$t_{ma}\!\geqq t$	m
P 2	(MPa)	9. 95		J	てって十分である。
d _m	(mm)]		
t 1	(mm)	9. 4			
t 2	(mm)	9. 5			
t	(mm)	9. 5			
t a b	(mm)		7		
t a f	(mm)				
評価: t	a b≧ t				
t	$_{a\ f}\geqq t$				
		よって十分である。			

クラス2弁

2.1 設計仕様

系統:残留熱除去系

機器0	の区分		クラス2弁		
弁番号	種類	呼び径		材料	
开留万	(生)規 	(A)	弁箱	弁ふた	ボルト
E11-F008A, B	止め弁	350	SCPH2	SCPH2	

2.2 強度計算書

系統:残留熱除去系

弁番号	E11-F008A, B	シート	1

設計条件			ネック部の	/直々	
		1	イック前の		
最高使用圧	力P (MPa)	3. 73	d _n	(mm)	
最高使用温	度T _m (℃)	186	d_{n}/d	m	
弁箱又は弁	ふたの厚さ		Q	(mm)	
弁箱材料		SCPH2	t m 1	(mm)	13.8
弁ふた材	料	SCPH2	t m 2	(mm)	11. 3
P 1	(MPa)	2.00	t m a 1	(mm)	
P 2	(MPa)	5. 17	t ma2	(mm)	
d m	(mm)				
t 1	(mm)	10.6	評価: 1	t _{ma1} ≥ t ₁	m 1
t 2	(mm)	16. 3		t m a 2 ≥ t	m 2
t	(mm)	13.8		よ	って十分である。
t a b	(mm)		1		
t a f	(mm)				
評価: t	a b ≧ t				
t	$_{a\ f}\geqq\ t$				
		よって十分である。			

弁番号 E11-F008A, B シート 2

計条件			モーメントの計算			
	(MPa)	6. 77	H_D	(N)	9. 192×10^5	
P_{eq} ((MPa)	3. 04	h _D	(mm)	48.5	
T _m	(℃)	186	${ m M}_{ m D}$	(N·mm)	4.458×10^{7}	
M_e (N	·mm)		H_G	(N)	3.390×10^{5}	
F _e	(N)		h _G	(mm)	36.4	
フランジの形式		JIS B 8265 附属書3図27)	$ m M_G$	(N·mm)	1.233×10^7	
フランジ			Нт	(N)	2.908×10^{5}	
材料		SCPH2	h T	(mm)	51. 7	
σ _{fa} (常温 (ガスケット締作	MPa)	100	M_{T}	(N·mm)	1.503×10^{7}	
吊温(ガスケット締作 (20 ℃)	可時)	120	Мо	(N·mm)	7. 193×10^7	
,	(MPa)		Mg	(N·mm)	6. 286×10^7	
σ f b 最高使用温度(使用ង	犬態)	120	フランジの			
A	(mm)		t	(mm)		
В	(mm)		K	` '	1. 45	
С	(mm)		h o	(mm)		
g 0	(mm)		f	` '	1.00	
g ₁	(mm)		F		0.838	
h	(mm)		V		0, 302	
ボルト	()		е	(mm ⁻¹)	0, 00822	
材料			d	(mm ³)	1247165	
σ a ((MPa)		L	(mm)	0.85	
常温(ガスケット締∱ (20 ℃)	寸時)	173	Т		1.73	
σь (最高使用温度(使用ង	(MPa)	173	U		5. 91	
最高使用温度(使用制	犬態)	173	Y		5. 38	
n			Z		2.80	
d _b	(mm)		応力の計算			
ガスケット			σнο	(MPa)	156	
材料			σкο	(MPa)	155	
ガスケット厚さ	(mm)		σтο	(MPa)	46	
G	(mm)		σнց	(MPa)	122	
m			σкв	(MPa)	136	
•	/mm ²)		σтg	(MPa)	41	
b o	(mm)			· · · · · · · · · · · · · · · · · · ·		
b	(mm)		応刃の	評価:σ _H 。≦1.5・		
N	(mm)		$\sigma_{Ro} \leq 1.5 \cdot \sigma_{fb}$ $\sigma_{To} \leq 1.5 \cdot \sigma_{fb}$			
G _s	(mm)		4	U T o ≅ 1. 0	U į b	
ボルトの計算	(37)	4 040	-	σ _{Hg} ≦1.5・	Of a	
H	(N)	1. 210×10 ⁶	_	$\sigma_{Rg} \leq 1.5$		
Н р	(N)	3. 390×10 ⁵	_	$\sigma_{Tg} \leq 1.5$		
W _{m 1}	(N)	1. 549×10 ⁶	_	- 6	よって十分である	
W _{m 2}	(N)	3. 070×10 ⁵	_			
	(mm ²)	8. 953×10 ³	_			
	(mm ²)	1. 775×10 ³	_			
	(mm ²)	8.953×10^3	-			
	(mm ²)		_			
W o	(N)	1.549×10^{6}	_			
Wg	(N)	1.729×10^6	_			
評価 : A _m < A						

枠囲みの内容は商業機密の観点から公開できません。

VI-3-3-3-3-1-5 管の強度計算書 (残留熱除去系)

目次

VI-3-3-3-3-1-5-2 管の応力計算書 (残留熱除去系)

VI-3-3-3-3-1-5-2 管の応力計算書 (残留熱除去系)

1. 管の応力計算書(残留熱除去系)

本申請は、残留熱除去系 主要弁 (E11-F004A, B) の弁体を取替えるものであるが、過去の製作図面に基づき同仕様 (材料、寸法、重量) の弁体を製作するものであり、解析条件となる重量等に変更はなく、評価結果の変更もないことから、本計算書は令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画から変更はない。