

	枵	咅					$\frac{\stackrel{\circ}{5}}{\frac{8}{4}}$	$\frac{\stackrel{\circ}{7}}{\frac{8}{2}}$	$\begin{array}{\|c\|} \hline \stackrel{\rightharpoonup}{\vec{b}} \\ \stackrel{y}{6} \end{array}$	$\frac{\stackrel{\circ}{8}}{\frac{8}{6}}$		$\frac{\circ}{V_{b}^{2}}$	部
	$\bar{\square}$	$\stackrel{1}{8}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\square}$	$\stackrel{\text {－}}{\text { ¢ }}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{\circ}}$	$\stackrel{\circ}{\bar{\circ}}$		10，	18		碞	蛧	18
	$\bar{\square}$	\％	\％	遃詈	\％	\％		哭迢，	－	皆－	荙	8	迺
＊		m	4	京		\％	京	$\frac{1}{2}$	$\left.\begin{array}{\|c\|} \hline \frac{3}{今} \\ \vec{H} \end{array} \right\rvert\,$	\％	如	$\stackrel{\substack{\text { 答 } \\ \\ \hline}}{ }$	赏
	Θ	（®）	（2）	\bigcirc	©	©	\bigcirc	（2）	©	（2）	Θ	（2）	（2）

No． 23 は，既設配管の

一部厚肉化により SM41C のエルボがな くなるためSM41C の記載を削除No． 25 は JIS B2312 （2001）で規定する寸法に適合しない管継手（以下「JIS 規格外管継手」という。）を管 として扱らためティ ーから管へ記載を変

原子炬格納容器調気系 主配管の要目表の変更による管の耐震性についての計算書及び管の応力計算書への影響について

1．はじめに
原子炉格納容器調気系 主配管の要目表（「原子炉格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点」）について，耐震性向上を目的とした既設配管の一部厚肉化及びJIS B2312（2001）で規定す る寸法に適合しない管継手（以下「JIS 規格外管継手」という。）の採用が適切に記載されていなかつ た。

本資料では，原子炉格納容器調気系 主配管の既設配管の一部厚肉化及び JIS 規格外管継手の採用に よる要目表の変更に対して管の耐震性についての計算書及び管の応力計算書への影響について説明す る。

2．管の耐震性についての計算書及び管の応力計算書の解析モデルについて
管の耐震性についての計算書及び管の応力計算書の解析モデルは同一であり，原子炉格納容器調気系 主配管の要目表の記載の変更を行ら「原子炬格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点」については，添付資料 VI－2－9－4－5－1－1 管の耐震性についての計算書（原子炉格納容器調気系）及びVI－3－3－6－2－9－1－2－2 管の応力計算書（原子炉格納容器調気系）において代表モデル（AC－002） となっている。

3．要目表の記載の変更による管の耐震性についての計算書及び管の応力計算書への影響
前述のとおり管の耐震性についての計算書及び管の応力計算書において解析モデルが同一であるこ とから，代表として管の耐震性についての計算書の解析モデルにより原子炉格納容器調気系 主配管の要目表の変更内容が正しくインプットされていることを以下で示す。
（1）既設配管の一部厚肉化
図1の要目表において厚肉化配管を記載しているのは管名称 3 及び 4 である。図 3 の解析モデル において厚肉化配管は，X－230の解析点 813 から解析点 27 までである。この範囲の設計条件は，図 6 の管名称 3 及び 4 により確認できこれが図 1 の要目表に記載の配管仕様と一致している。

また，図1の要目表において既設配管仕様を記載しているのは管名称 4 及び 5 である。図 3 及び図 4 の解析モデルにおいて既設配管は，図 3 の解析点 27 から図 4 の解析点 320 までの範囲である。こ の範囲の設計条件は，図 6 の管名称 4 及び 5 により確認できこれが図 1 の要目表に記載の配管仕様 と一致している。

以上のことから，既設配管の一部厚肉化に係る要目表の記載変更は，当初より解析モデルにインプ ットされていることから当該計算書への影響はない。
（2）JIS 規格外管継手の採用
JIS 規格外管継手に係る要目表の変更は，JIS 規格の継手の場合，要目表には 3 行で示し母管，枝管それぞれの口径，肉厚等を記載することとしているが，JIS 規格外管継手の場合，要目表において一行で示し母管の口径，肉厚等を記載するという記載ルールに従った変更であるため，配管仕様を変更するものではない。

上記について解析モデルで確認する。図1の要目表において JIS 規格外管継手を記載しているの は管名称 11 である。図 4 の解析モデルにおいて当該継手の母管側（外径 609.6 mm ）は，解析点 48， 438，439 の範囲である。この範囲の設計条件は，図7の管名称 11 より確認できこれが図 1 の要目表 に記載の配管仕様と一致している。

なお，当該継手の枝管側（外径 406.4 mm ）については，図 5 の解析モデルにおいて解析点 438,440 の範囲である。この範囲の設計条件は図 7 の管名称 12 により確認でき， $600 \mathrm{~A} / 600 \mathrm{~A} / 400 \mathrm{~A}$ の継手とし て適切にインプットされている。

以上のことから，JIS 規格外管継手の採用に係る要目表の記載変更は，要目表の記載ルールに係る変更であり，当該管継手形状は，当初より解析モデルにインプットされていることから当該計算書へ の影響はない。

図1 原子炉格納容器調気系 要目表

原子炉格納容器調気系概略系統図（その2）
図2 原子炉格納容器調気系 概略系統図

図 $4 \quad \mathrm{AC}-002$ 解析モデル（その 2 ）

図5 AC－002解析モデル（その3）
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 㦑 図 AC－002

管名称	最高使用圧力 （MPa）	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\underset{(\mathrm{mm})}{\text { 外径 }}$	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材料	$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度分類 } \end{aligned}$	縦弹性係数 （ MPa ）
1	$\begin{gathered} 23.5 \mathrm{kPa} \\ (0.0235 \mathrm{MPa}) \end{gathered}$	140	318.5	10.3	STS410	－	195400
2	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	171	318.5	10.3	STS410	－	193320
3	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	609.6	31.0	SM400C		肉化した結 様と同一に
4	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	609.6	17.5	SM400C	－	191000
5	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	609.6	9.5	SM400C	－	191000
6	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	457.2	9.5	SM400C	－	191000
7	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	457.2	14.3	STS410	－	191000
8	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	318.5	10.3	STS410	－	191000
9	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	318.5	10.3	STS410	－	191000

図6 AC－002 設計条件（その1）

設計条件
【凡例】
厚肉化配管 ：
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。既設配管新設配管

鳥 敬 図 AC－002

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	緃弹性係数 (MPa)
10	854 kPa $(0.854 \mathrm{MPa})$	171	318.5	10.3	STS410	-	193320
11	854 kPa $(0.854 \mathrm{MPa})$	200	609.6	17.5	STS410	-	-
12	854 kPa $(0.854 \mathrm{MPa})$	200	406.4	12.7	STS410	191000	
13	854 kPa $(0.854 \mathrm{MPa})$	200	406.4	12.7	STS410	-	191000
14	854 kPa $(0.854 \mathrm{MPa})$	200	406.4	21.4	SF490A	-	191000

設計条件
管名称と対応する評価点
評価点の位㯰は鳥瞰図に示す。
鳥 敬 図 AC－002

【参考】配管仕樣

管名称					対	応	す	＋	る	評	価	点			
1	201	202	203	204	205	261	312	313	314						
2	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152
	153	154	207	208	209	210	211	212	213	214	215	216	217	218	219
	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234
	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249
	250	252	253	254	255	256	257	258	259	306	307	308	309	310	311
	350	351	352	801	802	810	823	824	825	900	904	920			
3	20	21	22	24	25	804	805	808	813	902	903	924			
4	25	26	［27	28	39	323	324	826							
5	2	3	5	6	7	8	9	10	11	12	13	14	15	29	30
	31	32	33	34	35	36	37	38	40	41	42	43	44	45	46
	47	48	100	315	318	319	320	322	323	324	439	803	806	807	809
	811	812	815	826	901	905	908	916	918						
6	100	316													
7	101	316													
8	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115
	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130
	317	354	355	356	357										
9	132	133	414												
10	136	137	353	416	900										
11	48	438	439												
12	438	440													
13	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454
	455	456	457	458	459	460	814	817							
14	460	461													

47	48	100	315	318	319	320	322	323	324	439	803	806	807	809

$\begin{array}{ll}100 & 316\end{array}$
101316
$\begin{array}{lllllllllllllll}101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 & 112 & 113 & 114 & 115\end{array}$
$\begin{array}{lllllllllllllll}116 & 117 & 118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130\end{array}$
$\begin{array}{llllll}317 & 354 & 355 & 356 & 357\end{array}$
$\begin{array}{lll}132 & 133 & 414\end{array}$
353416900
$438 \quad 440$
$\begin{array}{lllllllllllllll}440 & 441 & 442 & 443 & 444 & 445 & 446 & 447 & 448 & 449 & 450 & 451 & 452 & 453 & 454\end{array}$
$460 \quad 461$

