島根原子力発電所3号炉 審査資料												
資料番号	S3-EP-004改03(説1-1)											
提出年月日	2023年2月28日											

島根原子力発電所3号炉 炉心解析コード(LANCR/AETNA) (解析モデルについて)

2023年2月 中国電力株式会社

本資料のうち, 枠囲みの内容は機密に係る事項のため公開できません。

はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•• P.2
1. 炉心解析コード(LANCR/AETNA)の概要 ······	• P.3
2. LANCR解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• P.4
3. AETNA解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• P.13
参考. モデル性能比較表の各モデルとの関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•• P.20

※本資料内で"[]"内の章または番号は、「島根原子力発電所3号炉 LANCR/AETNAコード説明書(以降、 「コード説明書」という。)」における該当箇所を示す。

はじめに

🖵 🔄 📑 📋 ご説明済の範囲 👘 🗖 🗖 📕 : 本日ご説明範囲

1. 炉心解析コード(LANCR/AETNA)の概要

3

2. LANCR 解析モデル LANCRの概要

- ▶ LANCRは燃料集合体の断面に対して燃料棒単位の詳細な核計算を2次元体系で実施し、 AETNAに必要な燃料集合体断面平均核定数を計算する。
- 評価済み核データからNJOYを用いて 事前に核データライブラリを準備する。
- 2 NJOYで事前に準備した核データライブ ラリを読み込み、中間エネルギ群(35 群)実効断面積の計算に必要な詳細 エネルギ群(190群)断面積及び詳 細エネルギ群(190群)中性子スペク トルを求める。(P.8)
- 3 燃料集合体中性子輸送計算に必要 な中間エネルギ群(35群)実効断面 積を,詳細エネルギ群(190群)中 性子スペクトル計算の結果から算出す る。(P.9)
- ・ 燃料集合体中性子輸送計算(P.10), ガンマ線輸送計算及び出力分布計算を 行い,その結果からAETNAに必要な燃 料集合体断面平均核定数(3群)を 作成する。(P.11)
- 5 燃焼計算を行い燃焼領域ごとの核種組 成を求める。(P.12)

4

2. LANCR 解析モデル 従来コードとの比較

▶ LANCRの解析モデルのうち、従来コードから変更があったモデルを以下に示す。 従来コードとLANCRコードの解析モデルの比較(変更があった点)

	従来コード(HINES)	LANCR
核データライブラリ (P.6)	ENDF/B-IV,-V	ENDF/B-VII.0
詳細エネルギ群 中性子スペクトル計算 (P.8)	衝突確率法(68+30群)	衝突確率法(190群)
中間エネルギ群 実効断面積計算(P.9)	エネルギ3群実効断面積に縮約	エネルギ35群実効断面積に縮約
燃料集合体 中性子輸送計算(P.10)	エネルギ3群 拡散計算法	エネルギ35群 輸送計算法
ガンマ線輸送計算および 出力分布計算(P.11)	ガンマ線反応による発熱は核分裂・ 捕獲反応率から簡易計算	中性子輸送計算をもとにソース設定, ガンマ線輸送計算を行い, ガンマ線 反応による発熱を計算し, 核分裂反 応による発熱と合算して燃料棒出力 を計算
燃料集合体断面平均 核定数出力 (P.11)	修正1群計算用 核定数出力	3群計算用核定数出力
燃焼計算 (P.12)	重核:24核種,FP等:30核種	重核:38核種,FP等:138核種

LANCR 解析モデル NJOYによる核データライブラリの事前準備

- ▶ 評価済み核データを基に,詳細エネルギ群中性子スペクトル計算で必要となる190群実 効断面積を作成する。
 - ▶ LANCR用核データライブラリファイルを、評価済み核データ ENDF/B-VII.0から核 データライブラリ処理コードNJOYにより事前に生成する [3.1.1]。

NJOYによる詳細エネルギ群断面積データ処理の例(U-238捕獲断面積)

LANCR 解析モデル (2) 入力データ処理,形状設定

入力データ処理

燃料集合体の形状,燃料棒毎の 核種組成とその配置,減速材や構 造材の組成,これらの温度などの状 態量や計算オプション等を読込む。

形状設定 [1.5.1]

中性子輸送計算や燃焼計算等で 必要となる燃料棒配列,チャンネル ボックスや水ロッド形状を含む燃料集 合体の断面幾何形状や,幾何形 状と関連づけられた領域ごとの物質 組成データを設定する。

LANCRでは燃料棒1本に相当する単位領域を"ノード"として燃料集合体中性子輸送計算を行う。

(9×9配列の例)

2. LANCR 解析モデル (3) 詳細エネルギ群中性子スペクトル計算

▶ NJOYで作成した核データライブラリを読込み,190群実効断面積を計算し[3.1.2.2], 燃料集合体各領域の190群中性子スペクトルを衝突確率法により計算する[3.1.2.3]。

LANCRでの詳細エネルギ群スペクトル計算の特徴 [3.1.2.1]

- ▶ 燃料集合体の2次元断面を円筒クラスタでモデル化
 - ▶ 衝突確率法計算により詳細エネルギ群中性子の領域間の動きと減速を算出
 - ▶ 中性子スペクトルに影響する非均質性を扱いながら, 計算の高速化が可能
- ▶ 個々の燃料棒をリング内に置いたサブセル(燃料棒,被覆管,減速材から構成)で モデル化

LANCR 解析モデル (4) 中間エネルギ群実効断面積計算

- ▶ 燃料集合体中性子輸送計算に使用する各領域の中間エネルギ群(35群)実効断面積を 算出する。
 - ▶ 詳細エネルギ群中性子スペクトル計算で求めた各領域の190群中性子スペクトルを用いて、核データライブラリを基に計算した190群実効断面積を中間エネルギ群(35群)に反応率を保存するようエネルギ縮約する [3.1.2.5~3.1.2.7]。

<u>中間エネルギ群実効断面積計算の例(捕獲断面積)</u>

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

2. LANCR 解析モデル (5) 燃料集合体中性子輸送計算

▶ 燃料集合体内の中性子束分布を計算するため、2次元燃料集合体体系を対象に、 Current Coupling Collision Probability (CCCP:中性子流結合衝突確率)法による中性子輸送計算を行う[3.1.3.1~3.1.3.2]。

中性子束分布が収束するまで両者を繰り返し計算する。

<mark>全ノードのノード内中性子束 (Φ)</mark>を用い, 燃料集合体体系でバランスするようノード間中性子流(J)を算出 (体系バランス計算(4群)[3.1.3.4])

*ノード:計算において離散化された単位領域に対する呼称。LANCRでは燃料棒1本の領域に対して用いる。 なお、AETNAでは約15cm立方(径方向集合体1体、軸方向集合体24分割)の領域に対して用いる。

2. LANCR 解析モデル (6) ガンマ線輸送計算及び出力分布計算,燃料集合体断面平均核定数出力

- ▶ 中性子束分布等にもとづき燃料集合体断面平均核定数を計算する[3.1.3.8]。
- ▶ ガンマ線についても輸送計算により燃料集合体内の分布を算出する[3.1.3.5]。
- ▶ 核分裂反応とガンマ線反応による発熱を考慮して燃料棒出力を算出する[3.1.3.7]。

LANCR 解析モデル (7) 燃焼計算

▶ 照射による燃料組成の変化を模擬するため、以下の反応率(生成率、消滅率)と原子数密度に関する燃焼方程式を解いて燃焼度ごとの核種の原子数密度を求める [3.1.4]。無限格子体系と炉心体系の差異を考慮するため、反応率は臨界状態にある炉内を模擬した中性子スペクトルで調整する[3.1.4.3]。

$$\frac{dN_i(t)}{dt} = P_i(t) - D_i(t)$$
 i:核種, N_i :原子数密度, P_i :生成率, D_i :消滅率

▶ 燃焼チェーンは、重核38核種、核分裂生成核136核種、擬似FP核種2種類より構成する [3.1.4.4]。

3. AETNA解析モデル AETNAの概要

- ➢ AETNAは炉心全体に対して、燃料集合体単位の特性を用いた3次元の核熱水力反復計算を行い、 出力分布や熱的余裕などの各種炉心特性を評価する。
- マクロ燃焼で履歴データ(E/UHSPH)を計算する。
 (P.15) また、ミクロ燃焼で対象核種の原子数 密度を計算する。
- ② チャンネル圧損による流量配分計算とドリフトフラックスモデルによるノード平均ボイド率の反復計算を行い、ノード毎の平均ボイド率(瞬時相対水密度U)を計算する。(P.16)
- ③ E, UHSPH, Uからノード断面積を計算するとと もに、ドップラ効果・CBH効果・ミクロ燃焼効果を 考慮して断面積を補正し、ノード毎の3群断面 積を計算する。(P.17)
- ④ 中性子源分布を基に各群の中性子束分布を求め(内側反復),中性子束分布を基に核分裂中性子源を更新し、出力分布と固有値(実効増倍率)を求める(外側反復)。(P.18)
- ⑤ ノード断面積は熱水力計算から得られるノード 毎のボイド率の影響を受けるが、ボイド率は出 カ分布の影響受ける。そのため、出力分布が 収束するまで②~④を繰り返す。
- ⑥ 再構築モデルにより計算した燃料棒出力から MLHGRを計算するとともに、R因子を再評価し MCPRを計算する。(P.19)

AETNA解析モデル 従来コードとの比較

▶ AETNAの解析モデルのうち, 従来コードから変更があったモデルを以下に示す。

従来コードとAETNAコードの解析モデルの比較(変更があった点)

	従来コード(PANACH)	AETNA
燃焼計算 (P.15)	E/UH (履歴相対水密度)	E/UHSPH (スペクトル履歴相対水密度)
中性子束計算 (P.18)	エネルギ修正1群 有限差分法	エネルギ3群 解析的多項式ノード法
熱的余裕計算 (P.19)	燃料集合体計算の燃料棒出力/R因子	炉心計算において, ノード内中性子束, ノード内燃焼度分布を考慮して燃料棒 出力/R因子を再構築する。 燃料棒燃焼度についても再構築する。

3. AETNA解析モデル (1) 燃焼計算

- 15
- ▶ ノード断面積計算に必要なノード*毎の履歴データ(燃焼度および履歴相対水密度)を計算 する。

<u>燃焼度(E) [3.2.4.1]</u>

燃焼終了時のノードの燃焼度は,前回燃焼度に対しノード出力の時間積分値を加える。

<u>スペクトル履歴相対水密度(UHSPH) [3.2.4.3]</u>

断面積(核定数)を参照する指標として、従来コードでは瞬時相対水密度(U)から計算される履歴相対水密度(UH)を用いていたが、 AETNAでは炉心体系でのスペクトルミスマッチの影響を考慮するため、核特性と直接関係するノード平均の中性子エネルギスペクトル指標(高速群と熱群の中性子束比; $\bar{\phi}_3/\bar{\phi}_1$)から計算されるスペクトル履歴相対水密度(UHSPH)を用いる。

AETNAで明示的に計算される $\bar{\phi}_3/\bar{\phi}_1$ を以下で瞬時相対水密度相当値U₀に変換し、従来コードで用いられてきたUからUHを計算する手法と同じ方法で、U₀からUHSPHを計算する。

なお, 燃焼度, 履歴相対水密度のいずれについても, 従来コードはノード平均値を用いていたが, AETNAではノード内分布を考慮する。これにより, ノード法による中性子束のノード内分布に加え, 断面積のノード内分布も熱的余裕計算に考慮できる [3.2.4.4]。

*ノード:計算において離散化された単位領域に対する呼称。 AETNAでは約15cm立方(径方向集合体1体,軸方向集合体24分割)の領域に対して用いる。 なお、LANCRでは燃料棒1本の領域に対して用いる。

3. AETNA解析モデル (2) 熱水力計算

▶ ノード断面積計算に必要なノード毎の平均ボイド率(瞬時相対水密度)を以下の反復計算で評価 する。

熱水力計算手順

- a. インチャンネル流量とバイパス流量を炉心出力・炉心流量依存で計算する [3.2.5.1]。
- b. 全燃料で圧力損失が等しくなるようチャンネル流量を配分する[3.2.5.6]。
- c. 構造材発熱などを考慮したエネルギの収支計算により減速材付与エンタルピを計算する [3.2.5.4]。
- d. ドリフトフラックスモデルに基づきボイド率を計算する [3.2.5.8]。
 - ・混合流体に対し気相・液相間の相対差による効果を考慮したドリフトフラックスモデルに基づく相 関式で,集合体の断面平均ボイド率を評価する。
- e. 摩擦・局所・加速・位置の各圧力損失計算から全圧損を計算する [3.2.5.3]。
 - ・運動量保存式を積分した結果得られる圧力損失に関する式を用いて,壁面との摩擦による摩擦 圧損,スペーサなどの構造材による局所圧損,流路面積や密度変化による加速圧損,重力の 影響による位置圧損をそれぞれ計算し,チャンネルごとの全圧損を評価する。
- f. チャンネル流量および圧力損失が収束するまでa.~e. を繰り返す。

3. AETNA解析モデル (3) ノード断面積計算

(17)

- ▶ 中性子束分布計算に用いるノードの断面積を求める [3.2.3]。
- ▶ LANCRから作成される断面積(核定数)テーブルの各燃焼区間において、ノードの断面積Xは、 燃焼度E、スペクトル履歴水密度UHSPH、瞬時相対水密度U、減速材温度(冷温時)の関 数としてフィッティングする [3.2.3.1]。

▶ ノード断面積は、以下のモデルにより反応度に与える影響を考慮した補正を行う。

<u>キセノン毒作用モデル [3.2.3.3.1]</u>

Xe-135数密度は出力密度履歴に大きく依存するため、実際の出力密度履歴が燃料集合体計算と異なる効果をミクロ燃焼モデルを用いて計算し、熱群の吸収断面積を補正する。

<u> ドップラモデル [3.2.3.3.2]</u>

燃料集合体計算でのベース温度と、炉心計算での燃料温度(燃料温度モデル)の差からドップラ反応度 を計算し、共鳴群の吸収断面積を補正する。

<u>CBH(制御棒履歴効果)反応度モデル[3.2.3.3.3]</u>

制御棒挿入状態での燃料集合体計算結果を基に, CBH効果が反応度に及ぼす影響を補正する。

3. AETNA解析モデル (4) 中性子束計算(内側反復),固有値計算(外側反復)

▶ 中性子束分布を求めるためにエネルギ3群拡散方程式を解く [3.2.1.1]。

 $\nabla \cdot J_{g}^{i}(x, y, z) + \Sigma_{rg}^{i} \phi_{g}^{i}(x, y, z)$ = $Q_{g}^{i}(x, y, z)$

 (中性子の漏れ)
 (中性子の吸収)

 ・右辺を条件に左辺を更新: 内側反復

 ・左辺を条件に右辺を更新: 外側反復

 ϕ_g^l :第g群中性子束

- J_g^l : 第g群中性子流
- Σ_{rg}^{l} :第g群除去断面積
- Q_g^i : 第g群中性子源項

g=1,2,3はそれぞれ高速群, 共鳴群, 熱群

- ▶ 拡散近似 $J_{gx}^i = -D_g^i d\phi_{gx}^i(x)/dx$ (D_g^i :拡散係数), J-ド間の J_{gx}^i の連続条件に基づく方程式 について数値解を求め, 各ノードの平均中性子束 $\overline{\phi}_a^i$ を算出する。
- ➤ これらを基に内側反復計算時の差分法における境界 中性子流を補正する[3.2.1.3]。

3. AETNA解析モデル (5) 熱的余裕計算

- 19
- ▶ 出力分布の確定後, 熱的制限値に対する余裕として, 最小限界出力比(MCPR)と最大線 出力密度(MLHGR)を計算する[3.2.6.1], [3.2.6.2]。
- ➤ これに必要となる各ノードの燃料棒出力は、隣接ノードの影響を考慮するため、燃料棒出力再構築計算により求める[3.2.2.1]。MCPRの計算は、従来コードと同じ沸騰遷移相関式に基づく CPR評価を用いるが、これに必要なR因子も再構築後燃料棒出力に基づき計算する。

参考. モデル性能比較表の各モデルとの関係 (1) LANCR モデル性能比較表

▶ LANCRのモデル性能比較表に示す各モデルと本資料での関連ページを以下に示す(緑字)。

				重要度ランキング(PIRT)													モデル性能比較表 "-":関連しない,"〇":関連する,"N/A":モデル無												
															6	9	8	3	10		11		1	2					
	((物理現象)	」(補足説明)	無限増倍率	局所出力分布	ガドリニア価値	ボイド反応度	ドップラ反応度	ほう素価値	制御棒価値	減速材温度係数	遅発中性子割合	燃焼後核種組成	最高ランク	ライブラリ [3.1.1, 3.1.3.5.1]	工ネルギ群構造 [3.1.1, 3.1.3.5.1]	実効断面積計算 [3.1.2.2]	詳細エネルギ スペクトル計算 [3.1.2.3]	2次元 中性子輸送計算 [3.1.3]	2次元 ガンマ線輸送計算 [3.1.3.5.2]	出力分布計算 [3.1.3.7]	均質化定数計算 [3.1.3.8]	燃焼計算(チェーン・領域分割) [3.1.4]	燃焼スペクトル調整 [3.1.4.3]					
	N	中性子反応断面積	核分裂, 吸収, 散乱											Н															
	相反	非均質性	自己遮蔽	I										Н															
傸	± `	中性子束分布												Н															
的現	子応	ガンマ線反応断面積		ļ										М															
核	える	ガンマ線束分布		ļ										М															
	樹造物	冷却材 化学組成変化	SLC											Н															
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		燃焼スペクトル	ł										M															
泉泉	<del>ال</del>	核分裂充熟 ガンフ約発熱												H	ŀ														
到 到	RH.	リノイ称光熱 「「「「」」「「「」」「「「」」「「」」「「」」「「」」「」」「」」「」」「」												M	·														
Υ Ψ		减还付,	 隼合体内ボイド率分布											M	·														
熱	水力	冷却材物性変化	過熱蒸気の水密度変化	ł										н	ŀ														
₩ ₩	10	燃料組成(時間変化)	中性子反応,放射崩壊	ł										Н	ŀ														
現	反応	燃料組成(分布)	Gd燃料棒	Î									1	Н	ľ														
料式	核	制御棒組成	制御棒内の組成分布	Î									1	М	ľ														
村	放射線	形状変化	チャンネルボックス曲がり	Ĺ										М															

*グレーハッチング個所は島根3号炉非適用。

20

### 参考. モデル性能比較表の各モデルとの関係 (2) AETNA モデル性能比較表(核的現象)

#### ➢ AETNAのモデル性能比較表に示す各モデルと本資料での関連ページを以下に示す(緑字)。

			重要度ランキング(PIRT)													モデル性能比較表 ("-":関連しない, "○":関連する, "N/A":モデル無)																	
							通	常運転町	寺				過渡	時		核計算											熱水		その	他			
					柞	亥的制	限値		熱	的制阻	艮値	在 近 山	熱	的		18 /		19		1	7 1	5	1	7 /	16		16	1		16		19	//
(*/-	+1 A	(物理現象)	余剰反応度	炉停止余裕	最大制御棒価値	反応度係数	人77400度 ほう酸水注入系停止機能	熱機械(MLHGR)	設計出力履歴(燃焼度)	焼損 (MCPR)	未臨界度	表面熱流束	焼損 (MCPR) 🔒	最高ランク	中性子束計算(定常)[3.2.1]	中性子束計算(過渡)[3.2.9]	高次モード計算 [3.2.10]	燃料棒出力再構築[3.2.2]	燃料棒燃焼度再構築[3.2.2.3]	断面積モデル[3.2.3] (3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		:クロ燃焼モデル [3.2.4.5~3.2.4.9]   	反射体モデル [3.2.3.2]	エネルギ計算 [3.2.5.4]	サブクール沸騰モデル [3.2.5.8.2]	ボイド相関式 [3.2.5.8.1]	壁面熱伝達 [3.2.5.5]	圧力損失 [3.2.5.3]	チャンネル流量配分 [3.2.5.6]	ハイハスセテル [3.2.5.1] 熱的余裕計算 [3.2.6]	沸騰遷移相関式 [3.2.6.1]	核計装応答 [3.2.7] 学習モデル(プロセス計算機編)	
(*(;		NCRのPIRTにのるもの) http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://http://htttp://http://http://http://http://http://http://http																				,	11/										
	(1)	避発中性子割合*	スクラム反応度												н																		
	(3)	3次元出力分布(定常)		1											н																		i
\$77B	(4)	3次元高次モード分布(定常)													н																		1
Į.	H (5)	3次元出力分布(過渡)	スクラム反応度												н																		1
	(6)	局所出力分布 *	燃料棒出力再構築,R因子											1	н																		1
	(7)	局所燃焼度分布	設計出力履歴 【履歴】												н																		
	(8)	制御棒価値 *												1	н																		
	(9)	ボイド反応度 *	【履歴含む												н																		
余	(10	)ドップラ反応度 *													н																		
的現	(11	ほう酸価値 *													н																		
<b>校</b>	(12	減速材温度 *													м																		
ÌÌ	۲ (13	)燃料減損 *	【履歴												н																		
	(15	)核分裂生成物反応度	毒物効果,長期停止効果 【履歴】												м																		
	(17	スクラム時 制御棒価値	スクラム反応度												н																		
	(18	スクラム時 ボイド反応度	スクラム反応度,断熱仮定(補正)												М																		
	(20	制御棒履歴	CBH効果(片燃え)     【履歴】												М																		
	21	多種類制御棒													М																		
14	22	制御棒減損	【履歴												М																		
	÷ (25	)水ロッド形状	断面効果はLANCR, 隣接燃料効果はBDF因う												М																		
	(27	炉内計装管応答	TIP/LPRM学習(プロセス計算機編)												Н													_					

* グレーハッチング個所は島根3号炉非適用。

## 参考. モデル性能比較表の各モデルとの関係 (3) AETNA モデル性能比較表 (熱・水力的および材料・熱機械)

#### ➢ AETNAのモデル性能比較表に示す各モデルと本資料での関連ページを以下に示す(緑字)。

$\square$					重要度ランキング (PIRT)												モデル性能比較表 ("-":関連しない, "○":関連する, "N/A":モデル無)																				
								通常	運転	诗				過渡	時		核計算												熱2	化力計	算				その他	þ	
						枢	友的制	限値		熱的	熱的制限值 似 共			熱的 制限値			18	8		19		17	15		17	$\square$	16	$\bigvee$	16			16		19		$\overline{\mathcal{N}}$	7
(*	(†1.)	(! ANC	物理現象) `BOPIBTにある	まの) (補足説明)	余剰反応度	炉停止余裕	最大制御棒価値	反応度係数 スクラム反応度	ほう酸水注入系停止機能	熱機械(MLHGR)	設計出力履歴(燃焼度)	焼損 (MCPR)	未臨界度	表面熱流束	焼損 (MCPR)	最高ランク	中性子束計算(定常)[3.2.1]	中性子束計算(過渡)[3.2.9]	高次モード計算 [3.2.10]	燃料棒出力再構築 [3.2.2]	燃料棒燃焼度再構築[3.2.2.3]	断面積モデル [3.2.3]	燃焼履歴モデル [3.2.4]	クロ燃焼モデル [3.2.4.5~3.2.4.9]	燃料温度モデル [3.2.3.3.2]	反射体モデル [3.2.3.2]	エネルギ計算 [3.2.5.4]	サブクール沸騰モデル [3.2.5.8.2]	ポイド相関式 [3.2.5.8.1]	壁面熱伝達 [3.2.5.5]	圧力損失 [3.2.5.3]	チャンネル流量配分 [3.2.5.6]	バイパスモデル [3.2.5.1]	熱的余裕計算[3.2.6]	沸騰遷移相関式[3.2.6.1]	核計装応答 [3.2.7] 学習モデル(プロセス計算機編)	
È		(31)	3次元ボイド分布		Г										٦	н																				_	7
	分布	(33)	集合体内ボイド分布*	インチャンネルボイド	İ										T	м																					1
	空間	(34)	バイパスボイド分布	LPRM感度制限(7%)	İ										T	м																					1
		(36)	サブクールボイド	サブクールボイドモデル	İ										T	м																					1
		(37)	チャンネル圧損	局所圧損,加速圧損,摩擦圧損,位置圧損	1										ſ	М																					1
		(38)	クラッド付着	クラッドおよび酸化膜厚さ(入力値)												М																					
灓	互現象	(39)	チャンネル流量	(チャンネル圧損依存)	I											М																					
力的現	見	(40)	バイパス流量	出カ=流量依存バイパス流量表 (入力値)												м																					
が光	構成体	(41)	水ロッド流量	出力=流量依存バイパス流量表 (入力値)	l											м																					
熱		(43)	水ロッド形状	流路面積変化	l											М																					
		(44)	スペーサ	限界出力改善(入力値で考慮)	l											М																					
		(45)	减速材直接発熱	入力値	I											М																					
	り他	(46)	構造材直接発熱	入力値	l											М																					
	熟 <del>2</del> 6	(49)	炉心熱出力	入力値												н																					
	毲	(50)	炉心流量	入力値	ļ											н																					
		(51)	沸騰遷移	GETAB(GEXL相関式)												н																					
料· 機械	蘂	(52)	燃料平均温度	熱流束=燃料温度表 (入力値)	l											М																					
枝蘂	材料	(56)	チャンネル曲り・バルジ	チャンネル曲りを考慮したR因子												М											_				-			_		_	

*グレーハッチング個所は島根3号炉非適用。①~④はコード説明書参照。

22