川内原子力発電所1号炉審査資料		
資料番号	QSN1-PLM40-共通	
提出年月日	2022年10月26日	

川内原子力発電所1号炉 運転期間延長認可申請 (共通事項)

補足説明資料

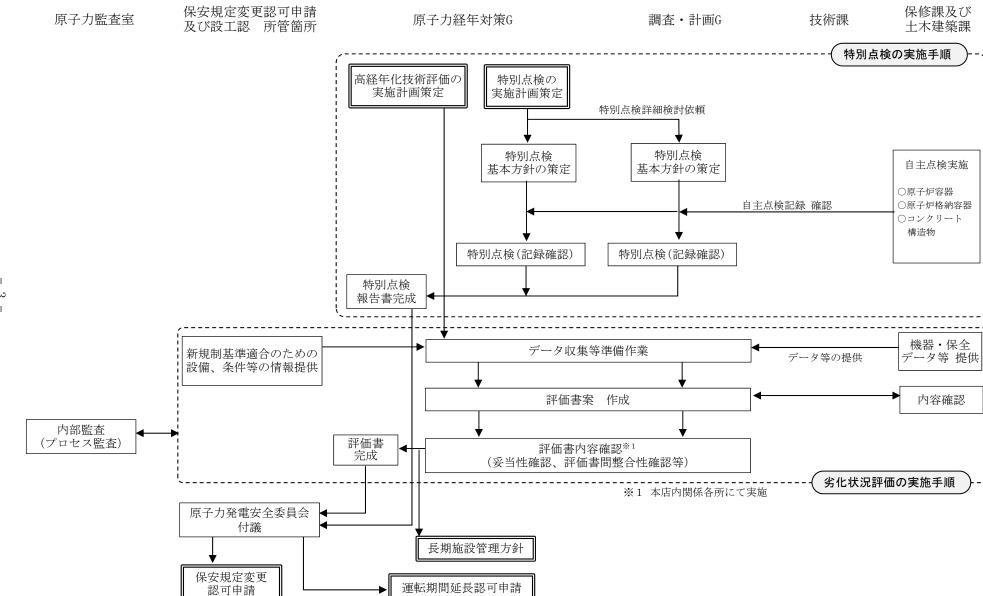
2022年10月26日 九州電力株式会社 本資料のうち、枠囲みの内容は機密に係る事項ですので公開することはできません。

目 次

1	. はじめ	うに ······ 1
2	. 特別点	R検及び劣化状況評価に係る実施体制及び業務手順············2
	2.1 運転	K期間延長認可申請に係る全体業務手順······2
	2.2 特別	川点検の実施体制及び実施手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.3 劣化	公状況評価の実施体制及び実施手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.4 劣化	ン状況評価の前提とする運転状態······26
	2.5 評価	5対象となる機器及び構造物の抽出······27
	2.6 高紹	K年化対策上着目すべき経年劣化事象の抽出・・・・・・・・・・・・ 30
	2.7 高紹	を年化対策上着目すべき経年劣化事象に対する健全性評価······32
	2.8 耐震	宴安全性評価····· 33
		a波安全性評価······35
		温停止を前提とした評価・・・・・・・・・・・・・・・・・・・・・・・36
	2.11劣化	公状況評価で追加する評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.12劣化	と状況評価に係る全体プロセス・・・・・・・・・・・・・・・・・・・・・・・38
3	. 川内原	『子力発電所における保全活動・・・・・・・・・・・・・・・・39
	別紙1.	協力事業者の力量管理方法について・・・・・・・・・・・1-1
	別紙2.	原子力施設情報公開ライブラリー情報で最終報告ではない情報について・・2-1
	別紙3.	消耗品・定期取替品の定義及び抽出方法について・・・・・・・3-1
		文書体系における現状保全に係るプログラムについて・・・・・・・・ 4-1
		スペアパーツの取り組みについて・・・・・・5-1
		日常劣化管理事象等について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	別紙7.	日常劣化管理事象以外の事象について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	別紙8.	事象別の補足説明について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. はじめに

本資料は、川内原子力発電所1号炉の運転期間延長認可申請の共通事項の補足として、 特別点検、劣化状況評価に係る実施体制及び業務手順、劣化状況評価で追加する評価並び に冷温停止を前提とした評価について取りまとめたものである。


川内原子力発電所1号炉においては、「核原料物質、核燃料物質及び原子炉の規制に関する法律(以下、「原子炉等規制法」という。)第43条の3の32第4項」及び「実用発電用原子炉の施設、運転等に関する規則(以下、「実用炉規則」という。)」第113条に従い、「申請に至るまでの間の運転に伴い生じた原子炉その他の設備の劣化の状況の把握のための点検(以下、「特別点検」という。)」及び「延長しようとする期間における運転に伴い生ずる原子炉その他の設備の劣化の状況に関する技術的な評価(以下、「劣化状況評価」といい、劣化状況評価で追加する評価、冷温停止を前提とした評価を含む)」を実施するとともに、「延長しようとする期間における原子炉その他の設備に係る施設管理方針(以下、「施設管理方針」という。)」を策定し、それらを取りまとめたものを、2022年10月12日に「川内原子力発電所1号炉 運転期間延長認可申請書」として申請を実施した。

- 2. 特別点検及び劣化状況評価に係る実施体制及び業務手順
 - 2.1 運転期間延長認可申請に係る全体業務手順

運転期間延長認可申請に係る業務については、まず社内オーソライズ資料にて実施業務及び体制を定め、これに基づいて表2.1-1のフローにて業務を実施した。

本店(原子力発電本部及び土木建築本部)

川内原子力発電所

را

2.2 特別点検の実施体制及び実施手順

特別点検に関する業務は、川内原子力発電所の保安活動と同様「川内原子力発電所原子炉施設保安規定(要則)」第3条 品質マネジメント計画のもと、当社の品質マネジメントシステムに基づき以下のとおり適切に実施した。

(1) 調達先による点検の実施

1) 点検の計画

調達先による点検(以下、「自主点検」という。)は、運転開始後35年を経過する日(2019年7月4日)以降に実施した設備の劣化状況を把握するための点検である。

点検の立案に際しては、「実用発電用原子炉の運転期間延長認可申請に係る運用 ガイド」(以下、「運用ガイド」という。)の内容(点検対象部位、点検方法等) に基づき、着目する劣化事象を踏まえて、点検対象部位に応じた点検方法を設定し た。

2) 点検の実施、点検結果の確認

自主点検の実施にあたっては、川内原子力発電所保修課長及び土木建築課長が調達を行った。点検対象の部位、方法ごとに調達先、件名を表2.2-1に示す。

これらの調達先については、「川内原子力発電所 調達管理要領」等に基づき、 調達先の品質マネジメントシステムについて記述された品質保証計画書を定期的に 徴収し、各課長が徴収した品質保証計画書を審査している。

また、これらの調達先は、調達管理要領等に基づき、品質保証計画書の確認等により適切に管理された。

調達先は、調達文書の要求事項を満足するよう工事(委託)要領書を川内原子力 発電所保修課長及び土木建築課長に提出し、事前に承認を得たうえで点検を行っ た。

また、川内原子力発電所保修課長及び土木建築課長は、作業管理要領等に基づき、調達要求事項が調達先により適切に履行されるよう、工事(委託)要領書に従った立会・記録確認により調達先による工事(委託)の管理を行い、調達先による自主点検が適切なプロセスに基づき行われたことを確認した。

表2.2-1 自主点検の調達先と工事(委託)件名

表2.2-1 自主点検の調達先と工事(委託)件名				
対象の機器・ 構造物	対象の部位	点検方法	調達先、工事(委託) 件名	
	原子炉容器 母材及び溶接部 (炉心領域100%)	超音波探傷試験	 調達先:三菱重工業㈱ ・工事件名:経年劣化状況把握のための自主 点検のうち原子炉容器自主点検 (炉心領域およびノズルコー ナー部点検) ・工事期間:2020年4月16日~2020年6月30日 	
原子炉容器	一次冷却材ノズ ルコーナー部 (クラッドの状態を確認)	渦流探傷試験	・調達先:三菱重工業㈱ ・工事件名:経年劣化状況把握のための自主 点検のうち原子炉容器自主点検 (炉心領域およびノズルコー ナー部点検) ・工事期間:2020年4月16日~2020年6月30日	
	炉 内 計 装 筒 (BMI)(全数)	目視試験(MVT-1)	・調達先:三菱重工業㈱ ・工事件名:経年劣化状況把握のための自	
		渦流探傷試験	点検のうち原子炉容器自主点検 (炉内計装筒管台点検) ・工事期間:2020年6月1日~2020年7月6日	
原子炉格納容器	原子炉格納容器 鋼板(接近できる 点検可能範囲の 全て)	目視試験 (VT-4)	 ・調達先: (㈱高田工業所) ・委託件名: ①経年劣化状況把握のための自主点検のうち原子炉格納容器自主点検 ②経年劣化状況把握のための自主点検のうち原子炉格納容器自主点検(再点検) ・委託期間: ①2020年3月26日~2020年12月23日 ②2021年10月8日~2021年12月22日 	
コンクリート構造物	コンクリート	採取したコアサン プル等による強度、 遮蔽能力、中性化、 塩分浸透及びアル カリ骨材反応の確 認	・調達先: 大成建設㈱ ・委託件名:①経年劣化状況把握のための 自主点検のうちコンクリート 構造物健全性調査業務委託 ②経年劣化状況把握のための 自主点検のうちコンクリート 構造物健全性調査業務委託	

3) 力量の確認及び測定機器の管理他確認事項

点検方法ごとに必要となる要員の力量、測定機器の管理についても明確にし、調達上の要求事項としている。点検対象の部位・方法ごとに試験員の力量を表2.2-2に示す。

表2.2-2 試験員の力量

対象の機器・ 構造物	対象の部位	点検方法	試験員の力量	
	原子炉容器 母材及び溶接部 (炉心領域100%)	超音波探傷試験	日本非破壊検査協会 非破壊試験技術者資格 超音波探傷試験・レベル2以上の資格を有す る者	
原子炉容器	一次冷却材ノズルコーナー部(クラッドの状態を確認)	渦流探傷試験	日本非破壊検査協会 非破壊試験技術者資格 渦流探傷試験・レベル2以上の資格を有する 者	
	炉内計装筒 (BMI)(全数)	目視試験(MVT-1)	JIS Z 2305-2013 (非破壊試験技術者の資格 及び認証) 7.4項 視力の要求事項を満足す る者	
		渦流探傷試験	日本非破壊検査協会 非破壊試験技術者資格 渦流探傷試験・レベル2以上の資格を有する 者	
原子炉格納容器	原子炉格納容器 鋼板(接近できる 点検可能範囲の 全て)	目視試験(VT-4)	日本機械学会「発電用原子力設備規格 設計・ 建設規格」(2012年版) GTN-8130 試験技術者 の要求事項を満足する者	
コンクリート構造物	「		建築士(一級建築士又は二級建築士) 技術士(建築部門又は応用理学部門) 施工管理技士(1級土木施工管理技士、2級 土木施工管理技士、1級建築施工管理技士又 は2級建築施工管理技士) 日本コンクリート工学会認定資格 コンクリート主任技士 コンクリート技士 コンクリート診断士 のうち、いずれかの資格を有する者	

4) 文書・記録管理

自主点検に関する工事(委託)記録(自主点検記録)については、川内原子力発 電所技術課長が保管している。

(2) 特別点検の実施

1) 点検の計画

原子力経年対策グループ長は、実用炉規則第113条及び「運用ガイド」に基づき、特別点検の実施に関する方針を定めた「特別点検の基本方針」を作成し、品質保証グループ長及び原子力土木建築部長の確認の後、原子力管理部長の承認を得た。

また原子力経年対策グループ長及び調査・計画グループ長は、表2.2-3に示す役割 分担に基づき、特別点検の項目・方法等を定めた「特別点検要領書」を作成し、品 質保証グループ長及び川内原子力発電所保修課長又は土木建築課長の確認の後、承 認した。

名 称 区 分 作成(承認)者 特別点検要領書 原子力経年対策 文 書※ (原子炉容器) グループ長 特別点検要領書 原子力経年対策 文書※ (原子炉格納容器) グループ長 特別点検要領書 調査・計画 文 書※ グループ長 (コンクリート構造物)

表2.2-3 特別点検要領書の策定に係る役割分担

[※] 特別点検報告書の承認後、記録として保管する。

2) 点検の実施、点検結果の確認

原子力経年対策グループ長及び調査・計画グループ長は、表2.2-4に示す役割分担に基づき、調達先が作成した自主点検の工事(委託)記録について記録確認を行い、「特別点検報告書」としてまとめ、品質保証グループ長及び川内原子力発電所保修課長又は土木建築課長の確認の後、承認した。

また原子力経年対策グループ長は、「特別点検結果報告書」を作成し、原子力発電安全委員会に付議し、審議を受けた後、原子力管理部長の承認を受けた。

表2.2-4 特別点検報告書の作成に係る役割分担

名 称	作成(承認)者
特別点検報告書 (原子炉容器)	原子力経年対策 グループ長
特別点検報告書 (原子炉格納容器)	原子力経年対策 グループ長
特別点検報告書 (コンクリート構造物)	調査・計画 グループ長

3) 力量の確認

原子力経年対策グループ長及び調査・計画グループ長は、特別点検に関わる当社 社員については、品質マネジメントシステムに基づき力量管理が実施され、特別点 検の実施に必要と判断した力量を有していることを確認した上で、特別点検の点検 実施責任者、点検担当者に選任した。

また、自主点検の中で非破壊試験等の力量が必要な作業については、作業を実施する者が必要な力量を有していることを確認した。

4) 測定機器の管理

原子力経年対策グループ長及び調査・計画グループ長は、自主点検において使用 された測定機器が「川内原子力発電所 監視機器、測定機器及び計測器管理要領」 に基づき管理されていることを確認した。

5) 文書・記録管理

特別点検に関する記録は、「保安活動に関する文書及び記録の管理要領」に従い、適切に管理する。

名 称	区 分	作成(承認)者	保管責任者
特別点検要領書 (原子炉容器)	文書※	原子力経年対策 グループ長	原子力経年対策 グループ長
特別点検要領書 (原子炉格納容器)	文 書*	原子力経年対策 グループ長	原子力経年対策 グループ長
特別点検要領書 (コンクリート構造物)	文書※	調査・計画 グループ長	調査・計画 グループ長
特別点検報告書 (原子炉容器)	記録	原子力経年対策 グループ長	原子力経年対策 グループ長
特別点検報告書 (原子炉格納容器)	記録	原子力経年対策 グループ長	原子力経年対策 グループ長
特別点検報告書 (コンクリート構造物)	記録	調査・計画 グループ長	調査・計画 グループ長

表2.2-5 特別点検記録に関する事項

[※] 特別点検報告書の承認後、記録として保管する。

2.2に記載の内容を表2.2-6のフローに示す。

本店 (特別点検) 川内原子力発電所 (自主点検) 原子力経年対策G 調査・計画G 特別点検の 確認 特別点検の 実施計画を策定 実施計画を策定 [自主点検の実施] ○ 原子炉容器 ○ 原子炉格納容器 確認 特別点検の 特別点検の ○ コンクリート構造物 基本方針を策定 基本方針を策定 【保修課・土木建築課】 特別点検要領書の制定 特別点検要領書の制定 点検項目、点検方法検討 点検項目、点検方法検討 • 特別点検要領書作成 • 特別点検要領書作成 自主点検記録 特別点検の実施 特別点検の実施 【技術課保管】 当社社員の力量を確認 ・ 当社社員の力量を確認 協力会社員の力量を管理 ・協力会社員の力量を管理 測定機器の校正記録を確認 測定器の校正記録を確認 ・自主点検範囲、実施時期の ・自主点検範囲、実施時期の 自主点検結果の確認 自主点検結果の確認 特別点検の結果を承認 特別点検の結果を承認 ・特別点検報告書*1の作成 ・特別点検報告書※2の作成 必要に応じ劣化状況評価に反映 劣化状況評価書を作成 特別点検結果報告書※3の作成 ・特別点検結果の取りまとめ [各記録保管の主管について] ・※1:原子力経年対策Gにて保管 ・※2:調査・計画Gにて保管 ・※3:原子力経年対策Gにて保管 特別点検結果報告書を 原子力発電安全委員会に付議

表2.2-6 特別点検の実施フロー

自主点検及び特別点検のそれぞれの業務プロセス、所管箇所、業務内容、関連文書・記録については表2.2-7、2.2-8に示す。

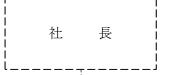
表2.2-7 各業務プロセスにおける関連文書・記録(自主点検)

業務プロセス	所管箇所	業務内容	関連文書・記録
	原子力経年対策G 調査・計画G	実用炉規則113条及び運用ガイドに基づき自主点検の実施を決定。	・自主点検実施のオーソ
点検計画	保修課 土木建築課	運用ガイドに基づき、点検対象部位に応じ た点検方法を設定し、工事(委託)要領書を 制定。	・工事(委託)要領書
自主点検の実施	保修課土木建築課	 ・「川内原子力発電所 調達管理要領」に基づき調達文書を作成した後に、調達上の要求を満足する供給者へ発注。 ・調達先より提出された工事(委託)要領書が調達文書の要求事項を満足しているか確認。 ・「川内原子力発電所 作業管理要領」等に基づき、調達文書の要求事項が調達先にて適切に実施されるよう、工事(委託)要領書に従った立会・記録確認を実施。 	・工事(委託)仕様書 ・工事(委託)記録
カ量の確認 保修課 協力会社員が必要な力量を有しているこ 土木建築課 を確認。		協力会社員が必要な力量を有していることを確認。	・非破壊検査員従事者届・力量がわかる図書
文書・記録管理	保修課 土木建築課	「保安活動に関する文書及び記録の管理基 準」に基づき管理。	・工事記録、委託報告書

表2.2-8 各業務プロセスにおける関連文書・記録(特別点検)

衣2.2-8 谷耒傍ノロビグにわける関連又青・記録(特別点使)				
業務プロセス	所管箇所	業務内容	関連文書・記録	
特別点検の計画	原子力経年対策G 調査・計画G	特別点検の実施計画に基づき、運転延長ガイドの要求を踏まえて点検対象とする機器・構造物、対象部位、点検方法・点検項目を設定し、「特別点検の基本方針」を策定。	・特別点検の実施計画 ・川内原子力発電所 特別点検の基本方針	
竹別点棟の間凹	原子力経年対策G 調査・計画G	「特別点検の基本方針」に基づき「特別点検要領書」を策定。	• 特別点検要領書	
特別点検の実施	原子力経年対策G 調査・計画G	 ・当社社員が必要な力量を有していることを確認。 ・自主点検に関わる協力会社員が必要な力量を有していることを確認。 ・自主点検において使用された測定機器が、「川内原子力発電所監視機器、測定機器及び計測器管理要領」に基づき適切に管理されていることを確認。 ・「特別点検要領書」に基づき自主点検の記録確認を実施。 	・特別点検要領書 ・工事(委託)記録 ・確認チェックシート ・点検手順 ・点検体制表 ・力量評価表 ・非破壊検査員従事者届 ・力量がわかる図書	
点検結果の確認	原子力経年対策G 調査・計画G	・特別点検の結果を「特別点検報告書」としてまとめ、品質保証グループ長及び川内原子力発電所保修課長又は土木建築課長の確認の後、承認。・「特別点検報告書」を確認し、必要に応じ、点検結果を劣化状況評価書に反映する。	・特別点検報告書	
力量の確認	原子力経年対策G 調査・計画G	・特別点検に係る当社社員については、品質マネジメントシステムに基づき力量管理が実施され、特別点検の実施に必要と判断した力量を有していることを確認。	・力量評価表	
文書・記録管理	原子力経年対策G 調査・計画G	・「保安活動に関する文書及び記録の管理要 領」に従い、特別点検に関する記録を管理。	• 特別点検報告書	

2.3 劣化状況評価の実施体制及び実施手順


保安規定に基づく品質マネジメントシステムに従い、日本電気協会「原子力発電所における安全のための品質保証規程」(JEAC4111-2009/2021)及び「原子力発電所の保守管理規程」(JEAC4209-2007)に則った劣化状況評価の実施体制を構築している。

劣化状況評価の実施体制は、「経年劣化の技術評価実施要領」に従い策定した「高経年 化技術評価実施計画書」(以下、「実施計画書」という。)により評価の実施体制を構 築している。

なお、劣化状況評価は高経年化技術評価と同じ内容であることから、高経年化技術評価と同様のQMS体制に基づいて評価を実施した。このため、劣化状況評価は高経年化技術評価と同意とした。また、同様の理由で、施設管理方針と長期施設管理方針も同意とした。

具体的な実施体制は図-1のとおり。それぞれの責任と権限は以下のとおり。

- 統括責任者(原子力管理部長)劣化状況評価書の承認を行う。
- 原子力発電本部 原子力経年対策グループ長 劣化状況評価書のとりまとめ等の高経年化対策検討に係る全体調整を行う。 また、コンクリート構造物及び鉄骨構造物を除く設備に係る高経年化対策検討を 行うとともに、劣化状況評価書の作成を行う。
- 土木建築本部 調査・計画グループ長 コンクリート構造物及び鉄骨構造物に係る高経年化対策検討を行うとともに、劣 化状況評価書の作成を行う。

原子力監査室

内部監査の実施

土木建築本部 原子力土木建築部長

- 原子力土木建築部門の総括
- ・高経年化技術評価実施計画書及び手順書の確認
- 高経年化技術評価書の確認

原子力発電本部原子力管理部長

- · 統括責任者
- 高経年化技術評価実施計画書及び手順書の承認
- 高経年化技術評価書の承認

川内原子力発電所長

- ・発電所の総括
- 高経年化技術評価実施計画書及び手順書の確認
- 高経年化技術評価書の確認

土木建築本部 調査・計画グループ長

- ・高経年化技術評価実施計画書及び手順書の策定
- ・最新知見等の収集・整理
- ・評価の実施
- 高経年化技術評価書の作成
- 国の審査対応

原子力発電本部 原子力経年対策グループ長

- ・とりまとめ
- 高経年化技術評価実施計画書及び手順書の策定
- ・最新知見等の収集・整理
- ・評価の実施
- ・協力先への委託
- 高経年化技術評価書の作成
- ・国の審査対応
- ・原子力発電安全委員会への付議

発電用原子炉主任技 術者

安全品質保証 統括室

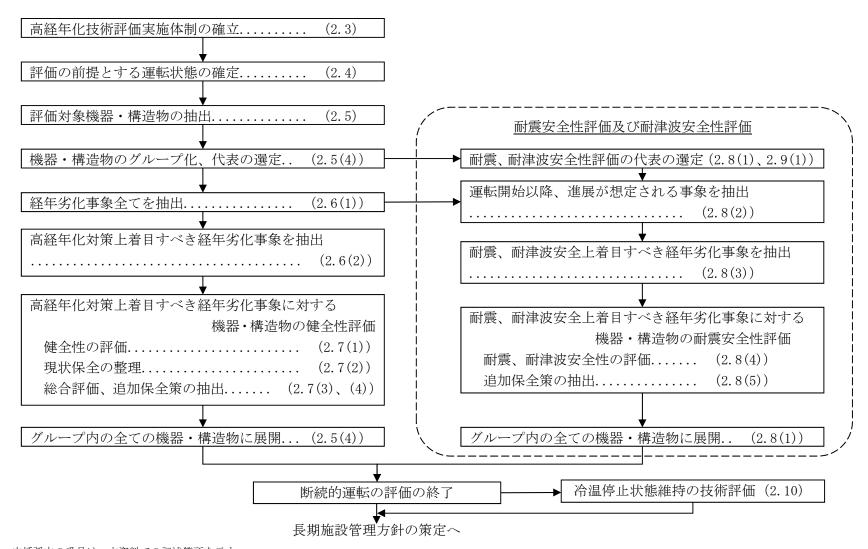
- 保全・運転情報の収集等
- 高経年化技術評価書の確認
- 国の審査対応
- ・評価等の助勢

本店の関係箇所

- 高経年化技術評価書の確認
- 国の審査対応
- ・評価等の助勢

発電所の関係箇所

- 保全・運転情報の収集等
- 高経年化技術評価書の確認
- 国の審査対応
- ・評価等の助勢


○原子力発電安全委員会

原子力管理部長を委員長とし、各原子力発電所長、各発電用原子炉主任技術者に加え、各部門の課長職以上の者から構成され、保安規定の変更に関する事項等を審議し確認する。

図-1 高経年化技術評価の実施体制

劣化状況評価の実施手順は、実施ガイド、「原子力発電所の高経年化対策実施基準: 2008」(以下、「学会標準2008版」という。)等に準拠して策定した「高経年化対策実施手順書」(以下、「実施手順書」という。)により確立している。

劣化状況評価の流れを図-2に示す。具体的な実施手順は2.3~2.11に示す。また、評価 書等の内容のレビュー、実施手順の確認及び評価書等の承認プロセスについて2.12に示す。

注 フロー中括弧内の番号は、本資料での記述箇所を示す。

図-2 劣化状況評価の流れ

(1) 劣化状況評価に係る品質マネジメントシステムの文書体系 劣化状況評価に係る品質マネジメントシステム(QMS)の文書体系を図-3に示す。

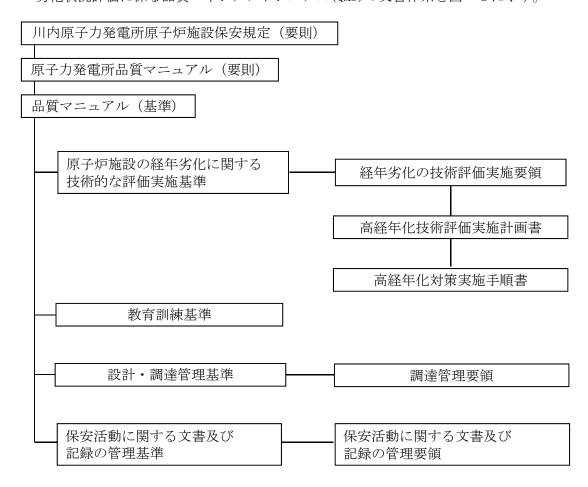


図-3 劣化状況評価に係る品質マネジメントシステム文書体系

各文書の規定範囲は以下のとおり。

a. 1 次文書

(a) 原子力発電所品質マニュアル (要則)

当社が原子力安全を確保するための品質マネジメントシステムを確立し、実施するとともに、その有効性を維持するため、改善を継続的に行うことを目的とした規定文書。

(b) 品質マニュアル (基準)

「原子力発電所品質マニュアル(要則)」に基づき、本店組織が原子力安全を確保するための品質マネジメントシステムを確立し、実施するとともに、その有効性を維持するため、改善を継続的に行うことを目的とした規定文書。

b. 2 次文書

(a) 原子炉施設の経年劣化に関する技術的な評価実施基準

「品質マニュアル(基準)」に基づき、施設管理のうち、原子炉施設の経年劣化に関する技術的な評価に係る事項を定め、円滑な運用を図ることを目的とした規定文書。

(b) 教育訓練基準

「品質マニュアル(基準)」に基づいて、本店原子力部門が主管して実施する教育訓練に関する事項、及び力量管理に関する事項を定め、適切な運用を行うことを目的とした規定文書。

(c) 設計·調達管理基準

「品質マニュアル(基準)」に基づき、本店原子力各部門が実施する設計・開発 業務、及び本店各部門が実施する調達業務の管理基準を定め、設計・開発管理に関 する品質保証活動の充実を図ることを目的とした規定文書。

(d) 保安活動に関する文書及び記録の管理基準

「品質マニュアル(基準)」に基づき、本店各部門の品質保証活動に関わる文書 及び記録の管理方法を定め、適切な運用を行うこと、及び不適切な使用又は変更(未 承認文書の使用、誤った変更及び文書の保安に関する組織外への不適切な流失等) を防止することを目的とした規定文書。

c. 3次文書

(a) 経年劣化の技術評価実施要領

「原子炉施設の経年劣化に関する技術的な評価実施基準」に基づき、経年劣化の 技術評価に係る事項を定め、円滑な運用を図ることを目的とした規定文書。

(b) 高経年化技術評価実施計画書

「経年劣化の技術評価実施要領」に基づき、川内原子力発電所1号炉の劣化状況 評価の実施にあたり、実施体制、実施スケジュール等の具体的な計画を定め、適切 かつ円滑に実施することを目的とした一般文書。

(c) 高経年化技術評価実施手順書

川内原子力発電所1号炉の劣化状況評価の実施にあたり、具体的な実施手順(機器・構造物の抽出方法、技術評価方法等)を定めている一般文書。

(d) 調達管理要領

「設計・調達管理基準」に基づき、本店各部門が実施する調達管理の具体的実施 要領を定め、調達管理における品質保証活動の充実を図ることを目的とした規定文 書。

(e) 保安活動に関する文書及び記録の管理要領

「保安活動に関する文書及び記録の管理基準」に基づき、本店組織の品質保証活動 に関する文書及び記録の一覧を定め、適切な運用を行うことを目的とした規定文書。

(2) 劣化状況評価の実施に係る協力事業者の管理

劣化状況評価に係る業務を委託した協力事業者(三菱重工業株式会社、三菱電機株式会社及びシーメンスエナジーグローバル GmbH&Co. KG)について、原子力部門における「設計・調達管理基準」、「調達管理要領」に基づき以下の管理を行っている。

a. 協力先の評価

調達要求事項に適合する調達製品等を供給できるかどうかの能力について評価している。

b. 調達要求事項の明確化

当社の要求事項は、調達文書(仕様書等)により明確にしている。

c. 品質保証体制等の確認

品質保証計画書により、品質保証体制等に問題の無いことを確認している。

d. 調達製品等の検証

調達製品等が、調達文書に規定した調達要求事項を満たしていることを、報告書の 審査により検証している。また、必要に応じ、契約内容に基づいて、業務委託の履行 状況を把握するものとしている。

(3) 劣化状況評価の実施に関与する者の力量管理

a. 目的

「教育訓練基準」に基づき、業務遂行に必要な力量を明確にし、教育訓練、知識・ 技能及び経験を判断の根拠とした力量を有する者を業務に充てることにより、原子力 安全を達成・維持する。

b. 力量の明確化

原子力経年対策グループ長及び調査・計画グループ長は、グループの業務を遂行するために必要なグループ員の力量を明確にし、設定する。

<劣化状況評価の実施に係る力量の例>

- ・統括管理能力(法令・指針・ガイドに関する知識、情報収集、取りまとめ能力)
- ・技術評価能力(設備・劣化事象・保全に関する知識)
- 報告書作成能力
- · 官庁 · 自治体説明能力

c. 力量評価

原子力経年対策グループ長及び調査・計画グループ長は、教育訓練、知識・技能及 び経験に基づき、「b. 力量の明確化」で設定した劣化状況評価の実施に係る力量をグ ループ員が有しているか確認・評価を行い、劣化状況評価の実施にあたっては力量を 有している者を充てる。

d. 力量評価記録の管理

原子力経年対策グループ長及び調査・計画グループ長が実施した力量評価の記録については、原子力運営グループ長が管理している。

e. 必要な力量に到達させるための教育訓練又は他の処置

必要な力量が不足している場合には、必要な力量に到達することができるようにO JTを主体とした教育訓練を実施する。

f. 力量評価の実施時期

グループ員の人事異動等必要の都度実施。

(4) 最新知見及び運転経験の反映

劣化状況評価においては、これまでに実施された先行プラントの高経年化技術評価書を 参考にするとともに、最新知見及び国内外の運転経験について劣化状況評価への影響を整理し、反映要否を検討し、反映要と判断したものについて、劣化状況評価に反映している。

a. 最新知見

(a) 調查対象期間

実施済みの川内2号炉30年目高経年化技術評価において2015年3月までの最新知見を取りまとめており、これを活用することとし、その後の調査対象期間は2020年3月までとした。

なお、調査対象期間以降の最新知見についても適宜反映する。

(b) 調查範囲

調査対象期間中に発行された以下の情報等を検討し、劣化状況評価を実施する上で新たに反映が必要な知見を抽出。

①安全基盤研究の成果

a. 原子力規制委員会より公開されている材料劣化に係る安全研究(技術報告、安全研究の年次評価結果、安全研究成果報告)

②国内外の運転経験

- a. 国内における運転経験について、原子力施設情報公開ライブラリー¹において公開されている"トラブル情報"及び"保全品質情報"
- b. 海外における運転経験についての米国原子力規制委員会(NRC)のBulletin、Generic Letter、Information Notice

③関係法令

a. 原子力発電所に係る関係法令等についての改正内容

④規制当局からの指示

a. 原子力規制委員会からの指示文書

⑤規格・基準類

- a. 日本機械学会、日本電気協会、日本原子力学会の標準類
- b. 日本原子力学会 原子力発電所の高経年化対策実施基準:2016追補1、20 17追補2、2018追補3及び2019追補4

⑥点検・補修・取替え

a. 対象期間内の改造、修繕工事

¹ 原子力安全推進協会が運営する国内の原子力発電所のトラブル情報などをまとめて保管 し、公開しているデータベース。

⑦その他事項

- a. IAEAから発行された安全報告書(International Generic Ageing Lessons Learned (IGALL); Safety Report Series No. 82, (2015))並びにIGALLの改訂状況の確認 や米国のEPRI (Electric Power Research Institute) との情報交換等を通じた海外知見の収集。
- b. PWR海外情報検討会²で重要情報としてスクリーニングされた情報や、社外の組織 (原子力安全システム研究所(INSS)、国内外のプラントメーカー等)から入手 した情報

このうち、検討対象とした主な原子力規制委員会からの指示文書等については以下の とおりであった。

- ・実用発電用原子炉の運転の期間の延長の審査基準の一部改正について (平成28年4月13日、原規規発第1604131号)
- ・実用発電用原子炉の運転期間延長認可申請に係る運用ガイドの一部改正について

(平成29年9月20日、原規規発第1709202号)

- ・実用発電用原子炉施設における高経年化対策審査ガイドの一部改正について (平成28年11月2日、原規規発第16110217号)
- ・実用発電用原子炉施設における高経年化対策実施ガイドの一部改正について (平成29年9月20日、原規規発第1709202号)
- ・実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則 の解釈等の一部改正について

(令和2年3月31日、原規規発第20033110号)

また、国の定める技術基準、日本機械学会、日本電気協会、日本原子力学会等の規格・ 基準類及び原子力規制委員会により公開されている安全研究のうち、新たに考慮した主 な情報については以下のとおりであった。

- ・日本電気協会 原子炉構造材の監視試験方法「2013追補版」(JEAC 4201-2007)
- ・日本原子力学会 原子力発電所の高経年化対策実施基準:2021 (AESJ-SC-P005:2021)
- ・NRA技術報告 中性子照射がコンクリートの強度に及ぼす影響 (NTEC-2019-1001)

² 国内PWR電力会社が構成委員となり、プラントメーカーの技術支援も受けてNRC 情報以外 (WANO情報、INPO情報等) も含めた海外運転経験を収集、分析している。

調査対象期間中の国内の運転経験は575件あり、経年劣化に起因するものは24件抽出されたが、劣化状況評価に新たに反映が必要なものとして抽出されたものは無かった。また、海外の運転経験は69件あり、経年劣化に起因するものは2件抽出され、劣化状況評価に新たに反映が必要なものとして以下の運転経験が抽出された。

・仏国ベルビル2号炉 制御棒駆動機構のサーマルスリーブ摩耗 (2017年12月)

また、調査対象期間において原子力施設情報公開ライブラリー情報が最終報告となっていない情報についても、適宜更新情報を確認し、必要に応じて劣化状況評価書の見直しを行う。

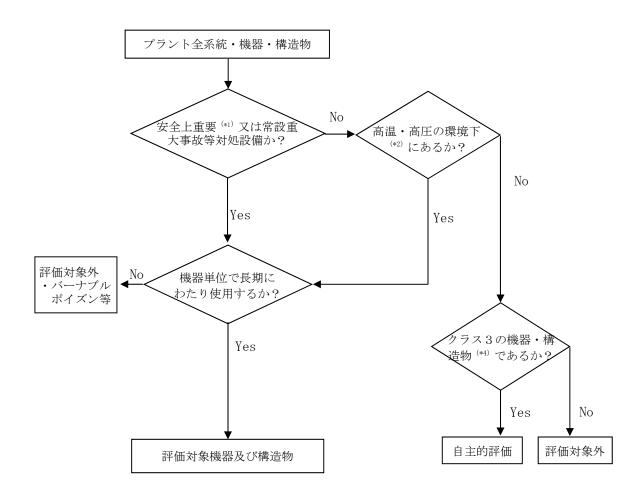
2.4 劣化状況評価の前提とする運転状態

川内原子力発電所1号炉については、2013年7月8日に新規制基準への適合性に係る申請を行い、審査を経て認可を受けており、技術基準³に適合していることから、劣化状況評価は、原子炉の運転を断続的に行うことを前提としたもの及び冷温停止状態が維持されることを前提としたもの(燃料が炉心に装荷された状態のものを含む。以下同じ。)の各々について行う。

³ 実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年原子力規制委員会 規則第6号)に定められる基準

2.5 評価対象となる機器及び構造物の抽出

劣化状況評価の対象は、安全重要度分類審査指針⁴上の重要度分類クラス1、2及び3に該当する機器及び構造物(実用炉規則別表第二において規定される浸水防護施設に属する機器及び構造物を含む。)並びに「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則(平成25年原子力規制委員会規則第5号)第43条第2項に規定される常設重大事故等対処設備」(以下、「常設重大事故等対処設備」という。)に属するものとする。


ただし、機器単位で定期的に取り替える機器(具体的には、燃料集合体、バーナブルポイズン等)は除外した。

(1) 評価対象となる機器及び構造物全てを抽出する手順

安全重要度分類審査指針及びこれを踏まえ具体的な分類を示した日本電気協会「安全機能を有する電気・機械装置の重要度分類指針」(JEAG4612-2010)に基づき識別した着色系統図を基に、評価対象となる機器及び構造物全てのリスト(以下、「機器リスト」という。)を作成した。

評価対象となる機器及び構造物の抽出フローを図-4に示す。

⁴ 発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針(平成2年8月30日原子 力安全委員会決定)

- *1 重要度分類クラス1及び2(*3)(耐津波安全性評価が必要な浸水防護施設に属する機器及び構造物を含む。)
- *2 重要度分類クラス3のうち、最高使用温度が 95℃を超え、又は最高使用圧力が 1900kPa を超える環境下にある機器 (原子炉格納容器外にあるものに限る)
- *3 「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」(平成2年8月30日原子力安全委員会決定)の重要度分類
- *4 浸水防護施設に属する機器及び構造物を含む。

図-4 評価対象となる機器及び構造物の抽出フロー

(2) 高温・高圧の環境下にある機器を抽出する手順

クラス3に該当する機器及び構造物のうち、原子炉格納容器外にある機器については、最高使用温度及び最高使用圧力を系統図等で確認し、高温・高圧の環境下にある機器5を機器リスト上で明確にした。

(3) 抽出した機器及び構造物の分類

抽出した機器及び構造物のうち、クラス1及び2に該当する機器及び構造物並びに クラス3に該当する機器及び構造物のうち高温・高圧の環境下にある機器について、 機種⁶別に区分した。

(4) 対象機器及び構造物全てを評価する手法

対象機器及び構造物全てについて合理的に評価するため、(3)で区分した機種内でさらに分類し、グループ化を行い、グループの代表機器又は構造物について評価し、その評価結果をグループ内の全ての機器又は構造物に水平展開するという手法をとった。ただし、代表機器又は構造物の評価結果をそのまま水平展開できない経年劣化事象については個別に評価した。

機種内の分類は、学会標準2008版附属書A(規定)に基づき、「経年劣化メカニズムまとめ表」を参考に、構造(型式等)、使用環境(内部流体等)、材料等により分類し、グループ化を行った。グループ内の代表機器又は構造物は、重要度、使用条件、運転状態等を考慮して選定した。

なお、最新知見として、学会標準2021附属書C(規定)の「経年劣化メカニズムまとめ表」も反映している。

⁵ 最高使用温度が95℃を超え又は最高使用圧力が1900kPaを超える環境下にある機器(原子 炉格納容器外にあるものに限る)

⁶ ポンプ、熱交換器、ポンプモータ、容器、配管、弁、炉内構造物、ケーブル、電気設備、 タービン設備、コンクリート構造物及び鉄骨構造物、計測制御設備、空調設備、機械設備 及び電源設備の15機種

- 2.6 高経年化対策上着目すべき経年劣化事象の抽出
 - (1) 選定された評価対象機器の使用条件(型式、材料、環境条件等)を考慮し、学会標準2008版附属書A(規定)の「経年劣化メカニズムまとめ表」に基づき、経年劣化事象と部位の組み合わせを抽出した。なお、最新知見として学会標準2021附属書C(規定)の「経年劣化メカニズムまとめ表」も反映している。
 - (2) 主要6事象^{※1}については、原則、高経年化対策上着目すべき経年劣化事象(○事象) とし、それ以外の経年劣化事象のうち、下記①、②のいずれかに該当する場合は、 高経年化対策上着目すべき経年劣化事象ではない事象として整理した。具体的な整 理のフローは図-5のとおり。
 - ① 想定した劣化傾向と実際の劣化傾向の乖離が考えがたい経年劣化事象であって、想定した劣化傾向等に基づき適切な保全活動を行っているもの(△:日常劣化管理事象)
 - ② 現在までの運転経験や使用条件から得られた材料試験データとの比較等により、今後も経年劣化の進展が考えられない、又は進展傾向が極めて小さいと考えられる経年劣化事象(▲:日常劣化管理事象以外)

※1:実施ガイドに示された、低サイクル疲労、中性子照射脆化、照射誘起型応力腐食割れ、2相ステンレス鋼の熱時効、電気・計装品の絶縁低下、コンクリートの強度低下及び遮蔽能力低下をいう。

※1: 高経年化対策上着目すべき経年劣化事象に限る。

※2:保全活動によりその傾向が維持できていることを確認している経年劣化事象は「No」に進む。

※3:②に該当するが保全活動によりその傾向が維持できていることを確認している ものを含む。

図-5 高経年化対策上着目すべき経年劣化事象の抽出フロー

2.7 高経年化対策上着目すべき経年劣化事象に対する健全性評価

2.6で抽出した高経年化対策上着目すべき経年劣化事象について、プラントの運転を開始した日から60年間について機器又は構造物の健全性評価を行うとともに、必要に応じ現状の施設管理に追加すべき保全策を抽出した。

(1) 健全性の評価

傾向管理データによる評価、最新の技術的知見に基づいた評価及び解析等の定量評価、過去の保全実績、一般産業で得られている知見等を用いて健全性を評価した。

(2) 現状保全の整理

評価対象部位に対する現状保全(点検内容、関連する機能試験内容、補修・取替等) を整理した。

(3) 総合評価

上記(1)と(2)をあわせて現状保全の妥当性を総合的に評価した。具体的には、健全性評価結果と整合の取れた点検等が、現状の保全活動で実施されているか、また、点検手法は当該の経年劣化の検知が可能か等を評価した。

(4) 高経年化への対応

高経年化対策の観点から充実すべき点検・検査項目、技術開発課題等を抽出した。

2.8 耐震安全性評価

耐震安全上考慮する必要のある経年劣化事象を抽出し、プラントの運転を開始した日から60年間について、経年劣化事象の発生又は進展に伴う機器又は構造物の耐震安全性を評価するとともに、必要に応じ現状の施設管理に追加すべき保全策を抽出した。

(1) 評価対象機器及び構造物全てを評価する手法

耐震安全性評価についても、2.5(4)のグループ化及び代表機器又は構造物の選定結果を用い、グループの代表機器又は構造物について評価し、その評価結果をグループ内の全ての機器又は構造物に水平展開するという手法をとった。ただし、代表機器又は構造物と同様とみなせないものについては個別に評価した。

なお、グループ内に代表機器より耐震重要度が上位のものがある場合は、そのうち 1つを代表機器に加えた。

(2) 耐震安全性評価の対象となる経年劣化事象の抽出

2.6(2)で行った経年劣化事象の分類結果を用い、▲に該当する経年劣化事象を除外し、また、抽出された経年劣化事象を以下の観点で整理し、「ii」に該当する経年劣化事象を耐震安全性評価の対象とした。

- i 現在発生しておらず、今後も発生の可能性がないもの又は小さいもの
- ii 現在発生しているか、又は将来にわたって起こることが否定できないもの

2.6(2)で日常劣化管理事象等(\triangle)に分類した事象であって、上記「i」に該当するとして耐震安全性評価の対象外とした事象(\longrightarrow)について、今後も発生の可能性がない、又は小さいとした理由を別紙 6に示す。

(3) 耐震安全上考慮する必要のある経年劣化事象の抽出

(2)で抽出した経年劣化事象が顕在化した場合、機器又は構造物の振動応答特性上又は構造・強度上、影響が「有意」であるか「軽微もしくは無視できる」かを検討し、耐震安全上考慮する必要のある経年劣化事象を抽出した。

(4) 耐震安全性の評価

プラントの運転を開始した日から60年間について、経年劣化事象の発生又は進展に伴う機器又は構造物の耐震安全性を評価した。

耐震安全性評価は日本電気協会「原子力発電所耐震設計技術指針」(JEAG4601-1987) 等に基づき行った。

また、評価用地震力は耐震クラスに応じて選定し、基準地震動については「実用発電用原子炉及びその付属施設の位置、構造及び設備の基準に関する規則(平成25年原子力規制委員会規則第5号)」に基づき定めたものを用いた。

また、地震時に動的機能の維持が要求される機器については、経年劣化事象を考慮しても地震時の応答加速度が各機器の機能確認済加速度以下であるかを検討した。

(5) 保全対策に反映すべき項目の抽出

耐震安全性評価結果に対応する現状の保全策の妥当性を評価し、耐震安全性の観点から保全対策に追加すべき項目を抽出した。

2.9 耐津波安全性評価

津波の影響を受ける浸水防護施設に対して耐津波安全上考慮する必要のある経年劣化 事象を抽出し、プラントの運転を開始した日から60年間について、経年劣化事象の発 生又は進展に伴う機器又は構造物の耐津波安全性を評価するとともに、必要に応じ現状 の施設管理に追加すべき保全策を抽出した。

(1) 評価対象機器の選定

2.5(4)で抽出した評価対象機器・構造物のうち津波の影響を受ける浸水防護施設を耐津波安全性評価の対象として選定した。

(2) 耐津波安全性評価の対象となる経年劣化事象の抽出

2.4(2)で行った経年劣化事象の分類結果を用い、▲に該当する経年劣化事象を除外し、また、抽出された経年劣化事象を以下の観点で整理し、「ii」に該当する経年劣化事象を耐津波安全性評価の対象とした。

- i 現在発生しておらず、今後も発生の可能性がないものまたは小さいもの
- ii 現在発生しているか、または将来にわたって起こることが否定できないもの

(3) 耐津波安全上考慮する必要のある経年劣化事象の抽出

(2)で抽出した経年劣化事象が顕在化した場合、機器または構造物の構造・強度上および止水性上、影響が「有意」であるか「軽微もしくは無視できる」かを検討し、耐津波安全上考慮する必要のある経年劣化事象を抽出した。

(4) 耐津波安全性の評価

プラントの運転を開始した日から60年間について、経年劣化事象の発生または進展に伴う機器または構造物の耐津波安全性を評価した。

基準津波による最大水位変動量については「実用発電用原子炉及びその付属施設の位置、構造及び設備の基準に関する規則(平成25年原子力規制委員会規則第5号)」に基づき定めたものを用いた。

(5) 保全対策に反映すべき項目の抽出

耐津波安全性評価結果に対応する現状の保全策の妥当性を評価し、耐津波安全性の 観点から保全対策に追加すべき項目を抽出した。

2.10 冷温停止を前提とした評価

冷温停止状態が維持されることを前提として、冷温停止状態維持に必要な設備の選定を行うとともに、プラントの運転を開始した日から60年間について経年劣化事象の発生又は進展に関する整理を実施し、必要に応じ現状の施設管理に追加すべき保全策を抽出した。

(1) 評価対象機器及び構造物全てを評価する手法

冷温停止状態が維持されることを前提とした評価についても、2.5(4)のグループ化及び代表機器又は構造物の選定結果を用い、グループの代表機器又は構造物について評価し、その評価結果をグループ内の全ての機器又は構造物に水平展開するという手法をとった。

(2) 冷温停止を踏まえた再評価を行う経年劣化事象の抽出

2.6(2)で行った経年劣化事象の分類結果に基づき、それぞれの経年劣化事象について、冷温停止状態が維持されることを前提とした場合において発生・進展が断続的運転を前提とした場合より厳しくなることが想定される経年劣化事象を抽出した。

(3) 冷温停止を踏まえた再評価

(2)で抽出した経年劣化事象について、冷温停止状態の維持を踏まえて経年劣化事象の発生又は進展に伴う機器又は構造物の再評価を実施した。

(4) 保全対策に反映すべき項目の抽出

冷温停止状態の維持を踏まえた再評価結果に対応する現状の保全策の妥当性を評価 し、必要に応じ保全対策に追加すべき項目を抽出した。

2.11 劣化状況評価で追加する評価

運転開始後40年目に実施する劣化状況評価は、30年目の高経年化技術評価をその後の供用実績、保存実績及び安全基盤研究等技術的知見をもって検証し、課題を抽出して、それらの課題に対応したものであるとともに、30年目の長期施設管理方針の実績についても、その有効性を評価し、結果を反映する。具体的には、追加検討を要する事項として、以下の評価を行った。

(1) 経年劣化傾向の評価

30年目の高経年化技術評価で予測した経年劣化の発生、進展傾向と、実機データの傾向を反映した40年目評価で予測する経年劣化の進展傾向を比較し、予測結果の 乖離が認められる場合には、安全基盤研究の成果等を必要に応じ考慮し、40年目の 評価に反映した。

(2) 保全実績の評価

30年目の評価の結果、現状保全の継続により健全性を維持できると評価したものについて、30年目の評価後の保全実績に基づき、その有効性を評価し課題を抽出する。課題がある場合には、今後の保全について検討し、40年目の評価に反映した。ここでは、30年目の評価の結果、経年劣化に関する保全が有効でなかったため生じたと考えられるトラブル事象について、保全のあり方を検討し、40年目の評価に反映した。

(3) 長期施設管理方針の有効性評価

30年目の長期施設管理方針について、その後に実施した保全実績に基づき、有効性を評価した。

具体的には、長期施設管理方針が当初意図した結果が得られた場合においては、有効であると評価し、当初意図した結果が得られなかった等の課題がある場合には、その検討を行い、40年目の長期施設管理方針に反映した。

2.12 劣化状況評価に係る全体プロセス

(1) 実施計画書及び実施手順書の策定

経年劣化の技術評価実施要領に従い、2020年10月29日に実施計画書及び 実施手順書を策定し、劣化状況評価を開始した。

その後、2022年1月4日に運転延長認可申請に係る手順を追加するため、実施 計画書及び実施手順書の改正を行った。

(2) 評価の実施及び評価書の作成

実施計画書及び実施手順書に基づき、評価実施グループは劣化状況評価を実施し、 評価書を作成した。具体的な手順は2.3~2.11のとおり。

コンクリート構造物及び鉄骨構造物以外の設備の評価は原子力経年対策グループ が、コンクリート構造物及び鉄骨構造物は調査・計画グループが実施した。

(3) 評価書の内容のレビュー

実施手順書に従い、評価実施グループが実施した評価内容について、本店及び発電 所の関係箇所が確認を実施した。

(4)評価書各章間の整合性確認

評価書本文、及び別冊について、各章をまたぐ内容の整合性を、評価実施グループ にて確認した。

(5) 評価書の承認プロセス

実施手順書に従い、(1)~(4)を経て作成された評価書について、原子力発電安全委員会で審議し、確認を受けた後、統括責任者(原子力管理部長)が承認した。

3. 川内原子力発電所における保全活動

原子力発電所の保全では、構築物、系統及び機器の経年劣化が徐々に進行して最終的に 故障に至ることのないよう、定期的な検査や点検等により経年劣化の兆候を早期に検知 し、必要な処置を行い、事故・故障を未然に防止している。

当社は、運転監視、巡視点検、定期的な検査及び点検により設備の健全性を確認し、経 年劣化等の兆候が認められた場合には詳細な調査及び評価を行い、補修、取替等の保全を 実施している。特に長期の使用によって発生する経年劣化事象については、点検により経 年的な変化の傾向を把握し、故障に至る前に計画的な保全を実施している。

具体的には、実用炉規則第81条に掲げる施設管理に係る要求事項を満たすよう、「日本電気協会 原子力発電所の保守管理規程 (JEAC4209-2007)」に基づき、規定文書を策定して施設管理を実施している。

(1) 川内原子力発電所における保安活動の実施体制

川内原子力発電所における保全活動は、図6に示す川内原子力発電所における保安 に関する組織により行っている。

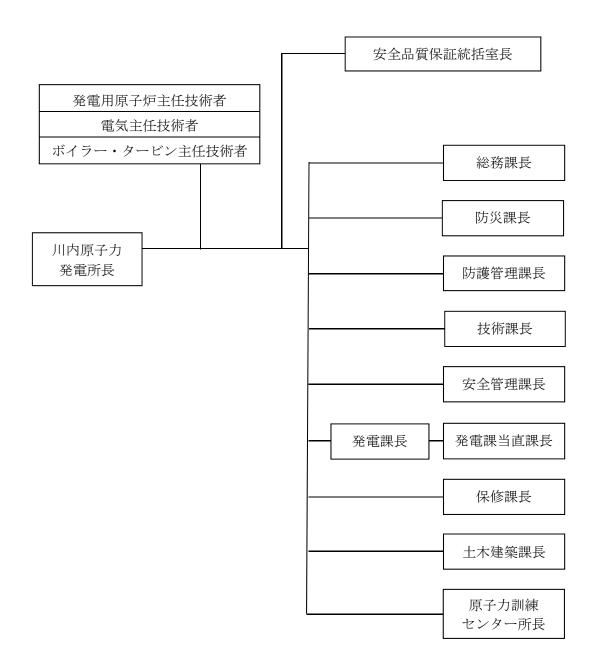


図-6 川内原子力発電所における保安に関する組織

各職位の保安に関する職務は以下のとおり。

- ・ 川内原子力発電所長は、発電所における保安に関する業務を総括する。また、発電 所におけるコンプライアンス活動及び安全文化醸成活動を統括する。
- ・ 安全品質保証統括室長は、所長を補佐し、発電所における保安、品質保証活動の統 括に関する業務を行う。
- ・ 総務課長は、調達先の評価・選定等に関する業務を行う。
- ・ 防災課長は、火災、内部溢水、火山影響等、その他自然現象、有害ガス、重大事故 等及び大規模損壊発生時の体制の整備、原子力防災等に関する業務を行う。
- 防護管理課長は、出入管理に関する業務を行う。
- ・ 技術課長は、発電所の技術関係事項の総括及び燃料管理に関する業務を行う。
- ・ 安全管理課長は、放射線管理、放射性廃棄物管理及び化学管理に関する業務を行う。
- ・ 発電課長は、原子炉施設の運転管理に関する業務を行う。
- ・ 発電課当直課長は、原子炉施設の運転管理に関する当直業務を行う。
- ・ 保修課長は、原子炉施設(土木建築設備を除く。)の保修及び燃料の取扱いに関す る業務を行う。
- ・ 土木建築課長は、原子炉施設のうち、土木建築設備の保修に関する業務を行う。
- ・ 原子力訓練センター所長は、保安教育等の統括に関する業務を行う。

(2) 川内原子力発電所における施設管理に関する文書体系

保安規定に従い、施設管理にかかる必要な手順を、所定の手続きに従って作成される QMS文書として定めている。川内原子力発電所の施設管理に関する文書体系を図-7に 示す。

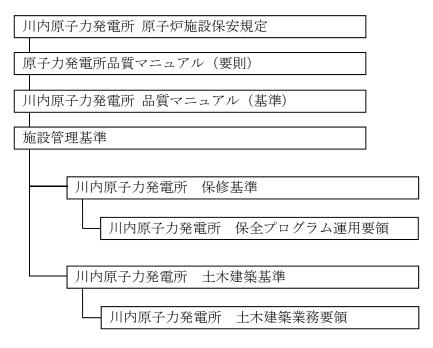


図-7 保全活動に関する社内文書体系

各文書の規定範囲は以下のとおり。

a. 1 次文書

(a) 原子力発電所 品質マニュアル (要則)

当社が原子力安全を確保するための品質マネジメントシステムを確立し、実施するとともに、その有効性を維持するため、改善を継続的に行うことを目的とした規定文書。

(b) 川内原子力発電所品質マニュアル (基準)

「原子力発電所品質マニュアル(要則)」に基づき、原子力安全を確保するための 品質マネジメントシステムを確立し、実施するとともに、その有効性を維持するため 改善を継続的に行うことを目的とした規定文書。

(c) 施設管理基準

社長が実施する施設管理の実施方針、原子力発電本部長が実施する施設管理の有効性評価(総合)及び原子力管理部長が実施する施設管理目標の設定および見直し等の本店原子力部門が実施する施設管理業務の手順を定めることにより、施設管理活

動の継続的改善を実施することを目的とした規定文書。

b. 2 次文書

(a) 川内原子力発電所 保修基準

「川内原子力発電所品質マニュアル(基準)」に基づき、川内原子力発電所における保修に関する業務の内容及び管理の基準について定め、発電所の円滑適正な運用を図ることを目的とした規定文書。

(b) 川内原子力発電所 土木建築基準

「川内原子力発電所品質マニュアル(基準)」に基づき川内原子力発電所における 土木建築保修に関する業務の内容及び管理の基準について定め、発電所の円滑適正 な運用を図ることを目的とした規定文書。

c. 3 次文書

(a) 川内原子力発電所 保全プログラム運用要領

「川内原子力発電所 保修基準」に基づき、川内原子力発電所の原子炉施設における保全プログラム、その策定方法及び運用について定め、発電所の円滑適正な運営に 資することを目的とした規定文書。

(b) 川内原子力発電所 土木建築業務要領

「川内原子力発電所 土木建築基準」に基づき、川内原子力施設における土木建築 関係の保修に関する業務の内容及び管理基準について定め、発電所の円滑適正な運 営に資することを目的とした規定文書。

別紙

- 別紙1. 協力事業者の力量管理方法について
- 別紙2. 原子力施設情報公開ライブラリー情報で最終報告ではない情報について
- 別紙3. 消耗品・定期取替品の定義及び抽出方法について
- 別紙4. 文書体系における現状保全に係るプログラムについて
- 別紙5. スペアパーツの取り組みについて
- 別紙6. 日常劣化管理事象等について
- 別紙7. 日常劣化管理事象以外の事象について
- 別紙8. 事象別の補足説明について
 - 別紙8-1 高サイクル疲労割れに係る説明
 - 別紙8-2 フレッティング疲労割れに係る説明
 - 別紙8-3 腐食(流れ加速型腐食)に係る説明
 - 別紙8-4 劣化(中性子照射による靭性低下)に係る説明
 - 別紙8-5 応力腐食割れに係る説明
 - 別紙8-6 摩耗に係る説明
 - 別紙8-7 スケール付着に係る説明
 - 別紙8-8 マルテンサイト系ステンレス鋼の熱時効に係る説明

タイトル	協力先の技術力の管理方法について
概要	高経年化技術評価の実施における協力先の技術力の管理方法につい
	て、以下に示す。
説明	高経年化技術評価のための業務委託先である協力先に対する技術力
	の管理は、規定文書に基づき以下の通り実施している。
	業務の遂行に必要な技術力の有無を確認するため、委託発注する部
	署が協力先の技術的評価を実施している。具体的には、納入実績や技
	術・製造能力並びに品質保証に関する能力等から協力先の技術的評価
	を行い、技術力有と評価した協力先から調達するプロセスとしている。
	更に委託完了時には、調達要求事項を満たしていることを確実にする
	ために、業務の区分、調達内容などを考慮した委託業務の検証を行って
	いる。
	また、必要に応じ協力先に対して品質保証監査を実施しており、品質
	保証活動及び安全文化の醸成活動が適切で、かつ、確実に実施されてい
	ることの確認を行っている。
	なお、高経年化技術評価に係る解析業務を実施する協力先には、「当
	該の解析業務を履行する力量を持った要員が従事すること」や、「解析
	に特化した教育を実施すること」等を要求しており、それらの実施状況
	について当社が確認している。

タイトル	原子力施設情報公開ライブラリー情報で最終報告ではない情報につい		
	て		
概要	申請時において原子力施設情報公開ライブラリー情報で最終報告と		
	なって	こいない運転経	暴験の件数と内容について、以下に示す。
説明	2 0	22年10月	3日時点において、原子力施設情報公開ライブラ
	リー情	青報で最終報告	言となっていない情報は68件あり、その内容を下
	表に引	きす。	
		表申請日	時において最終報告とはなっていない情報
	No.	ユニット	件名
	1	柏崎刈羽	保安規定対象記録の未保存について
	2	東海第二	東海第二発電所 輸送本部脇の変圧器におけ
		米 <i>西</i>	る火災について
	3	柏崎刈羽 3	油漏えいに伴う低起動変圧器の停止について
	3	号	個個人がに圧力医応勤及圧縮の行业について
	4	柏崎刈羽 5	原子炉建屋地下1階ケーブルトレイ貫通部から
	4	4 号	の空気の流れの確認について
			志賀原子力発電所1号機 高圧炉心スプレイデ
	5	5 志賀1号	ィーゼル発電機停止用電磁弁からの空気漏えい
			について
	6	 泊	泊発電所火災感知器の不適切な設置(令和4年
		тн	度第1四半期原子力規制検査結果)
	7	高浜 4 号	高浜発電所 4 号機 蒸気発生器伝熱管の損傷
	8	東通1号	硫酸配管ピンホールからの漏洩
	9	伊方 3 号	伊方発電所3号機 特定重大事故等対処施設
		17 73 0 13	計装設備の不具合と通常状態への復旧について
	10	 伊方 3 号	伊方発電所 3 号機 制御棒制御盤の異常信号の
		0 17.3.3	発信について
	11	 伊方 3 号	伊方発電所 3 号機 主変圧器及び所内変圧器の
		,,,,,,	保護継電装置の不具合について
	12	 伊方 3 号	伊方発電所 3 号機 空冷式非常用発電装置の充
		0 /3 0 /3	電器の不具合について

ユニット	件名
東通1号	洗濯廃液系配管の減肉について
伊方3号	伊方発電所3号機 エタノールアミン排水処理 装置の電解槽供給ポンプの不具合について
柏崎刈羽 7 号	計装用圧縮空気系除湿装置ブロワ(B系)プーリ ーの位置ずれ事象
東通1号	プロコンアラーム「表示端末印字コン 2 表示バス通信異常 ON」発生
福島第一 3 号	起動変圧器 (B) からの絶縁油 (PCB 含有) 漏えい事象
伊方3号	伊方発電所3号機 1次冷却材中のよう素濃度 の上昇について
柏崎刈羽 6 号	非常用ディーゼル発電機 (A) からの油漏れについて
女川 1,2,3 号	女川原子力発電所 変圧器避圧弁の油面揺動に 伴う動作について
東通1号	代替非常用冷却海水ポンプ (ハイドロサブ) ホース収納コンテナ天井扉の曲がり
東通1号	給排水処理設備「圧力計故障」警報発生
東通1号	「ドライウェルクーラ供給空気温度 高」ANN 発生
東通1号	LDろ過機(A)処理水量低下
東通1号	「碍子洗浄変圧器消火設備異常」(自動給水異常)警報発生
東通1号	プロセス計算機サーバの予期しない切替事象発 生
東通1号	TIP 隔離弁(C)の全開動作
川内 1 号	原子力規制検査結果について 「川内原子力発電 所1号機 A安全補機開閉器室及びCRDM電 源室における火災感知器の不適切な箇所への設 置」
	東通1号 伊方3号 柏号 7 東通1号 3号 相号 3号 伊 6 号 川 1,2,3 号 東通1号 東通1号 東通1号 東通1号 東通1号 東通1号

		,
No.	ユニット	件名
29	東通1号	「セメントミキサ洗浄水移送ポンプ流量L」警 報発生
30	東通1号	取水口2号除塵機操作パネル不具合
31	柏崎刈羽	固体廃棄物貯蔵庫内(管理区域)における放射性 固体廃棄物ドラム缶からの液体漏えいの発見に ついて
32	東通1号	LDサンプルタンク(B)放出終了時の「RW検 出器故障」警報発生
33	東通1号	Aux/B 建屋 CO2 消火設備ダンパー動作不良について
34	東通1号	T S W系注入流量計(P95-FI008)フランジ面の ひび
35	福島第一	2021 年度第 1 四半期の実施計画違反(瓦礫等の 管理不備)
36	福島第一	一時保管エリアに保管していたノッチタンクか らの核燃料物質等の漏えい事象
37	柏崎刈羽 6号	大物搬入建屋の杭の損傷について
38	東通1号	鉄イオン供給装置流量計からの滴下
39	柏崎刈羽	ドラム缶表面のさびの発生について
40	福島第一	プロセス主建屋における顔面汚染事象
41	福島第一 1 号	原子炉圧力容器温度計の信号ケーブルの誤接続 事象
42	福島第一	通用門建屋建設工事における非火災報の発報事 象
43	浜岡5号	非常用ディーゼル発電機 24 時間連続運転中に おける排気管伸縮継手の破損
44	東通1号	「周辺モニタリング設備異常 (DM-2)」警報発 生
45	東通1号	「周辺モニタリング設備異常」警報発生
46	東通1号	「計算機サーバ 2 サーバ 2 故障 ON」警報発生

No.	ユニット	件名
47 福	福島第一	一時保管エリアにおける核燃料物質等の漏えい
	佃岛尔	事象について
48	福島第一	雑固体廃棄物焼却建屋屋上散水ポンプの配管ト
40	佃卤尔	レースヒーター焼損事象
49	島根2号	R/B 排気外側隔離弁開側動作不良他
50	東通1号	初期排出樹脂固化体の練り混ぜ不良
51	島根2号	I 系原子炉補機海水系ストレーナ亀裂
EO	福島第一 1	PCV ガス管理設備排気ファン全台停止に伴う道
52	号	転上の制限からの逸脱および復帰
5 0	短 白笠	大型機器メンテナンス建屋内における休憩所す
53	福島第一	ーベイの未実施
54	福島第一	白色小巛却加乳供力力巛层口或层了供
54	5,6 号	自動火災報知設備の火災信号受信不備
r r	福島第一 3	タービン建屋屋上部雨水対策工事における顔面
55	号	汚染
56	福島第一 2	使用済燃料プールスキマサージタンク水補給技
30	号	作における不適切な操作
57	東通1号	固化処理設備 「固化処理設備異常」ANN発生
58	福島第一 5	非常用ディーゼル発電機プレートオリフィスの
20	号	取付方向の相違
59	古沼 1 旦	CRDポンプ(A)油冷却器出口流量サイトグラ
39	東通1号	スのコイルバネのずれについて
(0	士恕 1 旦	オリフィスプレートの取付け方向の相違につい
60	志賀1号	て
	玩 自 笠	福島第一原子力発電所1~3号機窒素ガス分离
61	福島第一	装置(B)窒素濃度指示不良に伴う運転上の制限
	1,2,3 号	からの逸脱について
(0 +)7	古温 1 旦	プロセス計算機「P604-5U2900A 監視バス通信
62	東通1号	異常」アラーム発生
63	丰/2 1 日	L Dサンプルタンク(B)出口弁弁体シート面 I
	東通1号	│ │T指示模様について

No.	ユニット	件名		
64	東通1号	タービン大物搬出入口扉の不具合		
65	浜岡3号	浜岡原子力発電所3号機 低圧タービン動翼取		
03	供 四 3 万	付部の点検について		
66	東通1号	TD-RFP (A) インペラー損傷について		
(7	市沼 1 旦	低圧第1給水加熱器ドレンタンク(B)水位上昇		
67	東通1号	について		
68	浜岡5号	制御棒全ストローク動作確認時の制御棒の一時		
08		的なスティック発生について		

タイトル	消耗品・定期取替品の定義及び抽出方法について
概要	高経年化技術評価における消耗品・定期取替品の定義及び抽出方法に
	ついて、以下に示す。
説明	高経年化技術評価において、消耗品・定期取替品は取替を前提として
	いることから評価の対象外としている
	消耗品・定期取替品は規定文書に基づき以下の通り定義を定めてい
	る。
	消耗品:供用期間中機能喪失に至らないように、経時的な摩耗、物性
	値低下などの劣化及び点検による変形等により再使用せ
	ず、取り替えるもの
	顕著な劣化は生じないが、予防保全として取り替えるもの
	保全作業の効率化の観点より取り替えるもの
	分解点検時の目視点検や寸法測定等の結果に基づき取り替
	えるもの
	定期取替品:メーカ推奨又は実績等により取り替えるもの
	消耗品の例を以下に示す。
	a)機械的摺動部品(軸受、ブッシュ他)
	b) 電気的摺動部品 (ブラシ他)
	c) 封密部品(ガスケット、Oリング他)
	d) 防食亜鉛板
	e) フィルタ (ラフフィルタ他)
	定期取替品の例を以下に示す。
	a) 検出器(中性子束検出器、測温抵抗体他)
	b) 電気盤構成品(ヒューズ、NFB他)
	c) 弁付属品(電磁弁、ブースタリレー他)
	古勿左ル社然恋(エ)マよいよう巡撃日、戸畑氏共日の村山は、夕塚田の巡
	高経年化技術評価における消耗品・定期取替品の抽出は、各機器の消耗品・定期取替品の抽出は、各機器の消耗品・定期取替品の抽出は、各機器の消耗品・定期取替品の抽出は、各機器の消
	耗品・定期取替品が具体的に定められている規定文書に基づき整理した。 ***********************************
	た消耗品・定期取替品リストを参照している。

タイトル	文書体系における現状保全に係るプログラムについて
概要	当社の品質マネジメントシステムに関する文書体系における現状保全
	に係るプログラムを以下に示す。
説明	川内原子力発電所 1 号炉の設備の具体的な保全プログラムを規定する
	文書は以下の通り。
	・保修基準
	・保全プログラム運用要領
	・作業管理要領
	• 技術基準
	• 通信連絡設備管理要領
	• 土木建築基準
	• 土木建築業務要領
	本社内規定に従い、保全対象範囲の策定、保全重要度の策定、保全根
	拠の策定、保全計画の策定、保全結果の確認・評価等の保全プログラム
	を実施している。
	また、2次系配管の減肉に関する管理については、保全プログラム運
	用要領により、点検計画の策定、点検の実施、余寿命評価と措置を行う
	と共に、データを管理している。
	なお、運転管理としては、運転基準により設備の監視および巡視点検
	方法を定めて運用し、不具合箇所の早期発見および事故の未然防止を
	図ることとしており、化学管理基準により水質管理を行い、各系統の水
	質が管理値を満足していないと判断した場合は、水処理により適切な
	処置を講ずることとしている。

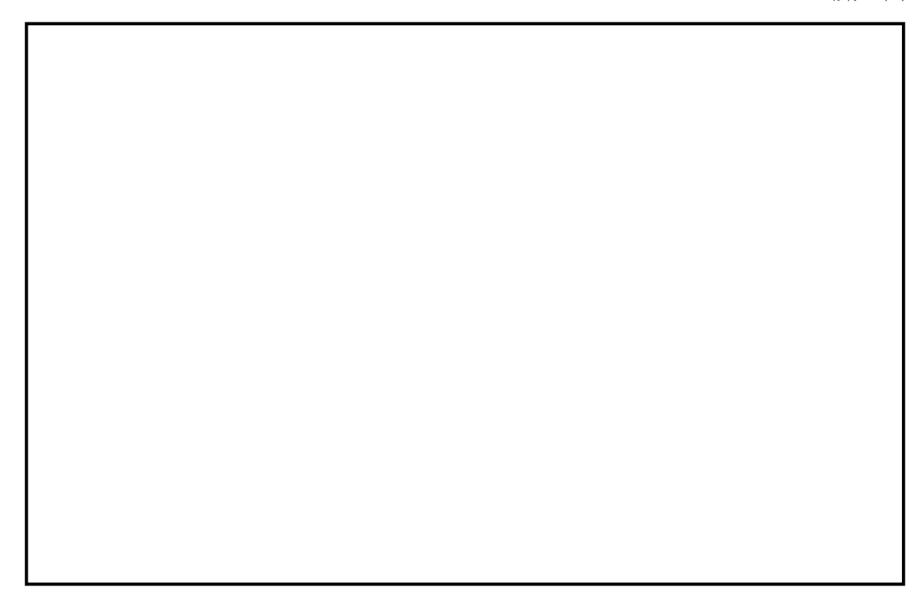
説明

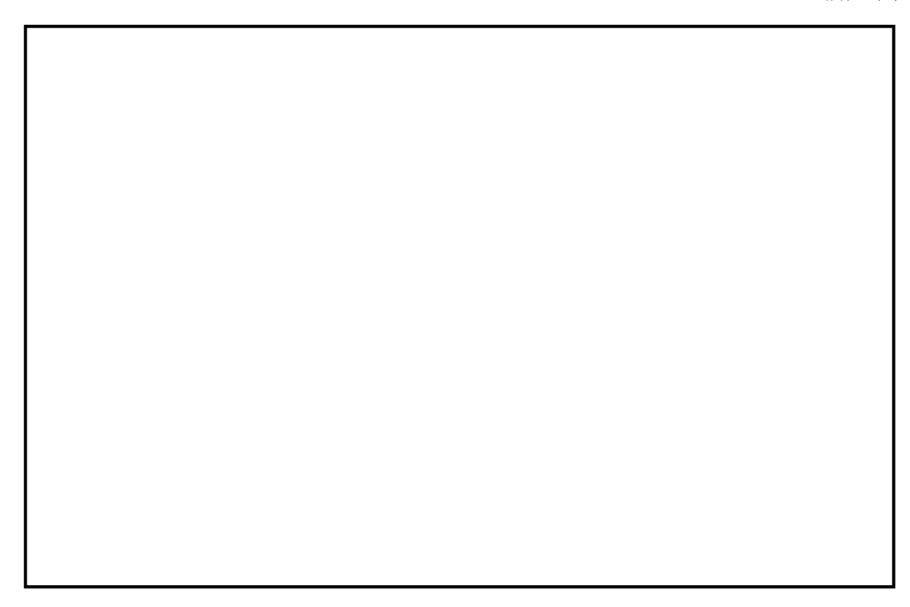
品質マネジメントシステムにおける機器の保全プログラムに関する体系 例を以下に示す。

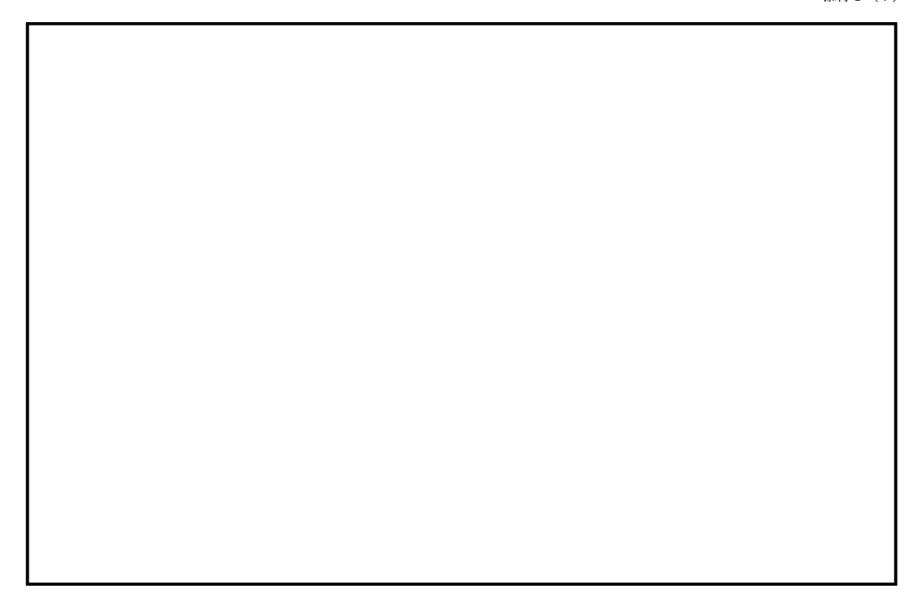
また、評価書に記載する現状保全の内容と、下記体系に基づく長期点検計 画及び保全根拠書の記載との対応例を添付1に示す。

高圧ポンプ用電動機のうち海水ポンプ用電動機を例に、評価書における現状保全の記載、長期点検計画の記載、保全根拠書の記載及び川内原子力発電所作業管理要領に基づき作成された作業要領書の記載を以下に示す。

●評価書の記載


② 現状保全


固定子コイル及び口出線・接続部品の絶縁低下に対しては、定期的な絶縁 抵抗測定を行い、許容値以上であることを確認している。さらに、絶縁診断 (直流吸収試験、tan δ 試験、部分放電試験)により、管理範囲に収まってい ることの確認を行うとともに、傾向管理を行っている。また、絶縁抵抗測定 及び絶縁診断結果に基づき、必要により洗浄、乾燥、絶縁補修処理もしくは 取替えを実施していく。


長期点検計画の記載			

保全根拠書の記載			

●作業要領書の記載		

タイトル	スペアパーツの取り組みについて
概要	当社のスペアパーツに係る取り組みについて以下に示す。
説明	当社は、原子炉施設の円滑な運転をはかるために、購入発注しても直ちに製作調達することが困難であり、用途が限定され他に流用することが困難である等の基準を満たし、常備すべき最低限度のものを予備品として常備している。予備品は、社内標準(原子力発電所予備品取扱要領)に従い品目および数量が管理され、必要に応じて、同標準に基づく社内手続きを経て見直しが行われることになっている。なお、安全上重要な機器はプラントメーカ等の主要メーカが供給しているため、それらの機器が製造中止になる場合は、当社は事前にメーカからその情報を入手しており、都度、製造中止予定品の必要数の確保(予備品として確保)や後継機器への取替えを計画したりするなどの検討を行っている。

タイトル	日常劣化管理事象等について
概要	高経年化対策上着目すべき経年劣化事象ではない事象のうち、日常劣化管理事象(△)の一覧を示す。 また、耐震安全性評価の対象外とした事象(一)を事象毎に分類し、今後も発生の可能性がない、または小さいとした理由を示す。
説 明	日常劣化管理事象 (△) の一覧を表1-1に示す。なお、日常劣化管理事象 (△) のうち、現在発生しておらず、今後も発生の可能性がないものまたは小さいものを (△①)、現在発生しているか、または将来にわたって起こることが否定できないものを (△②) として整理した。また、耐震安全性評価の対象外とした事象 (一) を事象毎に分類し、今後も発生の可能性がない、または小さいとした理由を表1-2に示す。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
1	ポンプ	ターボポ ンプ	Δ①	摩耗	主軸の摩耗	共通	ころがり軸受を使用しているポンプについては、軸受と主軸の接触面で摩耗が想定される。 軸受の定期取替時の軸受引き抜き時に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドペーパで仕上げる方策も考えられる。この場合は、主軸表面がわずかに 摩耗し、主軸と軸受間で微小隙間が生じ運転中にフレッティングにより摩耗する可能性が ある。 しかしながら、分解点検時の寸法管理によりフレッティングが発生しないようにしてお り、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
2			Δ①	摩耗			すべり軸受を使用しているポンプについては、軸受と主軸の接触面で摺動摩耗が想定される。 しかしながら、設計段階において、主軸と軸受間に潤滑剤を供給し、膜を形成させて流体 潤滑状態となるように考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
3	ポンプ	ターボポ ンプ	Δ2	腐食(孔食・ 隙間腐食)	主軸、吐出管等 接液部の腐食 (孔食及び隙間 腐食)	海水ポンプ	主軸、吐出管等は、ステンレス鋼又はステンレス鋼鋳鋼であり、海水接液部においては孔 食及び隙間腐食が想定される。 しかしながら、分解点検時の目視確認により各部の腐食の有無又は塗装の劣化の有無を確 認し、腐食が発生している部位は、手入れや充てん材等による補修を行い、腐食が着しく 発生している部位については、取替えを実施している。また、塗装のはく離が認められた 場合には必要に応じて補修を行うことにより、機器の健全性を維持している。 はたがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
4	ポンプ	ターボポ ンプ	Δ①	フレッティン グ疲労割れ	主軸のフレッティング疲労割れ	充てん/高圧注入ポンプ、余熱除 去ポンプ	ポンプ運転時の主軸に外部荷重に起因する繰返し曲げ応力が作用したとき、その応力の働いている方向や大きさによっては、主軸等に疲労割れが生じる可能性があり、焼きばめにより羽根車が固定されている主軸においてフレッティング疲労割れが想定される。1986年10月、玄海1号炉の余除除去ポンプの主軸と羽根車の焼きばめ部において、フレッティング疲労による主軸の疲労割れが発生している。しかしながら、「金属材料疲れ強さの設計資料((社)日本機械学会)」から最も厳しい下限線を10 ¹¹ 回まで外挿し設定した疲労限と曲げ応力振幅との比較により評価した結果、曲げ応力振幅は疲労限を下回っており、フレッティング疲労割れが問題となる可能性はないと判断している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、巡視点検時の振動確認(通常運転時の振動状態と差異のないことの触診や目視による確認)及び定期的な振動確認(変位、速度、加速度の測定等)並びに分解点検時の超音波探傷検査により、機器の健全性を確認している。
5	ポンプ	ターボポ ンプ	Δ①	高サイクル疲 労割れ	主軸の高サイクル疲労割れ	共通	ポンプ運転時には主軸に定常応力と変動応力が発生し、高平均応力下において繰返し応力を受けると段付部等の応力集中部において、高サイクル疲労割れが想定される。しかしながら、ポンプ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。川内1号炉及び玄海3号炉を始めとする国内PWRプラントで発生したターボポンプ主軸折損に係る事例は、製作施工段階での主軸の段付き清部コーナーの曲率半径不足と主軸のいては、応力集中を緩和した主軸への取替え及び運用の改善を図るとともに、充て小/高に注入ポンプについては、応力集中を緩和した主軸への取替え及び運用の改善を図るとともに、充て小/高に注入ポンプについては、応力集中を緩和した主軸への取替え及び運用の改善を図るとともに、充ている。また、主軸の取替えを行った充てん/高に注入ポンプについては、分解点検時に浸透探傷検査により段付き清部に異常のないことを確認している。
6	ポンプ	ターボポ ンプ	Δ①	腐食(キャビ テーション)	羽根車の腐食(キャビテーション)	共通	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温における飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こることが想定される。 しかしながら、ポンプ及び機器配置の設計時にはキャビテーションを考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
7	ポンプ	ターボポ ンプ	Δ2	腐食(全面腐食)	軸受箱の腐食 (全面腐食)	去ポンプ、原子炉補機冷却水ポン プ、緊急時対策所用発電機車用給	軸受箱は鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
8			Δ①	腐食(全面腐食)	全面腐	油ポンプ	一方、内面については内部流体が油で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
9	ポンプ	ターボポ ンプ	Δ①	摩耗	軸継手の摩耗	充てん/高圧注入ポンプ、余熱除 去ポンプ、原子炉補機冷却水ポン ブ	歯車型軸継手は、歯面によりトルクを伝達するため、摩耗が想定される。 しかしながら、歯面はグリス封入により潤滑し、摩耗が発生し難い環境であり、これまで に有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難 い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
10	ポンプ	プ ターボポ ンプ	Δ2	腐食(全面腐食)	潤滑油ユニット		潤滑油ユニットは炭素鋼又は鋳鉄を使用しており、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
11			Δ①	腐食(全面腐食)	食)		一方、内面については内部流体が油又はヒドラジン水 (防錆剤注入水) で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年労化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
12	ポンプ	ターボポ ンプ	Δ②	摩耗	増速機歯車の摩 耗	充てん/高圧注入ポンプ	増速機の歯車は潤滑油により摩耗を防止しているが、直径の異なる歯車を組み合せ使用しており、歯車の歯面は接触により動力が伝達されるため、面圧条件により摩耗が想定される。 しかしながら、分解点検時の目視確認及び寸法計測により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
13	ポンプ	△② 腐食(全面腐食) 増速機ケーシン カイノ(奈氏さ)	充てん/高圧注入ポンプ	増速機ケーシングは鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検ទで目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。			
14		ンプ	Δ①	腐食(全面腐食)	腐食)		一方、内面については歯車及び軸受を潤滑するため、潤滑油がケーシング内面にはねかけられる油雰囲気下で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
15	ポンプ	ターボポ ンプ	Δ①	応力腐食割れ	ステンレス鋼使 用部位の応力腐 食割れ	余熱除去ポンプ	余熱除去ポンプのケーシング等はステンレス鋼であり、応力腐食割れが想定される。 しかしながら、余熱除去ポンプは、定期検査時に飽和溶存酸素濃度(最大約8ppm)の流体 が流入する際は流体温度が低い(最高80°C程度)ため、応力腐食割れが発生する可能性は 小さい。また、定期検査後のプラント起動時には1次令却材中の溶存酸素濃度低減のため の運転操作を実施し、高温(100°C以上)で使用する場合は溶存酸素濃度が0.1ppm以下 に低減された流体となっているため、応力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
16	ポンプ	ターボポ		腐食 (全面腐	ケーシング等の	原子炉補機冷却水ポンプ、給水	ケーシング等は炭素鋼又は炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
17		<i>J</i>	△① 腐食 (全面腐食)		ブースタボンブ	一方、内面については内部流体がヒドラジン水 (防錆剤注入水) 又は p H 等を管理した脱気水 (給水) で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。	
18	ポンプ	ターボポ ンプ	Δ②	腐食(全面腐食)	ケーシングカ		ケーシングカバーは炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
19			Δ2	腐食(全面腐食)			一方、内面については内部流体が飽和溶存酸素濃度(最大約8ppm)の流体であるため、長期使用により腐食が想定されるが、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
20	ポンプ	ターボポ ンプ	Δ①	腐食(全面腐食)	ケーシングボルトの腐食(全面腐食)	充てん/高圧注入ポンプ、余熱除 去ポンプ、原子炉補機冷却水ポン プ、タービン動補助給水ポンプ、 給水ブースタポンプ	ケーシングボルトは低合金鋼であり、ガスケット又はOリングからの漏えいにより、内部 流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
21	ポンプ	ターボポ ンプ	Δ②	腐食(全面腐食)	台板等の腐食 (全面腐食)	共通	合板等は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
22	ポンプ	ターボポ ンプ	Δ2)	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	充てん/高圧注入ポンプ、余熱除 去ポンプ、原子炉補機冷却水ポン プ、タービン動補助給水ポンプ	

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
23	ポンプ	1 次冷却 材ポンプ	Δ2	摩耗	主軸の摩耗	1 次冷却材ポンプ	主軸は回転中に熱遮へい装置と接触する可能性があり、摩耗が想定される。 しかしながら、分解点検時の主軸の振れ計測や主軸当該部の直径計測により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
24	ポンプ	1 次冷却 材ポンプ	Δ①	高サイクル疲 労割れ	主軸の高サイク ル疲労割れ	1 次冷却材ポンプ	ポンプ運転時には、主軸に定常応力と変動応力が発生し、高平均応力下で繰り返し応力を 受けると段付部等の応力集中部において、高サイクル疲労割れが想定される。 しかしながら、ポンプ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経 年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、試運転時及び機能確認時における振動確認並びに分解点検時の応力集中部に対する 目視確認や浸透探傷検査により、機器の健全性を確認している。
25	ポンプ	1 次冷却 材ポンプ	Δ①	疲労割れ	主軸の疲労割れ	1 次冷却材ポンプ	主軸上部は低温の軸封水、主軸下部は高温の1次冷却材に接液しており、両者の混合部に温度変動が発生して主軸表面の疲労割れが想定される。 BWRプラントの原子炉再循環ポンプ主軸で損傷事例がある。 しかしながら、1次冷却材ポンプは、この験的に厳しい混合部の主軸表面に温度変動を吸収するためのサーマルスリーブを設置し、1次冷却材ポンプの機能を損なうことのないよう主軸を保護する構造となっている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、試運転時及び機能確認時における振動確認並びに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。
26	ポンプ	1 次冷却 材ポンプ	Δ2	摩耗	羽根車の摩耗	1 次冷却材ポンプ	羽根車は回転中に静止部と接触する可能性があり、摩耗が想定される。 しかしながら、分解点検時の羽根車当該部の直径計測により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
27	ポンプ	1 次冷却 材ポンプ	Δ①	腐食(キャビ テーション)	羽根車の腐食 (キャピテー ション)	1 次冷却材ポンプ	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温における飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こることが想定される。 しかしながら、キャビテーションを起こさない条件はポンプ及び機器配置設計段階において考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
28	ポンプ	1 次冷却 材ポンプ	Δ①	熱時効	羽根車の熱時効	1 次冷却材ポンプ	羽根車はステンレス鋼鋳鋼 (2相ステンレス鋼) であり、使用温度が約284℃と高いた め、熱時効による材料の特性変化が想定される。 しかしながら、羽根車は耐圧部ではなく運転中に発生する応力は小さく、き裂の原因とな る経年劣化事象の発生が想定されない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
29	ポンプ	1 次冷却 材ポンプ	Δ①	疲労割れ	熱遮へい装置の ハウジング、 シェル及びフラ ンジの疲労割れ	1 次冷却材ポンプ	熟連へい装置のハウジング、シェル及びフランジの高温水接液部において疲労割れが想定される。 1990年、仏国のフェッセンハイム (Fessenheim) 発電所 2号炉において、ポンプの供用期間中検査を行った際、1次冷却材ポンプ (930型) の熟連へい装置 ハウジング内側側面及びフランジ下面 (ハウジング付根部内側) に欠陥があることが目視にて確認された。その後の点検においても、仏国国内の類似プラントにおいて同様の損傷が認められている。 この型式の 1次冷却材ポンプは、通常運転時、熟連へい装置ハウジング内部は軸封水で満たされているので低温となり、熟連へい装置ハウジング外部は 1次冷却材に接しているので高温となる。
30	ポンプ	1 次冷却 材ポンプ	Δ①	腐食(全面腐食)	主フランジボル トの腐食(全面 腐食)	1 次冷却材ポンプ	主フランジボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
31	ポンプ	1 次冷却 材ポンプ	Δ①	高サイクル疲 労割れ	ラビリンス配管 の高サイクル疲 労割れ	1 次冷却材ポンプ	1 次冷却材ポンプの熱連へい装置に接続しているラビリンス配管が、運転中の振動により 共振し、配管付根部に繰り返し応力が生じることにより、高サイクル疲労割れが想定され る。 しかしながら、発生応力は疲労限に対して余裕があり、また、配管設計時には高サイクル 疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、試運転時及び機能確認時における振動確認並びに分解点検時の応力集中部に対する 浸透探傷検査により、機器の健全性を確認している。
32	熱交換器	多管円筒 形熱交換 器	Δ2		伝熱管 (加熱 管、冷却管を含 む) の摩耗及び 高サイクル疲労 割れ	共通	管内流体及び胴側流体により伝熱管振動が発生した場合、支持板等で伝熱管に摩耗又は高サイクル疲労割れが想定される。また、管外表面を流れる流体による振動で伝熱管の強度上想定される振動形態としては、カルマン渦による振動と流力弾性振動がある。しかしながら、開放点検時の渦流探傷検査又は漏えい試験等により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
33	熱交換器	多管円筒 形熱交換 器	Δ①	腐食 (流れ加 速型腐食)	伝熱管 (加熱 管、冷却管を含む)の内面腐食 (流れ加速型腐 食)	再生熱交換器、余熱除去冷却器、 燃料取替用水タンク加熱器、湿分 分離加熱器、高圧第6給水加熱 器、グランド蒸気復水器	伝熱管は、内部流体により流れ加速型腐食の発生が想定される。 しかしながら、耐流れ加速型腐食性に優れたステンレス鋼の伝熱管を使用しており、流れ 加速型腐食が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の渦流探傷検査又は漏えい試験等により、機器の健全性を確認してい る。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
34	熱交換器	多管円筒 形熱交換 器		腐食 (流れ加 速型腐食)	伝熱管の内面腐食 (流れ加速型 腐食)	原子炉補機冷却水冷却器	原子炉補機冷却水冷却器の伝熱管は銅合金であり、内部流体による流れ加速型腐食により減肉が想定される。 調合金は腐食電位の高い貴な金属であり、耐食性が良いが、高速の流水中で使用すると、流れ加速型腐食が発生することがある。 原子炉補機冷却水冷却器は管側流体が海水であるため、貝等の異物の付着により局所的に流速が増大し、流れ加速型腐食が発生する場合があるが、貝等の混入物の大きさ、形態、付着状態は不確定であることから、流速と腐食量について、一律で定量的な評価は困難である。 しかしながら、開放点検時の渦流探傷検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
35	熱交換器	多管円筒 形熱交換 器	Δ①	腐食 (流れ加 速型腐食)	伝熱管 (加熱 管、冷却管を含 む) の外面腐食 (流れ加速型腐 食)	共通	伝熱管は、管外流体により流れ加速型腐食の発生が想定される。 しかしながら、再生熱交換器、余熱除去冷却器、燃料取替用水タンク加熱器、湿分分離加 熱器、高圧第6給水加熱器及びグランド蒸気復水器の伝熱管については、耐流れ加速型腐 食性に優れたステンレス鋼であることから、外面からの流れ加速型腐食が発生する可能性 は小さい。 原子炉補機冷却水冷却器については、管外流体の流速が十分に遅いことから、外面からの 流れ加速型腐食が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の渦流探傷検査又は漏えい試験等により、機器の健全性を確認してい る。
36	熱交換器	多管円筒 形熱交 器	Δ①	応力腐食割れ	伝熱管等ステン レス鋼使用部位 の応力腐食割れ	再生熟交換器、余熱除去冷却器、燃料取替用水タンク加熱器、湿分分離加熱器、高圧第6 絡水加熱器、グランド蒸気復水器	ステンレス鋼の伝熱管等は、応力腐食割れが想定される。 しかしながら、水質を適切に管理しているため、応力腐食割れが発生する可能性は小さ い。 余熱除去冷却器については、定期検査時は飽和溶存酸素濃度(最大約8ppm)の流体が流入 するが、その際は流体温度が低い(最高80°C程度)ため、この場合も応力腐食割れが発生 する可能性は小さい。また、定期検査後のブラント起動時には1次冷却材中の溶存酸素度 度低減のための運転操作を実施し、高温(100°C以上)で使用する場合は溶存酸素濃度 0.1ppm以下に低減された流体となっているため、応力腐食割れが発生する可能性は 小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の渦流探傷検査又は漏えい試験等により、機器の健全性を確認してい る。
37	熱交換器	多管円筒 形熱交換 器	Δ2	スケール付着	伝熱管(加熱 管、冷却管を含 む)のスケール 付着	分離加熱器、高圧第6給水加熱	管側・胴側流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが想定される。 しかしながら、内部流体は、1次冷却材、ほう酸水、給水、蒸気及びヒドラジン水 (防錆 剤注入水) であり、適切な水質管理により不純物の流入は抑制されていることから、スケール付着の可能性は小さい。また、渦流探傷検査実施前の洗浄や運転中の流体温度及び流量等のパラメータの監視により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
38	熱交換器	多管円筒 形熱交換 器	Δ2	スケール付着	伝熱管のスケー ル付着	原子炉補機冷却水冷却器	管側・胴側流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが想定される。 しかしながら、開放点検時の洗浄により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
39	熱交換器	多管円筒 形熱交換 器	Δ2	腐食 (流れ加 速型腐食)	胴側耐圧構成品 等の腐食(流れ 加速型腐食)	燃料取替用水タンク加熱器、湿分分離加熱器、高圧第6給水加熱器、 高圧第6給水加熱器、グランド蒸気復水器	2 相流体を内包する胴板等の炭素鋼使用部位には、流れ加速型腐食により減肉が想定される。 しかしながら、開放点検時の目視確認又は肉厚測定により、有意な減肉がないことを確認 し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
40	熱交換器	多管円筒 形熱交換 器	Δ2	腐食 (流れ加 速型腐食)	管側耐圧構成品 等の腐食(流れ 加速型腐食)	湿分分離加熱器	湿分を含む蒸気が管側内部を流れる場合、蒸気室カバー等の炭素鋼使用部位には、流れ加速型腐食により減肉が想定される。 しかしながら、開放点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
41	熱交換器	多管円筒 形熱交換 器	Δ①	腐食 (流れ加 速型腐食)	管側耐圧構成品 等の腐食(流れ 加速型腐食)	気復水器	管側耐圧構成品等は炭素鋼であり、腐食が想定される。 しかしながら、高圧第6絡水加熱器及びグランド蒸気復水器の内部流体はpH等を管理した脱気水で内面の腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
42	熱交換器	多管円筒 形熱交換 器	Δ2	腐食(異種金 属接触腐食)	管側耐圧構成品 等の海水による 腐食(異種金属 接触腐食を含む)		原子炉補機冷却水冷却器は管側流体が海水であり、管板に使用している銅合金が長期使用 により腐食が想定される。 また、原子炉補機冷却水冷却器の炭素鋼使用部位には、海水接液面にライニングを施工し ているが、ライニングのはく離等により炭素鋼に海水が接した場合、管板が炭素鋼+鋼合 金クラッドであるため、炭素鋼に異種金属接触腐食が想定される。 しかしながら、開放点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
43	熱交換器	多管円筒 形熱交換 器	Δ①	腐食(全面腐食)	胴側耐圧構成品 等の腐食(全面 腐食)		開側耐圧構成品等は炭素鋼であり、腐食が想定される。 しかしながら、余熟除去冷却器の内部流体はヒドラジン水(防鯖剤注入水)であり、内面 の腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれ らの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
44	熱交換器	多管円筒 形熱交 器	Δ2	腐食(全面腐食)	胴板等の外面からの腐食(全面腐食)	余熱除去冷却器、燃料取替用水タンク加熱器、温分分離加熱器、高圧第6給水加熱器、原子炉補機冷却水冷却器、グランド蒸気復水器	行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応 して対談することに、地界の砂合性を維持している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
45	熱交換器	多管円筒 形熱交換 器	Δ①	腐食(全面腐食)	フランジボルトの腐食(全面腐食)	余熱除去冷却器、燃料取替用水タンク加熱器、原子炉補機冷却水冷却器、グランド蒸気復水器	フランジボルトはガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認等により、機器の健全性を確認している。
46	熱交換器	多管円筒 形熱交換 器	Δ①	疲労割れ	連絡管の疲労割れ	再生熱交換器	1999年7月に敦賀2号炉の再生熱交換器連絡管、2003年9月に泊2号炉の再生熱交換器胴側出口配管において、温度の異なる冷却材の合流による温度ゆらぎ(サーマルストライビング)が生じ、高サイクル熱疲労による疲労割れが発生している。しかしながら、この事象は内筒付再生熱交換器特有のものであり、川内1号炉の再生熱交換器には内筒がなく、高温水と低温水の合流部が想定されないことから、疲労割れが発生する可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、連絡管溶接部については、超音波探傷検査及び漏えい検査により、機器の健全性を確認している。
47	熱交換器	多管円筒 形熱交換 器	Δ2	腐食(全面腐食)	支持脚等の腐食 (全面腐食)	共通	支持脚及び架台は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
48	熱交換器	多管円筒 形熱交換 器	Δ2	腐食(全面腐食)	支持脚(スライ ド脚)の腐食 (全面腐食)	再生熱交換器、余熱除去冷却器、 燃料取替用水タンク加熱器、湿分 分離加熱器、原子炉補機冷却水冷 却器、グランド蒸気復水器	横置の熱交換器である再生熱交換器、余熱除去冷却器、燃料取替用水タンク加熱器、湿分分離加熱器、原子炉補機冷却水冷却器及びグランド蒸気復水器には、支持脚(スライド脚)が設置されているが、スライド部は炭素鋼であり、長期使用により、腐食による固着が想定される。 しかしながら、巡視点検等で目視によりスライド部に異常のないことを確認し、機器の健全性を維持している。 とかと維持している。 しかしながら、巡視点検等で目視によりスライド部に異常のないことを確認し、機器の健全性を維持している。 と比を維持している。
49	熱交換器	多管円筒 形熱交換 器	Δ2	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	再生熱交換器、余熱除去冷却器、 燃料取替用水タンク加熱器、湿分 分離加熱器、高圧第6給水加熱 器、グランド蒸気復水器	取付ポルトは炭素鋼又は低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応 じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
50	熱交換器	蒸気発生 器	Δ2		蒸気発生器伝熱 管の損傷 伝熱管振止め金 具(AVB: Anti Vibration Bar) 部摩耗	蒸気発生器本体	伝熱管振止め金具による蒸気発生器伝熱管の支持が不十分な場合、蒸気発生器伝熱管の外面を流れる流体によって蒸気発生器伝熱管が振動し、伝熱管振止め金具と接触を繰返すことにより生じる2次側表面からの摩耗減肉が発生する可能性がある。 しかしながら、従来の2本組伝熱管振止か金具に対し、川内1号炉の蒸気発生器本体では3本組伝熱管振止め金具を採用しており、蒸気発生器伝熱管の支持状態は向上している。曲げ半径の大きい蒸気発生器伝熱管において、3本組伝熱管振止め金具の場合、2点以上の非接触部が存在すると、流力弾性振動が発生し、伝熱管振止め金具師で軽減減内が発生する可能性は否定できないが、伝熱管振止め金具の板厚を大きくし、挿入時隙間管理を行っていることから、摩耗減肉が発生する可能性は小さい。
51	熱交換器	蒸気発生 器	Δ2	粒界腐食割れ	蒸気発生器伝熱 管の損傷 粒界腐食割れ (IGA: Inter Granular Attack)		管支持板クレビス部等で2次冷却水中の遊離アルカリの濃縮と酸化銅等による酸化性雰囲気が重畳し、2次側表面からの結晶粒界に沿った割れを伴う腐食が発生する可能性がある。 しかしながら、川内1号炉の蒸気発生器本体では、蒸気発生器伝熱管材料に耐粒界腐食割れ性に優れた690系ニッケル基合金(特殊熱処理材)を使用し、管支持板穴形状は管支持板クレビス部での不純物濃縮対策としてBEC穴(Broached Egg Crate)を採用していることから、粒界腐食割れが発生する可能性は小さい。
52	熱交換器	蒸気発生器	Δ2	孔食	蒸気発生器伝熱 管の損傷 ピッティング (孔食)	蒸気発生器本体	管板上のスラッジ堆積部において、酸化鋼等による酸化性雰囲気下で塩化物が濃縮し、2次側表面からの局部的な腐食が発生する可能性がある。 しかしながら、現状の水質環境下よりも塩化物イオン濃度を高くした厳しい条件下で、実機模擬スラッジによる腐食電位を測定したところ、腐食電位上昇はわずかであることから、ピッティングが発生する可能性は小さい。
53	熱交換器	蒸気発生器	Δ2	デンティング	蒸気発生器伝熱 管板直上部腐食 損傷	蒸気発生器本体	拡管による残留応力と管板2次側上面のスラッジ堆積部での腐食環境の重畳により、2次側表面から損傷する可能性があり、海外のキスロール(注)、爆発拡管等の600系ニッケル基合金ブラントにおいて、高温側管板直上部2次側表面に周方向損傷等が報告されているの関係と推定されている。 また、爆発拡管等のブラントについてはショットブラスト材の炭素鋼が管板上で堆積して腐食し、体積膨張を起こしたことに伴うデンティングにより高応力となり、応力腐食割れが発生したと推定されている。また、爆発拡管等のブラントについては、拡管による残留応力及びスラッジ堆積部での腐食環境が重畳したことによるものと推定されている。また、爆発拡管等のブラントについては、拡管による表現のよびスラッジ堆積部での腐食環境が重畳したことによるものと推定されている。 はいまでの場合では、これまでの渦流探傷検査で同損傷は認められていない。 川内1号によるものを生成では、これまでの渦流探傷検査で同損傷は認められていない。 川内1号によるり、水流の抵抗を減少させ低流速領域を減少させるとともに、低流速領域をSGブローダウン取出口に近づけてスラッジの排出を促す)によるスラッジ堆積防止を行っており、かつ液圧拡管により拡管境界部のたを低減させていることから、腐食が発生する可能性は小さい。 (120日の拡管境界部を管板上面に、2段目の拡管境界部を管板内におくものである。
54	熱交換器	蒸気発生器	Δ2	フレッティン グ疲労割れ	蒸気発生器伝熱 管の損傷 フレッティング 疲労	蒸気発生器本体	伝熱管振止め金具の挿入不足により、蒸気発生器伝熱管の外面を流れる流体によって蒸気 発生器伝熱管が振動し、最上段管支持板部等で2次側表面からフレッティングによる疲労 損傷が発生する可能性がある。 しかしながら、仮に流力弾性振動が発生し、伝熱管振止め金具部の摩耗減肉が発生した場 も、現状減肉の補修基準である20%の減肉による隙間増加を考慮しても、伝熱管支持板 部での発生応力は小さく、フレッティング疲労による破断が発生する可能性は小さい。
55	熱交換器	蒸気発生器	Δ2	応力腐食割れ	蒸気発生器伝熱 管の損傷 管の損傷 部及び 拡管境界部応力 腐食割れ(SCC: Stress Corrosion Cracking)	蒸気発生器本体	製作時の拡管による残留応力と運転中の作用応力が重畳することにより1次側表面からの 応力腐食割れが発生する可能性がある。 しかしながら、応力腐食割れは、材料・応力・環境の3要因により発生し、運転時間の経 過に伴い顕在化してくる時間依存型の損傷であるが、川内1号炉では690系ニッケル基 合金(特殊勢処理材)採用による耐な力腐食割ればの向上を図り、また液圧拡管を採用 し、ローラ拡管と比較して残留応力低減を行っていることから、応力腐食割れが発生する 可能性は小さい。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
56	熱交換器	蒸気発生器	Δ2	応力腐食割れ	蒸気発生器伝熱 管の損傷 小曲げUベンド 部応力腐食割れ (SCC)	蒸気発生器本体	製作時の小半径 U ベンド曲げ加工に伴う高残留応力と運転中の作用応力が重畳することにより1 次側表面から応力腐食割れが発生する可能性がある。 しかしながら、応力腐食割れは、材料・応力・環境の3 要因により発生し、運転時間の経 過に伴い顕在化してくる時間依存型の損傷であるが、川内1号炉では、6 9 0 系ニッケル 基合金(特殊熱処理材)採用による耐応力腐食割れ性向上とともに応力除去焼鈍を実施して、残留応力をほぼゼロに抑えている。また、内圧及び熱伸び差による作用応力も大きくなく、応力腐食割れが発生する可能性は小さい。
57	熱交換器	蒸気発生器	Δ2	デンティング	蒸気発生器伝熱 管の損傷 デンティング	蒸気発生器本体	族素鋼製管支持板の管支持板クレビス部において腐食が発生すると、その腐食生成物は元 の炭素鋼より体積が増大する。この腐食生成物の成長により蒸気発生器伝熱管が徐々に圧 迫され変形する可能性がある。 管支持板クレビス部の腐食生成物の成長については、管支持板材料、形状及び水質環境に よって発生条件が異なる。また、腐食は水質環境中の塩化物イオン濃度に依存するが、A VT (All Volatile Treatment: 全揮発性薬品処理) 環境下では炭素鋼製管支持板のドリル穴の場合でも、運転開始後60年時点での予想される腐食量はわずかである。川内1号 炉ではそれよりも腐食量の少ないステンレス鋼製管支持板のBEC穴を採用していること と、国内の取替え前蒸気発生器(炭素鋼製管支持板とドリル穴の組合せ)でも発生してい ないことも勘楽して、デンティングが発生する可能性は小さい。
58	器換交線	蒸気発生 器	Δ②	摩耗	蒸気発生器伝熱 管の損傷 管支持板直下部 摩耗	蒸気発生器本体	2020年11月、高浜 4 号炉において、管支持板直下部の伝熱管外面にスケールによる摩耗減肉が確認されている。本事象は、伝熱管下部の表面に生成された稠密層が主体のスケールが、ブラント起動・停止に伴いはく離したものが運転中の上昇流で管支持板下面に留まり、伝熱管に繰り返し接触したことで摩耗減か発生したものと推定している。しかしながら、川内 1 号炉については、2 次側水質は A V T (All Volatile Treatment:全揮発性薬品処理)及び高り計算を管理しており、通常運転中の給水の水質を p H 9.8 以上と適切な管理により 鉄持込量を抑制している。また、川内 1 号炉の鉄持込量については、蒸気発生器内に採取可能な稠密なスケールがなかった高浜 2 号炉の鉄持込量とに取してイケールがなかった高浜 2 号炉の鉄持込量と比較してイケールでは、ごまでは、1000年では、100
59	熱交換器	蒸気発生器	Δ①	応力腐食割れ	蒸気発生器伝熱 管の管板クレビ ス部応力腐食割 れ	蒸気発生器本体	蒸気発生器伝熱管は全厚液圧拡管としており、管板クレビス部で応力腐食割れが発生する 可能性はない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の渦流探傷検査により、機器の健全性を確認している。
60	熱交換器	蒸気発生器	Δ2	スケール付着	蒸気発生器伝熱 管のスケール付 着	蒸気発生器本体	2次側の流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが想定される。 しかしながら、ブラント運転中の温度や圧力等のパラメータ監視により、機器の健全性を 維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
61	熱交換器	蒸気発生器	Δ2	スケール付着	管支持板穴への スケール付着	蒸気発生器本体	海外では、BEC (Broached Egg Crate)型管支持板を採用しているブラントにおいて、上部管支持板BEC穴の流路部分でスケール付着による閉塞によって蒸気発生器本体の2次側水位の上下動が発生し、これを抑制するために出力を低下させたと報告されており、川内1号炉においても同一構造の管支持板を採用していることから、スケール付着による閉塞が想定される。しかしながら、ブラント運転中の蒸気発生器広域水位の監視により、機器の健全性を維持している。
62	熱交換器	蒸気発生器	Δ①	応力腐食割れ	冷却材出入口管 台セーフェンド の応力腐食割れ	蒸気発生器本体	2007年9月、美浜2号炉のA一蒸気発生器本体冷却材入口管台セーフエンド(ステンレス鋼製)内面において、非常に軽微な粒界割れが管台と溶接節境界近傍の機械加工部において確認されている。割れの起点は確認できていないが、製作時入口管台とセーフエンド溶接近傍の内面の極表層部において高い残留応力が発生し、溶接部近傍において運転中に粒界割れが進展したものと推定されており、これまでの研究ではPWR環境中の冷間加工層で応力腐食割れ発生は確認されていないが、硬きの上昇とともに進度速度が増加することがかかっているまた、硬さの上昇とともに応力腐食割れ発生の感受性も高まることから、応力腐食割れが想定される。しかしながら、川内1号炉の冷却材出入口管台については、超音波ショットピーニング(応力緩和)を施工しており、応力腐食割れが発生する可能性はないと考える。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
63	熱交換器	蒸気発生器		腐食(流れ加 速型腐食)	2次側構成品の 腐食(流れ加速 型腐食を含む)	蒸気発生器本体	2次側構成品のうち、炭素鋼又は低合金鋼を使用している蒸気出口管台、給水入口管台、2次側胴板、検査用穴、2次側マンホール、気水分離器、湿分分離器、給水りかで(Jチューブ)、サーマルスリーブは腐食が想定される。また、蒸気あるいは水が衝突する部位や局所的に流速の速くなる部位では、腐食が加速されること(流れ加速型腐食)により、減肉が想定される。 しかしながら、2次側水質はAVT (All Volatile Freatment:全揮発性薬品処理)及び高pH運転で管理しており、通常運転中の溶存酸素濃度を5ppb以下、pH9.8以上と腐食防止の観点から適切に管理しており、AVT環境下における運転開始後60年時記とと腐食防止の観点から適切に管理しており、AVT環境下における運転開始後60年時記とと腐食防止の観点から適切に管理しており、AVT環境下における運転開始後60年時記とと腐食防止の観点から適切に管理しており、AVT環境下における運転開始後60年時間を10万多元のあるのである。 「原界子外管所水質等環境管理技術管類性実証試験に関する調査報告書」((財)発電設備技術検査協会)]となり、腐食量としては無視できるものである。 また、運転時間10万時間を経過した他プラントの旧蒸気発生器において、腐食の可能性のある炭素鋼を図分解器を限した他プラントの旧蒸気発生器において、腐食の可能性のある炭素鋼を関すの場合が表が関する場合、タルス分離器の、2分が開発の調査が大きく影響し、厳しいと考えられるのは蒸気出からず、健全な状態を確認している。一方、流れ加速型腐食により機器の健全性に影響を与える可能性は小さいにより、治水リング等に関すでは大きないが、目視確認では有意な腐食は認めれていないことから、急激な流れ加速型腐食により機器の健全性に影響を与える可能性は小さい。また、絵水リング等の低合金鋼は、実地使用温度220℃程度では、耐流れ加速型腐食性に優れており、給水リング等の低合金鋼は、実地使用温度220℃程度では、耐流れ加速型腐食性に影響を与える。管台内部は耐がはりけられており、流れ加速型腐食性に優れた690系ニッケル基合金のフローリストリクタマンチュリーが取り付けられており、流れ加速型腐食により機器の健全性に影響を与える可能性はいさいる。とから、高経年化対策上着目すべき経年劣化を素のフローリストリクタマンチュリーが取り付けられており、流れ加速型腐食により、機器の健全性を確認しているおことの対域に対している。

表1-1 日常劣化管理事象一覧(7/64)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
64	熱交換器	蒸気発生器	Δ①	腐食(全面腐食)	フンナ リ田ギ	蒸気発生器本体	マンホール用ボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認等により、機器の健全性を確認している。
65	熱交換器	直接接触式熱交換器	Δ①	摩耗	スプレイ弁の摩 耗	脱気器	脱気器に流入した給水は、スプレイ弁により上部から脱気器内にスプレイされる。スプレイ弁は給水が流入することにより、弁前後の差圧が生じ作動する。この作動により、弁棒の指動部に摩耗が想定される。 しかしながら、主にユニット起動・停止時のみの摺動であり、摩耗が生じる可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。 なお、定期的に動作確認を行い機器の健全性を確認している。
66	熱交換器	直接接触式熱交換器	Δ①	腐食(流れ加 速型腐食)	スプレイ弁の腐食(流れ加速型腐食)	脱気器	スプレイ弁にて給水が連続的に脱気器内にスプレイされることにより、給水がスプレイされる弁部に流れ加速型腐食が想定される。 しかしながら、スプレイ弁は耐流れ加速型腐食性に優れたステンレス鋼を使用しており、腐食が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
67	熱交換器	直接接触式熱交換器	Δ2	腐食 (流れ加 速型腐食)	耐圧構成品等の 腐食 (流れ加速 型腐食)	脱気器	蒸気噴出管及び胴板等耐圧構成品は炭素鋼であり、蒸気流動による流れ加速型腐食により 減肉が想定される。 しかしながら、開放点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
68	熱交換器	直接接触式熱交換器	Δ2)	腐食(全面腐食)	胴板等耐圧構成 品の外面からの 腐食(全面腐 食)	脱気器	脱気器は屋外に設置しており、炭素鋼を使用している胴板等耐圧構成品は、外面からの腐食が想定される。 しかしながら、大気接触部は塗装や防水措置(保温)により腐食を防止しており、塗装や防水措置(保温)が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装や防水措置(保温)の状態を確認し、はく離等が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
69	熱交換器	直接接触式熱交換器	Δ2	腐食(全面腐食)	支持脚の腐食 (全面腐食)	脱気器	支持脚は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
70	熱交換器	直接接触式熱交換器	Δ2	腐食(全面腐食)	支持脚(スライ ド脚)の腐食 (全面腐食)	脱気器	脱気器は横置きであり、支持脚 (スライド脚) が設置されているが、スライド部は炭素鋼であり、長期使用により、腐食による固着が想定される。 しかしながら、ブラント起動時に目視によりスライド部が正常に作動していることを確認 し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
71	熱交換器	2重管式 熱交換器	Δ2	腐食(全面腐食)	台座等の腐食 (全面腐食)	試料採取設備サンプル冷却器	合座、取付ボルト及び取付ベースは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検ទで目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
72	ポンプ用電動機	高圧ポンプ用電動機	Δ①	腐食(全面腐食)	固定子コア及び 回転子コアの腐 食(全面腐食)	共通	固定子コア及び回転子コアは珪素鋼板であり腐食が想定される。 しかしながら、固定子コア及び回転子コアはワニス処理により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
73	ポンプ用電動機	高圧ポンプ用電動機	Δ2	腐食(全面腐食)	フレーム、端子 箱、ブラケッ ト、外扇カバー 及び腐食(全面腐 食)	フレーム、端子箱、ブラケット [共通]、外扇カバー[海水ポン ブ用電動機]及び防音カバー[電 動補助給水ポンブ用電動機]	フレーム、端子箱、ブラケット、外扇カバー及び防音カバーは炭素鋼又は鋳鉄であり腐食が想定される。 しかしながら、内外面とも塗装により腐食を防止しており、塗装が態全であれば腐食進行の可能性は小さい。また、分解点検時の目視確認により塗装の状態を確認し、はく離が認められた場合には必要に応じて補棒することにより機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
74	ポンプ用電動機	高圧ポンプ用電動機	Δ①	疲労割れ	回転子棒・エン ドリングの疲労 割れ	共通	回転子棒・エンドリングは、電動機の起動時に発生する電磁力による繰返し応力を受ける ため、疲労割れが想定される。 しいしながら、発生応力は疲労強度より小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
75	ポンプ用	高圧ポン 別用電動	Δ①	摩耗	主軸及びラン		海水ポンプ用電動機の主軸については、ランナーとの間に摩耗が発生することが想定される。 しかしながら、分解点検時に主軸とランナーの分解を実施しないため摩耗が生じる可能性は小さい。また、油潤滑のすべり軸受を使用しており、ランナーと軸受間に潤滑油が供給され腰が形成されるため、摺動摩耗の生じる可能性も小さい。さらに、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
76	電動機	機	Δ①	摩耗	ナーの摩耗		充てん/高圧注入ポンプ用電動機及び電動補助給水ポンプ用電動機の主軸については、軸受 (すべり) との摺動による摩耗が想定される。 しかしながら、充てん/高圧注入ポンプ用電動機及び電動補助給水ポンプ用電動機は油潤滑のすべり軸受を使用しており、主軸と軸受間に潤滑油が供給され膜が形成されるため、摺動摩耗の生じる可能性は小さい。また、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
77	ポンプ用電動機	高圧ポン プ用電動 機		高サイクル疲 労割れ	主軸の高サイク ル疲労割れ	共通	電動機運転時には主軸に定常応力と変動応力が発生し、高平均応力下において繰返し応力を受けると段付部等の応力集中部において、高サイクル疲労割れが想定される。 しかしながら、電動機設計時には高サイクル疲労を考慮しており、この設計上の考慮は経 年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、試運転時等における振動確認及び分解点検時の応力集中部に対する目視確認によ り、機器の健全性を確認している。
78	ポンプ用電動機	高圧ポン プ用電動 機		腐食(全面腐食)	空気冷却器伝熱 管の腐食 (全面 腐食)	海水ポンプ用電動機、充てん/高 圧注入ポンプ用電動機	海水ボンブ用電動機及び充てん/高圧注入ボンブ用電動機の空気冷却器伝熱管は銅合金であり腐食が想定される。 しかしながら、海水ボンブ用電動機は、内外面ともに流体が空気であり腐食し難い環境にある。また、充てん/高圧注入ボンブ用電動機の内面についてはヒドラジン水(防錆剤注入水)であり、外面については空気であるため腐食し難い環境にある。さらに、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
79	ポンプ用電動機	高圧ポン プ用電動 機		腐食(全面腐食)	取付ボルトの腐食(全面腐食)	共通	取付ポルトは炭素鋼であり腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食の 進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
80	ポンプ用 電動機	高圧ポン プ用電動 機	Δ①	腐食(全面腐食)	空気冷却器水室 及び空気冷却器 管板の腐食(全 面腐食)	充てん/高圧注入ポンプ用電動機	たてん/高圧注入ポンプ用電動機の空気冷却器水室及び空気冷却器管板は炭素鋼及び銅合金であり腐食が想定される。 しかしながら、接液流体がにドラジン水 (防鯖剤注入水)及び空気であり、腐食し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
81	ポンプ用電動機	低圧ポン プ用電動 機	Δ①	腐食(全面腐食)	固定子コア及び 回転子コアの腐 食(全面腐食)	ほう酸ポンプ用電動機	固定子コア及び回転子コアは珪素綱板であり腐食が想定される。 しかしながら、固定子コア及び回転子コアはワニス処理により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
82	ポンプ用電動機	低圧ポン プ用電動 機		腐食(全面腐食)	フレーム、端子 箱及びブラケッ トの腐食(全面 腐食)		フレーム、端子箱及びブラケットは炭素鋼又は鋳鉄であり腐食が想定される。 しかしながら、内外面とも塗装により腐食を防止しており、塗装が健全であれば腐食進行 の可能性は小さい。また、分解点検時の目視確認により塗装の状態を確認し、はく離が認 められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
83	ポンプ用 電動機	低圧ポン プ用電動 機	Δ①	疲労割れ	回転子棒・エン ドリングの疲労 割れ		回転子棒・エンドリングについては、電動機の起動時に発生する電磁力による繰返し応力を受けるため、疲労割れが想定される。 しかしながら、回転子棒・エンドリングは、アルミ充てん式(一体形成)であり、回転子棒とスロットの間に隙間を生じることはなく、疲労割れが発生し難い構造である。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
84	ポンプ用 電動機	低圧ポン プ用電動 機	Δ①	摩耗	主軸の摩耗	ほう酸ポンプ用電動機	主軸については、軸受(ころがり)との接触面で摩耗が想定される。 軸受の定期取替時の軸受引き抜き時に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドペーパで仕上げる方策も考えられる。この場合は、主軸表面がわずかに 摩耗し、主軸と軸受間で微小隙間が生じ運転中にフレッティングにより摩耗する可能性が ある。 しかしながら、分解点検時の寸法管理によりフレッティングが発生しないようにしてお り、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び寸法計測により、機器の健全性を確認している。
85	ポンプ用電動機	低圧ポン プ用電動 機		高サイクル疲 労割れ	主軸の高サイクル疲労割れ	ほう酸ポンプ用電動機	電動機運転時には主軸に定常応力と変動応力が発生し、高平均応力下において、繰返し応力を受けると段付部等の応力集中部において、高サイクル疲労割れが想定される。 しかしながら、電動機設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事ではない。 なお、試運転時等における振動確認及び分解点検時の応力集中部に対する目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
86	ポンプ用 電動機	低圧ポン プ用電動 機	Δ2	腐食(全面腐食)	取付ポルトの腐食(全面腐食)	ほう酸ポンプ用電動機	取付ポルトは炭素鋼であり腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等 T目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
87	容器	原子炉容 器	Δ①	ピッティング	上部ふた及び上 部胴フランジ シート面のピッ ティング	原子炉容器本体	原子炉容器本体の上部ふた及び上部胴フランジシール部は狭あい部であり、ピッティングの発生が想定される。 しかしながら、一度運転に入ると高温状態となりシール部のステンレス鋼肉盛表面に強固な酸化皮膜が形成されるため、有意なピッティングの進展は考えられない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
88	容器	原子炉容器	$\Delta \oplus$	応力腐食割れ	600系二ッケル基合使用部 ル基合力腐食 位の応力 格	原子炉容器本体	1991年9月、仏国のブジェー (Bugey) 発電所3号炉において発生したふた管台損傷事象は、管台材料である600系ニッケル基合金の1次系水中での応力腐食割れと報告されており、その後の点検において、フランス、スウェーアン、スイス等の他の海外ブラントにおいて管台母材及びJ浴接部に1次系水中での応力腐食割れによる損傷が認められている。また、2004年5月には、国内においても大飯発電所3号炉の菱用管台J溶接部において接触の残酷の残酷の大力を設められている。また、2004年5月には、国内においても大飯発電所3号炉の菱用管台J溶接部において設度が多数面に比較的高い残留応力が発生していたことにより、1次系水中での応力腐食割れによる損傷が認められている。2002年3月には、米国のデービスペッセ(Davis Besse)発電所においてほう酸腐食による原子炉容器上蓋の減損が認められており、これは600系ニッケル基合金の応力腐食割れにより上蓋真通部から冷却水が漏えいも、これは600系ニッケル基合金の応力腐食割れにより上蓋真通部から冷却水が漏えいも、それを放置したことによるものとされている。さらに、2008年3月には、大飯発電所の機械加工に伴う内表面の高い引張接留応力により、1次系水中での応力腐食割れら、名場の原子炉冷却材出口管台と1次冷却材管のニッケル基合金使用部的位の応力腐食割れば、2000年10月、米国V.C.サマー(V.C. Summer)発電所において、原子炉冷却材出の管台と1次冷却材管の溶接部にき製が発見されたが、これは建設時の溶接複解が認定される。2000年10月、米国V.C.サマー(V.C. Summer)発電所において、原子炉冷却材出口管台と1次冷却材管の溶接部にき製が発見されたが、これは建設時の溶接複修の繰り返しにより、引張り残電応力が高くなったために発生した内面側からの応力腐食割れが超光されている。したり、高速保険分離で力を持定が発見されている。したのから、応力腐食割れが発生する可能性はいては、第17回定期検査時(2005年度)に施工前の確認として、渦流深保管を接手については、第17回定期後ではない。なお、冷却材入口管台については定期的に超音波探傷検査を、炉内計装簡については定期的にベアメタル検査を、炉内計装簡については定期的に経音波探傷検査を、炉内計装簡については定期的にベアメタル検査を、炉心支持金物に回いては定期的に超音波探傷検査を、炉内計差簡にのいては定期的に対して目視確認を実施し、機器の健全性を確認している。また、連載期間延長線であることが、高級年化対策上着目すべき経年劣化するではない。ないが表に対して目視確認を実施し、機器の健全性を確認している。また、連載期間延長度割すのでは変別を実施した特別に関係を変施したが対点では変別を表記を実施しまれば、冷が表記を実施し、流流探傷検査を、炉内計装筒の内面に対しては認められなかった。
89	容器	原子炉容器	Δ①	応力腐食割れ	ふた管台及び空 気抜管台等の応 力腐食割れ	原子炉容器本体	ふた管台、空気抜管台及び冷却材出口管台溶接部の接液部には690系ニッケル基合金を使用しており、応力腐食割れが想定される。 しかしながら、図2.2-1に示す電力共同研究による690系ニッケル基合金の温度加速定荷重応力腐食割れ試験の結果から、現時点の知見において、応力腐食割れの発生の可能性は小さいと考えられる。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、漏えい検査により、機器の健全性を確認している。また、冷却材出口管台については、超音波探傷検査及び浸透探傷検査により、機器の健全性を確認している。
90	容器	原子炉容器	Δ①	腐食(全面腐食)	スタッドボルトの腐食(全面腐食)	原子炉容器本体	スタッドボルトは、Oリングからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の超音波探傷検査により、機器の健全性を確認している。
91	容器	加圧器本体	Δ①	ピッティング	マンホールシー ト面のピッティ ング	加圧器本体	加圧器本体のマンホールシート部は、狭あい部でありピッティングの発生が考えられる。 しかしながら、一度運転に入ると高温状態となりシール部のステンレス鋼肉盛表面に強固 な酸化皮膜が形成されるため、有意なピッティングの進展は考えられない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
92	容器	加圧器本体	Δ①	腐食(全面腐食)	マンホールボルトの腐食(全面腐食)	加圧器本体	マンホールボルトは、ガスケットからの漏えいにより、内部流体による腐食が考えられる。 しかしながら、締付管理により漏えい防止を図っており、目視確認で有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
93	容器	加圧器本体	Δ①	応力腐食割れ	計測用管台の内面からの応力腐食割れ	加圧器本体	1995年9月、米国サリー (Surry) 発電所1号炉の加圧器計測用管台で応力腐食割れによる損傷が発生していることから、応力腐食割れが発生する可能性がある。しかしながら、川内1号炉の加圧器本体計測用管台には耐応力腐食割れ性に優れた316系ステンレス鋼を採用しており、川内1号炉においては、水素注入や脱塩処理により、1次系水質を維持し、ブラント起動時等のサンプリングにより管理している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、漏えい検査により、機器の健全性を確認している。
94	容容	加圧器本体	Δ①	応力腐食割れ	ヒータスリーブ (溶接部含む) の応力腐食割れ	加圧器本体	1989年5月、米国カルパートクリフ (Calvert Cliffs) 発電所2号炉で損傷事例のあったヒータスリーブは、600系ニッケル基合金製であり、316系ステンレス鋼製である川内1号炉のヒータスリーブについては、PWR1次系水質環境下において応力腐食割れが発生する可能性は小さいと考えられる。また、2006年4月、米国プレイドウッド (Braidwood) 発電所1号炉で損傷事例のあったヒータスリーブは、316系ステンレス鋼製であり、溶接節が熱影響等により鋭敏化していたとともに、ヒータスリーブとヒータの隙間節で溶存酸素が高くなっていた可能性があることから、発生原因として「酸素型応力腐食割れ」が推定されている。しかしながら、川内1号炉のヒータスリーブ (316系ステンレス鋼製) については、電力共同研究で当該酢を想定した最も厳しい酸素型応力腐食割れ発生環境中での定荷重試験により破防が認められた時間よりも、実機が酸素型応力腐食割れ発生環境下におかれる時間が極めて短いことから、応力腐食割れ発生の可能性は小さいと考えられる。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、漏えい検査により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
95	器容	加圧器本体	Δ①	応力腐食割れ	スプレイライン 用管台等の69	加圧器本体	2003年9月、敦賀2号炉の加圧器逃がし弁用管台及び安全弁用管台において、600 系ニッケル基合金溶接部の応力腐食割れが発生している。 川内1号炉のスプレイライン用管台、サージ用管台並びに安全弁及び逃がし弁用管台は第 20回定規検査時(200年度)で10日の第一次のでは一次のでは一次のでは一次のでは一次のでは、10日ので
96	容器	加圧器ヒータ	Δ①	導通不良	ヒータエレメン ト、チューブ及 びターミナルの 導通不良	加圧器ヒータ(後備ヒータ)	ヒータエレメント、チューブ及びターミナルは、ヒータON - OFF時に発生する熱伸縮により繰り返し応力を受けるため、材料に疲労が蓄積され、疲労割れにより導通不良が想定される。しかしながら、実機同等品を用いたON - OFF寿命試験の結果、実機の使用状態でのヒータエレメント温度では、60年間の運転を想定したヒータON - OFF自回教程度では、導通不良に至らないことを確認しており、疲労割れにより導通不良に至る可能性はない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
97	容器	加圧器ヒータ	Δ2	導通不良	端子部の導通不 良	加圧器ヒータ(後備ヒータ)	端子部は、外部ケーブルをボルトにより接続しており、通電による温度上昇により熱膨張し、ボルトが緩むことで導通不良に至る可能性がある。 しかしながら、定期的に緩みの有無を確認しており、これまで緩みは認められておらず、 今後もこれらの傾向が変化する要因があるとは考え難いことから、高経年化対策上着目す べき経年劣化事象ではない。
98	容器	加圧器ヒータ	Δ①	絶縁低下	MgO絶縁の絶縁低下	加圧器ヒータ(後備ヒータ)	Mg O 絶縁は、ヒータエレメントの発熱によりエレメントの成分(Ni、Cr)が拡散し、Mg O の純度が低下することによる絶縁低下が想定される。しかしながら、加圧器ヒータ(後備ヒータ)のヒータエレメントの温度は最大610℃であり、拡散が急遽に進行することはない(出典:Kingery・Bowen・Uhlmann セラミックス材料科学入門 基礎編)。また、加圧器ヒータ(後備ヒータ)はMg O 絶縁の吸湿防止のため、セラミック絶縁とアダプタでシールしており、外部の湿気がヒータシース内部に侵入しない構造としている。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
99	容器	加圧器ヒータ	Δ①	絶縁低下	セラミック絶縁 及びセラミック ブロックの絶縁 低下	加圧器ヒータ(後備ヒータ)	セラミック絶縁及びセラミックブロックは無機物の磁器であり、経年劣化の可能性はないが、長期の使用においては表面の汚損による絶縁低下が想定される。 しかしながら、セラミック絶縁はアダプタで保護され、セラミックブロックはゴムカバー で保護されており、塵埃の付着により表面が汚損する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
100	容器	加圧器ヒータ	Δ①	応力腐食割れ	ヒータシース、 エンドプラグの 応力腐食割れ	加圧器ヒータ(後備ヒータ)	海外プラントにおいて、ステンレス鋼製のヒータシース外面のサポートプレート接触部等が応力腐食割れによって損傷する事例が発生している。応力腐食割れの発生原因として、接液部表面の硬化層や残留応力の影響と報告されている。 は液であるのでは、海外プラントと異なり表層は硬くなく、応力腐食割れが発生、進展することは考え難い。また、エンドプラの表面は機械加工を行っているが、内部まで硬くはないことから、応力腐食割れが進展することは考え難い。 以上のことから、ヒータシース、エンドプラグの応力腐食割れは、高経年化対策上着目すべき経年気が事象ではない。 なお、定期的な絶縁抵抗測定により、1次冷却材の混入等による絶縁低下がないことを確認している。
101	容器	原子炉格納容器体体	Δ2	腐食(全面腐食)	原子炉格納容器 本体(半球部及 び円筒部)の腐 食(全面腐食)	原子炉格納容器本体	半球部及び円筒部については、屋外大気に曝されておらず、塗装の健全性確認を行っていれば腐食は問題とならない。また、定期的に原子炉格納容器漏えい率検査によりパウンダリ機能の健全性を確認するとともに、目視確認により塗装の健全性を確認している。さらに原子炉格納容器本体の代表的位について超音波厚み計による板厚測定を実施し、必要最小板厚を満足していることを確認している。 (接近できる点検可能調の全て)について、原子炉格納容器鋼板で、原子炉格納容器鋼板で、原子炉格納容器鋼板で、原子炉格納容器鋼板で、原子炉格納容器鋼板で、原子炉格納容器鋼板で、原子炉格納容器の構造健全性又は気密性に影響を与える恐れのある塗膜の劣化や腐食は認められなかった。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
102	容器	原子炉格 納容器本 体	Δ①	疲労割れ	原子炉格納容器 本体の疲労割れ	原子炉格納容器本体	原子炉格納容器本体は、プラントの起動・停止時等の過渡により、疲労割れが想定される。 しかしながら、運転中の温度変化及びそれに伴う圧力変化等しか過渡を受けず、有意な過 渡を受けないことから、高経年化対策上着目すべき経年劣化事象ではない。 なお、原子炉格納容器漏えい率検査によりパウンダリ機能の健全性を確認している。
103	容器	機械ペネ トレー ション	Δ2	腐食(全面腐食)	スリーブ等耐圧 構成品の腐食 (全面腐食)	共通	スリーブ等耐圧構成品は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、原子炉格納容器漏えい率検査時等の目視確認で塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
104	容器	機械ペネ トレー ション	Δ①	疲労割れ	胴等耐圧構成品 の疲労割れ	機器搬入口、通常用エアロック、 燃料移送管貫通部	機器搬入口、通常用エアロック及び燃料移送管貫通部の胴等耐圧構成品は、プラントの起動・停止時等の過渡により、疲労割れが想定される。 しかしながら、原子炉格納容器と同様に運転中の温度変化及びそれに伴う圧力変化等しか 過渡を受けず、有意な過渡を受けないことから、高経年化対策上着目すべき経年劣化事象 ではない。 なお、原子炉格納容器漏えい率検査によりパウンダリ機能の健全性を確認している。
105	容器	電気ペネ トレー ション	Δ①	疲労割れ	銅棒及び接続金 具の疲労割れ	ピッグテイル型電線貫通部	網棒及び接続金具は、通電電流がON-OFFすることにより熱伸縮を繰り返すため、疲労割れが想定される。 しかしながら、網棒及び接続金具は周囲を拘束されておらず、疲労割れが発生する可能性 は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、系統機器の動作確認等により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載	対象機器	評価内容
106	容器	電気ペネトレーション		導通不良	の事象名 外部リードの導 通不良	ピッグテイル型電線貫通部	外部リードは、大きな荷重が作用すると断線するため、導通不良が想定される。 しかしながら、断線に至るような荷重は作用しない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、系統機器の動作確認等により、機器の健全性を確認している。
107	容器	電気ペネ トレー ション	Δ①	絶縁低下	アルミナ磁器の絶縁低下	ピッグテイル型電線貫通部	アルミナ磁器は無機物の磁器であり、経年劣化の可能性はないが、長期使用においては表面の汚損による絶縁低下が想定される。 しかしながら、アルミナ磁器は密閉された本体内に設置され、塵埃の付着により表面が汚損する可能性はない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。 なお、機器点検時の絶縁抵抗測定又は系統機器の動作確認により、機器の健全性を確認している。
108	容器	電気ペネ トレー ション	Δ①	応力腐食割れ	本体、端板、 シュラウド及び 封着金具の応力 腐食割れ	ピッグテイル型電線貫通部	本体、端板及びシュラウドはステンレス鋼、封着金具はニッケル合金であり、応力腐食割れが想定される。 しかしながら、端板及び封着金具は大気と接触しない構造であり、また、本体及びシュラウドは水環境になく、かつ温度も低いことから応力腐食割れ発生の可能性は小さいことから、高経年化対策上着目すべき経年学化事象ではない。 なお、定期的な原子炉格納容器漏えい率検査及び電線貫通部に封入している窒素ガスの圧力確認により、パウンダリ機能の健全性を確認している。
109	容器	電気ペネ トレー ション	Δ2	腐食(全面腐食)	溶接リングの腐 食(全面腐食)	ピッグテイル型電線貫通部	溶接リングは炭素鋼であり腐食が想定される。 しかしながら、塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は 小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
110	容器	補機タン ク	Δ2	腐食(全面腐食)	胴板等耐圧構成 品の外面からの 腐食(全面腐 食)	ク、原子炉補機冷却水サージタン ク、よう素除去薬品タンク、湿分	胴板等耐圧構成品は炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 成じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
111	容器	補機タン	Δ①	腐食(全面腐	胴板等の外面からの腐食(全面	緊急時対策所用発電機車用燃料油	緊急時対策所用発電機車用燃料油貯蔵タンクは屋外の土中に埋設されており、炭素鋼を使用している胴板等は外面の状況を把握できず、腐食が想定される。 しかしながら、胴板等の外面は、消防法の規制に基づいた塗装がされたうえ乾燥砂で覆われており、腐食が発生し難い環境にある。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、消防法に基づく気密試験により、機器の健全性を確認している。
112	12° HR	Ź	Δ2	食)	腐食)		また、マンホール及び各管台の大気接触部は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
113			Δ2	腐食(全面腐食)		ガス減衰タンク、復水タンク	ガス減衰タンク及び復水タンクの胴板等耐圧構成品は炭素鋼であり、ガス減衰タンクについてはドレン水がタンク下部に滞留しており、また、復水タンクについては内部流体が飽和溶存酸素濃度(最大約8ppm)の流体であるため、長期使用により内面からの腐食が想定される。しかしながら、胴板等間圧構成品の腐食に対しては、ガス減衰タンクについては、開放点検時に内面を体の目視確認により有意な腐食がないことを確認している。また、復水タンクについては、開放点検時に目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修を実施することととしている。したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣化事象ではない。
114	容器	補機タン ク	Δ①	腐食(全面腐食)	胴板等耐圧構成 品の内からの 腐食(全面腐 食)	湿分分離加熱器第2段ドレンタン	原子炉補機冷却水サージタンク、湿分分離加熱器第2段ドレンタンク及び緊急時対策所用 発電機車用燃料油貯蔵タンクの胴板等耐圧構成品は炭素鋼であり、腐食が想定される。 しかしながら、内部流体は、原子炉補機分割水サージタンクがヒドラジン水(防鎖剤注入 水)、湿分分離加熱器等2段ドレンタンクが給水、溶存酸素濃度:5のpb以下)、緊急 策所用発電機車用燃料油貯蔵タンクが燃料油であり腐食の発生し難い環境であり、これま でに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え 難い。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
115			Δ①	腐食(全面腐食)		よう素除去薬品タンク	よう素除去薬品タンクは内部流体が苛性ソーダ溶液であり、腐食が想定される。 しかしながら、接液部材料がステンレス鋼であり、苛性ソーダの濃度及び使用温度が低い ことから、腐食が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
116	容器	補機タン ク	Δ①	応力腐食割れ	管台の内面から の応力腐食割れ	ほう酸注入タンク	1977年10月、米国H. B. ロビンソン (H.B. Robinson) 発電所のほう酸注入タンクでカップリングから管台 (ともにステンレス鋼) にかけて内面からの応力厳食割れによる損傷が発生している。この事象は、飽和溶存酸素濃度 (最大約8ppm) のほう酸水環境下で、高炭素量のステンレス鋼を使用していた管台が著しく鋭敏化していたことが原因となり発生しものである。しかしながら、タンク本体の熱処理を行った後に管台を溶接しており、材料の有意な鋭敏化はないと判断される。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
117	容器	補機タンク	Δ2	応力腐食割れ	胴板等耐圧構成 品の外面からの 応力腐食割れ	燃料取替用水タンク、復水タンク	燃料取替用水タンクの胴板等耐圧構成品、復水タンクの加熱蒸気入口管台等はステンレス 鋼であり、屋外に設置されているため、大気中の海塩粒子に含まれる塩化物イオンの付着 による応力腐食割れが想定される。 しかしながら、大気接触部は塗装や防水措置(保温)により腐食を防止しており、塗装や 防水措置(保温)が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装又は防水措置(保温)の状態を確認し、はく離が認め られた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象 ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
118	容器	補機タン ク	Δ①	応力腐食割れ	胴板等耐圧構成 品の内面からの 応力腐食割れ	よう素除去薬品タンク	よう素除去薬品タンクの胴板等耐圧構成品はステンレス鋼であり、内部流体が苛性ソーダ 溶液であることから応力廠食割れが想定される。 しかしながら、図2.2-1に示すように苛性ソーダの濃度及び使用温度が低く、応力腐食割れが発生し難い環境にあることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
119	容器	補機タン ク	Δ2	絶縁低下	ヒータの絶縁低下	ほう酸注入タンク	ヒータの絶縁物には、酸化マグネシウムを使用しており、長期の使用により絶縁低下が想定される。 しかしながら、定期的な絶縁抵抗測定により、機器の健全性を確認している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
120	容器	補機タン ク	Δ①	腐食(全面腐食)	マンホール用ボルトの腐食(全面腐食)	共通	マンホール用ポルトは、ガスケットからの漏えいにより、内部流体による腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認等により、機器の健全性を確認している。
121	容器	補機タン ク	Δ2	腐食(全面腐食)	支持脚等の腐食 (全面腐食)	ほう酸注入タンク、体積制御タンク、ガス減衰タンク、原子デ線 介、ガス減衰タンク、原子デ線除去薬品タンク、湿分分離加熱器第2 酸ドレンタンク、緊急時対策所用 発電機車用燃料油貯蔵タンク	しかしなから、大気接触的は塗装により腐良を防止しくおり、塗装が健全であれば腐良進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に は「ナ油終オスコンド」とは、機関の健全性を維持している。
122	容器	補機タン	Δ2	腐食(全面腐	支持脚(スライド脚)の廃食	湿分分離加熱器第2段ドレンタン ク	原子炉補機冷却水サージタンク、よう素除去薬品タンク及び湿分分離加熱器第2段ドレンタンクは横置きであり、支持脚(スライド脚)が設置されているが、スライド部は炭素鋼であり、長期使用により、腐食による固着が想定される。 しかしながら、湿分分離加熱器第2段ドレンタンクの支持脚(スライド脚)の腐食に対しては、ブラント起動時に目視によりスライド部が正常であることを確認し、機器の健全性を維持している。
123	ц ии	þ	Δ2	食)	ド脚) の腐食 (全面腐食)	原子炉補機冷却水サージタンク、 よう素除去薬品タンク、	一方、通常運転状態での横方向移動が少ない原子炉補機冷却水サージタンク及びよう素除 去薬品タンクの支持脚(スライド脚)については、巡視点検等で目視によりスライド部を 優っている塗装の健全性を確認している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
124	容器	補機タン ク	Δ2	腐食(全面腐食)	取付ポルトの腐食(全面腐食)	湿分分離加熱器第2段ドレンタン ク	取付ポルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検ទで目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
125	容器	フィルタ	Δ①	応力腐食割れ	胴板等耐圧構成 品の内面からの 応力腐食割れ	ほう酸フィルタ	1977年10月、米国H. B. ロピンソン (H.B. Robinson) 発電所のほう酸注入タンクでカップリングから管台 (ともにステンレス鋼)にかけて内面からの応力腐食割れによる損傷が発生している。この事象は、飽和溶存酸素濃度 (最大約8ppm)のほう酸水環境下で、高炭素量のステンレス鋼を使用していた管台が著しく鋭敏化していたことが原因と考えられている。ほう酸フィルタは溶接後熱処理を施していないこと、また使用温度も低く (100°C未満)、現時点の知見において応力腐食割れ発生の可能性はない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
126	容器	フィルタ	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐 食)	ほう酸フィルタ	フランジボルトは、Oリングからの漏えいにより、内部流体による腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。 なお、開放点検時の目視確認等により、機器の健全性を確認している。
127	容器	フィルタ	Δ2	流路の減少	スクリーン流路 の減少	格納容器再循環サンプスクリーン	ディスク部は原子炉格納容器内空気環境へ開放されており、異物混入によるスクリーン流路の減少が想定される。 しかしながら、目視確認と清掃により、スクリーン流路の減少につながる異物は適切に取り除かれている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
128	容器	脱塩塔	Δ2	腐食(全面腐食)	支持脚の腐食 (全面腐食)	冷却材混床式脱塩塔	支持脚は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離等が認められた場合は必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
129	容器	プール形 容器	Δ①	腐食(隙間腐食)	プールゲートの腐食(隙間腐食)	使用済燃料ピット	プールゲートとゲートパッキンとの隙間面には、隙間腐食が想定される。 しかしながら、隙間腐食については、ほう酸水中の塩化物イオン濃度が0.15ppmを 超えないように管理されており、腐食が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、ゲートパッキン取替時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
130	配管	ステンレ ス鋼配管	Δ2	高サイクル熱 疲労割れ	母管の高サイクル熱疲労割れ	余熱除去系統配管	[高低温水合流型疲労割れ] 余熟除去冷却器出口配管とバイバス配管の合流部(高低温水合流部)は、局所的にバイバス配管からの高温水が流入し、複雑な流況による熱過渡を受け、疲労が蓄積されることから、高サイクル熟疲労割れが想定される。 高低温水合流部の高サイクル熟疲労割れに対しては、「(社)日本機械学会 配管の高サイクル熟疲労に関する評価指針(JSWE 5 017-2003)」に基づき評価を実施した。 劣化が進展する経仮定した場合における運転開始後60年時点の疲労評価に用いた過渡回数を表2.2-1に示す。 背価結果を表2.2-1に示すが、許容値を満足する結果を得た。 なお、余熱除去冷却器出口配管とバイバス配管の合流部については、第18回定期接査時(2007年度)に改替えを行なった。 また、漏えい検査により機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 [弁グランドリーク型熱成層] 遠常運転時使用されず、閉塞滞留部となる余熱除去系統配管の一部において、第1隔離弁にグランドリーク型熱成層 道常運転時使用されず、閉塞滞留部となる余熱除去系統配管の一部において、第1隔離弁にグランドリーク型熱成層が発生、消滅を繰り返すことにより高サイクル熟疲労割れ(弁グランドリーク型)が想定される。 しかしながら、隔離弁の分解点接を実施し、弁ディスク位置の調整により弁シート部の隙間を適正に管理していくことにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
131	配管	ステンレス鋼配管	Δ①	応力腐食割れ	母管 (内面) の 応力腐食割れ		1996年5月、米国セコイヤ(Sequoyah)発電所2号炉で、1次系水質環境下においても 局所的に溶存酸素濃度が高くなる等の理由で内面からの応力腐食割れによる漏えいが発生 していることから、応力腐食割れが想定される。 しかしながら、高温で溶存酸素が高くなる可能性のある範囲の溶接部については、耐応力 腐食割れ性に優れた50×316系を使用している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、溶接部を対象とした超音波探傷検査又は漏えい検査により機器の健全性を確認して いる。
132	配管	ステンレス鋼配管	Δ2	応力腐食割れ	母管 (外面) の 応力腐食割れ	共通	配管外面に大気中の海塩粒子等の塩分が付着した場合、塩化物イオンにより応力腐食割れが想定される。 しかしながら、塩分の付着の可能性がある配管については付着塩分濃度を測定し健全性を確認している。 また、巡視点検等で目視により塗装又は防水措置(保温)の状態を確認し、必要に応じて 相修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 さらに、塩化ビニールテープの熱分解により生じた塩化物イオンにより応力腐食割れが想 定される。 しかしながら、配管外表面の残存テープ有無について目視確認及びテープ痕部の浸透探傷 検査を実施し、健全性を確認している。これらの点検はすでに完了しており、今後、塩化 ビニールテープの熱分解による外面からの応力腐食割れ発生の可能性はないと考える。
133	配管	ステンレス鋼配管	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐 食)		フランジボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、タービン潤滑・制御油系統配管については、油雰囲気下にあり、腐食が発生し難い環境にある。 また、タービン潤滑・制御油系統配管以外の配管については、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
134	配管	低合金鋼配管	Δ2	腐食(全面腐食)	母管 (外面) の 腐食 (全面腐 食)	共通	母管は低合金鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗装等が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装等の状態を確認し、はく離等が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
135	配管	低合金鋼配管	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐 食)	タービングランド蒸気系統配管	フランジボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
136	配管	炭素鋼配管	Δ2	腐食(流れ加速型腐食)	母管の腐食(流 れ加速型腐食)	主蒸気系統配管、主給水系統配管	高温水又は二相流体を内包する炭素鋼配管では、エルボ部、分岐部、レジューサ部等の流れの乱れが起きる箇所で、流れ加速型腐食により減肉が想定される。流れ加速型腐食による減肉は、流速、水質、温度、当該部の形状等の使用条件から発生する可能性推定できるものの、個々の肉厚測定結果による進展評価以付に正確に定量的な評価を行うことは困難であるため、配管の減肉管理に可いては減肉の可能性のある箇所の肉厚測定を行い、減肉の有無、減肉率を判断し、寿命評価を実施であることとしている。配管測度を行い、減肉の有無、減肉率を判断し、寿命評価を実施した「原子ととしている。配管側度の管理指針(PWR)」(平成2年5月)により、減肉の点検対象として主要点検部位(「日本機械学会加圧水型原子力発電所配管減肉管理に関する技術規格(MSMES NG1-2006)」に定められた偏流発生部位及び下流範囲を含む部位)及びその他部位(主要点検部位以外の部位)について管理対象とし、超音波による肉厚測定を行いデータの蓄積を図つてきた。また、美浜第3号力発電工作物の保安のための点を行いデータの蓄積を図つてきた。また、美浜第3号力発電工作物の保安のための点を12・22原院第4 NSA-163-08-5)や日本機械学会の規格(加圧水型原子力発電所配管減内管理に関する技術規格(JSMES NG1-2006)に定められた内容に従い、対象系紙及び部位や実施時期等の考え方を「配管肉厚管理要領書」(社内文書の規格(加圧水型原子力発電所配管減内管理を実施している。現状保全として、「配管肉厚管理要領書」(社内文書)は社内文書、「成内の管理を実施し、減肉の管理を実施し、減肉の管理を失いている。(社内文書)で、対域の管理を手間では、対域により、対域に関する技術規格(JSMES NG1年更額に、対域に関する技術規格(JSMES NG1年更額に、対域に関する技術規格(JSMES NG1年更額に、対域に関する技術規格(JSMES NG1年更額に、対域に対域に対域に対域に対域に対域に対域に対域に対域に対域に対域に対域に対域に対
137	配管	炭素鋼配 管	Δ①	腐食(全面腐 食)	母管(内面)の 腐食(全面腐 食)	原子炉補機冷却水系統配管、制御 用空気系統配管、タービン潤滑・ 制御油系統配管	母管は炭素鋼であり、腐食が想定される。 しかしながら、内部流体が原子炉補機冷却水系統配管はヒドラジン水(防錆剤注入水)、 制御用空気系統配管は乾燥した空気、タービン潤滑・制御油系統配管は油で腐食が発生し 難い環境にあり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化 する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、系統機器の分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
138	配管	炭素鋼配 管	Δ2	腐食(全面腐食)	母管 (内面) の 腐食 (全面腐 食)	原 子后插機 冷 却海水系統配等	原子炉補機冷却海水系統配管は内部流体が海水であり、内部にライニングを施工しているが、ライニングのはく離等により海水が接した場合は腐食が想定される。 しかしながら、ライニング点検(目視確認又は膜厚測定ピンホール検査)を実施し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
139	配管	炭素鋼配 管	Δ2	腐食(全面腐食)	母管 (外面) の 腐食 (全面腐 食)	共通	母管は炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗装等が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装等の状態を確認し、はく離等が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
140	配管	炭素鋼配 管	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐食)	主蒸気系統配管、主給水系統配管、原子炉補機冷却水系統配管、 制力用空気系統配管、原子炉補機 制力加率な系統配管、タービン潤 滑・制御油系統配管	フランジボルトは、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
141	配管	1 次冷却 材管	Δ①	応力腐食割れ	母管及び管台の応力腐食割れ	1 次冷却材管	母管及び管台はステンレス鋼鋳鋼又はステンレス鋼を使用しており応力腐食割れが想定される。 しかしながら、定期検査時に飽和溶存酸素濃度(最大約8ppm)の流体が流入する際は流体 温度が低い(最高でも80°C程度)ため、応力腐食割れが発生する可能性は小さい。また、 定期検査後のプラント起動時には1次冷却材中の溶存酸素濃度低減のための運転操作を実 施するため、高温(100°C以上)で使用する場合は溶存酸素濃度が0.1ppm以下に低減され た流体となっていることから応力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、溶接部を対象とした超音波探傷検査、浸透探傷検査又は漏えい検査により機器の健 全性を確認している。
142	配管	配管サポート	Δ2	腐食(全面腐食)	ベースプレー ト、パイプクラ ンプ等の腐食 (全面腐食)	共通	炭素鋼等を使用しているベースプレート及びパイプクランプ等の配管サポート部位は腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 まな、避視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
143	配管	配管サポート	Δ2	摩耗	ピン等摺動部材 の摩耗	Uボルト、スライドサポート、レストレイント、スプリングハン ガ、オイルスナバ、メカニカルスナバ	配管移動を許容するサポートの摺動部材は、配管熱移動や振動により摩耗が生じ、支持機能への影響が想定される。 しかしながら、巡視点検等で目視により摺動部又は支持状態に異常のないことを確認し、 必要に応じて部品の交換を実施することで、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
144	配管	配管サポート	Δ2)	はく離	スライドプレー トのテフロンの はく離	スライドサポート	主蒸気管等の大口径配管のスライドサポートのスライド部には、摩擦力を低減するために 炭素鋼やステンレス鋼表面にテフロン加工したスライドブレートを使用しているが、高温 条件下で長期にわたり使用した場合テフロンのはく離が生じ、スライド部の固着等により 支持機能への影響が想定される。 しかしながら、巡視点検等で目視により動作状況に異常のないことを確認し、機器の健全 性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
145	配管	配管サポート	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 力緩和)	スプリングハンガ	スプリングハンガのばねは、配管の自重に相当する荷重が常時加わっており、長期間保持されることにより変形(応力緩和)が生じ、支持機能への影響が想定される。しかしながら、ばねに発生する応力は弾性範囲内であり、日本ばね工業会にて実施したばね材料と使用環境温度の実態調査結果と比べて、当該ばねは同等以下の環境で使用しており、これまでに有意な変形は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、巡視点検等で目視により動作状況に異常のないことを確認し、機器の健全性を確認している。
146	配管	配管サポート	Δ①	劣化	グリスの劣化		メカニカルスナバのボールネジ部には、円滑な作動を確保するために潤滑剤としてグリスが塗布されている。このグリスが劣化し潤滑剤として機能しなくなった場合、ボールネジ部固着等により支持機能に影響が想定される。しかしながら、熱によるグリスの劣化は、グリスの油分減少に伴い発生するものであるが、蒸発試験を実施した結果を用いて、60年間の油分減少量を外挿により推定した値は、安全側に設定した許容値に対して十分低いことを確認した。また、放射線によるグリスの劣化については、耐放射線試験を実施し、長期の運転を考慮しても特に問題ないことを確認している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化なが、であって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化なが、近視点検等で目視により動作状況に異常のないことを確認し、機器の健全性を確認している。
147	弁	仕切弁	Δ2	腐食 (流れ加 速型腐食)	弁箱、弁蓋等の 腐食 (流れ加速 型腐食)	主蒸気逃がし弁元弁、主給水隔離 弁(外隔離弁)	弁箱、弁蓋、弁体及び弁座は炭素鋼又は炭素鋼鍋鋼であり、内部流体が蒸気又は給水であるため、内部流体による流れ加速型腐食により減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
148	弁	仕切弁	Δ①	腐食(全面腐食)	弁箱、弁蓋等の 腐食 (全面腐 食)	補機冷却水供給Cヘッダ止弁	弁箱、弁蓋、弁体及び弁座は炭素鋼又は炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、内部流体はヒドラジン水(防錆剤注入水)で腐食が発生し難い環境にあ り、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
149	弁	仕切弁	Δ2	腐食(全面腐食)	弁箱、弁蓋等の 腐食(全面腐 食)	消火用水格納容器入口弁(外隔離 弁)	弁箱、弁蓋、弁体及び弁座は炭素鋼又は炭素鋼鋳鋼であり、内部流体がろ過水(飽和溶存酸素濃度:最大約8ppm)であるため、長期使用により腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
150	弁	仕切弁	Δ2	腐食(全面腐食)	介签 介蓋 (別	主蒸気逃がし弁元弁、主給水隔離 弁(外隔離弁)、補機冷却水供給 Cヘッダ止弁、消火用水格納容器 入口弁(外隔離弁)	并箱及び弁蓋は炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗装等が健全であれば腐 食進行の可能性は小さい。 また、巡視点検等で目視により塗装等の状態を確認し、はく離等が認められた場合には必 要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
151	弁	仕切弁	Δ2	応力腐食割れ	弁箱、弁蓋(外 面)の応力腐食 割れ	ターピン 動補助 結 水 ホンフ 復 水 ターンク 元弁	弁箱及び弁蓋はステンレス鋼鋳鋼であり、屋外に設置されているため、大気中の海塩粒子等の塩分が付着した場合、塩化物イオンにより応力腐食割れが想定される。 しかしながら、大気接触部は塗装又は防水措置(保温)を施しており、大気中の海塩粒子が付着する可能性は小さく、塗装又は防水措置(保温)が健全であれば応力腐食割れの可能性は小さい。 また、巡視点検等で目視により塗装又は防水措置(保温)の状態を確認し、必要に応じて補修するととにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
152	弁	仕切弁	Δ①	熱時効	弁箱、弁蓋の熱 時効	RHRS入口隔離弁	弁箱及び弁蓋はステンレス鋼鋳鋼であり、かつ使用温度が約321℃と高いため熱時効により材料特性が変化する可能性があるが、熱時効は材質変化に加え、欠陥が存在し、かつ高い応力が存在する場合について検討が必要となる。しかしながら、製造時の非破壊検査で有意な欠陥がないことを確認しており、熱時効評価上の健全性が確認されている1次令却材管(ホットレグの直管部等)と比較してフェライト量及び応力が小さく、熱時効による不安定破壊は起こらない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
153	弁	仕切弁		腐食(全面腐食)		海水ポンプ軸冷海水供給弁を除く 弁共通	弁蓋ボルトはガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
154	弁	仕切弁	Δ2	摩耗	弁体、弁座又は 弁箱弁座部 (シート面)の 摩耗	海水ポンプ軸冷海水供給弁を除く 弁共通	弁体、弁座又は弁箱弁座部シート面は弁の開閉による摩耗が想定される。 しかしながら、分解点検時の目視確認により状態を確認し、必要に応じてシート面摺り合わせ手入れ、取替を行うことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
155	弁	仕切弁	Δ①	摩耗	弁体、弁棒(連 結部)の摩耗	海水ポンプ軸冷海水供給弁を除く 弁共通	弁体と弁棒の連結部ははめ込み式であり、弁内部の流れにより弁体が振動してその連結部が摩耗することが想定される。 しかしながら、弁体にはその振動等を拘束するためのガイド部を設けるとともに、流れの影響を受けないよう開弁時には弁体を弁蓋内に収める構造としており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
156	弁	仕切弁	Δ2	摩耗	弁棒(パッキン 受け部)の摩耗		弁棒は開閉に伴うパッキン受け部との摺動により、摩耗が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
157	弁	仕切弁	Δ2	腐食(隙間腐 食)	弁棒の腐食(隙 間腐食)	弁共通	弁棒はパッキンとの接触部において腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
158	弁	仕切弁	Δ①	応力腐食割れ	弁棒の応力腐食 割れ		1989年3月、川内2号炉の仕切弁で水素能化型の応力腐食割れ(遅れ割れ)による弁棒のき裂損傷が発生しているが、当該事象は開弁時にバックシートを効かせ過ぎたことによる過大な応力が原因で発生したものである。しかしながら、連用の改善を図り、電動弁はバックシートを効かせないよう開弁位置を設定している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
159	弁	仕切弁	Δ2	腐食(全面腐食)	ヨークの腐食 (全面腐食)	海水ホンノ軸冷海水供給弁を除く 弁共通	ヨークは炭素鋼鋳鋼であり腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
160	弁	玉形弁		腐食(全面腐食)	弁箱、弁蓋等の 腐食(全面腐 食)	よう素除去薬注弁、蓄圧タンクN 2ライン隔離弁(外隔離弁)、余 剰抽出冷却器冷却水第1出口弁	蓄圧タンクN。ライン隔離弁(外隔離弁)及び余剰抽出冷却器冷却水第1出口弁の弁箱及び弁蓋は低合金鋼又は炭素鋼鋳鋼であり、腐食が想定される。しかしながら、内部流体は窒素又はヒドラジン水(防錆剤注入水)で腐食が発生し難い環境にあり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 また、よう素除去薬注弁は内部流体が苛性ソーダ溶液であり、腐食が想定される。しかしながら、弁箱、弁蓋、弁体及び弁棒はステンレス鋼であり、苛性ソーダの濃度及び使用温度が低く、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
161	弁	玉形弁	Δ2	腐食(全面腐食)	弁箱、弁蓋の腐 食(全面腐食)	主蒸気逃がし弁、主給水制御弁	弁箱及び弁蓋は低合金鋼鋳鋼又は低合金鋼であり、長期使用により腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
162	弁	玉形弁		腐食(全面腐食)	弁箱、弁蓋(外 面)の腐食(全 面腐食)	主蒸気逃がし弁、主給水制御弁、 蓄圧タンク N 2 ライン隔離弁(外 隔離弁)、余剰抽出冷却器冷却水 第1出口弁	并箱及び弁蓋は炭素鋼鋳鋼、低合金鋼又は低合金鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗装等が健全であれば腐 食進行の可能性は小さい。 また、巡視点検等で目視により塗装等の状態を確認し、はく離等が認められた場合には必 要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
163	弁	玉形弁	Δ①	応力腐食割れ	弁箱、弁蓋等の応力腐食割れ		弁箱、弁蓋、弁体及び弁棒はステンレス鋼であり、内部流体が苛性ソーダ溶液であることから、応力腐食割れが想定される。 しかしながら、図2.2-1に示すように苛性ソーダの濃度及び使用温度が低く、応力腐食割れが発生し難す現境にあり、これまでに有意な割れは認められておらず、今後もこれらの傾向が変ける要反があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
164	弁	玉形弁	Δ①	腐食(全面腐食)	弁蓋ボルトの腐 食(全面腐食)	よう素除去薬注弁、主蒸気逃がし 弁、主給水制御弁、蓄圧タンクN 2 ライン隔離弁(外隔離弁)、余 剰抽出冷却器冷却水第1出口弁	しかしながった。柳川自住により帰れたり別上と回っており、これように下れるは隣及は眺めり
165	弁	玉形弁	Δ2	摩耗	弁体、弁座又は 弁箱弁座部 (シート面)の 摩耗	よう素除去薬注弁、C/Vサンプ主 ポンプ出ウライン第1 隔離弁、 高圧タービングラ 糸気スピルオーバー弁、主給 火が蒸気スピルオーバー弁、主給 (外隔離弁)、蓄圧タンクN ₂ ラ イ外隔離弁)、蓄圧タンクN ₂ ラ オス分析ライン隔離弁(内隔離 弁)、余剰抽出冷却器冷却水第1 出口弁	が体、 升度XIは升相升度即ン一下面はオい開闭による原来れが窓足される。 しかしながら、分解点検時の目視症認により状態を確認し、必要に応じてシート面摺り合 わせ手入れ、取替を行うことにより、機器の健全性を維持している。 1 たがって、全後も機能の維生性可能であることから、 喜繁な中と幼年と美日オペキ祭年少
166	#	玉形弁	Δ2	腐食(エロー ジョン)	弁体、弁座の腐 食(エロージョ ン)	給水制御弁	中間開度で制御されている弁の弁体及び弁座については、内部流体によるエロージョンにより滅肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
167	弁	玉形弁	Δ2	摩耗	弁棒(パッキン 受け部)の摩耗	ンド蒸気スピルオーバー弁、主給	
168	弁	玉形弁	Δ2)	腐食(隙間腐食)	弁棒の腐食(隙 間腐食)	ンド蒸気スピルオーバー弁、主給	弁棒はパッキンとの接触部において腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
169	Ħ	玉形弁	Δ①	応力腐食割れ	弁棒の応力腐食 割れ	ポンプ出口ライン第1隔離弁、主 蒸気逃がし弁、高圧ターピングラ シド蒸気スピルオーバー弁、主能弁 (外隔離弁)、一番圧タンクN2 イン隔離弁(外隔離弁)、余剰抽	1989年3月、川内2号炉の仕切弁で水素脆化型の応力腐食割れ(遅れ割れ)による弁棒のき製損傷が発生しているが、当該事象は開弁時にパックシートを効かせ過ぎたことによる過大な応力が原因で発生したものである。しかしながら、運用の改善を図り、電動弁や空気作動弁はパックシート部の発生応力を制限して開弁時のパックシート部に過大な応力が発生しないような操作を行っている。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
170	弁	玉形弁	Δ2	腐食(全面腐食)	ヨークの腐食 (全面腐食)	よう素除去薬注弁	ヨークは炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等百視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
171	弁	バタフラ イ弁	Δ2	腐食(全面腐食)	弁箱、弁蓋等の 腐食 (全面腐 食)	FWPT排気弁	并箱、弁蓋及び弁体は炭素鋼であり、腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
172	弁	バタフラ イ弁	Δ①	腐食(全面腐食)	弁箱、弁蓋の腐 食 (全面腐食)	余熱除去冷却器冷却水第 1 出口弁	井箱及び弁蓋は炭素鋼鋳鋼又は炭素鋼であり、腐食が想定される。 しかしながら、内部流体はヒドラジン水(防錆剤注入水)で腐食が発生し難い環境にあ り、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難、今としたがっくとしている。高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
173	弁	バタフラ イ弁	Δ2	腐食(全面腐食)	弁箱、弁体の腐 食(全面腐食)	格納容器給気外側隔離弁	弁箱及び弁体は炭素鋼鋳鋼であり内部流体は空気であるため、長期使用により腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。
174	弁	バタフラ イ弁	Δ2)	腐食(異種金 属接触腐食)	弁箱、弁蓋等の 腐食(異種金属 接触腐食)	ストレーナ入口弁	井箱、弁蓋及び弁座は炭素鋼鋳鋼又は炭素鋼であるため、海水接液面にはライニングを施しているが、ライニングのはく離等により海水が接液した場合、弁体が銅合金鋳物であるため、炭素鋼鋳鋼又は炭素鋼部位に異種金属接触腐食が想定される。しかしながら、分解点検時の目視によりライニングのはく離等がないことを確認し、必要に応じて適切に対処することにより、機器の健全を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
175	弁	バタフラ イ弁	Δ2	腐食(全面腐食)	弁箱、弁蓋(外面)及び支持脚の腐食(全面腐食)		并箱、弁蓋及び支持脚は炭素鋼鋳鋼又は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗装等が健全であれば腐 食進行の可能性は小さい。 また、巡視点検等で目視により塗装等の状態を確認し、はく離等が認められた場合には必 要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
176	弁	バタフラ イ弁	Δ2	応力腐食割れ	弁箱、弁蓋等の 応力腐食割れ	濃縮液ポンプ入口弁	并箱、弁蓋、弁体、弁座及び弁棒はステンレス鋼鋳鋼又はステンレス鋼であり、内部流体は廃液で塩化物イオン濃度が高く、かつ高温であるため、応力腐食割れが想定される。しかしながら、分解点検時の目視確認により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
177	弁	バタフラ イ弁	Δ①	腐食(全面腐食)	弁蓋ポルトの腐 食(全面腐食)	RHRクーラ出口流量制御弁、濃縮液ポンプ入口弁、余熱除去冷却器冷却水第1出口弁、ストレーナ 入口弁	
178	弁	バタフラ イ弁	Δ2	摩耗	弁体、弁座又は 弁箱弁座部 (シート面)の 摩耗	FWPT排気弁を除く弁共通	井体、弁座又は弁箱弁座部シート面は弁の開閉による摩耗が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
179	弁	バタフラ イ弁	Δ2	腐食(エロー ジョン)	弁体、弁座の腐 食(エロージョ ン)	RHRクーラ出口流量制御弁、余 熱除去冷却器冷却水第1出口弁	中間開度で制御されている弁の弁体及び弁座については、内部流体によるエロージョンにより減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
180	弁	バタフラ イ弁	Δ2	腐食(孔食・ 隙間腐食)	弁体、弁棒の腐 食(孔食・隙間 腐食)	ストレーナ入口弁	弁体及び弁棒は銅合金鋳物又は銅合金であり、内部流体が海水であるため、孔食・隙間腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
181	弁	バタフラ イ弁	Δ2	摩耗	弁棒 (パッキン 受け部及び軸保 持部) の摩耗	共通	井棒は開閉に伴うパッキン受け部及び軸保持部との摺動により摩耗が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
182	弁	バタフラ イ弁	Δ②	腐食(隙間腐 食)	弁棒の腐食 (隙 間腐食)	共通	弁棒はパッキン又はOリングとの接触部において腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
183	弁	ダイヤフ ラム弁	Δ2	腐食(全面腐食)	弁箱の腐食(全 面腐食)	濃縮液移送弁	濃縮液移送弁は内部流体が廃液であり、鋳鉄製である弁箱にはライニングが施工されているが、ライニングのはく離等により腐食が想定される。 しかしながら、分解点検時の目視によりライニングのはく離等がないことを確認し、必要に応じて適切に対処することにより、機器の健全を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
184	弁	ダイヤフ ラム弁	Δ2	腐食(全面腐食)	弁箱 (外面) の 腐食 (全面腐 食)	濃縮液移送弁	弁箱は鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗装等が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装等の状態を確認し、はく離等が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
185	弁	ダイヤフ ラム弁	Δ①	腐食(全面腐 食)	弁蓋ボルトの腐 食(全面腐食)		弁蓋ボルトはダイヤフラムからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
186	弁	ダイヤフ ラム弁	Δ2	摩耗	弁棒の摩耗	ストレーナ出口弁を除く弁共通	井の開閉に伴い、弁棒と弁蓋の摺動部には摩耗が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
187	弁	スイング 逆止弁	Δ2	腐食 (流れ加 速型腐食)	弁箱、弁蓋等の 腐食(流れ加速 型腐食)		并箱、弁蓋、弁体、弁座及びアームは炭素鋼又は炭素鋼鋳鋼であり、内部流体が蒸気又は 総水であるため、内部流体による流れ加速型腐食により減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
188	弁	スイング 逆止弁	Δ①	腐食(全面腐食)	弁箱、弁蓋等の 腐食(全面腐 食)	CCWポンプ出口逆止弁	并箱、弁蓋、弁体及びアームは炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、内部流体はヒドラジン水(防錆剤注入水)で腐食が発生し難い環境にあ り、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
189	弁	スイング 逆止弁	Δ2	腐食(異種金属接触腐食)	弁箱、弁蓋等の 腐食(異種金属 接触腐食)	海水ポンプ出口逆止弁	并箱、弁蓋及び弁体は炭素鋼鋳鋼、炭素鋼又は鋳鉄であるため、海水接液面にはライニングを施しているが、ライニングのはく離等により海水が接液した場合、弁棒がステンレス 鋼であるため、炭素鋼鋳鋼、炭素鋼又は鋳鉄部位に異種金属接触腐食が想定される。 しかしながら、分解点検時の目視によりライニングのはく離等がないことを確認し、必要 に応じて適切に対処することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
190	弁	スイング逆止弁	Δ2	腐食(全面腐食)	弁箱、弁蓋(外面)の腐食(全面腐食)	主蒸気隔離弁、主給水逆止弁、C CWポンプ出口逆止弁、海水ポン ブ出口逆止弁	弁箱及び弁蓋は炭素鋼又は炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗装等が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装等の状態を確認し、はく離等が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
191	弁	スイング 逆止弁	Δ2	応力腐食割れ	弁箱、弁蓋等の 応力腐食割れ		弁箱、弁蓋、弁体、弁座、弁棒及びアームはステンレス鋼鋳鋼又はステンレス鋼であり、 内部流体は廃液で塩化物イオン濃度が高く、かつ高温であるため、応力腐食割れが想定さ れる。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
192	弁	スイング逆止弁	Δ①	熱時効	弁箱の熱時効	蓄圧タンク出口第2逆止弁	并箱はステンレス鋼鋳鋼であり、かつ使用温度が約284℃と高いため熟時効により材料特性が変化する可能性があるが、熱時効は材質変化に加え、欠陥が存在し、かつ高い応力が存在する場合について検討が必要となる。しかしながら、製造時の非破壊検査で有意な欠陥がないことを確認しており、熱時効評価上の健全性が確認されている1次冷却材管(ホットレグの直管部等)と比較してフェライト量及び応力が小さく、熟時効による不安定破壊は起こらない。したかって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
193	弁	スイング 逆止弁	Δ①	腐食(全面腐食)	弁蓋ポルトの腐 食(全面腐食)	弁、第6抽気逆止弁、主給水逆止	弁蓋ボルトはガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
194	弁	スイング 逆止弁	Δ2	摩耗	弁体、弁座又は 弁箱弁座部 (シート面)の 摩耗	海水ポンプ軸冷海水供給逆止弁を 除く弁共通	弁体、弁座又は弁箱弁座部シート面は弁の開閉による摩耗が想定される。 しかしながら、分解点検時の目視確認により状態を確認し、必要に応じてシート面摺り合 わせ手入れ、取替を行うことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
195	弁	スイング 逆止弁	Δ2	摩耗	弁棒、アームの 摩耗	海水ポンプ軸冷海水供給逆止弁を 除く弁共通	弁棒は開閉に伴うパッキン受け部又は軸保持部との摺動による摩耗が想定される。また、 アームと弁棒は開閉に伴う摺動による摩耗が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
196	弁	スイング 逆止弁	Δ2	腐食(隙間腐食)	弁棒の腐食 (隙 間腐食)	主蒸気隔離弁、第6抽気逆止弁	井棒はパッキンとの接触部において腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
197	弁	スイング 逆止弁	Δ2	腐食 (孔食・ 隙間腐食)	弁棒の腐食(孔 食・隙間腐食)	海水ポンプ出口逆止弁	ステンレス鋼製の弁棒は、内部流体が海水であるため、孔食・隙間腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
198	弁	スイング逆止弁	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 力緩和)	アニュラス空気浄化系逆止弁	はねは弁の開閉の繰り返し及びある一定の応力状態にて長期間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、ばねに発生する応力は弾性範囲内であり、日本ばね工業会にて実施したば ね材料と使用環境温度の実態調査結果と比べて、当該ばねは同等以下の環境で使用してお り、これまでに有意な変形は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び作動確認により、機器の健全性を確認している。
199	弁	リフト逆 止弁	Δ①	腐食(全面腐食)	弁箱、弁蓋等の 腐食(全面腐 食)	水第1出口弁バイパス弁(内隔離 弁)	I A S 格納容器隔離用逆止弁及びR C P 冷却水第 1 出口弁パイパス弁 (内隔離弁)の弁箱及び弁蓋は炭素鋼であり、腐食が想定される。しかしながら、内部流体は乾燥した空気又はヒドラジン水 (防錆剤注入水)で腐食が発生し難い環境にあり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。また、よう素除去薬注逆止弁は内部流体が苛性ソーダ溶液であり、腐食が想定される。しかしながら、弁箱、弁蓋及び弁体はステンレス鋼であり、苛性ノーダの濃度及び使用温度が低く、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
200	弁	リフト逆 止弁	Δ2	腐食(流れ加 速型腐食)	弁箱、弁蓋の腐 食(流れ加速型 腐食)	補助蒸気格納容器隔離弁	弁箱及び弁蓋は炭素鋼であり、内部流体が蒸気であるため、内部流体による流れ加速型腐 食により減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
201	弁	リフト逆止弁	Δ2	腐食(全面腐食)	弁箱、弁蓋の腐 食(全面腐食)	電動補助給水ポンプミニマムフ ロー逆止弁	弁箱及び弁蓋は炭素鋼であり、内部流体が給水 (飽和溶存酸素濃度:最大約8ppm) であるため、長期使用により腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
202	弁	リフト逆 止弁	Δ2	腐食(全面腐食)	弁箱、弁蓋(外 面)の腐食(全 面腐食)	助給水ポンプミニマムフロ―逆止 弁、IAS格納容器隔離用逆止	弁箱及び弁蓋は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗装等が健全であれば腐 食進行の可能性は小さい。 また、巡視点検等で目視により塗装等の状態を確認し、はく離等が認められた場合には必 要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
203	弁	リフト逆 止弁	Δ①	応力腐食割れ	介笠 介萎笙 の	よう素除去薬注逆止弁	弁箱、弁蓋及び弁体はステンレス鋼であり、内部流体が苛性ソーダ溶液であることから、 応力腐食割れが想定される。 しかしながら、図2.2-1に示すように苛性ソーダの濃度及び使用温度が低く、応力腐食割れが発生し難い環境にあり、これまでに有意な割れは認められておらず、今後もこれらの 傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
204	弁	リフト逆 止弁	Δ2	応力腐食割れ	弁箱、弁蓋等の 応力腐食割れ	濃縮液ポンプ出口逆止弁	弁箱、弁蓋及び弁体はステンレス鋼であり、内部流体は廃液で塩化物イオン濃度が高く、かつ高温であるため、応力腐食割れが想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
205	弁	リフト逆 止弁	Δ①	腐食(全面腐食)	弁蓋ボルトの腐 食(全面腐食)	補助蒸気格納容器隔離弁、電動補 助給水ポンプミニマムフロー逆止 弁、C/V内脱塩水供給第2隔離 弁、IAS格納容器隔離用逆止 弁、RCP冷却水第1出口弁バイ パス弁(内隔離弁)	
206	弁	リフト逆 止弁	Δ②	摩耗	弁体、弁箱弁座 部(シート面) の摩耗	共通	弁体、弁箱弁座部シート面は弁の開閉による摩耗が想定される。 しかしながら、分解点検時の目根確認により状態を確認し、必要に応じてシート面摺り合わせ手入れ、取替を行うことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
207	Ĥ	リフト逆 止弁	Δ①	摩耗	弁蓋 (ガイド 部)、弁体の摩 耗	共通	弁の開閉により、弁蓋 (ガイド部) と弁体の摩耗が想定される。 しかしながら、摺動荷重は加わらず、有意な摩耗が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
208	弁	リフト逆 止弁	Δ2	固着	弁体の固着	RCP冷却水第1出口弁バイパス 弁(内隔離弁)	内部流体はヒドラジン水 (防錆剤注入水) であるため、炭素鋼配管の腐食生成物の発生は抑制されているが、長期運転における腐食生成物堆積による弁体の固着が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も現状保全を継続することで、機能の維持は可能であることから、高経 年化対策上着目すべき経年劣化事象ではない。
209	Ħ	リフト逆 止弁	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 力緩和)	出口逆止弁、補助蒸気格納容器隔離弁、C/V内脱塩水供給第2隔離弁、IAS格納容器隔離用逆止	はねは弁の開閉の繰り返し及びある一定の応力状態にて長時間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、リフト逆止弁のばねは、高粘性流体を取り扱うラインにおける使用を考慮して着座性をよくするために殴けられているもので、川内 1号炉で使用している水や空気等を取り扱うラインでは流体の粘性が低く弁体の自重のみで閉止可能であるため、仮にばねの応力緩和が生じたとしても弁の機能に影響しない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
210	弁	安全逃がし弁	Δ2	腐食(全面腐食)	弁箱、弁蓋等の 腐食(全面腐 食)	加圧器安全弁、主蒸気安全弁、空 気だめ安全弁	并箱、弁蓋及び弁座は炭素鋼鋳鋼、炭素鋼又は鋼合金鋳物であり、長期使用により腐食が 想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
211	弁	安全逃がし弁	Δ2	腐食(全面腐食)	弁箱、弁蓋等 (外面)の腐食 (全面腐食)	加圧器安全弁、主蒸気安全弁、空 気だめ安全弁	弁箱、弁蓋及び弁蓋ボルトは炭素鋼鋳鋼、低合金鋼又は鋼合金鋳物であり、腐食が想定される。 しかしながら、大気接触部は塗装等により腐食を防止しており、塗装等が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装等の状態を確認し、はく離等が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
212	弁	安全逃がし弁	Δ①	摩耗	弁体、弁座 (シート面)及 び弁棒の摩耗	加圧器安全弁、主蒸気安全弁、空気だめ安全弁	弁体、弁座シート面及び弁棒は弁の開閉による摩耗が想定される。 しかしながら、安全弁は系統の異常昇圧時の保護目的で設置されており作動回数は少な く、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
213	Ħ	安全逃がし弁	Δ①	ばねの変形(応力緩和)	ばねの変形(応 力緩和)	加圧器安全弁、主蒸気安全弁、空 気だめ安全弁	ばねは弁の開閉の繰り返し及びある一定の応力状態にて長期間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、ばねに発生する応力は弾性範囲内であり、日本ばね工業会にて実施したば ね材料と使用環境温度の実態調査結果と比べて、当該ばねは同等以下の環境で使用したば り、これまでに有意な変形は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び作動確認により、機器の健全性を確認している。
214	弁	電動装置	Δ2	腐食(全面腐食)	フレーム及び駆動装置ハウジン グの腐食 (全面腐食)	共通	フレーム及び駆動装置ハウジングは鋳鉄又は軟鋼であり、腐食が想定される。 しかしながら、内外面とも塗装により腐食を防止しており、塗装が健全であれば腐食の可能性は小さい。 また、分解点検時等の目視確認により塗装の状態を確認し、はく離が認められた場合には 必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
215	弁	電動装置	Δ①	腐食(全面腐食)	コア、回転子コ ア、主極コア、 補極コア及び電	電動機(低圧電動機)の固定子コア、回転子コア[RHRS入口隔離弁電動装置]、主極コア、補極コア及び電機子コア[T/D AFWP蒸気元弁電動装置]	しかしなから、固定ナコナ、固粒ナコナ、工怪コナ、柵怪コナ及び电域ナコナはエホイン エールド筆に上り 座合を貼止しており これまでに右音が座合け物がよれておよず 会

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
216	弁	電動装置	Δ2	摩耗	ステムナットの 摩耗	共通	駆動装置内部は嵌合による摺動部があり、弁の開閉による摩耗が想定される。 しかしながら、ステムナットの嵌合部は潤滑油により摩耗を防止している。 また、分解点検時に目視確認することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
217	弁	電動装置	Δ①	摩耗	歯車の摩耗	大通	駆動装置内部は嵌合による摺動部があり、弁の開閉による摩耗が想定される。 しかしながら、歯車の嵌合部は潤滑油により摩耗を防止しており、これまでに有意な摩耗 は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時に目視確認することにより、機器の健全性を確認している。
218	弁	電動装置	Δ①	摩耗	整流子の摩耗	T/D AFWP蒸気元弁電動装置	整流子は、ブラシとの摺動部が摩耗する可能性がある。 しかしながら、整流子材はブラシ材より硬質であることから摩耗の可能性は小さく、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時に目視確認することにより、機器の健全性を確認している。
219	Ĥ	電動装置	Δ①	はく離	電磁ブレーキの ライニングのは く離	T/D AFWP蒸気元弁電動装置	2008年7月、敦賀2号炉のタービン動補助給水ポンプ起動入口弁の直流電動機用電磁プレーキにおいて、電磁プレーキのライニングのはく離が発生しているが、この事象は、当該弁が外気の影響を受ける高湿度エリアに設置されていたことに伴い発生した結露水がライニングの接着面に浸透し、接着力を低下させたものである。川内1号炉のT/D AFWP蒸気元弁電動装置は屋内に設置され高湿度環境にはなく、またライニングはブレーキ板にリベット止めされていることからはく離の可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時に目視確認することにより、機器の健全性を確認している。
220	弁	電動装置	Δ2)	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	共通	取付ポルトは炭素鋼であり腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食の 可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
221	弁	空気作動 装置		腐食(全面腐食)	ケース、シリン ダ等の外面から の腐食(全面腐 食)		主蒸気逃がし弁空気作動装置のケース、主蒸気隔離弁空気作動装置のシリンダ、レバー、 鋼管及び継手及びアキュムレータは炭素鋼又は炭素鋼鋳鋼であり、外面の腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進 行の可能性は小さい。 また、巡視点検ទで目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
222	弁	空気作動 装置		腐食(全面腐食)	ケース、シリン ダ等の内面から の腐食(全面腐 食)	共通	主蒸気透がし弁空気作動装置のケース、主蒸気隔離弁空気作動装置のシリンダ、鋼管及び維手及びアキュムレータは炭素鋼又は炭素鋼鋳鋼であり、内面の腐食が想定される。 しかしながら、内面については内部流体が制御用空気であり、清浄な乾燥空気雰囲気であ るため、腐食し難い環境にあり、これまでに有意な腐食は認められておらず、今後もこれ らの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
223	Ĥ	空気作動 装置		腐食(全面腐食)	ケースボルト等 の腐食(全面腐 食)	共通	主蒸気逃がし弁空気作動装置のケースボルト、フレーム、ヨーク及び取付ボルト、主蒸気 隔離弁空気作動装置のシリンダボルト、ナット及び取付ボルトは炭素鋼、炭素鋼鋳鋼又は 低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
224	弁	空気作動 装置	Δ①	ばねの変形 (応力緩和)	ばねの変形(応力緩和)	共通	ばねは弁の開閉の繰り返し及びある一定の応力状態にて長時間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、ばねに発生する応力は弾性範囲内であり、日本ばね工業会にて実施したば ね材料と使用環境温度の実態調査結果と比べて、当該ばねは同等以下の環境で使用しており、これまでに有意な変形は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び作動確認により、機器の健全性を確認している。
225	弁	空気作動 装置	Δ①	摩耗	ピストンと ピストンと ドストンイイ ドンイイ アイ ア	主蒸気隔離弁空気作動装置	ピストンとピストンガイド、ピストンロッドとブッシュ及びレバーとピンは開開動作による摺動により、摩耗が想定される。しかしながら、ピストンとピストンガイドの間にはクリアランスがあり実際には接触しておらず、ピストンとパッキン押え板により固定されたゴム製のパッキンがピストンガイドに接触するようにしているため、ピストンやメトンガイドに摩耗が発生しないようにしており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。また、ピストンロッドとブッシュ及びレバーとピンの摺動部は硬度差を設けて摩耗を防止しており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
226	弁	空気作動 装置	Δ①	疲労割れ	銅管及び継手の 疲労割れ	主蒸気逃がし弁空気作動装置	飼管及び継手は弁開閉時の振動及び配管振動による疲労割れが考えられる。 しかしながら、銅管及び継手は、振動による過大な応力が生じない設計としており、これ までに有意な疲労割れは認められておらず、今後もこれらの傾向が変化する要因があると は考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
227	弁	空気作動 装置	Δ①	摩耗	ポジショナーの 摩耗	主蒸気逃がし弁空気作動装置	ポジショナーは弁の開閉に伴う作動により、パイロットバルブ等の摩耗が想定される。 しかしながら、空気作動弁はON-OFF制御の場合は作動頻度が少なく、連続制御の場合も弁 開度はほぼ一定であり、弁の動きはゆるやかで開弁の程度も小さい。 また、ポジショナーは数十万回の作動試験を行い、和父生を確認している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機器点検時の特性試験により、機器の健全性を確認している。
228	弁	空気作動 装置	Δ2	導通不良	リミットスイッ チの導通不良	共通	リミットスイッチは、浮遊塵埃の接点部分への付着による導通不良が想定される。 しかしながら、接点部分は密閉されたハウジング内に収納されており、塵埃の付着による 導通不良が発生する可能性は小さい。また、定期的な動作確認により導通不良がないこと を確認していることから、高経年化対策上着目すべき経年劣化事象ではない。
229	Ħ	主蒸気止 め弁	Δ2	腐食(流れ加速型腐食及び エロージョン)	弁箱、弁蓋及び 弁棒の腐食(流 れ加速型腐食及 びエロージョ ン)	主蒸気止め弁	弁箱及び弁蓋は炭素鋼鋳鋼又は炭素鋼であり、内部流体が蒸気であるため、内部流体による流れ加速型腐食により減肉が想定される。 また、弁棒の高減圧部では、エロージョンによる減肉が想定される。 しかしながら、分解点検時の目視確認又は寸法計測により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上注目すべき経年劣化事象ではない。
230	Ĥ	主蒸気止 め弁	Δ①	腐食(全面腐食)	弁箱、弁蓋(外 面)の腐食(全 面腐食)	主蒸気止め弁	弁箱及び弁蓋は炭素鋼鋳鋼又は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
231	弁	主蒸気止 め弁	Δ①	腐食(全面腐食)	弁蓋ボルトの腐 食(全面腐食)	主蒸気止め弁	弁蓋ボルトはガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
232	弁	主蒸気止 め弁	Δ①	摩耗	弁体、弁座 (シート面)の 摩耗	主蒸気止め弁	弁体及び弁座シート面は弁の開閉による摩耗が想定される。 しかしながら、アクチュエータのダッシュボット部で減速し衝撃力を和らげており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認、浸透探傷検査及び当たり確認により、機器の健全性を確認している。
233	弁	主蒸気止 め弁	Δ①	疲労割れ	弁体の疲労割れ	主蒸気止め弁	弁体の応力集中部においては、急閉時に発生する弁体と弁座との衝突により、材料に疲労が蓄積することから、疲労割れが想定される。 しかしながら、主蒸気止め弁は、アクチュエータで減速し衝撃力を和らげ、発生応力が小さくなる様に設計上の考慮をしている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認及び浸透探傷検査により、機器の健全性を確認している。
234	弁	主蒸気止 め弁	Δ①	摩耗	弁棒の摩耗	主蒸気止め弁	弁棒の摺動部は弁の開閉動作による摩耗が想定される。 しかしながら、弁棒の摺動部には窒化により表面を硬化して耐摩耗性を考慮しており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認及び間隙計測により、機器の健全性を確認している。
235	弁	主蒸気止 め弁	Δ①	ばねの変形 (応力緩和)	閉鎖ばねの変形 (応力緩和)	主蒸気止め弁	閉鎖ばねは弁の開閉の繰り返し及び弁全開位置での荷重が加わった状態で長期間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、ばねに発生する応力は弾性範囲内であり、日本ばね工業会にて実施したば わ材料と使用環境温度の実態調査結果と比べて、当該ばねは同等以下の環境で使用したば り、これまでに有意な変形は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び作動確認により、機器の健全性を確認している。
236	弁	主蒸気止 め弁	Δ①	摩耗	アクチュエータ の摩耗	主蒸気止め弁	弁の開閉動作により、アクチュエータの摺動部には摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び寸法計測により、機器の健全性を確認している。
237	弁	主蒸気止 め弁	Δ2)	腐食(全面腐食)	アクチュエータ の腐食 (全面腐 食)	主蒸気止め弁	アクチュエータは炭素鋼又は鋳鉄等であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
238			Δ①	腐食(全面腐食)			一方、内面については内部流体が油で腐食が発生し難い環境にあり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
239	弁	主蒸気止 め弁	Δ2	腐食(全面腐食)	支持脚の腐食 (全面腐食)	主蒸気止め弁	支持脚は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離等が認められた場合には必要 に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
240	弁	蒸気加減 弁	Δ2	腐食(流れ加速型腐食及び エロージョン)	弁箱、弁蓋及び 弁棒の腐食(流 れ加速型腐食及 びエロージョ ン)	蒸気加減弁	弁箱及び弁蓋は炭素鋼鋳鋼又は炭素鋼であり、内部流体が蒸気であるため、内部流体による流れ加速型腐食により減肉が想定される。 また、弁棒の高減圧部では、エロージョンによる減肉が想定される。 しかしながら、分解点検時の目視確認又は寸法計測により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上注目すべき経年劣 化事象ではない。
241	弁	蒸気加減弁	Δ①	腐食(全面腐食)	弁箱、弁蓋(外面)の腐食(全面腐食)	蒸気加減弁	弁箱及び弁蓋は炭素鋼鋳鋼又は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
242	弁	蒸気加減弁	Δ①	腐食(全面腐食)	弁蓋ボルトの腐 食(全面腐食)	蒸気加減弁	弁蓋ボルトはガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがった、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
243	弁	蒸気加減弁	Δ①	摩耗	弁体、弁座 (シート面)の 摩耗	蒸気加減弁	弁体及び弁座シート面は弁の開閉による摩耗が想定される。 しかしながら、弁体及び弁座には、それぞれ耐摩耗性に優れたステライト又はステンレス 鋼を肉盛しており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変 化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認、浸透探傷検査及び当たり確認により、機器の健全性を確認 している。
244	弁	蒸気加減弁	Δ2	腐食(流れ加 速型腐食)	弁体の腐食(流 れ加速型腐食)	蒸気加減弁	マフラ穴からの噴流による流れ加速型腐食対策として弁体外周はステライト肉盛を施しているが、ステライト肉盛のない弁体下面については、流れ加速型腐食により減肉が想定される。 しかしながら、分解点検時に目視確認及び弁体下面の深さ計測を実施し、腐食進行程度の把握を行うことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
245	弁	蒸気加減弁	Δ①	摩耗	弁棒の摩耗	蒸気加減弁	弁棒の摺動部は弁の開閉動作による摩耗が想定される。 しかしながら、弁棒の摺動部には窒化により表面を硬化して耐摩耗性を考慮しており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは 考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び間隙計測により、機器の健全性を確認している。
246	弁	蒸気加減弁	Δ①	ばねの変形 (応力緩和)	閉鎖ばねの変形 (応力緩和)	蒸気加減弁	閉鎖ばねは弁の開閉の繰り返し及び弁全開位置での荷重が加わった状態で長期間保持されることにより、変形 (応力線和) が想定される。 しかしながら、ばねに発生する応力は弾性範囲内であり、日本ばね工業会にて実施したば ね材料と使用環境温度の実態調査結果と比べて、当該ばねは同等以下の環境で使用してお り、これまでに有意な変形は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び作動確認により、機器の健全性を確認している。
247	弁	蒸気加減弁	Δ①	摩耗	アクチュエータ の摩耗	蒸気加減弁	弁の開閉動作により、アクチュエータの摺動部には摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び寸法計測により、機器の健全性を確認している。
248	弁	蒸気加減弁	Δ2	腐食(全面腐食)	アクチュエータ の腐食(全面腐	蒸気加減弁	アクチュエータは炭素鋼又は鋳鉄等であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
249			Δ①	腐食(全面腐食)	食)		一方、内面については内部流体が油で腐食が発生し難い環境にあり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
250	弁	インター セップト 弁 気 弁	Δ①		弁箱の腐食(流 れ加速型腐食)	インターセプト弁	弁箱は炭素鋼鋳鋼であり、内部流体が蒸気であるため、内部流体による流れ加速型腐食により減肉が想定される。 しかしながら、蒸気は乾き蒸気であり、これまでに有意な減肉は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認及び弁体と弁箱の間隙計測により、機器の健全性を確認している。
251	弁	インター セプト 弁・再熱 蒸 弁	Δ①	腐食(全面腐食)	弁箱(外面)及び軸受サポート の腐食(全面腐食)	インターセプト弁	弁箱及び軸受サポートは炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
252	弁	インター セプト 弁・再熱 蒸気止め 弁	Δ①	摩耗	弁棒の摩耗	インターセプト弁	弁棒は開閉に伴う軸保持部との摺動により摩耗が想定される。 しかしながら、摺動相手の軸受部は、潤滑性の良いブッシュを使用しており、これまでに 有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び間隙計測により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
							弁棒は低合金鋼であり、弁棒貫通部からの漏えいにより、内部流体による腐食が想定され
253	弁	インター セプト 弁・再熱 蒸 弁	Δ①	腐食(全面腐食)	弁棒の腐食(全 面腐食)	インターセプト弁	る。 しかしながら、ベローズシールにより内部流体はシールされており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
254	弁	インター セプト 弁・気気止め 弁	Δ①	ばねの変形 (応力緩和)	開鎖ばねの変形(応力緩和)	インターセプト弁	閉鎖ばねは弁の開閉の繰り返し及び弁全開位置での荷重が加わった状態で長期間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、ばねに発生する応力は弾性節囲内であり、日本ばね工業会にて実施したば ね材料と使用環境温度の実態調査結果と比べて、当該ばねは同等以下の環境で使用してお り、これまでに有意な変形は認められておらず、今後もこれらの傾向が変化する要因が るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び作動確認により、機器の健全性を確認している。
255	弁	インター セプリー 弁・ 乗 気 弁 弁	Δ①	摩耗	アクチュエータ の摩耗	インターセプト弁	井の開閉動作により、アクチュエータの摺動部には摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び寸法計測により、機器の健全性を確認している。
256	弁	インター センプ 再 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Δ2	腐食(全面腐食)	アクチュエータ の腐食(全面腐食)	インターセプト弁	アクチュエータは炭素鋼又は鋳鉄等であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
257		弁	Δ①	腐食(全面腐食)	良)		一方、内面については内部流体が油で腐食が発生し難い環境にあり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
258	弁	タ動ポ動 蒸弁 加 ー主ンタン気・減 ビ給プーン止蒸 ・ ル ・ が ・ が も の 気 ・ 減 ・ が り の り の り の り の り の り の り の り の り の り	Δ2		弁箱、弁蓋、蒸 気室及び弁揚板 の腐食(流れ加 速型腐食)	共通	弁箱、弁蓋、蒸気室及び弁機板は炭素鋼鋳鋼又は炭素鋼であり、内部流体が蒸気であるため、内部流体による流れ加速型腐食により減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上注目すべき経年劣 化事象ではない。
259	弁	タ動ポ動 蒸弁加ビ給プーン止蒸弁 ルカリン・減・減・減・減・減・減・減・減・減・減・減・減・減・減・減・減・減・減・減	Δ①	腐食(全面腐食)	弁箱、弁蓋及び 蒸気室(外面) の腐食(全面腐 食)	共通	弁箱、弁蓋及び蒸気室は炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、これまでに有意な腐食は認 められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
260	弁	タ動ポ動 蒸弁加ビ給プーン止蒸弁 ル・減・減・減・減・減・減・減・減・減・減・減・減・減・減・減・減・減・減・減	Δ①	腐食(全面腐食)	弁蓋ボルト、蒸 気室ボルトの腐 食 (全面腐食)	共通	弁蓋ボルト及び蒸気室ボルトはガスケットからの漏えいにより、内部流体によるボルトの 腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認めら れておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
261	弁	タ動ポ動 蒸弁 加 ビ給プーン 止蒸弁 ル ・減 ・減	Δ①	摩耗	弁体及び弁座 (シート面)の 摩耗	共通	弁体及び弁座シート面は弁の開閉による摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認、浸透探傷検査及び当たり確認により、機器の健全性を確認 している。
262	弁	タ動ポ動 蒸弁 加 ビ給ブーン止蒸剤・減 ・減 ・減	Δ①	腐食 (流れ加 速型腐食)	弁体ボルトの腐 食 (流れ加速型 腐食)	タービン動主給水ポンプ駆動ター ビン低圧蒸気止め弁	弁体ボルトは低合金鋼であり、内部流体が蒸気であるため、内部流体による流れ加速型腐食により減肉が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難し。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
263	弁	タ動ポリン水駆ビ ビ給プーン止蒸 ・減 ・減 ・減	Δ①	摩耗	主弁、弁棒及び ブッシュの摩耗	共通	主弁、弁棒及びブッシュの摺動部は、弁の開閉による摩耗が想定される。 しかしながら、摺動部は窒化又は焼入れにより表面を硬化しており、これまでに有意な摩 耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び間隙計測により、機器の健全性を確認している。
264	弁	タ動ボ動 蒸弁 加 ビ給ブーン止蒸剤・減 ・減 ・減	Δ①	腐食(全面腐食)	ブッシュの腐食 (全面腐食)	共通	ブッシュは低合金鋼であり、腐食が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
265	弁	タ動ポ動 蒸弁加 ー主ンタン気・減 ビ給プーン止蒸弁 の気を が取ど め気	Δ①	ばねの変形 (応力緩和)	閉鎖ばねの変形 (応力緩和)	ターピン動主給水ポンプ駆動ター ピン低圧蒸気加減弁を除く弁	閉鎖ばねは弁の開閉の繰り返し及び弁全開位置での荷重が加わった状態で長期間保持されることにより、変形 (応力線和) が想定される。 しかしながら、ばねに発生する応力は弾性範囲内であり、日本ばね工業会にて実施したば は材料と使用環境温度の実態調査結果と比べて、当該ばねは同等以下の環境で使用しており、これまでに有意な変形は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び作動確認により、機器の健全性を確認している。
266	弁	タ動ポ動 蒸弁 加 ー主ンタン気・減 ビ給プーン止蒸 ・ ル ・ の気	Δ①	摩耗	駆動装置シリン ダ等の摩耗	共通	駆動装置のシリンダ、ピストンリング、ピストンロッド及びブッシュの摺動部は、弁の開閉による摩耗が想定される。 しかしながら、摺動部は油雰囲気下で使用されており、これまでに有意な摩耗は認められておらず、今後も一れらの傾向が変化する要因があるとは考え難いしたがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認及び間隙計測により、機器の健全性を確認している。
267	弁	タ サ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		腐食(全面腐食)	駆動装置シリン ダ等の腐食(全 面腐食)	共通	駆動装置シリンダ等は炭素鋼鋳鋼、炭素鋼、鋳鉄又は鋼合金鋳物であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
268		無気量 弁・蒸気 加減弁		腐食(全面腐食)			一方、内面については油雰囲気下で腐食が発生し難い環境にあり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
269	炉内構造物	-	Δ①	応力腐食割れ	上部炉心支持柱 等のステンレス 鋼の応力腐食割 れ	炉内構造物	ステンレス鋼の上部炉心支持柱等は、応力腐食割れが想定される。 しかしながら、PWRプラントの1次冷却材の水質は、溶存酸素濃度5ppb以下に管理 しており、ステンレス鋼の応力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、水中テレビカメラによる目視確認により、機器の健全性を確認している。
270	炉内構造物	-	Δ①	高サイクル疲労割れ	上部炉心支持柱 等の高サイクル 疲労割れ	炉内構造物	炉内構造物のうち、1次冷却材高速流れにさらされている下部炉内構造物の炉心槽、上部炉内構造物の上部炉心支持柱と制御棒クラスタ案内管に終り返し応力が生じることから、高サイクル破労割れが発生し、上部炉心支持柱と制御棒クラスタ案内管に繰り返し応力が生じることから、高しかしながら、3ループブラントを対象に1/5スケールモデルを用いた流動試験結果をもとに川内1号炉について評価した結果、高サイクル疲労に対して問題ないことを確認している。また、1999年7月に教質2号炉の再生熱交換器機管において、温度の異なる1次冷却材の合流による温度ゆらぎ(サーマルストライビング)が生じ、高サイクル熱疲労による疲労割れが発生しているが、炉内構造物において温度の異なる1次冷却材が合流する炉心槽出ロノズル部、上部炉心支持板及び制御棒クラスタ案内管等については、最大の温度を考慮とても発生応力が疲労限より小さいため、高ナイクル疲労割れ発生の可能性はない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、水中テレビカメラによる目視確認により、機器の健全性を確認している。
271	炉内構造		Δ2	靭性低下	炉心槽の中性子性 のよる物性 低下	炉内構造物	炉心槽に使用しているステンレス鋼は、中性子照射により靭性低下等の機械的特性が変化する。 中性子照射による靭性低下は、従来より原子炉容器を中心に検討評価されてきている。原 子炉容器に使用されている材料はフェライト系の材料であり、この材料は中性子照射によって、関連温度の上昇や上部棚吸収エネルギーの低下が顕著なため、従来から重要な経年劣化事象として評価されている。 方、炉心支持構造物をり強度上重要な炉心槽に使用されている材料はオーステナイト系の材料であって、フェライト系材料とは金属結晶構造が異なり、靭性が高い材料である。しかし、(財)発電設備技術検査協会の「平成8年度 ブラント長寿命化技術開発に関する事業報告書」によるとオーステナイト系明射ステンレス鋼の破壊靭性値 Jic試験の結果、図2.2-1に示すように、中性子照射に対して、靭性値の低下が認められる。しかしながら、中性子照射による筋化のみでは不安定破壊は発生せず、炉内構造物に有意な欠陥が存在しなければ、不安定破壊を起こす可能性は小さいと考える。なお、炉心槽溶接部は、応力集中がなく照射量が少ないため、「(社)日本機械学会 被計機格(JSME S NC1-2005/2007)」に基づく評価では、照射器起型たの面能性は小さい。 さらにここで、万一有意な欠陥が存在すると仮定し、地震発生時のき裂安定性評価を実施した。想定欠陥なに「(社)日本機械学会 設計・建設規格(JSME S NC1-2005/2007)」を準用し深さを板厚の1/4、長さは板厚の1.5倍の表めるRaju n-Newmanの式(Raju I.S. and Newman, J.C., Jr., NASA Technical Paper 1578, 1979。)を用いて想定欠陥の応力拡大係数Kを算出した結果、4.8MPa√mとなった。一方、図2.2-1中のJic表下限値14kJ/m² が5、換算式により破壊靭性値Kicを求めると51MPa√mとなる。 Kic= (ニーン) メリカ・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
272	炉内構造 物		∆2	摩耗	制御棒クラスタ 実内管(案内 板)の摩耗	炉内構造物	通常運転時の1次令却材の流れにより、制御棒クラスタ案内管内で制御棒が流体振動を起こす。その結果、制御棒と制御棒クラスタ案内管(案内板)との間で摩耗が発生する可能性がある。 制御棒の実内管(案内板)側が摩耗する可能性は否定できない。 制御棒クラスタ案内管(案内板)側が摩耗する可能性は否定できない。 制御棒クラスタ案内管(案内板)側が摩耗する可能性は否定できない。 制御棒クラスタ案内管(案内板)の摩耗により、制御棒の案内機能に影響を及ぼす可能性がある事象としては、制御棒クラスタ案内管(案内板)からの抜け出しが考えられる。制御棒被覆管の摩耗が進行し、経が細くなると、制御棒をでしては、制御棒な覆管の摩耗が進行し、経が細くなると、制御棒をでして、ままないが、安全側に制御棒を取り替えることとしており、制御棒を管が全部摩耗することはないが、安全側に制制御棒を取り替えることとしており、制御棒被覆管が全部摩耗することはないが、安全側に制制を存取り替えることとしており、制御棒をでいる部屋をでは、制御棒をでいる。としており、制御棒をでいる事にないが、安全側に制制の上号炉は第21回定期検査時(2011年度~2015年度)に制制を摩耗長さの関係から、「(社)日本機械学会、維持規格(USME SMAI-2008)」に基づき評価を実施した結果、川内1号炉の摩耗長さが管理摩耗長さ(68%)に相当する摩耗体積に重するまでの時間は約70万時間と評価される。一方、2011年5月時点の運転戻鏡は約19.5万時間である。以上より、川内1号炉の制御棒クラスタ案内管(案内板)の摩耗による制御棒の案内機能に影響を及ぼす可能性はないと考える。また、制御棒ク落下試験を実施しており、挿入時間に問題がないことによりその健全性を確認している。さらに、運転時間29万時間での摩耗計測を実施予定である。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
273	炉内構造 物	1	Δ2	摩耗	支持ピン(止め ピン)の摩耗	炉内構造物	支持ピン(止めピン)については、1次冷却材の流体振動によりナットピン穴とピン部に摩耗が発生する可能性がある。(図2.2-4) しかしながら、川内1号炉では、定期的に目視確認を実施し、有意な摩耗が認められた場合には、取替えを行うこととしている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
274	炉内構造 物	-	Δ①	応力腐食割れ	支持ピンの応力腐食割れ	炉内構造物	ニッケル基合金の支持ピンについては1978年10月美浜3号炉にて応力腐食割れが認められている。 しかしながら、川内1号炉の支持ピンは、応力腐食割れ感受性低減のため、新熱処理材応力低減化構造としていることから、応力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、水中テレビカメラによる目視確認により、機器の健全性を確認している。
275	炉内構造 物	ı	Δ2	摩耗	炉内計装用シン ブルチューブの 摩耗	炉内構造物	1981年3月、米国セーレム (Salem) 発電所 1号炉他で炉内計装用シンブルチューブの摩耗による減肉が認められており、国内でも同様の事象が認められていることから、摩耗が発生する可能性がある。
276	ケーブル	高圧ケー ブル	Δ①	劣化	シースの劣化	難燃高圧CSHVケーブル	シースは絶縁体と同様に、熱的、電気的及び環境的要因で劣化を起こす可能性がある。 しかしながら、ケーブルに要求される機能である通電・絶縁機能の維持に対する影響は小 さいことから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
277	ケーブル	低圧ケー ブル	Δ①	劣化	シースの劣化	共通	シースは絶縁体と同様に、熱的、電気的及び環境的要因で劣化を起こす可能性がある。 しかしながら、ケーブルに要求される機能である通電・絶縁機能の維持に対する影響は小 さいことから、高経年化対策上着目すべき経年劣化事象ではない。 なお、系統機器の動作確認又は絶縁抵抗測定により、機器の健全性を確認している。
278	ケーブル	同軸ケー ブル	Δ①	劣化	外部シースの劣 化	難燃三重同軸ケーブル 1	外部シースは絶縁体と同様に、熱的、電気的及び環境的要因で劣化を起こす可能性がある。 しかしながら、ケーブルに要求される機能である通電・絶縁機能の維持に対する影響は小さいことから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機器点検時の絶縁抵抗測定により、機器の健全性を確認している。
279	ケーブル	光ファイ バケーブ ル	Δ①	劣化	コード外被、シース及び心線被覆の劣化	難燃光ファイパケーブル 1	コード外被、シース及び心線被覆はケーブルやコードとしての構造の保持、外的な力等からの保護等の被覆材としての機能を有する。 コード外被、シース及び心線被覆が熱的及び環境的要因で劣化して光フィバ心線(コード外被、シース及び心線被覆が熱的及び環境的要因で劣化して光フィバ心線(コーク、クラッド)に水素や水分が混入した場合、伝送光量が減少することが想定される。しかしながら、水素や水分を透過し難いシース構造であること、かつ自ら水素を発生することのないケーブル構成材料が使用されていること、及びケーブルは室内の空間環境下に布設されており、外部からの水分混入は考え難い。また、ケーブルに要求される伝送光量の維持に対する影響は極めて小さいことから、高経年代対策上着目すべき経年劣化事象ではない。なお、本ケーブルの伝送光量は常野を現されており、仮に伝送機能に影響を及ぼすレベルまで光量が減少した場合には、中央制御室へ警報を発信するが、これまでの運転中に光量低下による警報発信実績はない。
280	ケーブル	ケーブル トレイ等	Δ2)	腐食(全面腐食)	ケーブルトレイ (本体)等の腐食(全面腐食)	共通	ケーブルトレイ(本体)、取付ボルト、鋼材、ベースプレート、Uボルト、Uバンド、ボルト及びナットは炭素鋼であり、腐食が想定される。 しかしながら、塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
281	ケーブル	ケーブル トレイ等	Δ2)	腐食(全面腐食)	電線管 (本体) 及びカップリン グの外面からの 腐食 (全面腐 食)	電線管	電線管(本体)及びカップリングは炭素鋼であり、腐食が想定される。 しかしながら、外面は亜鉛メッキ又は塗装により腐食を防止しており、亜鉛メッキ又は塗 装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
282	ケーブル	ケーブル トレイ等	Δ2	腐食(全面腐食)	埋込金物(大気 接触部)の腐食 (全面腐食)	共通	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
283	ケーブル	ケーブル 接続部	Δ①	絶縁低下	端子台の絶縁低 下	気密端子箱接続	端子台は無機物の磁器であり、経年劣化の可能性はない。 なお、長期使用においては表面の汚損による絶縁低下が想定される。 しかしながら、端子台は気密された接続箱内に設置され、塵埃の付着により表面が汚損す る可能性はない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な計測制御系統設備の機能検査等により、機器の健全性を確認している。
284	ケーブル	ケーブル 接続部	Δ2	腐食(全面腐食)	ボックスコネクタの腐食(全面腐食)		ボックスコネクタは、銅合金であり腐食が想定される。 しかしながら、定期的な目視確認により容易に状態の確認が可能であり、腐食が認められた場合には必要に応じて補修を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
285	ケーブル	ケーブル 接続部	Δ2	腐食(全面腐食)	架台の腐食 (全 面腐食)	気密端子箱接続	架台は炭素鋼であり、腐食が想定される。 しかしながら、塗装により腐食を防止している。また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
286	ケーブル	ケーブル 接続部	Δ2	腐食(全面腐 食)	接続端子等の腐食(全面腐食)	高圧コネクタ接続、電動弁コネクタ接続 1、三重同軸コネクタ接続	接続端子、圧縮端子、ソケット [高圧コネクタ接続] 、オスコンタクト、レセプタクルシェル、シーリングワッシャ、メスコンタクト、ブラグシェル [電動弁コネクタ接続 1]、ビンコンタクト、1 SコンタクトP、ブラグボディ、割りリング、ソケットコンタクト、1 Sコンタクト J 及びジャックボディ [三重同軸コネクタ接続] は銅もしくは銅合金であり、腐食が想定される。しかしながら、錫メッキ、ニッケルメッキ、銀メッキ又は金メッキにより腐食を防止しており、定期的な目視確認又は絶縁抵抗測定により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
287	電気設備	メタクラ	Δ①	腐食(全面腐食)	母線導体の腐食 (全面腐食)	メタクラ(安全系)	バスダクト母線導体はアルミニウムであり、腐食が想定される。 しかしながら、アルミニウム表面はエポキシ樹脂で覆うことにより腐食を防止しており、 これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があると は考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
288	電気設備	メタクラ	Δ2	腐食(全面腐食)	外被の腐食(全 面腐食)	メタクラ(安全系)	外被は炭素鋼であり、腐食が想定される。 しかしながら、内外面は塗装により腐食を防止しており、塗装が健全であれば腐食進行の 可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
289	電気設備	メタクラ	Δ2	固着	操作機構の固着	メタクラ(安全系)	運断器の操作機構は、長期間の使用に伴いグリスが固化し、動作特性の低下が想定される。 しかしながら、定期的に注油を行い、各部の目視確認及び動作確認を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
290	電気設備	メタクラ	Δ①	絶縁低下	モールドフレー ム、絶縁ロッド 及びブッシング の絶縁低下		運断器のモールドフレーム、絶縁ロッド及びブッシングの絶縁物は有機物であり、熱的、電気的及び環境的要因による絶縁低下が想定される。 しかしながら、モールドフレーム等は絶縁性の高い不飽和ポリエステル樹脂又はエポキシ 樹脂で形成されており、モールドフレーム等の耐熱温度 130℃に対して、主回路導体の 通電時の最大温度は100℃であることから絶縁低下の可能性は小さいと考える。 また、これまでに有意な絶縁低下は認められないこと、モールドフレーム等は壁に内蔵しているため、塵埃が付着しにくい環境にあり、有意な汚損、クラック等は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
291	電気設備	メタクラ	Δ①	摩耗	一次コンタクト の摩耗	メタクラ(安全系)	一次コンタクトは遮断器の出し入れに伴い、摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
292	電気設備	メタクラ	Δ①	絶縁低下	投入コイル及び 引外しコイルの 絶縁低下	メタクラ(安全系)	投入コイル及び引外しコイルの絶縁物は有機物であり、熱的、電気的及び環境的要因による絶縁低下が想定される。 しかしながら、投入コイル及び引外しコイルは筐体内に設置されているため、塵埃が付着 しにくい環境にある。また、投入コイル及び引外しコイルは連続運転ではなく、作動時間 も1秒以下と短いことから、コイルの発熱による温度上昇は小さいと考えられ、使用温度 に比べて、十分余裕のある絶縁種(A種:許容最高温度105℃)を選択して使用している ことから、絶縁低下の可能性は小さいと考える。 また、これまでに有意な絶縁低下は認められておらず、今後もこれらの傾向が変化する要 因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な絶縁抵抗測定により、機器の健全性を確認している。
293	電気設備	メタクラ	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 カ緩和)		遮断器のばねは、投入状態又は開放状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な遮断器の動作確認及び目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
294	電気設備	メタクラ	Δ2	真空度低下	の事象名 真空バルブの真 空度低下	メタクラ(安全系)	真空遮断器の真空パルブは、長期使用により、スローリーク等による真空度の低下が進行し、真空度が基準値以下となった場合、遮断不能に至ることが想定される。しかしながら、定期的な真空度測定を実施することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
295	電気設備	メタクラ	Δ①	腐食(全面腐食)	主回路導体の腐 食(全面腐食)	メタクラ(安全系)	主回路導体はアルミニウムであり、腐食が想定される。 しかしながら、アルミニウム表面はエポキシ樹脂で覆うことにより腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
296	電気設備	メタクラ	Δ①	絶縁低下	支持碍子の絶縁 低下	メタクラ(安全系)	支持碍子は無機物の磁器であり、経年劣化の可能性はない。 なお、長期使用においては表面の汚損による絶縁低下が想定される。 しかしながら、支持碍子は筐体内等に設置されているため、塵埃が付着しにくい環境にあり、これまでに有意な汚損は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
297	電気設備	メタクラ	Δ①	導通不良	操作スイッチの 導通不良	メタクラ(安全系)	操作スイッチは、接点部分に浮遊塵埃が付着することによる導通不良が想定される。 しかしながら、接点部分は整内に収納されており、塵埃の付着による導通不良が発生する 可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な遮断器の動作確認により、機器の健全性を確認している。
298	電気設備	メタクラ	Δ2	特性変化	指示計の特性変 化	メタクラ(安全系)	指示計は、長期間の使用に伴い特性変化が想定される。 しかしながら、指示計は、高い信頼性を有するものを選定し使用しており、また、屋内に 設置されていることから環境変化の程度は小さく、急激な特性変化を起こす可能性は小さ いと考える。 また、巡視点検等での目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
299	電気設備	メタクラ	Δ2	腐食(全面腐食)	筐体の腐食(全 面腐食)	メタクラ(安全系)	筐体は炭素鋼であり、腐食が想定される。 しかしながら、内外面は塗装により腐食を防止しており、塗装が健全であれば腐食進行の 可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
300	電気設備	メタクラ	Δ2	腐食(全面腐 食)	埋込金物(大気 接触部)の腐食 (全面腐食)	メタクラ(安全系)	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
301	電気設備	メタクラ	Δ2	腐食(全面腐食)	支持具及び取付 ボルトの腐食 (全面腐食)	メタクラ(安全系)	支持具及び取付ポルトは炭素鋼であり、腐食が想定される。 しかしながら、支持具及び取付ポルトは塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
302	電気設備	動力変圧 器	Δ①	絶縁低下	垂直ダクトの絶 縁低下	動力変圧器(安全系)	コイル内に使用している垂直ダクトは有機物であり、熱的、電気的及び環境的要因による 絶縁低下が想定される。 しかしながら、動力変圧器は空調された屋内に設置されていることから表面の汚損や水分 の付着による絶縁低下の可能性は小さい。また、垂直ダクトの耐熱温度は200℃であ り、使用時の温度170℃に比して十分余裕がある。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的に絶縁抵抗測定により、機器の健全性を確認している。
303	電気設備	動力変圧器	Δ①	ゆるみ	鉄心のゆるみ	動力変圧器(安全系)	鉄心は珪素鋼板の薄板を積層し締付け、組み立てられているが、運転中の振動・温度変化 等により締付圧力が低下し、鉄心のゆるみが想定される。 しかしながら、締付ポルトには回り止めが施されており、また、これまでにゆるみは認め られておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
304	電気設備	動力変圧 器	Δ①	腐食(全面腐食)	接続銅板の腐食 (全面腐食)	動力変圧器(安全系)	接続銅板は銅であり、腐食が想定される。 しかしながら、塗装により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
305	電気設備	動力変圧器	Δ①	絶縁低下	銅板支持碍子の 絶縁低下	動力変圧器(安全系)	調板支持碍子は無機物の磁器であり、経年劣化の可能性はない。 なお、長期間の使用においては表面の汚損による絶縁低下が想定される。 しかしながら、動力変圧器は空調された屋内の筐体内に設置されていることから汚損し難 い環境にある。また、これまでに有意な汚損は認められておらず、今後もこれらの傾向が 変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
306	電気設備	動力変圧器	Δ①	腐食(全面腐食)	鉄心締付ボルト の腐食(全面腐 食)	動力変圧器(安全系)	鉄心締付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は亜鉛メッキにより腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化が多ない。 なお、代表として鉄心上部の枠締付ボルトの定期的な目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
307	電気設備	パワーセ ンタ	Δ①	汚損	消弧室の汚損	パワーセンタ(安全系)	遮断器の消弧室は遮断器の電流遮断動作に伴う消弧室でのアーク消弧により、消弧室が汚損し、消弧性能の低下が想定される。 しかしながら、これまでに有意な汚損は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
308	電気設備	パワーセ ンタ	Δ①	摩耗	一次ジャンク ションの摩耗	パワーセンタ(安全系)	一次ジャンクションは遮断器の出し入れに伴い、摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
309	電気設備	パワーセ ンタ	Δ2	固着	操作機構の固着	パワーセンタ(安全系)	遮断器の操作機構は、長期間の使用に伴いグリスが固化し、動作特性の低下が想定される。 しかしながら、定期的に注油を行い、各部の目視確認及び動作確認を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
310	電気設備	パワーセ ンタ	Δ①	絶縁低下	絶縁リンク、絶縁ベース及び絶縁支持板の絶縁 低下	パワーセンタ(安全系)	絶縁リンク、絶縁ベース及び絶縁支持板は有機物であり、熱的、電気的及び環境的要因による絶縁低下が想定される。 しかしながら、絶縁リンク等は屋内の筐体内に設置されていることから、塵埃、湿分等の 付着は抑制されている。また、主回路導体の通電時の最大温度100℃に対して、絶縁リ ンクの耐熱温度は180℃、絶縁支持板の耐熱温度は130℃、絶縁ベースの耐熱温度は 200℃と十分余裕を持った耐熱性を有していることから、絶縁低下の可能性は小さいと 考える。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な絶縁抵抗測定により、機器の健全性を確認している。
311	電気設備	パワーセ ンタ	Δ①	絶縁低下	投入コイル及び 引外しコイルの 絶縁低下	パワーセンタ(安全系)	投入コイル及び引外しコイルの絶縁物は有機物であり、熱的、電気的及び環境的要因による絶縁低下が想定される。 しかしながら、投入コイル及び引外しコイルは筐体内に設置されているため、塵埃が付着 しにくい環境にある。また、投入コイル及び引外しコイルは連続運転ではなく、作動時間 も1秒以下と小さいことから、コイルの発熱による温度上昇は小さいと考えられ、コイル の絶縁は使用温度約60°Cに比べて、十分余裕のある絶縁種(A種: 許容最高温度 105°C)を選択して使用していることから、絶縁低下の可能性は小さいと考える。 また、これまでに有意な絶縁低下は認められておらず、今後もこれらの傾向が変化する要 因があるとは考え難い。 したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
312	電気設備	パワーセ ンタ	Δ2	特性変化	保護リレー(静 止形)及び指示 計の特性変化	パワーセンタ(安全系)	保護リレー (静止形) 及び指示計は、長期間の使用に伴い特性変化が想定される。 しかしながら、保護リレー (静止形) 及び指示計は、高い信頼性を有するものを選定し使 用しており、また、屋内に設置されていることから環境変化の程度は小さく、急激な特性 変化を起こす可能性は小さいと考える。 また、マイグレーションによる基板中の回路間短絡及び半導体回路の断線については、製 造段階で基板表面をコーティングしていること及び回路製作時スクリーニングにより製作 不良に基づく回路電流集中が除かれていることから、マイグレーションが発生する可能性 は小さいと考える。 さらに、定期的な校正試験又は巡視点検等での目視確認により、機器の健全性を維持して いる。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
313	電気設備	パワーセ ンタ	Δ①	ばねの変形 (応力緩和)	ばねの変形(応力緩和)	パワーセンタ(安全系)	遮断器のばねは、投入状態又は開放状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な遮断器の動作確認及び目視確認により、機器の健全性を確認している。
314	電気設備	パワーセ ンタ	Δ①	摩耗	接触子の摩耗	パワーセンタ(安全系)	遮断器の接触子は遮断器の開閉動作に伴う電流開閉により、摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
315	電気設備	パワーセ ンタ	Δ①	腐食(全面腐食)	主回路導体の腐 食(全面腐食)	パワーセンタ(安全系)	主回路導体はアルミニウムであり、腐食が想定される。 しかしながら、アルミニウム表面はエポキシ樹脂で覆うことにより腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
316	電気設備	パワーセ ンタ	Δ①	絶縁低下	支持碍子の絶縁低下	パワーセンタ(安全系)	支持碍子は有機物であり、熱的、電気的及び環境的要因による絶縁低下が想定される。しかしながら、支持碍子は屋内の筐体内に設置されていることから、塵埃、湿分等の付着は抑制されている。また、主回路導体の通電時の最大温度100℃に対して、支持碍子の耐熱温度は105℃と十分余裕を持った耐熱性を有していることから、絶縁低下の可能性は小さいと考える。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、定期的な絶縁抵抗測定により、機器の健全性を確認している。
317	電気設備	パワーセ ンタ	Δ①	導通不良	操作スイッチの 導通不良	パワーセンタ(安全系)	操作スイッチは接点部分に付着する浮遊塵埃により、導通不良が想定される。 しかしながら、操作スイッチの接点部分は盤内に収納されており、塵埃の付着により導通 不良が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な遮断器の動作確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
318	電気設備	パワーセ ンタ	Δ2	腐食(全面腐食)	筐体の腐食(全 面腐食)	パワーセンタ(安全系)	筐体は炭素鋼であり、腐食が想定される。 しかしながら、内外面とも塗装により腐食を防止しており、塗装が健全であれば腐食進行 の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
319	電気設備	パワーセ ンタ	Δ2	腐食(全面腐 食)	埋込金物(大気 接触部)の腐食 (全面腐食)	パワーセンタ(安全系)	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
320	電気設備	コント ロールセ ンタ	Δ①	腐食(全面腐食)		原子炉コントロールセンタ(安全 系)	主回路導体は銅であり、腐食が想定される。 しかしながら、錫メッキにより腐食を防止しており、これまでに有意な腐食は認められて おらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
321	電気設備	コント ロールセ ンタ	Δ①	絶縁低下	母線支えの絶縁低下	原子炉コントロールセンタ(安全 系)	主回路導体を支持する母線支えは有機物であり、熱的、電気的及び環境的要因による絶縁 低下が想定される。 しかしながら、主回路導体を支持する母線支えは、不飽和ポリエステル樹脂であり、主回 路導体の通電時の最大温度80℃に対して、母線支えの耐熱温度は130℃と十分裕度を 持った耐熱性を有していることから、絶縁低下の可能性は小さいと考える。また、母線支 えは筐体内に設置されており、塵埃、温分等の付着による絶縁低下については発生の可能 性は小さく、これまでに有意な絶縁低下は認められていない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な絶縁抵抗測定により、機器の健全性を確認している。
322	電気設備	コント ロールセ ンタ	Δ①	腐食(全面腐食)	限流リアクトル の腐食(全面腐 食)	原子炉コントロールセンタ(安全 系)	限流リアクトルは銅であり、腐食が想定される。 しかしながら、ガラステープで覆うことにより腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
323	電気設備	コント ロールセ ンタ	Δ①	絶縁低下	限流リアクトル の絶縁低下	原子炉コントロールセンタ(安全 系)	限流リアクトルは熱的、電気的及び環境的要因による絶縁低下が想定される。 しかしながら、限流リアクトルはガラステーブで絶縁した銅導体を連続円板状に巻いたもので、各円板状コイルは樹脂製スペーサで分離し、コイルを両端からガラスエポキシ積層板から成る絶縁円板で挟むとともに、筐体等とは十分な耐熱距離を有している。限流リアトルはのでは、大分ででは、一次な耐熱温度155でを表す。 た、限流リアクトルは筐体内に設置されていることから、塵埃、湿分等の付着は抑制されている。このため、限流リアクトルについては、絶縁低下が生じる可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
324	電気設備	コント ロールセ ンタ	Δ2	腐食(全面腐食)	筐体の腐食(全 面腐食)	原子炉コントロールセンタ(安全 系)	筐体は炭素鋼であり、腐食が想定される。 しかしながら、塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は 小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
325	電気設備	コント ロールセ ンタ	Δ2	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	原子炉コントロールセンタ(安全 系)	取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、亜鉛メッキにより腐食を防止しており、メッキが健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認によりメッキの状態を確認し、はく離が認められた場合には必要 に応じて維修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
326	電気設備	コント ロールセ ンタ	Δ2	腐食(全面腐食)	埋込金物 (大気 接触部) の腐食 (全面腐食)	原子炉コントロールセンタ(安全 系)	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
327	タービン 設備	高圧ター ビン	Δ2	腐食(全面腐食)	主蒸気入口管及 び外部車室の外 面からの腐食 (全面腐食)	高圧タービン	主蒸気入口管及び外部車室は炭素鋼又は炭素鋼鋳鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食の進行の可能性は小さい。 また、分解点検時の目得確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
328	タービン 設備	高圧ター ビン	Δ2		主蒸気入口管及 び外部車室の腐 食(流れ加速型 腐食)	高圧タービン	主蒸気入口管及び外部車室は、炭素鋼又は炭素鋼鋳鋼であり、湿り蒸気流に常時さらされているため、流れ加速型腐食により減肉が想定される。 主蒸気入口管及び車室の流れ加速型腐食発生想定部位をそれぞれ図2.2-1及び図2.2-2に示す。 主蒸気入口管及び外部車室については、流れ加速型腐食による減肉が想定される。流れ加速型腐食による減肉の進行程度は流速、水質、温度、当該部の形状等の使用条件に影響され、流れ加速型腐食について一律に影響され、流れ加速型腐食に対しては、「配管肉厚管理要領書」(社内文書)に基づき、起音返厚を計による肉厚計測を計画的に実施し、肉厚計測に基づく余寿命評価から適切な時期・頻度で検査又は取替時期を計画的に実施し、肉厚計測に基づく余寿の評価から適切な時期・頻度で検査又は取替時期を設定している。また、外部車室については、分解点検時の目視確認により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
329	タービン 設備	高圧ター ビン	Δ①	疲労割れ	主蒸気入口管及 び外部車室の疲 労割れ	高圧タービン	主蒸気入口管及び外部車室は、起動・停止及び負荷変化時に発生する熱応力により、疲労割れが想定される。 しかしながら、有意な応力変動を受けない構造となっており、疲労割れが発生し難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
330	タービン 設備	高圧ター ビン	Δ2	変形	外部車室の変形	高圧タービン	外部車室は大型鋳物でかつ構造が複雑であり、わずかなひずみが想定される。 しかしながら、分解点検時の水平継手面の間隙計測及び必要に応じて当たり状況の目視確 認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
331	タービン 設備	高圧ター ビン		腐食(全面腐食)	外部車室ボルト の腐食(全面腐 食)	高圧タービン	外部車室ボルトは、フランジ面からの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
332	タービン 設備	高圧ター ビン	Δ①	腐食(流れ加 速型腐食)	内部車で 東京・ 東京・ 大学・ 大学・ 大学・ 大学・ 大学・ 大学・ 大学・ 大学	高圧タービン	内部車室、翼環、アウターグランド本体、インナーグランド本体及びダイヤフラムリング は湿り蒸気雰囲気で使用され、流れ加速型腐食による減肉が想定される。 しかしながら、耐食性に優れたステンレス鋼鋳鋼を使用しており、流れ加速型腐食が発生 する可能性は小さい。また、これまでに有意な減肉は認められておらず、今後もこれらの 傾向が変化する要因があるとは考え難い。 したがって、後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
333	タービン 設備	高圧ター ビン	Δ①	疲労割れ	内部車室の疲労割れ	高圧タービン	内部車室は、起動・停止及び負荷変化時に発生する熱応力により、疲労割れが想定される。 しかしながら、有意な応力変動を受けない構造となっており、疲労割れが発生し難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
334	タービン 設備	高圧ター ビン	Δ2	変形	内部車室の変形	高圧タービン	内部車室は温度差によりひずみが想定される。 しかしながら、分解点検時に水平継手面の間隙計測により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
335	タービン 設備	高圧ター ビン	Δ①	応力腐食割れ	内部車室ボルト 及び環環ボルト の応力腐食割れ	高圧タービン	内部車室ボルト及び翼環ボルトは、応力集中部であるネジ部を有しており、また、湿り蒸 雰雰囲気下で使用しているため、応力腐食割れが想定される。 しかしながら、内部車室ボルト及び翼環ボルトには応力腐食割れ感受性が小さいステンレ ス鋼を使用しており、総付時は締付管理により過大な応力とならないよう管理していることから、応力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を維持している。
336	タービン			腐食(全面腐食)	油止輪、カップ リングボルト及	高圧タービン	油止輪及び台板は炭素鋼、カップリングボルトは低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に成じて補除を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
337	設備	ビン	Δ①	腐食(全面腐食)	び台板の腐食 (全面腐食)		一方、油止輪の内面及びカップリングボルトについては、油雰囲気下にあり、腐食が発生し難い環境にあり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
338	タービン 設備	高圧ター ビン		高サイクル疲 労割れ	動翼の高サイク ル疲労割れ	高圧タービン	タービン運転時に固有振動数の低い動翼群が運転中に共振に近い状態になった場合、動翼の応力集中部に高サイクル疲労割れが想定される。 1981年11月、美浜1号炉の低圧タービン第6段動翼において、高サイクル疲労割れが発生している。 しかしながら、高圧タービン動翼では流体力と共振した場合でも十分な安全率を有する設計としており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
339	タービン 設備	高圧ター ビン	Δ①	摩耗	車軸の摩耗	高圧タービン	車軸を支持する軸受は、すべり軸受を使用しており、車軸の摩耗が想定される。 しかしながら、強制潤滑により車軸と軸受間に潤滑油の供給を行っているため、軸受との 直接接触による摩耗が発生し難い環境であり、これまでに有意な摩耗は認められておら ず、今後もこれらの傾向が変化する要因があるとは考え難い。 さらに、潤滑油とともに流入する異物についても、ストレーナや油清浄器により油の浄化 を実施している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
340	タービン 設備	高圧ター ビン		腐食 (流れ加 速型腐食)	車軸の腐食(流 れ加速型腐食)	高圧タービン	車軸は湿り蒸気雰囲気で使用され、流れ加速型腐食による減肉が想定される。 しかしながら、車軸は低合金鋼であり、炭素鋼に比べ優れた耐食性を有しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
341	タービン 設備	高圧ター ビン	Δ①	高サイクル疲 労割れ	車軸の高サイクル疲労割れ	高圧タービン	タービン連転時には車軸に定常応力と変動応力が発生し、高平均応力下において繰り返し 応力を受けた場合、段付部等の応力集中部に、高サイクル疲労割れが想定される。 しかしながら、タービン設計時には高サイクル疲労を考慮しており、この設計上の考慮は 経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の応力集中部に対する目視確認や磁粉探傷検査により、機器の健全性を 確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
342	タ ー ビン 設備	高圧ター ビン	Δ2	応力腐食割れ	車軸の応力腐食割れ	高圧タービン	車軸は低合金鋼であり、比較的発生応力の高い翼溝部を有しており、湿り蒸気雰囲気で使用されているため、応力腐食割れが想定される。 1984年2月、伊方1号炉の低圧タービンにおいて、片側5枚ある円板のうち上流側から2番目の第2円板翼溝部に、応力腐食割れと考えられる割れが認められた。しかしながら、高圧タービン車軸は、降伏応力の低い低合金鋼を使用しており、応力腐食割れに対する感受性が低い。また、運転中に発生する応力は、応力腐食割れが発生する応力よりも低い。以上より、高圧タービン車軸の応力腐食割れに対する感受性は低く、発生の可能性は小さいと判断する。 以上より、高圧タービン車軸の応力腐食割れに対する感受性は低く、発生の可能性は小さいと判断する。 いと判断する。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
343	タービン 設備	高圧ター ビン	Δ2	腐食(全面腐 食)	軸受台の腐食 (全面腐食)	高圧タービン	軸受台は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
344	ax um	1	Δ①	腐食(全面腐食)	(王田)阿及/		一方、軸受台内面については、油雰囲気下であり腐食が発生し難い環境であり、これまで に有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難 い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
345	タービン 設備	高圧ター ビン	Δ2	摩耗、はく離	ジャーナル軸受 ホワイトメタル の摩耗、はく離	高圧タービン	ジャーナル軸受のホワイトメタルは、長時間の使用により摩耗、はく離が想定される。 しかしながら、ジャーナル軸受ホワイトメタルの摩耗に対しては、分解点検時の目視確 認、車軸と軸受内面の間隙計測により、はく離についても定期的に目視確認、ホワイトメ タル部の浸洗探傷検査の投租音波探傷検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
346	タービン 設備	高圧ター ビン	Δ①	腐食(全面腐食)	車室支えボルト の腐食(全面腐 食)	高圧タービン	車室支えボルトは低合金鋼であり、腐食が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
347	タービン 設備	低圧ター ビン	Δ2	腐食(全面腐食)	外部車室の外面 からの腐食(全 面腐食)	低圧タービン	外部車室は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全あれば腐食進行 の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
348	タービン 設備	低圧ター ビン	Δ2	腐食 (流れ加 速型腐食)	外部車室の腐食 (流れ加速型腐 食)	低圧タービン	外部車室内面は、湿り蒸気流に常時さらされており、流れ加速型腐食により減肉する可能性がある。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
349	タービン 設備	低圧ター ビン	Δ①	腐食(全面腐食)	外部車室ボルト の腐食(全面腐 食)	低圧タービン	外部車室ボルトは、フランジ面からの大気流入により、ボルトの腐食が想定される。 しかしながら、締付管理によりフランジ面からの流入防止を図っており、これまでに有意 な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
350	タービン 設備	低圧ター ビン	Δ2	腐食 (流れ加 速型腐食)	内部車室の腐食 (流れ加速型腐 食)	低圧タービン	内部車室は炭素鋼、炭素鋼鋳鋼及びステンレス鋼であり、湿り蒸気流に常時さらされているため、流れ加速型腐食により減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
351	タービン 設備	低圧ター ビン	Δ①	疲労割れ	内部車室の疲労 割れ	低圧タービン	内部車室は、起動・停止及び負荷変化時に発生する入口側と出口側の蒸気温度差の変化に よる熱応力により、疲労割れが想定される。 しかしながら、有意な応力変動を受けない構造となっており、疲労割れが発生し難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
352	タービン 設備	低圧ター ビン	Δ①	変形	内部車室の変形	低圧タービン	内部車室は温度差によるひずみが想定される。 しかしながら、これまでに有意な変形は認められておらず、今後もこれらの傾向が変化す る要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時に水平継手面間隙計測や目視確認により、機器の健全性を確認してい る。
353	タービン 設備	低圧ター ビン	Δ①	腐食(全面腐食)	内部車室ボルトの腐食(全面腐食)	低圧タービン	内部車室ボルトは、低合金鋼であり腐食が想定される。 しかしながら、蒸気中の溶存酸素濃度が低いことから腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により機器の健全性を確認している。
354	タービン 設備	低圧ター ビン	Δ①	腐食(全面腐食)	クロスオーバパ イプアダプタの 腐食 (全面腐 食)	低圧タービン	クロスオーババイプアダプタは炭素鋼であり、かつ外側は湿り蒸気雰囲気下で使用しており、腐食が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容	
355	タービン 設備	低圧ター ビン	Δ2	腐食 (流れ加 速型腐食)	グランド本体の 腐食(流れ加速 型腐食)	低圧タービン	グランド本体は炭素鋼であり、蒸気に常時さらされているため、流れ加速型腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。	
356	タービン設備		低圧ター ビン	Δ2	腐食(全面腐食)	軸受箱及びグラ ンド本体(外 面)の腐食(全	低圧タービン	軸受箱及びグランド本体は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応 して補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
357	ох ин		Δ①	腐食(全面腐 食)	面腐食)		一方、軸受箱内面については、油雰囲気下であり腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難し。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を維持している。	
358	タービン設備	低圧タービン	Δ2	腐食(全面腐食)	油止輪、カップ リングボルト及 び台板の腐食	低圧タービン	油止輪及び台板は炭素鋼、カップリングボルトは低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応 して補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。	
359	DX JIM		Δ①	腐食(全面腐食)	(全面腐食)		一方、内面及びカップリングボルトについては油雰囲気下であり腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。	
360	タービン 設備	低圧ター ビン	Δ2	腐食(エロー ジョン)	動翼の腐食(エ ロージョン)	低圧タービン	最終段動翼群は流入する湿り蒸気流に常時さらされているため、蒸気中に含まれた水滴によるエロージョンが想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。	
361	タービン 設備	低圧ター ビン	Δ①	高サイクル疲 労割れ	動翼の高サイクル疲労割れ	低圧タービン	タービン運転時に固有振動数の低い動翼群が運転中に共振に近い状態になった場合、動翼の応力集中部に高サイクル疲労割れが想定される。 1981年11月、美浜1号炉の低圧タービン第6段動翼において、高サイクル疲労割れが発生している。 しかしながら、低圧タービン動翼では流体力と共振した場合でも十分な安全率を有する設計としており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の応力集中部に対する目視確認や磁粉探傷検査により、機器の健全性を確認している。	
362	タービン 設備	低圧ター ビン	Δ①	腐食 (流れ加 速型腐食)	翼環の腐食(流 れ加速型腐食)	低圧タービン	環環は蒸気に常時さらされており、流れ加速型腐食により減肉が想定される。 しかしながら、耐食性に優れたステンレス鋼鋳鋼を使用しており、流れ加速型腐食が発生 する可能性は小さい。また、これまでに有意な腐食は認められておらず、今後もこれらの 傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。	
363	タービン 設備	低圧ター ビン	Δ①	応力腐食割れ	翼環ボルトの応 力腐食割れ	低圧タービン	環環ボルトは、応力集中部であるネジ部を有しており、また、湿り蒸気雰囲気下で使用しているため、応力腐食割れが想定される。 しかしながら、環境ボルトには応力腐食割れ感受性が小さいステンレス鋼を使用しており、締付時は終付管理により過大な応力とならないよう管理していることから、応力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。	
364	タービン 設備	低圧ター ビン	Δ①		静翼の腐食(流 れ加速型腐食)	低圧タービン	静翼の翼根リングは湿り蒸気雰囲気で使用され、流れ加速型腐食により減肉が想定される。 しかしながら、翼根リングはステンレス鋼鋳鋼又は炭素鋼を使用し、炭素鋼部分にはニッケル基合金を塗布しており、優れた耐食性を有している。また、これまでに有意な流れ加速型腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、健全性を確認している。	
365	タービン 設備	低圧ター ビン	Δ①	摩耗	車軸の摩耗	低圧タービン	車軸を支持する軸受は、すべり軸受を使用しており、車軸の摩耗が想定される。 しかしながら、強制潤滑により車軸と軸受間に潤滑油の供給を行っているため、軸受との 直接接触による摩耗が発生し難い環境であり、これまでに有意な摩耗は認められておら ず、今後もこれらの傾向が変化する要因があるとは考え難い。 さらに、潤滑油とともに流入する異物についても、ストレーナや油清浄器により油の浄化 を実施している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。	
366	タービン 設備	低圧ター ビン	Δ①	腐食 (流れ加 速型腐食)	車軸の腐食(流 れ加速型腐食)	低圧タービン	車軸は湿り蒸気雰囲気で使用され、流れ加速型腐食により減肉が想定される。 しかしながら、車軸は低合金鋼であり、炭素鋼に比べ優れた耐食性を有しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 とたがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。	

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
367	タービン 設備	低圧ター ビン	Δ①	高サイクル疲 労割れ	車軸の高サイク ル疲労割れ	低圧タービン	タービンの運転時には車軸に定常応力と変動応力が発生し、高平均応力下で 繰り返し応力を受けた場合、段付部等の応力集中部に、高サイクル疲労割れが想定される。 しかしながら、タービン設計時には高サイクル疲労を考慮しており、この設計上の考慮は 経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の応力集中部に対する目視確認や超音波探傷検査により、機器の健全性 を確認している。
368	タ ー ビン 設備	低圧ター ビン	Δ2)	応力腐食割れ	円板の応力腐食 割れ	低圧タービン	車軸は低合金鋼であり、比較的発生応力の高い翼溝部を有しており、湿り蒸気雰囲気で使用されているため、応力腐食割れが想定される。 1984年2月、伊方1号炉の低圧ターピンにおいて、片側5枚ある円板のうち上流側から2番目の第2円板翼溝部に、応力腐食割れと考えられる割れが認められた。円板は低合金鋼であり、比較的発生応力の高い翼溝部を有している。また、湿り蒸気雰囲気下で使用しているため、応力の低砂発生する可能性がある。 以下で使用しているため、応力の低い低合金質性しており、応力腐食割れに対する感受性が低い。また、運転中に発生する応力は、応力腐食割れが発生する応力よりも低く、製作時の熱処理により、表面に圧縮残留応力を付与し、応力腐食割れの発生を抑制している。 さらに、分解点検時の目視確認及び翼溝部端面の磁粉探傷検査を実施し、機器の健全性を維持している。 さらに、分解点検時の目視確認及び翼溝部端面の磁粉探傷検査を実施し、機器の健全性を維持している。 う後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
369	タービン 設備	低圧ター ビン	Δ2)	摩耗、はく離	ジャーナル軸受 及びスラスト軸 受ホワイトメタ ルの摩耗、はく 離	低圧タービン	ジャーナル軸受及びスラスト軸受のホワイトメタルは、長時間の使用により摩耗、はく離が想定される。 しかしながら、ジャーナル軸受及びスラスト軸受ホワイトメタルの摩耗に対しては、分解 点検時の目視確認及び車軸と軸受内面の間隙計測により、はく離についても、分解点検時 の目視確認、ホワイトメタル部の浸透探傷検査及び超音波探傷検査により、機器の健全性 を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
370	タービン 設備	タービン 動主給プ 駆動ター ビン	Δ2	腐食(全面腐 食)	車室及びグラン ド本体の外面か らの腐食(全面 腐食)	タービン動主給水ポンプ駆動ター ビン	車室及びグランド本体の炭素鋼使用部位については、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
371		タービン	Δ2	腐食 (流れ加 速型腐食)	車室、低圧ノズ		車室の炭素鋼使用部位については、湿り蒸気流に常時さらされているため、流れ加速型腐食により減肉が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
372	タービン 設備	動主給水 ポンター 駆動ン	Δ①	腐食(流れ加 速型腐食)	・ル室及びグラン ド本体の腐食 (流れ加速型腐食)	タービン動主給水ポンブ駆動ター ビン	一方、低圧ノズル室及び軸端側グランド本体は、乾き蒸気雰囲気で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。また、ポンプ側グランド本体はステンレス鋼鋳鋼であり優れた耐食性を有していることから、流れ加速型腐食が発生する可能性は小さい。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
373	タービン 設備	タービン 動主給プ 駆動ビン	Δ①	疲労割れ	車室の疲労割れ	タービン動主給水ポンプ駆動ター ビン	車室は、起動・停止時及び負荷変化時に発生する熱応力により疲労割れが想定される。 しかしながら、有意な応力変動を受けないことから、疲労割れが発生し難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
374	タービン 設備	タービン 動主給プ 駆動ビン	Δ2	変形	車室の変形	タービン動主給水ポンプ駆動ター ビン	車室はステンレス鋼鋳鋼及び炭素鋼を用いており、素材製作時の熱処理段階で寸法安定化が図られているが、車室は大型鋳物でかつ構造が複雑であり、わずかなひずみの発生が想定される。 しかしながら、分解点検時の水平継手面の間隙計測、また必要に応じて水平継手面の修正加工を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
375	タービン 設備	タービン 動主給ポ ポンプ 駆動ター ビン	Δ①	腐食(全面腐 食)	車室ボルトの腐 食(全面腐食)	タービン動主給水ポンプ駆動ター ビン	車室ボルトは、低合金鋼及び炭素鋼であり、フランジ面からの内部流体の漏えいや大気の流入により腐食が想定される。 しかしながら、締付管理により漏えい、大気の流入防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時等の目視確認により、機器の健全性を確認している。
376	タービン 設備	タービン 動主給プ 駆動ビン	Δ2)	腐食 (エロー ジョン)	動翼の腐食(エロージョン)	タービン動主給水ポンプ駆動ター ビン	動翼第5、6段は湿り蒸気雰囲気で使用されるため、蒸気中の水滴による衝撃で、翼入口 先端部がエロージョンにより減肉が想定される。 動翼第5、6段に流入する蒸気の湿り度が大きく、かつ周方向速度も大きいため、動翼先 端部の減肉が大きくなることが考えられ、減肉の進行によりステライトのはく離が想定さ れる。 しかしながら、エロージョンについては、分解点検時間の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
377	タービン 設備	タービン水 町主ンタン 駆動 ビン	Δ①	高サイクル疲 労割れ	動翼の高サイク ル疲労割れ	タービン動主給水ポンプ駆動ター ビン	タービン連転時に固有振動数の低い動翼群が運転中に共振に近い状態になった場合、動翼の応力集中部に高サイクル疲労割れが想定される。 1981年11月に美浜1号炉の低圧タービン第6段動翼において、高サイクル疲労割れが発生している。 しかしながら、動翼設計時に流体力と共振した場合でも十分な安全率を有する設計としており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の応力集中部に対する目視確認や磁粉探傷検査により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
378	タービン 設備	タービン サ主給ポ ポ動 ビンタ ビン	Δ①	摩耗	車軸の摩耗	タービン動主給水ポンブ駆動ター ビン	車軸を支持する軸受は、すべり軸受を使用しており、車軸の摩耗が想定される。 しかしながら、強制潤滑により車軸と軸受間に潤滑油の供給を行っているため、軸受との 直接接触による摩耗が発生し難い環境であり、これまでに有意な摩耗は認められておら ず、今後もこれらの傾向が変化する要因があるとは考え難い。 さらに、潤滑油とともに流入する異物についても、ストレーナや油清浄器により油の浄化 を実施している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
379	タービン 設備	タービン 動主給プ 駆動ビン			車軸の腐食(流 れ加速型腐食)	タービン動主給水ポンブ駆動ター ビン	車軸は湿り蒸気雰囲気で使用しており、流れ加速型腐食により減肉が想定される。 しかしながら、車軸は低合金鋼であり、炭素鋼に比べ優れた耐食性を有しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
380	ター ビン 設備	タービン 動主 ポ動 ボ動 ビン タ ン マ ン マ ン マ ン 、 、 、 、 、 、 、 、 、 、 、 、 、		高サイクル疲 労割れ	車軸の高サイク ル疲労割れ	タービン動主給水ポンブ駆動ター ビン	タービン運転時には車軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。しかしながら、タービン設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。なお、巡視点検時の振動確認(通常運転時の振動状態と差異がないことの触診や目視による確認)及び試運転時における振動確認(変位の測定等)並びに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。
381	タービン 設備	タービン 動主給 ポ動リンター ビン	Δ2	応力腐食割れ	車軸の応力腐食 割れ	タービン動主給水ポンブ駆動ター ビン	車軸は低合金鋼であり、比較的発生応力の高い翼溝部を有しており、湿り蒸気雰囲気で使用されているため、応力腐食割れが想定される。 1984年2月に、伊方1号炉の低圧タービンにおいて、片側5枚ある円板のうち上流側から2番目の第2円板翼溝部に、応力腐食割れそ考えられる割れが認められた。しかしながら、車軸には応力腐食割れに対する感受性の低い降伏応力約690MPa級の材料を使用しており、降伏応力(0.2%耐力)と応力腐食割れ発生の関係、また、一定のひずみ速度で荷重を加えた場合の破面観察結果からも、降伏応力約690MPa級の材料では粒界割れ破面はごくわずかであり、応力腐食割れに対する感受性は低い。さらに、分解点検時の車軸翼溝部端面の目視確認や磁粉探傷検査により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
382	タービン 設備	タービンル 一生給プー 駆動ター	Δ2	腐食(全面腐食)	軸受台及び台板 の腐食(全面腐 食)	タービン動主給水ポンプ駆動ター ビン	軸受合及び台板は炭素鋼又は炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離等が認められた場合は必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
383		製が		腐食(全面腐食)	K)		一方、軸受台内面については、油雰囲気下で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
384	タービン 設備	タービン ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Δ2	摩耗、はく離	ジャーナル軸受 及びスラスト軸 受ホワイトメタ ルの摩耗、はく 離	タービン動主給水ポンプ駆動ター ビン	ジャーナル軸受及びスラスト軸受のホワイトメタルは、長時間の使用により摩耗、はく離が想定される。 しかしながら、摩耗に対しては、分解点検時の目視確認、車軸と軸受内面の間隙計測や軸 表面の当たり幅の確認により、はく離については、分解点検時の目視確認及びホワイトメ タル部の浸透探傷検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
385	タービン 設備	タービン ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Δ①	摩耗	主軸の摩耗	タービン動補助給水ポンプタービ ン	ころがり軸受を使用しているタービン動補助給水ポンプタービンについては、軸受と主軸の接触面で摩耗が想定される。 軸受定期取替時の軸受引き抜きの際に主軸表面にわずかな線形模様が生じこともあり、主軸表面をサンドペーパで仕上げる方策も考えられる。この場合、主軸表面にわずかな摩耗が発生する可能性がある。しかしながら、これを防止するため主軸表面の仕上げは行わない運用としており、これを応したのしながら、これを防止するため主軸表面の仕上げは行わない運用としており、これをに上有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
386	タービン 設備	タービン 動補ポポービン		高サイクル疲 労割れ	主軸の高サイクル疲労割れ	タービン動補助給水ポンプタービ ン	タービン連転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。したしながら、タービン設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、試運転時における振動確認(変位の測定等)並びに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。
387	タービン 設備	タービン 動ポポン タービン	Δ2	応力腐食割れ	円板の応力腐食 割れ	タービン動補助給水ポンプタービ ン	円板は低合金鋼であり、湿り蒸気雰囲気下で使用されているため、円板の翼溝部及びキー 溝部に応力腐食割れが想定される。 しかしながら、翼溝部の発生応力は、O. 2%耐力最大と比較しても約1/3程度と小さ く、円板と主軸は中心穴のテーバ形状によるはめあいにより結合されていることからキー 溝部に過大な応力が発生しない構造となっている。 また、分解点検時に円板への動翼取付け状況及び応力集中部に対する目視確認や浸透探傷 検査により、機器の健生を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
388	タ ー ビン 設備	ター補ポービン給プン がポービン	Δ2	腐食(全面腐食)	油圧ユニット ケーシング及び 外部油食(全面		油圧ユニットケーシング及び外部油圧ユニットは、炭素鋼鋳鋼、鋼合金及び鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
389		, ,	Δ①	腐食(全面腐食)	腐食)		一方、内面については内部流体が油で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
390	タービン 設備	タービン 動補ポンビン タービン	Δ①	摩耗	ガバナ調速機構の摩耗	タービン動補助給水ポンプタービ ン	ガバナ調速機構を構成するガバナ弁、圧力調整器、オイルリレー及びオーバスピードガバナの摺動部に摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の寸法計測により、機器の健全性を確認している。
391	タービン 設備	タービン 動補助ポ ポンシービン	Δ①	ばねの変形(応力緩和)	ばねの変形(応 カ緩和)	タービン動補助給水ポンプタービ ン	オイルリレースブリング、圧力調整器スプリング、ガバナスブリング及びトリップラッチスプリングは、ある一定の応力状態にて長時間保持されることにより、変形(応力緩和) 想定される。しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね材料と使用環境温度の実態調査結果と比べて、当該ばねは余裕のある環境で使用している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、起動試験時のガバナ弁動作状態確認により、機器の健全性を確認している。
392	タービン 設備	タービン 動補ポンマービン インシービン	Δ①	摩耗	油圧ユニット主 油ポンプ歯車及 び駆動用歯車の 摩耗	タービン動補助給水ポンプタービ ン	油圧ユニットの主油ボンプは、駆動用歯車を介して主軸の回転力により駆動されており、また主油ボンプも歯車ボンプであるため、歯車に摩耗が想定される。 しかしながら、歯車には潤滑油を供給し摩耗を防止しており、摩耗が発生し難い環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
393	タービー	タービン がポンプ	Δ2	腐食(全面腐食)	ケーシング、 ケーシングカ パー及びダイヤ	タービン動補助給水ポンプタービ ン	ケーシング及びケーシングカバーは、低合金鋼鋳鋼又は炭素鋼であり外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視表等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
394		タービン	Δ①	腐食(全面腐食)	フラムの腐食 (全面腐食)		一方、ケーシング、ケーシングかバー及び炭素鋼鋳鋼製のダイヤフラムの内面については、湿り蒸気雰囲気中の長期間の使用により腐食が想定される。 しかしながら、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 も要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
395	タービン 設備	タービン 動補ポンプ タービン	Δ①	疲労割れ	ケーシング、 ケーシングカ バー及びダイヤ フラムの疲労割 れ	タービン動補助給水ポンプタービ ン	ケーシング、ケーシングカバー及びダイヤフラムは、タービン起動時に発生する内部流体 の温度、圧力の変化により疲労が蓄積することから、疲労割れが想定される。 しかしながら、本機器の定期運転も考慮した起動発停回数は限られているため、疲労割れ が発生し難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
396	タービン 設備	タービン 動ポポンン タービン	Δ①	腐食(全面腐 食)	ケーシングボル トの腐食(全面 腐食)	タービン動補助給水ポンプタービ ン	ケーシングボルトは低合金鋼であり、フランジ面からの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
397	タービン 設備	主油ポン プ	Δ①	腐食(全面腐 食)	主軸及びケーシング等の腐食 (全面腐食)		主軸、ケーシング、ケーシングボルト、ケーシング取付ボルト及び中間リングは低合金 鋼、炭素鋼鋳鋼及び炭素鋼であり、腐食が想定される。 しかしながら、主油ボンブは軸受台内に設置されており、内外面ともに油又は油雰囲気下 で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれ らの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
398	タービン 設備	主油ポン プ	Δ①	高サイクル疲 労割れ	主軸の高サイクル疲労割れ	主油ポンプ	ポンプ運転時には主軸に定常応力と変動応力が発生し、高平均応力下において繰り返し応力を受けると、段付部等の応力集中部において、高サイクル疲労割れが想定される。 しかしながら、ポンプ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化する令後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の応力集中部に対する目視確認により、機器の健全性を確認している。
399	タービン設備	主油ポンプ	Δ①	腐食(キャビ テーション)	羽根車の腐食 (キャビテー ション)	主油ポンプ	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温に おける飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こ ることが想定される。 しかしながら、ポンプ及び機器配置の設計時にはキャビテーションを考慮しており、この 設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
400	タービン 設備	調速装 置・保安 装置	Δ2	腐食(全面腐食)	ケーシング及び チューブの腐食 (全面腐食)	調速装置	高圧油ポンプ、高圧油ポンプアンロード弁及びEH高圧油リリーフ弁のケーシング並びに EHアキュムレータタンクのチューブは鋳鉄又は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応 じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
401			Δ①	腐食(全面腐食)			一方、内面については内部流体が油で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
402	タービン 設備	調速装 置・保安 装置		腐食(全面腐食)	主軸及びロータ等の腐食(全面腐食)	調速装置	高圧油ポンプの主軸及びロータ並びに高圧油ポンプアンロード弁及びEH高圧油リリーフ 弁のプランジャ、ポペット及びブッシュは低合金鋼であり、腐食が想定される。 しかしながら、油雰囲気下で腐食が発生し難い環境にあり、これまでに有意な腐食は認め られておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
403	タービン 設備	調速装 置・保安 装置	Δ①	摩耗	プランジャ、ポ ペット及びブッ シュの摩耗	調速装置	高圧油ポンプアンロード弁及びEH高圧油リリーフ弁のプランジャ、ポペット及びブッシュは、弁の開閉により搭動面、シート面に摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
404	タービン 設備	調速装 置・保安 装置	Δ①	摩耗	チューブ及びピ ストンの摩耗	調速装置	EHアキュムレータタンクのチューブ及びピストンの摺動部は、ピストンの動作による摩 耗が想定される。 しかしながら、チューブには硬質クロムメッキを他、ピストンには耐摩集性に優れた材 材を使用し、耐摩耗性を向上させるとともに、摺動部に潤滑油を注入することで摩耗を防 止しており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する 要因があるとは考え難い したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
405	タービン 設備	調速装 置・保安 装置	Δ①	ばねの変形 (応力緩和)	ばねの変形 (応力緩和)	共通	高圧油ポンプアンロード弁、EH高圧油リリーフ弁、過速度トリップ装置及び非常遮断用 ビストン弁に使用されているばねは長時間圧縮保持されることにより、変形(応力緩和) が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは余裕のある環境で使用してい る。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な作動確認により、機器の健全性を確認している。
406	タービン 設備	調速装 置・保安 装置	Δ2	腐食(全面腐食)	架台及びスタン ドの腐食 (全面 腐食)	調速装置	高圧油供給ユニット架台及びEHアキュムレータタンクスタンドは炭素鋼であり、腐食が 想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応 して補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
407	タービン 設備	調速装 置・保安 装置	Δ①	摩耗	遮断子及びトリ ガーの摩耗	保安装置	過速度トリップ装置の遮断子及びトリガーは、動作による摩耗が想定される。 しかしながら、遮断子はステライトの肉盛を施し、トリガー表面は高周波焼入れにより、 耐摩耗性を向上させており、これまでに有意な摩耗は認められておらず、今後もこれらの 傾向が変化す。今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び寸法計測により、機器の健全性を確認している。
408	タービン 設備	調速装 置・保安 装置	Δ①	腐食(全面腐食)	トリガーの腐食(全面腐食)	保安装置	過速度トリップ装置のトリガーは低合金鋼であり、腐食が想定される。 しかしながら、油雰囲気下で腐食が発生し難い環境にあり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
409	タービン 設備	調速装 置・保安 装置	Δ2	腐食(全面腐食)	弁箱、シリンダ 及びピストンの 腐食)	保安装置	非常遮断用ピストン弁の弁箱、シリンダ及びピストンは炭素鋼鋳鋼、炭素鋼及び鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小技等い目視により塗装の状態を確認し、はく離が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
410			Δ①	腐食(全面腐食)	ents/		一方、内面については内部流体が油で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
411	タービン 設備	調速装 置・保安 装置	Δ①	摩耗	弁体及び弁箱弁 座部の摩耗	保安装置	非常遮断用ピストン弁の弁体及び弁箱弁座部は弁の開閉による摩耗が想定される。 しかしながら、弁体及び弁箱弁座部には耐摩耗性に優れたステライトを肉盛しており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは 考え赴がっ、 一、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
412	タービン 設備	調速装 置・保安 装置	Δ①	摩耗	シリンダ及びピ ストンの摩耗	保安装置	非常遮断用ビストン弁のシリンダ及びビストンは、弁の開閉による摩耗が想定される。 しかしながら、内部流体が油であるため摩耗が発生し難い環境であり、これまでに有意な 摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び寸法計測により、機器の健全性を確認している。
413	コンク リート及 替 対 物	-	Δ①	コンクリート の強度低下	アルカリ骨材反応による強度低下		
414	コンク リート構 造物骨構造 物	1	Δ①		凍結融解による 強度低下	外部遮蔽壁、内部コンクリート、原子炉格納施設基礎、原子炉補助 建屋、タービン建屋(タービン架 台)、取水構造物	
415	コンク リート 構び 鉄骨構 物	-	Δ①	コンクリートの耐火能力低下		外部遮蔽壁、内部コンクリート、 原子炉補助建屋、取水構造物	コンクリート構造物は、断面厚により耐火能力を確保する設計であるが、火災時の熱により剥落が生じ、部分的な断面厚の減少に伴う耐火能力の低下によりコンクリート構造物の 健全性が損なわれる可能性がある。 しかしながら、コンクリート構造物は通常の使用環境において、経年によりコンクリート 構造物の断面厚が減少することはなく、定期的な目視点検においても断面厚の減少は認め られていない。 以上から、火災時の熱によるコンクリートの耐火能力低下は、高経年化対策上着目すべき 劣化事象ではないと判断した。
416	コンク リート 特 特 付 構 物	ı	Δ2	鉄骨の強度低 下	腐食による強度低下		鉄は一般に大気中の酸素、水分と化学反応を起こして腐食する。また、海塩粒子等により 腐食が促進される。腐食が進行すると鉄骨の断面欠損に至り、鉄骨の強度低下につながる 可能性がある。 しかしながら、定期的に目視点検を実施しており、強度に支障をきたす可能性のあるよう な鋼材の腐食は認められていない。また、鉄骨の強度に支障をきたす可能性のあるような 鋼材の腐食に影響する塗膜の劣化等が認められた場合には、その部分の塗替え等を行うこ ととしている。 以上から、腐食による強度低下は、高経年化対策上着目すべき劣化事象ではないと判断し た。
417	計測制御設備	プロセス	Δ①	応力腐食割れ	1 次冷却材系統 に接する計装用 取出配管等の応 力腐食割れ	1 次冷却材圧力、加圧器水位	1996年5月、米国セコイヤ (Sequoyah) 発電所2号炉で、1次系水質環境においても 局所的に溶存酸素濃度が高くなる等の理由で内面からの応力腐食割れによる漏えいが発生 していることから、応力腐食割れが想定される。 しかしながら、当該部位でついては、SUS304系より耐応力腐食割れ性の優れている SUS316系を使用している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、1次冷却材系統における漏えい試験により、機器の健全性を確認している。
418	計測制御設備	プロセス	Δ2	応力腐食割れ	計装用取出配管、計器元弁、計装配管のからの応力腐食割れ	余熱除去ループ流量	余熱除去ループ流量の計装用取出配管等はステンレス鋼であり、外表面に大気中の海塩粒子等の塩分が付着した場合、塩化物イオンによる応力蔵食割れが想定される。しかしながら、周辺環境における塩分付着量を測定し、応力腐食割れに対して問題のないことを確認している。また、余熱除去ループ流量の計装用取出配管等は屋内に設置されおり、屋外に設置されている配管等と比較して環境条件は穏やかであり、大気中の海塩粒子が外表面に直接付着する可能性は小さい。 さらに、巡視点検時等の目視確認により機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
419	計測制御設備	プロセス	Δ2	腐食(全面腐食)	伝送器の腐食 (全面腐食)	余熱除去ループ流量	伝送器のケースはアルミニウム合金鋳物であり、腐食が想定される。 しかしながら、塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は 小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
420	計測制御設備	プロセス	Δ2)	特性変化	指計、伝統 信、動 に で は で が に が に が に が に が に が に が に が に が に が	指示計、記録計[水平方向加速度除を除いて共通]、伝送器[余熱除 会除いて共通]、伝送器 換処何向 「共通]、電源 美動操作器 速度]、自動操作器 東京、自動操作器 東京、自動操作器 原本の表面、 原本の表面、 原本の表面、 原本の表面、 原本の表面、 原本の表面、 を、 を表面、 を表面、 を表面、 を表面、 を表面、 を表面、 を表面、 を表面、 を表面、 を表面、 を、 を、 を、 を、 を、 を、 を、 を、 を、 を	III 及び利利回回の展示が入さ、べることでイップレーションが必定される。 しかしながら、信号処理・変換を行う電気回路部は、定格値(定格電圧、電流値)に対して、回路上は十分低い範囲で使用する設計としており、屋内に設置されていることから環境変化の程度は小さく、短期間で特性変化を起こす可能性は小さいと考える。 また、製造段階で製作不良に基づく回路電流集中を取り除くスクリーニングを実施していることから、マイグレーションが発生する可能性は小さいと考える。 よこに、空間的た坊正計解を近に、本意やおせが、サールを取ります。ことには、世界のお坊正計解をなど、本意やおせが、サールを取ります。ことには、世界の
421	計測制御設備	プロセス	Δ2	導通不良	リレー回路の導 通不良	水平方向加速度	水平方向加速度計のリレー回路は、接点部分に付着する浮遊塵埃により、導通不良が想定される。 しかしながら、接点部分は筐体に収納されており、塵埃の付着により導通不良が発生する 可能性は小さい。 また、定期的な校正試験でリレー回路に導通不良がないことを確認することにより、機器 の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
422	計測制御設備	プロセス	Δ2	腐食(全面腐 食)	筐体、スタン スタンスペーサンス ブルート、チス及(サール・チス及(東京会の で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、	冷却材圧力、余熱除去ループ流 景 加圧器水位] チャンネル	筐体、スタンション、ベースプレート、サポート、チャンネルベース及び架台は炭素鋼であり腐食が想定される。しかしながら、塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
423	計測制御設備	プロセス	Δ2	腐食(全面腐食)	パイプハンガー 及びパイプハン ガークランプの 腐食 (全面腐 食)	1 次冷却材圧力、余熱除去ループ 流量、加圧器水位	パイプハンガー及びパイプハンガークランプは炭素鋼であり腐食が想定される。 しかしながら、亜鉛メッキにより腐食を防止しており、メッキ面が健全であれば腐食進行 の可能性は小さい。 また、定期的な目視確認によりメッキ面の状態を確認し、はく離が認められた場合には必 要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
424	計測制御設備	プロセス	Δ2	腐食(全面腐食)	取付ボルトの腐食 (全面腐食)	1 次冷却材圧力、余熱除去ループ 流量、加圧器水位、1 次冷却材高 温側温度(広域)、格納容器内高 レンジェリアモニタ	取付ポルトはステンレス鋼又は炭素鋼であり、炭素鋼は腐食が想定される。 しかしながら、塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は 小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
425	計測制御設備	プロセス	Δ2	腐食(全面腐食)	埋込金物 (大気 接触部) の腐食 (全面腐食)	1 次冷却材圧力、余熱除去ループ 流量、加圧器水位	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
426	計測制御設備	制御設備	Δ①	導通不良	操作スイッチの 導通不良	共通	操作スイッチは、接点部分に浮遊塵埃が付着することにより、導通不良が想定される。 しかしながら、操作スイッチの接点部分は盤内に収納されており、塵埃の付着により導通 不良が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な動作確認により、機器の健全性を維持している。
427	計測制御設備	制御設備	Δ2	特性変化	半導体基板、電 圧調整装置、回 転数検出装置及 び指示計の特性 変化	半導体基板 [原子炉安全保護盤] 、電圧調整装置、回転数検出装置及び指示計 [ディーゼル発電機盤]	半導体基板等は、長時間の使用に伴い、制御機能の低下が考えられる。しかしながら、半導体基板等を構成している電気回路部は、定格値(定格電圧、電流値)に対して、回路上は十分低い範囲で使用する設計としており、また、屋内に設置されていることから環境変化の程度は小さく、短期間での特性変化を起こす可能性は小さいと考える。また、マイグレーションによる基板中の回路間短絡及び半導体回路の断線についても、回路製作時、スクリーニングを実施し、要因の1つとして考えられる製作不良に基づく回路電流集中が除かれているため、半導体回路所線が発生する可能性は小さいと考える。さらに定期的な校正試験を行い有意な特性変化がないことを確認することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化率象ではない。
428	計測制御設備	制御設備	Δ2	特性変化	電圧設定器の特 性変化	ディーゼル発電機盤	電圧設定器の小型直流モータは、ブラシの摩耗、接触面の荒れやブラシの摩耗に伴う接触 圧の低下による出力特性の変化が想定される。 しかしながら、非常用ディーゼル発電機の起動回数は月に2回程度と少なく、その動作時間も数十秒/回と短い。 また、定期的なブラシ摩耗量測定により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
429	計測制御設備	制御設備	Δ2	特性変化	シリコン整流器 の特性変化	ディーゼル発電機盤	シリコン整流器は高い温度で運転し続けると特性の変化が想定される。 しかしながら、使用電流値と比べて一定の裕度を持つ定格の素子を使用することで、発熱 を低減するとともに、放熱板で冷却することにより、整流器の温度を一定に保つように設 計しており、特性が急激に変化する可能性は小さいと考える。 また、定期的な校正試験により、機器の健全性を維持している。 したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
430	計測制御設備	制御設備	Δ①	腐食(全面腐食)	ヒートパイプの 腐食	ディーゼル発電機盤	ヒートパイプは銅合金であり、腐食が想定される。 しかしながら、ヒートパイプに使用している銅材料は、化学的に安定した(錆等の劣化が 発生し難い)材料であり、環境劣化による劣化損傷が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を維持している。
431	計測制御設備	制御設備	Δ2	腐食(全面腐食)	筐体及び埋込金 物(大気接触 部)の腐食(全 面腐食)	筐体 [共通] 及び埋込金物(大気 接触部) [主盤]	筐体及び埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は 小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
432	空調設備	ファン	Δ①	腐食(全面腐 食)	羽根車等の腐食 (全面腐食)	共通	羽根車等は炭素鋼であり、腐食が想定される。 しかしながら、塗装により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
433	空調設備	ファン	Δ2	腐食(全面腐食)	ケーシング等の腐食(全面腐食)	共通	ケーシング等は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検ぎ可目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
434	空調設備	ファン	Δ①	摩耗	主軸の摩耗	中 火 利 仰 全 至 調 ノ ア ノ	ころがり軸受を使用しているファンについては、軸受と主軸の接触面で摩耗が想定される。 軸受定期取替時の軸受引き抜きの際に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドペーパで仕上げる方策も考えられる。この場合、主軸表面にわずかな摩 耗が発生し、主軸と軸受スリーブ間で微小隙間が生じ、運転中にフレッティングによる摩 柱が発生する可能性が移る。 しかしながら、分解点検申の寸法管理によりフレッティングが発生しないようにしてお り、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び寸法計測により、機器の健全性を確認している。
435	空調設備	ファン	Δ2	腐食(全面腐食)	主軸等の腐食 (全面腐食)	共通	主軸等は炭素鋼又は鋳鉄であり、長期使用により腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
436	空調設備	ファン		高サイクル疲 労割れ	主軸の高サイク ル疲労割れ	共通	ファン運転時には主軸に定常応力と変動応力が発生し、高平均応力下において繰返し応力を受けると、段付部等の応力集中部において、高サイクル疲労割れが想定される。 しかしながら、ファン設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、試運転時等における振動確認(変位の測定等)及び分解点検時の応力集中部に対する目視確認や浸透探傷検査により機器の健全性を確認している。
437	空調設備	ファン	Δ2	腐食(全面腐食)	取付ボルト等の 腐食(全面腐 食)	共通	取付ボルト等は炭素鋼であり、腐食が想定される。しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
438	空調設備	電動機	Δ①	腐食(全面腐食)	固定子コア及び 回転子コアの腐 食(全面腐食)	共通	固定子コア及び回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、固定子コア及び回転子コアはワニス処理により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
439	・空調設備	電動機	Δ2	腐食(全面腐食)	フレーム、端子 箱及びブラケッ	共通	フレーム、端子箱及びブラケットは鋳鉄又は炭素鋼であり、腐食が想定される。 しかしながら、ディーゼル発電機室給気ファン用電動機及び安全補機室排気フ アン用電動機については、内外面とも塗装により腐食を防止しており、塗装が健全であれ は腐食の可能性は小さい。 また、分解点検時の目視確認で塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
440	E DI DI DI DI	电划版		腐食(全面腐食)	トの腐食(全面腐食)		空調用冷凍機用電動機については、フレーム及びブラケット内面は塗装等をしていないが、内部流体が冷媒(フルオロカーボン)及び油雰囲気下であり、腐食が発生し難い環境にある。また、端子箱内外面とフレーム及びブラケット外面は塗装により腐食を防止しているおり、塗装が健全であれば腐食の可能性は小さい。また、分解点検時の目視確認で塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 んじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
441	空調設備	電動機	Δ①	疲労割れ	回転子棒・エンドリングの疲労	共涌	回転子棒・エンドリングについては、電動機の起動時に発生する電磁力による繰返し応力 を受けるため、疲労割れが想定される。 しかしながら、ディーゼル発電機室給気ファン用電動機は、発生応力は疲労強度より小さ い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
442			Δ①	疲労割れ	割れ		空調用冷凍機用電動機及び安全補機室排気ファン用電動機は、回転子棒・エンドリングは アルミ充てん式 (一体形成) であり、回転子棒とスロット間に隙間を生じることなく、疲 労割れが発生し難い構造である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
443	空調設備	電動機	Δ①	摩耗	主軸の摩耗	共通	主軸については、軸受 (ころがり) との接触面で摩耗が想定される。 軸受の定期取替時の軸受引き抜き時に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドベーバで仕上げる方策も考えられる。この場合は、主軸表面がわずかに 摩耗し、主軸と軸受間で微小隙間が生じ運転中にフレッティングにより摩耗する可能性が ある。 しかしながら、分解点検時の寸法管理によりフレッティングが発生しないようにしてお り、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び寸法計測により、機器の健全性を確認している。
444	空調設備	電動機		高サイクル疲 労割れ	主軸の高サイク ル疲労割れ	共通	電動機運転時には主軸に定常応力と変動応力が発生し、高平均応力下において繰返し応力を受けると段付部等の応力集中部において、高サイクル疲労割れが想定される。しかしながら、電動機設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、試運転時等における振動確認及び分解点検時の応力集中部に対する目視確認により、機器の健全性を確認している。
445	空調設備	電動機		腐食(全面腐食)	取付ボルトの腐食(全面腐食)	共通	取付ポルトは炭素鋼及び低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
446	空調設備	空調ユ ニット		腐食(全面腐食)	骨組鋼材及び外 板の腐食 (全面 腐食)	共通	骨組鋼材及び外板は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装又は亜鉛メッキにより腐食を防止しており、塗装又は メッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装又はメッキ面の状態を確認し、はく離が認められた場 合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
447	空調設備	空調ユニット		腐食(全面腐食)	エリミネータの腐食(全面腐食)	中央制御室空調ユニット	エリミネータは炭素鋼であり、腐食が想定される。 しかしながら、亜鉛メッキにより腐食を防止しており、これまでに有意な腐食は認められ ておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により機器の健全性を維持している。
448	空調設備	空調ユニット	Δ2	絶縁低下	電気ヒータの絶縁低下	安全補機室排気フィルタユニット	電気ヒータの絶縁物には、酸化マグネシウムを使用しており、長期の使用により絶縁低下が想定される。 しかしながら、定期的な絶縁抵抗測定により、機器の健全性を確認している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
449	空調設備	空調ユニット	Δ2	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	共通	取付ボルトは炭素鋼であり、腐食が想定される。しかしながら、大気接触部は亜鉛メッキにより腐食を防止しており、メッキ面が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視によりメッキ面の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
450	空調設備	冷水設備	Δ①	腐食(全面腐 食)	圧縮機羽根車の 腐食 (全面腐 食)	空調用冷水設備	空調用冷凍機の圧縮機羽根車はアルミニウム合金であり、腐食が想定される。 しかしながら、内部流体は冷媒(フルオロカーボン)で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
451	空調設備	冷水設備	Δ①	摩耗	主軸 (圧縮機羽根車側、圧縮機電動機側) 及び 歯車の摩耗	空調用冷水設備	空調用冷凍機の主軸及び歯車は、歯面によりトルクを伝達するため摩耗が想定される。 しかしながら、歯面には潤滑油が供給されており、摩耗が発生し難い環境であり、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え 難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
452	空調設備	冷水設備	Δ①	高サイクル疲 労割れ	主軸(圧縮機羽根車側、圧縮機羽根電動機側、圧空間に上端を調用冷水ポンプ)の高サイクル疲労割れ	空調用冷水設備	空調用冷凍機の圧縮機及び空調用冷水系統の空調用冷水ボンブの運転時には主軸に定常応力と変動応力が発生し、高平均応力下において繰り返し応力を受けると段付部等の応力集中部において、高サイクル疲労割れ想定される。 しかしながら、圧縮機及び空調用冷水ボンブ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。 なお、巡視点検時の振動確認(通常運転時の振動状態と差異のないことの触診や目視による確認)、試運転時における振動確認(変位の測定等)並びに分解点検時の応力集中部に対する目視確認や浸透探傷検査により機器の健全性を確認している。
453	空調設備	冷水設備	Δ2	腐食(全面腐食)	圧縮機ケーシン グ及び冷媒配管	空調用冷水設備	空調用冷凍機の圧縮機ケーシングは鋳鉄、冷媒配管は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
454			Δ①	腐食(全面腐食)	の腐食(全面腐食)		また、内面については内部流体が冷媒 (フルオロカーボン) であり、腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、系統機器分解点検時の目視確認により、機器の健全性を確認している。
455	空調設備	冷水設備		腐食(全面腐食)	空調用冷凍機 (熱交換器)のシェル及びチュの変が	空調用冷水設備	空調用冷凍機 (熱交換器) のシェル及びチューブサポートは炭素鋼であり、腐食が想定される。 しかしながら、シェル外面については塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。また、分解点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修を実施することより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
456			Δ①	腐食(全面腐 食)	トの腐食(全面腐食)		また、シェル内面及びチューブサポートについては内部流体が冷媒(フルオロカーボン)であり、腐食が発生し難い環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
457	空調設備	冷水設備		腐食 (流れ加 速型腐食)	凝縮器伝熱管の 内面からの腐食 (流れ加速型腐 食)	空調用冷水設備	空調用冷凍機の凝縮器伝熱管は銅合金であり、内部流体により流れ加速型腐食が想定される。 銅合金は腐食電位の高い貴な金属であり、耐食性は良いが、高速の流水中で使用すると、 流れ加速型腐食が発生することがある。 凝縮器は管側流体が海水であるため、貝等の異物の付着により局所的に流速が増大し、流 れ加速型腐食が発生する場合があるが、貝等の混入物の大きさ、形態及び付着状態は不確 定であることから、流速と腐食量について、一律で定量的な評価は困難である。 しかしながら、分解点体時の渦流深線検査により機器の健生を維持している。 したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
458	空調設備	冷水設備		腐食(全面腐食)	蒸発器伝熱管の 内面からの腐食 (全面腐食)	空調用冷水設備	空調用冷凍機の蒸発器伝熱管は銅合金であり、腐食が想定される。 しかしながら、銅合金は耐食性に優れており、また、内部流体は脱気された純水であり、 腐食が発生し難い環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
459	空調設備	冷水設備	Δ①	腐食(全面腐食)	蒸発器伝熱管及び凝縮器伝熱管の外面からの腐食(全面腐食)	空脚用冷水設備	空調用冷凍機の蒸発器伝熱管及び凝縮器伝熱管は銅合金であり、外面からの腐食が想定される。 しかしながら、外面に接する流体は冷媒(フルオロカーボン)であり、腐食が発生し難い 環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する 要複のがあるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
460	空調設備	∕A-₁⊌≅₽ <i>∤</i> #	Δ2	スケール付着	凝縮器伝熱管の	你鲷田本业 机进	空調用冷凍機の凝縮器伝熱管は、管側・胴側流体の不純物持ち込みによるスケール付着が 発生し、伝熱性能低下が想定される。 しかしながら、凝縮器内面の伝熱管のスケール付着に対しては、定期的に洗浄を実施する ことにより、機器の健生を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
461	空調設傭	冷水設 偏	Δ①	スケール付着	スケール付着	空調用冷水設備	また、胴側流体は水質管理された冷媒(フルオロカーボン)であり、不純物の流入は抑制されていることから、伝熱管外面のスケール付着による伝熱性能低下の可能性は小さいと判断する。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
462	空調設備	冷水設備	Δ2	スケール付着	蒸発器伝熱管の	空腿用冷水設備	空調用冷凍機の蒸発器伝熱管は、管側・胴側流体の不純物持ち込みによるスケール付着が 発生し、伝熱性能低下が想定される。 しかしながら、内部流体は純水であり、適切な水質管理により不純物の流入は抑制されて いること、また、定期的に洗浄を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
463	王 则改师	/II/N.ax im	Δ①	スケール付着	スケール付着	エ ロ4/17/11/小心、順	また、胴側流体は水質管理された冷媒 (フルオロカーボン) であり、不純物の流入は抑制されていることから、伝熱管外面のスケール付着による伝熱性能低下の可能性は小さいと判断する。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
464	空調設備	冷水設備	Δ2)		凝縮器管板・水 室の海水による 腐食(異種金属 接触腐食含む)	空調用冷水設備	空調用冷凍機の凝縮器管板・水室は内部流体が海水であり、管板の接液部に使用している 銅合金は長期使用において腐食が想定される。 また、水室の炭素鋼使用部位には、海水接液面にライニングを施工しているが、ライニン グのはく離により炭素鋼に海水が接液した場合、凝縮器管板が銅合金クラッド鋼であるた め、炭素鋼側に異種金属接触腐食が想定される。 しかしながら、凝縮器管板・水室の海水による腐食に対しては、分解点検時に凝縮器管板 の目視確認を実施するとともに、ライニングのはく離がないことを目視確認し、必要に応 じて補修を実施することにより機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
465	空調設備	冷水設備	Δ①	腐食(全面腐 食)	空調用冷水設備 冷水接液部の腐 食 (全面腐食)	空調用冷水設備	空調用冷凍機 (蒸発器管板、蒸発器水室) 及び空調用冷水系統 (配管、空調用冷水ポンプ、空調用冷水膨張タンク) の冷水接液部は炭素鋼及び炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、内部流体は脱気された純水で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時及び系統機器分解点検時の目視確認により、機器の健全性を確認している。
466	空調設備	冷水設備	Δ2	腐食(全面腐食)	空調用冷水系統用冷水系統用冷水系統明 (空調用冷水設備	空調用冷水系統の配管、空調用冷水ポンプのケーシング及び空調用冷水膨張タンクは炭素 鋼又は炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進 行の可能性は小さい。 また、巡視点体で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
467	空調設備	冷水設備	Δ2)	腐食(全面腐食)	架台等の腐食 (全面腐食)	空調用冷水設備	空調用冷凍機の架台、空調用冷水ポンプの取付ボルト、台板及び空調用冷水膨張タンクの 支持脚は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進 行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
468	空調設備	冷水設備	Δ①	腐食(キャビ テーション)	空調用冷水ポン プ羽根車の腐食 (キャビテー ション)	空顺用冷水設備	空調用冷水ボンブの内部では流速と圧力が場所により大きく変化するが、ある点の圧力が その液温における飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と 崩壊が起こることが想定される。 しかしながら、キャビテーションを起こさない条件はポンプ及び機器配置設計段階におい て考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
469	空調設備	冷水設備	Δ①	摩耗	空調用冷水ポン ブ主軸の摩耗	空調用冷水設備	ころがり軸受を使用している空調用冷水ボンプについては、軸受と主軸の接触面で摩耗が 想定される。 軸受定期取替時の軸受引き抜きの際に主軸表面にわずかな線形模様が生じこともあり、主 軸表面をサンドベーバで仕上げる方策も考えられる。この場合、主軸表面にわずかな摩耗 が発生する可能性がある。 しかしながら、分解点検時の寸法管理によりフレッティングが発生しないようにしてお り、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び寸法計測により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
470	空調設備	冷水設備	Δ①	摩耗	空調用冷水ポン プ軸継手の摩耗	空調用冷水設備	空調用冷水ポンプの軸継手は歯車型であり、歯面によりトルクを伝達するため摩耗が想定される。 しかしながら、歯面はグリス封入により潤滑し、摩耗が発生し難い環境であり、これまで に有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難 い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
471	空調設備	ダクト	Δ2	腐食(全面腐食)	接続鋼材、補強ルは接続が、サポインのの食りでの食りでの食りでの食りでの食りでの食りである。	共通	接続鋼材、補強鋼材、接続ポルト、サポート鋼材及びベースプレートは炭素鋼であり、腐食が想定される。 、気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に あじて補修することにより、機器の健全性を維持している。 したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
472	空調設備	ダクト	Δ2	応力腐食割れ	外板の応力腐食 割れ	格納容器排気筒	外板はステンレス鋼であり、外表面に大気中の海塩粒子等の塩分が付着した場合、塩化物イオンによる応力腐食割れが想定される。 しかしながら、外面については塗装により腐食を防止しており、塗装が健全であれば腐食 進行の可能性は小さい。 また、外親点検時の目視確認により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
473	空調設備	ダクト	Δ2	腐食(全面腐食)	外板の腐食(全 面腐食)		外板は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は亜鉛メッキにより腐食を防止しており、メッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視によりメッキ面の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
474	空調設備	ダクト	Δ①	劣化	伸縮継手の劣化	共通	伸縮継手は合成ゴムであることから環境的要因により劣化が想定される。 しかしながら、周囲温度は使用条件範囲内であり、これまでに有意な劣化は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、巡視点検等による可視範囲の目視確認により、機器の健全性を確認している。
475	空調設備	ダクト	Δ2	腐食(全面腐食)	埋込金物(大気 接触部)の腐食 (全面腐食)	共通	埋込金物(大気接触部)は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
476	空調設備	ダンパ	Δ2	腐食(全面腐食)	ダンパ羽根及び ケーシング等の 腐食(全面腐 食)	共通	ダンパ羽根及びケーシング等は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装又は亜鉛メッキにより腐食を防止しており、塗装又は メッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装又はメッキ面の状態を確認し、はく離が認められた場 合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
477	空調設備	ダンパ	Δ2	固着	ダンパシャフト の固着	共通	ダンパシャフトは炭素鋼であり、潤滑油が不足した場合、長期間の使用による腐食により 固着することが想定される。 しかしながら、ダンパシャフトの表面はクロムメッキ又は亜鉛メッキを施し腐食を防止し ており、腐食による固着の可能性は小さい。 また、分解点検時のダンパ作動確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
478	空調設備	ダンパ	Δ2	摩耗	ダンパシャフト、主軸及び軸 受(すべり)の 摩耗	連動ダンパ、緊急時対策所非常用	しかしながら、分解点検時のダンパ作動確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣
479	空調設備	ダンパ	Δ①	ばねの変形 (応力緩和)	ばねの変形(応力緩和)	ディーゼル発電機室排気ダンパ	ばねは応力状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは余裕のある環境で使用してい る。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時のダンパ作動確認により、機器の健全性を維持している。
480	空調設備	ダンパ	Δ2	導通不良	ポジションス イッチの導通不 良	ディーゼル発電機室排気ダンパ	ポジションスイッチは接点部分に付着する浮遊塵埃により、導通不良が想定される。 しかしながら、ポジションスイッチの接点部分はケース内に収納されており、塵埃の付着 により導通不良が発生する可能性は小さい。 また、分解点検時の動作確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
481	空調設備	ダンパ	Δ2	腐食(全面腐食)	接続ポルトの腐食(全面腐食)	共通	接続ポルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検ទで目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
482	空調設備	ダンパ	Δ①	腐食(全面腐食)	固定子コア及び 回転子コアの腐 食(全面腐食)	緊急時対策所非常用空気浄化設備 電気加熱コイル入口電動ダンパ	固定子コア、回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、固定子コア、回転子コアはエボキシモールドにより、腐食を防止してい る。さらに同様の施行である他の機器では、これまでに有意な腐食は認められておらず、 今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時に目視確認により、機器の健全性を確認している。
483	機械設備	重機器サポート	Δ①	食)	サポートブラ ケット等大気接 晩部の腐食(全 面腐食)	共通	サポートブラケット等は炭素鋼及び低合金鋼を使用しており、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進 行の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 摺動部及び蒸気発生器がッドと下部サポートシムとの接触面の摺動部には潤滑材を塗布し ており、腐食が発生し難い環境である。 サポートプラケット等は、これまでに摺動部等を含めて有意な腐食は認められておらず、 今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、サポートプラケット等は摺動部等を含めて、定期的な目視確認により、機器の健全 性を確認している。
484	機械設備	重機・ポート	△2	無別加口	原近ポ照子停下を移り、	原子炉容器サポート	原子炉容器サポートは他の重機器サポートに比べ原子炉容器炉心近傍に設置されており、空2~1に開始此評価を行った。 評価部位は原子炉容器サポートのうちせん斯荷重が大きいサポートリプとし、当該部の運 評価能は原子炉容器サポートのうちせん斯荷重が大きいサポートリプとし、当該部の運 評価能、運転開始後60年時点における限制他に評価を行った。 評価は、運転開始後60年時点における限制に投稿と行った。 に関する研究」及びSME SGA関制他に評価を行った。 に関する研究」及びSME SGA関制を用いた検討した。 応力拡大係数なび破壊剤性値の計算は、電力共同研究・原子炉容器支持構造物の照射能化 主ず、破壊動性値の評価式としては、供試材を用いた静的破壊球性試験び動的破壊財性 試験から、電子展開の表現を動うのSME SGATION III (同様でする)できることを整理した。電力共同研究・変地が大手動の必能を対している。同子が容器サポート使用部村に適力している。大手を設した。電力共同研究・変地できることを整理した。電力共同研究・変地できることを整理した。電力共同研究・変地でしていたが、II (国際・アラントの 世接時の)を以下の、日本では、II (国際・アラントの 提接時の)を以下の、日本では、II (国際・アラントの 提接時の)を以下の、日本では、II (国際・アラントの 限接時の)を以下の、日本では、II (国際・アラントの 限接時の)を以下の、日本では、II (国際・アラントの できることを整理した。電力・ア・ラントの II (国際・アラントの II (国際・アラント) (

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
485	機械設備	重機器サポート	Δ2	摩耗	パッド、ヒンジ 等摺動部の摩耗		機器の移動を許容するサポートの摺動部材(パッド、ヒンジ等、ただしピンは除く)は、機器の熱移動や振動により摩耗が想定される。摩耗が想定される。摩耗が想定されるで大寒節位として原子炉容器サポートの摺動部を図2.2-4に、蒸気発生器支持脚及び1次冷却材ポンプ支持脚の摺動部を図2.2-5に示す。原子炉容器サポート、蒸気発生器支持脚及び1次冷却材ポンプ支持脚の摺動部に発生する荷重は小さいとは言えないため、運転開始後60年時点における推定摩耗量を評価した。では、現在定量的に評価する理論が確立されていないが、ここではホルム(holm)の理論式(機械工学便覧((社)日本機械学会))により、概略の摩耗量の推定を行った。ホルムの式:W=K・S・P/Pm W・摩 耗 量 [m³] K・摩耗係数 [ー] S・すべり距離 [m] P・荷 重 [N] P・ボ た さ [N/m²] なお、評価にあたっては、通常運転時における評価対象サポートに加わる荷重を算出した。すべり距離については計算により求めた熱移動量を基に運転状態「及び運転状態」の過渡条件とその回数から算出した。
							摩耗係数及び硬さについては、J.F.Archard&W.Hirst,Proc.Roy.Soc.,236,A、(1956),397より使用温度での硬さの変化を考慮しても安全側の評価となるよう、実機より柔らかい材料である潤滑材なしの軟御・軟鋼のデータを引用した。評価結果より運転開始後60年時点の推定摩耗深さ(推定減肉量)は許容値に比べ小さい。また、原子炉容器パッドについてはキャビティシール据付時に偏りがないことを定期的に確認しており、これまでに有意な偏りは認められないことから、長期運転にあたっても支持機能に影響を及ぼす可能性はないと考える。 また、パッドの摩耗に対しては、定期的に原子炉容器とキャビティに有意な高差がないことをキャビティシール据付時の隙間計測により確認し、ヒンジ等褶動部の摩耗に対してとをキャビティシール据付時の隙間計測により確認し、ヒンジ等褶動部の摩耗に対して
							とされて トイン・アルカ (1970 (京) (日本) では、 外観点検時にかみ合うに ジ (京)
486	機械設備	重機器サ ポート	Δ①	摩耗	ピン等の摩耗	蒸気発生器サポート、1 次冷却材 ポンプサポート	機器の移動を許容するサポートの摺動部材は、機器の熱移動や振動により摩耗が想定される。 しかしながら、蒸気発生器及び1次冷却材ポンプのオイルスナバは地震時の水平方向変位を拘束するものであり、蒸気発生器の上部胴サポート、中間胴サポート及び1次冷却材ポンプの上部サポート及び下部サポートにかかる荷重は小さい。通常運転における熱移動はサイクル数が少ない(最大変位が想定されるのはブラント起動・停止時)ため、著しい摩耗が生の可能性は小さい。 振動による摩耗については発生荷重が小さく、可動部を摺動させるほどの力は生じないと考える。 ビン (材料: SNB23-3) については、ヒンジ (材料: SM490B、SFVV3) 及びタイロッド (材料: SM444) を (利料: SM444B、SM444B、SM44B、S
							料: SNCM630) よりも硬質な材料を使用しており、オイルスナバのピストンロッド(材料: SNCM630) については、ブッシュ(材料: BCG) よりも硬度な材料を使用している。一方、オイルスナバのピンについては、運転時有意な荷重がかからない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、外観点検時の目視確認により、ピンのかみ合い部及びオイルの漏れ等の異常がないことを確認することにより、機器の健全性を確認している。
487	機械設備	重機器サポート	Δ①	疲労割れ	ヒンジ溶接部の 疲労割れ	蒸気発生器サポート、 1 次冷却材 ポンプサポート	支持脚はブラント起動・停止時等に発生する機器の熱移動によるスライド方向以外の繰り返し荷重により、ヒンジ溶接部において疲労割れが想定される。 しかしながら、スライド方向以外に発生する荷重はわずかであり、有意な応力変動を受けない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、外観点検時の目視確認により、機器の健全性を確認している。
488	機械設備	空気圧縮 装置	Δ2	摩耗	Vプーリの摩耗	制御用空気圧縮装置	制御用空気圧縮機及び制御用空気除湿装置送風機のVプーリは、Vベルトとの接触により 摩耗が想定される。 しかしながら、分解点検時にVベルトの張力管理及びVプーリの目視確認を実施し、有意 な摩耗がないことを確認することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
489	機械設備	空気圧縮 装置	Δ2	腐食(全面腐食)	制御用空気圧縮 機等の外面から の腐食(全面腐 食)	利仰用空丸圧縮装直	制御用空気圧縮機等、制御用空気ドレンセパレータ、制御用空気だめ、制御用空気除湿装置及び配管は鋳鉄又は炭素鋼を使用しており、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
490	機械設備	空気圧縮 装置	Δ①	腐食(全面腐 食)	主軸等の腐食 (全面腐食)	制御用空気圧縮装置	制御用空気圧縮機及び制御用空気除湿装置送風機の主軸等は、低合金鋼、炭素鋼又は鋳鉄であり、腐食が想定される。 しかしながら、油雰囲気下にあり、腐食が発生し難い環境にある。 したかって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
491	機械設備	空気圧縮 装置	Δ2	摩耗	主軸、ピストン ロッド等の摩耗	制御用空気圧縮装置	制御用空気圧縮機の主軸(連接棒メタルとの接触部)、ビストンロッド、リストビン、クロスヘッド及びクロスヘッドガイドについては、摺動部に摩耗が発生する可能性がある。しかしながら、分解点検時に目視確認又は寸法計測を実施し、有意な摩耗がないことを確認することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
492	機械設備	空気圧縮 装置	Δ①	摩耗	主軸の摩耗	制御用空気圧縮装置	制御用空気圧縮機、制御用空気圧縮機用電動機、制御用空気除湿装置送風機及び制御用空 気除湿装置送風機用電動機の軸受はころがり軸受を使用しており、軸受の定期取替時の軸 受引き抜き時に主軸表面にわずかな線形模株が主性じることもあり、主軸表面をサンドペー バで仕上げる方策も考えれる。この場合は、主軸表面がすがに摩耗し、主軸と軸 受間 で微小隙間が生じ、運転中にフレッティングにより摩耗する可能性がある。 しかしながら、分解点検時の寸法管理によりフレッティングが発生しないようにしてあり、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があ るとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認又は寸法計測により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
493	機械設備	空気圧縮 装置		高サイクル疲 労割れ	主軸等の高サイクル疲労割れ	制御用空気圧縮装置	制御用空気圧縮機の主軸、ビストンロッド、連接棒、ビストン、制御用空気圧縮機用電動機、制御用空気除湿装置送風機及び制御用空気除湿装置送風機用電動機の主軸には、運転時に発生する応力により、疲労が蓄積し、高サイクル疲労割れが想定される。しかしながら、設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
494	機械設備	空気圧縮 装置	Δ①	摩耗	歯車の摩耗	制御用空気圧縮装置	制御用空気圧縮機の油ポンプ及び制御用空気除湿装置送風機の歯車は、接触部があることから摩耗が想定される。 しかしながら、潤滑油を供給し摩耗を防止しており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
495	機械設備	空気圧縮 装置		腐食(全面腐食)	シリンダー ンダイクーランダークカバーク レーアフタの腐食 (全面腐食)	制御用空気圧縮装置	制御用空気圧縮機のシリンダ、シリンダライナ、制御用空気圧縮機インタークーラのメインプレートカバー、フローティングプレートカバー及び制御用空気圧縮機アフタークーラ 胴板は鋳鉄又は炭素鋼であり、腐食が想定される。しかしながら、内部流体はヒドラジン水(防錆剤注入水)であり、腐食が発生し難い環境にある。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
496	機械設備	空気圧縮 装置	Δ①	摩耗	シリンダライナ の摩耗	制御用空気圧縮装置	制御用空気圧縮機のシリンダライナはビストンリングとの摺動により、摩耗が想定される。 しかしながら、シリンダライナは内面をクロムメッキし、摺動するビストンリングは、定期的に交換しており、シリンダライナに急激な摩耗が進展する可能性はないと考える。これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認及び寸法計測により、機器の健全性を確認している。
497	機械設備	空気圧縮 装置	Δ①	腐食(全面腐 食)	シリンダライナ 及びインター クーラ胴板等の 角食(全面腐 食)	制御用空気圧縮装置	制御用空気圧縮機のシリンダライナ内面等、制御用空気圧縮機インタークーラ胴板等、制御用空気除湿装置電気式加熱器、アフターフィルタ内面等及び除湿塔出口以降の配管は鋳鉄、炭素鋼及び低合金鋼を使用しており、腐食が想定される。しかしながら、内部流体は空気であり、内面の腐食が発生し難い環境にある。これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
498	機械設備	空気圧縮 装置	Δ①	腐食(全面腐食)	固定子コア及び 回転子コアの腐 食(全面腐食)	制御用空気圧縮装置	制御用空気圧縮機用電動機及び制御用空気除湿装置送風機用電動機の固定子コア及び回転子コアは珪素鋼板であり腐食が想定される。 しかしながら、固定子コア及び回転子コアはワニス処理により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
499	機械設備	空気圧縮 装置	Δ2	腐食(全面腐食)	フレーム、ブラ ケット、城の腐 及び台板の腐 (全面腐食)	制御用空気圧縮装置	制御用空気圧縮機用電動機及び制御用空気除湿装置送風機用電動機のフレーム、ブラケット及び台板は鋳鉄、端子箱は炭素鋼であり、腐食が想定される。 しかしながら、内外面とも塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。また、分解点検等の目視確認で塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
500	機械設備	空気圧縮 装置	Δ①	疲労割れ	回転子棒・エン ドリングの疲労 割れ	制御用空気圧縮装置	回転子棒・エンドリングについては、電動機の起動時に発生する電磁力による繰返し応力を受けるため、疲労割れが想定される。 しかしながら、回転子棒・エンドリングはアルミ充てん式(一体形成)であり、回転子棒 とスロットの間に隙間を生じることはなく、疲労割れは発生し難い構造である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
501	機械設備	空気圧縮 装置	Δ①	高サイクル疲 労割れ	伝熱管の高サイ クル疲労割れ	制御用空気圧縮装置	制御用空気圧縮機インタークーラ及び制御用空気圧縮機アフタークーラは管側又は胴側流体により、伝熱管に振動が発生した場合、管支持板部で伝熱管に高サイクル疲労割れが想定される。 しかしながら、共振を起こさない固有振動数となるような伝熱管支持スパンとしている。 これまでに有意な割れがないことを確認しており、今後もこれらの傾向が変化する要因が あるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び漏えい試験により、機器の健全性を確認している。
502	機械設備	空気圧縮 装置		腐食(全面腐食)	胴板等耐圧構成 品の内面からの 腐食(全面腐 食)	制御用空気圧縮装置	制御用空気ドレンセパレータ、制御用空気だめ、制御用空気除湿装置除湿塔及び配管の湿り空気雰囲気で炭素鋼を使用している部位は長期使用により腐食が想定される。 酸素含有水中における炭素鋼の腐食拳動が放物線則に従うとして、運転開始後60年間の腐食量を評価した。その結果、表2.3-1に示すとおり運転開始後60年時点での推定腐食量は、設計上の腐れ代に対して小さいことから、急激な腐食の進行により機器の健全性に影響を与える可能性はないと考える。また、分解点検時の目視確認により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
503	機械設備	空気圧縮装置	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐 食)	制御用空気圧縮装置	制御用空気だめのマンホール用ボルト及び制御用空気圧縮装置配管フランジボルトは、ガスケットからの漏えいにより、内部流体による腐食が想定される。しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
504	機械設備	空気圧縮 装置	Δ2	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	制御用空気圧縮装置	制御用空気圧縮機用電動機、制御用空気除湿装置送風機用電動機、制御用空気除湿装置送 風機、制御用空気除湿装置除湿塔、制御用空気除湿装置電気式加熱器及び制御用空気除湿 装置アフターフィルタの取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進 行の可能性は小さい。 また、巡視点検ទ「目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
505	機械設備	空気圧縮装置	Δ2	特性変化	制御用空気圧縮 機両発生の大変 気圧力ス空気 気が 気に して 気が 大 大 大 大 ス イ り た 、 ス イ め に と 、 ス イ た 、 ス イ た 、 ス た 、 ス た 、 、 、 と 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	制御用空気圧縮装置	圧力・温度スイッチは、長期間の使用に伴い、検出特性が変化し、長期間校正を実施しない場合、実際のプロセス値に対し、動作値の誤差が大きくなることが想定される。しかしながら、屋内に設置されていることから環境変化の程度は小さく、短期間で入出力特性が変化する可能性は小さいと考える。また、定期的な模擬信号での校正試験・調整により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
506	機械設備	空気圧縮 装置	Δ①	導通不良	制御用空気圧縮機では、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きないが、大きなでは、大きないが、まないが、大きないが、大きないが、大きないが、大きないが、大きないが、大きないが、大きないが、大きないが、大きないが、大きないが、まないが、大きないが、大きないが、大きないが、大きないが、大きないが、大きないが、大きないが、大きないが、大きないが、大きないが、まないが、まないが、まないが、まないが、まないが、まないが、まないが、ま	制御用空気圧縮装置	圧力・温度スイッチは、接点部分に浮遊塵埃が付着することによる、導通不良が想定される。 しかしながら、接点部分はケース内に収納されており、塵埃の付着による導通不良が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な作動確認により、機器の健全性を維持している。
507	機械設備	燃料取扱 設備(クレーン関係)	Δ①	摩耗	走行・横行レー ル及び車輪の摩 耗	燃料取替クレーン	走横行レール及び車輪はクレーンの走横行により摩耗が想定される。また、レール側面は カイドローラとのすべりで摩耗が想定される。 しかしながら、レール上面、側面及び車輪は、ガイドローラにより横すべりを防止してお り、ころが19接触であることから摩耗が発生し難い構造である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により有意な摩耗等のないことを確認することにより、機器の健 全性を確認している。
508	機械設備	燃料取扱設備(クレーン関係)	Δ2	腐食(全面腐食)	走行・横行レー ル及びブリッジ ガータ等の腐食 (全面腐食)	燃料取替クレーン	走行レール、横行レール、ブリッジガータ、トロリ架台、転倒防止金具(ブリッジ、トロリ)、車輪、ブリッジの減速機(ケーシング、軸)、歯車継手(スリーブ、ハブ、フランジ、六角ボルト)、トロリの減速機(ケーシング、軸)、軸継手(ボディ、六角穴付ボルト)、メインホイストのウォーム減速機(ケーシング)、軸)、マストチューブの固定マスト及び電動機(低圧)のフレームは炭素鋼、低合金鋼鋳鋼、鋳鉄又は低合金鋼であり、腐食が想定される。しかしながら、走行レール及び横行レールとの車輪接触部の腐食については、定期的な目視確認により、機器の健全性を維持している。走行レール及び横行レールとの車輪接触部以外の大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。よく離が認められた場合には必要に応じて補修することにより、機器の供整を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の供整を確認し、はく離が記められた場合には必要に応じてがあることも機能の維持は可能であることから、高経年化対策上着目すべき経年劣化・事象ではない。
509	機械設備	燃料取扱設備(クレーン関係)	Δ①	疲労割れ	走行・横行レー ル及びブリッジ ガータの疲労割 れ	燃料取替クレーン	走行レール、横行レール及びブリッジガータには、トロリ等の荷重が常時かかる状態となることから、疲労割れが想定される。 しかしながら、有意な応力変動が発生しないように設計されており、疲労割れが発生する可能性は小さく、これまでにき裂は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
510	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	摩耗	歯車及び軸継手 等の摩耗	燃料取替クレーン	ブリッジ及びトロリの車輪部歯車、減速機(歯車)、歯車継手(スリーブ、ハブ、六角ボルト)、
511	機械設備	燃料取扱設備(クレーン係)	Δ2	摩耗	ワイヤロープの 摩耗及び素線切 れ	燃料取替クレーン	アッパストラクチャのワイヤロープはドラムへの巻き取り、シーブ通過時のロープの曲げ及び機械的要因により、摩耗及び素線切れが想定される。 しかしながら、定期的なワイヤロープ径の寸法確認及び目視確認により、摩耗及び素線切れを確認し、有な摩耗等が確認された場合は適切に対処することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
512	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	摩耗	シーブ及びワイ ヤドラムの摩耗	燃料取替クレーン	アッパストラクチャのシーブ及びメインホイストのワイヤドラムはワイヤローブと接するため、機械的要因により摩耗が想定される。 しかしながら、シーブはワイヤローブの巻取りにそって回転し、また、ワイヤラムはドラムの回転にあわせてワイヤローブの巻取られるため、すべりが発生せず、摩耗し難い構造であり、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
513	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	摩耗	ガイドローラ及 びガイドレール の摩耗	燃料取替クレーン	マストチューブのガイドローラは、グリッパチューブ昇降時にガイドレールと接触しながら、グリッパチューブを案内するため、摩耗が想定される。しかしながら、ガイドローラとガイドレールの間は、転がり接触であることより摩耗量は軽微であると考えられ、これまでに異常な動き等は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、使用前の作動確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
514	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	摩耗	燃料ガイドバー の摩耗		マストチューブの燃料ガイドパーは、燃料昇降時に燃料集合体支持格子と滑り接触するため、摩耗が想定される。 しかしながら、燃料対角方向に数mmの隙間を有しているため、接触面圧が小さいこと及 び燃料ガイドバーは硬度の高いステンレス鋼(SUS630)で製作されており、摩耗量は軽徹 であると考えられる。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
515	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	摩耗	エアシリンダの 摩耗	燃料取替クレーン	グリッパチューブのエアシリンダのシリンダチューブ、ピストン及びピストンロッドは機械的要因により、摩耗が想定される。 しかしながら、シリンダチューブとピストン及びピストンロッドと軸受(すべり)はパッキン及びグリスにより隔でられており、摩耗し難い構造であり、これまでに異常な動き等は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
516	機械設備	燃料取扱 設備(ク レーン関 係)	Δ2	摩耗	ロッキングカム の摩耗	燃料取替クレーン	グリッパのロッキングカムはフィンガとの機械的要因により、摩耗が想定される。 しかしながら、定期的にグリッパの作動確認及び隙間計測にて異常がないことを確認して おり、必要に応じて取替えることにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
517	機械設備	燃料取扱設備(クレーン関係)	Δ2	摩耗	ロックラッチの 摩耗	燃料取替クレーン	グリッパのロックラッチはフィンガとの機械的要因により、摩耗が想定される。 しかしながら、燃料取扱時にロックラッチがフィンガの上部溝に嵌合することから、ロッ クラッチの摩耗の発生の可能性はあるが、これまでの点検実績から発生の可能性は小さ い。 また、定期的にフィンガの面間寸法を計測することにより、有意な摩耗が発生していない ことを確認しており、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
518	機械設備	燃料取扱設備(クレーン関係)	Δ①	摩耗	フィンガ及びガ イドピンの摩耗	燃料取替クレーン	グリッパのフィンガは、ロッキングカムとの摺動及び燃料ラッチ時のこすれにより摩耗が 想定される。 しかしながら、ロッキングカム (SUS630) に比べて、フィンガはさらに耐摩耗性に優れた SUS630 (熱処理方法が異なる)を使用し摩耗し難くしている。 また、グリッパのガイドピンは、燃料への挿入時に燃料集合体上部ノズル (SUS304) との 接触により摩耗が想定される。 しかしながら、材料をSUS630として、摩耗し難くしている。 フィンガ及びガイドピンについては、これまでに有意な摩耗は認められておらず、今後も これらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
519	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 カ緩和)	燃料取替クレーン	グリッパ(メカニカルロック用及びガイドピン伸縮用)及び電磁ブレーキのばねは、応力 状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な作動確認により、機器の健全性を確認している。
520	機械設備	燃料取扱 設備(クレレン関係)		腐食(全面腐食)	固定子コア及び 回転子コアの腐 食(全面腐食)	燃料取替クレーン	電動機 (低圧) の固定子コア及び回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、固定子コア及び回転子コアはワニス処理又は塗装により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
521	機械設備	燃料取扱 設備(クレレン関係)		腐食(全面腐食)	固定鉄心の腐食 (全面腐食)	燃料取替クレーン	電磁ブレーキの固定鉄心は珪素鋼板及び鋼であり、腐食が想定される。 しかしながら、電磁ブレーキの固定鉄心はワニス処理により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え 難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
522	機械設備	燃料取扱 設備(クレーン関係)	Δ①	摩耗	ブレーキ板の摩 耗	燃料取替クレーン	電磁ブレーキのブレーキ板は制動時にブレーキライニングを押し付けられることにより摩 耗が想定される。 しかしながら、材料をライニングより硬い鋳鉄として摩耗を抑制しており、これまでに有 意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
523	機械設備	燃料取扱 設備(クレーン関係)	Δ①	摩耗	ライニングの摩 耗	燃料取替クレーン	電磁ブレーキのライニングは制動操作により摩耗が想定される。 しかしながら、ブレーキライニングの許容摩耗量から算出される最大動作回数に対する1 定期検査あたりの動作回数の割合は十分小さいと評価しており、これまでに有意な摩耗は 認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
524	機械設備	燃料取扱際備(クレーン関係)	Δ2	特性変化	荷重監視装置及 び速度制御装置 の特性変化	燃料取替クレーン	制御設備の荷重監視装置及び速度制御装置は、長時間の使用に伴い特性変化が想定される。しかしながら、荷重監視装置及び速度制御装置を構成している電気回路部は、定格値(定格電圧、電流値)に対して、回路上は十分低い範囲で使用する設計としており、屋内に設置されていることから環境変化の程度は小さく、短期間での特性変化を起こす可能性は小さい、製造設階で製作不良に基づく回路電流集中を取り除くスクリーニング等を実施していることから、マイグレーションが発生する可能性は小さい。また、速度制御装置及び荷重監視装置は、定期的な機能・性能試験により、機器の健全性を確認している。ことに、ブラント運転中は基板を取り外し、格納容器外に保管することとしている。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
525	機械設備	燃料取扱 設備(ク レーン関 係)	Δ①	導通不良	操作スイッチ及	燃料取替クレーン	制御設備の操作スイッチ及び押釦スイッチは、接点部分に付着する浮遊塵埃により、導通不良が想定される。 しかしながら、操作スイッチ及び押釦スイッチの接点部分は盤内に収納されており、塵埃の付着により導通不良が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な動作確認により、機器の健全性を確認している。
526	機械設備	燃料取扱 設備(ク レーン関 係)	Δ2	特性変化	荷重変換部の特 性変化	燃料取替クレーン	制御股備のロードセルは、長時間の使用に伴う荷重変換部(ひずみゲージ)のはがれ等に よる特性変化が想定される。 しかしながら、ひずみゲージ貼り付け部は、不活性(窒素)ガスを封入した気密構造に なっており、ひずみゲージの酸化を防止しているため、ひずみゲージ貼り付け部が腐食し てはがれが発生する可能性は小さい。 また、定期的な初期不平衡測定により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
527	機械設備	燃料取扱 設備(ク レー保)	Δ2	腐食(全面腐食)	筐体、チャンネルベース及び取付ボルトの腐食 (全面腐食)	燃料取替クレーン	制御設備の筐体、チャンネルベース及び取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認で塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
528	機械設備	燃料取扱 設備(ク レーン関 係)	Δ2	導通不良	リミットスイッ チの導通不良	燃料取替クレーン	リミットスイッチは、浮遊塵埃の接点部分への付着による導通不良が想定される。 しかしながら、接点部分は密閉されたハウジング内に収納されており、塵埃の付着による 導通不良が発生する可能性は小さい。また、定期的な動作確認により導通不良がないこと を確認していることから、高経年化対策上着目すべき経年劣化事象ではない。
529	機械設備	燃料移送 装置	Δ①	摩耗	レール及び車輪 の摩耗	燃料移送装置	トラックフレームのレール及びコンベアカーの車輪は、機械的要因で摩耗が想定される。しかしながら、水中での水潤滑であり、また、ころがり接触のため摩耗し難い構造となっており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、使用前の点検時の目視確認により、機器の健全性を確認している。
530	機械設備	燃料移送 装置	Δ①	腐食(全面腐食)	架台等の腐食 (全面腐食)	燃料移送装置	走行駆動装置の架台及び軸継手 (ケーシング、スプロケット) は炭素鋼又はアルミダイカストであり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、使用前の点検時等の異音確認や目視確認により、機器の健全性を確認している。
531	機械設備	燃料移送 装置	Δ2	摩耗	トルクリミッタ (摩擦板)の摩 耗	燃料移送装置	走行駆動装置のトルクリミッタ(摩擦板)は機械的要因により、摩耗が想定される。 しかしながら、使用前の点検時の目視確認により状態を確認し、有意な摩耗が確認された 場合は適切に対処することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
532	機械設備	燃料移送 装置	Δ①	摩耗	かさ歯車の摩耗	燃料移送装置	走行駆動装置のかさ歯車は機械的要因により、摩耗が想定される。 しかしながら、かさ歯車は水中での水潤滑であり、摩耗し難い構造となっており、これまでに有意な摩耗が認められておらず、今後もこれらの傾向が変化する要因があるとは考え 難し。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、使用前の点検時の異音確認や目視確認により、機器の健全性を確認している。
533	機械設備	燃料移送 装置	Δ2	摩耗	チェーン(ブッ シュ部)の摩耗	燃料移送装置	走行駆動装置のチェーンのブッシュ部は、機械的要因により摩耗が想定される。 しかしながら、使用前の点検時にチェーンの伸び計測を実施し、伸びの傾向を監視しており、有意な伸びが確認された場合は、必要に応じて取替えることにより、機器の健全性を 維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
534	機械設備	燃料移送 装置	Δ①	摩耗	スプロケット及 びチェーン (ローラ外面) の摩耗	燃料移送装置	走行駆動装置のスプロケットとチェーンのローラ外面は相互の接触により、摩耗が想定される。 しかしながら、ころがり接触のため摩耗し難い構造となっており、これまでに有意な摩耗が認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、使用前の点検時の目視確認により、機器の健全性を確認している。
535	機械設備	燃料移送 装置	Δ①	摩耗	シリンダチュー ブ、ビストン及 びピストンロッ ドの摩耗	燃料移送装置	水圧シリンダのシリンダチューブ、ピストン及びピストンロッドは機械的要因により、摩 耗が想定される。 しかしながら、シリンダチューブとピストン及びピストンロッドと軸受(すべり)はパッ キン及びグリスにより隔でられて摩耗し難い構造となっており、これまでに異常な動き等 が認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、使用前の点検時の動作確認により、機器の健全性を確認している。
536	機械設備	燃料移送 装置	Δ2	腐食(全面腐食)	基礎金物(大気 接触部)の腐食 (全面腐食)	燃料移送装置	走行駆動装置、水圧ユニットの水圧制御装置及び基礎金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検で目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
537	機械設備	燃料移送 装置	Δ①	導通不良	押釦スイッチの 導通不良	燃料移送装置	制御設備の押釦スイッチは接点部分に付着する浮遊塵埃により、導通不良が想定される。 しかしながら、押釦スイッチの接点部分は盤内に収納されており、塵埃の付着により導通 不良が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な動作確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
538	機械設備	燃料移送 装置		腐食(全面腐食)	筐体、チャンネルベース及び取付ボルトの腐食 (全面腐食)	燃料移送装置	筐体、チャンネルベース及び取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認で塗装の状態を確認し、はく離が認められた場合は必要に応じて 補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
539	機械設備	燃料移送 装置	Δ2	導通不良	リミットスイッ チの導通不良	燃料移送装置	リミットスイッチは、浮遊塵埃の接点部分への付着による導通不良が想定される。 しかしながら、接点部分は密閉されたハウジング内に収納されており、塵埃の付着による 導通不良が発生する可能性は小さい。また、定期的な動作確認により導通不良がないこと を確認していることから、高経年化対策上着目すべき経年劣化事象ではない。
540	機械設備	原子炉容 器上部 た付属 備	Δ①	疲労割れ	圧カハウジング (ラッチハウジ ング及び駆動軸 ハウジング)の 疲労割れ	制御棒クラスタ駆動装置	圧力ハウジングは、プラントの起動・停止時等による熱過渡を繰り返し受けるため、疲労割れが想定される。 しかしながら、起動・停止時等に発生する荷重はわずかであり、有意な応力変動を受けな い構造となっており、疲労割れが発生し難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な漏えい検査を実施し、漏えいのないことを目視にて確認することにより、 機器の健全性を確認している。
541	機械設備	原子炉容 器上部ふ た付属設 備	Δ2	摩耗	プランジャーの 摩耗	制御棒クラスタ駆動装置	制御棒の引き抜き・挿入動作を行うプランジャーは、その構造上、摺動部で摩耗が想定される。 しかしながら、制御棒位置指示装置によら計示確認及びコイル電流によるラッチ機構動作 確認、制御棒茶記験によるトリップ時のプランジャー動作に伴うラッチアーム開放動作 の確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
542	機械設備	原子炉容 器上部ふ た付属設 備	Δ2	摩耗	ラッチアーム及 び駆動軸の摩耗	制御棒クラスタ駆動装置	ラッチアームと駆動軸は互いに接触しあう部位であり、摺動部で摩耗が想定される。 しかしながら、制御棒位置指示装置による指示確認及びコイル電流によるラッチ機構動作 確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
543	機械設備	原子炉容 器上部ふ た付属設 備	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 カ緩和)	制御棒クラスタ駆動装置	はねは、応力状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、制御棒位置指示装置による指示確認及びコイル電流によるラッチ機構動作確認によ り、機器の健全性を確認している。
544	機械設備	原子炉容 器上部 た付属設 備		腐食(全面腐食)	耐震サポートの腐食(全面腐食)	制御棒クラスタ駆動装置	耐震サポートは炭素鋼及び低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、外観点検時の目視確認により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
545	機械設備	原子炉容器内挿物	Δ①	中性子吸収能力の低下	中性子吸収体の 中性子吸収能力 の低下	制御棒クラスタ	中性子吸収体は中性子吸収により、その成分元素が中性子吸収断面積の小さな元素へと変換されるため、中性子吸収能力は徐々に低下する。中性子吸収能力が低下すると制御機能が満足できない可能性が考えられる。しかしながら、運転中制御棒クラスタは炉心から引き抜かれているために照射量はわずかである。また、制御棒の取替基準の照射を受けた場合でも、個々の制御棒の核的損耗は0.07%を核安全設計の余裕の範囲(10%)内にあることから、制御能力としては十分余裕がある。したがって、高経年化対策上着目すべき経年劣化事象ではない。なお、制御棒クラスタは、中性子照射量に応じた取替えを計画的に行うことにより、機器の健全性を確認している。
546	機械設備	原子炉容器内挿物	Δ②	摩耗	制御棒被覆管の 摩耗	制御棒クラスタ	通常運転時の1次冷却材の流れにより、制御棒クラスタ案内管内等で制御棒が流体振動を起こす。その結果、制御棒と制御棒クラスタ案内管案内板等との間で摩耗が生じる可能性がある。制御棒クラスタの構造と挿入位置関係を図2.2-1に示す。米国ポイントピーチ(Point Beach)発電所2号炉で制御棒被覆管の摩耗が認められたという報告が、1984年3月にされたため、国内ブラントでも検討を行い、摩耗測定結果から摩託がにつまり、予防保全的に摩耗深さが肉厚を超えないよう定期的に取替えを行っている。なお、万一制御棒被覆管が減肉により貫通しても直ちに制御棒クラスタの機能に与える影響は小さいことを確認している。・シーのでは、1000年のでは、1000
							また、定期的に全制御棒クラスタの落下試験を実施し、挿入性に問題ないことを確認している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
547	機械設備	原子炉容器内挿物	Δ①	照射誘起型応 力腐食割れ	制御棒被覆管の 照射誘起型応力 腐食割れ	制御棒クラスタ	制御棒クラスタは被覆管の照射誘起型応力腐食割れが想定される。 しかしながら、照射誘起型応力腐食割れの感受性を呈する中性子照射量を超す高照射領域 は、制御棒被覆管においては先端部のみであるが、当該部位では、使用初期には内外差圧 による小さな応力しか発生しない。 また、国内他プラントでの照射後試験の結果からは、有意な応力腐食割れは認められてい ない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、制御棒クラスタは、中性子照射量に応じた取替えを計画的に行うことにより、機器 の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
548	機械設備	原子炉容容料	Δ2	照射誘起割れ	制御棒被覆管先 端部の照射誘起 割れ	制御棒クラスタ	被覆管先端部は外径増加によるクラックが想定される。中性子吸収体が、中性子照射量の比較的大きな制御棒被覆管先端部において照射スウェリングを起こし外径が増加することにより、次第に制御棒被覆管に内圧を付加するようになる。一方、制御棒被覆管先端部において照射スウェリングを起こし外径が増加することにより、次第に制御棒被覆管に内圧を付加すれの発生限プロックが低下する。これの事象の相乗効果により、照射量が大きな領域に入ると、内圧を付加された制御棒接覆管先端部に発生するひずみが大きくなり、割れ発生限界ひずみ量に達することによって、クラックが発生する可能性がある。しかしながら、予防保全的に、クラックが制御棒被覆管先端部に発生する可能性があると評価される中性子照射量に達する時期までに制御棒クラスタを取り替えることとしている。また、定期的に全制御棒クラスタの落下試験を実施し、挿入性に問題ないことを確認している他、水中テレビガメラを用いた目視確認を実施し、有意な損傷及び変形がないことを確認している。したがって、今後も現状保全を継続することで、機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
549	機械設備	原子炉容器内挿物	Δ①	照射スウェリ ング	制御棒被覆管の照射スウェリング	制御棒クラスタ	制御棒クラスタは被覆管の照射スウェリングが想定される。しかしながら、照射スウェリング量は、制御棒先端部の照射誘起割れに対する照射量取替基準に達した時点で強軍であり、燃料集合体内に制御棒を導く制御棒来内シンブル細径部(ダッシュボット部)と制御棒とのギャップは振くされる。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、制御棒クラスタは、中性子照射量に応じた取替えを計画的に行うことにより、機器の健全性を確認している。
550	機械設備	原子炉容器内挿物	Δ2	照射下クリープ	制御棒被覆管の照射下クリープ	制御棒クラスタ	制御棒被覆管先端部は照射下クリープの発生が想定される。 しかしながら、中性子吸収体によって変形が制限され、外観検査にて有意な変形のないことを確認し、制御棒クラスタは中性子照射量に応じた取替えを計画的に行うことにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
551	機械設備	原子炉容器内挿物	Δ①	摩耗	スパイダー溝の 駆動軸接手との 干渉部の摩耗	制御棒クラスタ	駆動軸とのラッチの際にはスパイダー溝内に駆動軸の接手が挿入される構造になっており、ステッピング及び制御棒クラスタのラッチ、アンラッチによる干渉部の摩耗が想定される。 しかしながら、国内他プラントの駆動軸接手干渉部の点検の結果、有意な摩耗は認められておらず、スパイダー材と接手内の硬さは同程度であり比摩耗量も同程度と考えられることから、スパイダー溝についても有意な摩耗はないと考える。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、制御棒クラスタは、計画的に取替えを行うことにより、機器の健全性を確認している。
552	機械設備	原子炉容器内挿物	Δ2	熱時効	スパイダー、 ベーン及びフィ ンガの熱時効	制御棒クラスタ	スパイダー、ベーン及びフィンガはステンレス鋼鋳鋼であり、高温での長時間の使用に伴い靭性の低下を起こす可能性がある。 しかしながら、HIP (熱間等方加圧) 処理により内部欠陥をなくしており、外観検査に て異常のないことを確認し、制御棒クラスタは計画的に取替えを行うことにより、機器の 健生を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
553	機械設備	原子炉容器内挿物	Δ①	ばねの変形 (応力緩和)	照射によるばね の変形(応力緩 和)	制御棒クラスタ	ばねは制御棒クラスタのスパイダー内にあり、中性子照射により応力緩和してばね力が徐々に低下する可能性が考えられる。 しかしながら、運転中制御棒クラスタは炉心から引き抜かれているため、照射量がわずかであり、ばれの応力緩和が発生し難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。なお、制御棒クラスタは、計画的に取替えを行うことにより、機器の健全性を確認している。
554	機械設備	濃縮減容 設備	Δ①		伝熱管の摩耗及 び高サイクル疲 労割れ	共通	洗浄排水処理装置加熱器、コンデンサ、蒸留水冷却器及び洗浄排水高濃縮装置コンデンサ の伝熱管は伝熱管振動により摩耗及び高サイクル疲労割れが想定される。 しかしながら、伝熱管は外表面の流体によって発生するカルマン渦による振動と共振せ ず、流力弾性振動も発生しない構造となっており、摩耗及び高サイクル疲労割れが発生し 難い環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認や漏えい試験により、機器の健全性を確認している。
555	機械設備	濃縮減容 設備	Δ①	腐食 (流れ加 速型腐食)	伝熱管の腐食 (流れ加速型腐 食)	共通	加熱器、コンデンサ及び蒸留水冷却器の伝熱管には流れ加速型腐食により減肉が想定される。 しかしながら、耐流れ加速型腐食性に優れたステンレス鋼の伝熱管を使用しており、流れ加速型腐食の変がし難い環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認や漏えい試験により、機器の健全性を確認している。
556	機械設備	濃縮減容 設備	Δ2	応力腐食割れ	蒸発器胴板等耐 食耐熱合金鋼及 びステンレス 使用部位の応力 腐食割れ	共通	蒸発器胴側、加熱器管側、高濃縮液ボンブ、濃縮液ボンブ及び配管の内部流体は濃縮廃液であり、蒸発器等の内部では廃液が蒸発濃縮することにより、塩化物イオン濃度が上昇することとなり、温度も約100℃となることから、応力腐食割れが想定される。成力腐食割れの発生要因は、腐食環境、材料及び残留応力の3つが考えられる。成食環境としては、塩化物イオン濃度及び流体温度が支配的であり、304系ステンレス鋼の応力腐食割れ発生の関係を図2.2-1に示す。しかしながら、洗浄排水処理装置の蒸発器胴板、加熱器管側等については、耐応力腐食割れ性に優れている316L系ステンレス鋼を使用し、また、洗浄排水高濃縮装置の蒸発器胴板等については、ステテンレス鋼より耐応力腐食割れ性に優れている耐食耐熱合金鋼配管の耐食耐熱合金鋼を使り耐食耐熱合金鋼及びステンレス鋼使用部位の応力腐食割れてついては開放点検時又は分解点検時に内面の目視確認や試運転時の漏えい試験等により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
557	機械設備	濃縮減容 設備	Δ2	スケール付着	電気ヒータ及び 加熱器伝熱管の スケール付着	共通	電気ヒータ外面及び加熱器管側の内部流体である廃液の不純物持ち込みによるスケール付 着が発生し、伝熱性能に影響を及ぼすことが想定される。 しかしながら、開放点検時の目視確認や清掃又は運転中の処理流量及び温度等のパラメー 夕監視により、機器の安全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
558	機械設備	濃縮減容設備	Δ①	スケール付着	伝熱管のスケー ル付着	共通	加熱器胴側は胴側流体、コンデンサ及び蒸留水冷却器は管側及び胴側流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが想定される。しかしながら、内部流体は蒸気や蒸留水又はヒドラジン水 (防錆制注入水)であり、適切な水質管理により不純物の流入は抑制されており、スケール付着による伝熱性能低下が発生し難い環境である。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、開放点検時の目視確認や清掃又は運転中の処理流量及び温度等のパラメータ監視により、機器の健全性を確認している。
559	機械設備	濃縮減容 設備	Δ2	絶縁低下	電気ヒータの絶縁低下	洗浄排水高濃縮装置	電気ヒータの絶縁物は、ヒータエレメントの発熱によりエレメントの成分(Ni, Cr)が拡散し、純度が低下することによる絶縁低下を起こすことが想定される。 しかしながら、電気ヒータはエポキシ樹脂でシールしており、外部の湿気がヒータシース内部に侵入しない構造としており、定期的な絶縁抵抗測定により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
560	機械設備	濃縮減容 設備	Δ①	摩耗	主軸の摩耗	共通	すべり軸受を使用している高濃縮液ポンプ、濃縮液ポンプ及び蒸留水ポンプは軸受と主軸の接触面で摺動摩耗が想定される。 しかしながら、設計段階において主軸と軸受間に潤滑剤を供給し、変を形成させて流体潤滑状態となるように考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
561	機械設備	濃縮減容 設備	Δ①	高サイクル疲 労割れ	主軸の高サイク ル疲労割れ	共通	高濃縮液ポンプ、濃縮液ポンプ及び蒸留水ポンプはポンプの運転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰り返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。しかしながら、ポンプ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。現視点検時の振動確認(通常運転時の振動状態と差異のないことの触診による確認)、試運転時における振動確認(変位の測定)並びに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。
562	機械設備	濃縮減容 設備	Δ①	腐食(キャビ テーション)	羽根車の腐食 (キャピテー ション)	共通	高濃縮液ポンプ、濃縮液ポンプ及び蒸留水ポンプはポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温における飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こることが想定される。しかしながら、キャビテーションを起こさない条件はポンプ及び機器配置設計段階において考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
563	機械設備	濃縮減容 設備	Δ①		加熱器胴側胴板等の内面からの腐食(流れ加速型腐食)	洗浄排水処理装置	加熱器の胴側胴板等は炭素鋼を使用しており、流れが乱れる部位では流れ加速型腐食により減肉が想定される。 しかしながら、これまでに有意な減肉は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
564	機械設備	濃縮減容 設備	Δ①	腐食(全面腐食)	コンデンサ管側耐圧構成品際の内面が腐食(全面腐食)	洗浄排水処理装置	コンデンサ管側及び蒸留水冷却器胴側の耐圧構成品は炭素鋼であり、内面からの腐食が想定される。 しかしながら、内部流体がヒドラジン水(防錆剤注入水)であり、腐食が発生し難い環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
565	機械設備	濃縮減容 設備	Δ2)		炭素鋼製耐圧構 成品の外面から の腐食(全面腐 食)	洗净排水処理装置	加熱器胴側、コンデンサ管側及び蒸留水冷却器胴側の耐圧構成品は炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
566	機械設備	濃縮減容 設備	Δ①	腐食(全面腐食)	フランジボルト 等の腐食(全面 腐食)	共通	フランジボルト及びケーシングボルトは低合金鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認等により、機器の健全性を確認している。
567	機械設備	濃縮減容設備	Δ2	腐食(全面腐食)	支持脚等の腐食 (全面腐食)	共通	支持脚、装置架台、スカート、台板及び取付ポルトは炭素鋼又は低合金鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
568	機械設備	濃縮減容 設備	Δ2	腐食(全面腐食)	支持脚(スライ ド脚)の腐食 (全面腐食)	洗浄排水処理装置	機置きの熱交換器であるコンデンサ及び蒸留水冷却器には、支持脚(スライド脚)が設置されているが、スライド部は炭素鋼であり、長期使用により腐食による固着が想定される。 しかしながら、巡視点検等で目視によりスライド部に異常のないことを確認し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
569	機械設備	スチーム コンバー タ	Δ2	摩耗及び高サ イクル疲労割 れ	加熱管及び冷却 管の摩耗及び高 サイクル疲労割 れ	スチームコンパータ本体、スチー ムコンパータドレンクーラ	一次側及び二次側流体により加熱管及び冷却管に振動が発生した場合、管支持板部又は邪魔板部で加熱管及び冷却管に摩耗又は高サイクル疲労割れが想定される。また、管外表面を流れる流体による振動で伝熱管の強度上想定される振動形態としては、カルマン渦による振動と流力弾性振動がある。しかしながら、分解点検時の渦流探傷検査、漏えい試験又は目視確認により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
570	機械設備	スチーム コンバー タ	Δ①	腐食(流れ加 速型腐食)	加熱管及び冷却管内外面の腐食(流れ加速型腐食)		スチームコンパータ本体の加熱管内面及びスチームコンパータドレンクーラの冷却管内外面については、内部流体により流れ加速型腐食の発生が想定される。 しかしながら、耐流れ加速型腐食性に優れたステンレス鋼の加熱管及び冷却管を使用しており、流れ加速型腐食が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の渦流探傷検査、漏えい試験又は目視確認により、機器の健全性を確認している。
571	機械設備	スチーム コンバー タ	Δ①	応力腐食割れ	加熱管及び冷却 管の応力腐食割 れ	スチームコンバータ本体、スチー	加熱管及び冷却管はステンレス鋼を使用しており、応力腐食割れが想定される。 しかしながら、水質を適切に管理しているため、応力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の渦流探傷検査、漏えい試験又は目視確認により、機器の健全性を確認 している。
572	機械設備	スチーム コンバー タ	Δ2	スケール付着	加熱管のスケール付着	スチームコンパータ本体	一次側及び二次側流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を 及ぼすことが想定される。 しかしながら、熱交換器適水時(運転時)の流体温度、流量等のパラメータの監視やエ アーブローにて管内面の洗浄を定期的に実施することで、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
573	機械設備	スチーム コンバー タ	Δ①	スケール付着	冷却管のスケー ル付着	スチームコンバータドレンクーラ	一次側及び二次側流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を 及ぼすことが想定される。 しかしながら、一次側及び二次側流体は給水であり、飽和溶存酸素濃度の環境下である が、濁度管理により適切な水質管理を行っており不純物の流入は抑制されていることか ら、スケール付着の可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、熱交換器通水時(運転時)の流体温度、流量等のパラメータの監視やエアーブロー にて管内面の洗浄を定期的に実施することで、機器の健全性を確認している。
574	機械設備	スチーム コンバー タ	Δ2		一次側、二次側 の耐圧構成品等 の腐食(流れ加速型腐食)	スチームコンパータ本体、スチー ムコンパータドレンクーラ、ス チームコンパータ給水ポンプ	蒸気、給水及び2相流体を内包する発生蒸気室胴板等の炭素鋼使用部位には、流れ加速型腐食により減肉が想定される。また、内部流体が給水及び高温、高速の流体の場合には、炭素鋼又は鋳鉄の耐圧構成品等は内部流体による流れ加速型腐食により減肉が想定される。しかしながら、一次側及び二次側耐圧構成品等の腐食については、分解点検時の目視確認により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
575	機械設備	スチーム コンバー タ	Δ①	摩耗	主軸の摩耗		ころがり軸受を使用しているポンプについては、軸受と主軸の接触面で摩耗が想定される。 軸受の定期取替え時の軸受引抜き時に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドペーパで仕上げる方策も考えられる。この場合、主軸表面がわずかに摩 耗し、主軸と軸受間で微小隙間が生じ運転中にフレッティングにより摩耗する可能性がある。 しかしながら、分解点検時の寸法管理によりフレッティングが発生しないようにしており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
576	機械設備	スチーム コンバー タ	Δ2	腐食(全面腐食)	胴板、ケーシン グ等の外面から の腐食(全面腐 食)	共通	スチームコンバータは屋外に設置されており、胴板、ケーシング等の構成品は炭素鋼又は 鋳鉄であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装や防水措置(保温)により腐食を防止しており、塗装や 防水措置(保温)が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装や防水措置(保温)の状態を確認し、はく離等が認め られた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高軽年化対策上着目すべき経年劣 化事象ではない。
577	機械設備	スチーム コンバー タ	Δ①	高サイクル疲 労割れ	主軸の高サイクル疲労割れ	スチームコンバータ給水ポンプ	ポンプ運転時には主軸に定常応力と変動応力が発生し、高平均応力下で繰り返し応力を受けると、段付部等の応力集中部において高サイクル疲労割れが想定される。 しかしながら、ポンプ設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、巡視点検時の振動確認(通常運転時の振動状態と差異のないことの触診や目視による確認)、試運転時における振動確認(変位の測定)ならびに分解点検時の応力集中部に対する目視確認や浸透探傷検査により、機器の健全性を確認している。
578	機械設備	スチーム コンバー タ	Δ①	摩耗	ケーシングと羽 根車の摩耗	スチームコンバータ給水ポンプ	スチームコンバータ給水ポンプでは、ケーシングと羽根車との摺動部に摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
579	機械設備	スチーム コンバー タ	Δ①	腐食(キャビ テーション)	羽根車の腐食 (キャビテー ション)	スチームコンバータ給水ポンプ	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温における飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こることが想定される。 しかしながら、キャビテーションを起こさない条件はポンプ及び機器配置設計段階において考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機器の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
580	機械設備	スチーム コンバー タ	Δ①	腐食(全面腐食)	軸受箱内面からの腐食(全面腐食)	スチームコンパータ給水ポンプ	軸受箱は鋳鉄であり、腐食が想定される。 しかしながら、内面については内部流体が油で腐食が発生し難い環境であり、これまでに 有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難 し。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
581	機械設備	スチーム コンバー タ	Δ2	腐食(全面腐食)	胴板等耐圧構成 品の内面からの 腐食 (全面腐 食)	スチームコンバータドレンタン ク、スチームコンバータ給水タン ク	胴板等耐圧構成品は炭素鋼であるため、長期使用により、内面からの腐食が想定される。 しかしながら、開放点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
						l .	ı

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
582	機械設備	スチーム コンバー タ	Δ①	腐食(全面腐食)	フランジボルト	スチームコンパータ本体、スチー ムコンパータドレンクーラ、ス チームコンパータドレンタンク、 スチームコンパータ給水タンク	フランジボルト及びマンホール用ボルトは、炭素鋼及び低合金鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、終付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後これらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時又は開放点検時の目視確認等により、機器の健全性を確認している。
583	機械設備	スチーム コンバー タ	Δ2	腐食(全面腐食)	。支持脚及び台板 の腐食(全面腐 食)	スチームコンパータ本体、スチームコンパータドレンクーラ、ス チームコンパータドレンク・ラ、ス チームコンパータ給水ポンプ、ス チームコンパータドレンタンク	支持脚及び台板は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
584	機械設備	スチーム コンバー タ	Δ2	腐食(全面腐食)	。支持脚(スライ ド脚)の腐食 (全面腐食)	スチームコンパータ本体、スチー ムコンパータドレンクーラ、ス チームコンパータドレンタンク	スチームコンバータ本体、スチームコンバータドレンクーラ及びスチームコンバータドレンタンクには、支持脚(スライド脚)が設置されているが、スライド部は炭素鋼であり長期使用により、腐食による固着が想定される。しかしながら、巡視点検等で目視によりスライド部に異常のないことを確認し、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
585	機械設備	スチーム コンバー タ	Δ2	腐食(全面腐食)	取付ボルトの腐 食(全面腐食)	スチームコンバータ給水ポンプ	取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合は必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
586	機械設備	水素濃度 制御装置	Δ2	水素反応機能 低下	触媒プレート (触媒)の水素 反応機能低下	静的触媒式水素再結合装置	触媒プレート (触媒) は、常時原子炉格納容器内の空気と接触しているため、水素反応機能の低下が想定される。 しかしながら、触媒プレート (触媒) は、定期的な目視確認や機能検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
587	機械設備	水素濃度 制御装置	Δ2	腐食(全面腐食)	。支持架台及び取 けボルトの腐食 (全面腐食)	静的触媒式水素再結合装置	支持架台及び取付ボルトは成素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
588	機械設備	基礎ボル ト	Δ2	腐食(全面腐食)	大気接触部の腐 食 (塗装あり 部) (全面腐 食)	共通	基礎ポルトは炭素鋼、低合金鋼及びステンレス鋼を使用しており、腐食が想定される。 しかしながら、大気接触部は塗装や防水措置により腐食を防止しており、塗装や防水措置 が健全であれば腐食進行の可能性は小さい。 また、巡視点検等の目視により塗装や防水措置の状態を確認し、はく離等が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
589	機械設備	基礎ボル ト	Δ①	腐食(全面腐食)	大気接触部の腐 食 (塗装なし 部) (全面腐 食)	屋内の基礎ボルト共通	基礎ポルトは炭素鋼、低合金鋼及びステンレス鋼であり、コンクリート直上部等は大気接 触部であることから腐食が想定される。 しかしながら、基礎ポルト代表箇所のナットを取外してコンクリート直上部の大気接触部 を目視確認したところ腐食は認められていない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、巡視点検で目視により異常のないことを確認し、機器の健全性を確認している。
590	機械設備	基礎ボル ト	Δ2)	腐食(全面腐食)	大気接触部の腐 食(塗装なし 部)(全面腐 食)	屋外の基礎ポルト共通	コンクリート直上部は、大気接触部であり、基礎ボルトには、炭素鋼、低合金鋼及びステンレス鋼を使用していることから、腐食を起こす可能性があり、その場合には、基礎ボルトの腐食減肉により支持機の低下が懸念される。また、メカニカルアン力の場合、コンクリートに埋設されているテーパボルトとシールドには大気に接触している部分があるため、シールド及びテーパボルトの腐食の進行により支持機能の低下が懸念される。しかしながら、60年時点での推定腐食量を考慮した健全性評価の結果、機器の支持機能が衰失する可能性は低い。また、巡視点検で目視により異常のないことを確認し、機器の健全性を確認している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
591	電源設備	ディーゼ ル発電機	Δ1)	腐食(全面腐食)	. 固定子コア、回 転子コアの腐食 (全面腐食)	ディーゼル発電機	固定子コアは珪素鋼板、回転子コアは炭素鋼であり、腐食が想定される。 しかしながら、固定子コア及び回転子コアはワニス処理により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
592	電源設備	ディーゼル発電機	Δ2	腐食(全面腐食)	フレーム、冷却 ファン、ブラダ ケットなび、ベッド クタ及食(全面腐 食)	ディーゼル発電機	フレーム、冷却ファン、インダクタ及びペッドは炭素鋼、ブラケットは鋳鉄であり、腐食が想定される。 しかしながら、フレーム、冷却ファン、ブラケット及びペッドは内外面とも塗装により、インダクタは亜鉛メッキにより、腐食を防止しており、塗装又はメッキ面が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装又はメッキ面の状態を確認し、はく離が認められた場合には必要に応じて補修を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
593	電源設備	ディーゼ ル発電機	Δ①	摩耗	主軸の摩耗	ディーゼル発電機	主軸は、軸受(すべり)との摺動による摩耗が想定される。 しかしながら、主軸については油潤滑のすべり軸受を使用しており、主軸と軸受間に潤滑 油が供給され油膜が形成されるため、摺動摩耗の生じる可能性は小さい。 また、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因が あるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
594	電源設備	ディーゼ ル発電機	Δ①	高サイクル疲 労割れ	主軸の高サイク ル疲労割れ	ディーゼル発電機	発電機運転時には主軸に定常応力と変動応力が発生し、高平均応力下において繰返し応力を受けると段付部等の応力集中部において、高サイクル疲労割れが想定される。 しかしながら、発電機設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、試運転時等における振動確認及び分解点検時の応力集中部に対する目視確認により、機器の健全性を確認している。
595	電源設備	ディーゼ ル発電機	Δ①	摩耗	スリップリング の摩耗	ディーゼル発電機	スリップリングは、発電機運転時にブラシと摺動しながら回転子コイルに電力を供給して いるため、スリップリングとブラシの接触面において摩耗が想定される。 しかしながら、運転時間が短く、これまでに有意な摩耗は認められておらず、今後もこれ らの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
596	電源設備	ディーゼル発電機	Δ2	腐食(全面腐 食)	取付ボルトの腐食(全面腐食)	ディーゼル発電機	取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には、必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
597	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ①	摩耗	ピストンピン穴 等の摺動部の摩 耗	非常用ディーゼル発電機機関本体	ピストンピン穴等の摺動部については、摩耗が想定される。 しかしながら、当該部は油雰囲気下で摩耗が発生し難い環境であり、これまでに有意な摩 耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
598	電源設備	非常用 ディーゼ 光電機 機関本体	Δ①	腐食(全面腐食)	シリンダライナ等燃焼室面の腐食(全面腐食)		燃料が燃焼する過程で燃料油中に含有されている硫黄が燃焼し二酸化硫黄になる。機関停止後シリンダ内及び排気管内に燃焼ガスが残留し、この燃焼ガス中の二酸化硫黄と水分とが結合すると硫酸になる。このため、シリンダライナ及び排気管内等は腐食が想定される。しかしながら、機関停止時に燃焼室内及び排気管内等に残留する燃焼ガスは、停止後に行われるエアーランにより燃焼室及び排気管内等から排出され、新しい空気が吸入されることにより腐食発生の要因が取り除かれることから、腐食が発生し難い現であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
599	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ①	疲労割れ	シリンダカバー 等の疲労割れ	非常用ディーゼル発電機機関本体	シリンダカバー等には、機関の始動・停止に伴い燃焼室構成部位等が常温から高温になり、再び常温に戻ることによる疲労割れが想定される。 しかしながら、シリンダカバー等は有意な応力変動を受けないように設計されており、この設計上の考慮を経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や浸透探傷検査により、機器の健全性を確認している。
600	電源設備	非常用 ディーゼ ル発 機関本体	Δ①	カーボン堆積	燃焼室構成部位 へのカーボン堆 積	非常用ディーゼル発電機機関本体	燃焼室構成部位であるビストン上部頂面、ビストン側面、ビストンリング溝、シリンダカバー及びシリンダライナは、カーボンを主とする燃焼残渣物が堆積すると、燃焼が悪化することが想定される。 しかしながら、これまでに有意なカーボンの推積は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
601	電源設備	非常用 ディーゼ ル発関本体 機関本体	Δ①	高サイクル疲 労割れ	クランク軸等の 高サイクル疲労 割れ	非常用ディーゼル発電機機関本体	機関運転時には、クランク軸等に定常応力と変動応力が発生し、高平均応力下において繰返し応力を受けると段付部等の応力集中部において、高サイクル疲労割れが想定されるしかしながら、クランク軸等は有意な応力変動を受けないように設計されており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 はたがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化。 なお、試運転時等の振動確認や分解点検時の目視確認又は応力集中部に対する浸透探傷検査により、機器の健全性を確認している。
602	電源設備	非常用 ディーゼ ル発関本体 機関本体	Δ2	腐食(全面腐食)	はずみ車等の外面からの腐食(全面腐食)	非常用ディーゼル発電機機関本体	クランク軸のはずみ車、排気管、非常用停止装置のピストン案内等は炭素鋼、炭素鋼鋳鋼、低合金鋼又は鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検ទ日視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
603	電源設備	非常用 ディーゼ ル機関本体	Δ①	摩耗	ねじり振動防止 装置の摩耗		クランク軸のねじり振動防止装置は、機関運転時にクランク軸に働くねじり振動に対し、 内蔵の駆動輪と慣性円盤の相対的なモーメントを、内蔵ばねの摩擦と潤滑油の移動により 振動エネルギを吸収し、クランク軸のねじり振幅及びこれによるねじり応力を抑制する機 能を有している。このため接触部の摩耗が想定される。 しかしながら、当該部は油雰囲気下で摩耗が発生し難い環境であり、これまでに有意な摩 耗に認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
604	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ①	腐食(全面腐食)	ねじり振動防止 装置の腐食(全 面腐食)	非常用ディーゼル発電機機関本体	ねじり振動防止装置は炭素鋼又は鋳鉄であり、腐食が想定される。 しかしながら、当該部は油雰囲気下で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
605	電源設備	非常用 ディーゼ ル発 機関本体	Δ①	疲労割れ	カップリングボ ルトの疲労割れ	非常用ディーゼル発電機機関本体	機関本体のクランク軸と発電機の主軸との結合は、クランク軸と主軸との間に間隔板及びはずみ車をはさみカップリングボルトで結合されている。 起動・運転時にはカップリングボルト部の応力が変動することから、疲労割れが想定される。 しかしながら、カップリングボルトは有意な応力変動を受けないように設計されており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
606	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ@	腐食(全面腐 食)	シリンダ冷却水 ポンプケーシン グ等接液部の腐 食(全面腐食)	非常用ディーゼル発電機機関本体	シリンダ冷却水ポンプケーシング、シリンダ冷却水ポンプ羽根車、過給機タービンハウジング、シリンダライナ、シリンダブロック、燃料噴射弁本体等は炭素鋼、炭素鋼鋳鋼、鋳鉄はは銅合金鋳物であり、内部流体が飽和溶存酸素濃度(最大約8ppm)の流体であるため、長期使用により腐食が想定される。したしながら、分解点検時の目視確認により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
607	電源設備	非常用 ディーゼ 光発本体 機関本体	Δ①		シリンダ冷却水 ポンプ羽根車の 腐食 (キャビ テーション)	非常用ディーゼル発電機機関本体	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温に おける飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こ ることが想定される。 しかしながら、ポンプ及び機器配置の設計時にはキャピテーションを考慮しており、この 設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
608	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ①	摩耗	吸気弁・排気弁 の弁箱、弁棒等 の摩耗	非常用ディーゼル発電機機関本体	弁箱、弁棒等は弁の開閉による摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
609	電源設備	非常用 ディーゼ ル発 機関本体	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 カ緩和)	非常用ディーゼル発電機機関本体	ばねはある一定の応力状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の作動確認により、機器の健全性を確認している。
610	電源設備	非常用 ディーゼ ル機関本体	Δ2)	腐食(異種金属接触腐食)	空気冷却器管側 構成品の海水に よる腐食(異種 金属接触腐食含 む)	非常用ディーゼル発電機機関本体	空気冷却器の管板は銅合金であり、長期使用により海水接液部において腐食が想定される。 また、空気冷却器の水室は炭素銅鋳鋼であり、海水接液面にライニングを施工しているが、ライニングのはく離等により炭素銅鋳鋼に海水が接液した場合は、管板が銅合金であるため、炭素銅鋳鋼部位に異種金属接触腐食が超定される。しかしながら、開放点検時の目視確認で腐食やライニングの状況を確認し、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
611	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ2	腐食(流れ加速型腐食)	空気冷却器伝熱 管内面の腐食 (流れ加速型腐 食)	非常用ディーゼル発電機機関本体	空気冷却器の伝熱管は銅合金であり、内部流体による流れ加速型腐食により減肉が想定される。 網合金は腐食電位の高い貴な金属であり、耐食性が良いが、高速の流水中で使用すると、 流れ加速型腐食が発生することがある。 当該機器は管側流体が海水であり、貝等の異物の付着により局所的に流速が増大し、流れ 加速型腐食が発生する場合があるが、貝等の混入物の大きさ、形態及び付着状態は不確定 であることから、流速と廐食量について、一律で量的な評価退困難である。 しかしながら、開放点検時に渦流探傷検査及び漏えい試験により、機器の健全性を維持し ている。 したがつて、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
612	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ2	スケール付着	空気冷却器伝熱 管のスケール付 着	非常用ディーゼル発電機機関本体	管側流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが 想定される。 しかしながら、開放点検時の目視確認や清掃により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
613	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ①	カーボン堆積	過給機タービン ハウジング等へ のカーボン堆積	非常用ディーゼル発電機機関本体	シリンダ内の燃焼により発生したカーボンが排気管を経由し、過給機のタービンハウジング内に堆積し、機関性能を低下させることが想定される。 しかしながら、負荷運転時に排気温度、過給圧力が正常であることを確認しており、これまでに有意なカーボンの堆積は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
614	電源設備	非常用 ディーゼ ル発 機関本体	Δ①	クリープ	過給機タービン ロータのクリー プ	非常用ディーゼル発電機機関本体	過給機のターピンロータは機関運転時、高温になり、かつ遠心力等が作用することから、 使用材料によってクリープによる損傷が想定される。 しかしながら、プラント運転開始後60年時点の予測累積運転時間(2,000時間未満)は 金属材料研究所データにおいて示されたクリーブ破損寿命(100,000時間以上)と比較して短い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び浸透探傷検査により、機器の健全性を確認している。
615	電源設備	非常用 ディーゼ ル発電機 機関本体		腐食(全面腐食)	燃料油供給ポン ブケーシング等 接液部の腐食 (全面腐食)	非常用ディーゼル発電機機関本体	燃料油供給ポンプケーシング等は炭素鋼鋳鋼又は鋳鉄であり、腐食が想定される。 しかしながら、当該部は油雰囲気下で腐食が発生し難い環境であり、これまでに有意な腐 食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
616	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ2	固着	燃料油供給ポン ブ軸スリーブの 固着	非常用ディーゼル発電機機関本体	燃料油供給ポンプの軸スリープ内面の油溝に潤滑油の残渣が堆積していくと潤滑油の流れが妨げられ、駆動軸と軸スリープの褶動部の接触抵抗が増大することが想定される。 しかしながら、分解点検時に潤滑油残渣のないことを目視にて確認し、作動確認すること により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
617	電源設備	非常用 ディーゼ ル発異本体 機関本体	Δ①		燃料噴射ポンプ デフレクタの腐 食(キャビテー ション)	非常用ディーゼル発電機機関本体	燃料噴射ポンプデフレクタでは燃料の噴射過程における圧力変動が大きく、キャビテーションによるエロージョンが想定される。 しかしながら、燃料噴射ポンプデフレクタはキャビテーションの発生を抑制する構造としており、プラント連転開始後60年時点の予測累積運転時間(2,000時間未満)に対し、同型のディーゼル発電機関で十分な使用実績(14,000時間程度)もある。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
618	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ①	摩耗	始動弁弁箱等の 摺動部の摩耗	非常用ディーゼル発電機機関本体	対動弁、インターロック弁及び始動空気管制弁の弁箱等は弁等の作動により、摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
619	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ2	固着	燃料噴射ポンプ 調整装置組立品 各リンクの固着		燃料噴射ポンプ調整装置組立品のパネ鞘、シャフト、レバー、腕は長期にわたって使用した場合、機関外部に露出しているシャフトや腕に潤滑油の変質及び塵埃の堆積による摩擦の増加により、リンクの摺動抵抗が増大することが想定される。しかしながら、分解点検時の摺動抵抗測定及び負荷運転時の動作確認により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
620	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ①	導通不良	温度スイッチ接 点部の導通不良	非常用ディーゼル発電機機関本体	温度スイッチは接点部分に浮遊塵埃が付着することによる導通不良が想定される。 しかしながら、接点部分はケース内に収納されており、塵埃の付着による導通不良が発生 する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な作動確認により、機器の健全性を確認している。
621	電源設備	非常用 ディーゼ ル発電機 機関本体	Δ2	特性変化	温度スイッチの 特性変化	非常用ディーゼル発電機機関本体	温度スイッチは長期間の使用に伴い、特性の変化が想定される。 しかしながら、温度スイッチは測定対象ごとに耐圧性、耐食性等を考慮した材料を選定し 設計しており、屋内に設置されていることから環境変化の程度が小さく、短期間で特性が 変化する可能性は小さい。 また、定期的な作動確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
622	電源設備	DGポンプ	Δ①	摩耗	主軸(クランク 軸)、従動軸の 摩耗	共通	ころがり軸受を使用している温水循環ボンプ、空気圧縮機及び各電動機については、軸受と主軸の接触面で摩耗が想定される。 軸受の定期取替時の軸受引き抜き時に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドペーパで仕上げる方策も考えられる。この場合は、主軸表面がわずかに 摩耗し、主軸と軸受間で微小隙間が生じ運転中にフレッティングにより摩耗する可能性がある。 しかしながら、分解点検時の寸法管理によりフレッティングが発生しないようにしており、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
623			Δ①	摩耗			すべり軸受を使用している潤滑油プライミングポンプ、燃料油移送ポンプ及び空気圧縮機については、軸受と主軸の接触面で摺動摩耗が想定される。 しかしながら、設計段階において、主軸(クランク軸)及び従動軸と軸受間に潤滑剤(潤 滑油又は燃料油)を供給し、油膜を形成させて流体潤滑状態となるように考慮しており、 この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
624	電源設備	DGポンプ	Δ①	高サイクル疲 労割れ	主軸及び従動軸 の高サイクル疲 労割れ	共通	ポンプ(空気圧縮機)及び電動機の運転時には主軸(クランク軸、従動軸を含む)に定常 応力と変動応力が発生し、高平均応力下において繰返し応力を受けると段付部等の応力集 中部において、高サイクル疲労割れが想定される。 しかしながら、ポンプ(空気圧縮機)及び電動機の設計時には高サイクル疲労を考慮して おり、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、試運転時等における振動確認(変位の測定等)並びに分解点検時の応力集中部に対 する目視確認又は浸透探傷検査により、機器の健全性を確認している。
625	電源設備	DGポンプ	Δ①	腐食(キャビ テーション)	羽根車の腐食 (キャピテー ション)	温水循環ポンプ	ポンプの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温における飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こることが想定される。しかしながら、ポンプ及び機器配置の設計時にはキャビテーションを考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
626	電源設備	DGポンプ	Δ2	腐食(全面腐食)	軸受箱の腐食		軸受箱は鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補終することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
627	erd .	ì	Δ①	腐食(全面腐食)	(全面腐食)		一方、内面については軸受を潤滑するための潤滑油により油雰囲気下で腐食が発生し難い 環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する 要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
628	電源設備	DGポンプ	Δ2	腐食(全面腐食)	ケーシング等の 腐食(全面腐	潤滑油プライミングポンプ、燃料 油移送ポンプ、空気圧縮機	ポンプ(空気圧縮機)のケーシング等(空気圧縮機はクランクケース等)は炭素鋼又は鋳 鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進 行の可能性は小さい。 また、巡視検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
629			Δ①	腐食(全面腐食)	食)	M DATE OF TAXABLE	一方、内面については内部流体が潤滑油プライミングボンブ及び燃料油移送ボンブが油 (潤滑油及び燃料油)、空気圧縮機は油雰囲気下で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
630	電源設備	DGポンプ	Δ2	腐食(全面腐食)	ケーシング等の 腐食(全面腐 食)	温水循環ポンプ	ポンプのケーシング等は鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
631			Δ2	腐食(全面腐食)			一方、内面については内部流体が飽和溶存酸素濃度 (最大約8ppm) の流体であるため、長期使用により腐食が想定されるが、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
632	電源設備	DGポンプ	Δ①	腐食(全面腐 食)	ケーシングボルトの腐食(全面腐食)	温水循環ポンプ	ケーシングボルトは炭素鋼であり、Oリングからの漏えいにより、内部流体によるボルト の腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認めら れておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
633	電源設備	DGポンプ	Δ2	腐食(全面腐食)	台板及び取付ボ ルトの腐食(全 面腐食)	共通	台板及び取付ボルトは炭素鋼又は鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
634	電源設備	DGポンプ	Δ①	摩耗	歯車及びケーシ ングの摩耗	潤滑油ブライミングポンプ、燃料 油移送ポンプ	潤滑油プライミングポンプ及び燃料油移送ポンプは歯車ポンプであるため、歯車又はケーシングは接触による摩耗が想定される。 しかしながら、内部流体は潤滑油又は燃料油で摩耗が発生し難い環境であり、これまでに 有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難 い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や寸法計測により、機器の健全性を確認している。
635	電源設備	DGポンプ	Δ①	ばねの変形(応力緩和)		潤滑油ブライミングボンプ、燃料 油移送ポンプ	リリーフ弁ばねには、常時内部流体圧力に相当する荷重が加わっており、長期間保持されることにより、変形 (応力緩和) が想定される。 しかしながら、ばねに発生する応力は弾性節囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の作動確認により、機器の健全性を確認している。
636	電源設備	DGポンプ	Δ①	腐食(全面腐食)	連接棒、ピストンピンの腐食(全面腐食)	空気圧縮機	空気圧縮機の連接棒及びピストンピンは炭素鋼又は低合金鋼であり、腐食が想定される。 しかしながら、連接棒及びピストンピンはクランクケース内の油雰囲気下で腐食が発生し 難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化 する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
637	電源設備	DGポンプ	Δ①	摩耗	ピストンピン等 の摩耗	空気圧縮機	ビストンピン、ビストン及びシリンダの摺動部については、摩耗が想定される。 しかしながら、当該部は油雰囲気下で摩耗が発生し難い環境であり、これまでに有意な摩 耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認及び寸法計測により、機器の健全性を確認している。
638	電源設備	DGポンプ	Δ①	腐食(全面腐食)	ピストンの腐食 (全面腐食)	空気圧縮機	空気圧縮機のピストンは鋳鉄であり、腐食が想定される。 しかしながら、内面はクランクケース内で油雰囲気下にあり、外面は圧縮された高温空気 で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれ らの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
639	電源設備	DGポンプ	Δ2	摩耗	∨プーリの摩耗	空気圧縮機	マプーリは、回転によりマベルトとの接触部に摩耗が想定される。 しかしながら、分解点検時等のマベルトの張力確認及びマプーリの目視確認により、機器 の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
640	電源設備	DGポンプ	Δ②	腐食(全面腐食)	シリンダ、シリ ンダヘッドの腐	空気圧縮機	空気圧縮機のシリンダ及びシリンダヘッドは鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
641			Δ①	腐食(全面腐食)	食(全面腐食)		一方、内面については吸入空気を圧縮した高温空気で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
642	電源設備	DGポンプ	Δ①	腐食(全面腐食)	固定子コア及び 回転子コアの腐 食(全面腐食)	電動機共通	固定子コア及び回転子コアは珪素鋼板であり、腐食が想定される。 しかしながら、固定子コア及び回転子コアはワニス処理等により腐食を防止しており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
643	電源設備	DGポンプ	Δ2	腐食(全面腐 食)	フレーム、端子 箱及びブラケッ トの腐食(全面 腐食)	電動機共通	フレーム及びプラケットは鋳鉄、端子箱は炭素鋼であり、腐食が想定される。 しかしながら、内外面とも大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、分解点検時の目視値により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
644	電源設備	DGポンプ	Δ①	疲労割れ	回転子棒・エン ドリングの疲労 割れ	電動機共通	回転子棒・エンドリングについては、電動機の起動時に発生する電磁力による繰返し応力を受けるため、疲労割れが想定される。 しかしながら、回転子棒・エンドリングはアルミ充てん式 (一体形成)であり、回転子棒とスロットの間(隙間を生じることはなく、疲労割れが発生し難い構造である。 したがって、向(金)、機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
645	電源設備	DG熱交換 器	Δ2	高サイクル疲 労割れ	伝熱管の摩耗及 び高サイクル疲 労割れ	清水冷却器、潤滑油冷却器	原側流体及び管側流体により伝熱管振動が発生した場合、邪魔板部等で伝熱管に摩耗又は 高サイクル疲労割れが想定される。 また、管外表面を流れる流体による振動で伝熱管の強度上想定される振動形態としては、 カルマン渦による振動と流方の弾流振動検査等により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
646		DO## ##	Δ2	腐食(流れ加 速型腐食)	伝熱管の腐食		伝熱管は銅合金であり、管側の内部流体である海水により流れ加速型腐食による減肉が想定される。 しかしながら、開放点検時の渦流探傷検査により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
647	電源設備	DG熱交換 器	Δ①	腐食 (流れ加 速型腐食)	食)	清水冷却器、潤滑油冷却器	一方、胴側の内部流体は純水又は潤滑油であり、流速が遅いことから流れ加速型腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認や渦流探傷検査により、機器の健全性を確認している。
648	電源設備	DG熱交換 器	Δ①	腐食(流れ加 速型腐食)	伝熱管の腐食 (流れ加速型腐 食)	清水加熱器	伝熱管は内部流体により、流れ加速型腐食による減肉が想定される。 しかしながら、胴側流体は蒸気であるが、入口側蒸気は緩衝板により直接伝熱管にあたらない構造であり、また、管側流体は純水であるが、伝熱管は耐流れ加速型腐食性に優れたステンレス釦の会数管を使用しているため、流れ加速型腐食が発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の漏えい試験により、機器の健全性を確認している。
649	電源設備	DG熱交換	Δ2	スケール付着	伝熱管のスケー	共通	管側及び胴側流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが想定される。 清水冷却器、潤滑油冷却器の管側の内部流体である海水の不純物持ち込みによるスケール付着が想定されるが、開放点検時の目視確認や伝熱管の洗浄により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
650		器	Δ①	スケール付着	・ル付着	~~	一方、清水冷却器の胴側流体は純水、潤滑油冷却器の胴側流体は潤滑油、清水加熱器の胴側及び管側流体は蒸気、純水であり、適切な水質管理により不純物の流入は抑制されており、スケール付着による伝熱性能低下が発生し難い環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認や伝熱管の洗浄により、機器の健全性を確認している。
651	電源設備	DG熱交換 器	Δ2	腐食(異種金 属接触腐食)	管側耐圧構成品 等の海水による 腐食(異種金属 接触腐食を含 む)	清水冷却器、潤滑油冷却器	管側流体が海水であり、接液部に銅合金を使用しているため、長期使用により腐食が想定される。また、海水に接する水室の炭素鋼鋳鋼部位にはライニングを施工しているが、ライニングのはく離等により炭素鋼鋳鋼に海水が接した場合、管板が銅合金であるため、炭素鋼鋳鋼部位に異種金属接触腐食が想定される。しかしながら、開放点検験の目視確認より、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
652	電源設備	DG熱交換 器	Δ2	腐食(全面腐食)	管側耐圧構成品 等の内面からの 腐食(全面腐 食)	清水加熱器	管側耐圧構成品等が炭素鋼鋳鋼又は炭素鋼であり、内部流体が飽和溶存酸素濃度 (最大約 8ppm) の流体であるため、長期使用により腐食が想定される。 しかしながら、開放点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
653	電源設備	DG熱交換 器	Δ2	腐食 (流れ加 速型腐食)	胴側耐圧構成品 等の腐食(流れ 加速型腐食)	清水加熱器	蒸気中に湿分が存在する2相流体を内包する胴板等の炭素鋼使用部位には、流れ加速型腐食により減肉が想定される。 しかしながら、開放点検時の目視確認により、有意な腐食がないことを確認し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
654		DG熱交換	Δ2	腐食(全面腐食)	胴側耐圧構成品 等の内面からの		胴側耐圧構成品等は炭素鋼であり、腐食が想定される。 清水冷却器の内部流体は飽和溶存酸素濃度(最大約8ppm)の流体であるため、長期使用に より腐食が想定されるが、開放点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
655	電源設備	s s s s s	Δ①	腐食(全面腐食)	腐食 (全面腐 食)	清水冷却器、潤滑油冷却器	また、潤滑油冷却器の内部流体は潤滑油で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
656	電源設備	DG熱交換 器	Δ2	腐食(全面腐食)	胴板等の外面からの腐食(全面腐食)	共通	間板等は炭素鋼又は炭素鋼鋳鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
657	電源設備	DG熱交換 器	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐 食)	共通	フランジボルトは炭素鋼であり、ガスケット又はOリングからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、開放点検時の目視確認等により、機器の健全性を確認している。
658	電源設備	DG熱交換 器	Δ2	腐食(全面腐食)	支持脚の腐食 (全面腐食)	共通	支持脚は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
659			Δ2	腐食(全面腐食)			胴板等は炭素鋼、炭素鋼鋳鋼又は鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補除することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
660	電源設備	DG容器	Δ2	腐食(全面腐食)	胴板等の腐食 (全面腐食)	シリンダ冷却水タンク、潤滑油タンク、燃料油サービスタンク、空気だめ、潤滑油主こし器、燃料油第2こし器	
661			Δ①	腐食(全面腐 食)			また、潤滑油タンク、燃料油サービスタンク、潤滑油主こし器、燃料油第2こし器の内部 流体は潤滑油又は燃料油で腐食が発生し難い環境であり、これまでに有意な腐食は認めら れておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
662	電源設備	DG容器	Δ①	腐食(全面腐食)	胴板等の内面からの腐食(全面腐食)	燃料油貯油そう	胴板等は炭素鋼であり、内面からの腐食が想定される。 しかしながら、内部流体は燃料油であり、腐食が発生し難い環境にある。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
663	電源設備	DG容器	Δ①	腐食(全面腐食)	胴板等の外面からの腐食(全面 腐食)	燃料油貯油そう	燃料油貯油そうは屋外の土中に埋設されており、炭素鋼を使用している胴板等は外面の状況を把握できず、腐食が想定される。 しかしながら、胴板等の外面は、消防法の規制に基づいた塗装がされたうえ乾燥砂で覆われており、腐食が発生し難い環境にある。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、消防法に基づく気密試験により、機器の健全性を確認している。
664	電源設備	DG容器	Δ2	腐食(全面腐食)	マンホール等の 外面からの腐食 (全面腐食)	燃料油貯油そう	マンホール等は炭素鋼であり、腐食が想定される。しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に成じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
665	電源設備	DG容器	Δ2	目詰り	エレメント (フィルタ)の 目詰り	潤滑油主こし器、燃料油第2こし 器	エレメント (フィルタ) は、長期使用により目詰りが想定される。 しかしながら、分解点検時の目視確認や清掃により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
666	電源設備	DG容器	Δ2	腐食(全面腐食)	取付ポルトの腐食(全面腐食)	シリンダ冷却水タンク、燃料油 サービスタンク、潤滑油主こし 器、燃料油第2こし器	取付ポルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
667	電源設備	DG容器	Δ2	腐食(全面腐食)	タンク架台の腐 食(全面腐食)	シリンダ冷却水タンク、燃料油 サービスタンク	タンク架台は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
668	電源設備	DG容器	Δ2	腐食(全面腐 食)	支持脚の腐食 (全面腐食)	空気だめ	支持脚は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
669	電源設備	DG配管	Δ2)	腐食(全面腐食)	母管の内面から の腐食 (全面腐 食)	シリンダ冷却水系統配管、海水系 統配管	シリンダ冷却水系統配管は炭素鋼であり、内部流体が飽和溶存酸素濃度(最大約8ppm)の 流体であるため、長期使用により内面からの腐食が想定される。 また、海水系統配管には海水が接するため、内部にライニングを施工しているが、ライニ ングのはく職等により海水が接した場合は、内面からの腐食が想定される。 しかしながら、シリンダ冷却水系統配管については、機器の分解点検時の目視確認により、機器の健全性を維持している。また、海水系統配管については、ライニング点検(目 視確認)を実施し、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
670	電源設備	DG配管	Δ①	腐食(全面腐食)	母管の内面から の腐食(全面腐 食)		母管は炭素鋼であり、内面からの腐食が想定される。 しかしながら、内部流体は潤滑油系統配管が潤滑油、燃料油系統配管が燃料油で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、機器の分解点検時の目視確認により、機器の健全性を確認している。
671	電源設備	DG配管	Δ2	腐食 (流れ加 速型腐食)	母管の内面から の腐食(流れ加 速型腐食)	蒸気系統配管	炭素鋼配管では蒸気が衝突する部位や、局所的に流速の速くなる部位では、流れ加速型腐 食により減肉が想定される。 しかしながら、蒸気系統配管の炭素鋼使用箇所は、使用時間が短く、流れ加速型腐食によ る減肉傾向は極めて小さい。また、機器の分解点検時の目視確認により、機器の健全性を 維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
672	電源設備	DG配管	Δ2	腐食(全面腐食)	母管等の外面からの腐食(全面腐食)	シリンダ冷却水系統配管、海水系統配管、潤滑油系統配管、蒸気系統配管、燃料油系統配管	母管等は炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装等を施しており、塗装等が健全であれば腐食進行の可能 性は小さい。 また、巡視点検等で目視により塗装等の状態を確認し、はく離等が認められた場合には必 要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
673	電源設備	DG配管	Δ①	高サイクル疲 労割れ	小口径管台の高 サイクル疲労割 れ	シリンダ冷却水系統配管、海水系統配管、潤滑油系統配管、始動空 気系統配管、燃料油系統配管	
674	電源設備	DG配管	Δ①	腐食(全面腐食)	フランジボルト の腐食(全面腐 食)	シリンダ冷却水系統配管、海水系 統配管、蒸気系統配管	フランジボルトは炭素鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、巡視点検時等の目視確認により、機器の健全性を確認している。
675	電源設備	DG弁	Δ2	腐食(全面腐食)	弁箱、弁蓋等の 内面からの腐食 (全面腐食)	清水冷却器温度調整弁、主始動弁	并箱、弁蓋等は炭素鋼又は炭素鋼鋳鋼であり、清水冷却器温度調整弁の内部流体は飽和溶存酸素濃度 (最大約8pm) の流体、主始動弁は圧縮空気から発生する凝縮水により、長期使用により腐食が想定される。 しかしながら、分解点検時の目視確認により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
676	電源設備	DG弁	Δ①	腐食(全面腐食)	本体、管本体及び介護の内面からの腐食(全面腐食)	潤滑油冷却器温度調整弁	本体、管本体及び弁蓋は炭素鋼鋳鋼であり、腐食が想定される。 しかしながら、内部流体が油で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
677	電源設備	DG弁	Δ@	腐食(全面腐食)	. 弁箱、弁蓋等の 外面からの腐食 (全面腐食)	共通	弁箱、弁蓋等は炭素鋼又は炭素鋼鋳鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
678	電源設備	DG弁	Δ①	腐食(全面腐食)	ボルトの腐食 (全面腐食)	清水冷却器温度調整弁	ボルトは炭素鋼であり、ガスケットからの漏えいにより、内部流体によるボルトの腐食が 想定される。 しかしながら、締付管理により漏えい防止を図っており、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
679	電源設備	DG弁	Δ①	摩耗	弁棒、ピストン 及び手動弁棒の 摩耗	主始動弁	弁棒、ピストン及び手動弁棒は弁の開閉により、摩耗が想定される。 しかしながら、摺動部には潤滑剤を注入し、弁の開閉頻度が少なく摩耗し難い環境であり、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
680	電源設備	DG弁	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 カ緩和)	主始動弁	ばねは応力状態にて長期間保持されることにより、変形(応力緩和)が想定される。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね 材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用し ている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認や作動確認により、機器の健全性を確認している。
681	電源設備	直流電源設備	Δ①	腐食(全面腐食)	主回路導体の腐 食 (全面腐食)	直流コントロールセンタ	主回路導体は銅であり、腐食が想定される。 しかしながら、錫メッキにより腐食を防止しており、これまでに有意な腐食は認められて おらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
682	電源設備	直流電源設備	Δ2	特性変化	保護リレー(静 止形)の特性変 化	直流コントロールセンタ	保護リレー (静止形) は、長期間の使用に伴い特性変化が想定される。 しかしながら、保護リレー (静止形) は、高い信頼性を有するものを選定し使用しており、また、屋内に設置されていることから環境変化の程度は小さく、急激な特性変化を起こす可能性は小さいと考える。 また、マイグレーションによる基板中の回路間短絡及び半導体回路の断線については、製造設備で基板表面をコーティングしていること及び回路製作時スクリーニングにより製作不良に基づく回路電流集中が除かれていることから、マイグレーションが発生する可能性は小さいと考える。 さらに、定期的な校正試験により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
683	電源設備	直流電源 設備	Δ①	絶縁低下	母線支えの絶縁低下	直流コントロールセンタ	主回路導体を支持する母線支えは有機物であり、熱的、電気的及び環境的要因による絶縁低下が想定される。 しかしながら、主回路導体を支持する母線支えは、不飽和ポリエステル樹脂であり、主回路導体の通電験内の最大温度100℃に対して、母線支配性が可能性は130℃と十分裕度を持った耐能性を有していることから、絶縁低下の可能性は小さいと考える。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事家ではない。 とは、機器の健全性を確認している。
684	電源設備	直流電源設備		腐食(全面腐 食)	筐体の腐食 (全 面腐食)	直流コントロールセンタ	管体は炭素鋼であり、腐食が想定される。 しかしながら、内外面は塗装により腐食を防止しており、塗装が健全であれば腐食進行の 可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補終することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
685	電源設備	直流電源設備	Δ2	腐食(全面腐食)	取付ポルトの腐食(全面腐食)	共通	取付ポルトは炭素鋼であり、腐食が想定される。 しかしながら、亜鉛メッキにより腐食を防止しており、メッキが健全であれば腐食進行の 可能性は小さい。 また、定期的な目視確認によりメッキの状態を確認し、はく離が認められた場合には必要 に応じて構修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
686	電源設備	直流電源設備		腐食(全面腐食)	埋込金物 (大気 接触部) の腐食 (全面腐食)	直流コントロールセンタ	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補終することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
687	電源設備	直流電源設備		腐食(全面腐食)	架台の腐食(全 面腐食)	蓄電池(安全防護系用)	架台は炭素鋼であり、腐食が想定される。 しかしながら、塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は 小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
688	電源設備	無停電電源	Δ2)	特性変化	I G B T コン バータ、 I G B T インバータ及 びダイオードの 特性変化	計装用電源装置	IGBTコンパータ、IGBTインパータ及びダイオードは、高い温度で運転し続けると特性変化が想定される。しかしながら、使用電流値と比べて一定の裕度を持つ定格の素子を使用することで、発熱を低減するとともに、放熱板やファン等で冷却することによりIGBTコンパータ等の温度を一定温度以下に保つように設計しており、特性が急激に変化する可能性は小さいと考える。また、定期的な特性試験により、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
689	電源設備	無停電電源		腐食(全面腐食)	筐体の腐食(全 面腐食)	計裝用電源装置	筐体は炭素鋼であり、腐食が想定される。 しかしながら、内外面とも塗装により腐食を防止しており、塗装が健全であれば腐食進行 の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 にたがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
690	電源設備	無停電電源	Δ2	腐食(全面腐食)	埋込金物 (大気 接触部) の腐食 (全面腐食)	計装用電源装置	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
691	電源設備	計器用分電盤	Δ①	腐食(全面腐 食)	の事象 名 主回路導体の腐 食 (全面腐食)	司表用文派万电监	主回路導体は銅であり、腐食が想定される。 しかしながら、錫メッキにより腐食を防止しており、これまでに有意な腐食は認められて おらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
692	電源設備	計器用分電盤	Δ2	腐食(全面腐食)	筐体及び架台の 腐食 (全面腐 食)	計装用交流分電盤	筐体及び架台は炭素鋼であり、腐食が想定される。 しかしながら、内外面とも塗装により腐食を防止しており、塗装が健全であれば腐食進行 の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
693	電源設備	計器用分電盤	Δ2	腐食(全面腐食)	取付ボルトの腐食(全面腐食)	計装用交流分電盤	取付ポルトは炭素鋼であり、腐食が想定される。 しかしながら、塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は 小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることとしていることから、高経年化対策上着 目すべき経年劣化事象ではない。
694	電源設備	計器用分電盤	Δ2	腐食(全面腐食)	埋込金物(大気 接触部)の腐食 (全面腐食)	計装用交流分電盤	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に なじて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることとしていることから、高経年化対策上着 目すべき経年劣化事象ではない。
695	電源設備	制御棒駆動装置用電源設備	Δ2	固着	操作機構の固着	原子炉トリップ遮断器盤	遮断器の操作機構は、長期間の使用に伴いグリスが固化し、動作特性が低下する可能性がある。 しかしながら、定期的に注油を行い、各部の目視確認及び動作確認を実施することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
696	電源設備	制御棒駆動装置用電源設備	Δ①	ばねの変形 (応力緩和)	ばねの変形(応 カ緩和)	原子炉トリップ遮断器盤	遮断器のばねは、投入状態又は開放状態にて長期間保持されることにより、変形(応力緩和)が発生する可能性がある。 しかしながら、ばねに発生する応力は弾性範囲であり、日本ばね工業会にて実施したばね材料と使用環境温度の実態調査結果と比べて、当該ばねは同等か余裕のある環境で使用している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な遮断器の動作確認及び目視確認により、機器の健全性を確認している。
697	電源設備	制御棒駆用電源設備	Δ①	絶縁低下	投入コイル及び 引外しコイルの 絶縁低下		投入コイル及び引外しコイルの絶縁物は有機物であり、熱的、電気的及び環境的要因による絶縁低下が想定される。 しかしながら、投入コイル及び引外しコイルは筐体に内蔵しているため、塵埃が付着しにくい環境にある。また、投入コイル及び引外しコイルは連続運転ではなく、作動時間も1 秒以下と小さいことから、コイルの発熱による温度上昇は小さいと考えられ、コイルの絶縁は使用温度約60℃に比べて、十分余裕のある絶縁種(A種:許容最高温度105℃)を選択して使用していることから、絶縁低下の可能性はいさいと考える。 また、これまでに有意な絶縁低下は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、定期的な絶縁抵抗測定により、機器の健全性を確認している。
698	電源設備	制御棒駆動装置用電源設備	Δ①	摩耗	接触子の摩耗	原子炉トリップ遮断器盤	遮断器の接触子は、遮断器の開閉動作に伴う電流開閉により、摩耗が想定される。 しかしながら、これまでに有意な接触子の摩耗は認められておらず、今後もこれらの傾向 が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
699	電源設備	制御棒駆動装置用電源設備	Δ①	汚損	消弧室の汚損	原子炉トリップ遮断器盤	連断器の消弧室は、遮断器の電流遮断動作に伴う消弧室でのアーク消弧により、消弧室が 汚損し、消弧性能の低下が想定される。 しかしながら、これまでに有意な汚損は認められておらず、今後もこれらの傾向が変化す る要因がある、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
700	電源設備	制御棒駆動装置用電源設備	Δ①	摩耗	ー次ジャンク ションの摩耗	原子炉トリップ遮断器盤	一次ジャンクションは遮断器の出し入れに伴い、摩耗が想定される。 しかしながら、これまでに有意な摩耗は認められておらず、今後もこれらの傾向が変化す る要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
701	電源設備	制御棒駆動装置用電源設備	Δ①	絶縁低下	絶縁リンク及び 絶縁ベースの絶 縁低下	原子炉トリップ遮断器盤	絶縁リンク及び絶縁ペースは有機物であり、熱的、電気的及び環境的要因による絶縁低下が想定される。 しかしながら、絶縁リンク等は屋内の筐体内に設置されていることから、塵埃、湿分等の 付着は抑制されている。また、主回路導体の通電時の最大温度100℃に対して、絶縁リ ンクの耐熱温度は180℃、絶縁ペースの耐熱温度は200℃と十分余裕を持った耐熱性 を有していることから、絶縁低下の可能性は小さいと考える。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
702	電源設備	制御棒駆動装置用電源設備	Δ①	腐食(全面腐食)	主回路導体の腐 食(全面腐食)	原子炉トリップ遮断器盤	主回路導体は銅であり、腐食が想定される。 しかしながら、耐熱性ポリ塩化ビニルテープ巻きにより腐食を防止しており、これまでに 有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難 い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
703	電源設備	制御棒駆動装置用電源設備	Δ①	絶縁低下	支持碍子の絶縁 低下	原子炉トリップ遮断器盤	支持碍子は無機物の磁器であり、経年劣化の可能性はない。 なお、長期使用においては表面の汚損による絶縁低下が想定される。 しかしながら、支持碍子は筐体に内蔵しているため、塵埃が付着しにくい環境にあり、これまでに有意な汚損は認められておらず、今後もこれらの傾向が変化する要因があるとは 考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、定期的な目視確認により、機器の健全性を確認している。
704	電源設備	制御棒駆動装置用電源設備	Δ2		筐体の腐食(全 面腐食)	原子炉トリップ遮断器盤	筐体は炭素鋼であり、腐食が想定される。 しかしながら、内外面とも塗装により腐食を防止しており、塗装が健全であれば腐食進行 の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
705	電源設備	制御棒駆動装置用電源設備	Δ2	腐食(全面腐食)	埋込金物(大気 接触部)の腐食 (全面腐食)	原子炉トリップ遮断器盤	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、定期的な目視確認により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
706	電源設備	大容量空 冷式発電 機	Δ①	腐食(全面腐食)	固定子鉄心等の 腐食(全面腐 食)	大容量空冷式発電機	固定子鉄心、励磁機回転子鉄心、固定子コア及び回転子コアは珪素鋼板、回転子鉄心及び 励磁機固定子鉄心は炭素鋼であり、腐食が想定される。 しかしながら、固定子鉄心等はワニス処理により腐食を防止しており、これまでに有意な 腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認することとしている。
707	電源設備	大容量空 冷式発電 機	Δ2	腐食(全面腐食)	固定子枠等の腐 食(全面腐食)	大容量空冷式発電機	固定子枠、ファン、加減板、フレーム及び端子箱は炭素鋼、軸受ブラケット及びブラケットは鋳鉄であり、腐食が想定される。 しかしながら、固定子枠等は内外面とも塗装により腐食を防止しており、塗装が健全であれば腐食者行の可能性は小さい。 また、定期的な目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
708	電源設備	大容量空 冷式発電 機	Δ2	腐食(全面腐食)	筐体及び取付ボ ルトの腐食(全 面腐食)	大容量空冷式発電機	筐体及び取付ボルトは炭素鋼であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
709	電源設備	大容量空 冷式発電 機	Δ2)	腐食(全面腐食)	タービンケーシ ング等の腐食 (全面腐食)	大容量空冷式発電機	ターピンケーシング、燃焼器ケーシング及び圧縮機ケーシングは鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
710	電源設備	大容量空 冷式発電 機	Δ①	疲労割れ	ターピンノズル 等の疲労割れ	大容量空冷式発電機	タービンノズル、タービンブレード、燃焼器ライナ、スクロール及び排気ディフューザといった高温にさらされる部品は、起動・停止による過渡時に高い熱負荷を繰り返し受けるため、疲労割れが想定される。しかしながら、設計時には温度変化による疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣な事、外観点検時の内視鏡による目視確認及び分解点検時の目視確認や浸透探傷検査により、機器の健全性を確認することとしている。
711	電源設備	大容量空 冷式発電 機	Δ①	クリープ	タービンブレー ドのクリープ損 傷	大容量空冷式発電機	高温部品であるタービンブレードは運転中に高温となることに加え回転による遠心力で高い定常応力も発生することから、クリーブ損傷が想定される。 しかしながら、設計時には温度上昇や回転による応力上昇を考慮した冷却設計や強度設計を行っており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 があることがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事をはない。 が観点検時の内視鏡による目視確認及び分解点検時の目視確認や浸透探傷検査により、機器の健全性を確認することとしている。
712	電源設備	大容量空 冷式発電 機	Δ①	高サイクル疲 労割れ	ガスタービンの 主軸等の高サイ クル疲労割れ	大容量空冷式発電機	ガスタービンの主軸、圧縮機インペラ及び減速機の歯車軸の運転時に回転により定常応力 が発生する部品に軸振動や流体励振等の繰返し応力が作用すると応力集中部にて高サイク ル疲労割れが想定される。 しかしながら、設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に 変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、試運転時等における振動確認により、機器の健全性を確認している。
713	電源設備	大容量空 冷式発電 機	Δ2		減速機ケーシン グの外面からの 腐食(全面腐 食)	大容量空冷式発電機	減速機ケーシングは鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補終することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
714	電源設備	大容量空 冷式発電 機	Δ①	摩耗	減速機歯車の摩 耗	大容量空冷式発電機	減速機の歯車は直径の異なる歯車を組み合せ使用しており、歯車の歯面は接触により動力 が伝達されるため、面圧条件により摩耗が想定される。 しかしながら、歯車は油雰囲気下であり、摩耗が発生し難い環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、試運転時等における振動確認により、機器の健全性を確認している。

表1-1 日常劣化管理事象一覧(64/64)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	評価内容
715	電源設備	大容量空 冷式発電 機	Δ2	腐食(全面腐食)	エンクロー ジャ、トレーラ 及び車両の外面 からの腐食(全 面腐食)	大容量空冷式発電機	エンクロージャ、トレーラ及び車両は炭素鋼であり、外面からの腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
716	電源設備	大容量空 冷式発電 機	Δ①	腐食(全面腐食)	大容量空冷式発 電機用燃料タン ク胴板等の内面 からの腐食(全 面腐食)	大容量空冷式発電機	大容量空冷式発電機用燃料タンクの胴板、鏡板、管台及びマンホール、燃料油配管の母管は炭素鋼であり、内面からの腐食が想定される。 しかしながら、内部流体は燃料油であり、腐食が発生し難い環境にある。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、開放点検時の目視確認により、機器の健全性を確認している。
717	電源設備	大容量空 冷式発電 機	Δ2)	腐食(全面腐食)	大容量空冷式発 電機用燃料タン ク胴板等の外面 からの腐食(全 面腐食)	大容量空冷式発電機	大容量空冷式発電機用燃料タンクの胴板、鏡板、管台、マンホール、マンホール用ボルト及び支持脚、大容量空冷式発電機付き燃料タンクの胴板、管台、マンホール及びマンホール用ボルト、大容量空冷式発電機用給油ボンブの台板、燃料油配管の母管及びフランジボルトは炭素鋼又は低合金鎖であり、外面からの腐食が想定される。しかしながら、大気接触部は塗装又はメッキにより腐食を防止しており、塗装又はメッキ面が健全であれば腐食進行の可能性は小さい。また、巡視点検等で目視により塗装又はメッキ面の状態を確認し、はく離が認められた場合には必要に応じて補修することにより、機器の健全性を維持している。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。
718	電源設備	大容量空 冷式発電 機	Δ2	摩耗	主軸の摩耗	大容量空冷式発電機	ころがり軸受を使用している大容量空冷式発電機用給油ポンプ及び電動機については、軸 受と主軸の接触面で摩耗が想定される。 軸受の定期取替時の軸受引き抜き時に主軸表面にわずかな線形模様が生じることもあり、 主軸表面をサンドペーパで仕上げる方策も考えられる。この場合は、主軸表面がわずかに 摩耗し、主軸と軸受間で微小隙間が生じ運転中にフレッティングにより摩耗する可能性が ある。 しかしながら、分解点検時の寸法管理によりフレッティングの発生を防止し、また、分解 点検時の目視確認や寸法計測により、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
719	電源設備	大容量空 冷式発電 機	Δ①	高サイクル疲 労割れ	主軸の高サイク ル疲労割れ	大容量空冷式発電機	大容量空冷式発電機用給油ポンプ及び電動機の運転時には主軸に定常応力と変動応力が発生し、高平均応力下において、繰返し応力を受けると段付部等の応力集中部において、高サイクル疲労割れが想定される。しかしながら、ポンプ及び電動機の設計時には高サイクル疲労を考慮しており、この設計上の考慮は経年的に変化するものではない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、試運転時等における振動確認(変位の測定等)並びに分解点検時の応力集中部に対する目視確認又は浸透探傷検査により、機器の健全性を確認している。
720	電源設備	大容量空 冷式発電 機	Δ①	腐食(キャビ テーション)	羽根車の腐食 (キャビテー ション)	大容量空冷式発電機	大容量空冷式発電機用給油ボンブの内部では流速と圧力が場所により大きく変化するが、ある点の圧力がその液温における飽和蒸気圧まで降下すると、その部分の液体が沸騰し、蒸気泡の発生と崩壊が起こる。とが想定される。 しかしながら、ボンブ及が機器配置の設計時にはキャビテーションを考慮しており、この設計上の考慮は経年的に変化するものではない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
721	電源設備	大容量空冷式発電	Δ2	腐食(全面腐食)	軸受箱の腐食 (全面腐食)	大容量空冷式発電機	大容量空冷式発電機用給油ポンプの軸受箱は鋳鉄であり、腐食が想定される。 しかしながら、大気接触部は塗装により腐食を防止しており、塗装が健全であれば腐食進行の可能性は小さい。 また、巡視点検等で目視により塗装の状態を確認し、はく離が認められた場合には必要に 応じて補修することにより、機器の健全性を維持している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
722		機	Δ①	腐食(全面腐 食)	(主田)病及)		一方、内面については軸受を潤滑するための潤滑油により油雰囲気下で腐食が発生し難い環境であり、これまでに有意な腐食は認められておらず、今後もこれらの傾向が変化する要因があるとは考え難い。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。なお、分解点検時の目視確認により、機器の健全性を確認している。
723	電源設備	大容量空 冷式発電 機	Δ①	疲労割れ	回転子棒・エン ドリングの疲労 割れ	大容量空冷式発電機	回転子棒・エンドリングについては、電動機の起動時に発生する電磁力による繰返し応力を受けるため、疲労割れが想定される。 しかしながら、回転子棒・エンドリングはアルミ充てん式 (一体形成)であり、回転子棒とスロットの間に隙間を生じることはなく、疲労割れが発生し難い構造である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。 なお、分解点検時の目視確認により、機器の健全性を確認している。
724	電源設備	大容量空 冷式発電 機	Δ①	高サイクル疲 労割れ	燃料油配管小口 径管台の高サイ クル疲労割れ	大容量空冷式発電機	小口径分岐管の中で、剛性が低い片持ち型式のベント・ドレン管台の分岐管は、機械振動 や流体振動による共振や強制振動が発生し、ソケット溶接部のような応力集中部に高サイ クル疲労割れが想定される。 しかしながら、小口径管台設計時には高サイクル疲労を考慮している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。 なお、機関連転時の目視等で有意な振動のないことを確認することにより、機器の健全性 を確認している。

表1-2 耐震安全性評価の対象外とした事象(一)とその理由(1/2)

No.	損傷モード	経年劣化事象	今後も発生の可能性がない、または小さいとした理由	機器・部位の例
			潤滑剤により摩耗を防止している。	・回転機器の軸ーすべり軸受、歯車 ・ビストン等の摺動部
			摩耗の原因となる振動が生じない。	・仕切弁の弁体一弁棒連結部
				・燃料取替クレーンのレールー車輪等・機能取替クレーンのシーブ・アパロイセピュー・ロイセロープ
				・燃料取替クレーンのシーブ 及びワイヤドラムーワイヤローブ・空気作動装置のポジショナー
			作動回数が少ない、運転時間が短い。	・空気作動表直のポンショナー ・燃料取替クレーンの電磁ブレーキライニング ・ディーゼル発電機のスリップリング
			ブッシュ等で保護されている等、直接接触しない。	・空気作動装置のピストンーピストンガイド等・燃料取替クレーンのシリンダチューブとピストン及びピストンロッド
1	減肉	摩耗	摺動相手より硬い材料である。	・空気作動装置のピストンロッドーブッシュ等・燃料取替クレーン電磁ブレーキのブレーキ板
			摩耗の原因となる異物を除去している。	・タービンの車軸
			主軸表面の仕上げは行わない運用としている。	・ターボポンプ、ファン及び電動機の主軸
			耐摩耗性に優れた材料を使用している。	・蒸気加減弁の弁体及び弁座シート面 ・タービン保安装置非常遮断用ピストン弁の弁体及び弁箱弁座部 ・燃料取替クレーンの燃料ガイドパー
			作用する荷重が小さい。	・リフト逆止弁の弁体一弁蓋(ガイド部)
				・重機器サポートの摺動部材 ・特殊弁の弁体及び弁座シート面、弁棒、アクチュエータ
			油雰囲気である。	・メタクラ、パワーセンタ等 遮断器の接触子、1次ジャンクション ・ターピン軸受台、軸受箱の内面
			内部流体が油である。	・ポンプの軸受箱、潤滑油ユニット、油圧ユニット内面
			内部流体が上ドラジン水(防錆剤注入水)、脱気された純水又はpH等を管理した脱	・原子炉補機冷却水系統等の機器内面
			気水(給水)である。	・空調用冷水設備の機器内面
			窒素ガス、希ガス、フロン又は空気である。	- 安全注入系統等の窒素ガスラインの機器内面 - 電動機の空気冷却器伝熱管 - 計器用空気系統の機器内面
			内部流体が冷媒(フルオロカーボン)である。	・空調用冷凍機圧縮機等の内面
		A-T-#-A	締付管理により内部流体の漏えい防止を図り、漏えいによる腐食が発生しがたい。	・ケーシングボルト、フランジボルトおよび弁蓋ボルト等
2	減肉	全面腐食	ワニス処理又は樹脂により腐食を防止している。	・電動機の固定子コア及び回転子コア・電磁ブレーキの固定鉄心
			塗装等により腐食を防止している。	・空調ファンの羽根車 ・燃料油貯蔵タンク外面
			メッキにより腐食を防止している。	・・コントロールセンタ及び計装用分電盤の主回路導体 ・・空調ユニットのエリミネータ
			腐食発生要因を取り除く運用をしている。	・非常用ディーゼル発電機機関本体のシリンダライナ等
			接液部材料がステンレス鋼で、内部流体(苛性ソーダ)の濃度および使用温度が低	・よう素除去薬品タンクの胴板等耐圧構成品
			い。 これまでの点検において有意な腐食は確認されていない。	・タービンの車室支えボルト、特殊弁の外面
			化学的に安定した(鋳等の劣化が発生し難い)銅材料を使用している。	ディーゼル発電機盤のヒートパイプ
3	減肉	異種金属接触腐食	除外(ー)なし
3	減肉	異種金属接触腐食 孔食		-)なし -)なし
			除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形	ー)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面
4	減肉	孔食	除外(ー)なし
4 5	滅肉	孔食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。	-)なし -・原子炉容器本体の上部ふた及び上部嗣フランジシート面・加圧器本体のマンホールシート面 -・使用済燃料ビットのブールゲート -・ステンレス鋼の伝熱管を使用している熱交換器伝熱管
4 5	滅肉	孔食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。	ー)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸
5	減肉減肉減肉	孔食 ピッティング 除間腐食	除外(運転中は高温状態となりシート面のステンレス鋼肉産表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度がO. 15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ピットのプールゲート ・ステンレス鋼の伝教管を使用している熱交換器伝熱管 ・外交換器の炭素鋼の管側耐圧構成品
4 5	滅肉	孔食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス銅の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素銅の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面
5	減肉減肉減肉	孔食 ピッティング 除間腐食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ピットのプールゲート ・ステンレス鋼の伝験管を使用している熱交換器伝熱管 ・外交換器の炭素鋼の管側耐圧構成品
5	減肉減肉減肉	孔食 ピッティング 除間腐食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ピットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセブト弁の弁箱、タービン動主給水ボンブ駆動タービンの車室等 ・タービン動主給水ボンブ駆動タービン低圧蒸気止め弁の弁体ボルト ・洗浄排水処理装置の加熱器
5	減肉減肉減肉	孔食 ピッティング 除間腐食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鯛の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鯛の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセブト弁の弁箱、タービン動主給水ボンブ駆動タービンの車室等 ・タービン動主給水ボンブ駆動タービン低圧蒸気止め弁の弁体ボルト ・洗浄排水処理装置の加熱器 ・ポンプの羽根車
4 5 6	減肉減肉減肉減肉減肉減肉	孔食 ビツティング 陳間腐食 流れ加速型腐食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセプト弁の弁箱、タービン動主給水ボンブ駆動タービンの車室等 ・タービン動主給水ボンブ駆動タービン低圧蒸気止め弁の弁体ボルト ・洗浄排水処理装置の加熱器 ・ボンブの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ボンブデフレクタ
4 5 6	減肉減肉減肉減肉減肉	孔食 ビツティング 陳間腐食 流れ加速型腐食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。 除外(-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセプト弁の弁箱、タービン動主給水ボンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービンの車室等 ・メービン動主給水ポンブ駆動タービンの車室等 ・オンプの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ポンプデフレクタ
4 5 6	減肉減肉減肉減肉減肉減肉	孔食 ビツティング 陳間腐食 流れ加速型腐食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセブト弁の弁箱、タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービン低圧蒸気止め弁の弁体ボルト ・洗浄排水処理装置の加熱器 ・ポンプの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ポンブデフレクタ -)なし ・1次冷却材ポンプ熱速へい装置のハウジング、シェル及びフランジ ・再生熱交換器の連絡管
4 5 6	減肉減肉減肉減肉減肉減肉	孔食 ビツティング 陳間腐食 流れ加速型腐食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。 除外(-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鯛の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鯛の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセブト弁の弁箱、タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービン低圧蒸気止め弁の弁体ポルト・洗浄排水処理装置の加熱器 ・ポンプの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ポンプデフレクタ ー)なし ・1次冷却材ポンプ熱速へい装置のハウジング、シェル及びフランジ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング
4 5 6	減肉減肉減肉減肉減肉減肉	孔食 ビツティング 陳間腐食 流れ加速型腐食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鯛の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鯛の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセブト弁の弁箱、タービン動主給水ボンブ駆動タービンの車室等 ・タービン動主給水ボンブ駆動タービン低圧蒸気止め弁の弁体ボルト・洗浄排水処理装置の加熱器 ・ボンブの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ボンブデフレクタ ー)なし ・1次冷却材ポンプ熱遮へい装置のハウジング、シェル及びフランジ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・原子炉格納容器本体 ・機器搬入口等の順等耐圧構成品 ・ピッグティル型電線貫通路の飼棒及び接続金具 ・主蒸気止め弁の弁体 ・タービンの車室等
4 5 6	減肉減肉減肉減肉減肉減肉	孔食 ビツティング 陳間腐食 流れ加速型腐食	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。 発生応力は疲労強度より小さい。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセプト弁の弁箱、タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービンの車室等 ・メービン動主給水ポンブ駆動タービンの車室等 ・ボンブの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ポンブデフレクタ 一)なし ・1次介却材ポンプ熱速へい装置のハウジング、シェル及びフランジ ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・原子炉格納容器本体 ・提器搬入口等の胴等耐圧構成品 ・にツグテイル型電線直通節の飼棒及び接続金具 ・上等気気はありの手体
4 5 6	減肉減肉減肉減肉減肉減肉	孔食 ビッティング 陳間腐食 流れ加速型腐食 ホセピテーション	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。 発生応力は疲労強度より小さい。	-)なし ・原子炉容器本体の上部ふた及び上部嗣フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセブト弁の弁箱、タービン動主給水ボンブ駆動タービンの車室等 ・タービン動主給水ボンブ駆動タービン低圧蒸気止め弁の弁体ボルト・洗浄排水処理装置の加熱器 ・ボンブの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ボンブデフレクタ ー)なし ・1次冷却材ポンブ熱遮へい装置のハウジング、シェル及びフランジ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・原子炉格納容器本体 ・機器搬入口等の調等耐圧構成品 ・ビッグディル型電線貫通部の網棒及び接続金具 ・主蒸気止め弁の弁体 ・ターピンの車室等 ・素気発生数サポート、1次冷却材ポンブサポートのヒンジ溶接部 ・燃料取替クレーンの走横行レール及びブリッジガータ ・制御棒クラスタ駆動装置の圧力・ハウジング
4 5 6	減肉減肉減肉減肉減肉減肉	孔食 ビッティング 陳間腐食 流れ加速型腐食 ホセピテーション	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。 発生応力は疲労強度より小さい。	-)なし ・原子炉容器本体の上部ふた及び上部嗣フランジシート面・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセプト弁の弁箱、タービン動主給水ボンブ駆動タービンの車室等 ・タービン動主給水ボンブ駆動タービンの車室等 ・タービン動主給水ボンブ駆動タービンの車室等 ・メービン動主給水ボンブ駆動タービンの車室等 ・メニアの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ボンブデフレクタ -)なし ・1次冷却材ポンプ熱速へい装置のハウジング、シェル及びフランジ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・原子炉格納容器本体 ・機器搬入口等の調等耐圧構成品 ・ビッグティル空電線貢造部の飼料及び接続金具 ・主蒸気止め弁の弁体 ・タービンの重空等 ・蒸気発生器サポート、1次冷却材ポンプサポートのヒンジ溶接部 ・燃料取替クレーンの走機行レール及びブリッジガータ ・制御棒クラスタ駆動装置の圧力ルウジング ・非常用ディーゼル発電機機関本体のシリンダカバー、カップリングボルト ・タービン動補助給水ボンブ蒸気タービンのケーシング等 ・1次冷却材ポンプの主軸
4 5 6	減肉減肉減肉減肉減肉減肉	孔食 ビッティング 陳間腐食 流れ加速型腐食 ホセピテーション	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。 発生応力は疲労強度より小さい。	-)なし ・原子炉容器本体の上部ふた及び上部嗣フランジシート面・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセプト弁の弁箱、タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービンの事室等 ・メービン動主給水ポンプ駆動タービンの事室等 ・オンプの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ポンブデフレクタ 一)なし ・1次冷却材ポンプ熱速へい装置のハウジング、シェル及びフランジ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・原子炉格納容器本体 ・機器搬入口等の胴等耐圧構成品 ・ビッグティル型電線貫通部の飼棒及び接続金具 ・主蒸気止め弁の弁体 ・タービンの車室等 ・蒸気発生器サポート、1次冷却材ポンプサポートのヒンジ溶接部 ・燃料取替りレーツの走場行レール及びブリッジガータ ・制御棒クラスタ駆動装置の圧カハウジング ・非常用ディーゼル発電機機関本体のシリンダカバー、カップリングボルト ・タービンの舞動装置の圧カハウジング・非常用ディーゼル発電機機関本体のシリンダカバー、カップリングボルト
4 5 6	減肉減肉減肉減肉減肉減肉	孔食 ビッティング 陳間腐食 流れ加速型腐食 ホセピテーション	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。 発生応力は疲労強度より小さい。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセプト弁の弁箱、タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービンの事室等 ・ボンブの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ポンブデフレクタ ー)なし ・1次冷却材ポンブ熱連へい装置のハウジング、シェル及びフランジ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・電動機の回転子棒・エンドリング ・電がた粉容器本体 ・機器搬入口等の胴等耐圧構成品 ・ビックテイル型電線貫通部の銅棒及び接続金具 ・主蒸気止め弁の弁体 ・タービンの車室等 ・燃料取替クレーンの走横行レール及びブリッジガータ・制御棒クスタ駆動装置の圧かハウジング ・非常用ディーゼル発電機機関本体のシリンダカバー、カップリングボルト ・タービン動補助給水ボンブ蒸集タービンのケーシング等 ・1次冷却材ポンプの主軸 ・弁空気作動装置の銅管及び継手
4 5 6	減肉減肉減肉減肉減肉減肉	孔食 ビッティング 陳間腐食 流れ加速型腐食 ホセピテーション	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャピテーションを起こさないよう設計段階において考慮している。 キャピテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。 発生応力は疲労強度より小さい。 作動回数が少ない。 作動回数が少ない。 サーマルスリーブにより保護されている。 設計時に振動又は温度変化による影響を考慮している。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセブト弁の弁箱、タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービンの事室等 ・ボンブの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ポンブデフレクタ ー)なし ・1次冷却材ポンブ熱連へい装置のハウジング、シェル及びフランジ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・原子炉格納容器本体 ・機器輸入口等の胴等耐圧構成品 ・ビッグティル型電網貫通部の飼棒及び接続金具 ・主蒸気止め弁の弁体 ・ターピンの車室等 ・蒸気発生器サポート、1次冷却材ポンブサポートのヒンジ溶接部 ・燃料取替クレーンの走横行レール及びブリッジガータ ・制御棒クラスタ駆動装置の圧かハウジング ・非常用ディーゼル発電機機関本体のシリンダカバー、カッブリングボルト ・タービン動補助給水ボンブ蒸気タービンのケーシング等 ・1次冷却材ポンプの主軸 ・弁空気作動装置の鋼管及び継手 ・大容量空冷式発電機のタービンノズル等
4 5 6 7 8 9	滅肉減肉減肉減肉減肉減肉減肉減肉	孔食 ビツティング 隙間腐食 流れ加速型腐食 キャピテーション エロージョン 歳労割れ	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。 発生応力は疲労強度より小さい。 ・ 株式の過渡を受けない。 特別回数が少ない。 サーマルスリーブにより保護されている。 設計時に振動又は温度変化による影響を考慮している。 アルミ充てん式(一体形成)であり、回転子棒とスロットの間に隙間を生じない。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鯛の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鯛の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターゼプト弁の弁箱、タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービン低圧蒸気止め弁の弁体ボルト ・洗浄排水処理装置の加熱器 ・ポンプの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ポンブデフレクタ ー)なし ・1次冷却材ポンプ熱連へい装置のハウジング、シェル及びフランジ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・原子炉格納容器本体 ・機器搬入口等の胴等耐圧構成品 ・ビッグテイル型電線度通節の飼棒及び接続金具 ・主素気止め外の弁体 ・タービンの車室等 ・燃料取替クレーシの走横行レール及びブリッジガータ ・制御棒クラスを駆動装置の圧カハウジング ・非常用ディーゼル発電機機関本体のジリンダカバー、カップリングボルト ・タービン動補助給水ボンブ蒸気タービンのケーシング等 ・1次冷却材ポンプの主軸 ・弁空気作動装置の飼管及び継手 ・大容量空冷式発電機のタービンノズル等 ・電動機の回転子棒・エンドリング ・ポンプ、電動機の主軸等、タービンの車軸 ・/近内構造物の炉心槽等
4 5 6	減肉減肉減肉減肉減肉減肉	孔食 ビッティング 陳間腐食 流れ加速型腐食 ホセピテーション	除外(連転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションを起こさないよう設計段階において考慮している。 キャビテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。 発生応力は疲労強度より小さい。 ・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセプト弁の弁箱、タービン動主給水ボンブ駆動タービンの車室等 ・タービン動主給水ボンブ駆動タービン低圧蒸気止め弁の弁体ボルト・洗浄排水処理装置の加熱器 ・ポンプの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ポンプデフレクタ ー)なし ・1次冷却材ポンプ熱速へい装置のハウジング、シェル及びフランジ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・原子炉格納容器本体 ・機器搬入口等の両部が開棒及び接続金具 ・主蒸気止め弁の弁体 ・タービンの車室等 ・蒸気発生器サポート、1次冷却材ポンプサポートのヒンジ溶接部 ・燃料取替クレーンの走横行レール及びブリッジガータ ・制御棒クラスタ駆動装置の圧力ハウジング ・非常用ディーゼル発電機機関本体のジリンダカバー、カップリングボルト ・タービン動補助給水ボンブ蒸条タービンのケーシング等 ・1次冷却材ポンプの主軸 ・弁空気作動装置の解管及び継手 ・大容量空冷式発電機のタービンノズル等 ・電動機の回転子棒・エンドリング ・ボンブ、電動機の目転子棒・エンドリング
4 5 6 7 8 9	滅肉減肉減肉減肉減肉減肉減肉減肉	孔食 ビツティング 隙間腐食 流れ加速型腐食 キャピテーション エロージョン 歳労割れ	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャピテーションを起こさないよう設計段階において考慮している。 キャピテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。 発生応力は疲労強度より小さい。 作動回数が少ない。 ケーマルスリーブにより保護されている。 設計時に振動又は温度変化による影響を考慮している。 アルミ充てん式(一体形成)であり、回転子棒とスロットの間に隙間を生じない。 設計時に高サイクル疲労を考慮している。 有意な応力は発生しない。	-)なし ・原子炉容器本体の上部ふた及び上部胴フランジシート面 ・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管 ・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセプト弁の弁箱、タービン動主給水ポンブ駆動タービンの車室等 ・タービン動主給水ポンブ駆動タービン低圧蒸気止め弁の弁体ボルト ・洗浄排水処理装置の加熱器 ・ポンプの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ポンブデフレクタ ー)なし ・1次冷却材ポンプ熱連へい装置のハウジング、シェル及びフランジ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・原子炉格納容器本体 ・機器搬入口等の胴等耐圧構成品 ・ビッグテイル型電線度通節の飼棒及び接続金具 ・主素気止め外の弁体 ・タービンの車室等 ・差気発生器サポート、1次冷却材ポンプサポートのヒンジ溶接部 ・燃料取替クレーシの走横行レール及びブリッジガータ ・制御棒クラスを駆動装置の圧力ハウジング ・非常用ディーゼル発電機機関本体のシリンダカバー、カップリングボルト ・タービン動補助給水ポンプ蒸気タービンのグ ・非常用ディーゼル発電機機関本体のシリンダカバー、カップリングボルト ・タービン動補動給水ポンプ素気タービンのケーシング等 ・1次冷却材ポンプの主軸 ・弁空気作動装置の鋼管及び継手 ・大容量空冷式発電機のタービンノスル等 ・電動機の目転子体・エンドリング ・ポンプ、電動機の主軸等、タービンの車軸 ・炉内構造物の炉心槽等 ・非常用ディーゼル発電機機関本体のクランク軸等
4 5 6 7 8 9	滅肉減肉減肉減肉減肉減肉減肉減肉	孔食 ビッティング 隙間腐食 流れ加速型腐食 キャピテーション エロージョン 歳労割れ	除外(運転中は高温状態となりシート面のステンレス鋼肉盛表面に強固な酸化皮膜が形成される。 ほう酸水中の塩化物イオン濃度が0.15ppmを超えないように管理されている。 耐流れ加速型腐食性に優れた材料を使用している。 内部流体がpH等を管理した脱気水である。 内部流体の流速が遅い。 乾き蒸気もしくは湿り度の小さい蒸気雰囲気で減肉が発生し難い。 これまでの点検において有意な腐食は確認されていない。 キャビテーションの発生を抑制する構造としている。 キャビテーションの発生を抑制する構造としている。 除外(温度ゆらぎが生じない。 発生応力は疲労強度より小さい。 作動回数が少ない。 サーマルスリーブにより保護されている。 設計時に振動又は温度変化による影響を考慮している。 アルミ充てん式(一体形成)であり、回転子棒とスロットの間に隙間を生じない。 設計時に高サイクル疲労を考慮している。 有意な応力は発生しない。 共振した場合でも十分な安全率を有する設計としている。 カルマン渦による振動と共振せず、流力弾性振動も発生しない構造となっている。	-)なし ・原子炉容器本体の上部ふた及び上部嗣フランジシート面・加圧器本体のマンホールシート面 ・使用済燃料ビットのブールゲート ・ステンレス鋼の伝熱管を使用している熱交換器伝熱管・タービンの車軸 ・熱交換器の炭素鋼の管側耐圧構成品 ・原子炉補機冷却水冷却器の伝熱管外面 ・インターセプト弁の弁箱、タービン動主給水ボンブ駆動タービンの車室等 ・タービン動主給水ボンブ駆動タービン低圧蒸気止め弁の弁体ボルト・洗浄排水処理装置の加熱器 ・ボンブの羽根車 ・非常用ディーゼル発電機機関本体の燃料噴射ボンブデフレクタ ー)なし ・1次冷却材ポンプ熱速へい装置のハウジング、シェル及びフランジ・再生熱交換器の連絡管 ・電動機の回転子棒・エンドリング ・原子炉格納容器本体 ・機器搬入口等の関等耐圧構成品 ・ビッグテイル型電線貫通部の銅棒及び接続金具 ・主蒸気止め弁の弁体 ・生素気止め弁の弁体 ・光ツービンの車室等 ・蒸気発生器サポート、1次冷却材ポンプサポートのヒンジ溶接部・燃料取替クレーンの走積行レール及びブリッジカータ・制御棒クラスタ駆動装置の圧力・ハウジング ・非常用ディーゼル発電機機関本体のシリンダカバー、カップリングボルト・タービン動補助給水ボンブ蒸気タービンのケーシング等 ・1次冷却材ポンプの主軸 ・弁空気作動装置の飼管及び継手・大容量空冷式発電機のタービンノズル等 ・電動機の回転子棒・エンドリング ・ポンプ、電動機の主軸等、タービンの車軸 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

表1-2 耐震安全性評価の対象外とした事象(一)とその理由(2/2)

No.	損傷モード	経年劣化事象	今後も発生の可能性がない、または小さいとした理由	機器・部位の例				
13	割れ		曲げ応力振幅は疲労限を下回っている。	・ターボポンプの主軸				
			690系ニッケル基合金を使用している。	・原子炉容器本体のふた管台、空気抜用管台及び冷却材出口管台				
			316系ステンレス銅又は応力腐食割れ感受性が小さいステンレス銅を使用している。	・加圧器本体のスプレイライン用管台等 ・加圧器本体の計測用管台内面 ・ターピンの内部車室ボルト等 ・1次冷却材に接する計装配管等				
				・ほう酸注入タンクの管台内面				
			表層・内部共硬くない。	・加圧器ヒータ(後備ヒータ)のヒータシース及びエンドプラグ				
			上 超音波ショットピーニング(応力緩和)を施工している。	・蒸気発生器の冷却材出入口管台セーフエンド				
				・原子炉容器本体の600系ニッケル基合金使用部位				
14	割れ	応力腐食割れ		・仕切弁、玉形弁の弁棒				
			伝熱管を全厚液圧拡管としている。	・蒸気発生器伝熱管の管板クレビス部				
			新熱処理材応力低減化構造としている。	・炉内構造物の支持ピン				
			使用温度が低い、または高温で使用する場合は溶存酸素濃度を低減している。	・余熱除去ポンプ、熱交換器伝熱管及び1次冷却材管等のステンレス鋼使用部位 ・よう素除去薬品タンクの胴板等耐圧構成品等				
			水質を適切に管理している。	・熱交換器の伝熱管等ステンレス鋼使用部位 ・炉内構造物の上部炉心支持柱等				
			酸素型応力腐食割れ発生環境下に置かれる時間が極めて短い。	・加圧器本体のヒータスリーブ(溶接部含む)				
			水環境にない。	・ビッグテイル型電線貫通部の本体、端板、シュラウド及び封着金具				
15	割れ	照射誘起型 応力腐食割れ	高照射領域は内外差圧による極小さな応力しか発生しない。	・制御棒クラスタの被覆管				
16	割れ	粒界腐食割れ	除外(-)なし				
17	割れ	照射誘起割れ(外径増	除外(-)なし				
18	材質変化	加によるクラック) 熱時効	き裂の原因となる経年劣化事象の発生が想定されない。	・1次冷却材ポンプの羽根車 ・余熱除去系統の仕切弁及び安全注入系統のスイング逆止弁のステンレス鋼鋳鋼 製弁箱				
19	材質変化	中性子照射による靭性 低下	除外(
20	材質変化	中性子および γ 線照射 脆化	除外(-)なL				
21	材質変化	中性子吸収能力の低下	制御棒の核的損耗は核安全設計の余裕の範囲内である。	・制御棒クラスタの中性子吸収体				
			蒸発試験結果から油分減少量を推定し、許容値に対して十分低いことを確認してい エ	・メカニカルスナバのグリス				
22	材質変化	劣化	る。 耐放射線試験を実施し長期の運転を考慮しても特に問題ないことを確認している。	73-300770				
22	州貝友化	35 TL	周囲温度は使用条件範囲内である。	・空調ダクトの伸縮継手				
			機器の機能の維持に対する影響は極めて小さい。	・ケーブルのシース				
23	絶縁特性低下	絶縁低下						
24	絶縁特性低下	汚損						
25	導通不良	導通不良	耐震安全性に影響を与えないことが自明な経年劣化事象					
26	導通不良	断線						
27	特性変化	特性変化						
28	コンクリートの 強度低下	アルカリ骨材反応	使用している骨材については、モルタルバー法による反応性試験を実施し、反応性 骨材ではないことを確認している。	・コンクリート構造物				
29	コンクリートの 強度低下	凍結融解	日本建築学会「建築工事標準仕様書・同解説 JASS5 鉄筋コンクリート工事」(2018)に示される凍害危険度の分布図によると発電所の周辺地域は「ごく軽微」であるため危険度が低い。	・コンクリート構造物				
30	コンクリートの 耐火能力低下	耐火能力低下	通常の使用環境において、コンクリート構造物の断面厚が減少することはなく、定期 的な目視点検においても断面厚の減少は認められていない。	・コンクリート構造物				
31	鉄骨の強度低下	腐食		-)なし				
	- A-	2	金属材料研究所データにおいて示されたクリーブ破損寿命と比較して機関の運転時 間は短い。	・非常用ディーゼル発電機機関本体の過給機タービンロータ				
32	その他	クリープ	温度上昇や回転による応力上昇を考慮した冷却設計や強度設計を行っている。	・大容量空冷式発電機のタービンブレード				
			ばねに発生する応力は弾性範囲であり、ばね材料と使用環境温度の実態調査結果 と比べて、同等か余裕のある環境で使用している。	・スプリングハンガ、スイング逆止弁、空気作動装置、特殊弁、制御棒クラスタ駆動 装置等のばね				
33	その他	応力緩和	ばねの変形(応力緩和)が発生したとしても、機能に影響しない。	・リフト逆止弁のばね				
				・制御棒クラスタのばね				
34	その他	照射クリープ	除外(-)なし				
35	その他	照射スウェリング	照射スウェリング量は照射量取替基準に達した時点で微量であり、制御棒案内シン ブル細径部間ギャップは確保される。	・制御棒クラスタの被覆管				
36	その他	デンティング		 -)なし				
37	その他	変形	これまでの点検において有意な変形は確認されていない。	・低圧タービンの内部車室				
38	その他	はく離	高湿度環境にはなく、結露水が発生しがたい環境である。	・弁電動装置の電磁ブレーキライニング				
39	その他	緩み	回り止めが施されている。	・変圧器の鉄心				
40	その他	スケール付着	適切な水質管理により不純物の流入は抑制されている。	·廃液蒸発装置加熱器(胴側)等				
41	その他	流路の減少		・ディーゼル機関付属設備熱交換器伝熱管(胴側)−)なし				
42	その他	目詰まり	際外(-)なし 除外(-)なし					
43	その他	カーボン堆積	これまでの点検において有意なカーボン堆積は確認されていない。	・非常用ディーゼル発電機機関本体ピストン上部頂面等燃焼室構成部品、過給機				
	, III		The second of the second secon	タービンハウジング等				

タイトル	日常劣化管理事象以外の事象について
概要	高経年化対策上着目すべき経年劣化事象ではない事象のうち、日常劣化 管理事象以外の事象 (▲) の一覧を示す。
説明	日常劣化管理事象以外の事象(▲)の一覧を表2に示す。

	热交換器	多管円筒形熱交換								
2 熱		器	•	腐食(全面腐 食)	胴側耐圧構成品 等の腐食(全面 腐食)	原子炉補機冷却水冷却器	胴側耐圧構成品等は炭素鋼であり、腐食が想定される。 しかしながら、原子炉補機冷却水冷却器の内部流体は、ヒドラジン水(防錆剤注入水)であり、内面の腐食が発生し難い環境であることから、高経年化対策上着目すべき経年劣化 事象ではない。			
	热交換器	蒸気発生 器	•	心刀脳及刮れ	冷却材出入口管 台ニッケル基で 金溶接部及び基合 板ニッケル基合 金内張り部の応 力腐食割れ	蒸気発生器本体	冷却材出入口管台とセーフエンドの溶接部及び管板内張り部には690系ニッケルを使用しており、応力廠食割れが想定される。 しかしながら、図2.2-2に示す民間研究による690系ニッケル基合金の温度加速が応力廠食割れ試験の結果から、応力腐食割れが発生する可能性は小さい。 したがって、高経年化対策上着目すべき経年劣化事象ではない。			
3 熱	热交換器	蒸気発生 器	•		1次側低合金鋼 部の内張り下層 部のき裂	蒸気発生器本体	1次側鏡板及び管板には低合金鋼を用いており、ステンレス鋼及びニッケル基合含 りを施している。一部の低合金鋼(SA508 C1.2)では大入熱溶接を用いた内張りて 熱処理が行われると局部的にき裂が発生することが米国PVRC(Pressure Vess Research Council)の研究により確認されている。これは内張り施工の際、6本の イヤーで同時に溶接したために大入熱になったものである。 別内1号炉においては図2.2-3に示すように材料の化学成分(△G値)を踏まえ溶 管理し溶接を実施しており、き裂の発生する可能性は小さいことから、高経年化対 目すべき経年劣化事象ではない。			
4 熱	热交換器	蒸気発生 器	•	応力腐食割れ	仕切板の応力腐 食割れ	蒸気発生器本体	仕切板には690系ニッケル基合金を使用しており、応力腐食割れが想定される。 しかしながら、差込式として作用応力を逃がす構造となっており、また、図2.2-2に示す 民間研究による690系ニッケル基合金の温度加速定荷重応力腐食割れ試験の結果から、 応力腐食割れが発生する可能性は小さい。 したがって、高経年化対策上着目すべき経年劣化事象ではない。			
5 熱	热交換器	2 重管式 熱交換器	•	腐食(流れ加 速型腐食)	伝熱管及び胴管 の腐食(流れ加速 型腐食)	試料採取設備サンプル冷却器	伝熱管及び胴管は内部流体により、流れ加速型腐食による減肉が想定される。 しかしながら、伝熱管及び胴管は耐流れ加速型腐食性に優れたステンレス鋼を使用しており、流れ加速型腐食が発生する可能性は小さい。 したがって、高経年化対策上着目すべき経年劣化事象ではない。			
6 熱	热交換器	2 重管式 熱交換器	A	高サイクル疲 労割れ	伝熱管の高サイ クル疲労割れ	試料採取設備サンプル冷却器	内部流体により振動が発生した場合、伝熱管に高サイクル疲労割れが想定される。 しかしながら、構造上、伝熱管と接触する部位がなく、有意な振動が発生する可能性はない。 したがって、高経年化対策上着目すべき経年劣化事象ではない。			
7 熱	热交換器	2 重管式 熱交換器	•	応力腐食割れ	伝熱管の応力腐 食割れ	試料採取設備サンプル冷却器	伝熱管はステンレス鋼であり、応力腐食割れが想定される。 しかしながら、内部流体である1次冷却材の水質を溶存酸素濃度0.1ppm以下に管理 しており、応力腐食割れが発生する可能性は小さい。 したがって、高経年化対策上着目すべき経年劣化事象ではない。			
8 熱	熱交換器	2 重管式 熱交換器	•	スケール付着	伝熱管のスケー ル付着	試料採取設備サンプル冷却器	流体の不純物持ち込みによるスケール付着が発生し、伝熱性能に影響を及ぼすことが想定される。 しかしながら、伝熱管の内部流体は1次冷却材、胴管の内部流体はヒドラジン水(防錆剤注入水)であり、適切な水質管理により不純物の流入は抑制されていることから、スケール付着の可能性は小さい。 したがって、高経年化対策上着目すべき経年劣化事象ではない。			
9	容器	原子炉容 器	•	き 쮗	上部ふた等低合 金鋼部の内張り 下層部のき裂	原子炉容器本体	上部ふた、上部胴等には低合金鋼を用いており、ステンレス鋼の内張りを施している。一部の低合金鋼(SA508 Cl.2)では大入熱溶接を用いた肉盛で溶接後熱処理が行われると局部的にき裂が発生することが米国PVRC(Pressure Vessel Research Council)の研究により確認されている。これは肉盛溶接の際、6本の溶接ワイヤーで同時に溶接したために大入熱になったものである。川内1号炉においては、図2.2-2に示すように材料の化学成分(△G値)を踏まえ溶接入熱を管理し溶接を実施しており、き裂の発生する可能性は小さく、高経年化対策上着目すべき経年劣化事象ではない。			
10	容器	加圧器本体	•	熱時効	スプレイノズル の熱時効	加圧器本体	加圧器本体スプレイノズルに使用しているステンレス鋼鋳鋼については、熱時効による材料特性変化を起こす可能性がある。 しかしながら、耐圧部材ではないこと、外荷重を受けないため発生する応力は十分小さい ことから、熱時効による材料特性の変化が問題となることはなく、高経年化対策上着目す べき経年劣化事象ではない。			
11	容器	加圧器本体	A	き裂	鏡板等低合金鋼 部の内張り下層 部のき裂	加圧器本体	競板、胴板等には低合金鋼を用いており、ステンレス鋼の内張りを施している。一部の低合金鋼(SA508 Cl. 2)では大入熱溶接を用いた肉盛で溶接後熱処理が行われると局部的にき製が発生することが米国PVRC(Pressure Vessel Research Council)の研究により確認されている。これは肉盛溶接の際、6本の溶接ワイヤーで同時に溶接したために大入熱になったものである。川内 1号炉においては図2.2-2に示すように材料の化学成分(△G値)を踏まえ溶接入熱を管理し溶接を実施しており、き製が発生する可能性は小さく、高経年化対策上着目すべき経年劣化事象ではない。			
12	容器	原子炉格 納容器本 体	•	腐食	原子炉格納容器 本体(コンク リート埋設部) の腐食	原子炉格納容器本体	原子炉格納容器本体は炭素鋼を使用しており、塗装のはく離や埋設部のコンクリート中性 化等により、腐食が発生する可能性がある。 しかしながら、コンクリート埋設部は、コンクリート内の水酸化カルシウムにより強アル カリ環境を形成しており、鉄表面は不動態化しているため、腐食速度としては小さい環境 にある。 また、コンクリート埋設部には、電気防食設備を備えており、仮に中性化が進行しても腐 食速度の小さい電位に鋼板電位を保持できるようにしている。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。			
13	容器	プール形 容器	•	応力腐食割れ	ステンレスライ ニング等の応力 腐食割れ	使用済燃料ピット	2007年3月、美浜1号炉においてキャビティのステンレスライニングで応力腐食割れが発生している。この事象は、ブラント建設時に原子炉格納容器開口部から持ち込まれた海塩粒子がコーナアングルやコーナブレート表面に付着、その後の定期検査時のキャビティ水張りにより発生した結露水により、塩化物イオンがコーナブレートの溶接線近傍の挟隘部分に持ち込まれ、さらに原子炉の運転で水分が蒸発し、ドライアンドウェット現象を繰り返すことで塩化物イオンが濃縮したことが原因とされている。 しかしながら、川内1号炉の使用洗燃料ビットのステンレスライニングについては、水抜き等の運用がなく常時水張り状態であり温度変化が少ないことから、ドライアンドウェット現象が発生し難い環境であると考えられ、応力腐食割れが発生する可能性は小さい。したがって、使用済燃料ビットのステンレスライニングやラック類の応力腐食割れは、高経年化対策上着目すべき経年劣化事象ではない。			
14	容器	プール形 容器	•		ボロンの中性子 吸収能力の低下	使用済燃料ピット	使用済燃料ラックセルには、ボロン添加ステンレス鋼が使用されており、ボロンは中性子 吸収により、その成分元素が中性子吸収断面積の小さな元素へと変換されるため、中性子 吸収能力は徐々に低下する。 しかしながら、中性子吸収能力の低下は無視できるほど小さいと考えられることから、高 経年化対策上着目すべき経年劣化事象ではない。			

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	今後も経年劣化の進展が考えられない、 又は進展傾向が極めて小さいと判断した理由
15	配管	ステンレ ス鋼配管	•	応力腐食割れ	アルカリ環境下 における内面か らの応力腐食割 れ	原子炉格納容器スプレイ系統配管 (苛性ソーダライン)	原子炉格納容器スプレイ系統配管の一部の範囲については、内部流体が苛性ソーダ溶液であることから応力腐食割れが想定される。 しかしながら、図2.2-1に示すように苛性ソーダの濃度及び使用温度が低く、応力腐食割れが発生し難い環境にあることから、高経年化対策上着目すべき経年劣化事象ではない。
16	配管	ステンレス鋼配管	•	高サイクル疲 労割れ	小口径管台の高 サイクル疲労割 れ	余熟除去系統配管、補助給水系統 配管、緊急時対策所用加圧設備系 統配管	
17	配管	ステンレス鋼配管	•	高サイクル疲 労割れ	温度計ウェルの 高サイクル疲労 割れ		1995年12月、もんじゅの温度計ウェルで流体振動による高サイクル疲労割れが発生している。この事象はブラント運転中に内部流体の流れによる流体振動を受け、流れ方向(抗力方向)に対称発生し、温度計ウェルの付け根部に応力集中が生じたものである。しかしながら、川内1号炉の温度計ウェルは、旧原子力安全・保安院指示文書「発電用原子力設備に関する技術基準を定める省令の改正に伴う電気事業法に基づく定期事業者検査の実施について「平成17・12・22原院第6号 NISA-163a-05-3)」に基づき「(社) 日本機械学会 配管内円柱状構造物の流力振動評価指針 (JSME S 012-1998)」による評価を行い、問題とならないことを確認しており、同様な設計方針に基づき施設されているその他の箇所についても同様と考える。
18	配管	低合金鋼配管	•	疲労割れ	母管の疲労割れ	主給水系統配管	プラントの起動・停止時に発生する内部流体の温度、圧力の変化により、疲労割れが想定される。 しかしながら、炭素鋼配管の疲労評価結果では許容値を満足する結果が得られており、同等以下の過渡しか受けない低合金鋼配管については、疲労割れが発生する可能性はないことから、高経年化対策上着目すべき経年劣化事象ではない。
19	配管	低合金鋼配管	•	高サイクル疲 労割れ	小口径管台の高 サイクル疲労割 れ	共通	1998年12月、大飯2号炉の余熱除去系統配管のドレン弁管台において、高サイクル 疲労割れによる漏えいが発生している。この事象は配管取替に伴いドレン管の口径を変更したことにより余除除去ポンプと共振が発生し、ドレン弁管台溶接部に応力集中が生じたものである。 川内1号炉においては、必要な部位について振動計測に基づく応力評価等を行い、健全性を確認している。また、振動の状態は経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。
20	配管	低合金鋼配管	•	高サイクル疲労割れ	温度計ウェル等 の高サイクル疲 労割れ	主給水系統配管	1995年12月、もんじゅの温度計ウェルで流体振動による高サイクル疲労割れが発生している。この事象はブラント連転中に内部流体の流れによる流体振動を受け、流れ方向(抗力方向)に共振が発生し、温度計ウェルの付け根部に応力集中が生じたものである。しかしながら、川内1号炉の温度計ウェル及びサンブルノズルは、旧原子力安全・保安院指示文書「発電用原子力設備に関する技術基準を定める省令の改正に伴う電気事業法に基づく定期事業者後含の実施について(平成17・12・22原院第6号 NISA-163a-05-3)」に基づき「代社) 日本機体学会 配管内円柱状構造物の流力振動評価指針(SME 5012-1998)」による評価を行い、問題とならないことを確認しており、同様な設計方針に基づき施設されているその他の箇所とついても同様と考える。このような条件は経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。
21	配管	炭素鋼配 管	•	高サイクル疲 労割れ	小口径管台の高 サイクル疲労割 れ	主蒸気系統配管、主給水系統配	1998年12月、大飯2号炉の余熱除去系統配管のドレン弁管台において、高サイクル 疲労割れによる漏えいが発生している。この事象は、配管取替に伴いドレン管の口径を変 更したことにより余熱除去ボンブと共振が発生し、ドレン弁管台溶接部に応力集中が生じ たものである。 しかしながら、川内1号炉においては、必要な部位について振動計測に基づく応力評価等を行い、健全性を確認している。 また、振動の状態は経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。
22	配管	炭素鋼配 管	•	高サイクル疲 労割れ	温度計ウェル等 の高サイクル疲 労割れ	主蒸気系統配管、主給水系統配 管、原子炉補機冷却水系統配管、 原子炉補機冷却海水系統配管	1995年12月、もんじゅの温度計ウェルで流体振動による高サイクル疲労割れが発生している。この事象は、プラント運転中に内部流体の流れによる流体振動を受け、流れ方向(抗力方向)に共振が発生し、温度計ウェルの付け根部に応力集中が生じたものである。しかしながら、川内1号炉の温度計ウェル及びサンブルノズルは、旧原子力安全・保安院指示文書「発電用原子力設備に関する技術基準を定める省令の改正に伴う電気事業法に基づく定期事業者検査の実施について(平成17・12・22原院第6号 NISA-163a-05-3)」に基づき「(社)日本機械学会 配管内円柱状構造物の流力振動評価指針(USME S 012-1998)」による評価を行い、問題とならないことを確認しており、同様な設計方針に基づき施設されているその他の箇所についても同様と考える。このような条件は経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。
23	配管	1 次冷却 材管	•		温度計ウェル及 びサンブルノズ ルの高サイクル 疲労割れ	1 次冷却材管	1995年12月、もんじゅの温度計ウェルで流体振動による高サイクル疲労割れが発生している。この事象は、プラント運転中に内部流体の流れによる流体振動を受け、流れ方向(抗力方向)に共振が発生し、温度計ウェルの付け根部に応力集中が生じたものである。しかしながら、川内1号炉の温度計ウェル及びサンプルノズルは、保安院指示文書(平成17・12・22原院第6号 NISA-163a-05-3)に基づき「(社)日本機械学会 配管内円柱状構造物の流力振動評価指針(JSME S 012-1998)」による評価を行い、間とならないことを確認しており、このような条件は経年的に変化するものではないことから、高経年化対策上着目すべき経年劣化事象ではない。
24	配管	1 次冷却 材管	A	高サイクル疲 労割れ	サーマルスリー ブの高サイクル 疲労割れ	1 次冷却材管	1981年7月、大飯2号炉の2点溶接タイプのサーマルスリーブで流体振動による高サイクル疲労割れが発生している。 しかしながら、川内1号炉のサーマルスリーブは全て全周溶接タイプであり、2点溶接タイプに比べて発生応力が十分小さいことから、高経年化対策上着目すべき経年劣化事象ではない。 図2.2-1にサーマルスリーブの構造を示す。
25	配管	1 次冷却 材管	A	応力腐食割れ	温度計ウェル等の応力腐食割れ	1 次冷却材管	温度計ウェル、サンブルノズル及びサーマルスリーブはステンレス鋼を使用しており応力 厳食割れが想定される。 しかしながら、定期検査時に飽和溶存酸素濃度(最大約8ppm)の流体が流入する際は流体 温度が低い(最高でも80°2程度)ため、応力腐食割れが発生する可能性は小さい。また、 定期検査後のブラント起動時には1枚%和材中の溶存酸素濃度低減のための運転操作を実 施するため、高温(100°C以上)で使用する場合は溶存酸素濃度が0、1ppm以下に低減され た流体となっていることから広力腐食割れが発生する可能性は小さい。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

表2-1 日常劣化管理事象以外の事象一覧(3/5)

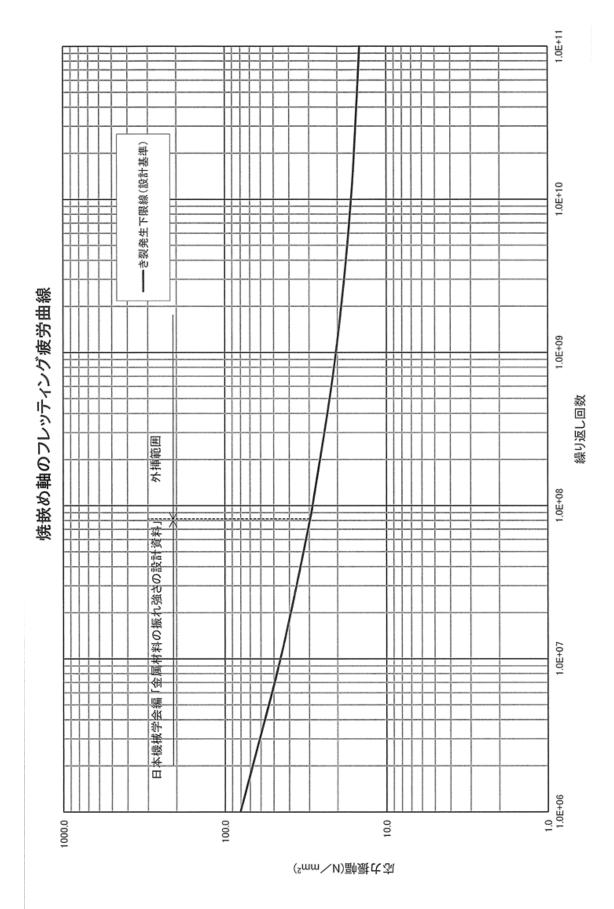
番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	今後も経年劣化の進展が考えられない、 又は進展傾向が極めて小さいと判断した理由			
26	配管	配管サ ポート	A	腐食(全面腐食)	埋込金物のコン	共通	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。			
27	弁	空気作動 装置	A	摩耗	ョークの摩耗 (弁棒接続部の 摩耗)	主蒸気逃がし弁空気作動装置	ヨークは弁棒と接続されており、弁の開閉動作に伴う摩耗が想定される。 しかしながら、弁棒はヨーク(弁棒接続部)にねじ込み、キャップスクリューで固定 構造としており、接続部のゆるみ等によって摩耗が発生する可能性はないことから、 年化対策上着目すべき経年劣化事象ではない。			
28	弁	蒸気加減弁	A	応力腐食割れ	弁体ボルトの応 力腐食割れ	蒸気加減弁	弁体ボルトの座面コーナ部及びねじ部の応力集中部は、内部流体によるボルトの応力 割れが想定される。 しかしながら、弁体ボルトには応力腐食割れ感受性が小さいステンレス鋼を使用して り、締付時はトルク管理をしているため過大な応力とならないことから、高経年化対 着目すべき経年劣化事象ではない。			
29	炉内構造 物	-	A	照射クリープ	炉心槽等の照射 クリープ	炉内構造物	高照射環境下で使用される炉心槽及びバッフルフォーマボルト(ステンレス鋼)には照射 クリーブが生じる可能性がある。 しかしながら、クリーブ破断は荷重制御型の応力発生下で生じるが、荷重制御型応力は微 小であり、ブラント運転に対し問題とはならない。 したがって、高経年化対策上着目すべき経年劣化事象ではない。			
30	炉内構造 物	-	•	照射スウェリ ング	炉心バッフルの 照射スウェリン グ	炉内構造物	PWRプラントでの照射スウェリング量は小さく、炉心パッフルの上下に十分な隙間が存在することから、炉心パッフルの炉心形成機能が失われるようなことはなく、また、運転時間が先行している海外PWRプラントでもそのような事例が発生していないため、高経年化対策に有意でない事象と考える。したがって、高経年化対策上着目すべき経年劣化事象ではない。			
31	炉内構造 物	-	A		押えリングの変形(応力緩和)	炉内構造物	プラント運転中の押えリングは、高温環境下で一定圧縮ひずみのまま保持されているため、変形(応力緩和)を起こす可能性がある。 しかしながら、押えリングに使用されているステンレス鋼(ASME SA182 Gr. F6b)は、応力緩和を生じにくい材料である。 したがって、高経年化対策上着目すべき経年劣化事象ではない。			
32	ケーブル	ケーブル トレイ等	A	腐食(全面腐食)	電線管(本体) 及びカップリン グの内面からの 腐食(全面腐 食)	電線管	電線管 (本体) 及びカップリングは炭素鋼であり、腐食が想定される。 しかしながら、内面については、亜鉛メッキにより腐食を防止している。 また、内装物はケーブルのみであり、メッキ面への外力は加わらないため亜鉛メッキが剥 がれることはなく、外面と比較して環境条件が緩やかであるため腐食の発生する可能性は 小さいことから、高経年化対策上着目すべき経年劣化事象ではない。			
33	ケーブル	ケーブル トレイ等	•	腐食(全面腐 食)	埋込金物及び電 線管 (コンク リート埋設部) の腐食 (全面腐 食)	埋込金物 [共通] 及び電線管 (コンクリート埋設部) [電線管]	コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物及び電線管に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。			
34	ケーブル	ケーブル 接続部	•	腐食(全面腐食)	端子等の腐食 (全面腐食)	気密端子箱接続、直ジョイント	端子、端子台 [気密端子箱接続] 、隔壁付スリーブ [直ジョイント] は銅もしくは銅合金であり、腐食が想定される。 しかしながら、端子及び端子台は錫メッキ又はニッケルメッキにより腐食を防止している。さらに密封された構造であり、腐食が発生する可能性はないことから、高経年化対策上着目すべき経年劣化事象ではない。 また、隔壁付スリーブは構造上端子部が熱収縮チューブにて密閉されており、腐食の可能性はないと考えられることから、高経年化対策上着目すべき経年劣化事象ではない。			
35	電気設備	メタクラ	•	摩耗	真空バルブの接 点の摩耗	メタクラ(安全系)	真空バルブの接点は、遮断器の開閉動作に伴う電流開閉により、摩耗が想定される。 しかしながら、10,000回の電流開閉においても有意な電極摩耗は認められておら ず、また、運転時の作動回数は30回/年程度と少ないことから摩耗の可能性は小さいと 考えられ、今後もこれらの傾向が変化する要因があるとは考え難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。			
36	電気設備	メタクラ	A	絶縁低下	計器用変流器 (貫通形) の絶 縁低下		一次コイルと二次コイルがモールド(一体形成)されている形式の計器用変流器については、絶縁物が有機物であり、熱的、電気的及び環境的要因で経年劣化が進行し、絶縁性能の低下を起こす可能性がある。 しかしながら、計器用変流器は一次コイルのない貫通型計器用変流器であり、構造上空間により絶縁が確保されている。 また、二次コイルにかかる電圧は低く、通電電流による熱的影響も小さい。さらに、空調された屋内に設置されており、塵埃による絶縁低下の可能性も小さく、これまでに有意な絶縁低下は認められていない。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。			
37	電気設備	メタクラ	•	腐食(全面腐食)	埋込金物(コン クリート埋設 部)の腐食(全 面腐食)	メタクラ (安全系)	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部については、コンクリートが中性化に至るには長期間 を要することから、高経年化対策上着目すべき経年劣化事象ではない。			
38	電気設備	パワーセ ンタ	•	絶縁低下	計器用変流器の 絶縁低下	パワーセンタ(安全系)	一次コイルと二次コイルがモールド(一体形成)されている形式の計器用変流器につしは、絶縁物が有機物であり、熱的、電気的及び環境的要因で経年劣化が進行し、絶縁性の低下を起こす可能性がある。しかしながら、計器用変流器は一次コイルのない貫通型計器用変流器であり、構造上名により絶縁が確保されている。また、二次コイルにかかる電圧は低く、通電電流による熱的影響も小さい。さらに、名された屋内に設置されており、塵埃による絶縁低下の可能性も小さく、これまでに有意絶縁低下は認められていない。したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経知化事象ではない。			
39	電気設備	パワーセ ンタ	A	腐食(全面腐 食)	埋込金物(コン クリート埋設 部)の腐食(全 面腐食)	パワーセンタ(安全系)	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部については、コンクリートが中性化に至るには長期間 を要することから、高経年化対策上着目すべき経年劣化事象ではない。			
40	電気設備	コント ロールセ ンタ	•	腐食(全面腐食)	埋込金物(コン クリート埋設 部)の腐食(全 面腐食)	原子炉コントロールセンタ(安全 系)	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部については、コンクリートが中性化に至るには長期間 を要することから、高終年化対策上着目すべき終年劣化事象ではない。			

表2-1 日常劣化管理事象以外の事象一覧(4/5)

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	今後も経年劣化の進展が考えられない、 又は進展傾向が極めて小さいと判断した理由			
41	タービン設備	高圧ター ビン	•	摩耗	キーの摩耗	高圧タービン	軸受合がタービンの起動・停止による温度変化により台板上をスライドするため、台板に 固定されたキーの摩耗が想定される。 しかしながら、キーは低合金鋼であり、炭素鋼に比べ耐摩耗性が優れており、かつ軸受台 とキーの接触面は潤滑剤が定期的に注入されており、摩耗が発生し難い環境である。 さらに、起動・停止回数の多い火力発電所のタービンにおいても同様の構造、材料を採用 し、これまで問題なく運転されており、十分な使用実績を有している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。			
42	タービン 設備	低圧ター ビン	A	摩耗	ライナーの摩耗	低圧タービン	軸受箱がプラントの起動・停止による温度変化により台板上をスライドするため、 に固定されたライナーの摩耗が想定される。 しかしながら、ライナー部分における運転時の軸受箱の熱移動量が小さく、また、 停止回数の多い火力発電所のタービンにおいても同様の構造、材料を採用し、これ 類なく運転されており、十分な使用実績を有している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき 化事象ではない。			
43	タービン 設備	タービン 動主給プ 歌動ビン	A	摩耗	キーの摩耗	タービン動主給水ポンプ駆動ター ビン	車室がタービンの起動・停止による温度変化により台板上をスライドするため、台板に固定されたキーの摩耗が想定される。 しかしながら、起動・停止回数の多い火力発電所のタービンにおいても同様の構造、材料を採用し、これまで問題なく運転されており、十分な使用実績を有している。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣化事象ではない。			
44	コンクリート構造物構造物	-	A	鉄骨の強度低 下	風等による疲労 に起因する強度 低下	内部コンクリート(鉄骨部)、燃料取扱建屋(鉄骨部)、タービン 建屋(鉄骨部)、タービン	機返し荷重が継続的に鉄骨構造物にかかることにより、疲労による損傷が蓄積され、鉄骨 の強度低下につながる可能性がある。 鉄骨構造物では、疲労破壊が生じるような風等による共振現象に起因する繰返し荷重を受 ける構造部材はない。 したがって、風等による疲労に起因する強度低下は高経年化対策上着目すべき劣化事象で はないと判断した。			
45	計測制御設備	プロセス	A	腐食 (流れ加 速型腐食)	オリフィスの腐 食(流れ加速型 腐食)	余熱除去ループ流量	オリフィスは絞り機構であり、配管部と比較して流速が速くなることから流れ加速型腐食による減肉が想定される。 しかしながら、ステンレス鋼であり、流速を低く設計していることから、流れ加速型腐食が発生する可能性はないと考える。 したがって、高経年化対策上着目すべき経年劣化事象ではない。			
46	計測制御設備	プロセス	•	応力腐食割れ	オリフィスの応 カ腐食割れ	余熱除去ループ流量	オリフィスはステンレス鋼であり、応力腐食割れが想定される。 しかしながら、定期検査時に飽和溶存酸素濃度(最大約6ppm)の流体が流入する際は流体 温度が低い(最高80℃程度)ため、応力腐食割れが発生する可能性は小さい。 また、定期検査後のブラント起動時には1次冷却材中の溶存酸素濃度低減のための運転操 作を実施するため、高温(100℃以上)で使用する場合は、発存酸素濃度が0.1ppm 以下に低減された流体となっていることから、応力腐食割れが発生する可能性は小さい。 したがって、高経年化対策上着目すべき経年劣化事象ではない。			
47	計測制御設備	プロセス	•	腐食(全面腐 食)	埋込金物(コン クリート埋設 部)の腐食(全 面腐食)	1 次冷却材圧力、余熱除去ループ 流量、加圧器水位	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。			
48	計測制御設備	制御設備	A	腐食(全面腐 食)	埋込金物(コン クリート埋設 部)の腐食(全 面腐食)	主盤	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部については、コンクリートが中性化に至るまで長期間 要することから、高経年化対策上着目すべき経年劣化事象ではない。			
49	空調設備	空調ユ ニット	•	腐食(全面腐食)	冷却コイルの内 面からの腐食 (全面腐食)	中央制御室空調ユニット	中央制御室空調ユニットの冷却コイルは耐食性に優れた銅合金を使用しているが長期の使用により、内面からの腐食が想定される。 しかしながら、内部流体は脱気された純水であり、腐食が発生し難い環境にあることから、高経年化対策上着目すべき経年劣化事象ではない。			
50	空調設備	ダクト	•	腐食(全面腐食)	埋込金物 (コン クリート埋設 部) の腐食 (全 面腐食)	共通	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部ではコンクリートの大気接触部表面からの中性化の進行により腐食環境となるが、コンクリートが中性化に至り、埋込金物に有意な腐食が発生するまで長期間を要することから、高経年化対策上着目すべき経年劣化事象ではない。			
51	機械設備	重機器サポート	A	腐食(全面腐 食)	埋込金物の腐食 (全面腐食)	共通	埋込金物、原子炉容器サポートの外周プレート(コンクリート埋設部)及び埋込補強材は 炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部にあり、コンクリートが中性化に至るには長期間を要 することから、高経年化対策上着目すべき経年劣化事象ではない。			
52	機械設備	燃料取扱 設備(ク レーン関 係)	•	腐食(全面腐 食)	走行レール用レ ール押さえ及び 埋込金物の腐食 (全面腐食)	燃料取替クレーン	レール押さえ及び埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、走行レールはモルタルに埋設され、モルタルが大気接触部表面から中性化 が進行した場合には腐食環境となるが、中性化に至るには長期間を要し、腐食が急速に進 行して基礎ボルト等の健全性を阻害する可能性はないと考えられることから、高経年化対 策上着目すべき経年劣化事象ではない。			
53	機械設備	燃料移送装置	•	腐食(全面腐食)	基礎金物(コンクリート埋設部)の腐食(全面腐食)	燃料移送装置	走行駆動装置、水圧ユニットの水圧制御装置及び基礎金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部では、コンクリートが大気接触部表面から中性化が進行した場合には腐食環境となるが、中性化に至るには長期間を要し、腐食が急速に進行して基礎金物の健全性を阻害する可能性はないと考えられることから、高経年化対策上着目すべき経年劣化事象ではない。			

番号	大分類	小分類	事象区分	事象名	評価書記載 の事象名	対象機器	今後も経年劣化の進展が考えられない、 又は進展傾向が極めて小さいと判断した理由
54	機械設備	原子子炉容ふ気 保器 た付属 備	•	摩耗	サーマルスリー ブの摩耗	制御棒クラスタ駆動装置	サーマルスリーブは、原子炉容器上部ふた管台との接触部における摩耗が想定される。2017年12月、フランスのベルビル(Belleville)発電所2号炉において、サーマルスリーブが摩耗により落下し、制御棒落下試験時に全挿入できない事象が発生している。サーマルスリーブは原子炉容器上部ふたの制御棒クラスタ駆動装置管台の内側に設置され、管台とは固定されておらず、管台のテーパー部にサーマルスリーブのフランジ部が自重を預ける場構となっている。サーマルスリーブが設置される頂部プレナム内では、図2.2-1に示すようにスプレイノズルから順出する「次冷却材の流れ(頂部イバイバス流)が原子炉容器上部ふたに沿って上り、頂部付近で合流した後に下降する流れが存すする。この流れが作用さことでサーマルスリーブに流体励起振動が生じ、サーマルスリーブのフランジ面と管台内面のテーパー面が摺動することで、摩耗が進展すると考えられる。そのため、頃部プレナム内のボイズス流の流れが大きく上部ふた頂部の温度が低いブラント(「「Coldブラント)が摩耗に対する感受性が大きいと考えられる。したしながら。国内PWアブラントにおいては、2019年に、頂部ブレナムへのバイバス流量比が大きく、ワークレート(摺動速さと接触荷重の積)が大きい標準型4ループプラントのうち、上部ふたの供用年数が比較の長いブラントを代表ラントとして、サーマルスリーブの摩耗状況の確認のためにサーマルスリーブの下降量を計測しているが、直ちに、第19回定期検査時(2008年度)に原子炉容器の上部ふた取替にあわせてサーマルスリーブも取替えられており、摩耗状況を確認した国内代表プラントよりも供用期間が短く、ワークレートも小さいことから、直ちにフランジ部の破断に至るような摩耗が生じる可能性は小さい。
55	機械設備	原子炉容 器上部 た付属設 備	•	摩耗	接手の摩耗	制御棒クラスタ駆動装置	接手は、制御棒クラスタのスパイダーの溝に接手の山がかみあう構造になっており、ステッピング及び制御棒クラスタとの取付け、取外しによる接手山部の摩耗が想定される。しかしながら、接手の山とスパイダーの溝は隙間なくかみ込み一体となっており、ステッピング時の摩耗は生じないと考えられること、及びスパイダー材と接手の硬さは同程度であり比摩耗量も同程度と考えられ、接手山部についても有意な摩耗はないと考えられる。したがって、高経年化対策上着目すべき経年劣化事象ではない。
56	機械設備	基礎ボル ト	•	腐食(全面腐 食)	コンクリート埋 設部の腐食	共通	コンクリート埋設部では、コンクリートの大気接触部表面から中性化が進行した場合には 腐食環境となる。 しかしながら、中性化に至るには長期間を要することから、腐食が進行して基礎ポルトの 健全性を阻害する可能性は小さい。 ケッカルアンカのアンカボルトは、コンクリート埋設部のポルト本体が樹脂に覆われてい るため、腐食の発生の可能性は小さい。 したがって、高経年化対策上着目すべき経年劣化事象ではない。
57	機械設備	基礎ボル ト	•	疲労割れ	機器支持部の疲労割れ	共通	プラント起動・停止時等の熱応力等により、疲労割れが想定される。 しかしながら、熱応力が大きく付与する機器には、熱応力が基礎ボルトに直接付与されないサポート (オイルスナバ、メカニカルスナバ、スライドサポート) を使用している。さらに、これまで基礎ボルトの疲労割れによる不適合事象は経験していない。 したがって、高経年化対策上着目すべき経年劣化事象ではない。
58	機械設備	基礎ボルト	•	基礎ボルトの 付着力の低下	基礎ボルトの付 着力の低下	共通	基礎ボルト (特に先端を曲げ加工しているスタッドボルト)の耐力は、主にコンクリートとの付着力に担保されることから、付着力低下を起こした場合、支持機能の喪失が想定される。 しかしながら、これについては「コンクリート及び鉄骨構造物の技術評価書」にて健全性評価を実施しており、付着力低下につながるコンクリートの割れ等の発生の可能性は小さいと考えられる。 したがって、高経年化対策上着目すべき経年劣化事象ではない。
59	機械設備	基礎ボル ト	•	劣化	ケミカルアンカ 樹脂の劣化		ケミカルアンカは、樹脂とコンクリート及びアンカボルトの接着力により強度を維持しているものであり、樹脂が劣化した場合、接着力が低下し、支持機能への影響が想定される。 しかしながら、メーカ試験や実機調査での引抜試験結果から有意な引抜力の低下は認められていない。 したがって、ケミカルアンカ樹脂の劣化について、高経年化対策上着目すべき経年劣化事象ではない。
60	電源設備	非常用 ディーゼ ル発電機 機関本体	A	クリープ	排気管のクリー プ		排気管は、運転中高温になりクリープによる損傷が想定される。 しかしながら、排気管の熱膨張により発生する応力は、伸縮継手により吸収されクリープ による排気管の損傷が発生し難い。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
61	電源設備	DGポンプ	A	摩耗	油ポンプ歯車の 摩耗	空気圧縮機	油ポンプは歯車ポンプであり、歯車には摩擦による摩耗が想定される。 しかしながら、歯車には、潤滑油を供給し摩耗を防止していることから、高経年化対策上 着目すべき経年劣化事象ではない。
62	電源設備	直流電源設備	•	腐食(全面腐 食)	埋込金物(コン クリート埋設 部)の腐食(全 面腐食)	直流コントロールセンタ	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部については、コンクリートが中性化に至るには長期間 を要することから、高経年化対策上着目すべき経年劣化事象ではない。
63	電源設備	無停電電源	•	腐食(全面腐 食)	埋込金物(コン クリート埋設 部)の腐食(全 面腐食)	計装用電源装置	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部については、コンクリートが中性化に至るには長期間 を要することから、高経年化対策上着目すべき経年劣化事象ではない。
64	電源設備	計器用分電盤	•	腐食(全面腐 食)	埋込金物(コン クリート埋設 部)の腐食(全 面腐食)	計装用交流分電盤	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部については、コンクリートが中性化に至るには長期間 を要することから、高経年化対策上着目すべき経年劣化事象ではない。
65	電源設備	制御棒駆 動装置用 電源設備	•	腐食(全面腐 食)	埋込金物(コン クリート埋設 部)の腐食(全 面腐食)	原子炉トリップ遮斯器盤	埋込金物は炭素鋼であり、腐食が想定される。 しかしながら、コンクリート埋設部については、コンクリートが中性化に至るには長期間 を要することから、高経年化対策上着目すべき経年劣化事象ではない。
66	電源設備	大容量空 冷式発電 機	A	腐食(全面腐 食)	減速機ケーシン グの内面からの 腐食 (全面腐 食)	大容量空冷式発電機	減速機ケーシングは鋳鉄であり、内面からの腐食が想定される。 しかしながら、内面については歯車及び軸受を潤滑するため、潤滑油がケーシング内面に はねかけられる油雰囲気下で腐食が発生し難い環境である。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。
67	電源設備	大容量空 冷式発電 機	•	腐食(全面腐 食)	大容量空冷式発 電機付き燃料タンク胴板等の内 面からの腐食 (全面腐食)	大容量空冷式発電機	大容量空冷式発電機付き燃料タンクの胴板、管台及びマンホールは炭素鋼であり、内面からの腐食が想定される。 しかしながら、内部流体は燃料油であり、腐食が発生し難い環境にある。 したがって、今後も機能の維持は可能であることから、高経年化対策上着目すべき経年劣 化事象ではない。

タイトル	事象別の補足説明について
説明	事象別の補足説明について、次ページ以降に示す。
	 別紙8-1 高サイクル疲労割れに係る説明
	別紙8-2 フレッティング疲労割れに係る説明
	別紙8-3 腐食(流れ加速型腐食)に係る説明
	別紙8-4 劣化(中性子照射による靭性低下)に係る説明
	別紙8-5 応力腐食割れに係る説明
	別紙8-6 摩耗に係る説明
	別紙8-7 スケール付着に係る説明
	別紙8-8 マルテンサイト系ステンレス鋼の熱時効に係る説明


タイトル	高サイクル疲労割れに係る説明
説明	以下について、次ページ以降に示す。
	別紙8-1-1 ターボポンプ主軸の高サイクル疲労割れ

タイトル	ターボポンプ 主軸の高サイクル疲労割れ
概要	充てんポンプの主軸折損について、運用の改善内容を示す。
説明	国内PWRプラントにおいて、2011年に充てんポンプの主軸折損事象が発生している(NUCIA 通番11455)。本事象は、羽根車焼嵌めに伴う割リングと接触する主軸溝部において折損が発生したものである。原因として、折損箇所が応力集中の高い形状であったこと、応力が発生していたこと、および体積制御タンク低水位運転時の空気流れ込みで生じる振動があったことが挙げられている。
	本事象を踏まえて、川内1号においては空気流れ込みによる振動に対する対策として、内部流体に空気が流入しない系統構成としている。
	具体的には、体積制御タンクから充てん/高圧注入ポンプ入口配管への空気の流入を防止するため、体積制御タンクが低水位となる期間が一定期間継続しない管理とするよう運転基準に反映している。また、充てん/高圧注入ポンプ入口配管にベントラインを設置しており、万一配管に空気が流入しても充てん/高圧注入ポンプへ流入することはない。
	以上

タイトル	炉内構造物 炉心そう等の高サイクル疲労割れ									
概要	炉心そう等の高サイクル疲労割れについて、15×15燃料を対象とした1/5 スケールモデル流動試験の結果を適用することの妥当性を以下に示す。 炉内構造物において温度の異なる冷却材が合流する部位における最大温度 差の値を以下に示す。									
説明	表1、2に1/5スケールモデル流動試験*1と川内1号炉の炉内流速と各部の固有振動数を示すが、川内1号炉の炉内流速・固有振動数(解析値)は1/5スケールモデル流動試験のモデルプラントと大きな相違はないことから、川内1号炉に1/5スケールモデル流動試験の結果を適用することは妥当であると考える。 なお、炉内構造物における最大温度差は、原子炉容器内温度差の最大値									
	(Thot (約℃) -Tcold (約 ℃)) から、約 ℃となる。									
	表 1 炉内流速比較 (m/s)									
	炉心そうのRV入口管台									
	近傍 ダウンカマー (熱遮へ									
	い体部)									
	上部プレナムの出口ノ ズル近傍									
	表 2 固有振動数比較(Hz)									
	部位 川内 1 号炉 1/5スケール流動試験 のモデルプラント									
	炉心そう									
	制御棒クラスタ案内管									
	上部炉心支持柱									
	※1:メーカ社内試験「1/5模型によるPWR炉内構造物の流動振動試験」									
	以上									

タイトル	フレッティング疲労割れに係る説明							
説明	以下について、次ページ以降に示す。							
	別紙8-2-1 ターボポンプ主軸のフレッティング疲労割れに対する評価内容							
	別紙8-2-2 ターボポンプ主軸のフレッティング疲労割れに対する保 全内容							

タイトル	ターボポンプ 主軸のフレッティング疲労割れに対する評価内容									
概要	充てん/高圧注入ポンプ及び余熱除去ポンプの主軸のフレッティング疲労 割れについて、曲げ応力振幅と疲労限の比較評価の内容を示す。									
説明	各ポンプの運転中に主軸に生じる曲げ応力振幅と、疲労限との下に示す。	各ポンプの運転中に主軸に生じる曲げ応力振幅と、疲労限との比較を以下に示す。								
	ボンプ 疲労限 発生する min	Ē								
	充てん/高圧注入ポンプ 10.8									
	余熱除去ポンプ 8.9									
	を考慮した設計値を用いて、一般的な梁の式から算出している。 焼嵌め軸のフレッティング疲労曲線を添付1に示す。本疲労曲線 鋼データの「金属材料疲労強度の設計資料(日本機械学会)」より 価曲線を用いている。本文献データは炭素鋼によるものであるが、 に疲労強度は引張強さや材質に依存しないとされていることから 一タの内、最も厳しい下限線を10 ¹¹ 回まで外挿し設定したものを用 ンレス鋼製ポンプ主軸の評価に適用しているものである。 また、ステンレス鋼データ「ポンプ主軸のフレッティング疲労ラ テンレス鋼)(三菱重工業株式会社)」(以下、ステンレス鋼デー いて、ステンレス鋼製の供試体を用いてフレッティング疲労試験 結果、炭素鋼データより定めた評価曲線と比較して下回るデータ ていない(添付2)。 いずれのポンプも発生する曲げ応力が疲労限(14.7 N/mm²)と)定めた評 ・当該文で ・当文で ・アン・アータをは ・アン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アータをは ・マン・アーターの ・マン・アーの ・アーの								
	ことから、主軸のフレッティング疲労割れが問題となる可能性は考える。									
		以上								

8-2-1-2

MHI-NES-1053 改0 平成25年2月5日

ポンプ主軸のフレッテイング疲労データについて (ステンレス鋼)

平成25年2月

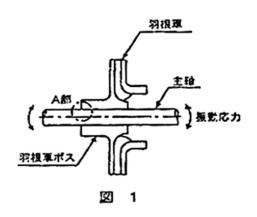
三菱重工業株式会社

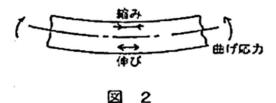
1. はじめに

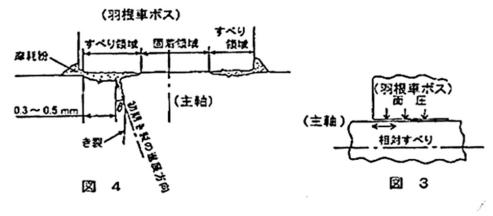
原子力発電所の高経年化対策におけるポンプ主軸の羽根車焼ばめ部に発生する可能性のあるフレッティング疲労割れに対する評価は、文献データ⁽¹⁾に主軸の曲げ応力振れ振幅と繰返し数との間の割れの発生関係が示されており、このうち最も厳しい下限線を 10¹¹ 回まで外挿した S-N 曲線により行っている。

上記文献データは炭素鋼、合金鋼によるものであるが、当該文献に疲労限度は引張強さや材質に依存しないとされていることから、ステンレス鋼製ポンプ主軸の評価にも適用している。

本報告では、過去に三菱にて実施したステンレス鋼主軸のフレッティング疲労試験結果と上 記の S-N 曲線との比較を行った。


2. ポンプ主軸のフレッティング疲労割れメカニズム(2)


羽根車を有する主軸は図1のように、振動 応力による曲げの繰返し応力を受ける。


主軸は曲げ応力を受ければ、図 2 に示す ように、軸表面が伸びる部分と反対側で縮む 部分が生じることから、繰返し応力を受ける 時、軸表面は繰返し伸び縮みする。

焼きばめた羽根車を有する主軸は、図 1 の A 部において、図 3 に示すように面圧が 加わった状態で、軸表面の伸び縮みによる相 対すべりが生じる。

1回転毎に羽根車(羽根車ボス)と主軸間に相対すべりが生じ、繰返し回数が多く、かつ曲げ応力が大きい(すべり量が多い)場合は、図 4 のように羽根車(羽根車ボス)端面近傍の主軸側にフレッティング疲労割れが発生する。

3. 試験実施時期

昭和61年~平成元年

4. 試験要領

(1) 供試体

供試体の概要を以下に示す。

材 質: 軸: SUS304、インペラボス: SCS13

軸: SUS403、インペラボス: SCS1N

寸 法: 軸径:50mm

インペラボス長さ:62.5mm

形 状: ポンプ主軸模擬品 (図5)

焼ばめ面圧: 21.5N/mm²(2.2kgf/mm²), 49N/mm²(5kgf/mm²)

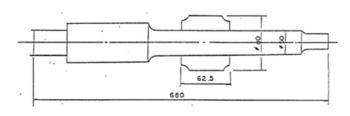


図 5 供試体の外形例

(2) 試験装置

試験装置の概要を以下に示す。

片持ちはり式回転曲げ疲労試験装置

2台

回転数 (周期)

3600 min⁻¹ (固定)

最大曲げモーメント

2940N-m(300kgf-m)

(曲げ応力 215N/ mm²(22kgf/mm²) 相当)

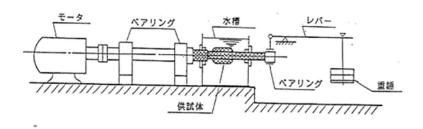


図 6 試験装置(概念図)

(3) 試験方法

モータに供試体を直結し、垂鍾で曲げ荷重をかけながら $3600 \, \mathrm{min^{-1}}$ で回転させる。 試験は原則として破断までとする。ただし、繰返し数の最大は、 $N=10^8$ とする。 試験終了時には、軸外面の外面観察及び液体浸透探傷検査でき裂状況を調査し、き裂の 有無を確認する。

試験条件を下記に示す。

·試験温度:室温~50℃程度

・試験環境:水中試験(1次系相当水:ほう素濃度 2100ppm)

・繰返し数:10⁸サイクル・繰返し速度:3600min⁻¹

5. 試験結果

軸に生じたき裂のうち、代表的な破面を図7に示す。図8にき裂の断面ミクロによる観察例を示す。き裂は粒界貫通型で軸表面に対して直角ではない角度をもって生じており、典型的なフレッティング疲労き裂の様相を呈している。ただし、き裂が深く進展するに従って、軸表面に垂直な方向に進展していく傾向が見られる。これは、軸表面では曲げ応力よりもせん断応力が支配的であるため、斜めに進展し、き裂が深く進展するに従い、せん断力が小さくなり、反対に曲げ応力が支配的になって、き裂の進展方向が曲げ応力で進展する軸と直角な方向に遷移してくるためである。

図7 フレッティング破面例

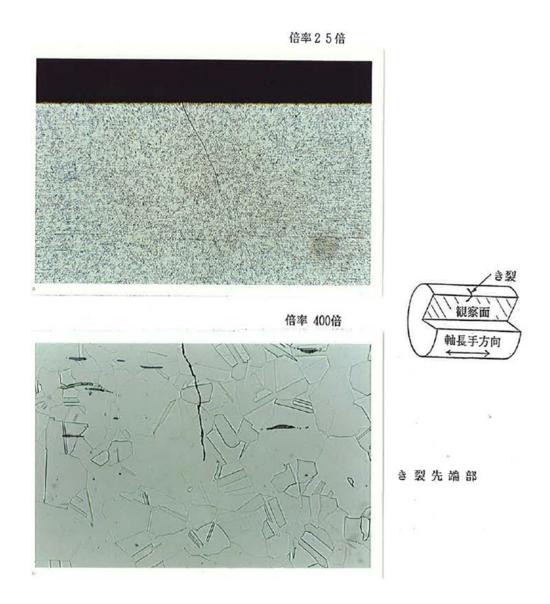


図8 フレッティング疲労き裂の断面ミクロ観察例

ステンレス鋼によるフレッティング水中試験の結果を繰返し回数No.と曲げ応力振幅 σ a の関係を図 9 に示す。一点鎖線は文献データ(1)より定めた評価曲線を示す。試験結果からこの評価曲線を下回るデータは得られず、評価曲線が妥当であることが確証できた。

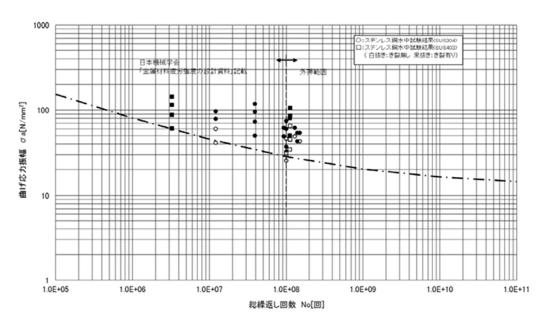


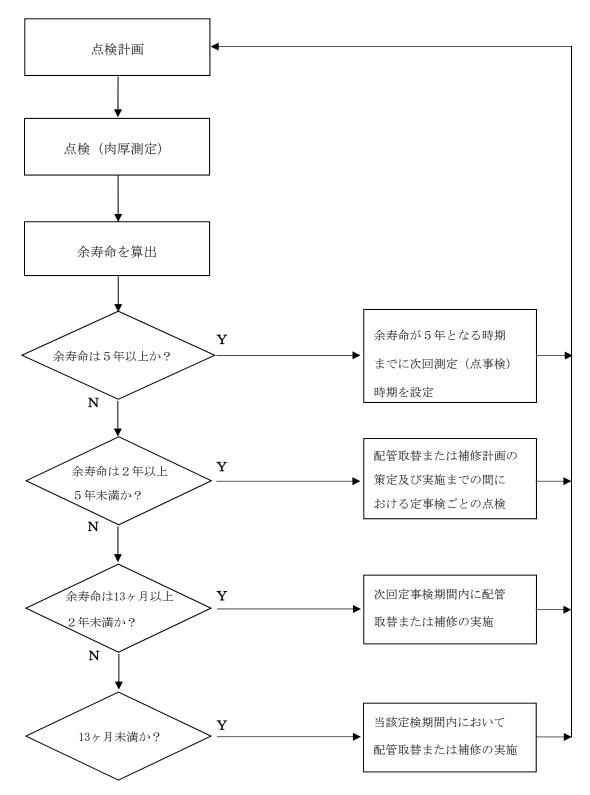
図9 繰返し回数と曲げ応力振幅の関係

6. まとめ

ステンレス鋼によるフレッティング水中試験の結果は文献のデータにより定めた評価曲線 を下回るデータは得られず、評価曲線が妥当であることが確証できた。

以上

参考文献


- (1) 日本機械学会編 金属材料疲労強度の設計資料(I)一般, 寸法効果, 切欠効果(改訂第2版),p.180,(1996)
- (2) 社団法人日本原子力学会 日本原子力学会標準原子力発電所の高経年化対策実施基準:2008,p108,(2009)

タイトル	ターボポンプ 主軸のフレッティング疲労割れに対する保全内容
概要	充てん/高圧注入ポンプ、余熱除去ポンプの振動確認により機器の健全性 を確認している内容を以下に示す。
説明	① 振動診断技術による振動確認 実施時期:プラント運転中(1回/月程度) 保全の高度化として、回転機器の振動診断技術を導入しており、通常運転 時の振動状態の傾向を監視し、回転機器の劣化又は故障の兆候の有無(軸受 の異常、ミスアライメント等)を確認している。 振動計測においては、ポンプ運転状態の異常のないこと(通常運転時の振 動状態と差異がないこと)を確認しており、許容値を上回るような異常な振 動(想定しない過大荷重)がないことを確認することで、フレッティング疲 労割れが発生する状態でないことを確認できると考える。
	② 巡視点検での振動確認 実施時期:プラント運転中(毎日) 巡視点検(1回/日)においても運転員による触診、目視および必要に応 じて聴診棒による聴診によって異常な振動等の有無を確認している。
	③ 中央制御室での振動確認 実施時期:プラント運転中(常時監視) 充てん/高圧注入ポンプ、余熱除去ポンプの軸受の振動速度は中央制御 室の補機監視盤で確認可能であり、振動速度が上昇した場合には中央制御 室に警報が発信する。
	以上

タイトル	腐食(流れ加速型腐食)に係る説明
説明	以下について、次ページ以降に示す。
	別紙8-3-1 2次系配管の流れ加速型腐食に対する肉厚管理について

タイトル	2次系配管の流れ加速型腐食に対する肉厚管理について
概要	当社の2次系配管肉厚管理の内容を示す。
	社内指針「2次系配管肉厚管理指針」を定め、本指針に従い2次系配管の肉厚管理を行っている。具体的には、超音波厚さ測定による結果に基づく余寿命評価から「次回測定(定事検)時期」または「取替時期」を設定している。 添付-1に肉厚管理方法の概要を示す。

「2次系配管肉厚管理指針」における肉厚管理方法の概要

タイトル	劣化(中性子照射による靭性低下)に係る説明		
説明	以下について、次ページ以降に示す。		
	別紙8-4-1 炉内構造物 炉心槽の中性子照射による靭性低下		

タイトル	炉内構造物 炉心槽の中性子照射による靭性低下
概要	炉心槽の水中カメラによる目視確認について、その方法を以下に示す。
説 明	炉心槽に対しては日本機械学会 維持規格に規定されているVT-3として、水中テレビカメラによる目視確認を実施している。VT-3では、炉心槽に有意な異常 (過度の変形、部品の破損、機器表面における異常等)がないことを確認している。炉心槽の可視範囲については、補足説明資料 (照射誘起型応力腐食割れ)の4.2 現状保全の図4-4に図示している。なお、補足説明資料 (照射誘起型応力腐食割れ)に示すとおり、炉心槽に照射誘起型応力腐食割れが発生する可能性は小さいと考えているが、炉心槽溶接部に仮想亀裂 (溶接線中心に全周亀裂)を想定した亀裂安定性評価を行った場合においても、不安定破壊は起こらないことを確認している。評価結果は、補足説明資料 (照射誘起型応力腐食割れ)の別紙4に示す。以上

タイトル	応力腐食割れに係る説明		
説明	以下について、次ページ以降に示す。		
	別紙8-5-1 蓄圧タンク管台の内面からの応力腐食割れ 別紙8-5-2 加圧器ヒータスリープの応力腐食割れ 別紙8-5-3 弁棒の応力腐食割れ 別紙8-5-4 ステンレス鋼配管、計装配管の酸素型応力腐食割れ 別紙8-5-5 原子炉容器の冷却材入口管台の600系ニッケル基合金 使用部位の応力腐食割れ対策について 別紙8-5-6 川内1号炉と2号炉の主要機器の600系ニッケル基合金 使用部位における応力腐食割れ対策の差異について		

タイトル	蓄圧タンク管台の内面からの応力腐食割れ		
概要	蓄圧タンクでは、タンク本体の熱処理を行った後に管台を溶接しており、材料の鋭敏化はないとする根拠を以下に示す。		
説明	ロビンソン発電所のほう酸注入タンクで発生した応力腐食割れについては、ステンレス鋼製部位を炭素鋼製部位と同様に熱処理していたため、著しく鋭敏化が進んでいたことが原因であったと報告されている。 一方、川内1号炉の蓄圧タンクについては炭素鋼製部位の熱処理を実施した後にステンレス鋼製部位の取り付けを実施していることから、有意な鋭敏化は発生していない。添付1に蓄圧タンクの製作手順の概要を示す。		
	なお、蓄圧タンク (炭素鋼) と管台 (ステンレス鋼) の溶接材料はニッケル合金であり、詳細は以下のとおりである。銘柄規格NIC70AJIS Z 3224 ENi6062		
	以上		

加圧器ヒータスリーブの応力腐食割れ			
316系ステンレス鋼製のヒータスリーブでの応力腐食割れによる損傷事例に関し、酸素型応力腐食割れの特徴、民間研究での定荷重試験の試験条件及び試験結果を示す。			
米国ブレイドウッド (Braidwood) 発電所 1 号炉で316系ステンレス鋼製の			
ヒータスリーブに損傷が確認されている。			
図1に示すとおり、ヒータスリーブの溶接部が熱影響等により鋭敏化し、			
ヒータスリーブとヒータの隙間部で溶存酸素が高い場合に酸素型応力腐食			
割れが発生する可能性があることから、定荷重試験を実施し過度に鋭敏化			
したSUS316材でも、飽和酸素濃度(8ppm)環境下に置かれた時間が100時間			
未満では応力腐食割れの発生が認められていないという結果が得られてい			
る。			
一方、実機におけるヒータスリーブの使用・環境条件を検討した結果、溶			
存酸素濃度が高くなる期間は、最長でもプラント初回起動時の40時間程			
度*1であるためヒータスリーブの酸素型応力腐食割れが発生する可能性は			
極めて低いと考えられる。(※1電力共通研究データ 加圧器ヒータスリー			
ブ内の溶存酸素濃度が拡散及び酸化皮膜形成により器内水溶存酸素濃度と			
等価となる時間) なお、運転時の1次冷却材は溶存酸素濃度0.1ppm以下と適			
切に管理されており、加圧器ヒータスリーブ近傍も同等と考えている。			
10			
GBA)**			
~			
就敏化度 (EPR: C/cm			
E E E E E E E E E E E E E E E E E E E			
カ 数			
鏡			
1			
10 100 1000 10000 100000 破断時間 (hr)			
図1 定荷重応力腐食割れ試験結果 (電力共通研究データ)			
※2鋭敏化度は、測定した単位面積あたりの電気量を測定面での結晶粒度で補正した値として			
いる。GBA(Grain Boundary Area)は、結晶粒界の面積を表す			

h / l a	
タイトル	弁棒の応力腐食割れ
概要	弁棒の水素脆化型応力腐食割れの特徴、発生要因、通常の応力腐食割れとの 主な相違および弁棒に付加される応力を以下に示す。
説明	水素脆化型応力腐食割れについて、主な特徴等を以下に示す。 1. 水素脆化型応力腐食割れ
	・発生要因
	陽極の腐食反応で生じた水素が陰極で吸収されて割れる(HE型: hydrogen embrittlement)
	特徴
	引張強度が高い材料ほど起こり易い
	2. 通常の応力腐食割れ
	・発生要因
	陽極の腐食反応が活性経路に沿って進んで割れる(APC 型:Active pass
	corrosion)
	3. 相違点 上述のとおり、応力腐食割れはアノード溶解作用が支配的である。一方、 水素脆化型応力腐食割れは水素の影響による脆性的な破壊である。
	【弁のバックシートに関する運用について】
	川内2号機の抽出ライン弁棒折損トラブル(1989年)以降は、手動弁
	については、バックシート操作を実施しない運用に変更し、弁棒には応力が
	付加されないような運用としている。
	電動弁のうち、開側がトルクシートの弁については弁棒にかかるピーク応
	力を低減 以下) している。
	以上

タイトル	ステンレス鋼配管、計装配管の酸素型応力腐食割れ
概要	高温かつ溶存酸素濃度が高くなる可能性のある範囲のステンレス鋼配管(計装用取出配管含む)において、耐応力腐食割れ性に優れたSUS316系材料を採用することにより、応力腐食割れが発生する可能性が小さくなる根拠を以下に示す。
説明	SUS304系材料 (18Cr-8Ni) とSUS316系材料 (18Cr-12Ni-2.5Mo)を比較した場合、図1に示すとおりSUS316系材料の方が耐応力腐食割れ性に優れていることが知られている。SUS316はMoを添加することにより耐食性を向上させた材料であり、図2のとおり強鋭敏化ステンレス鋼(18Cr-12Ni)でもMoを添加することで高温水中における耐SCC性が向上することが報告されている。そのため、応力腐食割れが発生する可能性は小さいと考えている。 川内原子力1号炉においては、高温かつ溶存酸素濃度が高くなる可能性のある範囲については、炭素含有量を0.05%以下に制限したSUS316系材料を使用している。 溶接熱影響部は入熱により鋭敏化する可能性があり、その鋭敏化は材料の炭素量が多いほど生じやすく、応力腐食割れ感受性を増加させることが知られている。しかし、図3のとおり、炭素含有量を0.05%以下に制限することで、鋭敏化度は2C/cm²・GBAを下回ることが確認されており、図4に示すとおり、PWR水質の酸素飽和環境下において、2C/cm²・GBA以下ではSUS316系材料の応力腐食割れ発生の感受性は無いことが確認されている。

•: Failure O: No failure

	Applied	The same dina (ha)
Material	stress	
	(kg/mm²)	500 1000 1500 2000
SUS304 -C	31	•
SUS304L-B	26	•
SUS316	31	0
SUS321 -A	35	
SUS347 -B	32	

図1 ステンレス鋼の応力腐食割れ感受性

[出典: 庄司三郎ら、「ステンレス鋼の高温水中における応力腐食割れ感受性」、防食技術、29、323-329 (1980)]

(説明) 複数鋼種の鋭敏化処理 (620℃×24h) 試験片について、250℃の酸素飽和純水中で 単軸引張試験を実施したもの。SUS304 (0.06%C材) は破断したが、SUS316 (0.07% C材) を含む他の鋼種は破断せず、SUS316の耐応力腐食割れ性が優れていることが 分かる。

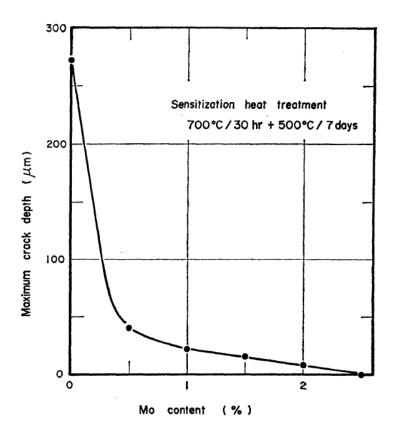


図 2 強鋭敏化 18Cr-12Ni ステンレス鋼の SCC 感受性に及ぼすモリブデン添加の影響 (CBB 試験: 250℃、20 ppm DO, 310 h)

[出典: M. Akashi and T. Kawamoto, "The Effect of Molybdenum Addition on SCC Susceptibility of Stainless Steels in Oxygenated High Temperature Water," *Boshoku Gijutsu*, 27, 165-171, (1978)]

(説明) SUS316は、SUS304相当のステンレス鋼にMoを添加することにより、耐食性を向上させた材料である。図は高温水中における応力腐食割れ特性に及ぼすMoの影響を評価したもので、CBB試験の結果では2.5%程度のMo添加により最大亀裂深さが大きく抑制されている。

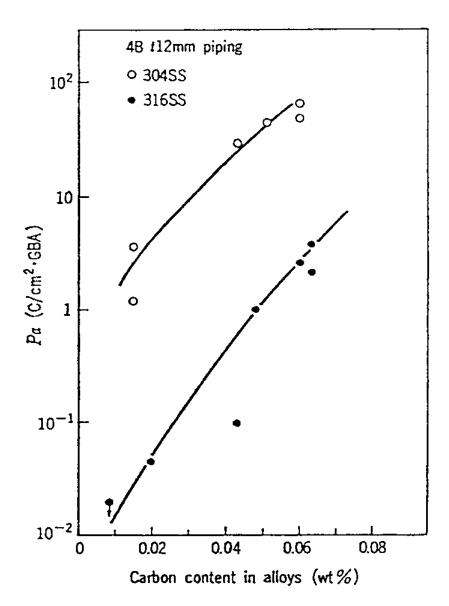


図3 材料および母材の炭素量の影響

[出典:水原ら、「高温水中のステンレス鋼の応力腐食割れ感受性に及ぼす鋭敏化度及びほう酸の影響」、三菱重工技報、Vol. 19、No.6 (1982)]

(説明) 炭素量の異なるSUS304およびSUS316配管を供試材として、同一溶接条件にて溶接継手を製作し管内面の鋭敏化度を測定したものである。SUS304、SUS316それぞれ炭素量が多いほど鋭敏化度(Pa)が大きくなる結果が得られている。

(鋭敏化度 (Pa) は、測定した単位面積あたりの電気量を測定面での結晶粒度で補正した値としている。GBA (Grain Boundary Area) は、結晶粒界の面積を表す。)

図4 EPR値とSCC感受性との相関性

[出典:水原ら、「高温水中のステンレス鋼の応力腐食割れ感受性に及ぼす鋭敏化度及びほう酸の影響」、三菱重工技報、Vol.19、No.6 (1982)] 注)出典元図中にその後の追加データを加えて見直したもの ※縦軸はSSRT試験における破面の全断面積とSCC破面の面積との比を SCC感受性パラメータとして定義

タイトル	原子炉容器の冷却材入口管台の600系ニッケル基合金使用部位の応力腐食 割れ対策について			
概要	原子炉容器の冷却材入口管台の600系ニッケル基合金使用部位の応力腐食 割れ対策を以下に示す。			
説明	1.600系ニッケル基合金使用部位の応力腐食割れ対策 原子炉容器の冷却材入口管台については、第17回定期検査時(2005年度) にウォータージェットピーニング(以下、WJPという)を施工している。 施工範囲を図1に示す。 なお、原子炉容器の冷却材出口管台溶接部の接液部については、予防保全 対策として690系ニッケル基合金クラッド施工を行っている。690系ニッケ ル基合金は、添付1に示す電力共同研究による690系ニッケル基合金の温度 加速定荷重応力腐食割れ試験の結果から、応力腐食割れが発生する可能性 は小さいと考えられる。 応力改善として、原子炉容器周りについては、気中環境の創出が困難なた め、水中施工が可能なWJPを施工している。			
	2. W J P の 効果 W J P の 効果について、公開されている 資料を添付 2 に示す。 W J P 施工 後は表面に圧縮応力が得られることが確認されている。 持続性については、三菱重工業株式会社「ピーニングによる応力腐食割れ 防止効果に関する研究」(出典:日本保全学会 第7回学術講演会要旨集)において、下記の通り各種条件で圧縮残留応力が保持されていることを確認していることから、W J P の持続性に問題はないと判断している。(添付3参照)			
	3. ピーニング施工以降の検査実績 原子炉容器の冷却材入口管台については、WJP施工以降の第25回定期 検査時(2019~2020年度)に超音波探傷検査を実施し、機器の健全性を確認 している。			
	探傷面を以下表に示す。			
	超音波探傷検査 原子炉容器冷却材入口管台 内面			
	74.4 // H HM11577114/ 71. H H			

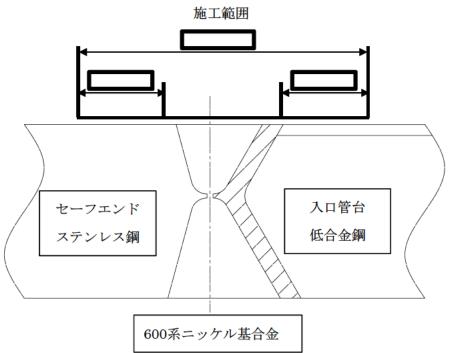
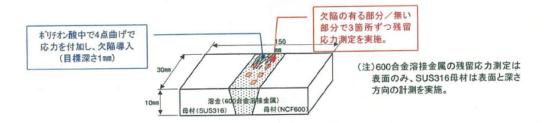


図1 原子炉容器冷却材入口管台のウォータージェットピーニングの施工範囲


図 690系ニッケル基合金の定荷重応力腐食割れ(SCC)試験結果 [出典:電力共同研究「690 合金の PWSCC 長期信頼性確証試験(STEP5)2020 年度(最終報告書)」]

出典: MHI-NES-1043改0 平成21年7月「加圧水型軽水炉 原子炉容器及び蒸気発生器 600系Ni基合金部に適用するピーニング方法の応力腐食割れ防止に関する有効性評価書」

表1 試験片及び潜在欠陥導入条件

	600合金溶接金属	ステンレス鋼母材
	平板継手試験片	平板試験片
試験片形状	(長さ150mm×幅30mm×厚さ10mm)	(長さ150mm×幅30mm×厚さ10mm)
材質	母材:NCF600+SUS316 溶金:600系合金	母材: SUS316
(注)	潜在欠陥導入前に鋭敏化熱処理実施	潜在欠陥導入前に鋭敏化熱処理 施)
潜在欠陥導入	4 点曲げにより応力を負荷した状態で室温ポリチオン酸溶液に浸漬し、600 合金溶接金属部に欠陥導	4 点曲げにより応力を負荷した状態で室温ポリチオン酸溶液に浸漬 し、316 母材部に欠陥導入(目標
試験片数	入(目標深さ 1 mm) ピーニング方法毎に1体	深さ 1 mm) ピーニング工法毎に 1 体

注)WJP/USPの対象材料は、600合金溶接金属の母材と溶接金属、ステンレス鋼の母材と溶接金属がある。 材料の違いによる影響は有意ではないと考えられるが、本評価書では600合金溶接金属と316系ステン レス鋼母材を代表に試験を行い、材質のよる有意な違いのないことを確認する。

図はSUS316/NCF600の平板継手試験片の600溶接金属部に潜在欠陥を導入した例を示す。 本確認では同寸のSUS316母材の平板試験片のSUS316母材部に潜在欠陥を導入した試験片も対象とした。

図1 試験片の形状 (600合金溶接金属の試験片の例)

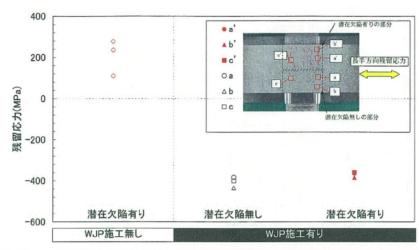


図 3 WJP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果 (600 合金溶接金属)

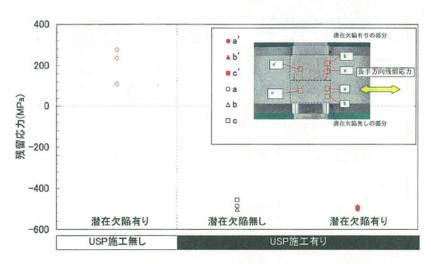


図 4 USP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果 (600 合金溶接金属)

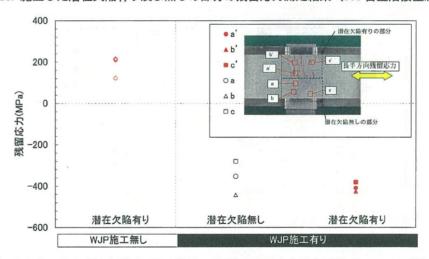


図 5 WJP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果(SUS316 母材)

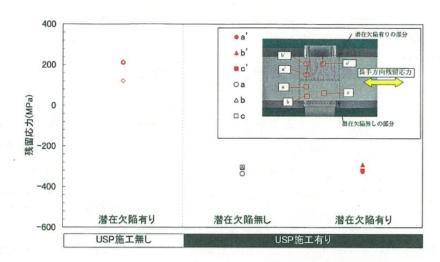


図 6 USP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果 (SUS316 母材)

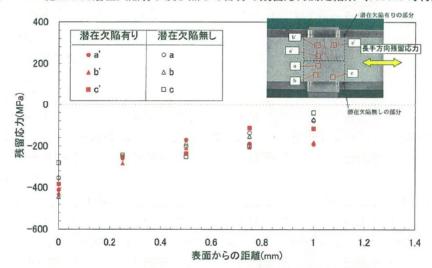


図 7 WJP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果 (SUS316 母材)

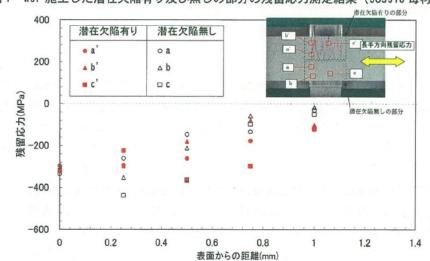


図 8 USP 施工した潜在欠陥有り及び無しの部分の残留応力測定結果 (SUS316 母材)

ピーニングによる応力腐食割れ防止効果に関する研究

Study on mitigation of stress corrosion cracking by peening

三菱重工業株式会社 技術本部 高砂研究所

前口貴治 Takahru MAEGUCHI 堤一也 Kazuya TSUTSUMI 豊田真彦 Masahiko TOYODA 太田高裕 Takahiro OHTA 岡部武利 Taketoshi OKABE 佐藤知伸 Tomonobu SATO

三菱重工業株式会社 神戸造船所

In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening(WJP) and ultrasonic shot peening(USP) on surface of alloy 600 and its weld metal was investigated under various thermal aging and stress condition considered for actual plant operation. In the case of thermal aging at 320-380°C, surface residual stress relaxation was observed at the early stage of thermal aging, but no significant stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. Furthermore, it was confirmed that cyclic stress does not accelerate stress relaxation.

Keywords: Residual stress, Stress corrosion cracking, Water jet peening, Ultrasonic shot peening

1. 緒言

構造物の高温水中における劣化事象の一つとして 応力 腐食 割れ (SCC:Stress Corrosion Cracking)がある。その発生原因が構造物に生じた引張残留応力である場合、残留応力の低減が劣化防止対策として有効である。

加圧水型原子力プラント(PWR)の一次系環境下で 600 系 Ni 基合金が使用されている部位では、応力腐食割れ(PWSCC: Primary Water Stress Corrosion Cracking)の懸念があり、蒸気発生器(SG: Steam Generator)出入口管台や原子炉容器出入口管台等に対する予防保全策として超音波ショットピーニング(USP: Ultrasonic Shot Peening)、ウォータジェットピーニング(WJP: Water Jet Peening)をはじめとした残留応力低減(改善)技術を適用中である[1][2]。Fig.1 に原子炉容器における WJP 適用箇所を、Fig2 に蒸気発生器における USP 適用箇所をそれぞれ示す。

残留応力は機械的・熱的エネルギーの付与により減少(緩和)する。これは塑性変形やクリープ変形の結果,初期の弾性歪が非弾性歪に変換されることによって生じる[3][4][5]。WJPやUSP(以下,ピ

によって生じる[3][4][5]。WJP や USP (以下, 連絡先:前口貴治 高砂研究所 材料・強度研究室 〒674-8686 兵庫県高砂市荒井町新浜 2-1-1

E-mail:takaharu_maeguchi@mhi.co.jp

ーニングとする)を施工した箇所においても,熱時効や変動応力によって施工後の応力緩和が想定されるが,SCC 抑制効果の観点からプラント寿命に相当する期間中において,十分な残留応力改善効果が持続することが必要である。そこで,ピーニング施工後,実機の条件を加速模擬した高温において

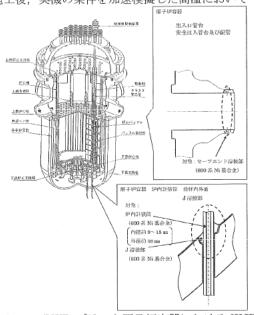


Fig.1 PWR プラント原子炉容器における WJP 施工箇所

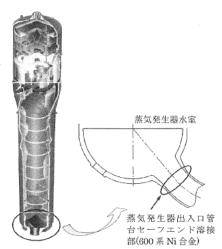
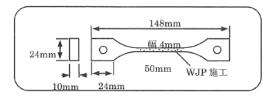


Fig.2 PWR プラント蒸気発生器における USP 施工箇所

様々な応力負荷の影響を検討した試験を行い,圧縮 残留応力の緩和の確認を行った。

2. 実施内容

実機プラントのピーニング施工部位においては 最高約320℃の温度となり、さらに内圧による引張 応力の発生や、起動停止に伴う繰返し応力が発生し、 これらによる残留応力の変化が想定される。このよ うな環境を模擬した条件下でのピーニングによる 圧縮残留応力の緩和挙動を調査した。


2.1 高温保持の影響

試験片は 600 系 Ni 基合金溶接金属(132 合金)であり、試験片中央部に PWR プラント炉内計装筒 J溶接部への施工と同条件で WJP 施工を行った。WJP 施工後, 試験片を実機プラント想定温度である 320℃及びこれよりも高い 350℃と 380℃の大気炉中において, 1 時間から 1000 時間の保持を行った後, X 線回折法で表面残留応力を計測した。測定値の評価としては、溶接金属部位おける X 線残留応力測定の測定精度を考慮し、測定値は平均値を中心として上下に標準偏差の 2 倍の幅を有するバンドとして示した。

2.2 高温保持及び荷重負荷の影響

高温(360℃)において応力無負荷または一定応力 負荷の下で表面残留応力変化を測定するために、 Fig.3 に示す装置を製作した。試験片は 600 系 Ni 基合金溶接金属(132 合金)で Fig.3 の通り製作し、 試験片中央部に PWR プラント炉内計装筒 J 溶接部 への施工と同条件で WJP 施工を行った。なお、本 試験片は施工部の幅が 4mm と小さく、WJP 施工 した表面の塑性変形の拘束が実機施工部よりも小 さいことから、WJP による残留応力低減効果は小さい。

WJP 施工後, 試験片を試験装置に組み込み,無負荷または 200MPa の一定応力負荷条件とした。負荷応力 200MPa は,原子炉容器の耐圧試験圧力(内圧 21.45MPa)のみを負荷したケースでの応力解析を行い,炉内計装簡管台内面の周方向に WJP施工後に作用する最大応力が起動停止に伴う130MPa 程度であったことを参考とし,負荷する応力をこれより大きく材料の耐力以下の 200MPa と決定した。試験片を 360℃まで昇温し,表面の残留応力を最大 1000 時間まで測定した。測定は X 線回折法で行い,360℃において応力を負荷したまま実施した。なお, X 線回折法による残留応力測定においては,材料物性値の温度による変化を考慮した。

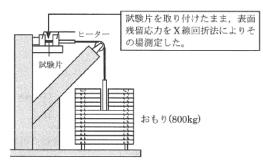


Fig.3 表面残留応力測定装置及び試験片の模式図

2.3 高温保持及び変動応力の影響

実機プラントの起動・停止に伴う変動応力は降伏 点以下(弾性範囲内)であり、残留応力に与える影響は小さいと考えられ、これを実験的に確認した。 (1)試験片及びピーニング施工

600 系 Ni 基合金母材と SUS316 を 600 系 Ni 基合金溶接金属(132 合金)で SMAW 溶接した継手板から Fig.4 に示す平板継手試験片を採取した。この試験片の Ni 基合金溶接金属部分に WJP または USP を施工した。施工条件は実機プラントにおいて実際に使用されている条件と同一とした。

(2)残留応力緩和試験

試験片の三点曲げにより、ピーニング施工面に繰返し変動応力(引張応力)を発生させた (Fig.5 参照)。付与する引張応力は、実機の発生応力の最大値相当

の 130MPa とした。

試験温度は 420℃とした。これは実際のプラント温度を 320℃で代表し、100℃の温度加速を行うこととして決定した。なお、供試材の耐力は試験温度 420℃とプラント温度(320℃)とで顕著な相違はなく、耐力に対する負荷応力の比はいずれの温度においてもほぼ同一と考えられる。

変動応力負荷のサイクルは、1230 秒間の130MPa 負荷を 1 サイクルとし、応力負荷と除荷は瞬時とした。これは年間のプラントの起動停止回数を最大 5 回と仮定し、起動から停止までの平均時間 1.8×10^3 時間 (320°) に相当する時間を,Larson-Miller パラメータ(定数 20)により加速試験温度 420° での経過時間に換算すると平均 1230 秒となることに基づいた。また,負荷回数は,60 年の寿命を考慮し、最大 300 回とした。

また、比較対象とするために、応力負荷を行わず に420℃で保持するケースも実施した。

変動応力負荷が 0, 10, 50, 150 及び 300 回に 到達試験片を試験機から取り外し, X 線回折法によって試験片長手方向の表面残留応力を測定した。残 留応力測定を終えた試験片は再び試験装置に組み 込み、変動応力負荷を続行した。

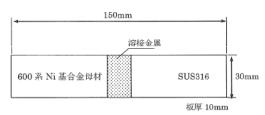


Fig.4 高温保持及び変動応力の影響調査に用いる試験片の形状

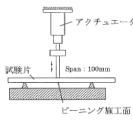


Fig.5 試験片への繰り返し応力負荷を示す模式図

3. 実験結果

3.1 高温保持の影響

Fig.6にWJP施工した600系Ni基合金溶接金属を320℃,350℃及び380℃で保持した後の残留応力測定結果を示す。いずれも熱処理初期に応力緩和が確認されたが、その後、残留応力に顕著な変化が

なく、ほぼ一定であることが分かった。初期の応力 緩和は加熱による応力再配分や遷移クリープによ る弾性歪の減少が原因と考えられる。

これら 3 水準の試験温度における残留応力の緩和挙動はいずれも類似しており、320~380℃の範囲では緩和量に有意な差がない。この温度範囲におけるクリープ速度が極めて小さく、X線残留応力で定量可能な残留応力緩和が生じないものと考えられる。

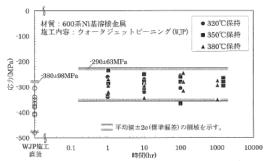


Fig.6 320,350 及び 380℃における 600 系 Ni 基 合金溶接金属の残留応力測定結果(測定温 度け室温)

3.2 高温保持及び応力負荷の影響

応力無負荷の場合と 200MPa の引張応力を負荷 し続けた場合の表面残留応力の緩和挙動を Fig.7に 示す。

応力無負荷の場合,温度を室温から360℃へ昇温した際に若干の応力緩和が認められた。これは3.1と同様に加熱による応力再配分,遷移クリーブによる弾性歪の減少によって生じたと推定される。しかし,温度が360℃に到達した後は,時間の経過に対して圧縮残留応力の緩和はほぼ認められず一定の残留応力を保持していると考えられた。

引張応力を負荷し続けた場合では,負荷直後に圧縮残留応力は大きく減少した。この減少量は負荷応力 200MPa とほぼ等しいと考えられる。その後,昇温や 360℃での保持中の応力緩和挙動は応力無負荷場合とほぼ同様であり,明確な緩和がなくほぼ負荷応力分だけ圧縮応力が減少している結果であった。

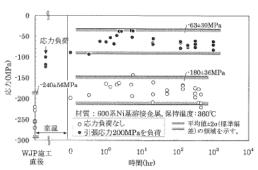


Fig.7 WJP施工した600系Ni基合金母材の残留応力測定結果(測定温度は360℃)

3.3 高温保持及び変動応力の影響

Fig.8 に残留応力測定結果を時間に対して示す。 なお、WJP 施工と USP 施工のケースでは初期の残 留応力が異なっているため、同一グラフ上での比較 のために初期値に対する比として示した。

変動応力負荷のない場合,ある場合共に圧縮残留 応力の大きさは時間の経過に伴い減少する傾向を 示し,両者に顕著な相違は認められなかった。

420℃においては、320~380℃の場合とは異なり、時間に対して比較的明瞭に緩和が継続する傾向を示している。WJP 施工したステンレス鋼でも同様に 400℃以上ではそれ以下の温度と比べ残留応力速度が明瞭に増す傾向が報告されている[5]。別途実施した本材料のクリープ試験結果では、100℃の温度加速によってクリープ歪速度は 2 桁程度増大する結果であり、これに対応した緩和速度の増大が生じたものと考えられる。一方、応力の影響については、本検討で繰り返し負荷した引張応力130MPaは材料の弾性範囲内であるため、残留応力緩和への影響は小さいと推定される。

このような温度加速条件下においても,実機の運転期間中に想定される最大 300 回の変動応力負荷による残留応力の緩和量は小さく,圧縮残留応力が保持されることが確認できた。

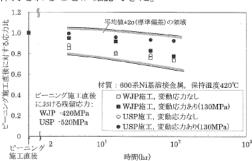


Fig.8 WJPまたはUSP施工後に420℃で変動応力 負荷した場合の残留応力測定結果(測定温 度は室温)

4. 結言

WJP または USP を施工した 600 系 Ni 基合金 を対象に, 高温引張条件下における表面の残留応 力緩和挙動の緩和挙動を確認した。得られた結果 を以下にまとめる。

- (1) 320~380℃の高温保持中においては、初期に 圧縮残留応力の有意な緩和が生じるが、その 後は顕著な緩和が生じないことを確認した。
- (2) 実機の定常運転中の発生応力を模擬した弾性 範囲内の引張応力を負荷し続けた状態におい ても、緩和挙動は加速されないことを 320℃ での残留応力測定によって確認した。
- (3) 420℃において、実機の起動停止に伴う発生 応力を模擬した弾性範囲内の応力を繰り返し 負荷した場合でも、負荷がない場合と緩和挙 動に顕著な差は認められなかった。実機の運 転期間中に想定される300回の応力負荷回数 での残留応力の緩和量は小さく、圧縮残留応 力が保持されることが確認できた。

参考文献

- [1] 河野文紀, 大屋寿三, 沖村浩司, 名倉保身, 太 田高裕: 材料力学部門分科会・研究会合同シン ポジウム講演論文集, p.199 (2000)
- [2] 沖村浩司, 堀展之, 向井正行, 増本光一郎, 鴨和彦, 黒川政秋:三菱重工技報 Vol 43, No.4 p.41 (2006),
- [3] O.Vohringer: Institut fur Werkstoffkunde I, p.47 (1984)
- [4] H.Holzapfel, V.Schulze, O.Vohringer, Macherauch: Conf Proc. ICSP-6, p.413 (1996)
- [5] P. Krull, Th. Nitschke-Pagel: Conf Proc. ICSP-7, p.318 (1999)

(平成 22 年 5 月 31 日)

タイトル		ラと2号炉の主要や 対策の差異につい [、]		合金使用部位における応
説明	川内1号炉と2号炉の主要機器の600系ニッケル基合金使用部位に対する 応力腐食割れ対策実施状況を下表に示す。1,2号炉の対策に相違はない。			
		表主要機器	器の応力腐食割れ対策に	ついて
	機器	部位	川内1号炉	川内2号炉
	原子炉容器	ふた管台	690取替(2008)	690取替(2008)
		炉内計装筒	W J P (2005)	W J P (2007)
		入口管台	W J P (2005)	W J P (2007)
		出口管台	690インレイ (2018)	690インレイ (2020)
	加圧器	サージ用管台等	690取替(2010)	690取替(2010)
				以上

タイトル	摩耗に係る説明	
説明	以下について、次ページ以降に示す。	
	別紙8-6-1 炉内構造物制御棒クラスタ案内管 (案内板) および炉内計 装用シンブルチューブの摩耗について	

タイトル	炉内構造物制御棒クラスタ案内管 (案内板) および炉内計装用シンブルチューブの摩耗について
概要	制御棒クラスタ案内管(案内板)の摩耗について、全制御棒の落下試験の方法(判定基準を含む)、頻度および至近の結果について以下に示す。 炉内計装用シンブルチューブの摩耗について、渦流探傷検査の方法(判定基準を含む)、頻度および至近の結果を以下に示す。
説明	川内1号炉においては、定期的(1回/1定検)に全制御棒の落下試験を 実施しており、制御棒クラスタ全引抜き位置から全ストロークの85%挿入ま での時間が判定基準内(2.5秒以下)であることを確認している。 至近の検査実績である第26回定期検査(2021年度)において、問題のない ことを確認している。
	炉内計装用シンブルチューブについては、プローブを使用した渦流探傷検査(ECT)を実施しており、減肉信号がの減肉深さであることを確認している。なお、処置基準は下記の通り。
	渦流探傷検査(ECT)は1回/4定検の頻度で実施している。 至近の検査実績である第23回定期検査時(2017~2018年度)において、取替基準 に達している減肉はないことを確認している。 また、処置基準 以上の指示が1本あり、第26回定期検査時(2021年度)に取替えを行った。
	以上

タイトル	スケール付着に係る説明
説明	以下について、次ページ以降に示す。
	別紙8-7-1 多管円筒形熱交換器伝熱管のスケール付着 別紙8-7-2 蒸気発生器伝熱管の渦流探傷検査 別紙8-7-3 蒸気発生器管支持板穴のスケール付着

タイトル	多管円筒形熱交換器伝熱管のスケール付着
概要	伝熱管のスケール付着について、伝熱管洗浄の例として原子炉補機冷却水 冷却器伝熱管のブラシ洗浄の方法及び頻度、再生熱交換器の運転中のパラ メータ監視による健全性確認の方法を示す。
	原子炉補機冷却水冷却器伝熱管の洗浄は定期的(1回/1定検)に実施し
説明	ており、伝熱性能を維持している。洗浄方法を添付1に示す。
	再生熱交換器の運転中のパラメータ監視としては、定期的(1回/2か
	月)に熱交換器の出入口温度(抽出側及び充てん側)を監視しており、伝熱
	性能を確認している。なお、管側流体及び胴側流体は、1次冷却材であり、
	適切な水質管理により不純物の流入は抑制されていることから、スケール
	付着の可能性は小さい。
	以上

06-01-118-1

Q2=NPC 責任者立会

Q 1 = NPC 品專立会

B=NPC 自主点検

〇二九電記錄確認

A=九電立会

\$

↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
<p

Ħ

標準作業手順書(抜粋) 定期修繕工事 原子炉補機冷却水冷却器開放点檢 1・2号機 川内原子力発電所

٠,				
	(7/18).	命	記錄 P-26 ※点後状況記 錄シート参照	
		実績*九電		
		立会 st		
		記錄 要否	海	
		立会 区分	Ą	
		泰	·	
. 1		機材	手统 被中電灯	
作業要領 (手順) [標本: 原子連機冷却水冷却器開放点後	注 意 事 項 (判定基準を含む)	・ 各部品に有意な欠陥のない事を確認する。 る。 ・ 異常が認められた場合は九電担当者及 びメーカー指導員と協議し必要な処置 を行う。		
		作業手順	 各部品の目視点検 分解後、各部品の異常の有無について確認する。 	
	作業	No.	ഗ	1

- 9 -

06-01-118-1 (8/18) 緬 標準作業手順書(抜粋) 立会実績* Q2=NPC 責任者立会 記錄 要否 立会区分 Q 1 = NPC 品專立会 定期修繕工事 原子炉補機冷却水冷却器開放点檢 雅 本 蛟 B=NPC 自主点検 # 注 意 事 項 (判定基準を含む) 疶 洪 〇二九電記録確認 1・2号機 A=九電立会 原子炉補機冷却水冷却器開放点検 薑 川内原子力発電所 # 粣 立会区分: 衞 2

8-7-1-3

- 10 -

タイトル	蒸気発生器伝熱管の渦流探傷検査
概要	蒸気発生器伝熱管の渦流探傷検査の検査間隔および範囲を以下に示す。
説明	川内1号炉においては、蒸気発生器全3基の全伝熱管について、定期的 (1回/2定検)に渦流探傷検査を実施している。
	以上

タイトル	蒸気発生器管支持板穴のスケール付着
概要	管支持板穴のスケール付着について、傾向監視結果を示す。
説明	プラント運転中の蒸気発生器広域水位の経年監視により、管支持板のスケール付着傾向を監視している。
	以上

タイトル	マルテンサイト系ステンレス鋼の熱時効に係る説明
説明	以下について、次ページ以降に示す。
	別紙8-8-1 弁のマルテンサイト系ステンレス鋼の熱時効

タイトル	弁のマルテンサイト系ステンレス鋼の熱時効
概要	弁のマルテンサイト系ステンレス鋼の熱時効に対する考え方を以下に示 す。
説明	海外では析出硬化型のマルテンサイト系ステンレス鋼において、熱時効を伴う損傷事象が報告されている。弁については、析出硬化型のマルテンサイト系ステンレス鋼の使用部位があることから、以下のとおり熱時効に対する考え方を整理する。
	マルテンサイト系ステンレス鋼については、IAEAのInternational Generic Ageing Lessons Learned (IGALL)の「TLAA 122 THERMAL AGEING OF MARTENSITIC STAINLESS STEELS」において、250℃を超える使用温度環境で熱時効の懸念があることが示されている。マルテンサイト系ステンレス鋼の熱時効は、ステンンレス鋼鋳鋼の熱時効と同様、材料の靭性が低下する事象であることから、「日本原子力学会原子力発電所の高経年化対策実施基準:2008 (AESJ-SC-P005:2008)」(以下「学会標準」)におけるステンレス鋼鋳鋼の熱時効の評価対象の抽出方法「C.5.2 評価対象」を準用し、以下の条件の全てに該当する部位に対しては評価対象として抽出が必要と考えている。 a. 使用温度が250℃以上の部位 b. 亀裂の原因となる経年劣化事象の発生が想定される部位
	c. 定期的な目視などの点検による亀裂発生の確認を行っていない部位 使用温度が250℃以上の弁のうち、マルテンサイト系ステンレス鋼が使用 されており、学会標準の経年劣化メカニズムまとめ表(改訂版含む)で亀裂の原因となる経年劣化事象の発生が想定される部位(上記a,b項)としては、弁棒(応力腐食割れを想定)が挙げられる。ただし、弁棒については、弁開時に過度な応力が負荷されない運用を行っている。また、弁棒は定期的な分解点検時に浸透探傷検査を実施していることから、亀裂発生の確認を行っていない部位(上記c項)には該当しない。 以上より、全ての条件に該当する部位は存在しないことから、弁のマルテンサイト系ステンレス鋼については、熱時効の評価は不要と判断している。 以上