女川原子力発電所保安規定審査資料	
資料番号	TS－ 1
提出年月日	2022 年 9 月 28 日

女川原子力発電所 2 号炉

原子炉施設保安規定に係る説明資料 （保安規定と手順書との関連）

2022年9月

東北電力株式会社

1．重要事故シーケンスと保安規定記載内容について

2．火災，内部溢水，火山影響等及びその他自然災害に係る対応と保安規定記載内容について

1．重要事故シーケンスと保安規定記載内容について

女川原子力発電所 2 号炉保安規定添付 $1-1$ 「原子炉がスクラムした場合の運転操作手順」 および添付 $1-3$ 「重大事故等および大規模損壊対応に係る実施基準」に定める各基準が有効性評価における重要事故シーケンス等における対応手順を満足していることを確認する。

目 次

I．原子炉がスクラムした場合の運転操作手順と手順書との関連．．．．．．．．．．．．．．．．．．．．．1－I－1
II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連．．．．．．．．．．．．．．．．．．1－II－1
III．重大事故シーケンスの対応手順に対する保安規定の記載内容の整理
1．「高圧•低圧注水機能喪失」の対応手順の概要．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．1－III．1－1
2．「高圧注水•減圧機能喪失」の対応手順の概要．．．III．2－1
3．「全交流動力電源喪失（長期TB）」の対応手順の概要
「全交流動力電源喪失（TBCH）」の対応手順の概要．．．．．．．．．．．．．．．．．．．．．．．．．．．．．III．3－1
4．「全交流動力電源喪失（T B D ）」の対応手順の概要．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．II．4－1
5．「全交流動力電源喪失（T B P ）」の対応手順の概要．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．III．5－1
6．「崩壞熱除去機能喪失（取水機能が喪失した場合）」の対応手順の概要．．．．．．．1－1II．6－1
7．「崩壊熱除去機能喪失（残留熱除去系が故障した場合）」の対応手順の概要．．1－III．7－1
8．「原子炉停止機能喪失」の対応手順の概要．．III．8－1
9．「L O C A 時注水機能喪失」の対応手順の概要．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．1－III．9－1
10．「格納容器バイパス（インターフェイスシステムLOCA）」の対応手順の概要

12 ．「雰囲気圧力•温度による静的負荷（格納容器過圧•過温破損）」

の対応手順の概要（代替循環冷却系を使用できない場合）

1－III．12－1

16 ．「崩壊熱除去機能喪失」の対応手順の概要．．．1II．16－1
17 ．「全交流動力電源喪失」の対応手順の概要．．1II．17－1

I．原子炉がスクラムした場合の運転操作手順と手順書との関連
1．原子炉制御
（1）スクラム
（1）目的

- 原子炉を停止する
- 十分な炬心冷却状態を維持する。
- 原子炉を泠温停止状態まで泠却する。

一次および二次格納容器制御への導入条件を監視する。（原子炉がスクラムしない場合を含む）
（2）導入条件
原子炉スクラム信号が発生した場合

- 手動スクラムした場合
- 各制御の脱出条件が成立した場合
（4）基本的な考え方
原子怇スクラム要求時にはスクラム成功の有舞の確認を確実に行ら。
- 単一故障による原子炉スクラム時の復旧操作を全て原子炉制御「スクラム」で収束させ，通常停止操作に移行する。
- 各計器を並行監視し，徵候に応じた制御を行う。

原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷
する恐れがある場合には原子炉制御「スクラム」と一次格納容器制御を並行して行う。
二次格納容器制御「原子炉建屋制御」から要求される操作は原子炉制御「スクラム」と二次格納容器制御を並行し て行う。
－原子炉制御「スクラム」においては，最初に「原子炉出力」の制御棒全插入を確認し，「原子炉水位」，「原子炬圧力」，「電源・タービン」の各制御を並行して行ら
－多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炉制御「ス クラム」での制御を並行して行ら

（5）主な監視操作内容

A．原子炉出力
「原子炬自動スクラム！警報の発信を確認する。
全制御椿挿入状能を確認する
平均出力領域モニタの指示を確認する。
自動スクラムが失敗した場合には，手動スクラムを行う。

- 原子炉モードスイッチを「停止」位置にする。
- 全制御棒が全插入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる。
- 全挿入位置まで挿入されていない制御棒が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行う。
全制御棒が全挿入位置まで扱入された場合または全挿入位置まで插入されていない制御棒が 1 本以下の場合，原子炉水位，原子炉圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炉再循環ポンプ速度を確認する。 －平均出力領域モニタおよび起動領域モニタにより原子炉未臨界を確認する。

B．原子炉水位

- 原子炉水位を碓認する。
- 原子炬水位が原子炉水位低スクラム設定値まで低下した場合，格納容器隔離弁の開閉状態を確認する
- タービン駆動給水ポンプを停止し＂，電動駆動給水ポンプおよび給水制御系（単要素）で原子炉水位を原子炉水位低 スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する。
－給復水系（主復水器を含む）が正常でない場合，原子炉隔離時冷却系を手動作動する。（原子炬隔離時冷却系が自動作動した場合は不要）
原子炉水位が非常用炉心泠却系作動水位まで低下した場合には，非常用炉心泠却系および原子炉隔離時泠却系の運転状態を確認する。
給復水系，非常用炉心椧却系または原子炉隔離時冷却系により原子炉水位を原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」～移行する

```
- 原子炉水位か有効燃料頂部以上に維持できない場合は,不測事態「水位回復」および一次格納容器制御「格納容器
    水素莀度制御」一移行する。
-原子炉水位を連続的に監視する。
※:タービン駆動給水ポンプは, 原子炉水位高タービントリップ設定值で自動停止する。
C. 原子炉圧力
- 原子炉スクラム後,原子炉圧力を碓認する。
4. - 主蒸気隔離弁が開の場合,原子炉圧力制御が正常であることを確認する。また,主復水器が使用可能であることを
礁認する。
(5) - 原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は,主蒸気隔離弁を閉鎖し原子炉を隔離す
る。
主蒸気逃がし安全弁が開固着した場合,一次格納容器制御「サプレッションプール水温制御」—移行する。
- 主蒸気隔離弁が閉の場合,主蒸気逃がし安全弁を開して,原子炬圧力を調整する。また,主蒸気逃がし安全弁の開
*開によって原子炬圧力の調整ができない場合,原子炬制御「澸圧冷却」へ移行する。なお, 主復水器が使用可能で
ある場合は主蒸気管ドレン弁により調整してもよい。
. タービントリップ状態および発電機トリップ状態を確認する。
- 所内電源系が碓保されていることを碓認する。
    直流電源が確保されない場合は, 「電源回復(直流電源復旧)」へ移行する。
    - 起動変圧器から受電されていない場合,「電源回復(交流電源復旧)」へ移行する。
    - 非常用母線が正常であることを確認する。正常でない場合,「電源回復」い移行する。
    主蒸気隔離升が開の場合,原子炉圧力制御が正常であること, 主復水器が使用可能であることを確認する。
    - 原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は, 主蒸気隔離弁を閉鎖し原子炉を隔離す
    . タービンおよび発電機の停止状態を確認する。
    . 空気抽出器およびグランドシールの切替により主復水器真空度を維持する。
- 各種放射線モニタの指示を確認する。
•各種放射線モニタの指示の異常が碓認された場合,「復旧」操作へ移行せず原因の調査を実施する。
F.復旧
F.復泪偣子炉水位が原子炉水位低スクラム設定値以上で安定していることを碓認する。
```



```
    -原子炉圧力等の主要パラメータが整定していることを確認する。
    - 外部電源により電源が確保されていることを確認する。
    •直流電源負荷抑制を実施していた場合,負荷抑制を復旧する。
    - 格納容器隔離信号をリセットし, 隔離状態を復旧する。
    - 原子炉冷却材浄化系により原子炉水位が調整可能であることを確認する。また,原子炉建屋換気空調系を起動し,
    非常用がス処理系を停止する
    - スクラム原因を究明し, 原因除去後スクラムリセットを行う。
    - 原子炉再循環ポンプが停止している場合, 原子炉水位を原子炉水位高タービントリップ設定值以上で維持する。
- 原子炉を泠温停止する。
```


1．原子炬制御 （2）反応度制御	
（1）目的 －スクラム不能異常過渡事象発生時に，原子炉を安全に停止させる。 なお，スクラム不能異常過渡事象とは，ATWSのことをいう。	
	（3）脱出条
（4）基本的な考え方 －短期的には原子炉の健全性を維持し，長期的には非常用炉心椧却系の水源であるサプレッションプールの健全性を維持する。 －「ほう酸水注入系」，「水位」，「制御棒」，「圧力」を並行操作する。なお，同時に実行することが不可能な場合は，「ほう酸水注入系」，「水位」，「制御棒」，「圧力」の順に優先させる。	
（5）主な監視操作内容 A．反応度制御	
－全制御棒が全挿入位置まで插入されず， 1 本を超える制御棒が全插入位置まで插入されていない場合には，「反応度制御」のほら酸水注入系起動操作および水位制御，制御棒操作，圧力制御を並行操作する。 - 原子炉再循環ポンプを停止する。 - 自動減圧系作動阻止スイッチにより自動减圧系の動作を阻止する。	
B．ほう酸水注入系 - ほう酸水注入系を起動する。 - 原子炉冷却材浄化系が隔離したことを確認する。 - 全量注入完了後，ほら酸水注入系を停止する。ただし，全挿入された場合は，ほう酸水注入系を停止する。 －未臨界を確認する。	全制御棒が全挿入位置または未挿入制御棒が 1 本以下まで
C．水位	
－スクラム不能異常過渡事象発生時原子炉出力高判定値以上の場合，または原子炉が隔離状態の場合「水位低下」操作として，原子炉給水流量を原子炉出力がスクラム不能異常過渡事象発生時原子炉出力低判定値以下になるまで低下させる（原子炉水位の下限值は高圧で注水可能な非常用炉心冷却系作動水位とする。）。	
－原子炉水位をスクラム不能異常過渡事象発生時原子炉水位低下制限値（高圧で注水可能な非常用炉心椧却采作動水位）以上に維持できない場合は，原子炉水位をスクラム不能異常過渡事象発生時原子炉水位低下限值以上に維持す る。	
－原子炉出力がスクラム不能異常過渡事象発生時原子炉出力高判定値未満で，かつ原子炉が隔離状態でない場合，水位維持操作を行ら（原子炉水位を原子炉隔離時冷却系自動作動水位以上を目標として維持する。）。	
－原子炉水位をスクラム不能異常過渡事象発生時原子炉水位低下限值以上に維持できない場合は，給復水系，非常用灯心椧却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循噮冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）を起動後，自動減圧機能を有する主蒸気逃がし安全弁を優先して主蒸気逃がし安全弁を順次開放し，原子炉水位を有効然料頂部以上に維持する。	

スグ并が閉の場合，代替制御棒插入機能の動作，選択制御棒手動插入
スクラムテストスイッチによるシングルロッドスクラムまたは制御用空気の排気を行う。
（2）－スクラム弁が開の場合，スクラムリセットし，スクラム排出容器水位高リセットを確認し，
－制御棒駆動水圧系の水圧を確保し，制御棒を手動挿入する。
（4）
制御棒駆動水圧系の引拔配管ベント弁から排水し制御棒を插入する
E．圧力
反応度制御中は，主蒸気逃がし安全弁またはタービンバイパス弁により原子炉圧力を一定に制御する
－ほう酸水全量注入完了後，原子炉未臨界を確認し，原子炉圧力を残留熱除去系（原子炉停止時冷却系）の使用可能圧力未満まで低下させ，残留熱除去系（原子炉停止時冷却系）を起動する

F．「反応度制御」水位不明

「反応度制御」水位不明を実行中に末插入制御棒が 1 本以下まで插入された場合には，不測事態「水位不明」に移行する。
（8）－給復水系，非常用炉心椧却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ち過水系）を追加起動する。
（9）－主蒸気隔離弁，格納容器隔離弁および主蒸気ドレン弁ならびに原子炉隔離時冷却系および原子炉冷却材浄化系の隔離弁を閉鎖する。
し，原子炉圧力が炉心冠水最低圧力以上で，かつできる限り低くなるように注水する。
－原子炉圧力が炉心冠水最低圧力以上を維持できない場合，自動減圧機能を有する主蒸気逃がし安全弁を順次開にし て，原子炉圧力が炬心冠水最低圧力以上で，かつできる限り低くなるように注水する。

1．原子炉制御
（3）水位確保
（1）目的
－原子炉水位を有効燃料頂部以上に回復させ，安定に維持する
（2）導入条件（3）脱出条件
－原子炬制御「スクラム」において原子炬水位が原子炉水位低スクラム設定値以上に維持できない場合
－原子炉水位が原子炉水位低スクラム設定值から原子炉水位高タービントリップ設定値の間に維持できる場合
不測事態「水位回復」において原子炉水位を有効燃料頂部以上に維持できる場合または有効燃料頂部以上で安定 している場合
－不測事態「急速減圧」において，減圧が完了し水位が判明している場合
不測事態「水位不明」において最長許容炉心露出時間以
内に原子炉水位が判明した場合
（4）基本的な考え方
－原子炉水位と原子炉に注水可能な系統を随時把握する。
（5）主な監視操作内容
A．水位
－作動すべきものが不作動の場合は，手動で作動させる
（2）－給復水系，原子炬隔離時冷却系，非常用炉心冷却系または高圧代替注水系を使用して原子炉水位を原子炉水位低スクラ ム設定値から原子炉水位高タービントリップ設定値の間に維持する。
原子炉水位を原子炉水位低スクラム設定値以上に維持できず原子炉水位が降下中の場合であって，給復水系および非常用炉心冷却系が起動せず，原子炉隔離時冷却系または高圧代替注水系により原子炉水位の維持ができない場合は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動し，不測事態「急速減圧」に移行する。低圧代替注水系 が起動できない場合は，不測事態「水位回復」に移行する。
原子炉水位を有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」に移行する。
（5）－原子炉水位が有効然料頂部以上に維持可能な場合は，原子炉制御「減圧冷却」に移行する。

（1）目的

－原子炉水位を有効燃料頂部以上に維持しつつ，原子炉を減圧し，泠温停止状態へ移行させる。
（2）導入条件
－原子炉制御「スクラム」において，主蒸気隔離弁が閉状態でかつ主蒸気逃がし安全弁による原子炉圧力の調整が できない場合またはタービンバイパス弁もしくは主蒸気 （3）脱出条件

ときない場合またはタービンバイバス升もしくは主烝気

原子炉圧力が残留熱除去系（原子炉停止時冷却系）の使用可能圧力以下で，残留熱除去系（原子炉停止時冷却系） が起動した場合

できる場合
原子炉制御「水位確保」において，有効然料頂部から原子炉水位低スクラム設定値の間に維持可能な場合
一次格納容器制御「サプレッションプール水温制御」に おいて，手動スクラム後，サプレッションプール水温が サプレッションプール熱容量制限図の運転禁止範囲外の場合
（4）基本的な考え方
－緊急性を要しないため，原子炉減圧時の原子炉泠却材温度変化率は原子炉洽却材温度変化率制限值以内になるように努める。
主蒸気逃がし安全弁にて減圧冷却を行ら場合には，原子炉冷却林温度変化率およびサプレッションプール水温を十分監視しながら，主蒸気逃がし安全弁の開閉を間欠に行う。さらに，サプレッションプール水温上昇を均一にするように開閉する主蒸気逃がし安全弁を選択する。また，サプレッションプール水温上昇防止のため，残留熱除去系によるサプ レッションプール椧却を行う。水位と減圧を並行操作する。

（5）主な監視操作内容

給復水系，原子炉隔離時冷却系，非常用炉心泠却系または高圧代替注水系を使用して，原子炉水位を有効燃料頂部から原子炉水位高タービントリップ設定値の間で維持する。濃度制御」に移行する。入った場合，不測事態「急速减圧」に移行する。系）を起動する。残留熱除去系（原子炉停止時冷却系）が起動できない場合は，復旧を図る。

2．一次格納容器制御
（1）目的
ドライウェルの空間温度を監視し，制御する
（2）導入条件
－ドライウェル椧却系戻り温度が通常運転時制限温度以上 の場合

3）脱出条件

ドライウェル泠却系戻り温度が通常運転時制限温度未満維持可能で，かつドライウェル局所温度が温度高警報設
－ドライウェル局所温度が温度高警報設定点以上の場合定点未満となった場合
（4）基本的な考え方
ドライウェル空間温度が主蒸気隔離弁用弁位置検出器許容温度に到達した場合，原子炉手動スクラムする

- ドライウェル空間温度がドライウェル設計温度に到達したら，ドライウェルスプレイを起動する
- ドライウェル設計温度以下に維持できない場合は，不測事態「急速減圧」に移行する。麦施中は，原子炉制御原応度制御」を優先する （5）主な監視操作内容

 ら。3）・ドライウェル局所温度が主蒸気隔離弁用弁位置検出器許容温度以上かつドライウェル設計温度未満の場合，手動スク ラムする。
ボフイウェル局所温度がドライウェル設計温度に到達したらドライウェル圧力が非常用炬心冾却系作動圧力に達した場合，原子炬再循環ポンプおよびドライウェル空調機を停止し，ドライウェルスプレイを起動する。 ドライウェルスプレイが起動失敗し，ドライウェル設計温度に到達した場合，ドライウェル代替スプレイを間欠で実施 する。なお，サプレッションプール水位が外部水源注水量限界に到達した場合，ドライウエル代替スプレイを停止す る。制御「格納容器水素澧度制御

2．一次格納容器制御
（3）サプレッションプール温度制御
（1）目的
－サプレッションプールの水温および空間部温度を監視し，制御する
（2） 0 導入条件（3）脱出条件
原子炉制御「スクラム」において，主蒸気逃がし安全弁 が開固着の場合
サプレッションプール水の平均温度が通常運転時制限温度を超えた場合

サプレッションプール水の平均温度が通常運転時制限温度未満となった場合
サプレッションプール空間部の局所温度が温度高警報設
定点未满となった場合
サブレッションプール空間部の局所温度が温度高警報設
定点以上の場合
（4）基本的な考え方
－サプレッションプール水温およびサプレッションプール空間部局所温度が通常運転時制限温度を超え，各制御を実施し ても上昇継続する場合は，直ちに手動スクラムし，原子炉を減圧する。
（5）主な監視操作内容
A．サブレッションブール水温制御
サプレッションプール水温が通常運転時制限温度まで上昇したら，サプレッションプールの冷却を開始する。
サプレッションプール水温がスクラム制限温度に到達したら，手動スクラムし，サプレッションプール水温を碓認す る。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炉制御「減圧冷却」一移行し，サプレッション プール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速減圧」い移行する。
サプレッションプール水温が $80^{\circ} \mathrm{C}$ に到達した場合，高圧炉心スプレイ系の水源切替えを行う。

サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプール椧却を実施するととも に，サプレッションプール空間部温度上昇の原因（原子炉隔離時冷却系の運転，主蒸気逃がし安全升排気管の異常，サ プレッションプール・ドライウェル間真空破壊弁の異常等）を復旧する。
サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプールスプレイを作動させる。 サプレッションプール空間部局所温度の上昇抑制を行っても，サプレッションプール空間部局所温度が温度高警報設定値未満に維持できない場合は，手動スクラムする。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炉制御「減圧冷却」へ移行し，サプレッションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速減圧」一移行する。

2．一次格納容器制御
（4）サプレッションプール水位制御
（1）目的
－サプレッションプール水位を監視し，制御する
（2）導入条件
サプレッションプール水位が通常運転時高水位制限値以上の場合
（3）脱出条件
－サプレッションプール水位が通常運転時制限値以内に復旧した場合

サプレッションプール水位が通常運転時低水位制限值以下の場合
（4）基本的な考え方
サプレッションプール高水位は，冷却材嵒失事故時の空間部体積を確保する観点からサプレッションプール水位上星 を抑制する措置を行っても通常運転時高水位限界値以上が継続する場合は，手動スクラムし，減圧を開始する。さら こ，それ以上の水位では主蒸気逃がし安全弁の動荷重制限および真空破壊升機能喪失防止の観点から，通常運転時高水位限界値以上でドライウエルスプレイを実施する。なお，真空破壊弁位置から作動差圧相当分の水位を引いた水位に到達前に不測事態「急速減圧」に移行する。最終的には，格納容器ベント最高水位になる前に格納容器外部からの原子炉 への注水を停止する。
サプレッションプール低水位は，椧却材䨤失事故時の除熱源を確保する観点からサブレッションプール水位低下を抑制する措置を行っても通常運転時低水位制限值以下が継続する場合は，手動スクラムし，減圧を開始する。また，急速減圧へ移行するサプレッションプール水位以下になった場合には，不測事態「急速減圧｣一移行する

（5）主な監視操作内容

A．サブレッションプール水位制御（高水位）
サブレッションプール水位が 24 時間以内に通常運転時高水位制限値以下に復旧しない場合は，原子炉を通常停止す る。

瑯達した場合には，手動スクラムする
－サプレッションプール水位が真空破壊弁位置から作動差圧相当分の水位を引いた水位－ 0.2 m に到達した場合は，原子炉再循澴ポンプおよびドライウエル空調機を停止し，ドライウエルスプレイを実施する。なお，真空破壊弁位置から作動差圧相当分の水位を引いた水位に到達前に不測事態「急速減圧」に移行する。なお，サプレッションプール水位の上昇 が補給水系等の漏えいによることが判明している場合には，ドライウェルスプレイを作動させない。 サプレッションプール水位が，格納容器ベント最高水位になる前に格納容器外部からの原子炉への注水を停止する。

B．サプレッションプール水位制御（低水位）
－サプレッションプール水位が 24 時間以内に通常運転時低水位制限値以上に復旧しない場合は，原子炬を通常停止す る
（6）・サプレッションプール水位低下を抑制する措置を行ってもサプレッションプール水位が通常運転時低水位限界值に到達した場合は，手動スクラムする
サプレッションプール水位が，急速減圧へ移行するサプレッションプール水位以下になった場合には，不測事態「急速減圧」い移行する。

- 格納容器内の水素および酸素濃度を監視し, 制御する。

（2）導入条件

原子炬制御「スクラム」から導入され，主蒸気隔離台全閉後， 12 時間以内汽浍温停止できない場合
一次格納容器制御「格納容器圧力制御」においてドライ ウェル圧力が非常用炬心冷却系作動圧力以上で，かつ原子炉水位が低圧で注水可能な非常用炉心椧却系作動水位以下を経験した場合
原子炬水位が有効燃料頂部以下を経験した場合
原子炉水位が不明の場合

（4）基本的な考え方

椧却材喪失事故または炉心露出が生じた場合には，格納容器雰囲気モニタまたは格納容器水素浱度計により格納容器内の水素濃度を監視する
－原子炉水位不明または原子炉隔離かつ高温停止状態が長時間継続する場合には，格納容器雰囲気モニタまたは格納容器水素濃度計により水素濃度の監視を開始し，可燃性ガス濃度制御系を作動させることができるようにする。
格納容器圧力が可燃性がス湄度制御系運転時の制限圧力以下になるように必要に応じてドライウェルスプレイまたは サプレッションプールスプレイを運転し，可燃性ガス濃度制御系を作動させることができるようにする。
再結合器入口の可燃性ガス濃度が高い場合には，ドライウェル内酸素および水素濃度と可燃性ガス濃度制御系再循澴流量関係図の可燃領域に入らないように再循噮流量を調整する。

ドライウエルナカ主な監視操作内容非常用炬心冷却采作動圧力以上で，かつ原子炬水位が低圧で注水可能な非常用炬心泠却系作動水位以下を経験した場合，格納容器雰囲気モ二夕または格納容器水素濃度計により格納容器内の水素濃度を監視する
－主蒸気隔離升全閉後 12 時間以内に泠温停止できない場合または原子炬水位が不明になった場合は，格納容器雰囲気 モニタまたは格納容器水素濃度計により格納容器内の水素濃度を監視する。
－ドライウェル圧力が非常用炉心椧却系作動圧力以上で，かつ原子炉水位が低圧で注水可能な非常用炉心冷却系作動水位以下を経験した場合，原子炉水位が有効燃科頂部以下を経験した場合は，可燃性カス浱度制御系を作動させる －主蒸気隔離弁全閉後 12 時間以内に泠温停止できない場合または原子炉水位が不明になった場合であって，格納容器内の水素濃度が可燃性限界に対し可燃性ガス濃度制御系の起動に要する時間，格納容器雰囲気モ二夕の応答時間およ び計測誤差の余裕を見込んだ濃度以上の場合は，可燃性ガス濃度制御系を作動させる。
－可燃性ガス濃度制御系の運転に際しては，格納容器圧力が可燃性ガス濃度制御系運転時の制限圧力以下になるように必要に応じてドライウェルスプレイまたはサプレッションプールスプレイを運転する。
可燃性ガス濃度制御系の運転は，格納容器内の水素および酸素濃度に応じて再循環流量および吸込流量を調整する。

	二次格納容器制御 （1）原子炉建屋制御	
（1）目的 －原子炉圧力容器からの原子炉建屋への漏えいを監視し，制御する。		
	（2）導入条件 次系の㾫えいを示す個別警報かる発生した場合原子炻建屋放射線量分警倝㝄定值以上複数発生 －原子炬建屋内人の漏えいを示す警報が複数発生	（3）脱出条件 －漏えい箇所の隔離が成功し，導入条件より復帰した場合
（4）基本的な考え方一次格納容器外で原子炉洽却材圧カバウンダリの破断が発生した場合，中央制御室から速やか沉漏えい䉕所の特定 を行い，隔崔を行う。 －速やかな隔碸がか不可能な場合は，漏えい量の低減を図るために原子炉を手動スクラムし，急速琙圧を実施する。原子炉堿压完了後は原子炉を低圧で維持する。 - 原子炉水位は破断䔡所を露出させた水位を維持し，原子炉建屋への漏えいを抑制する。 - 原子炬建屋㽞境を改善し漏えい箅所の隔崔を行う。 - 㮹境綬和（放射袙，建屋温度，建屋水位）は遵入条件にかかわらず並行して実施する。		
（5）主な監視操作内容 A．原子炉地力 中央制御空からの漏えい箇所隔離から出来ない場合は，給隻水系，非常用炉心洽却系，低圧代替注水系（低圧代替注 低圧注水系ポンプ），万過水系）のうち 2 系統を起動後，不測事態 「急速减圧」に移行する。急速減压㣭，原子炉圧力を低圧に維持する。 		
B．原子炉水位 - 破断艪所に応じて原子炉水位を維持する。 - 原子炉水位を低下させる場合は，原子炉注水汇不要な系䖻を抑制する。		
	C．環璄緩和 中央制御室の環境を維持するため，非常用ガス替える。 －原子炬建屋賈境を改善するため，原子炬建屋換原子炬建屋内の溢水を処理するため，原子炬建 －漏えい箇所の隔離が成功し，導入条件より復帰	起動し，中央制御室換気空調系を事故時運転モードに切り 系および使用可能な原子炉建屋全室の空調機を起動する。 サンプポンプの起動を確認する。 合は，原子炉制御「スクラム」に脱出する。

3．二次格納容器制御

（2）S F P 水位•温度制御

（1）目的
－使用済燃料プールの水位および水温を監視し，制御する
（2）導入条件
（3）脱出条件
使用済燃料プール水位がオーバーフローレベル付近に維持可能かつ使用済燃料プールの水温が通常運転時制使用斎燃料プールの水温が通常運転時制限温度以上の維持可能かつ使用済燃料プールの水温が通常運転時制場合

本的な考え方
－使用済燃料プールの水位，温度の監視と系統を随時把握する
全交流電源喪失時には，燃料プール泠却浄化系の停止による使用斎燃料プールの温度上昇に引き続き使用済燃料プ
一ルの水位低下が発生するが，事象の進展は緩やかであり，原子炉制御および一次格納容器制御を優先して実施す
るとともに使用済燃料プールへの注水を確保する。
使用済燃料プール水位の低下が継続し，使用済燃料プール周辺で作業が実施できる水位を維持できない場合は，可搬型設備による使用済燃料プールスプレイを実施する。
（5）主な監視操作内容
A．使用済燃料ブール水位

- 使用斎燃料プール注水可能な系統を起動する。
- 使用済燃料プールの水位をオーバーフロー水位付近に維持する。
- 使用済燃料プールの水位を使用斎燃料プール周辺で作業が実施できる水位以上に維持できない場合は，可搬型設備 により使用済燃料プールスプレイ系を起動する。

使用済燃料プール除熱可能な系統を起動する。
使用済燃料プール水温を通常運転時制限温度未満に維持する。
（2）導入条件
原子炬制御「スクラム」において，原子炉水位が有効籶料頂部以上を維持できない場合
－原子炉制御「水位確保」において，原子炉水位が有効燃料頂部以上を維持できない場合
原子炉制御「減圧冷却」において，原子炉水位が有効燃料頂部以上を維持できない場合
－不測事態「急速減圧」において，減圧が完了し，水位が判明しており，かつドライウェル空間部温度が飽和温度以下 の場合
（4）基本的な考え方
原子炉水位の徵候に応じて，非常用炬心椧却采の再起動や低圧代替注水系（常設），低圧代替注水系（可搬型）の起動 を行う。
原子炉停止後何らかの理由により炬心が露出した場合，炉心の健全性が保たれている間に何らかの方法により原子炉水位を確保しなければならない。そのために，原子炉停止後，燃料被覆管温度が $1,200^{\circ} \mathrm{C}$ または燃料被覆管酸化割合が 15% に達するまでの時間内に原子炉水位を確保する。よって，炉心が露出した時刻を記録し，前述の時間以内に原子炉水位を有効燃料頂部以上に回復するように非常用炉心冷却系，低圧代替注水系（常設）および低圧代替注水系（可搬型）を起動する。
－原子炉制御「反応度制御」実施中は，本制御を実施しない。
（5）な監視操作内容
－原子炉水位が不明となった場合，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」へ移行す る。
－原子炉水位が有効燃料頂部に到達した場合，原子炬水位が有効燃料頂部に到達した時刻を記録するとともに，一次格納容器制御「格納容器水素濃度制御」を導入する。
－給復水系または非常用炉心椧却系の 1 系統以上の起動ができない場合であって，原子炉隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低王代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）を起動 し，原子炬圧力が原子炬隔離時冷却系機能維持最低圧力以上の場合は，不測事態「急速減圧」い移行する。 －給復水系または非常用炉心椧却系の 1 系統以上を起動しても原子炉水位を有効燃料頂部以上に維持できない場合は，不測事態「急速減圧」一移行する。

[^0]（2）導入条件
原子炉制御「水位確保」において，給復水系もしくは非常用炉心泠却系または原子炉隔離時椧却系もしくは高圧代替注水系による原子炉水位の維持ができず，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環洽却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）が起動で きた場合
原子炉制御「減圧冷却」において，サプレッションプール水温がサプレッションプール熱容量制限図の運転禁止領域に入った場合
一次格納容器制御「格納容器圧力制御」において，サプレッションプール圧力が設計基準事故時最高圧力以上とな った場合
一次格納容器制御「ドライウェル温度制御」において，ドライウェル空間部局所温度がドライウェル設計温度に到達した場合
一次格納容器制御「サプレッションプール温度制御」に打いて，サプレッションプール水温がサプレッションプー儿熱容量制限図の運転禁止領域に入った場合
一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が真空破壊弁位置から作動差圧相当分の水位を引いた水位に誤差を考慮した値以上になった場合
一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が急速減圧へ移行する サプレッションプール水位以下になった場合
－二次格納容器制御「原子炉建屋制御」において，中央制御室からの漏えい筧所隔離に失敗した場合
不測事態「水位回復」において，給復水系または非常用炬心冷却系の 1 系統以上の起動ができない場合かつ原子炉隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合であって，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循澴泠却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）が起動でき，原子炉隔離時冷却系機能維持最低圧力以上の場合
不測事態「水位回復」において，給復水系または非常用炬心椧却系の 1 系統以上を起動しても原子炉水位を有効燃料頂部以上に維持できない場合

（4）基本的な考え方

原子炉圧力低下必要時に自動减圧機能を有する主蒸気逃がし安全弁全弁を順次開放して急速減圧する。または，自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそ れ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要升数開放する。
主蒸気逃がし安全弁が「急速減圧」時必要弁数開放できない場合は，タービンバイパス弁および原子炉隔離時冷却系等を使用して減圧する
原子炬減圧の結果，原子炉水位が不明になった場合は，不測事態「水位不明」へ移行する。
－原子炉減圧時の原子炉冷却材温度変化率は原子炉冷却材温度変化率制限値を遵守する必要はない。
急速減圧中に原子炉注へ注水可能な系統が喪失した場合は，急速減圧操作を中断し，原子炉注へ注水可能な系統を再起動する。
般型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低庄注水系ボンブ），ろ過水系）を起動する。
自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放する
－自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁と それ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要亣数開放する。
自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要最小升数以上開放する。
原子炉堿圧が不十分である場合，主烝気煰墔亣を開し，タービンバイパス开と主復水器により減圧する
（7）使用して減圧する
原子炬水位が判明している場合は, 不測事能「急速减圧」の導入前の制御へ移行する

- 原子炉水位が不明な場合は, 不測事態「水位不明」の「満水注入」および一次格納容器制御「格納容器水素濃度制
御」へ移行する
Pr

原子炉水位が不明な場合に原子炉の冷却を確保する
（2）導入条件
－原子炉制御「スクラム」，「水位確保」および「減圧冷却」，一次格納容器制御「格納容器圧力制御」ならびに不測事態「水位回復」「「急速減圧」において，原子炉水位が不明になった場合

- 原子炉制御「反応度制御」の「水位不明」を実施中に，未挿入制御棒が 1 本以下まで挿入された場合
- 次格納容器制御「ドライウェル温度制御」において，ドライウェル空間部温度が水位不明判断曲線の水位不明領域に入った場合

（4）基本的な考え方

原子炬水位不明時に，復水采，高圧炬ふスプレイ系，低圧炬ふスプレイ系もしくは低厈注水系または低厈代替注水系 （低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設） （直流駆動低圧注水系ポンプ），万過水系）を使用した原子炉注水操作を行い，さらに原子炉圧力を目安にした原子炉満水操作を行ら。
原子炉満水操作は，原子炉圧力とサプレッションプール圧力の差圧を原子炉圧力容器満水確認最低圧力以上になるよ らに注水操作を行ら。
原子炉水位が判明した場合は，原子炉制御「水位確保」へ移行する。
－原子炉満水が確認できない場合は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可般型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）を起動し，主蒸気逃し安全弁を6亣開として原子炉への注水を継続する

（5）主な監視操作内容

A．注水確保
－復水系，高圧炬心スプレイ系，低圧炬ふスプレイ系または低圧注水系のうち1系統以上作動した場合は急速減圧を実施 する。
浍却系または高圧代替注水系を作動させ，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環㣛却系，低圧代替注水系（常設）（直流駆動低圧注水采ポンプ），万過水系）を起動後，急速減圧を実施する。
不測事態「急速减圧」から移行してきた場合において，主蒸気逃がし安全弁が 1 弁以上開放可能な場合，主蒸気隔離弁，主蒸気管ドレン弁，原子炉隔離時冷却系および原子炉冷却材浄化系の隔離弁を閉鎖し，「満水注入」を行う。低圧で原子炉へ注水可能な系統により注水流量調整および，主烝気逃がし安全弁を原子炉圧力容器満水確認用適正 －数に操作して原子炉圧力とサプレッションプール圧力の差圧を原子炉圧力容器満水確認最低圧力以上に維持する。 －原子炉圧力とサブレッションプール圧力の差圧を原子炉圧力容器満水確認最低圧力以上に維持できない場合は，主蒸気，逃がし安全弁の開数を原子炬圧力容器満水確認用最小必要弁数まで減らし，原子炬圧力とサプレッションプール力の差圧を原子炬圧力容器満水確認最低圧力以上に維持する。
－主蒸気逃がし安全弁を原子炉圧力容器満水確認用最小必要弁数のみ開としても原子炉圧力とサプレッションプール圧力の差圧を原子炉圧力容器满水確認最低圧力以上に維持できない場合は，他の代替確認方法にて満水を確認する。 －他の代替確認方法によっても原子炉圧力容器満水が確認できない場合には，主蒸気逃がし安全弁を 6 弁開とし，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系 （常設）（直流駆動低圧注水系ポンプ），万過水系）を起動し原子灲へ注水を継続する。 －原子炉への注水を継続し，基準水柱の周囲温度を $100^{\circ} \mathrm{C}$ 以下にする。

「水位計復旧」操作は対応する余裕がある場合のみ試みればよい。
原子炉水位計の基準水柱に水を満たす
3）－原子炉水位を読み取るため，原子炉注水を停止し，原子炉水位を下げる。
4）－最長許容炉心露出時間以内に原子炉水位が判明した場合には，原子炉制御「水位確保」へ移行する。原子炉水位が判明しない場合には，「満水注入」へ移行する。

5．電源制御
（1）

（1）目的
－交流電源および直流電源の供給を回復し維持する
（2）導入条件
原子炉制御「スクラム」において，直流電源が喪失した場合
原子炉制御「スクラム」において，起動用変圧器からの
受電に失敗した場合
原子炉制御「スクラム」において，非常用C母線または

D 母線の雷源が喪失した場会

（4）基本的な考え方

非常用ディーゼル発電機の起動状況を確認し，状況に応じて代替電源設備による給電を行う。
非常用交流電源喪失が長期化する場合には常設 125 V 直流電源および250V直流電源延命のため，直流負荷の切り離しを実施し，直流電源延命させる。
使用可能な設備を確認し，C，D母線の受電操作を行う。C，D母線の復旧が不可能な場合は，G母線の受電を行 い，交流電源切替盤で切り替えを実施する。
－直流電源喪失時は，常設代替直流電源（125V代替蓄電池および250V蓄電池）より受電する。常設代替直流電源からできない場合には，可搬型計測器にて中央制御室で計器毎に確認する。
非常用交流電源喪失が長期化する場合には常設代替直流電源（125V代替蓄電池および 250 V 蓄電池）の延命 のため，負荷の切り離しを行う
（5）主な監視操作内容
A．非常用交流高圧電源確保
－非常用ディーゼル発電機の運転状態を確認する。
運転している非常用ディーゼル発電機に対応する原子炬補機冷却海水系の運転状態を確認する。当該原子炬袖機冷却海水系の運転不可の場合は，常設代替交流電源設備を起動し，非常用ディーゼル発電機を停止する
－非常用ディーゼル発電機からの受電ができない場合，予備変圧器より受電する。予備変圧器からの受電ができない場合は常設代替交流電源設備より受電し，常設代替交流電源設備からの受電もできない場合は，号炉間等より受電

- 非常用交流高圧電源母線 2 系統喪失となった場合，常設代替交流電源設備より受電する
- 非常用交流高圧電源母線 2 系統衰失となった場合であって，常設代替交流電源設備から受電できた非常用交流高圧電源母線が1系統である場合，直流 250 V 充電器を受電した交流高圧電源母線側へ切り替える
非常用交流高圧電源母線 2 系統喪失となった場合であって， 2 系統とも常設代替交流電源設備から受電できなかっ た場合，直流駆動低圧注水系の系統構成，発電機水素がス放出ならびに直流 250 V 電源確保および直流 125 V －電源確保を行らとともに，号炉間等からの受電を実施する
来常用交流高圧電源母線の号炉間等からの受電ができなかった場合，可搬型代替交流電源設備より受電する。給電設備容量に応じた設備復旧を行ら。常設代替交流電源設備から受電している場合は，受電後 1 時間および 24時間にて常設代替交流電源設備の負荷抑制を実施する。
－非常用ディーゼル発電機および常設代替交流電源設備から直流電源A系およびB系への給電ができない場合， 1 時

旦流电源A糸およびB系が业失または枯渴した場合，常設代替直流電源設備より給電する。電ができない場合は，8時間後に負荷抑制を実施する。また，代替直流電源用切替盤への電源車接続を実施し，常設代替直流電源設備の充電器へ給電する。
－発電機水素がスの放出の完了または，直流電源A系およびB系が喪失した場合は負荷抑制を実施する。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

保安規定添付 $1-3$ 重大事故等の発生および拡大の防止に必要な措置の運用手順等

表4原子炉泠却材圧力バウンダリ低圧時に原子炉を泠却するための手順等

表6 格納容器内の椧却等のための手順等
表 7 格納容器の過圧破損を防止するための手順等
表9 水素爆発による原子炉格納容器の破損を防止するための手順等
表11 使用済燃料プールの浍却等のための等の損傷を防止するための手順等
表1
発电所外への放射性物質の払散を抑制するにめの手順等
表13重大事故等の収束に必要となる水の供給手順等
衣14电源の碓保に関する手順等
表16 中央制御室の居住性等に関する手順等
表17監視測定等に関する手順等
表18緊急時対策所の居住性等に関する手順等
表19通信連絡に関する手順等

操作手順
1．緊急停止失敗時に原子炉を未臨界にするための手順等

方針目的

運転時の異常な過渡変化時において，原子炉の運転を緊急に停止させるための設計基準事故対処設備が機能喪失した場合においても炬心の著しい損傷を防止するため，代替制御棒挿入機能による制御棒緊急挿入，原子炬再循環ポンプ停止による原子炉出力抑制，自動減圧系作動阻止機能による原子炉出力急上昇防止により，原子炉冷却材圧力バウンダリおよび原子炉格納容器の健全性を維持する
また，自動での原子炉緊急停止および手動による原子炉緊急停止ができない場合は，原子炉出力の抑制を図っ た後にほう酸水注入により未臨界に移行する。

操作手順

2．原子炉冷却材圧力バウンダリ高圧時に原子炉を冷却するための手順等方針目的
原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の泠却機能が喜失 した場合においても炉心の著しい損傷を防止するため，高圧代替注水系による原子炉圧力容器への注水，原子炉隔離侍冷却系の現場操作による原子炬への注水により原子炬を泠却する。

また，原子炉を椧却するため，原子炉水位を監視および制御する。
さらに，重大事故等の進展を抑制するため，ほう酸水注入系により注水する。

操作手順

3 ．原子炉冷却材圧力バウンダリを減圧するための手順等
方針目的
原子炉冷却材圧力バウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の減圧機能が喪失 した場合においても炬心の著しい損傷および原子炉格納容器の破損を防止するため，手動操作による減圧および減圧の自動化により原子炉冷却材圧カバウンダリを減圧する。
また，炉心損傷時に原子炉冷却材圧力バウンダリが高圧状態である場合において，高圧溶融物放出／格納容器雰囲気直接加熱を防止するため，原子炉泠却材圧力バウンダリを減圧する。
さらに，インターフェイスシステムLOCA発生時において，炉心の著しい損傷を防止するため，原子炉椧却材圧カバウンダリを減圧する。

操作手順

（4）操
4．原子炉冷却材圧力バウンダリ低圧時に原子炉を冷却するための手順等方針目的
原子炉冷却材圧カバウンダリが低圧の状態において，設計基準事故対処設備が有する原子炉の泠却機能が喪失 した場合においても灲心の著しい損傷および原子炉格納容器の破損を防止するため，低圧代替注水系により原子炉を椧却する。

また，炉心が溶融し，原子炉圧力容器の破損に至った場合で，溶融炉心が原子炉圧力容器内に残存した場合にお いても原子炉格納容器の破損を防止するため，低圧代替注水系により残存溶融炝心を椧却する。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

> 操作手順
> 2. 原子炉泠却材圧カバウンダリ高圧時に原子炉を泠却するための手順等

方針目的
原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の冷却機能が喪失 した場合においても灲心の著しい損傷を防止するため，高圧代替注水系による原子炉圧力容器への注水，原子炉隔離時冷却系の現場操作による原子炉への注水により原子炉を椧却する。

また，原子炉を椧却するため，原子炉水位を監視および制御する。
さらに，重大事故等の進展を抑制するため，ほう酸水注入系により注水する。

操作手順

．
4．原子炬冷却材厂カバウンダリ低圧時に原子炬を冷却するための手順等方針目的
原子炉冷却材圧力バウンダリが低圧の状態において，設計基準事故対処設備が有する原子炉の冷却機能が喪失 した場合においても灲心の著しい損傷および原子炉格納容器の破損を防止するため，低圧代替注水系により原子炉を冷却する。
また，炉心が溶融し，原子炉圧力容器の破損に至った場合で，溶融炉心が原子炉圧力容器内に残存した場合にお いても原子炉格納容器の破損を防止するため，低圧代替注水系により残存溶融炉心を椧却する。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連
（

操作手順
 2．原子炉冷却材圧力バウンダリ高圧時に原子炉を冷却するための手順等

方針目的
原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の泠却機能が喪失 した場合においても炉心の著しい損傷を防止するため，高圧代替注水系による原子炉圧力容器への注水，原子炉隔離時泠却系の現場操作による原子炬への注水により原子炬を泠却する。

また，原子炉を椧却するため，原子炉水位を監視および制御する。
さらに，重大事故等の進展を抑制するため，ほう酸水注入系により注水する。

操作手順

（2）
3．原子炉冷却材圧力バウンダリを減圧するための手順等
方針目的
原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の減压機能が喪失 した場合においても灲心の著しい損傷および原子炉格納容器の破損を防止するため，手動操作による減圧および減圧の自動化により原子炉冷却材圧力バウンダリを減圧する。
また，炉心損傷時に原子炉冷却材圧力バウンダリが高圧状態である場合において，高圧溶融物放出／格納容器雰囲気直接加熱を防止するため，原子炉冷却材圧力バウンダリを減圧する
さらに，インターフェイスシステム L O C A 発生時において，炉心の著しい損傷を防止するため，原子炉泠却材圧力バウンダリを減圧する。

操作手順

4．原子炉冷却材圧力バウンダリ低圧時に原子炉を冷却するための手順等
方針目的
原子炉冷却材圧力バウンダリが低圧の状態において，設計基準事故対処設備が有する原子炉の冷却機能が喪失 した場合においても炉心の著しい損傷および原子炉格納容器の破損を防止するため，低圧代替注水系により原子炉を冷却する。

また，炉心が溶融し，原子炉圧力容器の破損に至った場合で，溶融炉心が原子炉圧力容器内に残存した場合にお いても原子炉格納容器の破損を防止するため，低圧代替注水系により残存溶融灲心を椧却する。

操作手順
 5．最終ヒートシンクへ熱を輸送するための手順等

方針目的
設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合において，炬心の著しい損傷まよび原子炉格納容器の破損（炉心の著しい損傷が発生する前に生ずるものに限る。）を防止するため，原子炉格納容器フィルタベント系または耐圧強化ベント系による原子炉格納容器内の減圧および除熱，原子炉補機代替冷却水系による除熱により最終ヒートシンクい熱を輸送する

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連
Pr

操作手順
 2．原子炉冷却材圧力バウンダリ高圧時に原子炉を冷却するための手順等

方針目的
原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の冷却機能が喪失 した場合においても灲心の著しい損傷を防止するため，高圧代替注水系による原子炉圧力容器への注水，原子炉隔離時冷却系の現場操作による原子炬への注水により原子炉を椧却する。

また，原子炉を椧却するため，原子炉水位を監視および制御する。
さらに，重大事故等の進展を抑制するため，ほら酸水注入系により注水する。
（2）操作手順
3．原子炉冷却材圧力バウンダリを減圧するための手順等
方針目的
原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の減压機能が喜失
した場合においても灲心の著しい損傷および原子炉格納容器の破損を防止するため，手動操作による減圧および減圧の自動化により原子炉冷却材圧カバウンダリを減圧する。
また，炉心損傷時に原子炉冷却村圧力バウンダリが高圧状態である場合において，高圧溶融物放出／格納容器雰囲気直接加熱を防止するため，原子炉泠却材圧カバウンダリを減圧する。
さらに，インターフェイスシステムLOCA発生時において，炉心の著しい損傷を防止するため，原子炉椧却材圧力バウンダリを減压する。
（3）操作手順
4．原子炉冷却材圧力バウンダリ低圧時に原子炉を冷却するための手順等方針目的
原子炉冷却材圧カバウンダリが低圧の状態において，設計基準事故対処設備が有する原子炉の冷却機能が喪失 した場合においても灲心の著しい損傷および原子炉格納容器の破損を防止するため，低圧代替注水系により原子炉を泠却する。
また，炉心が溶融し，原子炉圧力容器の破損に至った場合で，溶融炉心が原子炉圧力容器内に残存した場合にお いても原子炬格納容器の破損を防止するため，低圧代替注水系により残存溶融炉心を泠却する。

操作手順
5．最終ヒートシンクへ熱を輸送するための手順等
方針目的
設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合において，炬心の著しい損傷および原子炉格納容器の破損（炉心の著しい損傷が発生する前に生ずるものに限る。）を防止するため，原子炉格納容器フィルタベント系または耐圧強化ベント系による原子炉格納容器内の減圧および除熱，原子炉補機代替冷却水系による除熱により最終ヒートシンクへ熱を輸送する。

6．原子炉格納容器内の泠却等のための手順等
方針目的
設計基準事故対処設備が有する原子炉格納容器内の椧却機能が喪失した場合において，炉心の著しい損傷を防止するため，原子炉格納容器代替スプレイ冷却系により原子炉格納容器内の圧力および温度を低下させる。

また，灲心の著しい損傷が発生した場合において，原子炉格納容器の破損を防止するため，原子炉格納容器代替 スプレイ椧却系により原子炉格納容器内の圧力および温度ならびに放射性物質の濃度を低下させる。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

操作手順

6．原子炉格納容器内の泠却等のための手順等
方針目的
設計基準事故対処設備が有する原子炉格納容器内の椧却機能が喪失した場合において，炉心の著しい損傷を防止するため，原子炉格納容器代替スプレイ椧却系により原子炉格納容器内の圧力および温度を低下させる。
また，炬心の著しい損傷が発生した場合において，原子炉格納容器の破損を防止するため，原子炉格納容器代替 スプレイ椧却系により原子炬格納容器内の圧力および温度ならびに放射性物質の濃度を低下させる。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

操作手順
6．原子炉格納容器内の椧却等のための手順等
方針目的
設計基準事故対処設備が有する原子炉格納容器内の椧却機能が喪失した場合において，炉心の著しい損傷を防止するため，原子炉格納容器代替スプレイ冷却系により原子炉格納容器内の圧力および温度を低下させる。
また，灲心の著しい損傷が発生した場合において，原子炉格納容器の破損を防止するため，原子炉格納容器代替 スプレイ冷却系により原子炉格納容器内の圧力および温度ならびに放射性物質の濃度を低下させる。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

$$
\begin{aligned}
& \text { 操作手順 } \\
& \text { 2. 原子炉冷却材圧力バウンダリ高圧時に原子炉を冷却するための手順等 }
\end{aligned}
$$

方針目的
原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の泠却機能が喪失 した場合においても炉心の著しい損傷を防止するため，高圧代替注水系による原子炉圧力容器への注水，原子炉隔離时冷却系の現場操作による原子灲への注水により原子炬を泠却する。
また，原子炉を椧却するため，原子炉水位を監視および制御する。
さらに，重大事故等の進展を抑制するため，ほう酸水注入系により注水する。
（2）

操作手順
 4．原子炉冷却材圧力バウンダリ低圧時に原子炉を冷却するための手順等

方針目的
原子炉冷却材圧力バウンダリが低圧の状態において，設計基準事故対処設備が有する原子炉の冷却機能が喪失 した場合においても炉心の著しい損傷および原子炉格納容器の破損を防止するため，低圧代替注水系により原子炉を冷却する。
また，炉心が溶融し，原子炉圧力容器の破損に至った場合で，溶融炉心が原子炉圧力容器内に残存した場合にお いても原子炉格納容器の破損を防止するため，低圧代替注水系により残存溶融炉心を冷却する。

```
操作手順
6．原子炉格納容器内の冷却等のための手順等
```


方針目的

設計基準事故対処設備が有する原子炉格納容器内の泠却機能が喪失した場合において，炉心の著しい損傷を防
止するため，原子炉格納容器代替スプレイ椧却系により原子炉格納容器内の圧力および温度を低下させる。
また，炉心の著しい損傷が発生した場合において，原子炉格納容器の破損を防止するため，原子炉格納容器代替 スプレイ椧却系により原子炉格納容器内の圧力および温度ならびに放射性物質の滞度を低下させる。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連
Pu

操作手順
6．原子炉格納容器内の冷却等のための手順等
方針目的
設計基準事故対処設備が有する原子炬格納容器内の椧却機能が喪失した場合において，炉心の著しい損傷を防
止するため，原子炉格納容器代替スプレイ冷却系により原子炉格納容器内の圧力および温度を低下させる。 また，灲心の著しい損傷が発生した場合において，原子炉格納容器の破損を防止するため，原子炉格納容器代替 スプレイ泠却系により原子炉格納容器内の圧力および温度ならびに放射性物質の濃度を低下させる。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

	（1）	操作手順 2．原子炉冷却材圧力バウンダリ高圧時に原子炉を冷却するための手順等
		方針目的 原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の椧却機能が喪失 した場合においても炉心の著しい損傷を防止するため，高圧代替注水系による原子炉圧力容器への注水，原子炉隔睢時冷却系の現場操作による原子炉への注水により原子炉を椧却する。 また，原子炉を掵却するため，原子炉水位を監視および制御する。 さらに，重大事故等の進展を抑制するため，ほら酸水注入系により注水する。
		操作手順 3．原子师冷却材厂カバウンダリを減原するための手順等
		方針目的 減压の自動化により原子炉冷却材圧ガ゙ウンダりを減圧する。 また，炬心損㿥時に原子炉冷却林圧カバウンタタリが高状状態である場合にあいて，高圧溶融物放出 $/$ 格納容器雰囲気直接加熱を防止するため，原子炉冾却材圧カバウンタタリを減圧する。 さらに，インターフェイスシスティ L O C A 発生時におおて，炉心の著しい損偒を防止するため，原子炉洽却材压カバウンダりを減压する。
	3	操作手順 4．原子炉冷却材圧カバウンダリ低圧時に原子炉を冷却するための手順等
		方針目的 した場合においても炉心の著しい損㿥および原子炉格納容器の破損を防止するため，低圧代替注水系により原子炉を掵却する。 また，炉心かか溶融し，原子炉圧力容器の破損に至った場合で，溶融炬心かか原子炬圧力容器内に残存した場合にお いても原子炉格納容器の破損を防止するため，低圧代替注水采によりり残存溶䀦施心を洽却する。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

| |
| :--- | :--- |
| |
| |

```
操作手順
1 1．使用済燃料プールの泠却等のための手順等
```

方針目的
使用済燃料プールの泠却機能もしくは注水機能が喪失または使用済燃料プールからの水の漏えいその他の要因 により当該使用済燃料プールの水位が低下した場合において，使用済燃料プール内の燃料体または使用済燃料（以下「使用済燃料プール内の燃料体等」という。）を椧却し，放射線を遮蔽し，および臨界を防止するため，燃料プ ール代替注水，漏えい抑制，使用斎燃料プールの監視を行ら。さらに，使用済燃料プールから発生する水蒸気によ る重大事故等対処設備への悪影響を防止する。
また，使用済燃料プールからの大量の水の漏えいその他の要因により当該使用済燃料プールの水位が異常に低下した場合において，使用済燃料プール内の燃料体等の著しい損傷の進行を緩和し，臨界を防止し，および放射性物質の放出を低减するため，使用済燃料プールへのスプレイ，大気への放射性物質の拡散抑制および使用済燃料 プールの監視を行う。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

| |
| :--- | :--- |
| |

> | 操作手順 |
| :--- |
| 2. 原子炉冷却材圧力バウンダリ高圧時に原子炉を泠却するための手順等 |
| 方針目的 |
| 原子炉冷却材圧カバウンダリが高圧の状態において, 設計基準事故対处設備が有する原子炉の泠却機能が喪失 |
| した場合においても炉心の著しい損傷を防止するため, 高圧代替注水系による原子炉圧力容器への注水, 原子炉 |
| 隔離洔冷却系の現場操作による原子炉への注水により原子炉を泠却する。 |
| また, 原子炉を冷却するため, 原子炉水位を監視およよ゙制御する。 |
| さらに, 重大事故等の進展を抑制するため, ほう酸水注入系により注水する。 |

操作手順
4．原子炉冷却材圧力バウンダリ低圧時に原子炉を泠却するための手順等方針目的
原子炉冷却材圧力バウンダリが低圧の状態において，設計基準事故対処設備が有する原子炉の泠却機能が喪失
した場合においても灲心の著しい損傷および原子炉格納容器の破損を防止するため，低圧代替注水系により原子炉を泠却する。

また，炉心が溶融し，原子炉圧力容器の破損に至った場合で，溶融炉心が原子炉圧力容器内に残存した場合にお いても原子炉格納容器の破損を防止するため，低圧代替注水系により残存溶融炉心を椧却する。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

操作手順

2．原子炉冷却材圧力バウンダリ高圧時に原子炉を椧却するための手順等
方針目的
原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の泠却機能が喪失 した場合においても炬心の著しい損傷を防止するため，高圧代替注水系による原子炉圧力容器への注水，原子炉隔離時泠却系の現場操作による原子炉への注水により原子炬を泠却する。

また，原子炉を椧却するため，原子炉水位を監視および制御する。
さらに，重大事故等の進展を抑制するため，ほう酸水注入系により注水する。

操作手順
2）3．原子炉冷却材圧力バウンダリを減圧するための手順等
方針目的
原子炉泠却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の減圧機能が喪失 した場合においても炉心の著しい損傷および原子炉格納容器の破損を防止するため，手動操作による減圧および減圧の自動化により原子炉冷却材圧力バウンダリを減圧する。
また，炉心損傷時に原子炉泠却材圧カバウンダリが高圧状態である場合において，高圧溶融物放出／格納容器雰囲気直接加熱を防止するため，原子炉冷却材圧カバウンダリを減圧する。
さらに，インターフェイスシステムLOCA発生時において，炉心の著しい損傷を防止するため，原子炉冷却材圧力バウンダリを減压する。

操作手順

（3）
4．原子炉冷却材圧力バウンダリ低圧時に原子炉を冷却するための手順等
方針目的
原子炉泠却材圧カバウンダリが低圧の状態において，設計基準事故対処設備が有する原子炉の泠却機能が喪失 した場合においても炉心の著しい損傷および原子炉格納容器の破損を防止するため，低圧代替注水系により原子炉を椧却する。
また，灲心が溶融し，原子炉圧力容器の破損に至った場合で，溶融炉心が原子炉圧力容器内に残存した場合にお いても原子炉格納容器の破損を防止するため，低圧代替注水系により残存溶融炬心を椧却する。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

操作手順
 2．原子炉冷却材圧力バウンダリ高圧時に原子炉を冷却するための手順等

方針目的
原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の泠却機能が喪失 した場合においても炉心の著しい損傷を防止するため，高圧代替注水系による原子炬圧力容器への注水，原子炉隔離時泠却系の現場操作による原子炉への注水により原子炬を泠却する。

また，原子炉を椧却するため，原子炉水位を監視および制御する。
さらに，重大事故等の進展を抑制するため，ほう酸水注入系により注水する。

操作手順
3．原子炉冷却材圧力バウンダリを減圧するための手順等
方針目的
原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の減圧機能が喪失 した場合においても炉心の著しい損傷および原子炉格納容器の破損を防止するため，手動操作による減圧および減圧の自動化により原子炉冷却材圧力バウンダリを減圧する。
また，炉心損傷時に原子炉冷却材圧力バウンダリが高圧状態である場合において，高圧溶融物放出／格納容器雰囲気直接加熱を防止するため，原子炉冷却材圧力バウンダリを減圧する。
さらに，インターフェイスシステムLOCA発生時において，炉心の著しい損傷を防止するため，原子炉冷却材圧カバウンダリを減圧する。

操作手順

4．原子炉冷却材圧力バウンダリ低圧時に原子炉を冷却するための手順等
方針目的
原子炉泠却材圧カバウンダリが低圧の状態において，設計基準事故対処設備が有する原子灲の泠却機能が喪失 した場合においても炉心の著しい損傷および原子炉格納容器の破損を防止するため，低圧代替注水系により原子炉を泠却する。
また，灲心が溶融し，原子炉圧力容器の破損に至った場合で，溶融炉心が原子炉圧力容器内に残存した場合にお
いても原子炉格納容器の破損を防止するため，低圧代替注水系により残存溶融炬心を椧却する。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

$$
\begin{aligned}
& \text { 操作手順 } \\
& \text { 4. 原子炉冷却材圧力バウンダリ低圧時に原子炉を冷却するための手順等 } \\
& \hline \text { 方針目的 } \\
& \text { 原子炉泠却材圧カバウンダリが低圧の状態において, 設計基漼事故対処設備が有する原子炉の泠却機能が喪失 } \\
& \text { した場合においても炉心の著しい損傷および原子炉格納容器の破損を防止するため, 低圧代替注水系により原子 } \\
& \text { 炉を椧する。 } \\
& \text { また, 炉心が溶融し, 原子炉圧力容器の破損に至った場合で, 溶融炉心が原子炉圧力容器内に残存した場合におお } \\
& \text { いても原子炉格納容器の破損を防止するため, 低圧代替注水系により残存溶融炉心を却する。 }
\end{aligned}
$$

操作手順

14．電源の確保に関する手順等
方針目的
電源が喪失したことにより重大事故等が発生した場合において，炬心の著しい損傷，原子炉格納容器の破損，使用斎燃料プール内の燃料体等の著しい損傷および運転停止中における原子炉内の燃料体の著しい損傷を防止する ため，必要な電力を確保するために重大事故等対処設備として，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備および代替所内電気設備を確保する。
また，重大事故等の対処に必要な設備を継続運転させるため，燃料補給設備により補給する。

II．重大事故及び大規模損壊対応に係る実施基準と手順書との関連

操作手順

辟確保に関する手順等

方針目的

電源が喪失したことにより重大事故等が発生した場合において，炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷および運転停止中における原子炬内の燃料体の著しい損傷を防止する ため，必要な電力を確保するために重大事故等対処設備として，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備および代替所内電気設備を確保する。
また，重大事故等の対処に必要な設備を継続運転させるため，燃料補給設備により補給する。

第7．1．1－4図 「高圧•低圧注水機能喪失」の対応手順の概要

（1）スクラム

（1）目的

原子炉を停止する。
一分な炉心冷却状態を維持する。
原子炉を泠温停止状態まで椧却する。
（2）導入条件
（3）脱出条件

- 手動スクラムムた場合
- 各制御の脱出条件が成立した場会 （4）基本的な考え方

原子炬スクラム要求時にはスクラム成功の有舞の確認を確実に行う
－単一故障による原子炬スクラム時の復旧操作を全て原子炉制御「スクラム」で収束させ，通常停止操作に移行する。各計器を並行監視し，徴候に応じた制御を行う。
原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷
する恐れがある場合は原子炉制御「スクラム」と一次格納容器制御を並行して行ら。
二次格納容器制御「原子炬建屋制御」から要求される操作は原子炉制御「スクラム」と二次格納容器制御を並行し て行う
－原子炉制御「スクラム」においては，最初に「原子炉出力」の全制御棒全挿入を確認し，「原子炉水位」，「原子灲圧力」，「電源・タービン」の各制御を並行して行ら
多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炬制御「ス クラム」での制御を並行して行う

（5）王な監視操作内

A．原子炉出力
「原子炉自動スクラム！警報の発信を確認する。
全制御棒挿入状態を確認する
平均出力領域モニタの指示を確認する
－自動スクラムが失敗した場合には，手動スクラムを行う。
原子炉モードスイッチを「停止」位置にする。
全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる。
－全挿入位置まで挿入されていない制御棒が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反心度制御」で行り。
全制御棒が全挿入位置まで扱入された場合または全插入位置まで插入されていない制御俸が 1 本以下の場合，原子炉水位，原子炉圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炉再循環ポンプ速度を確認する。平枃出力領域モニタおよび起動領域モニタにより原子炬未臨界を碓認する

B．原子炉水位

原子炬水位を確認する。
－原子炉水位が原子炉水位低スクラム設定値まで低下した場合，格納容器隔離弁の開閉状態を碓認する。
タービン駆動給水ポンプを停止し ，電動駆動給水ポンブおよび給水制御系（単要素）で原子炉水位を原子炬水位低 マクラノ設定値から原子炬水涖高タードントリップ設定值の間を目槚として維持する。
給復水系（主復水器を含む）が正常でない場合，原子炬隔離時冷却系を手動作動する。（原子炬隔離時冷却系が自動作動した場合は不要）
原子炉水位が非常用炬心椧却采作動水位まで低下した場合には，非常用炬心椧却系および原子炬隔離時洽却系の運転状態を確認する。
給復水系，非常用炉心冷却系または原子炬隔離時冷却系により原子炉水位を原子炬水位低スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する
－原子炉水位が原子炉水位低スクラム設定値以上に維持できない場合は，原子炉制御「水位確保」に移行する
原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」移行する。
－原子炉水位が有効然料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」へ移行する。
原子炬水位を連続的に監視する
※：タービン駆䡃給水ポンプは，原子炉水位高タービントリップ設定値で自動停止する

保安規定 添付1－1

1．原子炉制御

（3）水位確保
（1）目的
－原子炉水位を有効燃料頂部以上に回復させ，安定に維持する （2）導入条件
（1）•原子炉制御「スクラム」にないて原子炉水位が原子炉水
位低スクラム設定値以上に維持できない場合
原子炬水位が原子炉水位低スクラム設定値から原子炬水位高タービントリップ設定值の間に維持できる場合
－不測事態「水位回復」において原子炉水位を有効燃料頂
部以上に維持できる場合または有効燃料頂部以上で安定している場合
－不測事態「急速減圧」において，減圧が完了し水位が判明している場合
－不測事態「水位不明」において最長許容炉心露出時間以
内に原子炬水位が判明した場合
（4）基本的な考え方
－原子炉水位と原子炉に注水可能な系統を随時把握する。
（5）主な監視操作内容
A．水位
作動すべきものが不作動の場合は，手動で作動させる
給復水系，原子炬隔離侍泠却系，非常用炉心椧却系または高圧代替注水系を使用して原子炉水位を原子炉水位低ス クラム設定值から原子炬水位高タービントリップ設定值の間に維持する。
－原子灲水位を原子炬水位低スクラム設定値以上に維持できず原子灲水位が降下中の場合であって，給復水系および非常用炉心椧却系が起動せず，原子炬隔離時冾却系または高圧代替注水系により原子炬水位の維持ができない場合 は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動し，不測事態「急速減压」に移行する。低圧代替注水系が起動できない場合は，不測事態「水位回復」に移行する。
－原子灲水位を有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」に移行する。
原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「減圧冷却」に移行する。

4．不測事態
（2）急速減圧
（1）目的
－原子炬を速やかに減圧する

（2）導入条件

－原子炬制御「水位碓保」において，給復水系もしくは非常用炬心椧却系または原子炬隔離時椧却系もしくは高圧代替注水系による原子炉水位の維持ができず，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環泠却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）が起動で きた場合
－原子炉制御「減圧冷却」において，サプレッションプール水温がサプレッションプール熱容量制限図の運転禁止領域に入った場合
一次格納容器制御「格納容器圧力制御」において，サプレッションプール圧力が設計基準事故時最高圧力以上とな った場合
一次格納容器制御「ドライウェル温度制御」において，ドライウェル空間部局所温度がドライウェル設計温度に到達した場合
一次格納容器制御「サプレッションプール温度制御」において，サプレッションプール水温がサプレッションプー ル熱容量制限図の運転禁止領域に入った場合
－一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が真空破壊弁位置から作動差圧相当分の水位を引いた水位に誤差を考慮した値以上になった場合
一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が急速減圧へ移行する サプレッションプール水位以下になった場合
二次格納容器制御「原子炬建屋制御」において，中央制御室からの漏えい䈯所隔離に失敗した場合
不測事態「水位回復」において，給復水系または非常用炉心冷却系の 1 系統以上の起動ができない場合かつ原子炉隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合であって，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循擐冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）が起動でき，原子炬隔離侍冷却系機能維持最低圧力以上の場合
－不測事態「水位回復」において，給復水系または非常用炉心冷却系の 1 系統以上を起動しても原子炉水位を有効燃料頂部以上に維持できない場合
（4）基本的な考え方
原子炉圧力低下必要時に自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放して急速減圧する。または，自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそ れ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する。
主蒸気逃がし安全弁が「急速減圧」時必要升数開放できない場合は，タービンバイパス弁および原子炬隔離時冷却系等を使用して減圧する。
原子炉減圧の結果，原子炉水位が不明になった場合は，不測事態「水位不明」へ移行する。
原子炉減圧時の原子炬冷却材温度変化率は原子炉冷却材温度変化率制限値を遵守する必要はない。
急速減圧中に原子炬注へ注水可能な系統が喪失した場合は，急速減圧操作を中断し，原子炉注へ注水可能な系統を再起動する。

保安規定 添付1－1
（5）主な監視操作内容
（1）－給復水系，非常用炬心椧却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンブ），低圧代替注水系（可搬型），代替循澴泠却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動する。

- 自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放する。
- 自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁と それ以外の主蒸気逃がし安全亣を合わせて「急速減圧」時必要弁数開放する
－自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減王」時必要最小弁数以上開放する。
原子炉減圧が不十分である場合，主蒸気隔崔亣を開し，タービンバイパス弁と主復水器により減圧する
主蒸気隔離弁が開できなければ，原子炉隔離侍冷却系，高圧代替注水系または原子炉冷却材浄化系ブローラインを使用して減圧する。
③ • 原子炉水位が判明している場合は，不測事態「急速減圧」の導入前の制御へ移行する
－原子炉水位が不明な場合は，不測事態「水位不明」の「満水注入」および一次格納容器制御「格納容器水素濃度制御」へ移行する。

保安規定 添付1－1

1．原子炉制御

（1）目的
－原子炉水位を有効燃料頂部以上に回復させ，安定に維持する
（2）導入条件
（3）脱出条件
－原子炉制御「スクラム」において原子炉水位が原子炉水
位低スクラム設定値以上に維持できない場合
原子炉水位が原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定值の間に維持できる場合
－不測事態「水位回復」において原子炉水位を有効燃料頂
部以上に維持できる場合または有効燃料頂部以上で安定している場合
－不測事態「急速減圧」において，減圧が完了し水位が判明している場合
－不測事態「水位不明」において最長許容炉心露出時間以
内に原子灯水位が判明した場合
（4）基本的な考え方
－原子炉水位と原子炉に注水可能な系統を随時把握する。
（5）主な監視操作内容

A．水位

－作動すべきものが不作動の場合は，手動で作動させる。
給復水系，原子炉隔離時椧却系，非常用炉心冷却系または高圧代替注水系を使用して原子炉水位を原子炉水位低ス クラム設定值から原子炉水位高タービントリップ設定值の間に維持する。
－原子炉水位を原子炉水位低スクラム設定値以上に維持できず原子炉水位が降下中の場合であって，給復水系および非常用炉心浍却系が起動せず，原子炉隔離時冷却系または高圧代替注水系により原子炉水位の維持ができない場合 は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動し，不測事態「急速減圧」に移行する。低圧代替注水系が起動できない場合は，不測事態「水位回復」に移行する。
原子炉水位を有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」に移行する。
原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「減圧冷却」に移行する。

保安規定 添付1－1

2．原子炉制御

（3）水位確保
（1）目的
原子炉水位を有効燃料頂部以上に回復させ，安定に維持する。
（2）導入条件
（3）脱出条件
－原子炉制御「スクラム」において原子炉水位が原子炉水 ${ }^{3}$
位低スクラム設定値以上に維持できない場合
原子炉水位が原子炉水位低スクラム設定值から原子炉水位高タービントリップ設定値の間に維持できる場合
－不測事態「水位回復」において原子炉水位を有効然料頂部以上に維持できる場合または有効燃料頂部以上で安定している場合
－不測事態「急速減圧」において，減圧が完了し水位が判明している場合
－不測事態「水位不明」において最長許容炉心露出時間以
内に原子炬水位が判明した場合
（4）基本的な考え方
－原子炉水位と原子炉に注水可能な系統を随時把握する。
（5）主な監視操作内容
A．水位
作動すべきものが不作動の場合は，手動で作動させる
－給復水系，原子炉隔離侍冷却系，非常用炉心冷却系または高圧代替注水系を使用して原子炉水位を原子炉水位低ス クラム設定值から原子炬水位高タービントリップ設定值の間に維持する。
－原子炉水位を原子灲水位低スクラム設定値以上に維持できず原子灲水位が降下中の場合であって，給復水系および非常用炉心洽却系が起動せず，原子炉隔離時冷却系または高圧代替注水系により原子炉水位の維持ができない場合 は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環椧却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動し，不測事態「急速减圧」に移行する。代替注水系が起動できない場合は，不測事態「水位回復」に移行する。
原子炉水位を有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」に移行する。
原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「減圧冷却」に移行する。

再

保安規定 添付1－1
1．原子炉制御
（1）目的
－原子炉を停止する。
十分な炉心浍却状態を維持する。
－原子炉を泠温停止状態まで泠却する。
ー次および一次格納容器制御いの導入条件を監視する。（原子炉がスクラムしない場合を含む）
（2）導人条件
－原子炬スクラム信号が発生した場合
手動スクラムした場合

（4）基本的な考え方

原子炬スクラム要求時にはスクラム成功の有無の確認を確実に行ら
単一故障による原子炬スクラム時の復旧操作を全て原子炬制御「スクラム」で収束させ，通常停止操作に移行する。各計器を並行監視し，徴候に応じた制御を行う。
原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷 する恐れがある場合には原子炬制御「スクラム」と一次格納容器制御を並行して行う。
二次格納容器制御「原子炬建屋制御」から要求される操作は原子炬制御「スクラム」と二次格納容器制御を並行し て行う
原子炉制御「スクラム」においては，最初に「原子炉出力」の制御棒全挿入を確認し，「原子炉水位」，「原子炉圧力」，「電源・タービン」の各制御を並行して行う。
多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炉制御「ス クラム」での制御を並行して行う

（5）主な監視操作内容

A．原子炬出力

「原子炬自動スクラム」 警報の発信を確認する
全制御棒挿入状態を確認する
平均出力領域モニタの指示を碓認する
自動スクラムが失敗した場合には，手動スクラムを行ら。
原子炉モードスイッチを「停止」位置にする。
全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる。
全挿入位置まで挿入されていない制御棒が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行ら。
全制御棒が全挿入位置まで挿入された場合または全挿入位置まで挿入されていない制御棒が 1 本以下の場合，原子炉水位，原子炬圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炬再循環ポンプ速度を確認する。
－平均出力領域モニタおよび起動領域モニタにより原子炉未臨界を確認する。

B．原子炉水位

原子炉水位を確認する。
原子炬水位が原子炉水位低スクラム設定値まで低下した場合，格納容器隔離弁の開閉状態を碓認する
タービン駆動給水ポンプを停止し＊，電動駆動給水ポンプおよび給水制御系（単要素）で原子炉水位を原子炉水位低 スクラム設定値から原子炉水位高タービントリッブ設定値の間を目標として維持する。
給復水系（主復水器を含む）が正常でない場合，原子炬隔離時冷却系を手動作動する。（原子炬隔離時冷却采が自動作動した場合は不要）
原子炉水位が非常用炉心泠却系作動水位まで低下した場合には，非常用炉心椧却系および原子炉隔離時泠却系の運転状態を確認する。
給復水系，非常用炉心椧却系または原子炉隔離時冷却系により原子炉水位を原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する。
－原子炉水位が原子炉水位低スクラム設定値以上に維持できない場合は，原子炉制御「水位確保」に移行する。 －原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」移行する。
原子炉水位が有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」一移行する。
※：タービン駆動給水ポンプは，原子炉水位高タービントリップ設定値で自動停止する。

保安規定 添付1－1

1．原子炉制御
（1）スクラム
（5）主な監視操作内容
G．一次格納容器制御への導入
——次格納容器制御への導入条件を監視する（原子炬がスクラムしない場合を含む。）
H．二次格納容器制御への導入
－二次格納容器制御への導入条件を監視する（原子炉がスクラムしない場合を含む。）。

PC／P

「PCV圧力制御」

保安規定 添付1－1

（ 1 ）一格枘綌彮器力制御御
 （1）目的

－格納容器圧力を監視し，制御する。
（2）導入条件
－ドライウェル圧力が非常用炬ふ桧却奚作動历力以上の場
合

（3）導入条件

ドライウェルの上昇の原因が，窒素ガスまたは空気の漏 えいであり，ドライウェル温度が $66^{\circ} \mathrm{C}$ 以下で，かつドラ タウェルベントを実施した場合
24 時間以内にドライウェル圧力が非常用炬心泠却系作動圧力未満に復帰した場合

（4）基本的な考え方

サプレッションプール圧力を設計基準事故時最高圧力以下に維持できない場合は，格納容器の健全性を維持して，でき る限り放射能放出を抑える目的で，格納容器設計庄力に達する前に原子炉を急速減圧する
サブレッションプール圧力を格納容器設計圧力以下に維持できない場合は，原子炉を満水にし，格納容器最高使用圧力 を超える場合は格納容器ベントを行
一次格納容器内で原子炉冷却材圧力バウンダリの大破断が発生した場合，ドライウェルスプレイおよびサプレッショ
ンブールスブレイは安全解析上の要求時間以内に完了する必要があるため，速やかにドライウェルスプレイおよびサ プレッションプールスプレイを起動する
原子炉制御「反応度制御」を実施中は，原子炉制御「反応度制御」を優先する。
（5）主な監視操作内容
A．格納容器圧力制御
ドライウエル圧力の上昇の原因が，窒素ガスまたは空気の漏えいであることが判明した場合は，非常用ガス処理系を使用してドライウェルベントを行ら
ドライウェル圧力が非常用炉心椧却系作動圧力以上で，かつ原子炉水位が低圧で注水可能な非常用炉心泠却采作動水位以下を経験した場合には，原子炉水位を有効炬心長の 3 分の 2 に相当する水位以上に維持可能であることを確認し た後に，ドライウエコスフブレイおよびサプレッションプールスプレイを実施する。また，一次格納容器制御「格納容器 た水に，ド素濃度制御」を並行して行ら。
－原子炉水位が不明となった場合は，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」を行う。 サプレッションプール圧力が非常用炬心冾却系作動圧力以上の場合は，サプレッションプールスプレイを起動する サブレッションプール圧力が非常用炉心冷却系作動圧力以上の場合は，サブレツションプールスブレイを起動する。継続した場合またはサプレッションプール圧力が設計基準事故時最高圧力以上の場合は，原子炉再循擐ボンプおよび ドライウェル空調機を停止し，ドライウェルスプレイおよびサブレッションプールスプレイを起動する。
サプレッションプール圧力が設計基準事故時最高圧力以下に維持できない場合は，不測事態「急速減圧」へ移行する。
 レッションプール水位が外部水源注水量限界に到達した場合，ドライウェル代替スプレイを停止する。

B．原子炉満水

ールスプレイキ上びドラーが格納容器設計圧力以上の場合であって，ドライウイルスブレイまたはサブレッションク最小升数以上の主蒸気逃がし安全弁を開し，主蒸気隔離弁，主蒸気ドレン弁，原子炉隔離時冷却系および原子炉冷却材浄化系の隔離亣を閉鎖する。
原子炉水位をできるだけ高く維持する。

トを実施する。 ハカが格納容器最高使用止力に到達した場合は，炬心損暴かないことを確認して，格納容器で格納容器ベントは，サプレッションプール側フィルターベントラインを優先する。サプレッションプール側が使用でき プレッションプール側耐圧ベントラインを優先する。サブレッションプール側が使用できない場合は，ドライウェル側耐圧ベントラインを使用する。

保安規定 添付1－3 表20 重大事故等対策における操作の成立性

操作 手順	対応手段	要員	要員数	想定 時間
5	原子灲格納容器フィルタベント系に よる原子炉格納容器内の減圧および除熱（現場操作）（ベント操作：S／ C 側ベントの場合）	運転員 （中央制御室，現場）	3	95 分

[^1]

保安規定 添付1－1
1．原子炉制御
（1）スクラム
（1）目的
原子炬を停止する。
十分な炉心椧却状態を維持する

- 原子炉を洽温停止状態まで冷却する。
- 一次および二次格納容器制御への導入条件を監視する。（原子炉がスクラムしない場合を含む。）

（2）導入条件

手動スクラムした場合
－各制御の脱出条件が成立した場合
（4）基本的な考え方
原子炬スクラム要求時にはスクラム成功の有無の確認を確実に行ら
－単一故障による原子炬スクラム時の復旧操作を全て原子炉制御「スクラム」で収束させ，通常停止操作に移行する。各計器を並行監視し，徴候に応じた制御を行う。
－原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷 する恐れがある場合は原子炉制御「スクラム」と一次格納容器制御を並行して行う。
－二次格納容器制御「原子炉建屋制御」から要求される操作は原子炉制御「スクラム」と二次格納容器制御を並行し て行う。
原子炉制御「スクラム」においては，最初に「原子炉出力」の全制御棒全挿入を確認し，「原子炉水位」，「原子炉圧力」，「電源・タービン」の各制御を並行して行ら。
多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炉制御「ス クラム」での制御を並行して行う
（5）主な監視操作内容
A．原子炉出力
「原子炉自動スクラム」警報の発信を碓認する。
全制御棒挿入状態を確認する。
平均出力領域モニタの指示を確認する。
－自動スクラムが失敗した場合には，手動スクラムを行ら。
原子炬モードスイッチを「停止•位置にする。
全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる
－全挿入位置まで挿入されていない制御棒が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行う。
全制御棒が全挿入位置まで插入された場合または全挿入位置まで挿入されていない制御䏾が 1 本以下の場合，原子炉水位，原子炬圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炉再循環ポンプ速度を確認する。
－平均出力領域モニタおよび起動領域モニタにより原子炉末臨界を確認する。

B．原子炉水位

－原子炉水位を確認する
原子炉水位が原子炉水位低スクラム設定値まで低下した場合，格納容器隔離弁の開閉状態を確認する。
－タービン駆動給水ポンプを停止し＊，電動駆動給水ポンプおよび給水制御系（単要素）で原子炉水位を原子炉水位低 スクラム設定値から原子炉水位高タービントリップ設定值の間を目標として維持する
給復水系（主復水器を含む）が正常でない場合，原子炉隔離時冷却系を手動作動する。（原子炉隔離侍冷却系が自動作動した場合は不要）
原子炉水位が非常用炉心椧却系作動水位まで低下した場合には，非常用炬心洽却系および原子炬隔離時椧却系の運転状態を確認する。
－給復水系，非常用炉心椧却系または原子炉隔離時冷却系により原子炉水位を原子炉水位低スクラム設定值から原子炬水位高タービントリップ設定値の間を目標として維持する
7）－原子炉水位が原子炉水位低スクラム設定値以上に維持できない場合は，原子炬制御「水位碓保」に移行する。
原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」移行する。
原子炉水位が有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素浱度制御」へ移行する。
※：タービン駆䡃給水ホホンプは，原子炬水位高タービントリップ設定値で自動停止する

保安規定 添付1－1

1．原子炉制御
（3）水位確保
（1）目的
－原子炉水位を有効燃料頂部以上に回復させ，安定に維持する
（2）導入条件
（1）－原子炉制御「スクラム」において原子炉水位が原子炉水
位低スクラム設定値以上に維持できない場合
（3）脱出条件
－不測事態「水位回復」において原子炉水位を有効燃料頂
部以上に維持できる場合または有効燃料頂部以上で安
定している場合
不測事態 「急速減圧」において，減圧が完了し水位が判明している場合
－不測事態「水位不明」において最長許容炝心露出時間以
内に原子炉水位が判明した場合
（4）基本的な考え方
－原子炉水位と原子炉に注水可能な系統を随時把握する
（5）主な監視操作内容
A．水位
給復水系，原子炬隔離時洽却系，非常用炬心椧却系または高圧代替注水
クラム設定値から原子炬水位高タービントリップ設定值の間に維持する
－原子炉水位を原子炉水位低スクラム設定值以上に維持できず原子炉水位が降下中の場合であって，給復水系および非常用炬心椧却系が起動せず，原子炬隔離時冷却系または高圧代替注水系により原子炬水位の維持ができない場合 は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循澴泠却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動し，不測事態「急速減圧」に移行する。低圧代替注水系が起動できない場合は，不測事態「水位回復」に移行する。水素源度制御」に移行する。
原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「減圧冷却」に移行する。

保安規定 添付1－1
4．不測事態
（1）水位回復
（1）目的
－原子灯水位を回復する。
（2）導入条件
－原子炬制御「スクラム」において，原子炬水位が有効燃料頂部以上を維持できない場合

原子炉制御「隇圧冷却」において，原子炉水位が有㕮燃料頂部以上を維持できない場合
－不測事態「急速減圧」において，減圧が完了し，水位が判明しており，かつドライウェル空間部温度が飽和温度以下の場合
（4）基本的な考え方
－原子炉水位の徴候に応じて，非常用炉心椧却系の再起動や低圧代替注水系（常設），低圧代替注水系（可搬型）の起動を行う。
原子炉停止後何らかの理由により炬心が露出した場合，炬心の健全性が保たれている間に何らかの方法により原子炉水位を確保しなければならない。そのために，原子炉停止後，燃料被覆管温度が $1,200^{\circ} \mathrm{C}$ または燃料被覆管酸化割合が 15% に達するまでの時間内に原子炉水位を確保する。よって，炬心が露出した時刻を記録し，前述の時間以内に原子炬水位を有効燃料頂部以上に回復するように非常用炬心洽却系，低圧代替注水系（常設）および低圧代替注水系（可搬型）を起動する。

原子炬制御「反応度制御」実施中は，本制御を実施しない

（5）主な監視操作内容

－原子炉水位が不明となった場合，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」へ移行 する。
原子炉水位が有効燃料頂部に到達した場合，原子炉水位が有効燃料頂部に到達した時刻を記録するとともに，一次格納容器制御「格納容器水素濃度制御」を導入する。
原子炬隔離時冷却系または高圧代替注水系を起動する
給復水系または非常用炝心冷却系の 1 系統以上の起動ができない場合であって，原子炉隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動し，原子炉圧力が原子炉隔離時冷却系機能維持最低圧力以上の場合は，不測事態「急速減圧」—移行する。
3 －給復水系または非常用炬心椧却系の 1 系統以上を起動しても原子炬水位を有効燃料頂部以上に維持できない場合 は，不測事態「急速減圧」へ移行する。
原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「水位碓保」へ移行する。

保安規定 添付1－1

4．不測事態
（2）急速減圧
（1）目的
－原子怇を速やかに減厂する

（2）導入条件

－原子炉制御「水位確保」において，給復水系もしくは非常用炉心椧却系または原子炉隔離侍冷却系もしくは高圧代替注水系による原子炉水位の維持ができず，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環泠却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンブ），万過水系）が起動で きた場合
－原子炉制御「減圧冷却」において，サプレッションプール水温がサプレッションプール熱容量制限図の運転禁止領域に入った場合
一次格納容器制御「格納容器圧力制御」において，サプレッションプール圧力が設計基準事故時最高圧力以上とな った場合
－一次格納容器制御「ドライウェル温度制御」において，ドライウェル空間部局所温度がドライウェル設計温度に到達した場合
一次格納容器制御「サプレッションプール温度制御において，サプレッションプール水温がサプレッションプー ル熱容量制限図の運転禁止領域に入った場合
－一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が真空破壊弁位置から作動差圧相当分の水位を引いた水位に誤差を考慮した値以上になった場合
一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が急速减圧へ移行する サプレッションプール水位以下になった場合

- 二次格納容器制御「原子炬建屋制御」において，中央制御室からの漏えい箇所隔離に失敗した場合
- 不測事態「水位回復」において，給復水系または非常用炉心泠却系の 1 系統以上の起動ができない場合かつ原子炉隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合であって，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンブ），ろ過水系）が起動でき，原子炉隔離時冷却系機能維持最低圧力以上の場合
（1）•不測事態1水位回復」において，給復水系または非常用炉心椧却系の1系統以上を起動しても原子炉水位を有効燃料

（4）基本的な考え方

原子炉圧力低下必要時に自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放して急速減圧する。または，自動減压機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそ れ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する。
主蒸気逃がし安全弁が「急速減圧」時必要升数開放できない場合は，タービンバイパス弁および原子炬隔離時冷却系等を使用して減圧する。
原子炉減圧の結果，原子炉水位が不明になった場合は，不測事態「水位不明」へ移行する。
－原子炉減圧時の原子炬泠却材温度変化率は原子炉泠却材温度変化率制限値を遵守する必要はない。
急速減圧中に原子炉注へ注水可能な系統が䨤失した場合は，急速減圧操作を中断し，原子炉注へ注水可能な系統を再起動する。

保安規定 添付1－1
（5）主な監視操作内容

自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放する。
－自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁と それ以外の主蒸気逃がし安全亣を合わせて「急速減圧」時必要弁数開放する
自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放できなければ，自動減压機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要最小弁数以上開放する
原子炉減圧が不十分である場合，主蒸気隔崔亣を開し，タービンバイパス弁と主復水器により減圧する
主蒸気隔離弁が開できなければ，原子炉隔離侍冷却系，高圧代替注水系または原子炉冷却材浄化系ブローラインを使用して減圧する。

- 原子炬水位が判明している場合は，不測事態「急速減压！の導入前の制御へ移行する
- 原子炉水位が不明な場合は，不測事態「水位不明」の「満水注入」および一次格納容器制御「格納容器水素注度制御」へ移行する。

保安規定 添付1－1
4．不測事能
（1）水位回復
（1）目的
－原子炉水位を回復する。
（2）導入条件

- 原子炉制御「スクラム」において，原子炉水位が有効燃料頂部以上を維持できない場合
- 原子炉制御「水位確保」において，原子炉水位が有効燃料頂部以上を維持できない場合
- 原子炉制御「減圧冷却」において，原子炉水位が有効燃料頂部以上を維持できない場合
（4）基本的な考え方
－原子炉水位の徴候に応じて，非常用炝心椧却系の再起動や低圧代替注水系（常設），低圧代替注水系（可搬型）の起動を行ら。
原子炬停止後何らかの理由により炬心が露出した場合，炬心の健全性が保たれている間に何らかの方法により原子炉水位を碓保しなければならない。そのために，原子炉停止後，燃料被覆管温度が $1,200^{\circ} \mathrm{C}$ または燃料被覆管酸化割合が 15% に達するまでの時間内に原子炉水位を確保する。よって，炉心が露出した時刻を記録し，前述の時間以内に原子炉水位を有効燃料頂部以上に回復するように非常用炉心椧却系，低圧代替注水系（常設）および低圧代替注水系（可搬型）を起動する。

原子炉制御「反応度制御」実施中は，本制御を実施しない

（5）主な監視操作内容

－原子炉水位が不明となった場合，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」へ移行 する。
原子炉水位が有効燃料頂部に到達した場合，原子炉水位が有効燃料頂部に到達した時刻を記録するとともに，一次格納容器制御「格納容器水素浱度制御」を導入する。
－原子炉隔離時冷却系または高圧代替注水系を起動する。
（2）－給復水系または非常用炉心椧却系の 1 系統以上を起動する
給復水系または非常用炬心冷却系の 1 系統以上の起動ができない場合であって，原子炉隔離時冷却系または高圧代替注水系による原子炬水位の維持ができない場合は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）を起動し，原子炉圧力が原子炉隔離時冷却系機能維持最低圧力以上の場合は，不測事態「急速減圧」—移行する。
給復水系または非常用炉心冷却系の 1 系統以上を起動しても原子炉水位を有効燃料頂部以上に維持できない場合 は，不測事態「急速減圧」へ移行する。
原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「水位碓保」へ移行する。

枠囲みの内容は商業機密の観点から公開できません。

保安規定 添付1－1
1．原子炉制御
（1）スクラム

（1）目的

－原子炉を停止する。
十分な炬心冷却状態を維持する。
原子炬を泠温停止状態まで冷却する。
一次および二次格納容器制御いの導入条件を監視する。（原子炉がスクラムしない場合を含む。）
（2）導入条件
手動スクララム信号が発生した場合

手動スクラムした場合
各制御の脱出条件が成立した場合 \qquad

- 原子炬スクラム要求時にはスクラム成功の有無の確認を確実に行ら。
- 単一故障による原子炉スクラム時の復旧操作を全て原子炉制御「スクラム」で収束させ，通常停止操作に移行する。各計器を並行監視し，徴候に応じた制御を行う。
－原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷 する恐れがある場合は原子炉制御「スクラム」と一次格納容器制御を亚行して行う
－次格納容器制御「原子炉建屋制御」から要求される操作は原子炉制御「スクラム」と二次格納容器制御を並行し て行う。
原子炉制御「スクラム」においては，最初に「原子炉出力」の全制御棒全挿入を確認し，「原子炉水位」，「原子炉圧力」「「電源・タービン」の各制御を並行して行う。
－多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炉制御「ス クラム」での制御を並行して行ら

（5）主な監視操作内容

A．原子炬出力

- 「原子炬自動スクラム！警報の発信を確認する。
- 全制御棒挿入状態を碓認する。

平均出力領域モ二夕の指示を確認する。
自動スクラムが失敗した場合には，手動スクラムを行う。
－原子炉モードスイッチを「停止」位置にする。
全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる。
全挿入位置まで挿入されていない制御俸が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行う。
全制御棒が全挿入位置まで挿入された場合または全挿入位置まで插入されていない制御棒が 1 本以下の場合，原子炉水位，原子炉圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炉再循環ポンプ速度を碓認する。

－平均出力領域モニタおよび起動領域モニタにより原子炉未臨界を碓認する

B．原子炉水位
原子怇水位を確認する
原子炉水位が原子炉水位低スクラム設定値まで低下した場合，格納容器隔離弁の開閉状態を確認する
－タービン駆動給水ポンプを停止し ，電動駆動給水ポンプおよび給水制御系（単要素）で原子炉水位を原子炉水位低 スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する。
給復水系（主復水器を含む）が正常でない場合，原子炬隔離時冷却系を手動作動する。（原子炉隔離時冷却系が自動作動した場合は不要）
原子炉水位が非常用炉心泠却系作動水位まで低下した場合には，非常用炉心椧却系および原子炉隔離時冷却系の運転状態を確認する。
－給復水系，非常用炬心冷却系または原子炉隔離時冷却系により原子炉水位を原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する。
原子炉水位が原子炉水位低スクラム設定値以上に維持できない場合は，原子炉制御「水位確保」に移行する。
原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」移行する。
原子炉水位が有効然料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」一移行する
※：タービン駆動給水ポンプは，原子炉水位高タービントリップ設定値で自動停止する。

保安規定 添付1—1
2．一次格納容器制御
（3）サプレッションプール温度制御
（1）目的
－サプレッションプールの水温および空間部温度を監視し，制御する
（2）導入条件
－原子炉制御「スクラム」において，主蒸気逃がし安全弁 が開固着の場合
－サプレッションプール水の平均温度が通常運転時制限
温度を超えた場合
－サプレッションプール水の平均温度が通常運転時制限温度末満となった場合
サプレッションプール空間部の局所温度が温度高警報設定点未満となった場合
－サプレッションプール空間部の局所温度が温度高警報
設定点以上の場合
（4）基本的な考え方
－サプレッションプール水温およびサプレッションプール空間部局所温度が通常運転時制限温度を超え，各制御を実施しても上昇継続する場合は，直ちに手動スクラムし，原子炉を減圧する。
（5）主な監視操作内容
A．サプレッションプール水温制御
サブレッションプール水温が通常運転时制限温度まで上昇したら，サプレッションプールの椧却を開始する
サプレッションプール水温がスクラム制限温度に到達したら，手動スクラムし，サプレッションプール水温を碓認 する。サブレッションプール熱容量制限図の運転禁止範囲外の場合は原子炉制御「減圧浍却」一移行し，サプレッ ションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速減圧」一移行する。
－サプレッションプール水温が $80^{\circ} \mathrm{C}$ に到達した場合，高圧炬心スプレイ系の水源切替えを行う。
B．サブレッションブール空間部温度制御
－サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプール椧却を実施するとと もに，サプレッションプール空間部温度上昇の原因（原子炬隔離時冷却系の運転，主蒸気逃がし安全升排気管の異常，サプレッションプール・ドライウェル間真空破壊弁の異常等）を復旧する。
サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプールスプレイを作動させ る。
サプレッションプール空間部局所温度の上昇抑制を行っても，サプレッションプール空間部局所温度が温度高警報設定値未満に維持できない場合は，手動スクラムする。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炬制御「減圧泠却」一移行し，サプレッションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速減圧」へ移行する。

保安規定 添付1—1

1．原子炉制御
 （4）減圧冷却

（1）目的
－原子炉水位を有効燃料頂部以上に維持しつつ，原子炉を減圧し，椧温停止状態へ移行させる
（2）導入条件
原子炉制御「スクラム」において，主蒸気隔離弁が閉状態でかつ主蒸気逃がし安全弁による原子炉圧力の調整 ができない場合またはタービンバイパス弁もしくは主蒸気逃がし安全弁を使用して原子炉圧力の調整および監視ができる場合
－原子炉制御「水位確保」において，有効燃料頂部から原子炉水位低スクラム設定値の間に維持可能な場合
一次格納容器制御「サプレッションプール水温制御」に
おいて，手動スクラム後，サプレッションプール水温が
サプレッションプール熱容量制限図の運転禁止範囲外
の場合
（4）基本的な考え方
－緊急性を要しないため，原子炉減圧時の原子炉冷却材温度変化率は原子炉冷却材温度変化率制限値以内になるよう に努める。
－主蒸気逃がし安全弁にて減圧冷却を行ら場合には，原子炉冷却材温度変化率およびサプレッションプール水温を十分監視しながら，主蒸気逃がし安全弁の開閉を間欠に行う。さらに，サプレッションプール水温上昇を均一にするよ らに開閉する主蒸気逃がし安全弁を選択する。また，サブレッションプール水温上甼防止のため，残留熱除去系によ るサプレッションプール泠却を行ら。
－水位と減圧を並行操作する。
（5）主な監視操作内容

A．水位

給復水系，原子炬隔離時冷却系，非常用炬心椧却系または高圧代替注水系を使用して，原子炉水位を有効燃料頂部 から原子炉水位高タービントリッフ設定値の間で維持する
原子炉水位が不明の場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」に移行す る。
原子炉水位を有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」に移行する

B．減圧

－注水系統が原子炬隔離時冷却系または高圧代替注水系のみ場合，原子炉圧力を原子炉隔離時冷却系または高圧代替注水系定格流量維持最低圧力以上に維持する。
－主復水器が使用可能である場合，タービンバイパス弁等による減圧を行う
主復水器が使用不能であり，かつサプレッションプール水温がサプレッションプール熱容量制限図の運転禁止範囲外でサプレッションプール泠却が実施されている場合，主蒸気逃がし安全弁等による減圧を行う。
主復水器が使用不能であり，かつサプレッションプール水温がサプレッションプール熱容量制限図の運転禁止範囲 に入った場合，不測事態「急速減圧」に移行する
原子炉圧力が残留熱除去系（原子炉停止時冷却系）の使用可能圧力以下の場合は，残留熱除去系（原子炬停止時冷却系）を起動する。残留熱除去系（原子炬停止時冷却系）が起動できない場合は，復旧を図る。

3．「全交流動力電源喪失（長期 TB）」の対応手順の概要
「全交流動力電源喪失（TBU）」の対応手順の概要

- 十分な炬心冷却状態を維持する。
- 原子炉を泠温停止状態まで椧却する。
- 一次および二次格納容器制御への導入条件を監視する。（原子炉がスクラムしない場合を含む） （3）脱出条件
- 手動スクラムした場合
- 各制御の脱出条件が成立した場合

（4）基本的な考え方

- 原子炉スクラム要求時にはスクラム成功の有無の確認を確実に行う
- 単一故障による原子炉スクラム時の復旧操作を全て原子炉制御「スクラム」で収束させ，通常停止操作に移行する。

原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷 する恐れがある場合には原子炉制御「スクラム」と一次格納容器制御を並行して行う。
二次格納容器制御「原子炉建屋制御」から要求される操作は原子炉制御「スクラム」と二次格納容器制御を並行し て行ら
－原子炉制御「スクラム」においては，最初に「原子炉出力」の制御棒全挿入を確認し，「原子炉水位」，「原子炉圧力」，「電源・タービン」の各制御を並行して行う。
－多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炉制御「ス クラム」での制御を並行して行ら。

（5）主な監視操作内容

A．原子炉出力
「原子炉自動スクラム」 警報の発信を確認する。
全制御棒插入状態を確認する。
平均出力領域モニタの指示を確認する。
自動スクラムが失敗した場合には，手動スクラムを行う。
原子炉モードスイッチを1停止」位置にする。
全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる
－全挿入位置まで挿入されていない制御棒が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行ら。
全制御棒が全挿入位置まで挿入された場合または全挿入位置まで挿入されていない制御棒が 1 本以下の場合，原子炉水位，原子炉圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炉再循環ポンプ速度を確認する。 －平均出力領域モニタおよび起動領域モニタにより原子炉未臨界を確認する。

B．原子炉水位

－原子炉水位が原子炉水位低スクラム設定値まで低下した場合，格納容器隔離亣の開閉状態を確認する
タービン駆動給水ポンプを停止し\％，電動駆動給水ボンブおよび給水制御系（単要素）で原子炉水位を原子炉水位低 スクラム設定值から原子炉水位高タービントリップ設定值の間を目標として維持する
－給復水系（主復水器を含む）が正常でない場合，原子炬隔離時冷却系を手動作動する。（原子炉隔離侍冷却系が自動作動した場合は不要）
原子炉水位が非常用炉心椧却系作動水位まで低下した場合には，非常用炉心椧却系および原子炬隔離時椧却系の運転状態を確認する。
給復水系，非常用炬心椧却系または原子炉隔離時冷却系により原子炉水位を原子炉水位低スクラム設定值から原子炉水位高タービントリップ設定値の間を目標として維持する
原子炉水位が原子炉水位低スクラム設定値以上に維持できない場合は，原子炉制御「水位確保」に移行する。
原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」移行する。
原子炉水位が有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御一移行する。
－原子炉水位を連続的に監視する
※：タービン駆動給水ポンブは，原子炉水位高タービントリップ設定値で自動停止する。

C．原子炉圧力

原子炬スクラム後，原子炉圧力を確認する
主蒸気隔離弁が開の場合，原子炉圧力制御が正常であることを碓認する。また，主復水器が使用可能であることを確認する。
原子炬圧力制御が正常でない場合または主復水器が使用不能である場合は，主蒸気隔離弁を閉鎖し原子炬を隔離す る。
主蒸気逃がし安全弁が開固着した場合，一次格納容器制御「サプレッションプール水温制御」一移行する。
主蒸気隔離弁が閉の場合，主蒸気逃がし安全弁を開して，原子炉圧力を調整する。また，主蒸気逃がし安全弁の開閉によって原子炉圧力の調整ができない場合，原子炉制御「減圧冷却」 へ移行する。なお，主復水器が使用可能で ある場合は主蒸気管ドレン弁により調整してもよい
主蒸気隔催弁が閉の場合，主蒸気逃がし安全弁の開閉によってサプレッションプールの水温が上昇するため，残留熱除去系によるサプレッションプール椧却を行ら。
原子炬圧力がタービンバイパス弁または主蒸気逃がし安全弁により制御されていることを連続的監視する。また主蒸気逃がし安全弁で制御している場合は，主蒸気逃がし安全弁の開閉状態を連続的に監視する。

D．電源・タービン

原子炉スクフム後，発電機出力かか低卜していることおよびタービン自動トリッブを確認する。

- タービントリップ状態およひ発電機トリップ状態を確認する
- 所内電源系が確保されていることを確認する

直流電源が確保されない場合は，「電源回復（直流電源復旧）」 へ移行する。
4）•起動変圧器から受電されていない場合，「電源回復（交流電源復旧）」 い移行する。
非常用母線が正常であることを確認する。正常でない場合，「電源回復」へ移行する
－主蒸気隔離弁が開の場合，原子炉圧力制御が正常であること，主復水器が使用可能であることを碓認する
原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は，主蒸気隔離弁を閉鎖し原子炉を隔離 る。
タービンおよび発電機の停止状態を確認する
空気抽出器およびグランドシールの切替により主復水器真空度を維持する。

E．モニタ確認

各種放射線モニタの指示を確認する
各種放射線モニタの指示の異常が確認された場合，「復旧」操作へ移行せず原因の調查を実施する

F．復旧

原子炬水位が原子炉水位低スクラム設定値以上で安定していることを確認する
格納容器隔離系がリセット可能であることを確認する
原子炉圧力等の主要パラメータが整定していることを確認する
外部電源により電源が碓保されていることを確認する
直流電源負荷抑制を実施していた場合，負荷抑制を復旧する。
格納容器隔離信号をリセットし，隔離状態を復旧する。
原子炬浍却材浄化系により原子炬水位が調整可能であることを確認する。また，原子炬建屋換気空調系を起動し，非常用ガス处理系を停止する
スクラム原因を究明し，原因除去後スクラムリセットを行う
原子炉再循環ポンプが停止している場合，原子炉水位を原子炉水位高タービントリップ設定値以上で維持する。原子炉を椧温停止する。

保安規定 添付1－1

5．電源制御

（1）電源回復
（1）目的
－交流電源および直流電源の供給を回復し維持する
（2）導入条件
原子炉制御「スクラム」において，直流電源が喪失し場合
（1）－原子炉制御「スクラム」において，起動用変圧器から の受電に失敗した場合
原子炬制御「スクラム」において，非常用C母線また
はD母線の電源が辕失した場合
（4）基本的な考え方

- 非常用ディーゼル発電機の起動状況を確認し，状況に応じて代替電源設備による給電を行う。
- 非常用交流電源㖆失が長期化する場合には常設 125 V 直流電源および250V直流電源延命のため，直流負荷の切り離しを実施し，直流電源延命させる
使用可能な設備を確認し，C，D母線の受電操作を行う。C，D母線の復旧が不可能な場合は，G母線の受電を行 い，交流電源切替盤で切り替えを実施する。
－直流電源喪失時は，常設代替直流電源（ 125 V 代替蓄電池および 250 V 蓄電池）より受電する。常設代替直流電源からできない場合には，可搬型計測器にて中央制御室で計器每に確認する。
非常用交流電源衰失が長期化する場合には常設代替直流電源（125V代替蓄電池および250V蓄電池）の延命 のため，負荷の切り離しを行ら。
（5）主な監視操作内容
A．非常用交流高圧電源確保
非常用ディーゼル発電機の運転状態を確認する。
運転している非常用ディーゼル発電機に対応する原子炬補機冷却海水系の運転状態を確認する。当該原子炬補機冷却海水系の運転不可の場合は，常設代替交流電源設備を起動し，非常用ディーゼル発電機を停止する。
非常用ディーゼル発電機からの受電ができない場合，予備変圧器より受電する。予備変圧器からの受電ができない場合は常設代替交流電源設備より受電し，常設代替交流電源設備からの受電もできない場合は，号炉間等より受電 する。
2 •非常用交流高圧電源母線 2 系統喪失となった場合，常設代替交流電源設備より受電する
－非常用交流高圧電源母線 2 系統喪失となった場合であって，常設代替交流電源設備から受電できた非常用交流高圧電源母線が 1 系統である場合，直流 250 V 充電器を受電した交流高圧電源母線側へ切り替える。 た場合，直流駆動低圧注水系の系統構成，発電機水素ガス放出ならびに直流 250 V 電源碓保および直流 125 V雨源碓保を行うとともに，号炉間等からの受電を実施する
非常用交流高圧電源母線の号炉間等からの受電ができなかった場合，可搬型代替交流電源設備より受電する。
－給電設備容量に応じた設備復旧を行ら。常設代替交流電源設備から受電している場合は，受電後 1 時間および 24時間にて常設代替交流電源設備の負荷抑制を実施する。

B．直流電源確保

 －俊および8時間後までに負何の切り陮しによる負荷抑制を実施する直流電源 A 系および B 系が霊失または枯渴した場合，常設代替直流電源設備より給電する。
直流電源A系およびB系が喪失または枯渴し，常設代替直流電源設備より給電している場合であって，G母線の受電ができない場合は，8時間後に負荷抑制を実施する。また，代替直流電源用切替盤への電源車接続を実施し，常設代替直流電源設備の充電器へ給電する。

C．直流 250 V 電源確保

発電機水素がスの放出の完了または，直流電源 A 系および B 系が䨤失した場合は負荷抑制を実施する

保安規定 添付1－1
2．一次格納容器制御
（3）サプレッションプール温度制御
（1）目的
－サプレッションプールの水温および空間部温度を監視し，制御する
（2）導入条件（3）脱出条件
－原子炉制御「スクラム」において，主蒸気逃がし安全弁 が開固着の場合
－サプレッションプール水の平均温度が通常運転時制限
サプレッションプール水の平均温度が通常運転時制限温度未満となった場合
サプレッションプール空間部の局所温度が温度高警報設定点未満となった場合
サプレッションプール空間部の局所温度が温度高警報
設定点以上の場合
（4）基本的な考え方
－サプレッションプール水温およびサプレッションプール空間部局所温度が通常運転時制限温度を超え，各制御を実施しても上昇継続する場合は，直ちに手動スクラムし，原子炉を減圧する。
（5）主な監視操作内容
A．サブレッションプール水温制御
－サプレッションプール水温が通常連転時制限温度まで上昇したら，サプレッションプールの椧却を開始する
サプレッションプール水温がスクラム制限温度に到達したら，手動スクラムし，サプレッションプール水温を確認 する。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炉制御「減圧椧却」一移行し，サプレッ ションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速减圧」一移行する。
－サプレッションプール水温が $80^{\circ} \mathrm{C}$ に到達した場合，高圧炉心スプレイ系の水源切替えを行ら。
B．サプレッションプール空間部温度制御
－サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプール椧却を実施するとと もに，サプレッションプール空間部温度上昇の原因（原子炬隔離時冷却系の運転，主蒸気逃がし安全弁排気管の異常，サプレッションプール・ドライウェル間真空破壊弁の異常等）を復旧する。
サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプールスプレイを作動させ る。
－サプレッションプール空間部局所温度の上昇抑制を行っても，サプレッションプール空間部局所温度が温度高警報設定値未満に維持できない場合は，手動スクラムする。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炬制御「減圧泠却」一移行し，サプレッションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速減圧」一移行する

保安規定 添付1－1

4．不測事態
（2）急速減圧
（1）目的
－原子炬を速やかに減厂する

（2）導入条件

－原子炉制御「水位確保」において，給復水系もしくは非常用炉心冷却系または原子炉隔離時冷却系もしくは高圧代替注水系による原子炉水位の維持ができず，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ボンブ），万過水系）が起動で きた場合
－原子炉制御「減圧冷却」において，サプレッションプール水温がサプレッションプール熱容量制限図の運転禁止領域に入った場合
一次格納容器制御「格納容器圧力制御」において，サプレッションプール圧力が設計基準事故時最高圧力以上とな った場合
一次格納容器制御「ドライウェル温度制御」において，ドライウェル空間部局所温度がドライウェル設計温度に到達した場合
一次格納容器制御「サプレッションプール温度制御」において，サプレッションプール水温がサプレッションプー儿熱容量制限図の運転禁止領域に入った場合
－一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が真空破壊弁位置から作動差圧相当分の水位を引いた水位に誤差を考慮した値以上になった場合
一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が急速减圧へ移行する サプレッションプール水位以下になった場合
－二次格納容器制御「原子炉建屋制御」において，中央制御室からの漏えい箇所隔離に失敗した場合
不測事態「水位回復」において，給復水系または非常用炉心冷却系の 1 系統以上の起動ができない場合かつ原子炉隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合であって，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）が起動でき，原子炬隔離時冷却系機能維持最低圧力以上の場合
－不測事態「水位回復」において，給復水系または非常用炉心泠却系の 1 系統以上を起動しても原子炉水位を有効燃料丁頂部以上に維持できない場合
（4）基本的な考え方
原子炬圧力低下必要時に自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放して急速減圧する。または，自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそ れ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する。
－主蒸気逃がし安全弁が「急速減圧」時必要开数開放できない場合は，タービンバイパス弁および原子炬隔離時冷却系等を使用して減圧する。
原子炉減圧の結果，原子炉水位が不明になった場合は，不測事態「水位不明」へ移行する。
原子炉減圧時の原子炉泠却材温度変化率は原子炉冷却材温度変化率制限値を遵守する必要はない。
急速減圧中に原子炉注へ注水可能な系統が䨤失した場合は，急速減圧操作を中断し，原子炉注へ注水可能な系統を再起動する。

保安規定 添付1－1

（5）主な監視操作内容

2）－自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放する。
－自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁と それ以外の主蒸気逃がし安全亣を合わせて「急速減圧」時必要弁数開放する
自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放できなければ，自動減压機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要最小弁数以上開放する
原子炉減圧が不十分である場合，主蒸気隔崔亣を開し，タービンバイパス弁と主復水器により減圧する
主蒸気隔離弁が開できなければ，原子炉隔離侍冷却系，高圧代替注水系または原子炉冷却材浄化系ブローラインを使用して減圧する。
－原子炉水位が判明している水位が不明な合は，不測合は，不測事態「能「位不明」の「減圧」の満水注入」」およ前の制御一移行する。御」へ移行する。

保安規定 添付1－1
2．一次格納容器制御
（3）サプレッションプール温度制御
（1）目的
－サプレッションプールの水温および空間部温度を監視し，制御する
（2）導入条件（3）脱出条件
－原子炉制御「スクラム」において，主蒸気逃がし安全弁 が開固着の場合
サプレッションプール水の平均温度が通常運転時制限温度を超えた場合

サプレッションプール水の平均温度が通常運転時制限温度未满となった場合
サプレッションプール空間部の局所温度が温度高警報設定点未満となった場合

設定占以上の坦
双定点以上の塩合
（4）基本的な考え有
－サプレッションプール水温およびサプレッションプール空間部局所温度が通常運転時制限温度を超え，各制御を実施しても上昇継続する場合は，直ちに手動スクラムし，原子炉を減圧する。
（5）主な監視操作内容
A．サプレッションプール水温制御
1－サプレッションプール水温が通常運転時制限温度まで上昇したら，サプレッションプールの椧却を開始する
－サプレッションプール水温がスクラム制限温度に到達したら，手動スクラムレ，サプレッションプール水温を確認 する。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炉制御「減圧冷却」へ移行し，サプレッ ションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速减圧」一移行する。
－サプレッションプール水温が $80^{\circ} \mathrm{C}$ に到達した場合，高圧炬心スプレイ系の水源切替えを行ら。

B．サブレッションブール空間部温度制御

－サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプール椧却を実施するとと もに，サプレッションプール空間部温度上昇の原因（原子炬隔離時冷却系の運転，主蒸気逃がし安全弁排気管の異常，サプレッションプール・ドライウェル間真空破壊弁の異常等）を復旧する。

サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプールスプレイを作動させ る。
－サプレッションプール空間部局所温度の上昇抑制を行っても，サプレッションプール空間部局所温度が温度高警報設定値未満に維持できない場合は，手動スクラムする。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炬制御「減圧冷却」へ移行し，サプレッションプール熱容量制限図の運転禁止範囲に入った場合は不測事能「急速减压•一移行する

保安規定 添付1－3 表20 重大事故等対策における操作の成立性

第 7．1．3．3－4図 「全交流動力電源喪失（TBD）」の対応手順の概要

保安規定 添付1—1

1．原子炉制御

（1）スクラム

（1）目的

－原子炉を停止する。
十分な硆却状態を維持する。

- 原子炉を泠温停止状態まで泠却する。
- 次および二次格納容器制御への導入条件を監視する。（原子炬がスクラムしない場合を含む）

手動スクラムした場合
各制御の脱出条件が成立した坦会
（4）基本的な考え方
原子炉スクラム要求時にはスクラム成功の有無の確認を確実に行う
単一故障による原子炉スクラム時の復旧操作を全て原子炉制御「スクラム」で収束させ，通常停止操作に移行する。各計器を亚行監視し，修候に心した制枊を行う。
原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷 する恐れがある場合には原子炉制御「スクラム」と一次格納容器制御を並行して行ら。
二次格納容器制御「原子炉建屋制御」から要求される操作は原子炉制御「スクラム」と二次格納容器制御を並行し て行う
－原子炉制御「スクラム」においては，最初に「原子炉出力」の制御棒全挿入を確認し，「原子炉水位」，「原子炉圧力」，「電源・タービン」の各制御を並行して行う。
－多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炉制御「ス クラム」での制御を並行して行ら

（5）主な監視操作内容

A．原子炉出力
「原子炉自動スクラム」 警報の発信を確認する。
全制御棒插入状態を確認する。
平均出力領域モニタの指示を確認する。
自動スクラムが失敗した場合には，手動スクラムを行う。
原子炉モードスイッチを「停止」位置にする。
全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる
全挿入位置まで挿入されていない制御俸が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行う。
全制御棒が全挿入位置まで挿入された場合または全挿入位置まで挿入されていない制御棒が 1 本以下の場合，原子炉水位，原子炉圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炉再循環ポンプ速度を確認する。 －平均出力領域モニタおよび起動領域モニタにより原子炉未臨界を確認する。

B．原子炉水位

原子炬水位が原子炉水位低スクラム設定値まで低下した場合，格納容器隔離弁の開閉状態を碓認する。
タービン駆動給水ポンプを停止し＂，電動駆動給水ボンブおよび給水制御系（単要素）で原子炉水位を原子炉水位低 スクラム設定值から原子炉水位高タービントリップ設定値の間を目標として維持する。
－給復水系（主復水器を含む）が正常でない場合，原子炬隔離時冷却系を手動作動する。（原子炉隔離侍冷却系が自動作動した場合は不要）
原子炉水位が非常用炉心椧却系作動水位まで低下した場合には，非常用炉心椧却系および原子炬隔離時洽却系の運転状態を確認する。
給復水系，非常用炉心椧却系または原子炉隔離時冷却系により原子炉水位を原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する
原子炉水位が原子炉水位低スクラム設定値以上に維持できない場合は，原子炉制御「水位確保」に移行する。
原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」移行する。
原子炉水位が有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」へ移行する。
原子炉水位を連続的に監視する
※：タービン駆動給水ポンプは，原子炉水位高タービントリップ設定値で自動停止する。

C．原子炉圧力

原子炬スクラム後，原子炉圧力を確認する。
主蒸気隔離弁が開の場合，原子炉圧力制御が正常であることを碓認する。また，主復水器が使用可能であることを確認する
原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は，主蒸気隔離弁を閉鎖し原子炉を隔離す る。
－主蒸気逃がし安全弁が開固着した場合，一次格納容器制御「サプレッションプール水温制御」一移行する。
主蒸気隔離弁が閉の場合，主蒸気逃がし安全弁を開して，原子炉圧力を調整する。また，主蒸気逃がし安全弁の開閉によって原子炉圧力の調整ができない場合，原子炉制御「減圧冷却」 へ移行する。なお，主復水器が使用可能で ある場合は主蒸気管ドレン弁により調整してもよい
主蒸気隔離弁が閉の場合，主蒸気逃がし安全弁の開閉によってサプレッションプールの水温が上昇するため，残留熱除去系によるサプレッションプール椧却を行う。
原子炬圧力がタービンバイパス弁または主蒸気逃がし安全弁により制御されていることを連続的監視する。また主蒸気逃がし安全弁で制御している場合は，主蒸気逃がし安全弁の開閉状態を連続的に監視する。

D．電源・タービン

原子炉スクフム後，発䉓機出力が低下していることおよびタービン自動トリッブを確認する。
タービントリップ状態および発電機トリップ状態を碓認する
所内電源系が碓保されていることを確認する

- 直流電源が確保されない場合は，「電源回復（直流電源復旧）」 へ移行する。
- 起動変圧器から受電されていない場合，「電源回復（交流電源復旧）」－移行する。

非常用母線が正常であることを碓認する。正常でない場合，「電源回復」一移行する
主蒸気隔離弁が開の場合，原子炉圧力制御が正常であること，主復水器が使用可能であることを確認する。
原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は，主蒸気隔離亣を閉鎖し原子炉を隔離す る。
タービンおよび発電機の停止状態を確認する
－空気抽出器およびグランドシールの切替により主復水器真空度を維持する。

E．モニタ確認

各種放射線モニタの指示を碓認する
各種放射線モニタの指示の異常が確認された場合，「復旧」操作へ移行せず原因の調查を実施する。

F．復旧

原子炉水位が原子炉水位低スクラム設定値以上で安定していることを確認する
格納容器隔離系がリセット可能であることを確認する。

- 原子炉圧力等の主要パラメータが整定していることを確認する。
- 外部電源により電源が碓保されていることを確認する。
- 直流電源負荷抑制を実施していた場合，負荷抑制を復旧する。
- 格納容器隔離信号をリセットし，隔離状態を復旧する。
- 原子炉冷却材浄化系により原子炉水位が調整可能であることを確認する。また，原子炉建屋換気空調系を起動し，非常用がス処理系を停止する。
スクラム原因を究明し，原因除去後スクラムリセットを行う。
原子炉再循環ポンプが停止している場合，原子炉水位を原子炉水位高タービントリップ設定値以上で維持する。原子炬を泠温停止する。

保安規定 添付1－1

5．電源制御
 （1）電源回復

（1）目的
－交流電源および直流電源の供給を回復し維持する
原子炉制御「スクラム」において，直流電源が喪失し場合
原子炬制御「スクラム」において，起動用変圧器から
の受電に失敗した場合
原子炉制御「スクラム」において，非常用C母線また
はD母線の電源が喪失した場合
（4）基本的な考え方
－非常用ディーゼル発電機の起動状況を確認し，状況に応じて代替電源設備による給電を行う。
非常用交流電源進失が長期化する場合には常設 125 V 直流電源および250V直流電源延命のため，直流負荷の切り離しを実施し，直流電源延命させる。
－使用可能な設備を確認し，C，D母線の受電操作を行う。C，D母線の復旧が不可能な場合は，G母線の受電を行 い，交流電源切替盤で切り替えを実施する。
－直流電源喪失時は，常設代替直流電源（ 125 V 代替蓄電池および 250 V 蓄電池）より受電する。常設代替直流電源からできない場合には，可搬型計測器にて中央制御室で計器毎に確認する。
－非常用交流電源衰失が長期化する場合には常設代替直流電源（125V代替蓄電池および250V蓄電池）の延命 のため，負荷の切り離しを行ら。
（5）主な監視操作内容
A．非常用交流高圧電源確保
非常用ディーゼル発電機の運転状態を確認する。
運転している非常用ディーゼル発電機に対応する原子炬補機冷却海水系の運転状態を確認する。当該原子炬補機冷却海水系の運転不可の場合は，常設代替交流電源設備を起動し，非常用ディーゼル発電機を停止する
非常用ディーゼル発電機からの受電ができない場合，予備変圧器より受電する。予備変圧器からの受電ができない場合は常設代替交流電源設備より受電し，常設代替交流電源設備からの受電もできない場合は，号炉間等より受電 する。
非常用交流高圧電源母線 2 系統㖑失となった場合，常設代替交流電源設備より受電する。
非常用交流高圧電源母線 2 系統喪失となった場合であって，常設代替交流電源設備から受電できた非常用交流高圧電源母線が 1 系統である場合，直流 250 V 充電器を受電した交流高圧電源母線側へ切り替える。
非常用交流高圧電源母線 2 系統喪失となった場合であって， 2 系統とも常設代替交流電源設備から受電できなかっ た場合，直流駆動低圧注水系の系統構成，発電機水素がス放出ならびに直流 250 V 電源確保および直流 125 V電源碓保を行らとともに，号炉間等からの受電を実施する。
－非常用交流高圧電源母線の号炉間等からの受電ができなかった場合，可搬型代替交流電源設備より受電する。
給電設備容量に応じた設備復旧を行ら。常設代替交流電源設備から受電している場合は，受電後 1 時間および 24時間にて常設代替交流電源設備の負荷抑制を実施する。

B．直流電源確保

－非常用ディーゼル発電機および常設代替交流電源設備から直流電源A系およびB系への給電ができない場合， 1 時間後および8時間後までに負荷の切り離しによる負荷抑制を実施する。
（2）
直流電源A系およびB系かか喪失または枯渴し，常設代替直流電源設備より給電している場合であって，G母線の受電ができない場合は，8時間後に負荷抑制を実施する。また，代替直流電源用切替盤への電源車接続を実施し，常設代替直流電源設備の充電器へ給電する。

C．但流 250 V 電源確保

保安規定 添付1－1

5．電源制御
 （1）電源回復

（1）目的
－交流電源および直流電源の供給を回復し維持する

（3）脱出条件

起動用変圧器から所内電源を受電した場合
場合
－原子炉制御「スクラム」において，起動用変圧器から
の受電に失敗した場合
－原子炉制御「スクラム」において，非常用C母線また
はD母線の電源が喪失した場合
4）基本的な考え方

- 非常用ディーゼル発電機の起動状況を確認し，状況に応じて代替電源設備による給電を行う。
- 非常用交流電源战失が長期化する場合には常設 125 V 直流電源および 250 V 直流電源延命のため，直流負荷の切り離しを実施し，直流電源延命させる
使用可能な設備を確認し，C，D母線の受電操作を行う。C，D母線の復旧が不可能な場合は，G母線の受電を行 い，交流電源切替盤で切り替えを実施する。
－直流電源喪失時は，常設代替直流電源（ 125 V 代替蓄電池および 250 V 蓄電池）より受電する。常設代替直流電源からできない場合には，可搬型計測器にて中央制御室で計器每に確認する。
非常用交流電源喪失が長期化する場合には常設代替直流電源（125V代替蓄電池および250V蓄電池）の延命 のため，負荷の切り離しを行ら。
（5）主な監視操作内容
A．非常用交流高圧電源確保
非常用ディーゼル発電機の運転状態を確認する。
運転している非常用ディーゼル発電機に対応する原子炬補機冷却海水系の運転状態を確認する。当該原子炬補機冷却海水系の運転不可の場合は，常設代替交流電源設備を起動し，非常用ディーゼル発電機を停止する。
非常用ディーゼル発電機からの受電ができない場合，予備変圧器より受電する。予備変圧器からの受電ができない場合は常設代替交流電源設備より受電し，常設代替交流電源設備からの受電もできない場合は，号炉間等より受電 する。
（3）•非常用交流高圧電源母線2系統喪失となった場合，常設代替交流電源設備より受電する。
－非常用交流高圧電源母線 2 系統喪失となった場合であって，常設代替交流電源設備から受電できた非常用交流高圧電源母線が 1 系統である場合，直流 250 V 充電器を受電した交流高圧電源母線側へ切り替える。
（4）•非常用交流高圧電源母線 2 系統表失となった場合であって， 2 系統とも常設代替交流電源設備からら受電できなかっ た場合，直流駆動低圧注水系の系統構成，発電機水素ガス放出ならびに直流 250 V 電源確保および直流 125 V電源確保を行らとともに，号炬間等からの受電を実施する
－非常用交流高圧電源母線の号炉間等からの受電ができなかった場合，可船型代替交流電源設備より受電する。
給電設備容量に応じた設備復旧を行ら。常設代替交流電源設備から受電している場合は，受電後 1 時間および 24時間にて常設代替交流電源設備の負荷抑制を実施する。

B．直流電源確保

－非常用ディーゼル発電機および常設代替交流電源設備から直流電源 A 系およびB系への給電ができない場合， 1 時間後および8時間後までに負荷の切り離しによる負荷抑制を実施する
直流電源 A 系および B 系が霛失または枯渴した場合，常設代替直流電源設備より給電する。
直流電源A系およびB系が喪失または枯渴し，常設代替直流電源設備より給電している場合であって，G母線の受電ができない場合は，8時間後に負荷抑制を実施する。また，代替直流電源用切替盤への電源車接続を実施し，常設代替直流電源設備の充電器へ給電する

C．直流 250 V 電源確保

発電機水素がスの放出の完了または，直流電源A系およびB系が喪失した場合は負荷抑制を実施する。

保安規定 添付1－1

[^2]（2）

保安規定 添付1－1

4．不測事態
（1）水位回復
（1）目的
－原子炬水位を回復する

（2）導入条件

－原子炉制御「スクラム」において，原子炉水位が有効燃料頂部以上を維持できない場合
原」制仰「水位傕保」において，原子炉水位が有効燃料頂部以上を維持できない場合
原子炉制御【減圧浍却」において，原子炉水位が有効燃料頂部以上を維持できない場合
不測事態「急速減圧」において，減圧が完了し，水位が判明しており，かつドライウェル空間部温度が飽和温度以下の場合
（4）基本的な考え方
－原子炉水位の徴候に応じて，非常用炉心冷却系の再起動や低圧代替注水系（常設），低圧代替注水系（可搬型）の起動を行う。
－原子炉停止後何らかの理由により炬心が露出した場合，炉心の健全性が保たれている間に何らかの方法により原子炉水位を碓保しなければならない。そのために，原子炉停止後，燃料被覆管温度が $1,200^{\circ} \mathrm{C}$ または燃料被覆管酸化割合が 15% に達するまでの時間内に原子炉水位を確保する。よって，炉心が露出した時刻を記録し，前述の時間以内に原子炉水位を有効燃料頂部以上に回復するように非常用炬心椧却系，低圧代替注水系（常設）および低圧代替注水系（可搬型）を起動する。
－原子炉制御「反応度制御」実施中は，本制御を実施しない。
（5）主な監視操作内容
－原子炉水位が不明となった場合，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」へ移行 する。
－原子炉水位が有効燃料頂部に到達した場合，原子炉水位が有効燃料頂部に到達した時刻を記録するとともに，一次格納容器制御「格納容器水素濃度制御」を導入する。

給復水系または非常用炉心冷却系の 1 系統以上の起動ができない場合であって，原子炉隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循澴椧却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）を起動し，原子炬圧力が原子炬隔離時冷却系機能維持最低圧力以上の場合は，不測事態「急速減圧」い移行する。
給復水系または非常用炬心椧却系の 1 系統以上を起動しても原子灯水位を有効燃料頂部以上に維持できない場合 は，不測事態「急速減圧」へ移行する。
原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「水位確保」へ移行する。

保安規定 添付1－1

1．原子炉制御 （3）水位確保		
（1）目的 －原子炉水位を有効然料頂部以上に回復させ，安定に維持する。		
	（2）導入条件 原子炉制御「スクラム」にしゃいて原子炉水位が原子炉水位低スクラム設定値以上に維持できない場合 不測事態「水位回復」において原子炉水位を有効燃料頂部以上に維持できる場合または有効燃料頂部以上で安定している場合 不測事態「急速減圧」において，減圧が完了し水位が判明している場合 不測事態「水位不明」において最長許容炬心露出時間以内に原子炉水位が判明した場合	（3）脱出条件 4．原子炉水位が原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定値の間に維持できる場合
（4）基本的な考え方 －原子炉水位と原子炬に注水可能な系統を随時把握する。		
	5）主な監視操作内容 A．水位 作動すべきものが不作動の場合は，手動で作動させる。給愎水系，原子炬隔噰侍冾却系，非常用炉心洽却系また クラム設定值かから原子炉水位高多ービントリッフ設定値 －原子炉水位を原子炉水位低スクラム設定值以上に維持て非常用炉心椧却系が起動せず，原子炉隔騅侍冾却系また は，低圧代替注水系（低圧代替注水系（常設）（復水移送圧代替注水系（常設）（直流駆動低厌注水系ポンプ），圧代替注水采が起動できない場合は，不測事態「水位回 －原子炉水位を有效燃料頂部以上江維持できない場合は，水素賑度制御」に移行する。 原子炬水位が有効然料頂部以上に維持可能な場合は，原	は高圧代替注水系を使用して原子炉水位を原子炉水位低ス の間に維持する。 きず原子炉水位が降下中の場合であって，給復水系および は高圧代替注水系により原子炉水位の維持ができない場合送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低過水系）を起動し，不測事態「急速減圧」に移行する。低復」に移行する。 不測事態「水位回復」および一次格納容器制御「格納容器子炉制御「減圧冷却」に移行する。

保安規定 添付1－1

1．原子炉制御

（1）目的
－原子炉を停止する。
十分な炉心泠却状態を維持する
－原子炉を泠温停止状態まで泠却する。
㳄およい一次格納容器制御いの導入条件を監視する。（原子炬がスクラムしない場合を含む。）
（2）導人条件
－手動スクラムした場合
手動スタラムした場合
成立した場合
（4）基本的な考え方
原子炬スクラム要求時にはスクラム成功の有無の確認を確実に行ら。
単一故障による原子炬スクラム時の復旧操作を全て原子炬制御「スクラム」で収束させ，通常停止操作に移行する。各計器を並行監視し，徵候に応じた制御を行う。
－原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷 する恐れがある場合は原子炉制御「スクラム」と一次格納容器制御を並行して行ら。
—次格納容器制御「原子炉建屋制御」から要求される操作は原子炬制御「スクラム」と二次格納容器制御を並行し て行ら。
原子炉制御「スクラム」においては，最初に「原子炉出力」の全制御棒全挿入を確認し，「原子炉水位」，「原子炉圧力」，「電源・タービン」の各制御を並行して行う。
－多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炉制御「ス クラム」での制御を並行して行ら

（5）主な監視操作内容

A．原子炉出力
「原子炬自動スクラム」警報の発信を確認する
全制御棒挿入状態を確認する。
－平均出力領域モニタの指示を確認する。
自動スクラムが失敗した場合には，手動スクラムを行う。
原子炬モードスイッチを「停止」位置にする。
全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる。
－全挿入位置まで挿入されていない制御棒が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行ら。
全制御棒が全挿入位置まで挿入された場合または全挿入位置まで挿入されていない制御棒が 1 本以下の場合，原子炉水位，原子炉圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炉再循環ポンプ速度を確認する。

－平均出力領域モニタおよび起動領域モニタにより原子炬未臨界を確認する。

B．原子炉水位

原子炉水位を確認する

- 原子炬水位が原子炉水位低スクラム設定値まで低下した場合，格納容器隔離弁の開閉状態を確認する
- タービン駆動給水ポンプを停止し＊，電動駆動給水ポンプおよび給水制御系（単要素）で原子炉水位を原子炉水位低 スクラム設定値から原子炬水位高タービントリッフフ設定値の間を目標として維持する
－給復水系（主復水器を含む）が正常でない場合，原子炬隔離時冷却系を手動作動する。（原子炉隔離侍冷却系が自動作動した場合は不要）
－原子炉水位が非常用炉心椧却系作動水位まで低下した場合には，非常用炉心椧却系および原子炬隔離時冷却系の運転状態を確認する。
－給復水系，非常用炬心冷却系または原子炬隔離時冷却系により原子炉水位を原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する。
原子炉水位が原子炉水位低スクラム設定値以上に維持できない場合は，原子炉制御「水位確保」に移行する。 －原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」移行する。
原子炉水位が有効然料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」一移行する。
※：タービン駆動給水ポンプは，原子炉水位高タービントリップ設定値で自動停止する。

保安規定 添付 $1-1$
2．一次格納容器制御
（3）サプレッションプール温度制御
（1）目的
－サプレッションプールの水温および空間部温度を監視し，制御する
（2）導入条件 1 （3）脱出条件
－原子炉制御「スクラム」において，主蒸気逃がし安全弁 が開固着の場合
（1）
サプレッションプール水の平均温度が通常運転時制限
温度を超えた場合
サプレッションプール水の平均温度が通常運転時制限温度末満となった場合
サプレッションプール空間部の局所温度が温度高警報設定点未満となった場合
－サプレッションプール空間部の局所温度が温度高警報
設定点以上の場合
（4）基本的な考え方
－サプレッションプール水温およびサプレッションプール空間部局所温度が通常運転時制限温度を超え，各制御を実施しても上昇継続する場合は，直ちに手動スクラムし，原子炉を減圧する。
（5）主な監視操作内容
A．サプレッションプール水温制御
サブレッションプール水温が通常運転時制限温度まで上昇したら，サブレッションプールの椧却を開始する
サプレッションプール水温がスクラム制限温度に到達したら，手動スクラムし，サプレッションプール水温を確認 する。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炉制御「減圧椧却」一移行し，サプレッ ションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速減圧」一移行する。
－サプレッションプール水温が $80^{\circ} \mathrm{C}$ に到達した場合，高圧炬心スプレイ系の水源切替えを行う。
B．サプレッションプール空間部温度制御
－サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプール椧却を実施するとと もに，サプレッションプール空間部温度上昇の原因（原子炬隔離時冷却系の運転，主蒸気逃がし安全弁排気管の異常，サプレッションプール・ドライウェル間真空破壊弁の異常等）を復旧する。
サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプールスプレイを作動させ る。
－サプレッションプール空間部局所温度の上昇抑制を行っても，サプレッションプール空間部局所温度が温度高警報設定値未満に維持できない場合は，手動スクラムする。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炬制御「減圧泠却」一移行し，サプレッションプール熱容量制限図の運転禁止範囲に入った場合は不測事能「急速减圧」一移行する

保安規定 添付1－1

4．不測事態
（2）急速減圧
（1）目的
原子师を速やかに減たする

（2）導入条件

－原子炉制御「水位確保」において，給復水系もしくは非常用炉心冷却系または原子炉隔離時冷却系もしくは高圧代替注水系による原子炉水位の維持ができず，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ボンブ），万過水系）が起動で きた場合
原子炉制御「減圧冷却」において，サプレッションプール水温がサプレッションプール熱容量制限図の運転禁止領域に入った場合
一次格納容器制御「格納容器圧力制御」において，サプレッションプール圧力が設計基準事故時最高圧力以上とな った場合
－一次格納容器制御「ドライウェル温度制御」において，ドライウェル空間部局所温度がドライウェル設計温度に到達した場合
一次格納容器制御「サプレッションプール温度制御」において，サプレッションプール水温がサプレッションプー ル熱容量制限図の運転禁止領域に入った場合
－一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が真空破壊弁位置から作動差圧相当分の水位を引いた水位に誤差を考慮した値以上になった場合
一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が急速減圧へ移行する サプレッションプール水位以下になった場合

- 二次格納容器制御「原子炉建屋制御」において，中央制御室からの漏えい箇所隔離に失敗した場合
- 不測事態「水位回復」において，給復水系または非常用炉心泠却系の 1 系統以上の起動ができない場合かつ原子炉隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合であって，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循擐冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）が起動でき，原子炉隔離時冷却系機能維持最低圧力以上の場合
－不測事態「水位回復」において，給復水系または非常用炉心泠却系の 1 系統以上を起動しても原子炉水位を有効燃料頂部以上に維持できない場合
（4）基本的な考え方
－原子灲圧力低下必要時に自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放して急速減圧する。または，自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそ れ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する。
－主蒸気逃がし安全弁が「急速減圧」時必要亣数開放できない場合は，タービンバイパス弁および原子炬隔離時冷却系等を使用して減圧する。
原子炉減圧の結果，原子炉水位が不明になった場合は，不測事態「水位不明」へ移行する。
－原子炉減圧時の原子炬椧却材温度変化率は原子炉泠却材温度変化率制限値を遵守する必要はない。
急速減圧中に原子炉注へ注水可能な系統が䨤失した場合は，急速減圧操作を中断し，原子炉注へ注水可能な系統を再起動する。

保安規定 添付1－1
（5）主な監視操作内容
（1）
搬型）

2）•自動減圧機能を有する主蒸気逃がし安全弁全亣を順次開放する。
－自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁と それ以外の主蒸気逃がし安全弁を合わせて「急速减圧」時必要弁数開放する。
自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要最小弁数以上開放する
原子炉減圧が不十分である場合，主蒸気隔離弁を開し，タービンバイバス弁と主復水器により減圧する。
主蒸気隔離弁が開できなければ，原子炉隔離時冷却系，高圧代替注水系または原子炬冷却材浄化系ブローラインを使用して減圧する。
－原子炬水位が判明している場合は，不測事態「急速減圧」の導入前の制御一移行する。
－原子炉水位が不明な場合は，不測事態「水位不明」の「満水注入」および一次格納容器制御「格納容器水素濃度制御」へ移行する。

保安規定 添付1－3 表20 重大事故等対策における操作の成立性

1－III．4－16

第 7．1．3．4－5図 「全交流動力電源喪失（TBP）」の対応手順の概要

保安規定 添付1－1
1．原子炉制御
（1）スクラム
（1）目的

- 原子炉を停止する。
- 十分な炉心冷却状態を維持する。
- 原子炉を泠温停止状態まで泠却する。

一次および二次格納容器制御への導入条件を監視する。（原子炉がスクラムしない場合を含む）
（3）脱出条件

- 手動スクラムした場合
- 各制御の脱出条件が成立した場合
（4）基本的な考え方
原子炉スクラム要求時にはスクラム成功の有無の確認を確実に行ら。
単一故障による原子炬スクラム時の復旧操作を全て原子炬制御「スクラム」で収束させ，通常停止操作に移行する。各計器を並行監視し，㮹候に心した制仰を行う。
原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷 する恐れがある場合には原子炉制御「スクラム」と一次格納容器制御を並行して行う。
二次格納容器制御「原子炉建屋制御」から要求される操作は原子炉制御「スクラム」と二次格納容器制御を並行し て行ら。
－原子炉制御「スクラム」においては，最初に「原子炉出力」の制御棒全挿入を確認し，「原子炉水位」，「原子炉圧力」，「電源・タービン」の各制御を並行して行う。
－多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炉制御「ス クラム」での制御を並行して行ら。

（5）主な監視操作内容

A．原子炉出力
偣制啣榬慟スクラム」警報の発信を確認する。
全制御棒挿入状態を確認する。
平均出力領域モニタの指示を確認する。
自動スクラムが失敗した場合には，手動スクラムを行ら。
原子炉モードスイッチを「停止」位置にする。
全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる
－全挿入位置まで挿入されていない制御棒が 1 本を超える場合，「反応度制御」へ移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行ら
全制御棒が全挿入位置まで挿入された場合または全挿入位置まで挿入されていない制御棒が 1 本以下の場合，原子炉水位，原子炉圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炉再循環ポンプ速度を確認する。 －平均出力領域モニタおよび起動領域モニタにより原子炬末臨界を確認する。

B．原子炉水位

2－原子炬水位を確認さる
（3）•原子炉水位が原子炬水位低スクラム設定値まで低下した場合，格納容器隔離升の開閉状態を確認する
4）・タービン駆動給水ポンブを停止し＊，電動駆動給水ポンブおよび給水制御系（単要素）で原子炬水位を原子炉水位低 スクラム設定値から原子炉水位高タービントリップ設定值の間を目標として維持する。
－給復水系（主復水器を含む）が正常でない場合，原子炬隔離時冷却系を手動作動する。（原子炉隔離侍冷却系が自動作動した場合は不要）
（5）•原子炉水位が非常用炬心椧却系作動水位まで低下した場合には，非常用炬心椧却系および原子炬隔離時冷却系の運転状態を確認する。
給復水系，非常用炉心椧却系または原子炉隔離時冷却系により原子炉水位を原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する。

原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素浱度制御」へ移行する。
原子炬水位が有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御へ移行する。
原子炉水位を連続的に監視する
※：タービン駆動給水ポンプは，原子炉水位高タービントリップ設定値で自動停止する。

保安規定 添付1－1

C．原子炉圧力
－原子炉スクラム後，原子炉圧力を確認する
主蒸気隔離弁が開の場合，原子炬圧力制御が正常であることを確認する。また，主復水器が使用可能であることを碓認する。
原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は，主蒸気隔離升を閉鎖し原子炬を隔離す る。
（3）－主蒸気逃がし安全弁が開固着した場合，一次格納容器制御「サプレッションプール水温制御」一移行する
閉によって原子炉圧力の調整ができない場合，原子炉制御「減圧冷却」へ移行する。なお，主復水器が使用可能で ある場合は主蒸気管ドレン弁により調整してもよい。
主蒸気隔離弁が閉の場合，主蒸気逃がし安全弁の開閉によってサプレッションプールの水温が上昇するため，残留熱除去系によるサプレッションプール泠却を行う。
原子炉圧力がタービンバイパス弁または主蒸気逃がし安全弁により制御されていることを連続的監視する。また主蒸気逃がし安全弁で制御している場合は，主蒸気逃がし安全弁の開閉状態を連続的に監視する。

```
D. 電源•タービン
```

- 原子炬スクラム後, 発電機出力が低下していることおよびタービン自動トリッブを確認する。
- タービントリップ状態および発電機トリップ状態を確認する。
- 所内電源系が確保されていることを確認する
直流電源が碓保されない場合は, 「電源回復 (直流電源復旧) 」へ移行する。
-起動変圧器から受電されていない場合, 「電源回復 (交流電源復旧) 」へ移行する。
-非常用母線が正常であることを確認する。正常でない場合, 「電源回復」へ移行する。
主蒸気隔離弁が開の場合, 原子炉圧力制御が正常であること, 主復水器が使用可能であることを確認する
原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は, 主蒸気隔離升を閉鎖し原子炉を隔離す
る。
タービンおよび発電機の停止状態を確認する。
空気抽出器およびグランドシールの切替により主復水器真空度を維持する。

E．モニタ確認

各種放射線モニタの指示を矿認する
各種放射線モニタの指示の異常が確認された場合，「復旧」操作へ移行せず原因の調査を実施する。

F．復旧

原子炬水位が原子炉水位低スクラム設定値以上で安定していることを確認する
格納容器隔離系がリセット可能であることを確認する。
－原子炉圧力等の主要パラメータが整定していることを確認する
外部電源により電源が碓保されていることを確認する。
直流電源負荷抑制を実施していた場合，負荷抑制を復旧する
格納容器隔離信号をリセットし，隔離状態を復旧する。
原子炉冷却材浄化系により原子炉水位が調整可能であることを確認する。また，原子炉建屋換気空調系を起動し，非常用がス処理系を停止する。
スクラム原因を究明し，原因除去後スクラムリセットを行ら
原子炉再循環ポンプが停止している場合，原子炉水位を原子炉水位高タービントリップ設定値以上で維持する。
原子炬を泠温停止する

保安規定 添付1－1

5 。電源制御 （1）電源回復	
（1）目的 －交流電源および直流電源の供給を回復し維持する。	
（2）導入条件 －原子炉制御「スクラム」において，直流電源が喪失し場合 －原子炉制御「スクラム」において，起動用変圧器からの受電に失敗した場合 －原子炉制御「スクラム」において，非常用C母線または D 母線の電源が喪失した場合	（3）脱出条件 －起動用変圧器から所内電源を受電した場合

（4）基本的な考え方

－非常用ディーゼル発電機の起動状況を確認し，状況に応じて代替電源設備による給電を行う。
非常用交流電源衰失が長期化する場合には常設 125 V 直流電源わよび 250 V 直流電源延命のため，直流負荷の切り離しを実施し，直流電源延命させる。
－使用可能な設備を確認し，C，D母線の受電操作を行う。C，D母線の復旧が不可能な場合は，G母線の受電を行 い，交流電源切替盤で切り替えを実施する。
－直流電源喪失時は，常設代替直流電源（125V代替蓄電池および250V蓄電池）より受電する。常設代替直流電源からできない場合には，可搬型計測器にて中央制御室で計器毎に確認する。
－非常用交流電源霛失が長期化する場合には常設代替直流電源（125V代替蓄電池および250V蓄電池）の延命 のため，負荷の切り離しを行う

（5）主な監視操作内容

A．非常用交流高圧電源確保

非常用ディーゼル発電機の運転状態を確認する
運転している非常用ディーゼル発電機に対応する原子炉補機冷却海水系の運転状態を碓認する。当該原子炬補機冷却海水系の運転不可の場合は，常設代替交流電源設備を起動し，非常用ディーゼル発電機を停止する。
非常用ディーゼル発電機からの受電ができない場合，予備変圧器より受電する。予備変圧器からの受電ができない場合は常設代替交流電源設備より受電し，常設代替交流電源設備からの受電もできない場合は，号炉間等より受電 する。
3）•非常用交流高圧電源母線 2 系統喪失となった場合，常設代替交流電源設備より受電する
非常用交流高圧電源母線 2 系統喪失となった場合であって，常設代替交流電源設備から受電できた非常用交流高圧電源母線が1系統である場合，直流 250 V 充電器を受電した交流高圧電源母線側へ切り替える。 た場合，直流駆動低圧注水系の系統構成，発電機水素ガス放出ならびに直流 250 V 電源碓保および直流 125 V電源碓保を行うとともに，号炬間等からの受電を実施する。

- 非常用交流高圧電源母線の号炉間等からの受電ができなかった場合，可搬型代替交流電源設備より受電する。
- 給電設備容量に応じた設備復旧を行う。常設代替交流電源設備から受電している場合は，受電後 1 時間および 24時間にて常設代替交流電源設備の負荷抑制を実施する。

B．直流電源確保

非常用ディーゼル発電機および常設代替交流電源設備から直流電源A采およびB采への給電ができない場合， 1 時間後および8時間後までに負荷の切り離しによる負荷抑制を実施する。
直流電源 A 系およびB系が喪失または枯渴した場合，常設代替直流電源設備より給電する。
直流電源A系およびB系が喪失または枯渴し，常設代替直流電源設備より給電している場合であって，G母線の受電ができない場合は， 8 時間後に負荷抑制を実施する。また，代替直流電源用切替盤への電源車接続を実施し，常設代替直流電源設備の充電器へ給電する

C．直流 250 V 電源確保
発電機水素がスの放出の完了または，直流電源A系およびB系が喪失した場合は負荷抑制を実施する

保安規定 添付1－1
1．原子炉制御
（1）目的
－原子炉水位を有効燃料頂部以上に回復させ，安定に維持する
（2）導入条件
（1）•原子炉制御「スクラム」において原子炉水位が原子炉水
位低スクラム設定值以上に維持できない場合
不測事態「水位回復」において原子炬水位を有効然料頂
部以上に維持できる場合または有効燃料頂部以上で安定している場合
－不測事態「急速減圧」において，減圧が完了し水位が判明している場合
不測事態「水位不明」において最長許容炬心露出時間以
内に原子灯水位が判明した場合
（4）基本的な考え方
－原子炉水位と原子炉に注水可能な系統を随時把握する。
（5）主な監視操作内容
A．水位
（2）•作動すべきものが不作動の場合は，手動で作動をせる
3）•給復水系，原子炉隔離時冷却系，非常用炉心椧却系または高圧代替注水系を使用して原子炉水位を原子炉水位低ス クラム設定値から原子炉水位高タービントリップ設定值の間に維持する。
4）－原子炬水位を原子炬水位低スクラム設定値以上に維持できず原子炬水位が降下中の場合であって，給復水系および非常用炉心椧却系が起動せず，原子炬隔離時冷却系または高圧代替注水系により原子炉水位の維持ができない場合 は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環泠却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動し，不測事態「急速减压」に移行する。低圧代替注水系が起動できない場合は，不測事態「水位回復」に移行する。
－原子灲水位を有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」に移行する。
原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「減圧冷却」に移行する。

保安規定 添付1－1
4．不測事態
（2）急速減圧

（1）目的

原子炬を速やかに減圧する。
（2）導人条件
（1）•原子炉制御「水位確保」において，給復水系もしくは非常用炬心椧却系または原子炬隔離侍椧却系もしくは高圧代替注水系による原子炉水位の維持ができず，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）が起動で きた場合
原子炉制御「減圧冷却」において，サプレッションプール水温がサプレッションプール熱容量制限図の運転禁止領域に入った場合
一次格納容器制御「格納容器圧力制御」において，サプレッションプール圧力が設計基準事故時最高圧力以上とな った場合
一次格納容器制御「ドライウェル温度制御」において，ドライウェル空間部局所温度がドライウェル設計温度に到達した場合
一次格納容器制御「サプレッションプール温度制御」において，サプレッションプール水温がサプレッションプー儿熱容量制限図の運転禁止領域に入った場合
－一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が真空破壊弁位置から作動差圧相当分の水位を引いた水位に誤差を考慮した値以上になった場合
一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が急速减圧へ移行する サプレッションプール水位以下になった場合

- 二次格納容器制御「原子炉建屋制御」において，中央制御室からの漏えい䈯所隔離に失敗した場合
- 不測事態「水位回復において，給復水系または非常用炉心泠却系の 1 系統以上の起動ができない場合かつ原子炉隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合であって，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）が起動でき，原子炉隔離侍冷却系機能維持最低圧力以上の場合
－不測事態「水位回復」において，給復水系または非常用炉心椧却系の 1 系統以上を起動しても原子炉水位を有効燃料頂部以上に維持できない場合
（4）基本的な考え方
原子炉圧力低下必要時に自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放して急速減圧する。または，自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそ れ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する。
主蒸気逃がし安全弁が「急速減圧」時必要弁数開放できない場合は，タービンバイパス弁および原子炬隔離時冷却系等を使用して減圧する
- 原子炉減圧の結果，原子炉水位が不明になった場合は，不測事態「水位不明」い移行する。
- 原子炉減圧時の原子炬泠却材温度変化率は原子炉冷却材温度変化率制限値を遵守する必要はない。

急速減圧中に原子炬注へ注水可能な系統が喪失した場合は，急速減圧操作を中断し，原子炬注へ注水可能な系統を再起動する。

保安規定 添付1－1
（5）主な監視操作内容
（1）•給復水系，非常用炬心椧却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循澴泠却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動する。

- 自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放する
- 自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁と それ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する。
－自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要最小弁数以上開放する。
原子炉減圧が不十分である場合，主蒸気隔離亣を開し，タービンバイパス弁と主復水器により減圧する
主蒸気隔離弁が開できなければ，原子炉隔離時冷却系，高圧代替注水系または原子炉冷却村浄化系ブローラインを使用して減圧する。
（3）•原子炉水位が判明している場合は，不測事態「急速減圧」の導入前の制御々移行する
－原子炉水位が不明な場合は，不測事態「水位不明」の「満水注入」およびー次格納容器制御「格納容器水素濃度制御」へ移行する。

保安規定 添付1—1

5．電源制御

（1）目的
－非常用交流電源および直流電源堆失事象発生時に，喪失した電源を回復させる。
（2）導入条件（3）脱出条件
－原子炉制御「スクラム」において，直流電源が喪失し場 •起動用変圧器から所内電源を受電した場合
合
原子炉制御「スクラム」において，起動用変圧器からの
受電に失敗した場合
原子炉制御「スクラム」において，非常用C母線または
D 母線の電源が喪失した場合
（4）基本的な考え方
非常用交流電源霛失が長期化する場合には常設 125 V 直流電源延命のため， 1 時間後， 8 時間後に直流負荷の切
り離しを実施し，直流電源延命させる。また，250V直流電源（DCLI駆動用）の直流電源確保のため1時間 で負荷の切り離しを行ら。
使用可能な設備を確認し，C，D母線の受電操作を行う。C，D母線の復旧が不可能な場合は，G母線の受電を行 い，交流電源切替盤で切り替えを実施する。
直流電源衰失時は，常設代替直流電源（125V代替蓄電池）より受電する。常設代替直流電源からできない場合 には，可搬型計測器にて中央制御室で計器毎に確認する。
－G母線の受電ができない場合，または可搬型直流電源設備に可搬型電源車が接続できない場合は，代替直流電源の延命のため，常設代替直流電源から給電開始後 8 時間に負荷の切り離しを行ら

（5）主な監視操作内容

A．非常用交流高圧電源確保

－非常用ディーゼル発電機の運転状態を確認する。
運転している非常用ディーゼル発電機に対応する原子炉補機冷却海水系の運転状態を確認する。当該原子炉補機冷却海水系の運転不可の場合は，常設代替交流電源設備を起動し，非常用ディーゼル発電機を停止する。
非常用ディーゼル発電機からの受電ができない場合，予備変圧器より受電する。予備変圧器からの受電ができない場合は常設代替交流電源設備より受電し，常設代替交流電源設備からの受電もできない場合は，号炉間等より受電 する。
非常用交流高圧電源母線 2 系統喪失となった場合，常設代替交流電源設備より受電する。
非常用交流高圧電源母線 2 系統喪失となった場合であって，常設代替交流電源設備から受電できた非常用交流高圧電源母線が 1 系統である場合，直流 250 V 充電器を受電した交流高圧電源母線側へ切り替える。
非常用交流高圧電源母線 2 系統㖑失となった場合であって， 2 系統とも常設代替交流電源設備から受電できなかっ た場合，直流駆動低圧注水系の系統構成，発電機水素ガス放出ならびに直流 250 V 電源確保および直流 125 V電源碓保を行うとともに，号炉間等からの受電を実施する。

- 非常用交流高圧電源母線の号炬間等からの受電ができなかった場合，可搬型代替交流電源設備より受電する。
- 給電設備容量に応じた設備復旧を行う。常設代替交流電源設備から受電している場合は，受電後 1 時間および 24時間にて常設代替交流電源設備の負荷抑制を実施する。

B．直流電源確保

－非常用ディーゼル発電機および常設代替交流電源設備かか直流電源A系およびB系への給電ができない場合， 1 時間後および 8 時間後までに負荷の切り離しによる負荷抑制を実施する
直流電源 A 系およびB系が喪失または枯渴した場合，常設代替直流電源設備より給電する。
－直流電源A系およびB系が喪失または枯渴し，常設代替直流電源設備より給電している場合であって，G母線の受電ができない場合は，8時間後に負荷抑制を実施する。また，代替直流電源用切替盤への電源車接続を実施し，常設代替直流電源設備の充電器へ給電する。

保安規定 添付1－1
1．原子炉制御
（3）水位確保
（1）目的
－原子炉水位を有効燃料頂部以上に回復させ，安定に維持する。
（2）導入条件
（3）脱出条件
－原子炉制御「スクラム」において原子炉水位が原子炉水
位低スクラム設定値以上に維持できない場合
－不測事態「水位回復」において原子炉水位を有効燃料丁頂
部以上に維持できる場合または有効燃料頂部以上で安定している場合
（1）－不測事態「急速減圧」において，減圧が完了し水位が判明している場合
－不測事態「水位不明」において最長許容炝心露出時間以
内に原子灯水位が判明した場合
（4）基本的な考え方
－原子炉水位と原子炉に注水可能な系統を随時把握する。
（5）主な監視操作内容
A．水位
作動すべきものが不作動の場合は，手動で作動させる。
－給復水系，原子炉隔離時冷却系，非常用炉心冷却系または高圧代替注水系を使用して原子炉水位を原子炉水位低ス クラム設定值から原子炉水位高タービントリップ設定值の間に維持する。
－原子炉水位を原子灲水位低スクラム設定値以上に維持できず原子灲水位が降下中の場合であって，給復水系および非常用炉心洽却系が起動せず，原子炉隔離時冷却系または高圧代替注水系により原子炉水位の維持ができない場合 は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）またはろ過水系）を起動し，不測事態「急速減圧」に移行する。低圧代替注水系が起動できない場合は，不測事態「水位回復」に移行する。
原子炉水位を有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」に移行する。
原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「減圧冷却」に移行する。

保安規定 添付1－1

1．原子炉制御

（1）スクラム

（1）目的

- 原子炉を停止する。
- 十分な炬心泠却状態を維持する。
- 原子炉を泠温停止状態まで椧却する。
- 一次および二次格納容器制御への導入条件を監視する。（原子炉がスクラムしない場合を含む）
- 導子炬スクラム信号が発生した場合

手動スクラムした場合

- 各制御の脱出条件が成立した場合
- （4）基本的な考え方
- 4）原子炬スクラム要求時にはスクラム成功の有無の碓認を確実に行う。
- 原子炬スクラム要求時にはスクラム成功の有無の確認を確実に行う。
- 単一故障による原子炉スクラム時の復旧操作を全
－各計器を並行監視し，徴候に応じた制御を行う。
- 各計器を並行監視し，徴候に応じた制御を行う。
- 原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷 する恐れがある場合には原子炉制御「スクラム」と一次格納容器制御を並行して行う。
－二次格納容器制御「原子炉建屋制御」から要求される操作は原子炉制御「スクラム」と二次格納容器制御を並行し て行ら。
－原子炉制御「スクラム」においては，最初に「原子炉出力」の制御棒全挿入を確認し，「原子炉水位」，「原子炉圧力」，「電源・タービン」の各制御を並行して行ら。
－多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炉制御「ス クラム」での制御を並行して行う

（5）主な監視操作内容

A．原子炉出力

－「原子炉自動スクラム」警報の発信を確認する。
全制御棒挿入状態を確認する
平均出力領域モニタの指示を確認する。

- 自動スクラムが失敗した場合には，手動スクラムを行う。
- 原子炉モードスイッチを「停止」位置にする。
- 全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる。
- 全挿入位置まで挿入されていない制御棒が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行ら。
全制御棒が全挿入位置まで插入された場合または全挿入位置まで插入されていない制御棒が 1 本以下の場合，原子炉水位，原子炬圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炬再循睘ポンブ速度を確認する。
－平均出力領域モニタおよび起動領域モニタにより原子炉未臨界を碓認する。

B．原子炉水位

原子炬水位を確認する。

- 原子炉水位が原子炉水位低スクラム設定値まで低下した場合，格納容器隔離弁の開閉状態を確認する
- タービン駆動給水ポンプを停止し＊，電動駆動給水ポンプおよび給水制御系（単要素）で原子炉水位を原子炉水位低 スクラム設定値から原子炉水位高タービントリッフ設定値の間を目標として維持する。
－給復水系（主復水器を含む）が正常でない場合，原子炬隔離時洽却系を手動作動する。（原子炉隔離侍冷却系が自動作動した場合は不要）
原子炉水位が非常用炉心冷却系作動水位まで低下した場合には，非常用炉心洽却系および原子炉隔離時冷却系の運転状態を確認する。
給復水系，非常用炉心椧却系または原子炉隔離時冷却系により原子炉水位を原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する。
原子炉水位が原子炉水位低スクラム設定値以上に維持できない場合は，原子炉制御「水位確保」に移行する。 －原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御】移行する。
原子炉水位が有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」一移行する。
（1）•原子炉水位を連続的に監視する
※：タービン駆動給水ポンプは，原子灲水位高タービントリップ設定値で自動停止する

保安規定 添付1－1
2．一次格納容器制御
（3）サプレッションプール温度制御
（1）目的
－サプレッションプールの水温および空間部温度を監視し，制御する。

（3）脱出条件

サプレッションプール水の平均温度が通常運転時制限温度未満となった場合
サプレッションプール空間部の局所温度が温度高警報設定点未満となった場合
サプレッションブール空間部の局所温度が温度高警報以上の場合
（4）基本的な考え方
サプレッションプール水温およびサプレッションプール空間部局所温度が通常運転時制限温度を超え，各制御を実施しても上昇継続する場合は，直ちに手動スクラムし，原子炉を減圧する。

（5）主な監視操作内容

A．サプレッションプール水温制御
22．サプレッションプール水温が通常運転時制限温度まで上昇したら，サプレッションプールの椧却を開始する。
－サプレッションプール水温がスクラム制限温度に到達したら，手動スクラムし，サプレッションプール水温を確認 する。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炉制御「減圧冷却」へ移行し，サプレッ ションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速减圧」ー移行する。
－サプレッションプール水温が $80^{\circ} \mathrm{C}$ に到達した場合，高圧炬心スプレイ系の水源切替えを行う。
B．サプレッションプール空間部温度制御
－サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプール椧却を実施するとと もに，サプレッションプール空間部温度上昇の原因（原子炬隔離時冷却系の運転，主蒸気逃がし安全弁排気管の異常，サプレッションプール・ドライウェル間真空破壊亣の異常等）を復旧する。
サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプールスプレイを作動させ る。
サプレッションプール空間部局所温度の上昇抑制を行っても，サプレッションプール空間部局所温度が温度高警報設定値未満に維持できない場合は，手動スクラムする。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炉制御「減圧冷却」へ移行し，サプレッションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速減圧」へ移行する。

保安規定 添付1－3 表20 重大事故等対策における操作の成立性

操作手順	対応手段	要員	要員数	想定時間
4	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）による原子炉圧力容器への注水 ${ }^{* 1}$	運転員 （中央制御室，現場）	3	35 分以内

保安規定 添付1－3 表20 重大事故等対策における操作の成立性

操作 手順	対応手段	要員	要員数	想定 時間
14	所内常設蓄電式直流電源設備による 給電电1（不要直流負荷の切離し操作）	運転員（現場）	2	60 分以内

※1 有効性評価の重要事故シーケンスに係る対応手段（以下，本表において同じ。）

保安規定 添付1－3 表20 重大事故等対策における操作の成立性

\square

保安規定 添付1－3 表20 重大事故等対策における操作の成立性

第7．1．4．1－4図 「崩壊熱除去機能喪失（取水機能が喪失した場合）」の対応手順の概要

＊1（

保安規定 添付1—1

C．原子炉圧力

原子炉スクラム後，原子炉圧力を確認する。
主蒸気隔離弁が開の場合，原子炉圧力制御が正常であることを確認する。また，主復水器が使用可能であること を確認する。
原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は，主蒸気隔離弁を閉鎖し原子炉を隔離 する。
主蒸気逃がし安全弁が開固着した場合，一次格納容器制御「サプレッションプール水温制御」一移行する。
主蒸気隔離弁が閉の場合，主蒸気逃がし安全亣を開して，原子炉圧力を調整する。また，主蒸気逃がし安全弁の開閉によって原子炉圧力の調整ができない場合，原子炉制御「減圧冷却」い移行する。なお，主復水器が使用可能である場合は主蒸気管ドレン弁により調整してもよい
主蒸気隔離弁が閉の場合，主蒸気逃がし安全弁の開閉によってサプレッションプールの水温が上昇するため，残留熱除去系によるサプレッションプール冷却を行ら。
原子炉圧力がタービンバイパス弁または主蒸気逃がし安全弁により制御されていることを連続的監視する。また主蒸気逃がし安全弁で制御している場合は，主蒸気逃がし安全弁の開閉状態を連続的に監視する。

D．電源・タービン

原子炉スクラム後，発電機出力が低下していることおよびタービン自動トリップを確認する
タービントリップ状態および発電機トリップ状態を確認する。
所内電源系が確保されていることを確認する
直流電源が確保されない場合は，「電源回復（直流電源復旧）」 へ移行する。
起動変圧器から受電されていない場合，「電源回復（交流電源復旧）」 人移行する。
非常用母線が正常であることを確認する。正常でない場合，「電源回復」へ移行する
主蒸気隔離弁が開の場合，原子炉圧力制御が正常であること，主復水器が使用可能であることを確認する。
原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は，主蒸気隔離亣を閉鎖し原子炉を隔離 する。
タービンおよび発電機の停止状態を確認する。
空気抽出器およびグランドシールの切替により主復水器真空度を維持する。

E．モニタ確認

各種放射線モニタの指示を確認する。
各種放射線モニタの指示の異常が碓認された場合，「復旧」操作へ移行せず原因の調査を実施する。

F．復旧

原子炉水位が原子炉水位低スクラム設定値以上で安定していることを確認する。
格納容器隔離系がリセット可能であることを確認する。
－原子炉圧力等の主要パラメータが整定していることを確認する。
外部電源により電源が確保されていることを確認する。
－直流電源負荷抑制を実施していた場合，負荷抑制を復旧する。
格納容器隔離信号をリセットし，隔離状態を復旧する。
原子炉泠却材浄化系により原子炉水位が調整可能であることを確認する。また，原子炉建屋換気空調系を起動し，非常用ガス処理系を停止する。
スクラム原因を究明し，原因除去後スクラムリセットを行う。
原子炉再循澴ポンプが停止している場合，原子炉水位を原子炉水位高タービントリップ設定値以上で維持する。原子炉を泠温停止する。

保安規定 添付1－1

保安規定 添付1－1
5．電源制御
（1）目的
－交流電源および直流電源の供給を回復し維持する。

（2）導入条件

－原子炉制御「スクラム」において，直流電源が喪失し場 （3）脱出条件合
－原子炉制御「スクラム」において，非常用C母線または

（4）基本的な考え方

- 非常用ディーゼル発電機の起動状況を確認し，状況に応じて代替電源設備による給電を行う。
- 非常用交流電源喪失が長期化する場合には常設 125 V 直流電源および 250 V 直流電源延命のため，直流負荷の切り離しを実施し，直流電源延命させる
－使用可能な設備を確認し，C，D母線の受電操作を行う。C，D母線の復旧が不可能な場合は，G母線の受電を行 い，交流電源切替盤で切り替えを実施する。

直流電源霛失時は，常設代替直流電源（125V代替蓄電池および250V蓄電池）より受電する。常設代替直流電源からできない場合には，可搬型計測器にて中央制御室で計器每に確認する。
非常用交流電源喪失が長期化する場合には常設代替直流電源（125V代替蓄電池および250V蓄電池）の延命 のため，負荷の切り離しを行ら。

（5）主な監視操作内容

A．非常用交流高圧電源確保
－非常用ディーゼル発電機の運転状態を確認する。
運転している非常用ディーゼル発電機に対応する原子炬補機冷却海水系の運転状態を確認する。当該原子炉補機冷却海水系の運転不可の場合は，常設代替交流電源設備を起動し，非常用ディーゼル発電機を停止する
非常用ディーゼル発電機からの受電ができない場合，予備変圧器より受電する。予備変圧器からの受電ができない場合は常設代替交流電源設備より受電し，常設代替交流電源設備からの受電もできない場合は，号炉間等より受電 する。非常用交流高圧電源母線 2 系統战失となった場合，常設代替交流電源設備より受電する。
非常用交流高圧電源母線 2 系䖻喪失となった場合であって，常設代替交流電源設備から受電できた非常用交流高圧電源母線が 1 系統である場合，直流 250 V 充電器を受電した交流高圧電源母線側へ切り替える。
非常用交流高圧電源母線 2 系統喪失となった場合であって，2系統とも常設代替交流電源設備から受電できなかっ た場合，直流駆動低圧注水系の系統構成，発電機水素がス放出ならびに直流 250 V 電源碓保および直流 125 V電源碓保を行らとともに，号炉間等からの受電を実施する。
－非常用交流高圧電源母線の号炉間等からの受電ができなかった場合，可搬型代替交流電源設備より受電する。時間にて常設代替交流電源設備の負荷抑制を実施する。

B．直流電源確保

非常用ディーゼル発電機および常設代替交流電源設備から直流電源 A 系および B 系への給電ができない場合， 1 時間後および8時間後までに負荷の切り離しによる負荷抑制を実施する。

- 直流電源 A 系およびB系が喪失または枯渴した場合，常設代替直流電源設備より給電する。
- 直流電源A系およびB系が喪失または枯渴し，常設代替直流電源設備より給電している場合であって，G母線の受電ができない場合は，8時間後に負荷抑制を実施する。また，代替直流電源用切替盤への電源車接続を実施し，常設代替直流電源設備の充電器へ給電する

C．直流 250 V 電源確保

発電機水素がスの放出の完了または，直流電源A系およびB系が喪失した場合は負荷抑制を実施する。

枠囲みの内容は商業機密の観点から公開できません。

4．不測事態
（2）急速減圧

（1）目的

－原子炉を速やかに減圧する。
（2）導入条件
原子炉制御「水位碓保」において，給復水系もしくは非常用灲心泠却系または原子炉隔離時泠却系もしくは高圧代替注水系による原子炉水位の維持ができず，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循澴泠却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）が起動で きた場合
原子炉制御「減圧冷却」において，サプレッションプール水温がサプレッションプール熱容量制限図の運転禁止領域に入った場合
－次格納容器制御「格納容器圧力制御」において，サプレッションプール圧力が設計基準事故時最高圧力以上とな った場合
一次格納容器制御「ドライウェル温度制御」において，ドライウェル空間部局所温度がドライウェル設計温度に到達した場合
ル熱容量制限図の運転禁止領域に入った場合
－一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が真空破壊弁位置から作動差圧相当分の水位を引いた水位に誤差を考慮した値以上になった場合
一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が急速滅圧へ移行する サプレッションプール水位以下になった場合

- 二次格納容器制御「原子炉建屋制御」において，中央制御室からの漏えい箇所隔離に失敗した場合
- 不測事態「水位回復」において，給復水系または非常用烼心泠却系の 1 系統以上の起動ができない場合かつ原子炉隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合であって，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）が起動でき，原子炉隔離侍冷却系機能維持最低圧力以上の場合
－不測事態「水位回復」において，給復水系または非常用炉心椧却系の 1 系統以上を起動しても原子炉水位を有効燃料頂部以上に維持できない場合
（4）基本的な考え方
－原子炉圧力低下必要時に自動减圧機能を有する主蒸気逃がし安全弁全弁を順次開放して急速減圧する。または，自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそ れ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要开数閧放する。
主蒸気逃がし安全弁が「急速減圧」時必要弁数開放できない場合は，タービンバイパス弁および原子炬隔離時冷却系等を使用して減圧する。
- 原子炉減圧の結果，原子炉水位が不明になった場合は，不測事態「水位不明」い移行する。
- 原子炉減圧時の原子炉泠却材温度変化率は原子炉泠却材温度変化率制限値を遵守する必要はない。

急速減圧中に原子炉注へ注水可能な系統が喪失した場合は，急速減圧操作を中断し，原子炬注へ注水可能な系統を再起動する。

保安規定 添付1－1
（5）主な監視操作内容
（1）－給復水系，非常用炬心洽却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンブ），低圧代替注水系（可 （搬型），代替循袈彾却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水采）を起動する。

- 自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放する。
- 自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁と それ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する。
自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放できなければ，自動減原機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要最小弁数以上開放する。
原子炉減圧が不十分である場合，主蒸気隔離亣を開し，タービンバイパス弁と主復水器により減圧する。
主蒸気隔離弁が開できなければ，原子炉隔離時冷却系，高圧代替注水系または原子炉冷却材浄化系ブローラインを使用して減圧する。
－原子炉水位が不明な場合は，不測事態「水位不明」の「満水注入」お測入よび一次格納容器制御「格納容器水素濃度制御」一移行する。

保安規定 添付1－1
2．一次格納容器制御
（3）サプレッションプール温度制御
（1）目的
－サプレッションプールの水温および空間部温度を監視し，制御する
（2）導入条件（3）脱出条件
－原子炉制御「スクラム」において，主蒸気逃がし安全弁 が開固着の場合
－サプレッションプール水の平均温度が通常運転時制限温度を超えた場合
－サプレッションプール水の平均温度が通常運転時制限温度未満となった場合
サプレッションプール空間部の局所温度が温度高警報設定点末満となった場合

サプレッションプール空間部の局所温度が温度高警報
設定点以上の場合
（4）基本的な考え方
－サプレッションプール水温およびサプレッションプール空間部局所温度が通常運転時制限温度を超え，各制御を実施しても上昇継続する場合は，直ちに手動スクラムし，原子炉を減圧する。
（5）主な監視操作内容
A．サプレッションプール水温制御

- サプレッションプール水温が通常運転時制限温度まで上昇したら，サプレッションプールの椧却を開始する
- サプレッションプール水温がスクラム制限温度に到達したら，手動スクラムし，サプレッションプール水温を確認 する。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炉制御「減圧冷却」へ移行し，サプレッ ションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速减圧」一移行する。
サプレッションプール水温が $80^{\circ} \mathrm{C}$ に到達した場合，高圧炬心スプレイ系の水源切替えを行う。

B．サブレッショフブール笁間部温度制御

サプレッションプール空間部愠度が温度高警報設定点まで上昇したら，サプレッションプール泠却を実施するとと もに，サプレッションプール空間部温度上昇の原因（原子炬隔離時冷却系の運転，主蒸気逃がし安全弁排気管の異常，サプレッションプール・ドライウェル間真空破壊弁の異常等）を復旧する。
サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプールスプレイを作動させ る。
サプレッションプール空間部局所温度の上昇抑制を行っても，サプレッションプール空間部局所温度が温度高警報設定値未満に維持できない場合は，手動スクラムする。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炬制御「減圧冷却」へ移行し，サプレッションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速減圧」へ移行する

保安規定 添付1－3 表20 重大事故等対策における操作の成立性

操作 手順	対応手段	要員	要員数	想定 時間
5	原子炉補機代替冷却水系による補機泠却水確保＊ 1	運転員 （中央制御室，現場）	3	540 分以内
		重大事故等対応要員	6	

※1 有効性評価の重要事故シーケンスに係る対応手段（以下，本表において同じ。）

第7．1．4．2－4図 「崩壊熱除去機能喪失（残留熱除去系が故障した場合）」の対応手順の概要

保安規定 添付1－1

1（1）原子炉制御

（1） 1 目的

- 原子炉を停止する
- 十分な炬心椧却状態を維持する
- 原子炉を冷温停止状態まで浍却する

ー次および二次格納容器制御への導入条件を監視する。（原子炉がスクラムしない場合を含む）
（2）導入条件
－原子炬スクラム信号が発生した場合

- 手動スクラムした場
- 各制御の脱出条件が成立した場合
（4）基本的な考え方
- 原子灲スクラム要求時にはスクラム成功の有無の確認を確実に行う。
- 単一故障による原子炬スクラム時の復旧操作を全て原子炉制御「スクラム」で収束させ，通常停止操作に移行す る。
各計器を並行監視し，徵候に応じた制御を行ら
原子炬制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷 する恐れがある場合には原子炉制御「スクラム」と一次格納容器制御を並行して行う。
二次格納容器制御「原子炉建屋制御」から要求される操作は原子炉制御「スクラム」と二次格納容器制御を並行し て行う。
原子炉制御「スクラム」においては，最初に「原子炉出力」の制御棒全挿入を確認し，「原子炉水位」，「原子炉圧力」，「電源・タービン」の各制御を並行して行う。
多重故障により他の制御いの移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炬制御「ス クラム」での制御を並行して行う

（5）主な監視操作内容

A．原子炉出力
「原子炉自動スクラム」 警報の発信を確認する
全制御棒挿入状態を碓認する。
平均出力領域モニタの指示を確認する

- 自動スクラムが失敗した場合には，手動スクラムを行ら
- 原子炉モードスイッチを「停止」位置にする

全制御棒が全挿入位置まで扱入されていない場合，代替制御棒插入機能を動作させる。
－全挿入位置まで挿入されていない制御棒が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行う。
全制御棒が全挿入位置まで挿入された場合または全挿入位置まで插入されていない制御棒が 1 本以下の場合，原

B．原子炉水位

原子炉水位を碓認する。
原子炉水位が原子炬水位低スクラム設定値まで低下した場合，格納容器隔離亣の開閉状態を確認する
タービン駆動給水ポンプを停止し ，霍動駆動給水ポンプおよび給水制御系（単要素）で原子炬水位を原子炬水位
低スクラムム設定値から原子炉水位高タービントリッフ設定値の間を楆として維持する低スクラム設定值から原子炉水位高タービントリッフ設定值の間を目標として維持する。
給復水系（主復水器を含む）が正常でない場合，原子炬隔離時冷却系を手動作動する。（原子炉隔離時冷却系が自動作動した場合は不要）
－原子炬水位が非常用炬心冷却系作動水位まで低下した場合には，非常用炉心洽却系および原子炉隔離時冷却系の運転状態を確認する。
給復水系，非常用炉心椧却系または原子炬隔離時冾却系により原子炉水位を原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する

- 原子炉水位が原子炉水位低スクラム設定値以上に維持できない場合は，原子炉制御「水位碓保」に移行する
- 原子炬水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」へ移行する。
－原子炬水位が有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」一移行する
原子炉水位を連続的に監視する
※：タービン駆動給水ポンプは，原子炬水位高タービントリップ設定值で自動停止する。

保安規定 添付1－1

1. 原子炉制御 (1) ）スクラ
（5）主な監視操作内容
G．一次格納容器制御への導入
•一次格納容器制御への導入条件を監視する（原子炬がスクラムしない場合を含む。）。
H．二次格納容器制御への導入
•二次格納容器制御への導入条件を監視する（原子灲がスクラムしない場合を含む。）。

保安規定 添付1－1

保安規定 添付1－1

4．不測事態
（2）急速減圧
（1）目的
－原子师を速やかに減圧する

（2）導入条件

－原子炉制御「水位確保」において，給復水系もしくは非常用炉心冷却系または原子炉隔離時冷却系もしくは高圧代替注水系による原子炉水位の維持ができず，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環泠却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンブ），万過水系）が起動で きた場合
原子炉制御「減圧椧却」において，サプレッションプール水温がサプレッションプール熱容量制限図の運転禁止領域に入った場合
一次格納容器制御「格納容器圧力制御」において，サプレッションプール圧力が設計基準事故時最高圧力以上とな った場合
－一次格納容器制御「ドライウェル温度制御」において，ドライウェル空間部局所温度がドライウェル設計温度に到達した場合
一次格納容器制御「サプレッションプール温度制御」において，サプレッションプール水温がサプレッションプー儿熱容量制限図の運転禁止領域に入った場合
－一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が真空破壊弁位置から作動差圧相当分の水位を引いた水位に誤差を考慮した値以上になった場合
－一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が急速減圧へ移行する サプレッションプール水位以下になった場合

- 二次格納容器制御「原子炉建屋制御」において，中央制御室からの漏えい箇所隔離に失敗した場合
- 不測事態「水位回復」において，給復水系または非常用灲心泠却系の 1 系統以上の起動ができない場合かつ原子炉隔離時冷却系または高圧代替注水系による原子炬水位の維持ができない場合であって，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）が起動でき，原子炬隔離時冷却系機能維持最低圧力以上の場合
－不測事態「水位回復」において，給復水系または非常用炉心冷却系の 1 系統以上を起動しても原子炉水位を有効燃料頂部以上に維持できない場合
（4）基本的な考え方
－原子炬圧力低下必要時に自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放して急速減圧する。または，自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそ れ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する。
－主蒸気逃がし安全弁が「急速減圧」時必要开数開放できない場合は，タービンバイパス弁および原子炬隔離時冷却系等を使用して減圧する。
原子炉減圧の結果，原子炉水位が不明になった場合は，不測事態「水位不明」へ移行する。
－原子炉減圧時の原子炬泠却材温度変化率は原子炉泠却材温度変化率制限値を遵守する必要はない。
急速減圧中に原子炬注へ注水可能な系統かか䨤失した場合は，急速減圧操作を中断し，原子炉注へ注水可能な系統を再起動する。

保安規定 添付1－1
（5）主な監視操作内容
給復水系，非常用炬心椧却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンブ），ろ過水系）を起動する。
（2）－自動減圧機能を有する主蒸気逃がし安全弁全并を順次開放する
－自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁と それ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する。
－自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要最小弁数以上開放する。

- 原子炉減圧が不十分である場合，主蒸気隔離弁を開し，タービンバイパス弁と主復水器により減圧する
- 主蒸気隔離弁が開できなければ，原子炉隔離時冷却系，高圧代替注水系または原子炬洽却材浄化系ブローラインを使用して減圧する。
（3）－原子炬水位が判明している場合は，不測事態「急速減圧」の導入前の制御一移行する
－原子炉水位が不明な場合は，不測事態「水位不明」の「満水注入」および一次格納容器制御「格納容器水素濃度制御」い移行する。

H．二次格納容器制御への導入
•二次格納容器制御への導入条件を監視する（原子炬がスクラムしない場合を含む。）

保安規定 添付1－1

| 2 2．一次格納容器制御 |
| :--- | :--- |
| （ 1 ）格納容器圧力制御 |

※1 有効性評価の重要事故シーケンスに係る対応手段
$※ 2$ 有効性評価の重要事故シーケンスにおいては，運転員 1 名および重大事故等対応要員 9 名で想定時間は 385 分以内である。

	操作 手順	対応手段	要員	要員数	想定時間
（2）	5	原子炉格納容器フィルタバント系による原子炬格納容器内の減圧および除熱（現場操作） （系統構成）	運転員 （中央制御室，現場）	3	75 分以内
（3）	5	原子炉格納容器フィルタバント系による原子炬格納容器内の減圧および除熱（現場操作） （ベント操作：S／C 側ベントの場合）	運転員 （中央制御室，現場）	3	95 分以内

第7．1．5－4図 「原子炉停止機能喪失」の対応手順の概要

保安規定 添付1－1

1－III．8－2

保安規定 添付1－1
（2）原子炉制御
（1）目的
スクラム不能異常過渡事象発生時に，原子炉を安全に停止させる。
なお，スクラム不能異常咼渡事象とは，ATWSのことをいう。

| （2）導入条件 |
| :--- | :--- | :--- |
| •原子炬制御「スクラム」により 1 本を超える制御棒が |
| 全插入されていない場合 |\quad| （3）脱出条件 |
| :--- |
| •未挿入制御棒が 1 本以下まで全挿入された場合 |

（4）基本的な考え方
短期的には原子炉の健全性を維持し，長期的には非常用炉心泠却系の水源であるサプレッションプールの健全性を
維持する。
「ほらら酸水注入系」，「水位」，「制御棒」，「圧力」を並行操作する。なお，同時に実行することが不可能な場合は，「ほら酸水注入系」，「水位」，「制御棒」，「圧力」の順に優先させる。

（5）主な監視操作内容

A．反応度制御
全制御棒が全插入位置まで插入されず， 1 本を超える制御棒が全挿入位置まで插入されていない場合には，「反応度制御」のほう酸水注入系起動操作および水位制御，制御棒操作，圧力制御を並行操作する。
原子炉再循環ポンプを停止する
自動減圧系作動阻止スイッチにより自動減圧系の動作を阻止する。
B．ほう酸水注入系
ほら酸水注入系を粑動する
原子炉冷却村浄化系が隔離したことを確認する
全量注入完了後，ほら酸水注入系を停止する。ただし，全制御棒が全挿入位置または未插入制御棒が 1 本以下まで全挿入された場合は，ほう酸水注入系を停止する。
未臨界を確認する。

C．水位

－原子炉水位が不明となった場合，「反応度制御」水位不明および一次格納容器制御「格納容器水素濃度制御」に移行 する。
スクラム不能異常過渡事象発生時原子炉出力高判定值以上の場合，または原子炉が隔離状態の場合「水位低下」 操作として，原子炉給水流量を原子炉出力がスクラム不能異常過渡事象発生時原子炉出力低判定値以下になるまで低下させる（原子炬水位の下限值は高圧で注水可能な非常用炬心椧却系作動水位とする
原子炉水位をスクラム不能異常過渡事象発生時原子炉水位低下制限値（高圧で注水可能な非常用炉心泠却系作動水位）以上に維持できない場合は，原子炉水位をスクラム不能異常過渡事象発生時原子炉水位低下限值以上に維持す
る。
原子炉出力がスクラム不能異常過渡事象発生時原子炉出力高判定値末満で，かつ原子炉が隔離状態でない場合，水位維持操作を行う（原子炉水位を原子炬隔離時冷却系自動作動水位以上を目標として維持する。）。
ほう酸水が全量注入完了し原子炉が未臨界となった場合は，原子炉水位を原子炉水位低スクラム設定值から原子炉水位高タービントリック設定値の間を目標として維持する
－原子炉水位をスクラム不能異常過渡事象発生時原子炉水位低下限値以上に維持できない場合は，給復水系，非常用炉心冷却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）を起動後，自動減圧機能を有する主蒸気逃がし安全弁を優先して主蒸気逃がし安全弁を順次開放し，原子炉水位を有効燃料頂部以上に維持する。

保安規定 添付1－1
2．一次格納容器制御
（3）サプレッションプール温度制御
（1）目的
－サプレッションプールの水温および空間部温度を監視し，制御する。
（2）道入条件（3）
－原子炉制御「スクラム」において，主蒸気逃がし安全弁
が開固着の場合
－サプレッションプール水の平均温度が通常運転時制限
温度を超えた場合
サプレッションプール水の平均温度が通常運転時制限温度未满となった場合
サプレッションプール空間部の局所温度が温度高警報設定点未満となった場合
サプレッションプール空間部の局所温度が温度高警報
設定点以上の場合
（4）基本的な考え方
サプレッションプール水温およびサプレッションプール空間部局所温度が通常運転時制限温度を超え，各制御を実施しても上昇継続する場合は，直ちに手動スクラムし，原子炉を減圧する。 （5）主な監視操作内容
A．サプレッションプール水温制御
（2）・サプレッションプール水温が通常運転時制限温度まで上昇したら，サプレッションプールの椧却を開始する。
－サプレッションプール水温がスクラム制限温度に到達したら，手動スクラムし，サプレッションプール水温を碓認 する。サブレッションプール熱容量制限図の運転禁止範囲外の場合は原子炉制御「減圧冷却」へ移行し，サプレッ ションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速减圧」ー移行する。
－サプレッションプール水温が $80^{\circ} \mathrm{C}$ に到達した場合，高圧炬心スプレイ采の水源切替えを行う。
B．サプレッションプール空間部温度制御
サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプール椧却を実施するとと もに，サプレッションプール空間部温度上昇の原因（原子炉隔離時冷却系の運転，主蒸気逃がし安全弁排気管の異常，サプレッションプール・ドライウェル間真空破壊升の異常等）を復旧する。
サプレッションプール空間部温度が温度高警報設定点まで上昇したら，サプレッションプールスプレイを作動させ る。
サプレッションプール空間部局所温度の上昇抑制を行っても，サプレッションプール空間部局所温度が温度高警報設定値未満に維持できない場合は，手動スクラムする。サプレッションプール熱容量制限図の運転禁止範囲外の場合は原子炉制御「減圧冷却」へ移行し，サプレッションプール熱容量制限図の運転禁止範囲に入った場合は不測事態「急速減圧」へ移行する。

第 7．1．6－4図 「L O C A 時注水機能喪失」の対応手順の概要

保安規定 添付1－1

保安規定 添付1－1

保安規定 添付1－1

5．電源制御

（1）目的
－非常用交流電源および直流電源喪失事象発生時に，喪失した電源を回復させる
（2）導入条件
•原子炉制御「スクラム」において，直流電源が喪失した場 （3）脱出条件

- 合 $\begin{aligned} & \text { 原炉制御「スクラム」において，起動用変圧器からの受 }\end{aligned}$
- 原子炉制御エスクラ

－原子炉制御「スクラム」において，非常用C母線またはD
※線の電源が表実した場合
（4）基本的な考え方
非常用ディーゼル発電機の起動状況を確認し，状況に応じて代替電源設備による給電を行ら。
非常用交流電源喪失が長期化する場合には常設 125 V 直流電源および 250 V 直流電源延命のため，直流負荷 の切り離しを実施し，直流電源延命させる。
使用可能な設備を確認し，C，D母線の受電操作を行う。C，D母線の復旧が不可能な場合は，G母線の受電を行 い，交流電源切替盤で切り替えを実施する
直流電源喪失時は，常設代替直流電源（125V代替蓄電池および250V蓄電池）より受電する。常設代替直流電源からできない場合には，可搬型計測器にて中央制御室で計器毎に確認する。
非常用交流電源喪失が長期化する場合には常設代替直流電源（125V代替蓄電池および2 50 V 蓄電池）の延命のため，負荷の切り離しを行う。

5）主な監視操作内容

A．非常用交流高圧電源確保
非常用ディーゼル発電機の運転状態を確認する
－運転している非常用ディーゼル発電機に対応する原子炬補機冷却海水系の運転状態を確認する。当該原子炬補機椧却海水系の運転不可の場合は，常設代替交流電源設備を起動し，非常用ディーゼル発電機を停止する。
非常用ディーゼル発電機からの受電ができない場合，予備変圧器より受電する。予備変圧器からの受電ができな い場合は常設代替交流電源設備より受電し，常設代替交流電源設備からの受電もできない場合は，号炬間等より受電する。
（2）•非常用交流高圧電源母線 2 系統喪失となった場合，常設代替交流電源設備より受電する
－非常用交流高圧電源母線 2 系統喪失となった場合であって，常設代替交流電源設備から受電できた非常用交流高圧電源母線が 1 采統である場合，直流 250 V 充電器を受電した交流高圧電源母線側へ切り替える。
非常用交流高圧電源母線 2 系統喪失となった場合であって， 2 系統とも常設代替交流電源設備から受電できなか った場合，直流駆動低圧注水系の系統構成，発電機水素ガス放出ならびに直流 250 V 電源確保および直流 12 5 V 電源確保を行らとともに，号炉間等からの受電を実施する。
非常用交流高圧電源母線の号炉間等からの受電ができなかった場合，可搬型代替交流電源設備より受電する
－給電設備容量に応じた設備復旧を行う。常設代替交流電源設備から受電している場合は，受電後 1 時間および 2 4 時間にて常設代替交流電源設備の負荷抑制を実施する

B．直流電源確保

－非常用ディーゼル発電機および常設代替交流電源設備から直流電源A系およびB系への給電ができない場合， 1時間後および8時間後までに負荷の切り離しによる負荷抑制を実施する
直流電源 A 系および B 系が喪失または枯渴した場合，常設代替直流電源設備より給電する
直流電源A系およびB系が佂失または枯渴し，常設代替直流電源設備より給電している場合であって，G母線の受電ができない場合は，8時間後に負荷抑制を実施する。また，代替直流電源用切替盤への電源車接続を実施し，常設代替直流電源設備の充電器へ給電する。

C．直流 250 V 電源碓保
－発電機水素がスの放出の完了または，直流電源系A系およびB 系が喪失した場合は負荷抑制を実施する。

保安規定 添付1－1

4．不測事態

（2）急速減圧
（1）目的
原子炉を速やかに減圧する
（2）導入条件
－原子炉制御「水位碓保」において，給復水系もしくは非常用炬心椧却系または原子炬隔離時椧却系もしくは高圧代替注水系による原子炉水位の維持ができず，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環椧却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンブ），万過水系）が起動で きた場合
原子炉制御「減圧冷却」において，サプレッションプール水温がサプレッションプール熱容量制限図の運転禁止領域に入った場合
一次格納容器制御「格納容器圧力制御」において，サプレッションプール圧力が設計基準事故時最高圧力以上とな った場合
一次格納容器制御「ドライウェル温度制御」において，ドライウェル空間部局所温度がドライウェル設計温度に到達した場合
一次格納容器制御「サプレッションプール温度制御」において，サプレッションプール水温がサプレッションプー ル熱容量制限図の運転禁止領域に入った場合
一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が真空破壊弁位置から作動差圧相当分の水位を引いた水位に誤差を考慮した値以上になった場合
一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が急速減圧へ移行する サプレッションプール水位以下になった場合
——次格納容器制御「原子炉建屋制御」において，中央制御室からの漏えい箇所隔離に失敗した場合
不測事態「水位回復」において，給復水系または非常用炬心泠却系の 1 系統以上の起動ができない場合かつ原子炬隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合であって，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ち過水系）が起動でき，原子炬隔離時冷却系機能維持最低圧力以上の場合
－不測事態「水位回復」において，給復水系または非常用炉心泠却系の 1 系統以上を起動しても原子炉水位を有効然料頂部以上に維持できない場合
（4）基本的な考え方
原子炉圧力低下必要時に自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放して急速減圧する。または，自一動減圧機能を有する主蒸気逃がし安全弁全弁が開故できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそ れ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する。
主蒸気逃がし安全弁が「急速減圧」時必要弁数開放できない場合は，タービンバイパス弁および原子炬隔離時冷却系等を使用して減圧する。
原子炉減圧の結果，原子炉水位が不明になった場合は，不測事態「水位不明」へ移行する。
原子炉減圧時の原子炬泠却材温度変化率は原子炉冷却材温度変化率制限値を遵守する必要はない。
急速減圧中に原子炉注へ注水可能な系統が喪失した場合は，急速減圧操作を中断し，原子炉注へ注水可能な系統を再起動する。

（5）主な監視操作内容

給復水系，非常用炬心洽却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循壊椧却系，低庄代替注水系（常設）（直流駆動低圧注水系ボンブ），ろ過水系）を起動する
自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放する。
－自動减圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁と それ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する
自動減压機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要最小弁数以上開放する。
原子炉減圧が不十分である場合，主蒸気隔離弁を開し，タービンバイパス弁と主復水器により減圧する
主蒸気隔離弁が開できなければ，原子炉隔離時冷却系，高圧代替注水系または原子炉冷却材浄化系ブローラインを使用して減圧する。

- 原子炬水位が判明している場合は，不測事態「急速減圧」の導入前の制御い移行する
- 原子炬水位が不明な場合は，不測事態「水位不明」の「満水注入」および一次格納容器制御「格納容器水素濃度制御」い移行する。

1．原子炉制御
（1）目的
－原子炉水位を有効燃料頂部以上に回復させ，安定に維持する
（2）導入条件（3）脱出条件
－原子炉制御「スクラム」において原子炉水位が原子炉水 3 3 原子炉水位が原子炉水位低スクラム設定値から原子位低スクラム設定值以上に維持できない場合
－不測事態「水位回復」において原子炉水位を有効燃料頂 る場合
る艃合または有㕮燃料頂部以上で安
定している場合
不測事態「急速減圧」において，減圧が完了し水位が判
明している場合
－不測事態「水位不明」において最長許容炬心露出時間以
内に原子炉水位が判明した場合
（4）基本的な考え方
－原子炉水位と原子炉に注水可能な系統を随時把握する。
（5）主な監視操作内容
A．水位

- 作動すべきものが不作動の場合は，手動で作動させる。
- 給復水系，原子炬隔離時冾却系，非常用炬心冾却系または高圧代替注水系を使用して原子炬水位を原子炬水位低スクラム設定値から原子炉水位高タービントリップ設定値の間に維持する。
原子炉水位を原子炉水位低スクラム設定値以上に維持できず原子炉水位が降下中の場合であって，給復水系お よび非常用炬心冷却系が起動せず，原子炉隔離時冷却系または高圧代替注水系により原子炉水位の維持ができ ない場合は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンブ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）を起動し，不測事態「急速減压」 に移行する。低圧代替注水系が起動できない場合は，不測事態「水位回復」に移行する。
原子炉水位を有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」に移行する。
－原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「減圧冷却」に移行する

保安規定 添付1－1

| 1．原子炉制御 |
| :--- | :--- |
| （1）スククラム | 目

| |
| :--- | :--- |
| |
| |

2．一次格納容器制御 （1）格納容器圧力制御	
（1）目的 －格納容器圧力を監視し，制御する。	
（2）導入条件 －ドライウェル圧力が非常用炉心洽却系作動圧力以上の場	（3）脱出条件 －ドライウェル圧力の上昇の原因が，窒素ガス または空気の漏えいであり，ドライウェル温度が $66^{\circ} \mathrm{C}$ 以下で，かつドライウェルベン トを実施した場合 － 24 時間以内にドライウェル圧力が非常用炬心椧却系作動圧力未満に復帰した場合
（1）基本的な考え方 －サプレッションプール圧力を設計基準事故時最高圧力以下に維持できない場合は，格納容器の健全性を維持し て，できる限り放射能放出を抑える目的で，格納容器設計圧力に達する前に原子炉を急速減圧する。 －サプレッションプール圧力を格納容器設計圧力以下に維持できない場合は，原子炉を満水にし，格納容器最高使用圧力を超える場合は格納容器ベントを行ら。 －一次格納容器内で原子炉冷却材圧力バウンダリの大破断が発生した場合，ドライウェルスプレイおよびサプレッ ションプールスプレイは安全解析上の要求時間以内に完了する必要があるため，速やかにドライウェルスプレイ およびサプレッションプールスプレイを起動する。 －原子炉制御「反応度制御」を実施中は，原子炉制御「反応度制御」を優先する。	
（2）主な監視操作内容	
A．格納容器圧力制御	
- ドライウェル圧力高スクラム設定値で原子炬スクラムしたことを確㦝する。 - ドライウェル圧力の上昇の原因が，窒素ガスまたは空気の漏えいであることが判明した場合は，非常用ガス処理系を使用してドライウェルベントを行ら。 －ドライウェル圧力が非常用炉心冷却系作動圧力以上で，かつ原子炉水位が低圧で注水可能な非常用炉心椧却系作動水位以下を経験した場合には，原子炬水位を有効炬心長の 3 分の 2 に相当する水位以上に維持可能であること を確認した後に，ドライウェルスプレイおよびサプレッションプールスプレイを実施する。また，一次格納容器制御「格納容器水素浱度制御」を並行して行ら。 －原子炉水位が不明となった場合は，不測事態「水位不明」および一次格納容器制御「格納容器水素裖度制御」を行う。 －サプレッションプール圧力が非常用炉心泠却系作動圧力以上の場合は，サプレッションプールスプレイを起動す る。 －サプレッションプール圧力がドライウェルスプレイ起動圧力以上かつ設計基準事故時最高圧力未满の状態が 2 4 時間継続した場合またはサプレッションプール圧力が設計基準事故時最高圧力以上の場合は，原子炉再循擐ポ ンプおよびドライウェル空調機を停止し，ドライウェルスプレイおよびサプレッションプールスプレイを起動す る。 サプレッションプール圧力が設計基準事故時最高圧力以下に維持できない場合は，不測事態「急速減圧」へ移行 する。	
B．原子炉満水 －サプレッションプール圧力が格納容器設計圧力以上の場合 ンプールスプレイおよびドライウェル代替スプレイを起動圧」時必要最小弁数以上の主蒸気逃がし安全弁を開し，主茶 よび原子炬冷却材浄化系の隔離弁を閉鎖する。 －原子炉水位をできるだけ高く維持する。	て，ドライウィルスプレイまたはサプレッショ ない場合，非常用炉心椧却系を起動後，「急速減離弁，主蒸気ドレン弁，原子炉隔離時冷却系お
\square C．格納容器ベン下 －格納容器ベントは，サプレッションプール側フィルター用できない場合は，ドライウェル側フィルターベントラ い場合は，サプレッションプール側耐圧ベントラインを	は，炬心損傷がないことを確認して，格納容 とを優先する。サプレッションプール側が使 ナる。フィルターベントラインが使用できな ナブレッションプール側が使用できない場合

(1) 基本的な考え方

, できる限り放射能放出を抑える目的で, 格納容器設計圧力に達する前に原子炉を急速減圧する

年を超える場合は格納容器ベントを行う。
-ョンプールスプレイは安全解析年細要求時間以
およびサプレッションプールスプレイを起動する

（2）主な監視操作内容

A．格納容器圧力制御

ドライウェル圧力の上昇の原因が，窒素がスまたは空気の漏えいであることが判明した場合は，非常用ガス処理 を使用してドライウェルバントを行ら
確認した後に，ドライウェルスプレイナトびサプレッションプールスプレイを実施する キた一次格納容呂制御「格納容器水素濃度制御」を並行して行ら
原子炉水位が不明となった場合は，不測事態「水位不明」および一次格納容器制御「格納容器水素湢度制御」を サプレ る。
 る。 する。
 B．原子炉满水

サプレッションプール圧力が格納容器設計圧力以上の場合であって，ドライウィルスプレイまたはサプレッショ
」时必要最小弁数以上の主蒸気逃がし安全弁を開し，主蒸気隔離弁，主蒸気ドレン弁，原子炬隔離時冷却系お硬却却浄化系の隔離弁を閉鎖する

C．格納容器ベント
器ベントを実施する
格納容器ベントは，サプレッションプール側フィルターベントラインを優先する。サプレッションプール側が使
場合は，サプレッションプール側耐圧ベントラインを優先する。サプレッションプール側が使用できない場合

保安規定 添付1－3 表 20 重大事故等対策における操作の成立性

操作 手順	対応手段	要員	要員数	想定時間
6	原子炉格納容器代替スプレイ泠却系（可搬型） による原子炉格納容器内へのスプレイ＊1	運転員 （中央制御室，現場）	$3{ }^{*}{ }^{2}$	385 分以内
		重大事故等対応要員	10＊2	

$\begin{array}{ll}\text { ※ } 1 & \text { 有効性評価の重要事故シーケンスに係る対応手段 } \\ \text { ※ } 2 \text { 有効性評価の重要事故シーケンスにおいて呈 } 1 \text { 名および重大事故等対応要員 } 9 \text { 名で想定時間は }\end{array}$ 385 分以内である。

操作 手順	対応手段	要員	要員数	想定
時間				

第7．1．7－5図 「格納容器バイパス（インターフェイスシステムLOCA）」の対応手順の概要

保安規定 添付1－1

1．原子炉制御
（1）スクラム
（5）主な監視操作内容
G．一次格納容器制御への導入
一次格納容器制御への導入条件を監視する（原子炬がスクラムしない場合を含む。）
H．二次格納容器制御への導入
－二次格納容器制御への導入条件を監視する（原子炉がスクラムしない場合を含む。）

保安規定 添付1－1
3．二次格納容器制御
（1）原子炬建屋制御
（1）原子炉建屋制御
（1）目的
－原子炉圧力容器からの原子炉建屋への漏えいを監視し，制御する。

（4）基本的な考え方

一次格納容器外で原子炉冷却材圧カバウンダリの破断が発生した場合，中央制御室から速やかに漏えい箇所の特定 を行い，隔離を行う。
－速やかな隔離が不可能な場合は，漏えい量の低減を図るために原子炉を手動スクラムし，急速減圧を実施する。原子炉減圧完了後は原子炉を低圧で維持する

- 原子炉水位は破断笝所を露出させた水位を維持し，原子炉建屋への漏えいを抑制する。
- 原子炉建屋環境を改善し漏えい箇所の隔離を行ら
- 環境緩和（放射線，建屋温度，建屋水位）は導入条件にかかわらず並行して実施する。

（5）主な監視操作内容

A．原子炬圧力

中央制御室から速やかに隔離操作を実施し，隔離が不可の場合は原子炉を手動スクラムする
中央制御室かららの屚えい笝所隔離が出来ない場合は，給復水系，非常用炬心椧却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環椧却系，低圧代替注水系（常設）（直流駆動低圧

低厂に維持する
逃がし安全弁または，タービンバイバス弁にて原子炉圧力を蒸気駆動設備の運転可能範囲内で低めに維持する。

B．原子炬水位

- 破断笝所に応じて原子炬水位を維持する
- 原子炬水位を低下させる場合は，原子炬注水に不要な系統を抑制する。

C．環境緩和
－中央制御室の環境を維持するため，非常用がス処理系を起動し，中央制御室換気空調系を事故時運転モードに切り替 える。
える。原子炉建屋環境を改善するため，原子炬建屋換気空調系および使用可能な原子炬建屋全室の空調機を起動する。原子炉建屋内の溢水を処理するため，原子炉建屋内のサンプポンプの起動を確認する。

漏えい箇所の隔離が成功し，導入条件より復帰した場合は，原子炉制御「スクラム」に脱出する。

保安規定 添付1－1

4．不測事態
（2）急速減
（2）急速堿圧
（1）目的
－原子炉を速やかに減圧する。
（2）導入条件
注水系による原子炉水位の維持ができず，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水采ポンプ），ろ過水系）が起動できた場合
原子炉制御「減圧冷却」において，サプレッションプール水温がサプレッションプール熱容量制限図の運転禁止領域 に入った場合
一次格納容器制御「格納容器圧力制御」において，サプレッションプール圧力が設計基準事故時最高圧力以上となっ た場合
一次格納容器制御「ドライウェル温度制御」において，ドライウェル空間部局所温度がドライウェル設計温度に到達 した場合
一次格納容器制御「サプレッションプール温度制御において，サプレッションプール水温がサプレッションプール熱容量制限図の運転禁止領域に入った場合
一次格納容器制御「サプレッションプール水位制御において，サプレッションプール水位が真空破壊弁位置から作動差圧相当分の水位を引いた水位に誤差を考慮した値以上になった場合
一次格納容器制御「サプレッションプール水位制御」において，サプレッションプール水位が急速減圧い移行するサ プレッションプール水位以下になった場合
一次格納容器制御「原子炬建屋制御いにおいて，中央制御室からの漏えい箇所隔離に失敗した場合
不測事態「水位回復」において，給復水系または非虽用炉心冾却系の1系統以上の起動ができない場合かつ原子炬隔離時冷却系または高圧代替注水系による原子炬水位の維持ができない場合であって，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循澴冷却系，低圧代替注水系（常設）（直流駆動低厂

不測事態水位回復において，給復水系または非常用炉心冷却系の 1 系統以上を起動しても原子炉水位を有効燃料 （4）基本的な考え方
－原子炬圧力低下必要時に自動減圧機能を有する主蒸気逃がし安全弁全弁を順次開放して急速減圧する。または，自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要弁数開放する。
主蒸気逃がし安全弁が「急速減圧」 時必要开数開放できない場合は，タービンバイパス弁および原子炬隔離時冷却系等を使用して減圧する
原子炉減圧の結果，原子炉水位が不明になった場合は，不測事態「水位不明」い移行する
－原子炉減圧時の原子炉冷却材温度変化率は原子炉冷却材温度変化率制限値を遵守する必要はない。
急速減圧中に原子炉注へ注水可能な系統が㖑失した場合は，急速減圧操作を中断し，原子炉注へ注水可能な系統を再起動する。
（5）主な監視操作内容型），代替非常用烚炬心浍却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替洼
－自動減圧機能を有する主蒸気逃がし安全弁全弁が開放できなければ，自動減圧機能を有する主蒸気逃がし安全弁 それ以外の主蒸気逃がし安全弁を合わせて「急速滅圧」時必要弁数開放する。
自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時必要升数開放 できなければ，自動減圧機能を有する主蒸気逃がし安全弁とそれ以外の主蒸気逃がし安全弁を合わせて「急速減圧」時と要最小弁数以上開放する
原子炬减圧が不十分である場合，主蒸気隔離弁を開し，タービンバイパス弁と主復水器により減圧する。
主蒸気隔離并が開できなければ，原子炉隔離時冷却系，高圧代替注水系または原子炉椧却材浄化系ブローラインを使用して減圧する。
（4）－原子炉水位が判明している場合は，不測事態「急速減圧」の導入前の制御ー移行する。
原子炉水位が不明な場合は，不測事態「水位不明」の「满水注入」および一次格納容器制御「格納容器水素浱度制御〕 へ移行する。

3．二次格納容器制御
（1）原子炉建屋制御
（1）目的
－原子炉圧力容器からの原子炉建屋への漏えいを監視し，制御する
（2）導入条件

- 次系の漏えいを示す個別警報が発生した場合
- 原子炬建屋放射線量が警報設定値以上複数発生
- 原子炉建屋内への漏えいを示す警報が複数発生
（4）基本的な考え方
一次格納容器外で原子炉冷却材圧カバウンダリの破断が発生した場合，中央制御室から速やかに漏えい箇所の特定 を行い，隔離を行ら。
－速やかな隔離が不可能な場合は，漏えい量の低減を図るために原子炉を手動スクラムし，急速減圧を実施する。原子炉減圧完了後は原子炉を低圧で維持する。
原子炉水位は破断賎所を露出させた水位を維持し，原子炬建屋への漏えいを抑制する
- 原子炉建屋環境を改善し漏えい箇所の隔離を行う。
- 環境緩和（放射線，建屋温度，建屋水位）は導入条件にかかわらず並行して実施する

（5）主な監視操作内容

A．原子炉圧力

中央制御室から速やかに隔離操作を実施し，隔離が不可の場合は原子炉を手動スクラムする。
中央制御室からの漏えい笝所隔離が出来ない場合は，給復水系，非常用灯心椧却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）のらち 2 系統を起動後，不測事態「急速減圧」に移行する。
急速減圧後，原子炬圧力を低圧に維持する
中央制御室からの漏えい㑑所雨離ができず，原子炬隔離冷却系または高圧代替注水系のみが運転中の場合は，主蒸気逃がし安全弁または，タービンバイパス弁にて原子炉圧力を蒸気駆動設備の連転可能範囲内で低めに維持する。

B．原子炉水位

破断箇所に応じて原子炉水位を維持する。
原子炉水位を低下させる場合は，原子炉注水に不要な系統を抑制する。

C．環境緩租

中央制御室の環境を維持するため，非常用ガス処理系を起動し，中央制御室換気空調系を事故時運転モードに切り替える。
－原子炬建屋環境を改善するためっ 原子炬建层換気空調系および使用可能な原子炬建屋全室の空調機を起動する原子炬建屋内の溢水を処理するため，原子炬建屋内のサンプポンプの起動を碓認する
漏えい箇所の隔離が成功し，導入条件より復帰した場合は，原子炬制御「スクラム」に脱出する。

	3．二次格納容器制御 （1）原子炉建屋制御	
	（1）目的 －原子炉圧力容器からの原子炉建屋への漏えいを監視し，制御する。	
	（2）導入条件 - 次系の漏えいを示す個別警報が発生した場合 - 原子炬建屋放射線量が警報設定値以上複数発生 - 原子炬建屋内への漏えいを示す警報が複数発生	（3）脱出条件 －漏えい箇所の隔離が成功し，導入条件より復帰した場合
	（4）基本的な考え方 －一次格納容器外で原子炉冷却材圧カバウンダリの破断が発生した場合，中央制御室から速やかに格納容器外で原子炉冷却材圧力バウンダリの破断が発生した場合，中央制御室から速やかに漏えい箇所の特定を行い，隔離を行ら。 －速やかな隔離が不可能な場合は，漏えい量の低減を図るために原子炉を手動スクラムし，急速減圧を実施する。原子炉減圧完了後は原子炉を低圧で維持する。 - 原子炉水位は破断箇所を露出させた水位を維持し，原子炉建屋への漏えいを抑制する。 - 原子炬建屋噮境を改善し漏えい箇所の隔離を行ら。環境緩和（放射線，建屋温度，建屋水位）は導入条件にかかわ らず並行して実施する。	
	（5）主な監視操作内容 A．原子炬圧力 - 中央制御室から速やかに隔離操作を実施し，隔離が不可の場合は原子炉を手動スクラムする。 - 中央制御室からの漏えい箇所隔離が出来ない場合は，給復水系，非常用炉心椧却系，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）のらち 2 采統を起動後，不測事態「急速減圧」に移行する。 - 急速減圧後，原子炉圧力を低圧に維持する。 - 中央制御室からの漏えい箇所隔離ができず，原子炬隔離椧却系または高圧代替注水系のみが運転中の場合は，主蒸気逃がし安全弁または，タービンバイパス弁にて原子炉圧力を蒸気駆動設備の運転可能節囲内で低めに維持する。	
	B．原子炉水位 - 破断箇所に応じて原子炉水位を維持する。 - 原子炉水位を低下させる場合は，原子炉注水に不 C．環境緩和 －中央制御室の環境を維持するため，非常用ガス処 える。 - 原子炉建屋環境を改善するため，原子炉建屋換気 - 原子炉建屋内の溢水を処理するため，原子炉建屋 - 漏えい箇所の隔離が成功し，導入条件より復帰し	抑制する。 し，中央制御室換気空調系を事故時運転モードに切り替 び使用可能な原子炉建屋全室の空調機を起動する。 ポンプの起動を確認する。 原子炉制御「スクラム」に脱出する。

保
（1）原子炉建屋制御
（1）目的

- 原子炉圧」容器からの原子炉建屋への漏えいを監視し，制御する。
- 次系の漏えいを示す個別警報が発生した場合
（3）脱出条件
原場合

（4）基本的な考え方

一次格納容器外で原子炉椧却材圧カバウンタリリの破断が発生した場合，中央制仰室から速やかに格納容器外で原子

子炉減圧完了後は原子炉を低圧で維持する。
－原子炉建屋噮境を改善し漏えい箇所の隔離を行う。環境緩和（放射線，建屋温度，建屋水位）は導入条件にかかわ
（5）主な監視操作内容

注水系ポンプ），万過水系）のうち 2 系統を起動後，不測事態「急速減圧」に移行する。
急速减圧後，原子炉圧力を低圧に維持する。

B．原子炬水位

C．環境緩和

－原子炬建屋環境を改善するため，原子炬建屋換気空調系および使用可能な原子炬建屋全室の空調機を起動する。
原子炬建屋内の溢水を処理するため，原子炬建屋内のサンプポンプの起動を確認する
漏えい箇所の隔離が成功し，導入条件より復帰した場合は，原子炬制御「スクラム」に脱出する

※1 有効性評価の重要事故シーケンスに係る対応手段

II．重要事故シーケンス等の対応手順に対する保安規定の記載内容の整理
11．「雰囲気圧カ・温度による静的負荷（格納容器過圧•過温破損）」の対応手順の概要（代替循環冷却系を使用する場合）「水素燃焼」

第7．2．1．2－3図 格納容器破損モード「雰囲気圧力•温度による静的負荷（格納容器過圧•過温破損）」時の対応手順の概要 （代替循環冷却系を使用する場合）

保安規定 添付1－1
1．原子炻制御
（1）スクラム

（1）目的

- 原子炉を停止する。
- 十分な炬心椧却状態を維持する。
- 原子炉を椧温停止状態まで泠却する

原子炬スクラム要求時にはスクラム成功の有無の確認を確実に行ら。
単一故障による原子炉スクラム時の復旧操作を全て原子炉制御「スクラム」で収束させ，通常停止操作に移行する。
各計器を並行監視し，徴候に応じた制御を行う。
原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷す
る恐れがある場合には原子炉制御「スクラム」と一次格納容器制御を並行して行う。
一次格納容器制御「原子炬建屋制御」から要求される操作は原子炉制御「スクラム」と二次格納容器制御を並行して行う。
－原子炉制御「スクラム」においては，最初に「原子炉出力」の制御䏾全挿入を確認し，「原子炉水位」，「原子炉圧力」，「電源・タービン」の各制御を並行して行ら。
多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炉制御「スク ラム」での制御を並行して行う。

（5）主な監視操作内容

A．原子炉出力
「原子炬自動スクラム」 警報の発信を矿認する。
全制御棒挿入状態を確認する。
平均出力領域モニタの指示を確認する。
自動スクラムが失敗した場合には，手動スクラムを行う。
原子炉モードスイッチを「停止」位置にする。
全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる。
全挿入位置まで挿入されていない制御棒が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も1反応度制御」で行り。
全制御棒が全挿入位置まで插入された場合または全插入位置まで插入されていない制御䏾が 1 本以下の場合，原子炉水位，原子炉圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炉再循環ポンプ速度を確認する。

B．原子炬水位
原子炬水位を碓認する。
－原子炉水位が原子炉水位低スクラム設定値まで低下した場合，格納容器隔離弁の開閉状態を確認する。
（4）－タービン駆動給水ポンプを停止し ，電動駆動給水ポンプおよび給水制御系（単要素）で原子炉水位を原子炉水位低て クラム設定值から原子炬水位高タービントリップ設定值の間を目標として維持する。
給復水系（主復水器を含む）が正常でない場合，原子炬隔離時椧却系を手動作動する。（原子炬隔離時冷却系が自動作動した場合は不要）
原子炉水位が非常用炉心泠却采作動水位まで低下した場合には，非常用炉心冷却系および原子炉隔離侍冷却系の運転状態を確認する。
給復水系，非常用炉心冷却系または原子炉隔離時冷却系により原子炉水位を原子炉水位低スクラム設定値から原子炉水位高タービントリッブ設定値の間を目標として維持する。
原子炉水位が原子炉水位低スクラム設定値以上に維持できない場合は，原子炉制御「水位碓保」に移行する。
原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」へ移
原子炬水位が有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」へ移行する。
原子炉水位を連続的に監視する。
※：タービン駆動給水ポンプは，原子炉水位高タービントリップ設定值で自動停止する。

C．原子炉圧力
原子炉スクラム後，原子炉圧力を確認する
主蒸気隔離弁が開の場合，原子炉圧力制御が正常であることを確認する。また，主復水器が使用可能であることを確認する。
原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は，主蒸気隔離弁を閉鎖し原子炬を隔離す る。
主蒸気逃がし安全弁が開固着した場合，一次格納容器制御「サプレッションプール水温制御」一移行する。
主蒸気隔離弁が閉の場合，主蒸気逃がし安全弁を開して，原子炉圧力を調整する。また，主蒸気逃がし安全弁の開閉によって原子炉圧力の調整ができない場合，原子炉制御「減圧冷却」 い移行する。なお，主復水器が使用可能で ある場合は主蒸気管ドレン弁により調整してもよい
主蒸気隔離弁が閉の場合，主蒸気逃がし安全弁の開閉によってサプレッションプールの水温が上昇するため，残留熱除去系によるサプレッションプール椧却を行う。
原子炉圧力がタービンバイパス弁または主蒸気逃がし安全弁により制御されていることを連続的監視する。また主蒸気逃がし安全弁で制御している場合は，主蒸気逃がし安全弁の開閉状態を連続的に監視する。

D．電源・タービン

- 原子炉スタフム後，発電機出力かか低下していることおよびタービン自動トリッブを確認する。
- タービントリップ状態および発電機トリップ状態を確認する。
- 所内電源系が碓保されていることを確認する
- 直流電源が確保されない場合は，「電源回復（直流電源復旧）」 い移行する。
- 起動変圧器から受電されていない場合，「電源回復（交流電源復旧）」 い移行する。

非常用母線が正常であることを碓認する。正常でない場合，「電源回復」へ移行する。
主蒸気隔離弁が開の場合，原子炬圧力制御が正常であること，主復水器が使用可能であることを確認する。
－原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は，主蒸気隔離亣を閉鎖し原子炉を隔離す る。
タービンおよび発電機の停止状態を確認する
空気抽出器およびグランドシールの切替により主復水器真空度を維持する。

E．モニタ確認

各種放射線モニタの指示を確認する。
各種放射線モニタの指示の異常が確認された場合，「復旧」操作へ移行せず原因の調查を実施する。

F．復旧

原子炉水位が原子炉水位低スクラム設定値以上で安定していることを確認する
格納容器隔離系がリセット可能であることを確認する。
原子炉圧力等の主要パラメータが整定していることを確認する。
外部電源により電源が確保されていることを確認する。
直流電源負荷抑制を実施していた場合，負荷抑制を復旧する。
格納容器隔離信号をリセットし，隔離状態を復旧する
原子炉泠却材浄化系により原子炉水位が調整可能であることを確認する。また，原子炉建屋換気空調系を起動し，非常用ガス处理系を停止する。
スクラム原因を究明し，原因除去後スクラムリセットを行う。
原子炉再循環ポンプがか停止している場合，原子炉水位を原子炉水位高タービントリップ設定値以上で維持する。原子炉を洽温停止する。

保安規定 添付1－1

4．不測事態

（1）目的

－原子炉水位が不明な場合に原子炉の椧却を碓保する
（2）導入条件
原子炉制御「スクラム」，「水位碓保」わよび「減圧冾却」，一次格納容器制御「格納容器圧力制御」ならびに不測事態「水位回復」，「急速減圧」におわて，原子炉水位が不明になった場合

- 原子炉制御「反応度制御」の「水位不明」を実施中に，未挿入制御棒が 1 本以下まで挿入された場合
- 次格納容器制御 Tドライウェル温度制御」において，ドライウェル空間部温度が水位不明判断曲線の水位不明領域に入った場合

（4）基本的な考え方

－原子炉水位不明時に，復水系，高圧炉心スプレイ系，低圧炉心スプレイ系もしくは低圧注水系または低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を使用した原子炬注水操作を行い，さらに原子炬厈力を目安にした原子炬満水操作を行ら
原子炉満水操作は，原子炉圧力とサプレッションプール圧力の差圧を原子炉圧力容器満水碓認最低圧力以上になる ように注水操作を行ら。
原子怇水位が判明した場合は 原子炬制御「水位確保」 い移行する。
－原子炉満水が確認できない場合は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系原子搬型），代替循澴冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）万過水系）を起動し，主烝気逃し安全弁を6弁開として原子炉への注水を継続する。

（5）主な監視操作内容

A．注水確保
－復水系，高圧炉心スプレイ系，低圧炉心スプレイ系または低圧注水系のうち 1 系統以上作動した場合は急速減圧を実施する。
復水系，高圧炉心スプレイ系，低圧炉心スプレイ系または低圧注水系のらち 1 系統も作動しない場合は，原子炬隔離時冷却系または高圧代替注水系を作動させ，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動後，急速減圧を実施する。

B．満水注入
－不測事態「急速減圧」から移行してきた場合において，主蒸気逃がし安全弁が 1 弁以上開放可能な場合，主蒸気隔離弁，主蒸気管ドレン弁，原子炉隔離時椧却系および原子炉椧却材浄化系の隔離升を閉鎖し，「満水注入」を行う。
弁数に操作して原子炉圧力とサプレッションプール圧力の差圧を原子炉圧力容器満水確認最低圧力以上に維持す る。
原子炉圧力とサプレッションプール圧力の差圧を原子炉圧力容器満水確認最低圧力以上に維持できない場合は，主蒸気逃がし安全弁の開数を原子炉圧力容器満水確認用最小必要弁数まで減らし，原子炉圧力とサプレッションプー ル圧力の差圧を原子炉圧力容器満水確認最低圧力以上に維持する
－主蒸気逃がし安全弁を原子炉圧力容器満水確認用最小必要弁数のみ開としても原子炉圧力とサプレッションプール圧力の差圧を原子炉圧力容器満水確認最低圧力以上に維持できない場合は，他の代替確認方法にて満水を確認する。他の代替確認方法によっても原子炉圧力容器満水が碓認できない場合には，主蒸気逃がし安全弁を 6 弁開とし，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）を起動し原子炬へ注水を継続する
原子炉への注水を継続し，基準水柱の周囲温度を $100^{\circ} \mathrm{C}$ 以下にする。

保安規定 添付1－1

5 ．電源制御
（1）雷源回復

（4）基本的な考え方
－非常用ディーゼル発電機の起動状況を確認し，状況に応じて代替電源設備による給電を行ら。
非常用交流電源喪失が長期化する場合には常設 125 V 直流電源および 250 V 直流電源延命のため，直流負荷の切 り離しを実施し，直流電源延命させる
使用可能な設備を確認し，C，D母線の受電操作を行う。C，D母線の復旧が不可能な場合は，G母線の受電を行い，交流電源切替盤で切り替えを実施する。
直流電源喪失時は，常設代替直流電源（ 125 V 代替蓄電池および 250 V 蓄電池）より受電する。常設代替直流電源からできない場合には，可搬型計測器にて中央制御室で計器毎に碓認する。
－非常用交流電源霛失が長期化する場合には常設代替直流電源（125V代替蓄電池および250V蓄電池）の延命の ため，負荷の切り離しを行ら

（5）主な監視操作内容

A．非常用交流高圧電源確保
－非常用ディーゼル発電機の運転状態を確認する。
運転している非常用ディーゼル発電機に対応する原子炬補機冷却海水系の運転状態を確認する。当該原子炬補機冷却海水系の運転不可の場合は，常設代替交流電源設備を起動し，非常用ディーゼル発電機を停止する。
非常用ディーゼル発電機からの受電ができない場合，予備変圧器より受電する。予備変圧器からの受電ができない場合は常設代替交流電源設備より受電し，常設代替交流電源設備からの受電もできない場合は，号炉間等より受電する。 （2）•非常用交流高圧電源母線 2 系統售失となった場合，常設代替交流電源設備より受電する

非常用交流高圧電源母線 2 系統喪失となった場合であって，常設代替交流電源設備から受電できた非常用交流高圧電源母線が1系統である場合，直流 250 V 充電器を受電した交流高圧電源母線側へ切り替える。
非常用交流高圧電源母線 2 系統整失となった場合であって， 2 系統とも常設代替交流電源設備から受電できなかった場合，直流駆動低圧注水系の系統構成，発電機水素ガス放出ならびに直流 250 V 電源確保および直流 125 V 電源確保を行らとともに，号炉間等からの受電を実施する
非常用交流高圧電源母線の号炉間等からの受電ができなかった場合，可搬型代替交流電源設備より受電する。
③ •給電設備容量に応じた設備復旧を行ら。常設代替交流電源設備から受電している場合は，受電後1時間および 24 時間にて常設代替交流電源設備の負荷抑制を実施する

B．直流電源碓保

非常用ディーゼル発電機および常設代替交流電源設備から直流電源A系およびB系への給電ができない場合， 1 時間後および8時間後までに負荷の切り離しによる負荷抑制を実施する。
直流電源A系およびB系が喪失または枯渴した場合，常設代替直流電源設備より給電する。
直流電源A系およびB系が喪失または枯渴し，常設代替直流電源設備より給電している場合であって，G母線の受電 ができない場合は， 8 時間後に負荷抑制を実施する。また，代替直流電源用切替盤への電源車接続を実施し，常設代替直流電源設備の充電器へ給電する。

C．直流 250 V 電源確保

発電機水素ガスの放出の完了または，直流電源A采およびB系が䨤失した場合は負渮抑制を実施する。

保安規定 添付1－3

操作手順

7．原子炉格納容器の過圧破損を防止するための手順等

灲心の著しい損傷が発生した場合において，原子炉格納容器の破損を防止するため，原子炉格納容器フィルタベント系および代替循擐泠却系により，原子炉格納容器内の圧力および温度を低下
させる。
刘心手投
発電課長は，原子炬格納容器の破損を防止するため，代替循環椧却系により原子炉格納容器内の圧力およひひ温度を代下させる
［手順着手の判断基準］
炬心損傷を判断した場合＊1において，残留熱除去系の復旧に見込みがなく＊2原子炉格納谷器内の減圧およひ除熱が困難な状況で，以下の条件が全て成立した場合。
（1）代替循澴冷却系が使用可能＊3であること
（2）原子炬補機冷却水系（原子炉補機冷却海水系を含む。）または原子炬補機代替冷却水系 のいすれかによる佮却水供給が可能であること。
（3）原子炉格納容器内のドライ条件の酸素源度が $4.3 \mathrm{vol} \%$ 以下＂であること。
※ 1 ：格納容器内雰囲気放射線モニタで原子炉格納容器内のガンマ線線量率が，設計基準事故相当のカンママ線線量率の 10 倍を超えた場合または格納容器内窃井気放射線モニタ が使用できない場合に原子炉圧力容器温度で $300^{\circ} \mathrm{C}$ 以上を碓認した場合。
※ 2 ：設備に故障が発生した場合または駆動に必要な電源もしくは補機泠却水が確保でき ない場合。
※3：設備に異常がなく，電源および水源（サプレッションチェンバ）が確保されている場合。
※ 4 ：格納容器内雰囲気酸素濃度にてドライ条件の酸素濃度が $4.3 \mathrm{vol} \%$ を超過している場合においてウエット条件の酸素濃度が $1.5 \mathrm{vol} \%$ 未満の場合は，代替循環椧却系による スプレイを実施することで，ドライウェル側とサプレッションチェンバ側のガスの混合を促進させる。

【中略】
（配慮すべき事項）
○重大事故等時の対応手段の選択
残留熱除去系による原子炉格納容器内の除熱機能が喪失した場合は，代替看環椧却采によ る原子炉格納容器内の減圧およひひ除熱を実施する。
代替循環冷却系が起動できない場合は，原子炉格納容器フィルタベント系により原子炉格納容器内の減圧および除熱を行う。
原子炉格納容器フィルタベント系の原子炉格納容器ベントの実施に当たり，隔離升を中央制御室から操作できない場合は，現場での手動操作を行ら。
なお，原子炉格納容器フィルタベント系による原子炬格納容器ベントを実施する場合は， スクラビング効果が期待できるサプレッションチェンバを経由する経路を第一優先とする。 サプレッションチェンバ側のベントラインが使用できない場合は，ドライウェルを経由す ろ経路を第一優先とする

保安規定添付 1－3 表20 重大事故等対策における操作の成立性

※1 有効性評価の重要事故シーケンスに係る対応手段

操作 手順	対応手段	要員	要員数	想定
時間				

※1 有効性評価の重要事故シーケンスに係る対応手段

第7．2．1．3－4図 格納容器破損モード「雰囲気圧力•温度による静的負荷（格納容器過圧•過温破損）」時の対応手順の概要 （代替循環冷却系を使用できない場合）（1／2）

保安規定 添付1－1

1．原子炬制御

（1）スクラム
－原子炬を停止する。
十分な师心浍却状態を維持する
－原子炉を洽温停止状態まで椧却する。
（2）導入条件
（2）導人条件
手動スクラムした場合

（原子炉がスクラムしない場合を含む）

－各制御の脱出条件が成立した場合
（4）基本的な考え方

- 原子炉スクラム要求時にはスクラム成功の有舞の確認を確実に行ら
- 単一故障による原子炉スクラム時の復旧操作を全て原子炉制御「スクラム」で収束させ，通常停止操作に移行する。
- 各計器を並行監視し，徴候に応じた制御を行う
- 原子炬制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷する恐れがある場合には原子炉制御「スクラム」と一次格納容器制御を並行して行う。
二次格納容器制御「原子炬建屋制御」から要求される操作は原子炉制御「スクラム」と二次格納容器制御を並行して行 ら。
－原子炉制御「スクラム」においては，最初に「原子炉出力」の制御䏾全挿入を確認し，「原子炉水位」，「原子炉圧
力ノ「電源・タービン」の各制御を並行して行ら。
多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炬制御「スク ラム」での制御を並行して行ら

（5）主な監視操作内容

A．原子炬出力
「原子炉自動スクラム」 警報の発信を確認する。
全制御棒挿入状態を確認する。
平均出力領域モニタの指示を確認する。
自動スクラムが失敗した場合には，手動スクラムを行う。
原子炉モードスイッチを「停止」位置にする。
全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる。
全挿入位置まで挿入されていない制御棒が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行う。
全制御棒が全挿入位置まで插入された場合または全挿入位置まで插入されていない制御棒が 1 本以下の場合，原子炬水位，原子炉圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖わよび原子炉再循環ポンプ速度を確認する。
平均出力領域モニタおよび起動領域モニタにより原子炉未臨界を確認する。

B．原子炉水位

砤認する
皂子炬水位が原子炬水位低スクラム設定值まで低下した場合，格納容器隔離弁の開閉状能を確想する。
タービン駆動給水ポンプを停止し＊，電動駆動給水ポンプおよび給水制御系（単要素）で原子炉水位を原子炉水位低ス クラム設定値から原子炬水位高タービントリッフ設定値の間を目標として維持する。
給復水系（主復水器を含むら）が正常でない場合，原子炉隔離時冷却系を手動作動する。（原子炬隔離時冷却系が自動作動した場合は不要）
原子炉水位が非常用炉心冷却系作動水位まで低下した場合には，非常用炉心冷却系および原子炉隔離時冷却系の運転状態を確認する。
給復水系，非常用炉心冷却系または原子炉隔離時冷却系により原子炉水位を原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定值の間を目標として維持する。
原子炬水位が原子炉水位低スクラム設定値以上に維持できない場合は，原子炬制御「水位碓保」に移行する。
原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」へ移行る
原子炉水位が有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御・へ移行する
原子炉水位を連続的に監視する
※：タービン駆動給水ボンプは，原子炉水位高タービントリップ設定値で自動停止する。

C．原子炉圧力

原子炬スクラム後，原子炉圧力を確認する。
主蒸気隔離弁が開の場合，原子炉圧力制御が正常であることを碓認する。また，主復水器が使用可能であることを確認する
原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は，主蒸気隔離弁を閉鎖し原子炬を隔離す る。
主蒸気逃がし安全弁が開固着した場合，一次格納容器制御「サプレッションプール水温制御」へ移行する。
主蒸気隔離弁が閉の場合，主蒸気逃がし安全弁を開して，原子炉圧力を調整する。また，主蒸気逃がし安全弁の開閉によって原子炉圧力の調整ができない場合，原子炉制御「減圧冷却」 い移行する。なお，主復水器が使用可能で ある場合は主蒸気管ドレン弁により調整してもよい
主蒸気隔離弁が閉の場合，主蒸気逃がし安全弁の開閉によってサプレッションプールの水温が上昇するため，残留熱除去系によるサプレッションプール椧却を行う
原子炬圧力がタービンバイパス弁または主蒸気逃がし安全弁により制御されていることを連続的監視する。また主蒸気逃がし安全弁で制御している場合は，主蒸気逃がし安全弁の開閉状態を連続的に監視する。

D．電源・タービン

- 原子炉スクラム後，発電機出力が低下していることおよびタービン自動トリップを確認する。
- タービントリップ状態および発電機トリップ状態を確認する。
- 所内電源系が碓保されていることを碓認する
- 直流電源が確保されない場合は，「電源回復（直流電源復旧）」 い移行する。

起動変圧器から受電されていない場合，「電源回復（交流電源復旧）」 い移行する
非常用母線が正常であることを確認する。正常でない場合，「電源回復」 へ移行する。
主蒸気隔離弁が開の場合，原子炉圧力制御が正常であること，主復水器が使用可能であることを碓認する。
原子炉圧力制御が正常でない場合または主復水器が使用不能である場合は，主蒸気隔離弁を閉鎖し原子炉を隔離す る。
タービンおよび発電機の停止状態を確認する。
空気抽出器およびグランドシールの切替により主復水器真空度を維持する。

E．モニタ確認

各種放射線モニタの指示を碓認する
各種放射線モニタの指示の異常が確認された場合，「復旧」操作へ移行せず原因の調查を実施する。

F．復旧

原子炬水位が原子炬水位低スクラム設定値以上で安定していることを確認する。
格納容器隔離系がリセット可能であることを確認する。

- 原子炉圧力等の主要パラメータが整定していることを確認する。
- 外部電源により電源が確保されていることを確認する。
- 直流電源負荷抑制を実施していた場合，負荷抑制を復旧する。
- 格納容器隔離信号をリセットし，隔離状態を復旧する。
- 原子炉冷却材浄化系により原子炉水位が調整可能であることを確認する。また，原子炉建屋換気空調系を起動し，非常用ガス処理系を停止する。
スクラム原因を究明し，原因除去後スクラムリセットを行う
原子炉再循環ポンプがか停止している場合，原子炉水位を原子炉水位高タービントリップ設定値以上で維持する。原子炉を洽温停止する。

保安規定 添付1－1

4．不測事態
（3）水位不明
（3）水位
（1）目的
原子炉水位が不明な場合に原子炉の浍却を確保する。
（2）導入条件
原子炉制御「スクラム」，「水位碓保」および「減圧椧却」，一次格納容器制御「格納容器圧力制御」ならびに不測事態「水位回復」，「急速減圧」において，原子炉水位が不明になった場合

- 原子炉制御「反応度制御」の「水位不明」を実施中に，未挿入制御棒が 1 本以下まで挿入された場合
- 次格納容器制御「ドライウエル温度制御」において，ドライウェル空間部温度が水位不明判断曲線の水位不明領域に入った場合
－原子炉水位不明時に，復水系，高圧炉心スプレイ系，低圧炉心スプレイ系もしくは低圧注水系または低圧代替注水系（低圧代替注水系（常設）（復水移送ボンブ），低圧代替注水系（可搬型），代替循環椧却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ち過水系）を使用した原子炬注水操作を行い，さらに原子炉圧力を目安にした原子炬満水操作を行ら
－原子炉満水操作は，原子炉圧力とサプレッションプール圧力の差圧を原子炉圧力容器満水碓認最低圧力以上になる ように注水操作を行う
- 原子炬水位が判明した場合は，原子炬制御「水位確保」一移行する
- 原子炬満水が確認できない場合は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系 （可搬型），代替循䁵泠却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動し，主蒸気逃し安全弁を6弁開として原子炉への注水を継続する。

（5）主な宨し懢視莧操作内容

\section*{| （5）主な監視操作 |
| :--- |
| A．注水確保 |}

－復水系，高圧炉心スプレイ系，低圧炉心スプレイ系または低圧注水系のうち 1 系統以上作動した場合は急速減圧を実施する。
－復水系，高圧炉心スプレイ系，低圧炉心スプレイ系または低圧注水系のうち 1 系統も作動しない場合は，原子炬隔離時冷却系または高圧代替注水系を作動させ，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環泠却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動後，急速减圧を実施する。

B．満水注入

不測事態「急速減圧」から移行してきた場合において，主蒸気逃がし安全弁が 1 弁以上開放可能な場合，主蒸気隔離弁，主蒸気管ドレン弁，原子炉隔離時冷却系および原子炉冷却材浄化系の隔離并を閉鎖し，「満水注入」を行う。低圧で原子炉へ注水可能な系統により注水流量調整および，主蒸気逃がし安全弁を原子炉圧力容器満水確認用適正弁数に操作して原子炉圧力とサプレッションプール圧力の差圧を原子炉圧力容器満水確認最低圧力以上に維持す る。
－原子炬圧力とサプレッションプール圧力の差圧を原子炉圧力容器満水確認最低圧力以上に維持できない場合は，主蒸気逃がし安全弁の開数を原子炉圧力容器満水碓認用最小必要弁数まで減らし，原子炉圧力とサプレッションプー ル圧力の差圧を原子炬圧力容器満水確認最低圧力以上に維持する。
主蒸気逃がし安全弁を原子炉圧力容器満水碓認用最小必要弁数のみ開としても原子炉圧力とサプレッションプール圧力の差圧を原子炉圧力容器満水確認最低圧力以上に維持できない場合は，他の代替確認方法にて満水を碓認する。他の代替確認方法によっても原子炉圧力容器満水が確認できない場合には，主蒸気逃がし安全弁を 6 弁開とし，低圧代替注水系（低圧代替注水系（常設）（復水移送ホンフ），低圧代替注水系（可般型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ボンブ），万過水系）を起動し原子炉へ注水を継続する
原子炉への注水を継続し，基準水柱の周囲温度を $100^{\circ} \mathrm{C}$ 以下にする。

保安規定 添付1－1

5 ．電源制御 （1）電源回復	
（1）目的 －交流電源および直流電源の供給を回復し維持する。	
（2）導入条件 －原子炉制御「スクラム」において，直流電源が喪失 した場合 －原子炬制御「スクラム」において，起動用変圧器か らの受電に失敗した場合 －原子炉制御「スクラム」において，非常用C母線ま たはD母線の電源が啨失した場合	（3）脱出条件 \cdot 起動変圧器から所内電源を受電した場
（4）基本的な考え方 - 非常用ディーゼル発電機の起動状況を確認し，状況に応じて代替電源設備による給電を行う。 - 非常用交流電源喪失が長期化する場合には常設 125 V 直流電源および 250 V 直流電源延命のため，直流負荷の切り離しを実施し，直流電源延命させる。 －使用可能な設備を確認し，C，D母線の受電操作を行ら。C，D母線の復旧が不可能な場合は，G母線の受電を行い，交流電源切替盤で切り替えを実施する。 －直流電源䨤失時は，常設代替直流電源（125V代替蓄電池および250V蓄電池）より受電する。常設代替直流電源からできない場合には，可搬型計測器にて中央制御室で計器毎に碓認する。 －非常用交流電源震失が長期化する場合には常設代替直流電源（125V代替蓄電池および250V蓄電池）の延命の ため，負荷の切り離しを行う。	
（5）主な監視操作内容	
A．非常用交流高圧電源確保	
－非常用交流高圧電源母線 2 系統喪失となった場合であって，常設代替交流電源設備から受電できた非常用交流高圧電源母線が 1 系統である場合，直流 250 V 充電器を受電した交流高圧電源母線側へ切り替える。 －非常用交流高圧電源母線 2 系統喪失となった場合であって， 2 系統とも常設代替交流電源設備から受電できなかっ た場合，直流駆動低圧注水系の系統構成，発電機水素ガス放出ならびに直流 250 V 電源確保および直流 125 V電源確保を行らとともに，号炉間等からの受電を実施する。 - 非常用交流高圧電源母線の号炉間等からの受電ができなかった場合，可搬型代替交流電源設備より受電する。 - 給電設備容量に応じた設備復旧を行う。常設代替交流電源設備から受電している場合は，受電後 1 時間および 24時間にて常設代替交流電源設備の負荷抑制を実施する。	
B．直流電源碓保	
－非常用ディーゼル発電機および常設代替交流電源設備から直流電源A系およびB系への給電ができない場合， 1 時間後および 8 時間後までに負荷の切り離しによる負荷抑制を実施する。 - 直流電源 A 系および B 系が䨤失または枯渴した場合，常設代替直流電源設備より給電する。 - 直流電源A系およびB系が喪失または枯渴し，常設代替直流電源設備より給電している場合であって，G母線の受電ができない場合は，8時間後に負荷抑制を実施する。また，代替直流電源用切替盤への電源車接続を実施し，常設代替直流電源設備の充電器へ給電する。	
C．直流 250 V 電源碓保 ${ }_{\text {－発電機水素かスの放出の完了または，直流電源 } \mathrm{A}}$	

4．原子炉冷却材圧カバウンダリ低圧時に原子炉を椧却するための手順等
方針目的
原子炬冷却材圧カバウンダリが低圧の状態において，設計基準事故対処設備が有する原子炉の椧却機能が喪失した場合においても炉心の著しい損傷および原子炉格納容器の破損を防止するため，低圧代替注水系により原子炉を椧却する。
また，炬心が溶融し，原子炬圧力容器の破損に至った場合で，溶融炉心かか原子炬
厈代替注水采により残存溶融炬心を浍却する。

対応手段等
原子炬運転中の場合
尔攺運転中の場合

発電課長および発電所対策本部は，設計基準事故対処設備である残留熱除去系（低圧注水モード）および低圧灲心スプレイ系の故障等により原子炉の冷却ができない場合は，以下の手段により原子炉圧力容器へ注水し，原子炬 を椧却する。
（1）復水眝蔵タンクを水源として，低圧代替注水系（常設）（復水移送ポンプ）
\qquad
［手順着手の判断基準］
復水給水系および非常用炉心椧却系による原子炉圧力容器への注水ができず，原子炉圧力容器内の水位を原子炉水位低（レベルコ）以水ができず，原子炬圧力容器内の水位を原子炉水位低（レベル 3）以
上に維持できない場合にな，低圧代替注水系（虽設）（復水移送上に維持できない場合において，低圧代替注水系（常設）（復水移送 ※：設備に異常がなく，電源」
：設備に異常がなく，電源および水源（復水貯蔵タンク）が確保さ れている場合。

表20 重大事故等対策における操作の成立性（3／10）

操作 手順	対応手段	要員	要員数	想定時間
6	原子炉格納容器代替スプレイ泠却系（可搬型） による原子炉格納容器内へのスプレイ＊1	運転員 （中央制御室，現場）	$3{ }^{* 2}$	385 分以内
		重大事故等対応要員	$10{ }^{2}$	

$\begin{array}{ll}\text { ※ } & \text { 有效性評価の重要事故シーケンズ係る対応手段 } \\ \text { ※ } 2 \text { 有効性評価の重要事故シーケンスにおいて連シ転員 } 1 \text { 名および重大事故等対応要員 } 9 \text { で想定時間 }\end{array}$ は 385 分以内である。


```
操作手順
    7. 原子炉格納容器の過圧破損を防止するための手順等
方針目的
    う釬目的著しい損傷が発生した場合において, 原子炬格納容器の破損を防止するため,原子炉格
        *納容器フィルタバント系および代替循環椧却系により, 原子炉格納容器内の圧力および温度を
        低下させる
```

 対応手段等
 2．原子炉格納容器フィルタベント系による原子炉格納容器内の減圧および除熱発電課長および発電所対策本部は，残留封除去系の復旧または代替循環冷却系の運転に上る原子炬格納容器内の減圧および除熱ができない場合または原子炬建屋地上3階（原子炉建屋原子炉棟内）の水素浱度が $2.3 \mathrm{vol} \%$ に到達した場合は，原子炬格納容器の破損を防 を低下させる 原子炬格納容器フィルタベント系の隔離弁（電動弁）を中央制御室から操作できない場合は，隔離升を遠隔で手動操作することにより原子炉格納容器内の圧力およ び温度を低下させる
［手順着手の判断基準］
炉心損傷を判断した場合※1において，残留熱除去系および代替循環冷却系による原子
到達した場合 $\% 2$ または原子炬建屋地上 3 階（原子炬建屋原子炬棟内）の水素濃度が ． $0 \mathrm{vol} \%$ に到達した場合
$※ 1$ ：格納容器内雰囲気放射線モニタで原子炉格納容器内のガンマ線線量率が，設計基準事故相当のガンマ線線量率の 10 倍を超えた場合または格納容器内雰囲気放射線モ

※ 2 原子炉の椧却ができない場合または原子炉格納容器内の椧却ができない場合は，速 やかに原子炬格納容器ベントの漼備を開始する

保安規定添付 1－3 表2 0 重大事故等対策における操作の成立性

13．「高圧溶融物放出／格納容器雰囲気直接加熱」の対応手順の概要
「原子炉圧力容器外の溶融燃料－冷却材相互作用」
「溶融炉心・コンクリート相互作用」
第 7．2．2－5図 格納容器破損モード「高圧溶融物放出／格納容器雰囲気直接加熱」時の対応手順の概要

笑 	

事故シーケンス「原子炉圧力容器外の溶融燃料－泠
却材相互作用」及び「溶融炬心・コンクリート相互
作用」は「高圧溶融物放出／格納容器雰囲気直接加
熱」と同じ手順である。

保安規定 添付1－1

1．原子炉制御

（1）目的

- 原子的炬を停止する
- 十分な炬心冷却状態を維持する。
- 原子炉を椧温停止状態まで椧却する。

一次および二次格納容器制御への䆃入条件を監視する。（原子炬がスクラムしない場合を含む）

1）
系子ふスクラム信另が発生した場
た場合
－各制御の脱出条件が成立した場合

（4）基本的な考え方

－原子炬スクラム要求時にはスクラム成功の有無の確認を確実に行ら
単一故障による原子炉スクラム時の復旧操作を全て原子炉制御「スクラム」で収束させ，通常停止操作に移行する。各計器を並行監視し，徴候に応じた制御を行う
－原子炉制御「スクラム」から要求される操作は，一次格納容器制御より優先される。ただし，一次格納容器が損傷 する恐れがある場合には原子炬制御「スクラム」と一次格納容器制御を並行して行ら。
二次格納容器制御「原子炬建屋制御」から要求される操作は原子炬制御「スクラム」と二次格納容器制御を並行し て行り。
－原子炉制御「スクラム」においては，最初に「原子炉出力」の制御俸全挿入を確認し，「原子炉水位」，「原子炉圧力」，「電源・タービン」の各制御を並行して行う。
－多重故障により他の制御への移行条件が成立した場合には，移行先の制御を優先し，残りの制御は原子炉制御「ス クラム」での制御を並行して行う。

（5）主な監視操作内

A．原子炉出力
「原子师白動スクラム・敬報の発信を確認する
全制御棒插入状態を確認する。
平均出力領域モ二タの指示を碓認する。
自動スクラムが失敗した場合には，手動スクラムを行う。
原子版モードスイッチを「停止」位置にする。
全制御棒が全挿入位置まで挿入されていない場合，代替制御棒挿入機能を動作させる。
－全挿入位置まで挿入されていない制御䏾が 1 本を超える場合，「反応度制御」一移行する。また，「反応度制御」に移行した場合には，原子炉水位制御も「反応度制御」で行ら。
－全制御棒が全挿入位置まで挿入された場合または全挿入位置まで挿入されていない制御棒が 1 本以下の場合，原子炉水位，原子炉圧力，スクラム排出容器ドレン弁，ベント弁の閉鎖および原子炉再循擐ポンプ速度を確認する。平均出力領域モニタおよび起動頒域モニ夕により原子炉未臨界を確認する
B．原子炉水位
B．原子媔水㮩
原子炉水位が原子炉水位低スクラム設定值まで低下した場合，格納容器隔離升の開閉状態を碓認する
タービン駆動給水ポンプを停止し＂，電動駆動給水ポンプおよび給水制御系（単要素）で原子炉水位を原子炉水位低 タービン駆動給水ホンブを停止し＂，電動駆動給水ボンブおよひ給水制御系（单要素）
スクラム設定值から原子炬水位高タービントリッフ設定値の間を目標として維持する。
給復水系（主復水器を含む）が正常でない場合，原子炉隔離時冷却系を手動作動する。（原子炉隔離侍冷却系が自動作動した場合は不要）転状態を確認する
給復水系，非常用炉心泠却系または原子炉隔離時冷却系により原子炉水位を原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定値の間を目標として維持する。

原子炉水位が不明になった場合には，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」へ移行する。
原子炉水位が有効然料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」一移行する。
原子炉水位を連続的に監視する
※：タービン駆動給水ポンプは，原子炉水位高タービントリップ設定值で自動停止する

保安規定 添付1－1

$$
\begin{aligned}
& 1 . \\
& \hline \text { (3) 原子炉制御 } \\
& \text { 水位碓 }
\end{aligned}
$$

(1)目的
－原子炉水位を有効燃料頂部以上に回復させ，安定に維持する。

（2）導入条件

\qquad
原子炉制御
「スクラム」に㲹おいて原子炉水位が原子
䂙水位低スクラム設定値以上に維持できない場合•
料頂部以上に維持できる場合または有効燃料頂部
以上で安定している場合
不測事態「急速減圧」において，減圧が完了し水位
が判明している場合
不測事態「水位不明」において最長許容炉心露出時間以内に原子炉水位が判明した場合
（4）基本的な考え方
原子炉水位と原子炉に注水可能な系統を随時把握する。
（5）主な監視操作内容
A．水位

- 作動すべきものが不作動の場合は，手動で作動させる。
- 給復水采，原子炬隔離時冾却系，非常用炉心冷却系または高圧代替注水系を使用して原子炉水位を原子炉水位低 スクラム設定值から原子炉水位高タービントリップ設定値の間に維持する

原子炬水位を原子炬水位低スクラム設定值以上に維持できず原子炬水位が降下中の場合であって，給復水系お上び非常用炉心椧却系が起動せず，原子炉隔氍時椧却系または高圧代替注水系により原子炉水位の維持ができ ない場合は，低圧注水系または低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），ろ過水系）を起動し，不測事態「急速減圧」に移行する。低圧代替注水系が起動できない場合は，不測事態「水位回復」に移行する。
－原子炉水位を有効燃料頂部以上に維持できない場合は，不測事態「水位回復」および一次格納容器制御「格納容器水素濃度制御」に移行する。
原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「減圧冷却」に移行する。

保安規定 添付1－1

（ ${ }^{4}$（1）不測事態
（1）目的
－原子炉水位を回復する。
（2）導入条件

- 原子炉制御「スクラム」において，原子炉水位が有効燃料頂部以上を維持できない場合
- 原子炉制御「水位碓保」におわて，原子炉水位が有効燃料頂部以上を維持できない場合
- 原子炉制御「減圧冷却」において，原子炉水位が有効燃料頂部以上を維持できない場合
- 不測事態「急速減圧」において，減圧が完了し，水位が判明しており，かつドライウェル空間部温度が飽和温度以下の場合
（4）基本的な考え方
－原子炉水位の徴候に応じて，非常用炉心椧却系の再起動や低圧代替注水系（常設），低圧代替注水系（可搬型）の起動を行う
原子炉停止後何らかの理由により炉心が露出した場合，炉心の健全性が保たれている間に何らかの方法により原子炬水位を確保しなければならない。そのために，原子炉停止後，燃料被覆管温度が $1,200^{\circ} \mathrm{C}$ または燃料被覆管酸化割合が 15% に達するまでの時間内に原子炉水位を確保する。よって，炉心が露出した時刻を記録し，前述の時間以内に原子炉水位を有効燃料頂部以上に回復するように非常用炉心冷却系，低圧代替注水系（常設）および低圧代替注水系（可搬型）を起動する。
原子炉制御「反応度制御」実施中は，本制御を実施しない。
⑤主な監視操作内容
原子炉水位が不明となった場合，不測事態「水位不明」および一次格納容器制御「格納容器水素濃度制御」へ移行 する。
原子炉水位が有効燃料頂部に到達した場合，原子炬水位が有効燃料頂部に到達した時刻を記録するとともに，一次格納容器制御「格納容器水素濃度制御」を導入する。
原子炉隔蝺時冷却系または高圧代替注水系を起動する。
－給復水系または非常用加心命却系の1系統以上を起動する
給復水系または非常用炉心泠却系の 1 系統以上の起動ができない場合であって，原子炬隔離時冷却系または高圧代替注水系による原子炉水位の維持ができない場合は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポン プ），低圧代替注水系（可搬型），代替循環冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）を起動し，原子炬圧力が原子炬隔離時冷却系機能維持最低圧力以上の場合は，不測事態「急速減圧」 人移行す る。
給復水
給復水系または非常用炉心泠却系の 1 系統以上を起動しても原子炉水位を有効燃料頂部以上に維持できない場合 は，不測事態「急速減圧」へ移行する
原子炬水位が有効燃料頂部以上に維持可能な場合は，原子炬制御「水位碓保」へ移行する。

P

保安規定 添付1－3

$$
\begin{aligned}
& \text { 操作手順 } \\
& \text { 3. 炉冷却材圧力バウンダリを減圧するための手順等 }
\end{aligned}
$$

方針目的

原子炉冷却材圧カバウンダリが高圧の状態において，設計基準事故対処設備が有する原子炉の減圧機能が喪失した場合においても炬心の著しい損傷および原子炬格納容器の破損を防止するため，手動操作による減圧および減圧の自動化により原子炉泠却材圧カバウンダリを減圧する。
また，炬心損傷時に原子炉冷却材圧力バウンダリが高圧状態である場合において，高圧溶融物放出／格納容器雰囲気直接加熱を防止するため，原子炬冷却材圧力バウンダリを減圧する
さらに，インターフェイスシステムLOCA発生時において，炬心の著しい損傷を防止するため，原子炉椧却材圧力バウンダリを減圧する

対応手段等

フロントライン系故障時
－手動操作による減圧
発電課長は，設計基準事故対処設備である主蒸気逃がし安全弁の自動減圧機能が故障等により原子炉 の減圧ができない場合は，中央制御室からの手動操作により主蒸気逃がし安全弁を開放し，原子炉を減王する。
［手順着手の判断基準］
【中略】
（4）注水手段がない場合
炬心損傷後において，原子炬圧力容器への注水手段が碓保できず，原子炬圧力容器内の水位が規定水位（有効燃料䏾底部から燃料棒有効長さの 20% 上の位置）に到達した場合で，主蒸気逃がし安全弁の開操作が可能な場合

【中略】
高圧溶融物放出／格納容器雰囲気直接加熱の防止

容器の破搵を防止するため，主䒱気逃がし安全弁の手動操作により原子炬を減圧する。
［手順着手の判断基準 \qquad
\qquad手動操作による減压 手順着毛の判断其淮 ［後略】

操作手順
 8．原子炉格納容器下部の溶融炉心を椧却するための手順等

炉心の著しい損傷が発生した場合において，原子炉格納容器の破損を防止するため，原子炉格納容器下部注水系により原子炉格納容器の下部に落下した溶融炬心を泠却する ことにより，溶融汚心・コンクリート相互作用（MC C I）を抑制し，溶融灲心が拡がり原子炉格納容器バウンダリに接触することを防止する。
また，溶融㷋心の原子炬格納容器下部への落下を遅延または防止するため，原子炬圧力容器へ注水する。
対応手段等
原子炉格納容器下部に落下した溶融炬心の冷却
原子炉格納容器下部注水系による原子炉格納容器下部への注水
－発電課長および発電所対策本部は，炉心の著しい損傷が発生し，原子炉圧力容器下鏡部温度が $300^{\circ} \mathrm{C}$ に達した場合は，以下の手段により原子炉格納容器下部へ
の初期水張りを実施する。
［中略】
復水販蔵タンクを水源として
［手順着手の判断基準］
原子炉圧力容器下鏡部温度指示值が $300^{\circ} \mathrm{C}$ に達した場合で，代替循環冷却系による原子炉格納容器下部への注水ができず，原子炉格納容器代替スブ ※：設備に異常がなく，電源および水源（復水貯蔵タンク）が確保されてい る場合。
配慮すべき事項）
○重大事故等時の対応手段の選択
炉心の著しい損傷が発生し，原子炉圧力容器下鏡部温度が $300^{\circ} \mathrm{C}$ に達した場合の原子炉格納容器下部への初期水張りは，スプレイ管使用による原子炉格納容器下部注水が使用可能な場合は，代替循環泠却系により原子炉格納容器下部への初期水張 りを実施する。代替循環冷却系により原子炉格納容器下部一の初期水張りを実施で きない場合は，原子炉格納容器代替スブレイ给却系（常設）により原子炉格納容器
使用できない場合は，原子炉格納容器下部注水系（常設）（代替循㻇浍却ホ炉格納容器下部注水系（常設）（復水移送ポンプ）により原子炉格納器下部への初期水張りを実施する。

[^3]
保安規定 添付1－3

操作手順
 6．原子炉格納容器内の泠却等のための手順等

方針目的
設計基準事故対処設備が有する原子炬格納容器内の泠却機能が霛失した場合において，炬心の著しい
低下させる。
また，炉心の著しい損傷が発生した場合において，原子炉格納容器の破損を防止するため，原子炉格納容器代替スプレイ椧却系により原子炬格納容器内の圧力および温度ならびに放射性物質の湄度を低下させる。

対応手段等
炉心損傷葆
フロントライン系故障時
原子炬格納容器代替スプレイ椧却系による原子炉格納容器内の椧却
発電課長および発電所対策本部は，設計基準事故対処設備である残留熱除去系（格納容器スプレ イ椧却モード）の故障等により原子炉格納容器内の泠却ができない場合は，以下の手段により原子炬格納容器内ヘスプレイレ，原子炬格納容器内の厂力および温度ならびに放射性物質の莀度を低
（2）原子炉格納容器代替スプレイ椧却系（常設）により原子炉格納容器内ヘスプレイできない場合 は，淡水眝水槽（No．1）および淡水眝水槽（No，2）を水洦と
 こよる原子炉格納容器内の泠却は，海を水源として利用できる。また，原子炉圧力容器破損前に原子炉格納容器代替スプレイを実施することで原子炬格納容器内の温度の上昇を抑制し，主蒸気逃がし安全弁の環境条件を緩和する
手順着手の判断基準
炉心損傷を判断した場合＊1 において，残留熱除去系（格納容器スプレイ泠却モード）によ る原子炉格納容器内へのスプレイができず，原子炉格納容器代替スプレイ泠却系（可搬型） が使用可能な場合 $* 2$
※ 1 ：格納容器内雰囲気放射線モニタで原子炬格納容器内のガンマ線線量率が，設計基淮事故相当のガンマ線線量率の 10 倍を超えた場合または格納容器内雰囲気放射線モ二タが使用できない場合に原子炉圧力容器温度で $300^{\circ} \mathrm{C}$ 以上を確認した場合。

※2：設備に異常かなく，電源，燃料および水源（淡水貯水槽（No．1）または淡水貯水槽（No．2）） （配慮すべき事項）
○重大事故等時の対応手段の選択
設計基準事故対処設備である残留熱除去系（格納容器スプレイ洽却モード）の故障等により原子炉格納容器内の泠却ができない場合において，原子炬格納容器代替スプレイ椧却系（常設）に異常がなく，交流電源および水源（ 復水貯蔵タンク）が確保されている場合は，原子炉格納容器代替 スプレイ椧却系（常設）により原子炬格納容器内を洽却する
原子炉格納容器代替スプレイ椧却系（常設）により原子炉格納容器内の泠却ができない場合に おいて，原子炉格納容器代替スプレイ洽却系（可搬型）に異常がなく，燃料および水源（淡水貯水槽（No．1）または淡水貯水槽（No．2））が確保されている場合は，原子炉格納容器代替スプレイ泠却系（可搬型）により原子炉格納容器内を泠却する。

保安規定 添付1－3

```
操作手順
7. 原子炉格納容器の過圧破損を防止するための手順等
7. 原子炻
    炉心の著しい損傷が発生した場合において, 原子炉格納容器の破損を防止するため, 原子炉格納容器フィ
    ルタベント系および代替循環冷却系により, 原子炉格納容器内の圧力および温度を低下させる。
    対応手段等
    1. 代替循噮椧却系による原子炉格納容器内の減圧および除倖
    毕电譟長は, 原子炉格納容器の破損を防止するため, 代替循環椧却系により原子炉格納容器内の土刀
    -手㮌着手の判断基淮
        炬心損傷を判断した場合 \({ }^{* 1}\) において, 残留熱除去系の復旧に見込みがなく*2 原子炉格納容器内の
    減圧およひ除熱が困難な状況で, 以下の条件が全て成立した場合
    (1) 代替循擐彾却系が使用可能*3であること。
    (2) 原子炉補機冷却水系 (原子炉補機冷却海水系を含む。) または原子炉補機代替冷却水系のいずれ
    かによる泠却水供給が可能であること
    (3) 原子炉格納容器内のドライ条件の酸素浱度が \(4.3 \mathrm{vol} \%\) 以下 5 であること
    ※ 1 : 格納容器内雰囲気放射線モニタで原子炉格納容器内のガンマ線線量率が, 設計基準事故相当の
        カンマ線線量率の 10 倍を超えた場合または格納容器内雰囲気放射線モニタが使用できない場
        合に原子炉圧力容器温度で \(300^{\circ} \mathrm{C}\) 以上を確認した場合
    ※2: 設備に故障が発生した場合または駆動に必要な電源もしくは補機洽却水がが碓保できない場合。
※3: 備に常がなく, 電源および水源 (サプレッションチェバ) かか碓保されている場合。
    ※ 4 : 格納容器内雰囲気酸素濃度にてドライ条件の酸素濃度が \(4.3 \mathrm{vol} \%\) を超過している場合において
        ウエット条件の酸素濃度が \(1.5 \mathrm{vol} \%\) 未満の場合は, 代替循環冷却系によるスプレイを実施する
        ことで, ドライウェル側とサプレッションチェンバ側のガスの混合を促進させる。
                            〔中略】
    (配慮すべき事項)
    ○重大事故等時の対応手段の選択
    残留熱除去系による原子炉格納容器内の除熱機能が喪失した場合は, 代替循環椧却系による原子炉格
```


保安規定添付 1－3 表20 重大事故等対策における操作の成立性
（1）

操作 手順	対応手段	要員	要員数	想定
時間				

※1 有効性評価の重要事故シーケンスに係る対応手段

※1 有効性評価の重要事故シーケンスに係る対応手段
※2 有効性評価の重要事故シーケンスにおいては，運転員 1 名および重大事故等対応要員 9 で想定時間 は 385 分以内である

第7．3．1－2図「想定事故 1 」の対応手順の概要

 \qquad

対応手段等
使用済燃料プールの泠却機能もしくは注水機能の喪失時または使用済燃料プール水の小規模な漏えい発生時
．燃料プール代替注水
発電課長および発電所対策本部は，残留熱除去系（燃料プール水の椧却）および燃料プール泠却浄化系の有する泠却機能が喪失した場合，残留熱除去系ポンプによ る使用済燃料プール～の補給機能が喪失した場合または使用済燃料プールの小規模 な水の漏えいにより使用済燃料プールの水位が低下した場合は，以下の手段により使用済燃料プールへ注水する。
なお，大容量送水ポンプ（タイプ I ）による使用済燃料プールへの注水は，海を水源として利用できる。
（1）代替淡水源（淡水貯水槽（No．1）および淡水貯水槽（No．2））を水源として，大容量送水ポンプ（タイプ I ）により燃料プール代替注水系（常設配管）から注水する。 ［手順着手の判断基準］
以下のいずれかの状況に至った場合。

- 燃料プール水位低警報または燃料プール温度高警報が発生した場合。
- 使用済燃料プールの椧却機能または注水機能が喪失し，復旧が見込めない場合。
（2）大容量送水ポンプ（タイプI）により燃料プール代替注水系（常設配管）から注水できない場合，代替淡水源（淡水貯水槽（No．1）および淡水貯水槽（No．2））を水源として，大容量送水ポンプ（タイプI）により燃料プール代替注水系（可搬型）から注水する。
［手順着手の判断基準］
以下のいずれかの状況に至り，燃料プール代替注水系（常設配管）による使用済燃料プールへの注水ができない場合。ただし，燃料取替床へアクセスできる場合。
- 燃料プール水位低警報または燃料プール温度高警報が発生した場合。
- 使用済燃料プールの椧却機能または注水機能が喪失し，復旧が見込めない場合。

第7．3．2－2図「想定事故2」の対応手順の概要

1－III．15－1

操作手順
11．使用済燃料プールの泠却等のための手順等
対応手段等
使用済燃料プールの泠却機能もしくは注水機能の喪失時または使用済燃料プール水の小規模な漏
えい発生時
－燃料プール代替注水
発電課長および発電所対策本部は，残留熱除去系（燃料プール水の椧却）および燃料プール椧却浄化系の有する椧却機能が喪失した場合，残留熱除去系ポンプによる使用済燃料プールへの補給機能が喪失した場合または使用済燃料プールの小規模な水の漏えいにより使用済燃料プールの水位 が低下した場合は，以下の手段により使用済燃料プールへ注水する。
なお，大容量送水ポンプ（タイプ I ）による使用済燃料プールへの注水は，海を水源として利用で
きる。
（1）代替淡水源（淡水貯水槽（No．1）および淡水貯水槽（No．2））を水源として，大容量送水ポンプ （タイプ I ）により燃料プール代替注水系（常設配管）から注水する。
［手順着手の判断基準］
以下のいずれかの状況に至った場合。

- 燃料プール水位低警報または燃料プール温度高警報が発生した場合。
- 使用済燃料プールの椧却機能または注水機能が喪失し，復旧が見込めない場合。
（2）大容量送水ポンプ（タイプI）により燃料プール代替注水系（常設配管）から注水できない場合，代替淡水源（淡水貯水槽（No．1）および淡水貯水槽（No．2））を水源として，大容量送水ポン プ（タイプ I ）により燃料プール代替注水系（可搬型）から注水する。
［手順着手の判断基準］
以下のいずれかの状況に至り，燃料プール代替注水系（常設配管）による使用済燃料プールへ の注水ができない場合。ただし，燃料取替床へアクセスできる場合。
- 燃料プール水位低警報または燃料プール温度高警報が発生した場合。
- 使用済燃料プールの泠却機能または注水機能が喪失し，復旧が見込めない場合。

II．重要事故シーケンス等の対応手順に対する保安規定の記載内容の整理
16．「崩壊熱除去機能喪失」の対応手順の概要
第7．4．1－3図「崩壊熱除去機能喪失」の対応手順の概要

保安規定 添付1－3

操作手順
4．原子炉冷却材圧力バウンダリ低圧時に原子炉を泠却するための手順等

対応手段等

重大事故等対処設備（設計基準拡張）
発電課長は，設計基準事故対処設備である残留熱除去系（低圧注水モードまたは原子炉停止時冷却モード）または低圧炉心スプレイ系が健全であれば，これらを重大事故等対処設備（設計基準拡張）と位置付け重大事故等の対処に用いる。
［手順着手の判断基準］
残留熱除去系（低圧注水系）については，復水給水系，原子炉隔離時冷却系および高圧炬心ス プレイ系による原子炉圧力容器への注水ができず，原子炬圧力容器内の水位を原子炉水位低（レ ベル3）以上に維持できない場合。
低圧炉心スプレイ系については，復水給水系，原子炉隔離時冷却系および高圧炉心スプレイ系 による原子炉圧力容器への注水ができず，原子炉圧力容器内の水位を原子炉水位低（レベル 3）以上に維持できない場合。

残留熱除去系（原子炉停止時泠却系）については，原子炉水位指示値が原子炉水位低（レベル 3 ）以上で維持され，かつ原子炬圧力指示値が規定値以下の場合。

操作手順
5．最終ヒートシンクへ熱を輸送するための手順等
対応手段等
重大事故等対処設備（設計基準拡張）
発電課長は，設計基準事故対処設備である残留熱除去系（原子炬停止時冷却モード，サプレッ ションプール水椧却モードまたは格納容器スプレイ椧却モード）および原子炉補機冷却水系（原子炉補機冷却海水系を含む。）が健全であれば，これらを重大事故等対処設備（設計基準挔掁）と位置付け重大事故等の対処に用いる。
［手順着手の判断基準］
残留熱除去系を使用した原子炉圧力容器内および原子炉格納容器内の除熱が必要な場合。

第7．4．2－3図「全交流動力電源喪失」の対応手順の概要

\square

1－III．17－2

保安規定 添付1－3

操作手順
4．原子炉泠却材圧カバウンダリ低圧時に原子炉を椧却するための手順等
対応手段等
原子炉停止中の場合
フロントライン系故障時
低圧代替注水系による原子炉の泠却
発電課長および発電所対策本部は，設計基準事故対処設備である残留熱除去系（原子炉停止時冷
却モード）の故障等により原子炉の泠却機能が喪失した場合は，以下の手段により原子炉圧力容器
へ注水し，原子炬を泠却する
（1）復水貯蔵タンクを水源として，低圧代替注水系（常設）（復水移送ポンプ）により注水する。
［手順着手の判断基準］
原子炉停止中に非常用炉心椧却系による原子炉圧力容器への注水ができず，原子炉圧力容器内
の水位を維持できない場合において，低圧代替注水系（常設）（復水移送ポンプ）が使用可能な場合 $\%$
※：設備に異常がなく，電源および水源（復水貯蔵タンク）が確保されている場合
原子炉停止中の場合
サポート系故障時
常設代替交流電源設備による残留熱除去系（原子炉停止時冷却モード）の復旧
発電課長は，設計基準事故対処設備である残留熱除去系（原子炉停止時冷却モード）が全交流動力電源喪失等により使用できない場合は，低圧代替注水系による原子炉の泠却に加え，常設代替交流電源設備を用いて非常用所内電気設備へ給電することにより残留熱除去系（原子灲停止時冷却モ ード）を復旧し，原子炉の除熱を実施する。また，常設代替交流電源設備へ燃料を補給し，電源の供給を継続することにより残留熱除去系（原子炉停止時冷却モード）を運転継続する。
〔手順着手の判断基準〕
常設代替交流電源設備により非常用高圧母線2 C 系および 2 D系の受電が完了し，残留熱除去系 （原子炬停止時冷却モード）が使用可能な状態火に復旧された場合。
※：設備に異常がなく，電源および補機冷却水が確保されており，原子炉水位指示値が原子炉水
位低（レベル3）以上で維持され，かつ原子炉圧力指示値が規定値以下の状態。

操作手順

5．最終ヒートシンクへ熱を輸送するための手順等
対応手段等
サポート系故障時
原子炉補機代替冷却水系による除熱
発電課長および発電所対策本部は，設計基準事故対処設備である原子炉補機冷却水系（原子炬補機泠却海水系を含む。）の故障等または全交流動力電源喪失により最終ヒートシンクへ熱を輸送で きない場合は，原子炬補機代替泠却水系，残留熱除去系等により，発生した熱を最終的な熱の逃が
し場である海へ輸送する。
［手順着手の判断基準］
原子炉補機冷却水系（原子炉補機泠却海水系を含む。）の故障または全交流動力電源の喪失に より原子炉補機椧却水系（原子炉補機泠却海水系を含む。）を使用できない場合。

1－III．17－4

操作 手順	対応手段		要員	

※1 有効性評価の重要事故シーケンスに係る対応手段

第7．4．3－3図 「原子炉冷却材の流出」の対応手順の概要

枠囲みの内容は商業機密の観点から公開できません。
1－III．18－2

4．原子炉冷却材圧力バウンダリ低圧時に原子炉を冷却するための手順等
対応手段等
重大事故等対処設備（設計基準拡張）
発電課長は，設計基漼事故対処設備である残留熱除去系（低圧注水モードまたは原子炉停止時冷却モード）または低圧炉心スプレイ系が健全であれば，これらを重大事故等対処設備（設計基準拡
張）と位置付け重大事故等の対処に用いる。
〔手順着手の判断基準〕
残留熱除去系（低圧注水系）については，復水給水系，原子炉隔離時椧却系および高圧炉心ス プレイ系による原子炬圧力容器への注水ができず，原子炉圧力容器内の水位を原子炉水位低（レ ベル3）以上に維持できない場合。
低圧炉心スプレイ系については，復水給水系，原子炉隔離時冷却系および高圧炬心スプレイ系 による原子炉圧力容器への注水ができず，原子炉圧力容器内の水位を原子炉水位低（レベル3）以上に維持できない場合
残留熱除去系（原子炉停止時椧却系）については，原子炉水位指示値が原子炉水位低（レベル 3 ）以上で維持され，かつ原子炉圧力指示値が規定値以下の場合。

2．火災，溢水及びその他自然災害に係る対応と保安規定記載内容について
目 次
I ．火災発生時の対応について・ 2－I－1
II．内部溢水発生時の対応について 2－II－1
III．津波発生時の対応について 2－III－1
IV．竜巻発生時の対応について・ 2－IV－1
V．火山（降灰）発生時の対応について $2-\mathrm{V}-1$
VI．有毒ガス発生時の対応について 2－VI－1
VII．地震発生時に対応について・ 2－VII－1

I．火災発生時の対応について

事象対応	原子炉施設保安規定	原子炬施設保安規定 添付 1 －	関連する品質マネジメント文書
事象発生前の対応 （1）消火用水の確保 （2）防火帯の維持•管理 （3）油量制限管理 （4）巡視点検（火災発生有無の確認） （5）持込可燃物の管理 （6）火気作業時の管理 （7）延焼防止 （8）定検作業時の運用 （9）施設管理•点検 （11）評価条件の変更に伴ら影響確認 事象発生時の対応 （1）（5）消火要員による消火活動 （2）故障警報発生時の対応 （3）（8）火災感知器動作時の対応 （3）（6）（7）消火設備動作時及び使用時の対応 （4）自動消火設備動作時の対応 （9）（11）排墣設備の起動 （10）水素感知時の対応 （12）（11）外気取入ダンパ閉，換気空調系の停止，再循環運転 （141）代替設備の確保 （15）原子炉施設の損傷の有無を確認 （16）火災発生の有無の確認	（火災発生時の体制の整備） 第17条 2号炉について，防災課長は，火災 が発生した場合（以下「火災発生時」という。） における原子炉施設の保全のための活動＊${ }^{*}$ を行う体制の整備として，次の各号を含む計画を策定し，所長の承認を得る。また，計画 は，添付 1－2に示す「火災，内部溢水，火山影響等，その他自然災害および有毒ガス対応に係る実施基準」に従い策定する。 （1）発電所から消防機関へ通報するために必要な專用回線を使用した通報設備設置※2に関すること （2）火災発生時における原子炉施設の保全 のための活動を行うために必要な要員 の配置に関すること （3）火災発生時における原子炉施設の保全 のための活動を行ら要員に対する教育訓練に関すること （4）火災発生時における原子炉施設の保全 のための活動を行うために必要な資機材の配備に関すること （5）発電所における可燃物の適切な管理に関すること 2． 2 号炬について，各課長は，前項の計画に基づき，火㷋発生時における原子炉施設の保全のための活動を行うために必要な体制お よび手順の整備を実施する。 3． 2 号炉について，各課長は，第 2 項の活動 の実施結果をとりまとめ，第1項に定める事項について定期的に評価するとともに，評価 の結果に基づき必要な措置を講じ，防災課長 に報告する。防災課長は，第1項に定める事項について定期的に評価を行らとともに，評価の結果に基づき必要な措置を講じる。 4． 2 号炉について，発電課長は，火災の影響 により，原子炉施設の保安に重大な影響を及 ぼす可能性があると判断した場合は，発電管理課長に報告する。発電管理課長は，所長，原子炉主任技術者および関係課長に連絡す るとともに，必要に応じて原子炬停止等の措置について協嶬する。 5． 3 号炉について，防災課長は，初期消火活動のための体制の整備として，次の措置を講 じる。 （1）中央制御室から消防機関へ通報するた めの専用回線を使用した通報設備を設	1．火 災 1． 5 手順書の整備 （1）防災課長は，原子炉施設全体を対象とした火災防護対策を実施するために定める火災防護計画に以下の項目を含める。 a．火災防護対策を実施するための体制，責任の所在，責任者の権限，体制の運営管理に必要な要員の確保および教育訓練，火災発生防止のための活動，火災防護設備の施設管理，点検およ び火災情報の共有化等 b．原子炬施設の安全機能を有する構築物，系統および機器を設置する火災区域および火災区画 を考慮した火災の発生防止，火災の早期感知および消火ならびに火災の影響軽減の 3 つの深層防護の概念に基づく火災防護対策 c．重大事故等対処施設を設置する火災区域および火災区画を考慮した火災の発生防止，火災の早期感知および消火の 2 つの深層防護の概念に基づく火災防護対策 d．その他の原子炬施設については，消防法，建築基準法，日本電気協会電気技術規程•指針に基づき設備に応じた火災防護対策 e．安全施設を外部火災から防護するための運用等 （2）防災課長は，以下の活動を実施することを品質マネジメント文書に定める。 a．消火活動 （1）各課長は，火災発生現場の確認および中央制御室への連絡ならびに消火器，消火栓等を用い た消火活動を実施する。 b．消火設備故障時の対応 （2）発電課長は，消火設備の故障警報が発信した場合，中央制御室および必要な現場の制御盤の警報の確認を実施する。 c．消火設備のらち，自動消火設備を設置する火災区域または火災区画における火災発生時の対応 （ a ）③発電課長は，火災感知器が作動した場合，火災区域または火災区画からの退避警報，自動消火設備の動作状況の確認を実施する。 （b）（4）発電課長は，自動消火設備の動作後の消火状況の確認，消火状況を踏まえた消火活動の実施，プラント運転状況の確認等を実施する。 d．消火設備のらち，手動操作による固定式消火設備を設置する火災区域または火災区画におけ る火災発生時の対応 （a）⑤発電課長は，火災感知器が作動し，火災を確認した場合，消火活動を実施する。 （b）⑥発電課長は，消火が困難な場合，職員の退避確認後に固定式消火設備を手動操作により動作させ，その動作状況，消火状況，プラント運転状態の確認等を実施する。 e．格納容器内における火災発生時の対応 （7）発電課長は，原子炉の起動中および原子炉が泠温停止中の格納容器内において火災が発生し た場合には，消火器等による消火活動，消火状況の確認，プラント運転状況の確認および必要な運転操作等を実施する。 f．単一故障も想定した中央制御室盤内における火災発生時の対応（中央制御室の制御盤 1 面の機能が火災により全て喪失した場合における原子炉の安全停止に係る対応を含む。） （a）8）発電課長は，中央制御室盤内の高感度煙検出設備により火災を感知し，火災を確認した場合は，常駐する運転員による二酸化炭素消火器を用いた消火活動を行い，プラント運転状沉の碓認等を実施する。火災の発生箇所が特定できない場合を想定し，サーモグラフィカメ ラ等，火災の発生箇所を特定できる装置を使用して消火活動を行い，プラント運転状況の確認等を実施する。 （b）⑨）発電課長は，煙の充満により運転操作に支障がある場合，火災発生時の煙を排気す	【体制】 - 火炎防護計画（要領書） - 防火管理要領書 【事象発生前の対応】 （1），（4） - 火災防護計画（要領書） - パトロール要領書 （2） - 火災防護計画（要領書） - 防火帯等管理手順書 （5） - 火炎防護計画（要領書） - 可燃物•危険物保管管理手順書 （6） - 火災防護計画（要領書） - 火気使用作業管理要領書 （3），（8），（10） －火災防護計画（要領書） （7） - 火災防護計画（要領書） - 防火帯等管理手順書 - 可燃物•危険物保管管理手順書 - 危険取扱および防火戸開放作業等許可運用管理手順書 （9） - 火炎防護計画（要領書） - 保修業務実施要領書 【事象発生時の対応】 （1），（14） - 火炎防護計画（要領書） - 防火管理要領書 （2）～（4），（6），（8）～（13） - 火災防護計画（要領書） - 運転手順書 （5），（7） - 火炎防護計画（要領書） - 防火管理要領書

I．火災発生時の対応について

事象対応	原子炉施設保安規定	原子炉施設保安規定 添付 1－2	関連する品質マネジメント文書
	置する＊2。 （2）初期消火活動を行ら要員として， 10 名以上（発電所合計数）を常駐させると ともに，この要員に対する火災発生時の通報連絡体制を定める。 （3）自衛消防隊に対して，火災発生時にお ける初期消火活動等に関する総合的な教育訓練を実施する。 （4）化学消防自動車，泡消火薬剤等の初期消火活動のために必要な資機材 ${ }^{*}$ 3を配備する。 6． 3 号炉について，各課長は，原子炉施設に火災が発生した場合は，早期消火および延焼 の防止に努めるとともに，火災鎮火後，原子炉施設の損傷の有無を確認し，その結果を所長および原子炉主任技術者に報告する。 7． 3 号炉について，各課長は，発電所周辺の あらかじめ定めた測候所等において震度 5弱以上の地震が観測された場合，地震終了後，原子炬施設災4の火災発生の有無を確認す るとともに，その結果を所長および原子炉主任技術者に報告する。 8． 3 号炉について，発電課長は，第 13 条に定める巡視により，火災発生の有無を碓認す る。 9． 3 号炉について，防災課長は，前各号に定 める初期消火活動のための体制について，総合的な訓練および初期消火活動の結果を 1年に 1 回以上評価するとともに，評価結果に基づき，より適切な体制となるよう必要な見直しを行う。 ※ 1：消防機関への通報，消火または延焼の防止その他公設消防隊が火災の現場に到着するまでに行ら活動を含む。また，火災の発生防止，火災の早期感知および消火ならびに火炎による影響の軽減に係 る措置を含む（以下，本条において同 じ。）。 ※2：一般回線の代替設備である専用回線，通報設備が点検または故障により使用不能となった場合を除く。ただし，点検後 または修復後は逗滞なく復旧させる。	（10）発電課長は，換気空調設備の運転状態の碓認，換気空調設備の追加起動または切替六等を実施する。 h．放灭災発生時の煙の充満により消火活動に支障を生じた際のポンプ室の消火活動 （11）䔬定式消火設備による消火後，自衛消防隊が消火の碓想のためにポンプ室へ入室する場合 は，十分に洽却时間を碓保した上で，可搬型排橝装置を準備し，扉を開放，換気空調系，可搬型排標装置により換気し入室する。 i．消火用水の最大放水量の碓保 （1）防卞罺長は，屋内消火栓用の水源である消火水槽には最大放水量 $62.4 \mathrm{~m}^{3}$ およひび消火タンク には最大放水量 $31.2 \mathrm{~m}^{3}$ に対して，十分な水量を碓保する。また，屋外消火栓用の水源であ る屋外消火系消火水タンクには最大放水量 $84.0 \mathrm{~m}^{3}$ に対して，十分な水量を碓保する。 j．防火帯の維持•管理 （2）防災課長は，防火帯の維持•管理を実施する。 k．外部火炏によるばい煝発生時の対応 （12）発電課長は，ばい瑨発生時，ばい煄侵入防止のため，外気取入ダンパの閉止およひ換気空調系の停止または中央制御室の事故時運転モードによる建屋内へのばい煙の侵入の防止を実施する。 1．外部火災による有毒がス発生時の対応 （13）発電課長は，有毒がス発生時，有毒がス侵入防止のため，外気取入ダンパの閉止，換気空調系の停止または中央制御室の事故時運転モードによる建屋内への有毒がスの侵入の防止を実施する。 m．外部火炎によりモニタリングポストが影響を受けた場合 （14）放射線管理課長は，モニタリングポストかか外部火災の影響を受けた場合，代替設備をモ二夕 リングポスト周辺に設置できる場合はその周辺に設置し，モニタリングポスト周辺に設置で きない場合は，防火帯の内側同一方向に設置する。 n．油貯歲設備の運用 （3）防災課長は，油埘蔵設備の油量制限を実施する。 o．火災予防活動（巡視点検） （4）各課長は，巡視点検により，火炎発生の有無の確鼔を実施する。 p．火災予防活動（可燃物管理） （5）防災課長は，原子炬施設の安全機能を有する構築物，系統およひひ機器を設置する火災区域ま たは火災区画については，当該施設を火災から防謢するため，恒設機器およよで点検等に使用 する可然物（資機材）の総発熟量が，制限発熱量を超えない管理（特込みと保管）および重大事故等対処施設を設置する屋外の火災区域については，当該施設を火炎から防護するた め，可然物を置かない管理を実施する。 q．灰災予防活動（火気作業等の管理） （6）各課長は，火貉区域または火災区画において，溶接等の火気作業を実施する場合，火気作業前に計画を策定するとともに，火気作業時の采生，消火器等の配備，監視人の配置等を実施 する。 r．延㶼防止 （7）防災課長は，重大事故等対処施設を設置する屋外の火災区域では，周辺施設および植生との嶵隔を碓保し，火災区域内の周辺の植生区域については，除草等の管理を実施し，延烍防止 を図る。 s．炎災鎮火後の原子炉施設への影響碓認 （15）各課長は，原子炉施設に火災が発生した場合は，火災鎮火後，原子炉施設の損隹の有無を碓	－運転手順書 （15） - 火災防護計画（要領書） - 防火管理要領書 - 火災，内部溢水，火山影響等およびそ の他自然災害対応後における保安確認要領書 （16） - 火㷋防護計画（要領書） - 防火管理要領書 - 女川原子力発電所地震後における保安確認要領書

I．火災発生時の対応について

II．内部溢水発生時の対応について

事象対応	原子炉施設保安規定	原子炉施設保安規定 添付 $1-2$	関連する品質マネジメント文書
事象発生前の対応 （1）運転時間実績の管理 （2）水密扉の運用 （3）屋外タンクの水量運用 （4）排水誘導経路に対する管理 （5）定事検停止時等の作業における運用管理 （6）配管の肉厚管理 （7）施設管理•点検 （8）評価条件の変更に伴う影響確認 （9B，Cクラス機器運用管理 事象発生時の対応 （1）溢水時の対応操作 （2）使用済燃料プールへの注水および伶却対応操作 （3）原子炉施設の損傷の有無を確認 （4）滞留区画等の排水作業	（内部溢水発生時の体制の整備（2号炉））第17条の2 2号炉について，防災課長 は，原子炉施設内において溢水が発生した場合（以下「内部溢水発生時」という。）に おける原子炉施設の保全のための活動 ${ }^{* 1}$ を行う体制の整備として，次の事項を含む計画を策定し，所長の承認を得る。また，計画は，添付 $1-2$ に示す「火災，内部溢水，火山影響等，その他自然災害および有毒ガス対応に係る実施基準」に従い策定す る。 （1）内部溢水発生時における原子炉施設 の保全のための活動を行うために必要 な要員の配置に関すること （2）内部溢水発生時における原子炉施設 の保全のための活動を行う要員に対す る教育訓練に関すること （3）内部溢水発生時における原子炬施設 の保全のための活動を行うために必要 な資機材の配備に関すること 2． 2 号炉について，各課長は，前項の計画 に基づき，内部溢水発生時における原子炉施設の保全のための活動を行うために必要 な体制および手順の整備を実施する。 3． 2 号炉について，各課長は，第 2 項の活動の実施結果をとりまとめ，第1項に定め る事項について定期的に評価するととも に，評価の結果に基づき必要な措置を講 じ，防災課長に報告する。防災課長は，第 1 項に定める事項について定期的に評価を行うとともに，評価の結果に基づき必要な措置を講じる。 4． 2 号炉について，発電課長は，内部溢水 の影響により，原子炉施設の保安に重大な影響を及ぼす可能性があると判断した場合 は，発電管理課長に報告する。発電管理課長は，所長，原子炉主任技術者および関係課長に連絡するとともに，必要に応じて原子炉停止等の措置について協議する。 ※ 1：内部溢水発生時に行ら活動を含む（以下，本条において同じ。）。	2．内部溢水 2． 4 手順書の整備 （1）防災課長は，以下の活動を実施することを品質マネジメント文書に定める。 a．溢水発生時の措置に関する手順 （a）（1）発電課長は，想定破損による溢水，消火水の放水による溢水，地震起因による溢水およ びその他の要因による溢水が発生した場合の措置を行う。 （b）（2）発電課長は，燃料プール冷却浄化系または燃料プール補給水系が機能䨤失した場合，残留熱除去系による使用済燃料プールの注水および冷却の措置を行ら。 b．運転時間実績管理 （1）防災課長は，運転実績（高エネルギー配管として運転している割合が当該系統の運転して いる時間の 2% またはプラント運転期間の 1% より小さい）により，低エネルギー配管として いる系統についての運転時間実績管理を行ら。 c．水密扉の閉止状態の管理 （2）発電課長は，中央制御室等において水密扉監視設備等の警報監視により，必要な水密扉の閉止状態の確認を行う。また，各課長は，水密扉開放後の確実な閉止操作および閉止されてい ない状態が碓認された場合の閉止操作を行う。 d．屋外タンクの水量の管理 ③防災課長は，防護すべき設備が設置される建屋へ過度の溢水が流入し伝播することを防ぐ ため，必要な屋外タンクの水量を管理する。 e．溢水発生時の原子炉施設への影響確認に関する手順 （3）各課長は，原子炉施設に溢水が発生した場合は，事象収束後，原子炉施設の損傷の有無を確認するとともに，その結果を所長および原子炉主任技術者に報告する。 f．排水誘導経路に対する管理 （4）発電課長は，排水を期待する設備等の状態監視を行ら。また，防災課長は，排水を期待す る箇所からの排水を阻害する要因に対し，それを防止するための管理を行う。 g．定事検停止時等における運用管理 （5）防災課長は，定事検停止時等の作業に伴う防護対象設備の不待機や扉の開放等，影響評価上設定したプラント状態の一時的な変更時においても，その状態を踏まえた必要な安全機能が損なわれないよう管理を行う。 h．施設管理，点検 （a）（6）各課長は，配管の想定破損評価において，応力評価の結果により破損形状の想定を行う配管は，評価結果に影響するような減肉がないことを確認するために，継続的な肉厚管理を行う。 （b）（7）各課長は，浸水防護設備を維持するため，施設管理計画に基づき適切に施設管理，点検 を実施するとともに，必要に応じ補修を行ら。 i．溢水評価条件の変更の要否を確認する手順 （8）防災課長は，各種対策設備の追加および資機材の持ち込み等により評価条件に見直しがあ る場合，都度，溢水評価への影響碓認を行う。 j．B，Cクラス機器運用管理 （9）各課長は，地震起因による溢水において，溢水源となる機器のらち運用によって溢水を考慮しない機器について，プラント運転中および停止中において系統運用を停止し，隔離（水抜 き）する。 k．排水手順 （4）各課長は，溢水発生後，滞留区画等の排水作業を行う。	【事象発生前の対応】 （1），（2），（3），（4），（9） －内部溢水対応要領書 （5），（7） - 内部溢水対応要領書 - 保修業務実施要領書 （6） - 内部溢水対応要領書 - 肉厚管理要領 （8） - 内部溢水対応要領書 - 常時－一時保管物品管理要領書 - 内部溢水管理手順書 【事象発生時の対応】 （1），（2） - 内部溢水対応要領書 - 運転手順書 （3） - 内部溢水対応要領書 - 火炏，内部溢水，火山影響等およびそ の他自然災害対応後における保安確認要領書 －原子炉主任技術者の職務等運用要領 （4） －内部溢水対応要領書

III．津波発生時の対応について

事象対応	原子炉施設保安規定	原子炉施設保安規定 添付 $1-2$	関連する品質マネジメント文書
事象発生前の対応 （1）水密扉の閉止状態の管理 （2）浸水防止蓋および防潮壁鋼製扉の管理 （3）施設管理•点検 （4）（5）津波評価条件の変更の要否確認 事象発生時の対応 （1）大津波警報発令時の常用系海水ポンプの停止（プラント停止） （2）（3）燃料等輸送船の緊急退避 （4）津波襲来時の監視 （5）原子炉施設の損傷の有無を確認 （6）代替設備の確保	（その他自然災害発生時等の体制の整備）第 17 条の 42 号炉について，防災課長 は，原子炬施設内においてその他自然災害 （「地震，津波，竜巻，積雪等」をいう。以下，本条において同じ。）が発生した場合に おける原子炉施設の保全のための活動＂1を行ら体制の整備として，次の事項を含む計画を策定し，所長の承認を得る。また，計画は，添付 $1-2$ に示す「火災，内部溢水，火山影響等，その他自然災害および有毒ガス対応に係る実施基準」に従い策定す る。 （1）その他自然㷋害発生時における原子炉施設の保全のための活動を行らため に必要な要員の配置に関すること （2）その他自然災害発生時における原子炉施設の保全のための活動を行ら要員 に対する教育訓練に関すること （3）その他自然災害発生時における原子炉施設の保全のための活動を行らため に必要な資機材の配備に関すること 2． 2 号炉について，各課長は，前項の計画 に基づき，その他自然災害発生時における原子炬施設の保全のための活動を行らため に必要な体制および手順の整備を実施す る。 3． 2 号炉について，各課長は，第 2 項の活動の実施結果を取りまとめ，第1項に定め る事項について定期的に評価を行うととも に，評価の結果に基づき必要な措置を講 じ，防災課長に報告する。防災課長は，第 1 項に定める事項について定期的に評価を行らとともに，評価の結果に基づき必要な措置を講じる。 4． 2 号炉について，発電課長は，その他自然災害の影響により，原子炬施設の保安に重大な影響を及ぼす可能性があると判断し た場合は，発電管理課長に報告する。発電管理課長は，所長，原子炉主任技術者およ び関係課長に連絡するとともに，必要に応 じて原子炉停止等の措置について協議す る。 5． 2 号炉について，原子力部長は，その他自然災害に係る新たな知見等の収集，反映等を実施する。 6． 2 号炉について，原子力部長は，その他	5．津 波 5． 4 手順書の整備 （1）防災課長は，以下の活動を実施することを品質マネジメント文書に定める。 a．津波の襲来が予想される場合の対応 （a）①発電課長は，発電所を含む地域に大津波警報が発表された場合，原子炉を停止し，冷却操作を開始する。また，海水ポンプ室の水位を中央制御室にて監視し，引き波による水位低下を確認した場合，原子炬補機泠却海水ポンプによる原子炬補機冷却に必要な海水を確保す るため，常用系海水ポンプ（循環水ポンプおよびタービン補機冷却海水ポンプ）を停止する。 ただし，以下の場合はその限りではない。 i ．大津波警報が誤報であった場合。 ii．発電所から遠方で発生した地震に伴ら津波であって，津波が到達するまでの間に大津波警報が解除または見直された場合。 （b）（2）各課長は，燃料等輸送船に関し，発電所を含む地域に津波警報等が発表された場合，荷役作業を中断し，陸側作業員および輸送物の退避に関する措置を実施する。 （c）（3）各課長は，緊急離岸する船側と退避状況に関する情報連絡を行ら。 （d）（4）発電課長は，津波監視カメラおよび取水ピット水位計による津波の襲来状況の監視を実施する。 b．水密扉の閉止状態の管理 （1）発電課長は，中央制御室等において水密扉監視設備等の警報監視により，必要な水密扉の閉止状態の確認を行う。また，各課長は，水密扉開放後の確実な閉止操作および閉止されてい ない状態が碓認された場合の閉止操作を行ら。 c．浸水防止蓋および防潮壁鋼製扉の管理 （2）各課長は，浸水防止蓋および防潮壁鋼製扉開放後の確実な閉止操作および閉止されていな い状態が確認された場合の閉止操作を行ら。 d．波発生時の原子炉施設への影響確認 （5）各課長は，発電所を含む地域に大津波警報が発表された場合は，事象収束後，原子炉施設 の損傷の有無を碓認するとともに，その結果を所長および原子炉主任技術者に報告する。 e．施設管理，点検 （3）各課長は，津波防護施設，浸水防止設備および津波監視設備について，その要求機能を維持するため，施設管理計画に基づき適切に施設管理，点検を実施するとともに，必要に応じ補修を行う。 f．津波評価条件の変更の要否確認 （a）④各課長は，設備改造等を行ら場合，都度，津波評価への影響確認を行う。 （b）⑤防災課長は，津波評価に係る評価条件を定期的に確認する。 g ．代替設備の確保 （6）各課長は，津波の襲来により，安全施設の構造健全性が維持できない場合を考慮して，代替設備による必要な機能の碓保，安全上支障のない期間における補修の実施等により，安全機能を維持する。	【事象発生前の対応】 （1） - 自然災害対応要領書 - 内部溢水対応要領書 （2），（4），（5） －自然災害対応要領書 （3） - 自然災害対応要領書 - 保修業務実施要領書 【事象発生後の対応】 （1），（4） - 自然災害対応要領書 - 運転手順書 （2），（3） - 自然災害対応要領書 - 使用済燃料の運搬手順書 - 低レベル放射性固体廃寁物搬出管理手順書 （5） - 自然災害対応要領書 - 火炏，内部溢水，火山影響等およびそ の他自然災害対応後における保安確認要領書 －原子炉主任技術者の職務等運用要領 （6） －自然災害対応要領書

III．津波発生時の対応について

事象対応	原子炉施設保安規定	原子炉施設保安規定 添付 1－2	関連する品質マネジメント文書
	自然災害のうち地震に関して，新たな波及的影響の観点の抽出を実施する。 7． 2 号炉について，原子力部長は，地震観測および影響碓認に関する活動を実施す る。 8． 2 号炉について，原子力部長は，定期的 に発電所周辺の航空路の変更状況を確認 し，確認結果に基づき防護措置の要否を判断する。防護措置が必要と判断された場合 は，関係個所へ防護措置の検討依頼を行 ら。また，関係個所の対応が完了したこと を確認する。 9． 3 号炉について，各課長は，震度 5 弱以上の地震が観測＊2された場合は，地震終了後原子炉施設の損傷の有無を確認するとと もに，その結果を所長および原子炉主任技術者に報告する。 10． 3 号炉について，発電課長は，その他自然災害の影響により，原子炉施設に重大 な影響を及ぼす可能性があると判断した場合は，発電管理課長に報告する。発電管理課長は，所長，原子炉主任技術者および関係課長に連絡するとともに，必要に応じて安全停止状態を維持するための措置につい て協嬟する。 ※ 1：その他自然災害発生時に行ら活動を含 む（以下，本条において同じ。）。 ※2：観測された震度は発電所周辺のあらか じめ定めた測候所等の震度をいう。		

IV．竜巻発生時の対応について

事象対応	原子炉施設保安規定	原子炉施設保安規定 添付 $1-2$	関連する品質マネジメント文書
事象発生前の対応 （1）屋外常設物，屋外仮設物の固縛，固定及び離隔 （2）重大事故等対処設備と設計基準事故対処設備の位置的分散 （3）施設管理•点検 事象発生時の対応 （1）竜巻襲来が予想される場合の車両の退避•固縛 （2）竜巻襲来が予測される場合の屋外クレーン作業の中止 （3）竜巻防護扉の閉止 （4）代替設備，補修のために必要な予備品による安全機能維持 （5）原子炉施設の損傷の有無を確認	（その他自然災害発生時等の体制の整備）第 17 条の 42 号炬について，防災課長 は，原子炉施設内においてその他自然災害 （「地震，津波，竜巻，積雪等」をいう。以下，本条において同じ。）が発生した場合に おける原子炉施設の保全のための活動 ${ }^{* 1}$ を行ら体制の整備として，次の事項を含む計画を策定し，所長の承認を得る。また，計画は，添付 $1-2$ に示す「火災，内部溢水，火山影響等，その他自然災害および有毒ガス対応に係る実施基準」に従い策定す る。 （1）その他自然災害発生時における原子炉施設の保全のための活動を行うために必要 な要員の配置に関すること （2）その他自然災害発生時における原子炉施設の保全のための活動を行う要員に対す る教育訓練に関すること （3）その他自然災害発生時における原子炉施設の保全のための活動を行うために必要 な資機材の配備に関すること 2． 2 号炉について，各課長は，前項の計画 に基づき，その他自然災害発生時における原子炉施設の保全のための活動を行うため に必要な体制および手順の整備を実施す る。 3． 2 号炉について，各課長は，第 2 項の活動の実施結果を取りまとめ，第1項に定め る事項について定期的に評価を行うととも に，評価の結果に基づき必要な措置を講 じ，防災課長に報告する。防災課長は，第 1 項に定める事項について定期的に評価を行らとともに，評価の結果に基づき必要な措置を講じる。 4． 2 号炉について，発電課長は，その他自然㷋害の影響により，原子炉施設の保安に重大な影響を及ぼす可能性があると判断し た場合は，発電管理課長に報告する。発電管理課長は，所長，原子炉主任技術者およ び関係課長に連絡するとともに，必要に応 じて原子炉停止等の措置について協議す る。 5．2号炉について，原子力部長は，その他自然災害に係る新たな知見等の収集，反映等を実施する。 6． 2 号炉について，原子力部長は，その他	6．竜 巻 6． 4 手順書の整備 防災課長は，以下の活動を実施することを品質マネジメント文書に定める。 （1）飛来物管理の手順 a．（1）各課長は，衝突時に建屋または竜巻防護対策設備に与えるエネルギー，貫通力が設計飛来物 ${ }^{* 1}$ 1のうち鋼製材によるものより大きなものについて，設置場所等に応じて固縛，固定または外部事象防護対象施設からの離隔により飛来物とならない管理を実施する。 b．（2）各課長は，屋外の重大事故等対処設備について，設計基準事故対処設備と位置的分散を図 ることで，設計基準事故対処設備と同時に重大事故等対処設備の機能を損なわないよう管理す る。 ※ 1 ：設計飛来物の寸法等は，以下のとおり。 （2）竜巻の襲来が予想される場合の対応 a．（1）各課長は，車両に関して停車している場所に応じて退避または固縛することにより飛来物 とならない管理を実施する。 b．（2）各課長は，屋外におけるクレーン作業を中止する。 c．（3）発電課長は，外部事象防護対象施設を内包する区画に設置する扉の閉止状態を確認する。 また，各課長は，外部事象防護対象施設を内包する区画に設置する扉の開放後の確実な閉止操作および閉止されていない状態が確認された場合の閉止操作を行う。 （3）代替設備の確保 （4）各課長は，竜巻の襲来により，安全施設の構造健全性が維持できない場合を考慮して，代替設備による必要な機能の確保，安全上支障のない期間における補修の実施等により，安全機能を維持する。 （4）竜巻発生時の原子炉施設への影響確認 （5）各課長は，発電所敷地内に竜巻が発生した場合は，事象収束後，原子炉施設の損傷の有無 を確認するとともに，その結果を所長および原子炉主任技術者に報告する。 （5）施設管理，点検 （3）各課長は，竜巻防護対策施設について，その要求機能を維持するために，施設管理計画に基づき適切に施設管理，点検を実施するとともに，必要に応じ補修を行う。	【事象発生前の対応】 （1），（2） －自然災害対応要領書 （3） - 自然災害対応要領書 - 保修業務実施要領書 【事象発生後の対応】 （1），（2），（3），（4） －自然災害対応要領書 （5） - 自然災害対応要領書 - 火災，内部溢水，火山影響等およびそ の他自然災害対応要領書 －原子炉主任技術者の職務等運用要領

IV．竜巻発生時の対応について

事象対応	原子炉施設保安規定	原子炉施設保安規定 添付 1－2	関連する 品質マネジメント文書
	自然災害のらち地震に関して，新たな波及的影響の観点の抽出を実施する。 7．2号炉について，原子力部長は，地震観測および影響碓認に関する活動を実施す る。 8． 2 号炉について，原子力部長は，定期的 に発電所周辺の航空路の変更状況を確認 し，確認結果に基づき防護措置の要否を判断する。防護措置が必要と判断された場合 は，関係個所へ防護措置の検討依頼を行 う。また，関係個所の対応が完了したこと を確認する。 9． 3 号炬について，各課長は，震度 5 弱以上の地震が観測 ${ }^{*}$ 2 された場合は，地震終了後原子炉施設の損傷の有無を碓認するとと もに，その結果を所長および原子炉主任技術者に報告する。 10． 3 号炬について，発電課長は，その他自然災害の影響により，原子炉施設に重大 な影響を及ぼす可能性があると判断した場合は，発電管理課長に報告する。発電管理課長は，所長，原子灲主任技術者および関係課長に連絡するとともに，必要に応じて安全停止状態を維持するための措置につい て協嬟する。 ※ 1：その他自然災害発生時に行う活動を含 む（以下，本条において同じ。）。 ※2：観測された震度は発電所周辺のあらか じめ定めた測候所等の震度をいう。		

V．火山（降灰）発生時の対応について

事象対応	原子炉施設保安規定	原子炉施設保安規定 添付 1－2	関連する品質マネジメント文書
事象発生前の対応 無し 事象発生時の対応 （1）外気取入ダンパの閉止，換気空調系の停止，再循環運転 （2）降下火砕物の除去（建屋等） （3）火山灰フィルタ取付 （4）高圧代替注水系による炉心の泠却 （5）原子炉隔離時冷却系による炉心の泠却 （6）緊急時対策所扉の開放 （7）通信連絡設備への給電 （8）代替設備の確保 （9）原子灲施設の損傷の有無を確認	（火山影響等発生時の体制の整備（2号炉））第17条の3 2号炉について，防災課長 は，火山現象による影響が発生するおそれ がある場合または発生した場合（以下「火山影響等発生時」という。）における原子炉施設の保全のための活動 ${ }^{*}$ を行ら体制の整備として，次の各号を含む計画を策定し，所長の承認を得る。また，計画は，添付 1 -2 に示す「火災，内部溢水，火山影響等，その他自然災害および有毒ガス対応に係る実施基準」に従い策定する。 （1）火山影響等発生時における原子炉施設の保全のための活動を行らために必要な要員の配置に関すること （2）火山影響等発生時における原子炉施設の保全のための活動を行う要員に対 する教育訓練に関すること （3）火山影響等発生時における原子炉施設の保全のための活動を行うために必要なフィルタその他の資機材の配備に関すること 2． 2 号炉について，各課長は，前項の計画 に基づき，次の各号を含む火山影響等発生時における原子炉施設の保全のための活動 を行うために必要な体制および手順の整備 を実施する。 （1）火山影響等発生時における非常用交流動力電源設備の機能を維持するため の対策に関すること （2）（1）に掲げるものの他，火山影響等発生時における代替電源設備その他の炉心を冷却するために必要な設備の機能を維持するための対策に関すること （3）（2）に掲げるものの他，火山影響等発生時に交流動力電源が喪失した場合 における炉心の著しい損傷を防止する ための対策に関すること 3． 2 号炉について，各課長は，第1項 （1）の要員に第2項の手順を遵守させ る。 4． 2 号炉について，各課長は，第 2 項の活動の実施結果を取りまとめ，第1項に定め る事項について定期的に評価を行うととも に，評価の結果に基づき必要な措置を講 じ，防災課長に報告する。防災課長は，第 1 項に定める事項について定期的に評価を	3．火山影響等，積雪 3． 4 手順書の整備 防災課長は，以下の活動を実施することを品質マネジメント文書に定める。 （1）（1）降下火砕物の侵入防止 発電課長は，外気取入口に設置しているバグフィルタ等の差圧監視および外気取入ダンパの閉止，換気空調系の停止または事故時運転モードにより建屋内への降下火砤物の侵入を防止す る。 （2）（2）降下火砤物および積雪の除去作業 各課長は，降下火砕物の堆積または積雪が碓認された場合は，降下火砕物および積雪より防護すべき屋外の施設ならびに降下火砕物および積雪より防護すべき施設を内包する建屋につ いて，堆積により施設に悪影響を及ぼさないよう降下火砕物および積雪を除去する。 （3）（3）非常用ディーゼル発電機の機能を維持するための対策 原子炬課長は，火山影響発生時において，非常用ディーゼル発電機の機能を維持するため，非常用ディーゼル発電機への火山灰フィルタの取り付けを実施する。 a．手順着手の判断基準 気像庁が発表する降灰予報（「速報」または「詳細」）により女川原子力発電所を含む地域（女川町，石巻市）への「多量」の降圧が予想された場合，気象庁が発表する噴火に関する火山観測報において地理的領域（発電所敷地から半径 160 km ）内の火山に噴火が確認されたが，噴火後 10 分以内に降灰予報が発表されない場合または降下火砕物による発電所への重大な影響が予想された場合。 なお，その後降灰予報が発表され，発電所への降灰が「多量」未満もしくは範囲外となった場合は，体制を解除する。 （4）（4）高圧代替注水系を用いた炬心を椧却するための対策 発電課長は，火山影響等発生時において外部電源喪失および非常用ディーゼル発電機が機能啔失し，かつ原子炉隔離時冷却系が機能喪失した場合は，炬心損傷を防止するため高圧代替注水系を使用し炬心の泠却を行う。 a．手順着手の判断基準 火山影響等発生時において外部電源喪失が発生し，非常用ディーゼル発電機 3 台がともに機能喪失し，かつ原子炬隔離時冷却系が機能喪失した場合。 （5）（5）原子炉隔離時冷却系を用いた炬心の著しい損傷を防止するための対策 発電課長は，火山影響等発生時において外部電源霛失および非常用ディーゼル発電機が機能喪失した場合は，炬心損傷を防止するため原子炬隔離侍冷却系を使用し灲心の泠却を行ら。 a．手順着手の判断基準 火山影響等発生時において外部電源喪失が発生し，非常用ディーゼル発電機 3 台がともに機能喪失した場合。 （6）（6）緊急時対策所の居住性確保に関する対策 各課長は，火山影響等発生時において緊急時対策建屋の扉を開放することにより緊急時対策所の居住性を確保する。 a．手順着手の判断基準 気象庁が発表する降灰予報（「速報」または「詳細」）により女川原子力発電所を含む地域（女川町，石巻市）への「多量」の降灰が予想された場合，気象庁が発表する噴火に関する火山観測報において地理的領域（発電所敷地から半径 160 km ）内の火山に噴火が碓認されたが噴火後 10 分以内に降圧予報が発表されない場合または降下火砕物による発電所への重大な影響が予想された場合。 なお，その後降灰予報が発表され，発電所への降灰が「多量」未満もしくは範囲外となった場合は，体制を解除する。	【事象発生前の対応】無し 【事象発生後の対応】 （1），（4），（5） - 自然災害対応要領書 - 運転手順書 （2） - 自然災害対応要領書 - 除灰•除雪等対応手順書 （3） - 自然災害対応要領書 - プレフィルタ設置手順書 （6），（8） －自然災害対応要領書 （7） - 自然災害対応要領書 - 重大事故等対応要領書（EHG） （9） - 自然災害対応要領書 - 火炏，内部溢水，火山影響等およびそ の他自然災害対応後における保安確認要領書 －原子炉主任技術者の職務等運用要領

V．火山（降灰）発生時の対応について

事象対応	原子炉施設保安規定	原子炉施設保安規定添付 1－2					$\begin{gathered} \text { 関連する } \\ \text { 品質マネジメント文書 } \end{gathered}$
	行らとともに，評侕の結果に基づき必要な措置を講じる。 5． 2 号炬について，発電課長は，火山現象 の影響により，原子炉施設の保安に重大な影響を及ぼす可能性があると判断した場合 は，発電管理課長比報告する。発電管理課長は，所長，原子炬主任技術者まよよひ関係課長に連絡するとともに，必要に応じて原子炉停止等の措置について協識する。 6． 2 号炬について，原子力部長は，火山現象に係る新たな知見等の収集，反映等を実施する。 ※ 1 ：火山影響等発生時に行ら活動を含む （以下，本条において同じ。）。	（7）（7）通信連絡設備に関する対策 火山影響等発生時における通信連絡について，降下火硤物の影響を受けない有線系の設備を複数手段確保することにより機能を確保する。非常用ディーゼル発電機の機能が喪失した場合 においては，電源車（㹂急時対策所用）から緊急時対策所内の通信連絡設備へ給電する。火山影響等発生時にはフィルタの取替え・清掃が容易なフィルタコンテナを接続する。 a．電源車（緊急時対策所用）による給電準備 防災課長は，火山影響発生時において，電源車（緊急時対策所用）の機能を維持するため，電源車（緊急時対策所用）へのフィルタコンテナの取り付けを実施する。 （a）手順着手の判断基準 気象庁が発表する降灰予報（「速報」または「詳細」）により女川原子力発電所を含む地域 （女川町，石巻市）への「多量」の降圧が予想された場合，気象庁が発表する噴火に関する火山観測報において，地理的領域（発電所敷地から半径 160 km ）内の火山に噴火が碓認 されたが噴火後 10 分以内に降灰予報が発表されない場合または降下火砕物による発電所 への重大な影響が予想された場合。 なお，その後降灰予報が発表され，発電所への降灰が「多量」未満もしくは範囲外となっ た場合は，体制を解除する。 b．電源車（緊急時対策所用）による給電開始 防災課長は，電源車（緊急時対策所用）からの給電淮備を行ったのち給電を開始する。 （a）手順着手の判断基淮 電源車（緊急時対策所用）による給電開始は，火山影響等発生時において外部電源喪失が 発生し，非常用ディーゼル発電機からの受電が不能となった場合。 c．電源車（緊急時対策所用）フィルタコンテナのフィルタ取替え 防災課長は，電源車（緊急時対策所用）起動から12時間以内にフィルタ取り替えを実施す る。 （a）手順着手の判断基準 火山影響等発生時において外部電源霛失が発生し，非常用ディーゼル発電機からの受電が不能となった場合。 火山影響等発生時の対策における主な作業					
		$\begin{aligned} & \frac{\text { 作業 }}{} \\ & \frac{\text { 手順 }}{\text { No. }} \end{aligned}$	対応手段	要員	要員数	想定時間	
		（3）	非常用ディーゼル発電機 へ火山灰フィルタ取付け沗	重大事故等対応要 貝	4	60 分	
		（4）	高圧代替注水系を用いた 炬心椧却	運転員 （中央制御室）	1	15 分	
		（5）	原子怇隔能非㭙冷却系を用 いた炬心汾却	$\begin{aligned} & \text { 運転員 } \\ & \text { (中央制御室) } \end{aligned}$	1	速やかに	
		$\begin{gathered} (7) \mathrm{a} . \\ \quad \mathrm{b} . \end{gathered}$	電源車（緊急時対策所 用）による給電の漼備作 業および給電開始	重大事故等対応要員	$\underline{3}$	90 分	
		（7）c．	フィルタタ取替元	重大事故等対応要 貝	$\underline{2}$	50 分	

事象対応	原子炉施設保安規定	原子炉施設保安規定 添付 1－2	$\begin{gathered} \text { 関連する } \\ \text { 品質マネジメント文 } \end{gathered}$
		（8）（8）代替設備の確保 各課長は，火山影響等発生時または積雪により，安全施設の構造健全性が維持できない場合 を考慮して，代替設備による必要な機能の確保，安全上支障のない期間における補修の実施等 により，安全機能を維持する。 （9）（9）降庣時の原子炬施設への影響確認 各課長は，降圧が確認された場合は，原子炉施設への影響を確認するため，降下火㸴物より防護すべき施設ならびに降下火砕物より防護すべき施設を内包する建屋について，点検を行う とともに，その結果を所長および原子炉主任技術者に報告する。	

VI．有毒ガス発生時の対応について

事象対応	原子炉施設保安規定	原子炉施設保安規定 添付 $1-2$	関連する品質マネジメント文書
事象発生前の対応 （1）発電所敷地内外の有毒化学物質の確認 （2）可動源の輸送ルート管理 （3）防護具の着用及び防護具のバックアップ体制整備の対策 事象発生時の対応 無し	（有毒ガス発生時の体制の整備（2号炬））第17条の5 2号炉について，防災課長 は，発電所敷地内において有毒がスを確認 した場合（以下「有毒ガス発生時」とい う。）における原子炉施設の保全のための運転員および重大事故等対策要員（運転員を除く。）（以下「運転•対処要員」という。） の防護のための活動※ 1 を行う体制の整備 として，次の事項を含む計画を策定し，所長の承認を得る。また，計画は，添付 1 － 2 に示す「火災，内部溢水，火山影響等， その他自然災害および有毒ガス対応に係る実施基準」に従い策定する。 （1）運転•対処要員の防護のための活動 を行らために必要な要員の配置に関す ること （2）運転•対処要員の防護のための活動 を行ら要員に対する教育訓練の実施に関すること （3）運転•対処要員の防護のための活動 を行うために必要な資機材の配備に関 すること 2． 2 号炉について，各課長は，前項の計画 に基づき，運転•対処要員の防護のための活動を行らために必要な体制および手順の整備を実施する。 3． 2 号炉について，各課長は，第 2 項に定 める事項について定期的に評価を行うとと もに，評価の結果に基づき必要な措置を講 じ，防災課長に報告する。防災課長は，第 1 項に定める事項について定期的に評価を行らとともに，評価の結果に基づき必要な措置を講じる。 4． 2 号炉について，発電課長は，有毒ガス の影響により，原子炉施設の保安に重大な影響を及ぼす可能性があると判断した場合 は，発電管理課長に報告する。発電管理課長は，所長，原子炉主任技術者および関係課長に連絡するとともに，必要に応じて原子炉停止等の措置について協議する。 ※ 1：有毒ガス発生時に行ら活動を含む（以下，本条において同じ。）。	7．有毒ガス 7． 4 手順書の整備 （1）防災課長は，以下の活動を実施することを品質マネジメント文書に定める。 a．有毒ガス防護の確認に関する手順 （a）（1）各課長は，発電所敷地内外において貯蔵施設に保管されている有毒がスを発生させるお それのある有毒化学物質（以下「固定源」といら。）および発電所敷地内において輸送手段の輸送容器に保管されている有毒ガスを発生させるおそれのある有毒化学物質（以下「可動源」 という。）に対して，（b）項および（c）項の実施により，運転•対処要員の吸気中の有毒 ガス濃度を有毒ガス防護のための判断基準値を下回るようにする。 （b）（1）防災課長は，発電所敷地内および中央制御室等から半径 10 k m近傍における新たな有毒化学物質の有無を確認し，新たな固定源または可動源を評価対象として特定した場合，有毒がスが発生した場合の吸気中の有毒がス濃度評価を実施し，評価結果に基づき必要な有毒 ガス防護を実施する。 （c）（2）各課長は，可動源の輸送ルートについて，運転員および緊急時対策所内で指示を行う要員の吸気中の有毒がス濃度の評価結果が有毒がス防護のための判断基準値を下回るよう運用管理を実施する。 b．有毒ガス発生時の防謢に関する手順 （a）（3）各課長は，予期せぬ有毒ガスの発生に対して，防護具の着用および防護具のバックアッ プ体制整備の対策を実施する。	【事象発生前の対応】 （1），（2），（3） －自然災害対応要領書 【事象発生後の対応】無し

VII．地震発生時の対応について

事象対応	原子炉施設保安規定	原子炉施設保安規定 添付 $1-2$	関連する品質マネジメント文書
事象発生前の対応 （1）（2）（3）（4）波及的影響防止の観点による設備の設置位置，構造及び影響防止措置等の管理 （5）施設管理•点検 事象発生時の対応 （1）原子炉施設の損傷の有無を確認 （2）代替設備の確保 （3）プラントの停止 （4）可搬型ポンプユニットによる排水 （5）原子灲施設の損傷の有無を確認	（その他自然災害発生時等の体制の整備）第17条の4 2号炉について，防災課長 は，原子炉施設内においてその他自然災害 （「地震，津波，竜巻，積雪等」をいう。以下，本条において同じ。）が発生した場合に おける原子炉施設の保全のための活動 ${ }^{* 1}$ を行ら体制の整備として，次の事項を含む計画を策定し，所長の承認を得る。また，計画は，添付 $1-2$ に示す「火災，内部溢水，火山影響等，その他自然災害および有毒ガス対応に係る実施基準」に従い策定す る。 （1）その他自然災害発生時における原子炉施設の保全のための活動を行うため に必要な要員の配置に関すること （2）その他自然災害発生時における原子炉施設の保全のための活動を行ら要員 に対する教育訓練に関すること （3）その他自然災害発生時における原子炉施設の保全のための活動を行うため に必要な資機材の配備に関すること 2． 2 号炬について，各課長は，前項の計画 に基づき，その他自然災害発生時における原子炬施設の保全のための活動を行うため に必要な体制および手順の整備を実施す る。 3． 2 号炬について，各課長は，第 2 項の活動の実施結果を取りまとめ，第1項に定め る事項について定期的に評価を行うととも に，評価の結果に基づき必要な措置を講 じ，防災課長に報告する。防災課長は，第 1 項に定める事項について定期的に評価を行らとともに，評価の結果に基づき必要な措置を講じる。 4． 2 号炬について，発電課長は，その他自然災害の影響により，原子炉施設の保安に重大な影響を及ぼす可能性があると判断し た場合は，発電管理課長に報告する。発電管理課長は，所長，原子炉主任技術者およ び関係課長に連絡するとともに，必要に応 じて原子炉停止等の措置について協議す る。 5． 2 号炬について，原子力部長は，その他自然災害に係る新たな知見等の収集，反映等を実施する。 6． 2 号炉について，原子力部長は，その	4．地 震 4． 4 手順書の整備 （1）防災課長は，以下の活動を実施することを品質マネジメント文書に定める。 a．波及的影響防止に関する手順 （a）（1）各課長は，波及的影響を防止するよう現場を維持するため， 2 号炉の機器設置時の配慮事項等を定めて管理する。 （b）（2）各課長は， 2 号炉の機器•配管等の設置および点検資材等の仮設•仮置時における，耐震重要施設（耐震S クラス施設）および常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抎張）（当該設備が属する耐震重要度分類がSクラ スのもの）または常設重大事故緩和設備（設計基準拡張）ならびにこれらが設置される重大事故等対処施設（以下「耐震重要施設等」という。）に対する下位クラス施設 ${ }^{*} 1$ の波及的影響（4つの観点 ${ }^{*}{ }^{2}$ および溢水•火災の観点）を防止する。 ※ 1 ：耐震重要施設等以外の施設をいら。 ※2：4つの観点とは，以下をいう。 i ．設置地盤および地震応答性状の相違等に起因する相対変位または不等沈下による影響 ii．耐震重要施設等と下位クラス施設との接続部における相互影響 iii．建屋内における下位クラス施設の損傷，転倒および落下等による耐震重要施設等へ の影響 iv．建屋外における下位クラス施設の損傷，転倒および落下等による耐震重要施設等へ の影響 b．設備の保管に関する手順 （a）③各課長は，2号炉の可搬型重大事故等対処設備について，地震による周辺斜面の崩壊•溢水•火災等の影響により重大事故等に対処するために必要な機能を震失しないよう，固縛措置，分散配置，転倒防止対策等による適切な保管がなされていることを確認する。 （b）④）各課長は，2号炉の可搬型重大事故等対処設備のらち，屋外の車両型設備等について，離隔距離を基に必要な設備間隔を定め適切な保管がなされていることを確認する。 c．地震発生時の原子炉施設への影響確認に関する手順 （1）各課長は，発電所周辺のあらかじめ定めた測候所等において震度 5 弱以上の地震が観測 された場合，原子炉施設の損傷の有無を確認するとともに，その結果を所長および原子炉主任技術者に報告する。 d．代替設備の確保 （2）各課長は，地震の影響により，安全施設の構造健全性が維持できない場合を考慮して，代替設備による必要な機能の確保，安全上支障のない期間における補修の実施等により，安全機能を維持する。 e．地下水位低下設備の機能喪失時の対応 （ a ）（3）発電課長は，防災課長に可搬型ポンプユニットによる排水措置を依頼する。また，発電課長は，第57条に基づき必要に応じて原子炉を停止する。 （b）④防災課長は，第57条に基づき可搬型ポンプユニットによる排水措置を実施する。 f．地下水位上昇時の原子炉施設への影響確認 （5）各課長は，地下水位が設計用地下水位を超過したおそれがあることを確認した場合は，事象収束後，原子炉施設の損傷の有無を確認するとともに，その結果を所長および原子炉主任技術者に報告する。 g ．地下水位低下設備の施設管理，点検 ⑤）原子炉課長，電気課長，計測制御課長および土木課長は，地下水位低下設備の要求機能	【事象発生前の対応】 （1），（2），（3），（4） －自然災害対応要領書 （5） －保修業務実施要領書 【事象発生後の対応】 （1） －地震後の保安確認要領書 （2） －自然災害対応要領書 （3） －運転手順書 （4），（5） －自然災害対応要領書

VII．地震発生時の対応について

事象対応	原子炉施設保安規定	原子炉施設保安規定添付 1－2	関連する品質マネジメント文書
	他自然災害のうち地震に関して，新たな波及的影響の観点の抽出を実施する。 7． 2 号炬について，原子力部長は，地震観測および影響碓認に関する活動を実施す る。 8． 2 号炬について，原子力部長は，定期的 に発電所周辺の航空路の変更状況を確認 し，確認結果に基づき防護措置の要否を判断する。防護措置が必要と判断された場合 は，関係個所へ防護措置の検討依頼を行 う。また，関係個所の対応が完了したこと を確認する。 9． 3 号炉について，各課長は，震度 5 弱以上の地震が锥測 ${ }^{*}{ }^{2}$ された場合は，地震終了後原子炉施設の損傷の有無を碓認するとと もに，その結果を所長および原子炉主任技術者に報告する。 10． 3 号炬について，発電課長は，その他自然災害の影響により，原子炉施設に重大 な影響を及ぼす可能性があると判断した場合は，発電管理課長に報告する。発電管理課長は，所長，原子炉主任技術者および関係課長に連絡するとともに，必要に応じて安全停止状態を維持するための措置につい て協嶬する。 ※ 1：その他自然災害発生時に行ら活動を含 む（以下，本条において同じ。）。 ※2：観測された震度は発電所周辺のあらか じめ定めた測候所等の震度をいう。	を維持するため，施設管理計画に基づき適切に施設管理，点検を実施するとともに，必要に応じ補修を行う。 h．地下水位低下設備の設計条件の変更の要否碓認 （a）土木課長は，地下水位の観測記録が，設計用地下水位を下回ることを確認する。 （b）土木課長は，地下水位に影響を与える大規模な地船改良や地中構造物の設置•撤去等を行 ら場合，設計用地下水位への影響碓認を行ら。	

[^0]: 原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「水位碓保」へ移行する。

[^1]:

[^2]: 1．原子炉制御
 （3）水位確保
 （1）目的
 －原子炬水位を有効燃料頂部以上に回復させ，安定に維持する （2）導入条件
 （3）脱出条件
 （1）－原子炉制御「スクラム」において原子炉水位が原子炉水位低ス クラム設定値以上に維持できない場合

 原子炉水位が原子炉水位低スクラム設定値から原子炉水位高タービントリップ設定値の間㲹維
 不測事態「水位回復」において原子炉水位を有効燃料頂部以上 持できる場合
 に維持できる場合または有効燃料頂部以上で安定している場
 合
 －不測事態「急速減圧」において，減圧が完了し水位が判明して
 いる場合
 －不測事態「水位不明」において最長許容炉心露出時間以内に原
 子炉水位が判明した場合
 （4）基本的な考え方
 －原子炉水位と原子炉に注水可能な系統を随時把握する。
 （5）主な監視操作内容
 A．水位
 作動すべきものが不作動の場合は，手動で作動させる
 －給復水系，原子炬隔離時椧却系，非常用炬心泠却系または高圧代替注水系を使用して原子炉水位を原子炉水位低ス クラム設定値から原子炉水位高タービントリップ設定値の間に維持する
 －原子炉水位を原子炉水位低スクラム設定値以上に維持できず原子炉水位が降下中の場合であって，給復水系およ び非常用炝心椧却系が起動せず，原子炉隔離時冷却系または高圧代替注水系により原子炉水位の維持ができない場合は，低圧代替注水系（低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），代替循澴冷却系，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ），万過水系）を起動し，不測事態「急速減圧」に移行す る。低圧代替注水系が起動できない場合は，不測事態「水位回復」に移行する。
 （5）－原子炬水位を有効峡料頂部以上に維持できない場合は，不測事態「水位回復」およびー次格納容器制御「格納容器水素展度制御」に移行する
 原子炉水位が有効燃料頂部以上に維持可能な場合は，原子炉制御「減圧冷却」に移行する。

[^3]: ［後略】

