

Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R)

第32回 研究報告会

原子炉キャビティにおける溶融燃料冷却性詳細 評価のためのコードの開発

令和4年10月6日

原子力規制庁長官官房技術基盤グループ シビアアクシデント研究部門

菊池 航

令和4年11月22日日本原子力研究開発機構「安全研究センター報告会」にて、講演予定。

目次

□ 概要

- ✓ 背景·課題·目的
- ✓ 圧力容器外デブリベッド形成及び冷却過程における重要現象
- ✓ 三次元デブリ挙動解析コードTHERMOSの概要

- □ DEFOR-A実験に基づくTHERMOS-JBREAK開発
- ✓ DEFOR-A実験分析結果
- ✓ THERMOS-JBREAKモデル概要
- ✓ DEFOR-A実験に基づく妥当性確認

□ 結言

目次

□ 概要

- ✓ 背景·課題·目的
- ✓ 圧力容器外デブリベッド形成及び冷却過程における重要現象
- ✓ 三次元デブリ挙動解析コードTHERMOSの概要
- DEFOR-A実験に基づくTHERMOS-JBREAK開発
- ✓ DEFOR-A実験分析結果
- ✓ THERMOS-JBREAKモデル概要
- ✓ DEFOR-A実験に基づく妥当性確認

□ 結言

背景·課題

口 背景

- ✓ 日本の軽水炉では、MCCIの緩和のために原子炉圧力容器下部(RPV)が破損する 前にキャビティ(BWR においてはペデスタル)に注水しプールを形成することを基本 戦略としている。
- ✓ RPVから落下する溶融炉心は、プール中で微粒化しキャビティに堆積し複雑な伝熱 特性を有するデブリベッドを形成する。

□ 課題

- ✓ 総合 SA 解析コードでは、プラント全体の多岐にわたる複雑な現象の進展を計算するために、個々の現象を詳細に解くのではなく単純化し相関式等で低次元評価している。
- ✓ その中でもデブリベッドの形成過程は、3次元デブリ挙動を単純化し指定された面積に 均一の高さかつ瞬時に堆積するものとして扱われるため大きな不確かさが存在する。

目的・本発表の内容

口 目的

- ✓ デブリベッドの形成について既往の知見で不足している領域を対象に実験を実施 しメカニズムを把握
- ✓ 実験分析結果に基づきモデル開発及び妥当性確認を実施することで三次元デブリ 挙動解析コード(THERMOS)を開発
- ✓ キャビティ内の高い空間及び時間解像度な不確かさの少ないデブリ冷却性を評価

<u>福島第一原子力発電所事故における溶融炉心分析に基づく規制への要否の検討</u>

ロ 本発表 DEFOR-A実験に基づくTHERMOS-JBREAK開発

- ✓ DEFOR-A実験分析結果
- ✓ THERMOS-JBREAKモデル概要
- ✓ DEFOR-A実験に基づく妥当性確認

デブリベッド形成と冷却に関わる現象

コード開発において対象とする重要現象

コード開発が対象とする重要現象

THERMOSを構成するモジュール

目次

□ 概要

- ✓ 背景·課題·目的
- ✓ 圧力容器外デブリベッド形成及び冷却過程における重要現象
- ✓ 三次元デブリ挙動解析コードTHERMOSの概要

□ DEFOR-A実験に基づくTHERMOS-JBREAK開発 ✓ DEFOR-A実験分析結果 ✓ THERMOS-JBREAKモデル概要 ✓ DEFOR-A実験に基づく妥当性確認

□ 結言

DEFOR-A実験の実験概要

DEFOR-A実験の条件

ジェット挙動可視化結果

0

粒子状デブリ径に及ぼす溶融物温度の影響

集積挙動に及ぼす溶融物温度と水深の影響

16

DEFOR-A実験結果の分析から得られたJBREAK開発の基本方針

<u>JBREAK開発へ反映</u>

JBREAKの概要

ジェットモデル

液滴発生モデル

液滴拡散及び温度計算モデル

21

液滴集積モデル

- □ 改良Kudinovモデル
- ✓ KTHのKudinov等が提案したモデルを三次元CFDに拡張し適用
- ✓ 集積現象には液滴のクラスト(固相線温度以下)の厚さが支配的
- ✓ 堆積した液滴を固化液滴と微固化液滴に分類、その質量・割合から集積デブリ質量を計算

DEFOR-A実験に基づく妥当性確認

	実験条件			
		A24	A26	A27
$\frac{1}{2} - \frac{1}{2} + \frac{1}$	模擬溶融物	Bi ₂ O ₃ -WO ₃		
	溶融物密度 [kg/m ³]	7811		
	固相線/液相線温度[K]	1143.2		
	_初期溶融物温度 [K]	1248	1299	1342
	初期溶融物過熱度 [K]	105	156	199
	_溶融物体積 [L]			3.73
	溶融物放出時間 [s]	5.3	5.5	6.92
	_ノズル直径 [mm]	34		20
	平均流量 [L/s]	0.62	0.59	0.54
	<u>ジェット自由落下長さ[m]</u>	0.17		0.195
	<u>水深 [m]</u>	1.6		1.5
	初期水温 [K]	346		361
	_初期水サフクール度 [K]	2	.7	12.5
	解析条件			
v		A24	A26	A 27
z z y z z y z z y z	メッシュサイズ[m]	x,y direction:0.004~0.0225		
		$z \text{ direction:} 0.005 \sim 0.01$		
	タイムステッフ [s]	1.0×10^{-3}		0-3
X	CFL条件	0.90	0.95	0.90
	Rosin-Rammler分布			
解析体系	粒度特性数:De	4.0×10^{-3}		
	分布定数:n	1.87		
	液滴初期速度調整パラメータ	鉛直方向:1.0 水平方向:0.5		
	固化液滴/微固化液滴分別閾値	50%		

23

* ^{* Case(T}ment/ T_{sup}) 3次元デブリベッド分布解析結果(A24/A26/A27)

JBREAKの計算結果は、堆積面積を過小に予測し、高さを過大に予測した。25

9

集積デブリ解析結果(A24/A26/A27)

✓ JBREAK計算結果は、低温条件(A24及びA26)で良好な予測を示した。
✓ 高温条件(A27)の場合、上流では過大評価、下流では過小評価した。

目次

□ 概要

- ✓ 背景·課題·目的
- ✓ 圧力容器外デブリベッド形成及び冷却過程における重要現象
- ✓ 三次元デブリ挙動解析コードTHERMOSの概要

- □ DEFOR-A実験に基づくTHERMOS-JBREAK開発
- ✓ DEFOR-A実験分析結果
- ✓ THERMOS-JBREAKモデル概要
- ✓ DEFOR-A実験に基づく妥当性確認

結言

ジェットの分裂、堆積及び集積を予測するために、JBREAKコードを開発した。

ロ 溶融ジェット分裂及び液滴拡散

✓ JBREAK計算結果は、ジェット分裂及び液滴の拡散を良好に再現した。

ロ 3次元デブリベッド分布

✓ JBREAKの計算結果は、堆積面積を過小に予測し、高さを過大に予 測することが確認された。

ロ 集積デブリ質量割合

✓ JBREAK計算結果は、低温条件(A24及びA26)で良好な予測を示した。 高温条件(A27)の場合、上流では過大評価、下流では過小評価した。

<u>高温溶融デブリ挙動を予測するJBREAKを開発することで、既存解析コードで扱え</u> <u>ない領域を高い空間及び時間解像度での解析を可能とし不確かさ低減</u>に資する知 <u>見が得られた。</u>

ロ 今後の課題

- ✓ THERMOSを構成する他モジュールとのインターフェイス拡張、モデルの改良
- ✓ DEFOR-A実験以外の妥当性確認、実機スケールの解析

- K. Moriyama et , et al., Simulation of melt jet breakup experiments by JASMINE with an empirical correlation for melt particle size distribution , Nuclear Science Technology,2016
- P. Kudinov et al., Development and validation of conservative-mechanistic and best estimate approaches to quantifying mass fractions of agglomerated debris, Nuclear Engineering and Design.262,452-461,2013
- P. Kudinov et al., Agglomeration and size distribution of debris in DEFOR-A experiments with Bi2O3–WO3corium simulant melt, Nuclear Engineering and Design.263,284-295,2013
- R.Meignen, et al., Comparative Review of FCI Computer Models Used in the OECDSERENA Program. Proceedings of ICAPP-05, Seoul, KOREA, May 15-19, Paper 5087
- Yakush, S., Kudinov, P., Dinh, T.-N., 2009, Multiscale simulation of selforganization phenomena in the formation and Coolability of corium debris bed, NUREG-13 Kanazawa Japan, N13P1143.
- 菊池ほか、"JBREAKによるDEFOR-A実験解析に基づくデブリ堆積モデル開発",日本原子力学 会2020年秋の大会予稿、2020
- 菊池ほか, "JBREAKにおける溶融デブリ堆積及び集積モデル開発", 日本原子力学会2021年 秋の大会予稿, 2021
- 菊池ほか, "溶融デブリ冷却性挙動における不確かさ検討(1)ジェット分裂及びメルトスプレッド挙動", 日本原子力学会2021年春の年会予稿, 2021
- 菊池ほか, "高温溶融デブリの分裂及び集積挙動に関する分析", 日本原子力学会2022年春の 年会予稿, 2022

ご清聴ありがとうございました。