令和3年度 原子力規制庁

放射線安全規制研究戦略的推進事業 調查報告書

# 水中の放射性ストロンチウムの

# 安全、迅速、安価な分析法の開発

令和4年3月

東京慈恵会医科大学 箕輪はるか

筑波大学 青山道夫

愛知医科大学 小島貞男、有信哲哉 緒方良至

日立製作所 加藤結花

日本化学工業 宮部慎介

荏原製作所 佐久間貴志

# 目次

| 1 研究背景と目的                                                                 | . 1 |
|---------------------------------------------------------------------------|-----|
| 2 研究手法                                                                    | . 2 |
| 2.1 Sr 吸着剤                                                                | . 2 |
| 2.2 迅速測定法                                                                 | . 2 |
| 2.3 精密測定法                                                                 | . 2 |
| 3 基礎的実験                                                                   | . 4 |
| 3.1 Sr 吸着率の確認                                                             | . 4 |
| 3.1.1 ピュアセラム MAq の <sup>85</sup> Sr を用いた Sr 吸着率の測定(2021 年 10 月実施)         | . 4 |
| 3.1.2 新ロットのピュアセラム-MAqの Sr 吸着率の評価(2021 年 12 月実施)                           | . 5 |
| 3.1.3 ピュアセラム MAq への Sr 吸着率の確認(2022 年 1 月実施)                               | . 7 |
| 3.2 Y 吸着率の確認(2021 年 11 月実施)                                               | . 8 |
| 3.3 Ba の影響評価(2021 年 9 月実施)                                                | 10  |
| 3.4 Pb など天然放射能の影響評価                                                       | 15  |
| 4 分析手法の開発                                                                 | 16  |
| 4.1 迅速測定法の確立                                                              | 16  |
| 4.1.1 ピュアセラム MAq による <sup>90</sup> Sr 迅速測定法の確立(2022 年 1 月実施)              | 16  |
| 4.1.2 <sup>90</sup> Sr をスパイクした海水を用いた迅速測定法の検証(2022年1月実施)                   | 18  |
| 4.2 精密測定法におけるY溶出(ミルキング)方法の検討                                              | 20  |
| 4.2.1 ピュアセラム MAq からの硫酸による <sup>90</sup> Y の溶出(2021 年 11,12 月実施)           | 20  |
| 4.2.2. 酸溶出による <sup>90</sup> Y ミルキング法の検討(2021 年 12 月実施)                    | 24  |
| 4.2.3 EDTA による脱離と Y(OH)3 沈殿生成の検討(2022 年 1 月実施)                            | 25  |
| 4.2.4. H <sub>2</sub> O <sub>2</sub> による EDTA 分解と Fe 共沈法の検討(2022 年 2 月実施) | 26  |
| 4.2.5. EDTA によるピュアセラム MAq 溶解法の検討(2022 年 1 月実施)                            | 27  |
| 4.2.6 EDTA 存在下における Y(OH)3 沈殿生成実験(2022 年 2 月実施)                            | 30  |

| 4.3      | 大容量詞                   | 式料への適用                                         | . 32 |
|----------|------------------------|------------------------------------------------|------|
|          | 4.3.1                  | ピュアセラム MAq の EDTA 溶解と Y 回収方法の検討 1(2022 年 2 月). | . 32 |
|          | 4.3.2                  | ピュアセラム MAq の EDTA 溶解と Y 回収方法の検討 2(2022 年 2 月). | . 34 |
| 4.4      | 実海水~                   | ヽの応用(2022年1月実施)                                | . 36 |
| <b>5</b> | 議論                     |                                                | . 38 |
| 5        | .1 ピュフ                 | アセラム MAq への Sr の吸着率について                        | . 38 |
| 5        | .2 Sr 吸                | 着の条件                                           | . 39 |
| 5        | .3 <sup>90</sup> Y ₹   | ルキング操作の方法について                                  | . 40 |
| 5        | .4 検出7                 | 下限濃度                                           | . 42 |
|          | 5.4.1                  | 迅速測定                                           | . 42 |
|          | 5.4.2                  | 精密測定                                           | . 42 |
| 5        | .5 放射約                 | 泉測定における妨害核種の評価                                 | . 43 |
|          | 5.5.1                  | 迅速測定                                           | . 43 |
|          | 5.5.2                  | 精密測定                                           | . 43 |
| 6        | 課題と名                   | 7後の展望                                          | . 44 |
| 6        | .1 実験ヨ                 | F法における課題                                       | . 44 |
| 6        | .2 測定に                 | こおける課題                                         | . 45 |
| 7        | まとめ                    |                                                | . 47 |
| 7        | 7.1. 本研究               | 光において確立した迅速測定法                                 | . 47 |
| 7        | 7.2. 本研究               | 光において提案する精密測定法                                 | . 48 |
| 7        | 7.3. Sr 分 <sup>7</sup> | 析法まとめ                                          | . 49 |
|          | 参考文南                   | 犬                                              | . 50 |
|          | 研究体制                   | 削                                              | . 51 |
|          | 付録                     |                                                | . 52 |

## 研究背景と目的

放射性ストロンチウム(<sup>90</sup>Sr、<sup>89</sup>Sr)は、環境モニタリングにおける重要な核種であるが、分析は容 易ではない。文部科学省放射能測定シリーズ2「放射性ストロンチウム分析法」(以下「公定法」)に 示される方法では、多量の劇物を用い、複雑な化学操作が必要で、完了まで少なくとも約3週間を 要する。近年、放射性ストロンチウムの迅速測定の開発が進んでいるが、課題が多く、公定法の改 訂は進んでいない。**放射性ストロンチウムの安全、迅速、安価な分析法**を開発することによ り、放射性ストロンチウムの濃度分布やその時間変動の正確な把握が可能となり、放射線防護措 置の的確な実施にも役立つ。

本研究では、環境水の放射性ストロンチウム(<sup>90</sup>Sr・<sup>89</sup>Sr)の安全、迅速、安価な分析法の開発を目 的とする。**迅速測定**【原子力事故時を想定し、排水中の濃度限度(<sup>90</sup>Sr: 30 Bq・L<sup>-1</sup>、<sup>89</sup>Sr: 300 Bq・ L<sup>-1</sup>)を迅速に確認】と、**精密測定**【平常時のモニタリングを想定し、<sup>90</sup>Sr を 0.001 Bq・L<sup>-1</sup>程度まで分 析】の二つの分析法の開発を目指す。

化学操作は、放射性トレーサー<sup>90</sup>Sr,<sup>85</sup>Srを加えた海水・陸水を作成し、新規に開発された Sr 吸 着剤(特許 日本化学工業株式会社 吸着剤およびその製造方法 特許第 5890568 号 2016-5-19)を加えて撹拌した後、Sr 吸着剤を回収、測定する。妨害核種として、天然放射性核種 である Ra、Ac、<sup>210</sup>Pb など、また、事故時に放出が予想される<sup>140</sup>Ba などの挙動も解析する。実際の 海水を本法に適用し、従来法と比較する。

本研究は①化学操作が簡便で迅速、②劇物を使用せず安全、③安価、という特色がある。 文部科学省が制定した「放射性ストロンチウム分析法」を改訂するための基礎資料となることが期 待される。本法により、測定頻度・箇所の増加、コスト低減が可能となる。安心できる情報をすみや かに公開でき、一般公衆の被ばくリスクを低く抑え、健康・安全に貢献すると思われる。

1

## 2 研究手法

#### 2.1 Sr 吸着剤

使用した Sr 吸着剤は「ピュアセラム®MAq」(荏原製作所・日本化学工業、以下「P-MAq」) という名称で、主成分はケイ酸バリウム BaSi<sub>2</sub>O<sub>5</sub> であり、水に不溶、広い温度範囲で安定 な、白色の粉末である(図 2.1)。Sr を選択的に吸着し、Na, Ca, K, Mg などの海水中の主 成分元素を吸着しないことから、海水中の放射性核種 <sup>89</sup>Sr、<sup>90</sup>Sr の捕集剤として有用であ ると期待されている。淡水に対して硫酸イオン SO<sub>4</sub><sup>2-</sup>を加えることで Sr をほぼ定量的に吸 着・分離することができるため、難溶性の SrSO<sub>4</sub> が本吸着剤への吸着挙動に関与している ことが示唆される。

#### 2.2 迅速測定法

原子力事故時を想定し、迅速に結果を確認することを目的とする。海水に、Sr 吸着剤を 加えて2時間振とうする。吸引ろ過でろ紙上にSr 吸着剤を回収する。乾燥後ポリエチレン フィルムで覆い、ベータ線を測定しSr 濃度を求める。検出感度は、<sup>90</sup>Sr および<sup>89</sup>Sr につい て排水中濃度限度 30 Bq・L<sup>-1</sup>、300 Bq・L<sup>-1</sup>の 10 分の 1 を目指す。

#### 2.3 精密測定法

平常時のモニタリングを想定している。<sup>90</sup>Sr を含む海水に Sr 吸着剤を加えて 2 時間撹拌 する。遠心分離により Sr 吸着剤を溶液と分離する。その後約 3 週間、<sup>90</sup>Sr が壊変し <sup>90</sup>Y が



成長するのを待つ。<sup>90</sup>Yの成長後、Yを水酸化物沈殿として回収し、吸引ろ過してろ紙上に 収集し、乾燥後ポリエチレンフィルムで覆い、ベータ線を測定する。現在の海洋の平均的 な<sup>90</sup>Sr 濃度である 0.001 Bq・L<sup>-1</sup>程度が測定可能な方法となる。





#### 3 基礎的実験

## 3.1 Sr 吸着率の確認

3.1.1 ピュアセラム MAq の<sup>85</sup>Sr を用いた Sr 吸着率の測定(2021 年 10 月実施)
 (1) 実験の目的

長期間保存した P-MAq への Sr 吸着能を 85Sr により確認する。

(2) 実験概要

300 mL 三角フラスコに人工海水1200 mL(0.01M HCl 酸性)に <sup>85</sup>Sr 溶液を 700 µL(40 kBq)加え、撹拌後 2 mL 分取し、試験管に入れ、井戸型 Ge 半導体検出器(GWL-120230、 結晶容積 120 cm<sup>3</sup>、ORTEC)を用いて y 線測定を行なった。この人工海水試料に P-MAq を 200 mg に加え、マグネットスターラを用いて撹拌した。 撹拌開始から 5 分後、30 分後、1 時間後、2 時間後、4 時間後にピペットを用いて懸濁液を各々2 mL ずつ分取 した。 懸濁液は先端にシリンジフィルター (0.45 µm)を取り付けた 3 mL 注射器を用 いてろ過し、溶液と P-MAq に分離した。溶液は試験管に採取し、液体の質量を秤量し た。 撹拌開始からの Sr 吸着率を測定するために、井戸型 Ge 半導体検出器を用いて、 <sup>85</sup>Sr の y 線を測定した。

(3) 得られた結果

<sup>85</sup>Sr のγ線測定から得られた溶液中の Sr 残存 率を図 3.1.1 に示す。以前の結果では 2 時間の撹 拌で 98.5%の Sr が吸着し残存率は 1.5%だったが、 本実験では約 20%と大きな値を示した。保存中に P-MAq の Sr 吸着能が劣化したと考えられる。



1 ダイゴ人工海水 SP、日本製薬(株)

#### 3.1.2 新ロットのピュアセラム-MAgのSr吸着率の評価(2021年12月実施)

(1) 実験の目的

P-MAqのSr吸着能を測定する。これまでの実験でP-MAqを長期保存するとSr吸着能が低下したため、その原因を推察し吸着能の低下を防ぐことを目的とする。

(2) 実験の概要

日本化学工業社に作製を依頼した<u>新しいロットの P-MAq</u>を用いて、人工海水の条 件下で<sup>85</sup>Srによる Sr吸着実験を実施し、Sr吸着能を評価する。

- (3) 実験操作
- i. <sup>85</sup>Sr 約 7 kBq をスパイクした人工海水 100 mL に、<u>新 P-MAq</u> を 25 mg (J1L-21), 50 mg (J1L-22), 100 mg (J1L-23), 150 mg (J1L-24), 200 mg (J1L-25) 加え, スターラ ーで撹拌した。
- ii. 30 分、60 分、120 分、240 分後に懸濁液を 2 mL 分取し、シリンジフィルターでろ過した後、シリンジフィルターおよびろ液をガンマカウンタ(WIZARD<sup>2</sup>, PerkinElmer)で測定した。
- iii. 240 分後に試料採取したのち、撹拌を停止し、一晩放置した。
- iv. 試料を遠心分離により P-MAq と上清に分けた。
- v. 上清を三角フラスコに移し、<u>新 P-MAq</u>を 25 mg (J1L-21), 50 mg (J1L-22), 100 mg (J1L-23), 150 mg (J1L-24), 200 mg (J1L-25) 加え, スターラーで撹拌した。
- vi. 30 分、60 分、120 分、240 分後に懸濁液を 2 mL 分取し、シリンジフィルターでろ過 した後、シリンジフィルターおよびろ液をガンマカウンタで測定した。
- vii. 240 分後に試料採取したのち、撹拌を停止し、試料を遠心分離により P-MAq と上清に 分けた。

(4) 得られた結果

<sup>85</sup>Sr 添加量を100とした場合の溶液および沈殿における<sup>85</sup>Sr 量の比を表3.1に示した。
図 3.1.2 には1回目の、図 3.1.3 には2回目の撹拌における溶液中の値のグラフを示した。海水 100 mL に対して P-MAq 100 mg、4 時間撹拌の条件での吸着率は 80%程度であり、以前実施した同様の実験よりも値が低い結果となった。海水 100 mL に対して P-MAq を 150 mg 使用し、1回目の上清に再び P-MAq を加えて撹拌することにより、98%以上の吸着率で Sr が吸着できることがわかった。

|        |       | 1回目<br>(4時間撹拌後) |             |                          | 2回目<br>(4時間撹拌+4時間撹拌後) |             |                              | 合計        |
|--------|-------|-----------------|-------------|--------------------------|-----------------------|-------------|------------------------------|-----------|
|        | P-MAq | 溶液残<br>存分       | 途中測定<br>ロス分 | 沈殿吸着分<br>(溶液残存<br>分より算出) | 溶液残<br>存分             | 途中測<br>定ロス分 | 沈殿吸着<br>分(溶液<br>残存分より<br>算出) | 沈殿吸<br>着率 |
|        | mg    | %               | %           | %                        | %                     | %           | %                            | %         |
| J1L-21 | 25    | 71.4            | 6.66        | 21.9                     | 23.3                  | 5.01        | 43.1                         | 65.0      |
| J1L-22 | 50    | 52.2            | 5.43        | 42.4                     | 2.87                  | 1.72        | 47.6                         | 90.0      |
| J1L-23 | 100   | 18.0            | 2.92        | 79.1                     | 0.19                  | 0.28        | 17.5                         | 96.6      |
| J1L-24 | 150   | 5.92            | 1.01        | 93.1                     | 0.19                  | 0.12        | 5.62                         | 98.7      |
| J1L-25 | 200   | 6.20            | 0.96        | 92.8                     | 0.22                  | 0.12        | 5.86                         | 98.7      |

表 3.1 P-MAg への<sup>85</sup>Sr の吸着率





図 3.1.2 1回目撹拌における 溶液中 <sup>85</sup>Sr 濃度比の変化



## 3.1.3 ピュアセラム MAq への Sr 吸着率の確認(2022 年 1 月実施)

(1) 実験の目的

<sup>85</sup>Srトレーサーを添加した人工海水を用いて P-MAq へ Sr を定量的に吸着させる手順を確認する。これまでの実験では Sr 吸着率が 98%であったが、新しいロットの P-MAq では吸着率が低下しているようなので、2回の操作で 98%以上吸着できるか確認する。

(2) 実験の概要

<sup>85</sup>Sr トレーサーを添加した人工海水に<u>新しいロットの P-MAq</u>を加えて撹拌し、上清 と沈殿物とに分離してガンマカウンタで測定する。

- (3) 実験操作
- i. 人工海水 81.8 mL を三角フラスコに入れ、<sup>85</sup>Sr(約 12 kBq/0.2g at 2022/1/17) 200 μL
   を加えた。混合後 2 mL 分取し、ポリバイアルに入れガンマカウンタで測定した。 (J2A-2a)
- ii. 三角フラスコ内の溶液 80 mL に P-MAq を 119.9 mg 加え 2 時間撹拌した。
- iii. 懸濁液をポリ遠心管(50 mL)2本に分けて、3000 rpm で 10 分の遠心分離後、P-MAq と上清に分けた。上清を 2 mL 分取し、ポリバイアルに入れガンマカウンタで測定した。 (J2A-2b: 2.0301 g)。
- iv. 上清を用いて P-MAq を一本の遠心管に集め、遠心分離後、上清を取り除いたのち(上 清全量 78 mL: 78.3189 g)、P-MAq を 0.025M Na<sub>2</sub>SO<sub>4</sub> を 10 mL で洗浄した。
- v. 洗浄液(10 mL)をプラバイアルに移して秤量し、ガンマカウンタで測定した。
   (J2A-2c: 9.9449 g)
- **vi**. **P-MAq** が入っている遠心管の γ 線測定を Ge 検出器で行った。
- vii. 上清(78 mL: 78.3189 g)を三角フラスコに移し, P-MAqを 60.2 mg 追加し, 再吸 着操作を行った。
- viii. 1時間の攪拌の後に,2本の遠心管に移し,3000 rpm で 10 分の遠心分離を行った。
- ix. 上清の大部分を別の容器に移した後に、2本の遠心管内の P-MAq を1本に集めて、遠心分離を行った。

- **x**. 上清を除いた遠心管内の P-MAq の y 線測定を Ge 検出器で行った。(J2A-2e)
- xi. 上清より 20 mL を分取しガンマカウンタで測定した。(J2A-2f: 19.5378 g)(上清全量 57.3495 g)
  - (4) 結果

新ロットの P-MAq の Sr 吸着率は平均 93%であり、予備実験の結果(98%)には劣るが、 迅速測定法に使用可能であると判断した。また Sr を吸着させ P-MAq を取り除いた溶液に、 さらに P-MAq を加えて 2 回吸着させることにより、98%の吸着を達成した。

## 3.2 Y吸着率の確認(2021年11月実施)

(1) 実験の目的

<sup>90</sup>Yの P-MAq への吸着率を確認する

(2) 試料

実験 J1K-2の AnaLig-Sr<sup>2</sup>通過液(90Y)、人工海水、HCl、Na<sub>2</sub>SO<sub>4</sub>溶液

- (3) 実験操作
- i. 下記の組成の液 100 mL に、AnaLig-Sr 通過液(<sup>90</sup>Y) 1 mL 加えた。(各全量 102 mL) J1K-41:人工海水 0.01M-HCl 101 mL

J1K-42: (人工海水 0.01M HCl 101 mL + conc.HCl 1 mL) - 1 mL

J1K-43: (純水 0.1M HCl 100 mL + Na<sub>2</sub>SO<sub>4</sub> 溶液 2 mL) - 1 mL

- ii. 各試料から、2 mL 採取し、Clearsol II 18 mL を加え、LSC で測定した。測定試料 a
- iii. <sup>90</sup>Y を添加した溶液に P-MAq を 100 mg 加え、2時間撹拌した。
- iv. 撹拌後の溶液から2mL採取し、シリンジフィルターでろ過した後、液シンカクテルを

2 付録参照

18 mL 加え、LSC で測定した。測定試料 b

(4) 結果

J1K-41a,42a, 43a を 100とし、それに対する 41b, 42b, 43b の割合を求めた。b の試料は、<sup>90</sup>Y と考 えられるので、計数効率を 99%とした。上清における <sup>90</sup>Y の回収率は 90%以上であった。即ち P-MAq への <sup>90</sup>Y の吸着率は 10%以下であった。

|         | 1 0.2 |       | 口不       |       |
|---------|-------|-------|----------|-------|
| Sample  | NET   | Eff   | Activity | Yield |
|         | cpm   | %     | Bq       | %     |
| J1K-41a | 624   | 97.49 | 10.7     | 100.0 |
| J1K-41b | 605   | 99.00 | 10.2     | 95.5  |
| J1K-42a | 655   | 97.49 | 11.2     | 100.0 |
| J1K-42b | 601   | 99.00 | 10.1     | 90.4  |
| J1K-42a | 620   | 96.80 | 10.7     | 100.0 |
| J1K-43b | 571   | 99.00 | 9.6      | 90.0  |

表 3.2 J1K-4 測定結果

#### 3.3 Baの影響評価(2021年9月実施)

(1) 実験の目的

<sup>133</sup>Ba トレーサーを添加した海水と、海水と同程度の Ba 濃度の人工海水からの Sr 特 異的吸着剤(P-MAg)への Ba 吸着率を測定する。

(2) 実験概要

<sup>133</sup>Ba トレーサーを、現有の <sup>133</sup>Ba 標準溶液(9.606×10<sup>4</sup> Bq·g<sup>1</sup>、2021/2/1)を希釈し て調製した。<sup>133</sup>Ba トレーサーを添加した人工海水に P-MAq を加え、2 時間撹拌後、吸 引ろ過し、P-MAq とろ液に分離した。P-MAq への Ba の吸着率およびろ液への残存率 を得るために必要な、<sup>133</sup>Ba 面線源と <sup>133</sup>Ba 体積線源を作製した。それぞれの試料につい て、Ge 半導体検出器を用いて y 線測定を行なった。P-MAq と面線源は測定器との距離 を 57 mm で、ろ液と体積線源については試料を測定器上に直接置いたジオメトリーで 測定を行なった。得られた測定結果から Ba のろ液中への残存率および Ba の P-MAq へ の吸着率を得た。

(3) 分析試料および標準試料

作製した線源および調製した試料を表 3.3.1 に示す。Ba 濃度は <sup>133</sup>Ba 標準溶液の Ba キャリアー濃度(BaCl<sub>2</sub>、0.1 mg·g<sup>-1</sup>)を基に算出した。

| 試料           | <sup>133</sup> Ba 溶液/g | P-MAq/ mg | Ba 濃度/ppm |
|--------------|------------------------|-----------|-----------|
| SEP-02(面線源)  | 0.1023                 | —         | _         |
| SEP-03(体積線源) | 0.1411                 | _         | 0.0116    |
| SEP-04       | 0.3065                 | 82.2      | 0.0253    |
| SEP-05       | 0.1371                 | 83.0      | 0.0113    |
| SEP-07       | 0.0465                 | 81.8      | 0.0038    |
| SEP-06 (淡水)  | 0.3044                 | 34.5      | 0.0251    |

表 3.3.1 試料一覧

<注>海洋における Ba の平均濃度は 0.015 ppm である。

野崎義行,日本海水学会誌,51,302 (1997)

(4) 結果および考察

## ろ液試料および体積線源のy線測定の結果および Baの液相残存率

体積線源のγ線スペクトルを図 3.3.1-1 に、ろ液試料の一例として SEP-04a のγ線スペクトルを図 3.3.1-2 に示す。両者を比較するとろ液試料では計数値が大幅に減少していることが分かる。体積線源およびろ液試料のγ線測定の結果を表 3.3.2 に示す。±σは計数誤差1 σである。

|              | Energy/keV | 81.0    |              | 356     | .0           |  |  |
|--------------|------------|---------|--------------|---------|--------------|--|--|
|              | 放出率        | 32.9    | 9%           | 62.1%   |              |  |  |
| 試料           | 測定時間/s     | 計数率/s-1 | ±σ           | 計数率/s-1 | ±σ           |  |  |
| SEP-03(体積線源) | 1800       | 11.16   | ±0.10        | 7.87    | $\pm 0.07$   |  |  |
| SEP-04a      | 144000     | 0.0170  | ±0.0008      | 0.0118  | $\pm 0.0005$ |  |  |
| SEP-05a      | 60000      | 0.0030  | $\pm 0.0007$ | 0.0032  | $\pm 0.0005$ |  |  |
| SEP-07a      | 75000      | N.D.    |              | 0.0067  | ±0.0014      |  |  |
| SEP-06a(淡水)  | 75000      | 0.0340  | ±0.0011      | 0.0271  | ±0.0008      |  |  |

表 3.3.2 体積線源およびろ液試料の v 線測定結果





表 3.3.3 に、表 1 の <sup>133</sup>Ba トレーサー溶液を加えた量と表 3.3.2 の計数率を用いて算 出した、Ba の液相残存率を示す。81 keV と 356 keV における残存率のデータはほぼ 一致しているが、計数率の低い場合には 356 keV のデータがより信頼性が高いと考え られる。

|             | Energy/keV | 8      | 81.0          |        | 81.0 356.0    |  | 56.0 |  |
|-------------|------------|--------|---------------|--------|---------------|--|------|--|
| 試料          | Ba 濃度/ppm  | 残存率    | ±σ            | 残存率    | ±σ            |  |      |  |
| SEP-04a     | 0.0253     | 0.070% | ±0.003%       | 0.069% | ±0.003%       |  |      |  |
| SEP-05a     | 0.0113     | 0.012% | ±0.003%       | 0.019% | ±0.003%       |  |      |  |
| SEP-07a     | 0.0038     |        | —             | 0.012% | ±0.002%       |  |      |  |
| SEP-06a(淡水) | 0.0251     | 0.140% | $\pm 0.005\%$ | 0.159% | $\pm 0.005\%$ |  |      |  |

表 3.3.3 Ba の液相残存率





## 面線源および P-MAq 試料の y線測定結果および Ba の固相吸着率

面線源のγ線スペクトルを図 3.3.2-1 に、P-MAq 試料の一例として SEP-04b のγ線 スペクトルを図 3.3.2-2 に示す。<sup>133</sup>Ba は P-MAq すなわち固相に大部分が吸着している ことが明瞭である。

|             | Energy/keV | 81.00  |              | 356   | .01          |
|-------------|------------|--------|--------------|-------|--------------|
| 試料          | Ba 濃度/ppm  | 吸着率    | $\pm \sigma$ | 吸着率   | $\pm \sigma$ |
| SEP-04b     | 0.0253     | 96.2%  | ±1.1%        | 96.7% | ±1.1%        |
| SEP-05b     | 0.0113     | 100.0% | ±1.1%        | 96.8% | ±1.1%        |
| Sep-07b     | 0.0038     | 103.3% | ±1.1%        | 98.3% | ±1.1%        |
| Sep-06b(淡水) | 0.0251     | 101.5% | ±1.1%        | 97.3% | ±1.1%        |

表 3.3.5 Ba の固相吸着率

面線源および P-MAq 試料のγ線測定の結果を表 3.3.4 に示す。

|                           | Energy/keV | 81.0                |            | 356.           | 0      |
|---------------------------|------------|---------------------|------------|----------------|--------|
|                           | 放出率        | 32.9%               | ó          | $62.1^{\circ}$ | %      |
| 試料                        | 測定時間/s     | 計数率/s <sup>-1</sup> | ±σ         | 計数率/s-1        | ±σ     |
| SEP-02(面線源)               | 6000       | 4.11                | ±0.03      | 3.13           | ±0.02  |
| SEP-04b                   | 1500       | 11.88               | ±0.10      | 9.09           | ±0.08  |
| $\operatorname{SEP}$ -05b | 3600       | 5.52                | $\pm 0.05$ | 4.07           | ±0.03  |
| Sep-07b                   | 12000      | 1.94                | ±0.02      | 1.402          | ±0.011 |
| Sep-06b(淡水)               | 1800       | 12.45               | ±0.10      | 9.08           | ±0.07  |

表 3.3.4 面線源および P-MAq 試料の γ線測定結果

表 3.3.5 に、表 3.3.1 の <sup>133</sup>Ba トレーサー溶液を加えた量と表 3.3.4 の計数率を用 いて算出した、Ba の固相吸着率を示す。吸着率は 100%近い値を示している。誤差な どを考慮すると、固相吸着率は 100%から液相残存率を引いた値と見なすことができる。

## P-MAq-海水系および P-MAq-淡水系における分配係数

物質の固相および液相への分配係数 Kdは以下の式(1)で表される。

 $K_d = \frac{A_s \times V}{A_L \times W} \quad \cdot \quad \cdot \quad (1)$ 

ただし、*A*<sub>s</sub>: 固相吸着率、*A*<sub>L</sub>: 液相残存率、*W*: 固相質量/g、*V*: 液相体積/mL で ある。(1) 式に基づいた計算結果を表6に示す。P-MAq-海水系、P-MAq-淡水 系のいずれも Ba の分配係数 *K*<sub>d</sub>は 1.4×10<sup>6</sup>である。

表 3.3.6 P-MAq-海水系および P-MAq-淡水系における分配係数

| 液性 | 液相残存率<br><i>A</i> L/ % | 溶液量<br>Ⅵ mL | 固相吸着率<br>As/ % | P-MAq<br>₩ g | 分配係数<br>Kd/ mL・g <sup>-1</sup> |
|----|------------------------|-------------|----------------|--------------|--------------------------------|
| 海水 | 0.07%                  | 80          | 99.93%         | 0.082        | $1.4 \times 10^{6}$            |
| 淡水 | 0.16%                  | 80          | 99.84%         | 0.035        | $1.4 \times 10^{6}$            |

#### 現在までに得られた種々の元素の分配係数

今までに得られた種々の元素の分配係数を表7に示す。Baの分配係数はRaの分配係数と ほぼ等しく、Srよりも20倍以上大きな値となっている。

| 元素            | 核種                  | 液相/ %    | 溶液量/<br>mL | 固相/ %   | P-MAq/ g | 分配係数 <i>K</i> d/<br>mL・g <sup>-1</sup> |
|---------------|---------------------|----------|------------|---------|----------|----------------------------------------|
| Na            | -                   | 99%      | 100        | 1%      | 0.100    | $1.0 \times 10$                        |
| Mg            | -                   | 99%      | 100        | 1%      | 0.100    | 1.0×10                                 |
| K             | -                   | 99%      | 100        | 1%      | 0.100    | 1.0×10                                 |
| Ca            | -                   | 99%      | 100        | 1%      | 0.100    | 1.0×10                                 |
| $\mathbf{Sr}$ | $^{85}\mathrm{Sr}$  | 1.6%     | 100        | 98.4%   | 0.100    | $6.2 \times 10^{4}$                    |
| Cs            | $^{134}\mathrm{Cs}$ | 99.9998% | 100        | 0.0002% | 0.100    | $2.0 	imes 10^{-3}$                    |
| Ba            | <sup>133</sup> Ba   | 0.07%    | 80         | 99.93%  | 0.082    | $1.4 \times 10^{6}$                    |
| Pb            | $^{212}\mathrm{Pb}$ | 14%      | 100        | 86%     | 0.040    | $1.5 \times 10^{4}$                    |
| Ra            | $^{228}$ Ra         | 0.15%    | 100        | 99.85%  | 0.040    | $1.7 \times 10^{6}$                    |
| Ac            | <sup>228</sup> Ac   | 0.15%    | 100        | 99.85%  | 0.040    | $1.7 \times 10^{6}$                    |

表 3.3.7 種々の元素の分配係数 Kd

#### 140Baの本測定法への影響評価

原子力災害時に <sup>89</sup>Sr や <sup>90</sup>Sr とともに <sup>140</sup>Ba が放出されたときには、<sup>140</sup>Ba は P-MAq にほぼ定量的に吸着されると推測される。ただし、<sup>140</sup>Ba は 537 keV (分岐比 24%) の  $\gamma$ 線を放出することから、Ge 半導体検出器を用いた  $\gamma$ 線スペクトロメトリにより混入を 見いだすことは容易であり、定量も比較的簡単に行なうことができる。そのため <sup>89</sup>Sr、 <sup>90</sup>Sr を測定する  $\beta$ 線測定器で <sup>140</sup>Ba および子核種 <sup>140</sup>La の計数効率を測定することで、 <sup>140</sup>Ba および <sup>140</sup>La の寄与を差し引くことができ、<sup>89</sup>Sr、<sup>90</sup>Sr の定量は可能となる。

#### 3.4 Pb など天然放射能の影響評価

小島ら (2020) において、Th 系列である天然放射性核種の <sup>228</sup>Ra (β 壊変、半減期: 5.75 年)、 <sup>224</sup>Ra (α 壊変、半減期: 3.66 日) および <sup>212</sup>Pb (β 壊変、半減期: 10.6 時間)を用 いて、Ra および放射性 Pb の Sr 吸着剤への吸着挙動を明らかにした。マントルから抽出、 精製した <sup>228</sup>Ra、<sup>212</sup>Pb 混合トレーサーを用い、人工海水(液相)と Sr 吸着剤である P-MAq (固相) 間で Ra および放射性 Pb がどのように分配されるかを測定した。

三角フラスコに入れた 100 mLの人工海水に 100 μLの <sup>228</sup>Ra と 40 mgの吸着剤 P-MAq を加え、2 時間振とうした。振とう終了後、直ちにろ過を行ない、吸着剤 P-MAq をろ紙 5C 上に捕集し、約 10 mLの純水で洗浄後、ポリ袋に封入した。洗浄が終了した時刻を固相と 液相の分離時刻とした。ろ液 100 mL は U8 型容器に移した。吸着剤 P-MAq 試料およびろ 液試料については、Ge 半導体検出器で速やかにγ線測定を開始し、その後約 1 カ月間に渡 り測定を繰り返した。

Ra の溶液への残存率が 0.15%であり、99%以上の Ra が吸着したと考えられた。<sup>228</sup>Ra とその子核種 <sup>228</sup>Ac の吸着性能はほぼ同一であり、ほぼ全量が固相に吸着されることが明ら かになった。<sup>212</sup>Pb の吸着剤 P-MAq への吸着率は 69.2±0.3%と推定された。<sup>228</sup>Th も <sup>212</sup>Pb と同様に溶液・吸着剤の両者に分配されることが分かった。

#### 4 分析手法の開発

#### 4.1 迅速測定法の確立

## 4.1.1 ピュアセラム MAq による <sup>90</sup>Sr 迅速測定法の確立(2022 年 1 月実施)

(1) 実験の目的

新たに提供を受けた P-MAq を用いて、海水から <sup>90</sup>Sr を迅速に分析する方法を確立 し、人工海水および <sup>90</sup>Sr トレーサーにより確認する。

(2) 実験の概要

<sup>90</sup>Sr トレーサーを添加した人工海水に P-MAq を加えて撹拌し、P-MAq のみを分離 して <sup>90</sup>Sr を測定する。

- (3) 実験操作
  - i. 人工海水 101.9 mL を三角フラスコに入れ, 90Sr トレーサー(90Sr 原液)を加えた。
  - ii. <sup>90</sup>Sr 原液: 9.96 kBq/100 µ L at 2022.1.18
  - iii. 試料溶液から2 mL を分取して秤量し、乳化シンチレータ18 mL と混合し、LSC 測定した。(A2A-4a: 2.0500g)
  - iv. 試料溶液に P-MAq 149.4 mg を加え, 2 時間攪拌した。
  - v. ガラス繊維ろ紙(GF/A, 47mm φ)を用いて,吸引ろ過を行った。
  - vi. P-MAqを捕集したろ紙をガラスバイアル(20 mL)に入れ,乳化シンチレータ19
     mL を加え,LSC 測定を行った。(A2A-4c)
  - vii. ろ液(ろ液全量 100.1146g)から 2 mL を分取し、ポリバイアルに入れ、乳化シン チレータ 18 mL を加え、LSC 測定を行った。(A2A-4b: 2.0196 g)
  - viii. ろ液を三角フラスコに入れ, P-MAq を 50.7 mg 加え, 30 分撹拌を行った。
  - ix. ガラス繊維ろ紙(GF/A, 47mm  $\phi$ )を用いて,吸引ろ過を行った。
  - x. ろ液約5mLを使って三角フラスコを洗浄し、洗液もろ過した。
  - xi. P-MAqを捕集したろ紙をガラスバイアルに入れ,乳化シンチレータ 19 mL を加え, LSC 測定を行った。(A2A-4e)
  - xii. ろ液(ろ液全量 95.9771 g) から 2 mL を分取し、ポリバイアルに入れ、乳化シン

チレータ 18 mL を加え, LSC 測定を行った。(A2A-4d: 2.0325 g)

xiii. ろ液から 20 mL を分取し、ポリバイアルに入れ、チェレンコフ法で測定を行った。
 (A2A-4d': 19.7317 g)

(4) 結果と考察

表 4.1 に測定結果を示す。ろ液(4b)の 46.9%の放射能は、ほぼ 90Y 由来と考えられる。フ ィルター(4c)は、沈殿が沈降した状態で測定すると 15.5%であったが、試料バイアルをシェ イクして沈殿をバイアル内に拡散させて計ると 50.2%となり、ぼぼ全ての 90Sr がフィルタ ー上に回収されたと考えられる。2回目の収集フィルター(4e)上の 4.86%と合わせて、 90Sr+90Y 合計値の 50%の放射能が沈殿中に存在した。ろ液中にほぼ全量の 90Y が存在し、 沈殿中にほぼ全量の 90Sr が回収できたと考えられる。

|                        | Sample | Sample<br>放射能<br>(Bq) | 全体の放射能<br>(Bq) | 収率<br>(%) | 推定核種                              | 備考                                               |
|------------------------|--------|-----------------------|----------------|-----------|-----------------------------------|--------------------------------------------------|
| <sup>90</sup> Sr スパイク後 | J2A-4a | 336±6                 | $16,871\pm280$ | 100       | <sup>90</sup> Sr+ <sup>90</sup> Y |                                                  |
| 1回目ろ液                  | J2A-4b | 160±3                 | 7,911±144      | 46.9±0.9  | <sup>90</sup> Y                   |                                                  |
| 1回目フィルター               | J2A-4c | 2,611±3               | 2,611±40       | 15.5±0.2  | $^{90}\mathrm{Sr}$                | <ul><li>沈殿が沈降</li><li>した状態で</li><li>測定</li></ul> |
| 1回目フィルター<br>(再測定)      | J2A-4c | 8,469±40              | 8,469±128      | 50.2±0.8  | $^{90}\mathrm{Sr}$                | 沈殿を拡散<br>させた状態<br>で測定                            |
| 2回目ろ液                  | J2A-4d | 148±3                 | 6,976±129      | 41.3±0.8  |                                   |                                                  |
| 2回目フィルター               | J2A-4e | 820±3                 | 820±13         | 4.86±0.08 |                                   |                                                  |

表 4.1 放射能測定 (90Sr+90Y)

#### 4.1.2 <sup>90</sup>Sr をスパイクした海水を用いた迅速測定法の検証(2022年1月実施)

(1) 実験の目的

<sup>90</sup>Sr をスパイクした海水を用い、迅速測定法により <sup>90</sup>Sr を定量し、迅速測定法が海水に応用できることを確認する。なお、この実験は1月17日から20日にかけて慈恵 医大で実施した実験を継続するものである。

- (2) 実験操作
  - i. 小笠原海藻研究会より入手した海水(HCl添加、ろ過済)にHClを加え pHを
     2 とし、<sup>90</sup>Sr を加えた。2 mL を分取し乳化シンチレータを加え、LSC 測定を
     行なった。
  - ii. 海水試料 100 mL に P-MAq を 150 mg 加え, 2 時間撹拌後, 吸引ろ過し, ろ紙
     に捕集した P-MAq をろ紙ごと乳化シンチレータで LSC 測定した。ろ液についてはチェレンコフ法で測定を行なった。
  - iii. チェレンコフ法測定に用いたろ液試料は先のろ液と合わせ、再吸着操作を行なった。P-MAqを50 mg加え30分攪拌の後、ろ紙をLSC測定した。また、ろ液のLSC測定、チェレンコフ法で測定を行なった。

(3) 得られた結果

表 4.2 に初期溶液およびろ液試料の LSC による測定結果を示す。また、表 2 にろ 液試料の表にチェレンコフ法での測定の結果を示す。チェレンコフ法の結果から <sup>90</sup>Y は P-MAq に吸着していないことが分かる。また、LSC の測定結果からろ液中への <sup>90</sup>Sr 残存率が 6%となっていることが示された。ただし、再吸着により <sup>90</sup>Sr はほぼ定量的 に吸着していることが分かる。表 3 にろ紙試料の LSC の測定結果を示す。<sup>90</sup>Sr の投与 量が 35,150 Bq であり、<sup>90</sup>Sr の計数効率が 75%であることが分かった。以上の実験か ら迅速測定法により、<sup>90</sup>Sr は1 回の吸着操作で 94%が P-MAq に吸着され、計数効率 75%で測定できることが分かった。

| 測定試料       |        | 計数率<br>(cpm) | 放射能( <sup>90</sup> Sr+ <sup>90</sup> Y)<br>(Bq) | ろ液中残存率<br>(%) | 備考                                        |
|------------|--------|--------------|-------------------------------------------------|---------------|-------------------------------------------|
| 初期溶液       | A2A-2a | 80,031±287   | $1,408\pm22$                                    | 100           | <sup>90</sup> Sr+ <sup>90</sup> Y         |
| ろ液         | A2A-2b | 46,678±216   | 801±13                                          | 56.2±0.9      | <sup>90</sup> Sr 主、<br><sup>90</sup> Y 残存 |
| 再吸着時<br>ろ液 | A2A-2e | 43,696±209   | $750{\pm}12$                                    | 49.6±0.8      | 90Y                                       |

表 4.2 初期溶液およびろ液試料の LSC 測定による結果

表 4.3 ろ液試料のチェレンコフ法での測定による結果

| 測定試料       |         | 計数率<br>(cpm) | 放射能( <sup>90</sup> Sr+ <sup>90</sup> Y)<br>(Bq) | ろ液中残存率<br>(%) | 備考                                        |
|------------|---------|--------------|-------------------------------------------------|---------------|-------------------------------------------|
| ろ液         | A2A-2b' | 256,120±506  | 7,114±108                                       | 49.5±0.8      | <sup>90</sup> Sr 主、<br><sup>90</sup> Y 残存 |
| 再吸着時<br>ろ液 | A2A-2e' | 249,343±499  | $6,926{\pm}105$                                 | 46.7±0.7      | 90Y                                       |

表 4.4 ろ紙試料の LSC 測定による結果

| 測定試料   |        | 計数率<br>(cpm)         |  |  |
|--------|--------|----------------------|--|--|
| ろ液     | A2A-2c | $1,591,911 \pm 1262$ |  |  |
| 再吸着時ろ液 | A2A-2f | $126,511 \pm 356$    |  |  |

## 4.2 精密測定法におけるY溶出(ミルキング)方法の検討

## 4.2.1 ピュアセラム MAq からの硫酸による<sup>90</sup>Y の溶出(2021年11,12月実施)

(1) 実験の目的

Y の化学的性質として中性、塩基性では Y(OH)<sub>3</sub> 沈殿を生成し、固相中に存在する。 また Sr は硫酸イオンが不足すると P-MAq への吸着能は低下する。これらを踏まえ、 P-MAq に  ${}^{90}$ Sr を 吸着させ、放射平衡になった子核種  ${}^{90}$ Y を選択的に溶液に抽出するた めに適した硫酸イオン濃度および pH を実験的に明らかにする。

#### (2) 実験操作

- i. Y キャリア (10 μg) と HCl を加え、塩酸酸性にした人工海水に <sup>90</sup>Sr をスパイクした 溶液 100 mL に P-MAq を 100 mg 加えた。4 個の懸濁試料を調製した。
- ii. それらを4時間撹拌した後に遠心分離により上澄み液とP-MAq沈殿に分離した。ただし、P-MAqが乾燥しないように上澄み液を約1mL残した。<sup>90</sup>Srと<sup>90</sup>Yを放射平衡にするため2週間放置した。
- iii. 4 個の P-MAq 試料にそれぞれ異なる濃度の硫酸と Y キャリア(10 μg)を加え、撹拌した。これらの試料に硫酸を加え、4 個の試料中の硫酸濃度をそれぞれ①1 M(OCT-8)、
   ②0.5 M (OCT-9)、③0.05 M (OCT-10)、④0.005 M (OCT-11)とした。
- iv. 撹拌開始2時間後にそれぞれの試料から懸濁溶液を各2mL ずつ分取し、シリンジフィ ルターを用いてろ過し、ろ液をバイアル瓶に入れ、チェレンコフ法で測定を行なった。 その測定の後に乳化シンチレータ(クリアゾルII)18mL を加え、液体シンチレーシ ョン測定を行なった。
- v. 撹拌開始4時間後にも同様に、懸濁溶液各2mLずつを分取し、ろ液についてチェレン コフ法で測定および液体シンチレーション法で測定を行なった。
- vi. 翌日ろ過後16時間後に、残ったそれぞれの懸濁液をガラス繊維ろ紙で吸引ろ過操作を 行なった。ろ紙に捕集した P-MAq に吸着している<sup>90</sup>Sr の定量を液体シンチレーショ ン測定で行なった。
- vii. ろ液から 5 mL を分取し、乳化シンチレータを加えて、LSC 測定試料を調製した。また、ろ液から 20 mL を分取し、チェレンコフ法測定試料を調製した。
- viii. 液体シンチレーション測定およびチェレンコフ法測定は分離直後から約2週間続けた。

| 図4.1 実験技     | 操作            |              |               |            |           |          |           |
|--------------|---------------|--------------|---------------|------------|-----------|----------|-----------|
|              |               |              |               |            |           |          |           |
| OCT-8d~11    | / 200 mLΞ     | 角フラスコ        |               |            |           |          |           |
| $\downarrow$ | 2時間撹拌         | 後            |               |            |           |          |           |
| $\downarrow$ | $\rightarrow$ | 2 mL分取し、     | シリンジフィル       | レタでろ過→0    | CT-8e~11e |          |           |
| $\downarrow$ | 4時間撹拌         | 後            |               |            |           |          |           |
| $\downarrow$ | $\rightarrow$ | 2 mL分取し、     | シリンジフィル       | レタでろ過→0    | CT-8f~11f |          |           |
| $\downarrow$ | 吸引ろ過()        | ガラス繊維ろ約      | 紙GA-55、アト     | 「バンテック社】   | )         |          |           |
| $\downarrow$ | $\rightarrow$ | $\downarrow$ |               |            |           |          |           |
| GFろ紙         |               | ろ液OCT-8h     | $\sim$ 11h    | / 100 mLポリ | 広口瓶       |          |           |
| OCT-8g~11    | g             | $\downarrow$ | $\rightarrow$ | 5 mL分取、爭   | し化シンチレー   | ータ15 mL添 | 加→OCT-8i~ |
|              |               | $\downarrow$ | $\rightarrow$ | 20 mL分取一   | OCT-8j∼11 | j        |           |
|              |               | ろ液OCT-8h     | ~11h(残液)      | / 100 mLポリ | 広口瓶       |          |           |
|              |               |              |               |            |           |          |           |

なお、行った実験操作を図 4.1 に示す。

(3) 得られた結果

4 時間撹拌した後、約 16 時間後にろ過を行い、P-MAq を捕集したガラス繊維ろ紙試料 OCT-8g~11g を、LSC で測定した結果を図 4.2 に示す。表ではろ過終了時刻から測定開 始時刻までの経過時間の単位を日、計数率を cps で表してある。OCT-8g~11g の4種類 ともその経時変化は同様の傾向を示しているため、図には OCT-8g と OCT-10g のみを示 した。同様に、ろ液試料 OCT-8i~11i を LSC で測定した結果を図 4.3 に、ろ液試料 OCT-8j ~11j をチェレンコフ法で測定した結果を図 4.4 に示す。

図 4.2 において計数率が極めて短時間に上昇し、一定となっており 90Sr と 90Y の放射 平衡が成り立っている。黒線は LSC 測定による 90Sr と 90Y の計数効率が等しいと仮定し たときに、OCT-8g について予想される 90Sr-90Y の成長曲線を示している。測定結果と予 想される成長曲線は大きく異なっている。吸引ろ過後にガラス繊維ろ紙を乾燥させること なく乳化シンチレータを加えて測定しており、比較的エネルギーの低い 90Sr の  $\beta$ 線が水相 により遮蔽されていたものが、徐々にエマルジョンが形成され、水が取り除かれることで 90Sr の $\beta$ 線が検出されるようになったとすればこの現象を説明することができる。LSC による計数効率は 90Sr、90Y ともにほぼ 100%であり、P-MAq に吸着されている 90Sr、90Y の放射能はともに 110 Bq と見なせる。

図 4.3 の紫の線は 99Y 単独の減衰を表しており、ろ液中に 90Sr が混入していることが 分かる。ろ過直後の t=0 における 90Sr=0.17 Bq、90Y=0.85 Bq としたときの計数率の経時 変化は桃色の線で示してあり、実測値をよく再現できている。測定試料は 5 mL、ろ液全 体では 100 mL であり、ろ液全体では 90Sr=3.4 Bq、90Y=17 Bq である。今回の 1M H<sub>2</sub>SO<sub>4</sub> による抽出法では、90Y の脱離率は 13%、90Sr の脱離率は 3%であった。当初の目的であ る 90Y のみを脱離させることに成功していない。なお、チェレンコフ法での測定の結果に よれば、90Y の計数効率は 60%であり、ろ過直後の t=0 において、90Y=4.7 Bq であり、 また、90Sr と 90Y がほぼ放射平衡に達した 15 日後の計数率から 90Sr=1.3 Bq となる。測 定に用いたろ液は 20 mL であるので、試料全体では 90Sr=6.5 Bq、90Y=23 Bq である。チ ェレンコフ法での測定の結果では 90Y の脱離率は 17%、90Sr の脱離率は 6%であった。チ



図 4.2 OCT-8g および OCT-10g (P-MAq)のLSC 測定による計数率 の経時変化



図 4.3 OCT-8i および OCT-10i (ろ液)の LSC 測定による計数率の 経時変化

ェレンコフ法測定の結果は LSC 測定の結果より 1.5~1.9 倍ほど大きな値となっている。 この不一致の原因について現在検討を行なっている。

90Y のミルキングに硫酸 H<sub>2</sub>SO<sub>4</sub>を用いた実験では、濃度が 0.005M~1M のいずれの条件でも効率よく 90Y を脱離させることができていない。P-MAq に吸着された 90Sr から  $\beta$  壊変で生成された 90Y は P-MAq に強固に吸着(収着)していると考えられる。



## 4.2.2. 酸溶出による<sup>90</sup>Y ミルキング法の検討(2021年12月実施)

(1) 実験の目的

90Sr を吸着させた P-MAq から 90Y を溶出(ミルキング)する条件を確立することを目的とする。

(2) 実験の概要

<sup>90</sup>Sr を吸着させ 2 週間以上放置し <sup>90</sup>Y と放射平衡になった P-MAq から、適切な溶 出液を用いて <sup>90</sup>Y のみを脱離させる。

(3) 実験操作

i. <sup>90</sup>Srを吸着させた P-MAq (11 月に実施し保管しておいた試料J1K-31,J1K-32)を遠 心分離し、上清を取り除いた。→ 上清 J1L-11a, 12a

ii. 遠心管内に残った P-MAq(J1L-11, J1L-12)に 0.01M あるいは 0.1M HCl を(1.25M Na<sub>2</sub>SO<sub>4</sub> 0.8 mL, 1000 mgY/mL の Y キャリア溶液 10 µ L を含む) 40 mL 加えて三角 フラスコに移し、2 時間撹拌した。

iii. 懸濁液を遠心管に移し,遠心分離を行い(3000 rpm, 10分) P-MAq 沈殿と上清
 に分けた。 →上清 LSC 測定試料 J1L-11c, 12c、上清チェレンコフ測定試料 J1L-11d,
 12d

(4) 得られた結果

表 4.5 に測定結果を示す。P-MAq に  ${}^{90}$ Sr を吸着させた際の  ${}^{90}$ Sr の添加量は約8 kBq だったので、吸着率約95%と考えると、P-MAq が吸着していると予測される  ${}^{90}$ Y の量は約7.6 kBq と算出される。本実験における溶出液の測定結果を合計しても400 Bq 程度であり、溶出されたY は吸着量の5%以下と推定される。本実験の溶出条件(0.01M あるいは 0.1M HCl, 2 時間撹拌)では、Y の大部分は P-MAq に吸着したままであると思われる。

| 衣 4.3 I 07俗山里 |           |            |           |                 |                 |  |  |
|---------------|-----------|------------|-----------|-----------------|-----------------|--|--|
|               | 上清        | LSC 測定結果   | 上清        | LSC 測定結果        | チェレンコフ測         |  |  |
|               | (40 日間保管) | /Bq        | (2時間撹拌)   | /Bq             | 定結果/Bq          |  |  |
| J1L-11        | 0.1M HCl  | 252.3 ±5.3 | 0.01M HCl | 90.4 ±1.3       | 68.5 ±1.5       |  |  |
| J1L-12        | 0.1M HCl  | 246.7 ±5.2 | 0.1M HCl  | $141.7 \pm 1.7$ | $101.5 \pm 2.2$ |  |  |

表 4.5<sup>90</sup>Y の溶出量

#### 4.2.3 EDTA による脱離と Y(OH)3 沈殿生成の検討(2022年1月実施)

(1) 実験の目的

人工海水に  $^{85}$ Sr をスパイクし、P-MAq に吸着させる。Y は P-MAq に吸着しない が、測定を目的とする  $^{90}$ Sr については、子核種である  $^{90}$ Y が P-MAq 上で生成される。  $^{90}$ Sr と  $^{90}$ Y が放射平衡に達した状態を想定し、 $^{85}$ Sr を吸着させた P-MAq に  $^{90}$ Y を加え、 EDTA により溶液中に Y を脱離させる方法の検証を行なう。Sr と Y は塩基性の条件で EDTA を作用させると P-MAq から脱離されると考えられる。この溶液に過剰に NaOH を加えることで、  $[^{90}$ Y-EDTA]<sup>-</sup>イオンを  $^{90}$ Y(OH)<sub>3</sub>の沈殿を生じさせる  $^{90}$ Y ミルキング 法で、Sr と分離できることを確認する。この方法で Ra、Ba の分離も可能となる。な お、この実験は 1 月 17 日から 20 日にかけて慈恵医大で実施した実験を継続するもの である。

- (2) 実験操作
- i. 人工海水 82 mL に <sup>85</sup>Sr をスパイクし、2 mL 分取しγ線測定を行なった。P-MAq を 123 mg 加え、撹拌した。
- ii. 遠心分離し、上清から 2 mL 分取し、γ線測定を行なった。液相残存率は 7.2%であった。
- iii. P-MAq 沈殿を 5 mL の 0.05M EDTA でビーカーに移し、さらに 15 mL の 0.05M EDTA
   を加えた。NaOH を加え pH を 11 に調整し、20 分間撹拌した。
- iv. 遠心分離により液相と固相とに分け、それぞれγ線測定を行なった。液相に2mgのY キャリアと<sup>90</sup>Y溶液を加えた。8M NaOH を6mL 加え Y(OH)<sub>3</sub> 沈殿を生成させた。
- v. 遠心分離後、液相と固相に分け、それぞれγ線測定を行なった。その後、Y(OH)<sub>3</sub>の再 沈殿操作を行なった。1 mL の 6M HCl で沈殿を溶解し、7 mL の 1M NaOH を加えて、 Y(OH)<sub>3</sub>を再沈殿させた。
- vi. 遠心分離で上清を取り除いた。1 mL の 6M HCl で沈殿を溶解し、水 21 mL で希釈し、
   20 mL をチェレンコフ法での測定用に使用し、残り 2 mL を LSC 用に使用した。チェレンコフ法測定により、<sup>90</sup>Y の回収率は 97.7%であった。

(3) 得られた結果

P-MAq に吸着させた Sr および Y は EDTA を塩基性で作用させることで、定量的に脱離 させることができた。Y(OH)<sub>3</sub>生成ミルキング法により、90Y の回収率は 97.7%と高い値が 得られた。一連の操作により 90Sr を P-MAq に吸着させ、EDTA で Sr、Y を脱離させた後 に NaOH を添加、Y(OH)<sub>3</sub>沈殿させる 90Y ミルキング法で、当初の目的である Ra や Ba、 Pb などの妨害核種と分離できる 90Y ミルキング法を確立することができた。

#### 4.2.4. H<sub>2</sub>O<sub>2</sub>による EDTA 分解と Fe 共沈法の検討(2022 年 2 月実施)

(1) 実験の目的

精密測定法では試料として 20 L の海水を用いることになるが、まず 1 L 程度の試料で 測定が可能となる IAEA-433 試料を測定対象とする。そのために海水試料を 1 L 使用した ときに必要となる P-MAq (以下 P-MAq) は 2 g となる。EDTA 溶液から Y を Y(OH)<sub>3</sub>水酸 化物沈殿として回収するためには多量の NaOH を必要とする。NaOH の必要量を減少させ るためには、過酸化水素水 H<sub>2</sub>O<sub>2</sub> で EDTA を分解する方法が考えられ、これを実証する。 また、Y(OH)<sub>3</sub>水酸化物沈殿は白色であり、ケイ酸塩化合物などの他の不溶残渣との識別が 困難である。一般に用いられる鉄共沈法を応用することで、着色した沈殿が生成すること から目視により確認することが可能となる。また、H<sub>2</sub>O<sub>2</sub>による EDTA 分解においても Fe の存在で紫色に着色し、これが脱色されることが EDTA 分解の指標となる。この方法の実 用化を目指す。

(2) 実験操作

- i. 2gのP-MAqを1Lのビーカーに入れ、400 mLの0.05M EDTAと5 mLの8M NaOH を加え塩基性(pH 11)にし、30分撹拌した。P-MAqの大部分は溶解した。
- ii. 50 µg の Y キャリア、5 mg の Fe (鉄共沈 Y ミルキング法と同様)、10 mL の 30%H<sub>2</sub>O<sub>2</sub>
   を加えた。赤紫色を呈した。
- iii. 時計皿をかぶせ、加熱しながら 1 時間ほど撹拌した。ごく薄い紫色になった(EDTA

26

が H<sub>2</sub>O<sub>2</sub>により分解されたと考えられる)。

- iv. EDTA を完全に分解するために、10 mL の H<sub>2</sub>O<sub>2</sub>を追加し、約1時間加熱しながら撹
   拌した。白色沈殿が生成し、pH9に低下した。
- v. 5000rpm で 20 分遠心分離し、白色沈殿と上清を分けた。沈殿に 6M HCl を加え、溶 解したが、Fe はわずかしか沈殿していなかった。
- vi. 上清に5 mLの8M NaOH を加え、加熱したところ、黄色のFe(OH)3 沈殿を生成した。
- vii. 5000rpm で 20 分遠心分離し、白色沈殿と上清を分けた。黄色沈殿に 6M HCl を加え、
   溶解した。黄色の溶液が得られた。

#### (3) 得られた結果

海水を 100 mL から 10 倍の 1 L としても、塩基性条件下で EDTA により P-MAq の大部分は溶解し、Y の大部分は脱離できることが分かった。本実験に引き続き、 $^{85}$ Sr トレーサーを用いた実験を 24 日から 26 日にかけて東京慈恵会医科大学で行い、90%以上の  $^{85}$ Sr が脱離されることが分かった。鉄(III)水酸化物共沈法により、Sr とともに脱離された Y が黄色の Fe(OH)<sub>3</sub>沈殿とともに Y(OH)<sub>3</sub> として回収されたと考えられる。この実験事実に基づき 24 日から 26 日にかけ東京慈恵会医科大学で同様の実験を、 $^{90}$ Y トレーサーを用いて行なった。新たに購入した LBC で  $^{90}$ Y を測定することができることが示された。

#### 4.2.5. EDTA によるピュアセラム MAq 溶解法の検討(2022年1月実施)

(1) 実験の目的

P-MAqからYをミルキングする代わりにSrを脱離させる方法を検討する。<sup>85</sup>Srトレーサーにより確認する。

(2) 実験の概要

 $^{85}$ Sr トレーサーを吸着させた P-MAq から、EDTA により Sr を脱離させる。抽出した[ $^{85}$ SrEDTA]<sup>2</sup>溶液 (pH 10~11)を酸性にし、不溶性の EDTA を遠心分離または吸引ろ過で除き、 $^{85}$ Sr<sup>2+</sup>として回収してガンマカウンタで測定する。

(3) 実験操作

3-1. P-MAq への <sup>85</sup>Sr の吸着実験

- i. 人工海水 81.8 mL に <sup>85</sup>Sr (12 kBq/0.2g at 2022/1/17) を 200 μL 加えた。混合後 2 mL 分取し、ガンマカウンタで γ 線測定を行なった。(J2A-1a)
- ii. 試料溶液80 mLにP-MAqを119.6 mg加え2時間撹拌し、懸濁液をポリ遠心管(50 mL)2
   本に分けて遠心分離を行なった。
- iii. 3000 rpmで10分の遠心分離操作後、デカンテーションにより P-MAq と上清に分けた。
   上清を 20 mL 分取し、ポリバイアルに入れガンマカウンタでγ線測定を行なった (J2A-1b)。
- iv. P-MAq が入っている遠心管を 0.025M Na<sub>2</sub>SO<sub>4</sub> 10 mL で洗浄したのち遠心分離し、上 清をプラバイアルに移して秤量し、ガンマカウンタでγ線測定を行った。(J2A-1c: 10.0072 g)
- v. P-MAg の入った遠心管を Ge 検出器で測定した。(J2A-1d:沈殿の高さ 6±2 mm)

3-2. 0.05M EDTA-2Na を用いた <sup>85</sup>Sr の脱離実験

- i. P-MAq (J2A-1d) を 0.05 M EDTA-2Na 5 mL を使って 100 mL ビーカーに移した。
- ii. 遠心管に 0.05M EDTA-2Na を 5 mL 入れ洗浄し,洗液を先の 100 mL ビーカーに加えた。この操作を計 3 回行なった(液量 20 mL)。
- iii. 0.5M NaOH を 4.5 mL 加えて, pH を 10~11 とした(液量 24.5 mL)。
- iv. スターラーで撹拌を行い,20分後に懸濁液を遠心管に移した。
- v. ビーカーに、純水に NaOH を加え pH10 とした溶液 3 mL を入れ洗浄し、この洗液を 遠心管に加えた。この洗浄操作を計 2 回行った(遠心管内の液量: 30.5 mL)。
- vi. 遠心分離(3000 rpm, 10分)を行なった。P-MAqの沈殿量が前日のJ2A-1d(沈殿の 高さ6±2 mm)と比べると明らかに沈殿量が減少していた。P-MAqのマトリックスが 溶解したと考えられる。
- vii. 上清 30.5 mL を遠心管に移し,秤量した。30.7384g であった。ここから 5 mL をポリ
   バイアルに分取して秤量し、ガンマカウンタで y 線測定を行った。(J2A-1f: 4.8315 g)
- viii. P-MAqの入った遠心管を Ge 検出器で測定した。(J2A-1e)

#### 3-3. P-MAq から Sr を脱離させた[<sup>85</sup>SrEDTA]<sup>2</sup>溶液から EDTA を除く実験

i. ガンマカウンタでγ線測定した溶液 J2A-1f(5 mL)を遠心管に戻した(合計 30.5 mL)。

- ii. 遠沈管に 1M HCl を 6 mL 加え, pH を 1~2 とした。白色沈殿が生成した。
- iii. 遠心分離(3000 rpm, 10分)を行なった。これを翌日まで静置した。
- iv. 遠心分離(3000 rpm, 10 分)を行ない、上清と沈殿物に分けた。
- v. 上清から1mL分取し、ガンマカウンタでγ線測定を行った。(J2A-1g: 0.9992 g)
- vi. 遠心管内の沈殿物のγ線測定を Ge 検出器で行った。(J2A-1h)
- vii. 沈殿物(J2A-1h)を0.1M HCl 5 mL で懸濁し,5C のろ紙で吸引ろ過を行った。さらに5 mL で洗浄し,洗液を吸引ろ過した。この洗浄操作を2回行った。(合計 15 mL)
- viii. ろ液の全量をポリバイアルに入れ秤量し、ガンマカウンタでγ線測定を行った。
   (J2A-1i: 14.7844 g)
- ix. ろ紙上に捕集した沈殿をろ紙ごと磁性るつぼに移した。
- x. 赤外線ランプで乾燥させた後に、電気炉で乾式灰化した。550℃で 75 分間加熱した。
   加熱終了後は翌日まで放置した。
- xi. 灰化した試料が入っている磁性るつぼに 6M HCl を 2 mL 加えた。上清をビーカーに 移した。残渣は黒色の塊と灰色の微小粒子が混在していた。
- xii. 6M HCl を 2 mL 加えた。上清を先のビーカーに加えた。さらに 6M HCl を 2 mL 加 え, 懸濁物すべてをビーカーに加えた。
- xiii. 1M HCl 2 mL でるつぼを洗い,洗液をビーカーに加えた。
- xiv. H2O2 mL でるつぼを洗い,洗液をビーカーに加えた。さらに H2O1 mL でるつぼを洗い,洗液をビーカーに加えた。磁性るつぼ(J2A-1j')を Ge 検出器で測定した。わずかに 85Sr が観測された。
- xv. 懸濁液を入れたビーカーに時計皿をかぶせ,ホットプレートで 30 分加熱した(設定温度 90℃)。
- xvi. 放冷後,ガラス繊維ろ紙 GF/A(47 mm φ)で吸引ろ過を行った。H<sub>2</sub>O 2 mL でビーカ ーを洗い,洗液を吸引ろ過した。この操作は 2 回行い、さらに,H<sub>2</sub>O 2 mL で沈殿を洗 浄した。
- xvii. ろ液をプラスチックバイアルに移して秤量し、ガンマカウンタで測定した。(J2A-1k: 15.8567 g, 約 16mL)。溶解された <sup>85</sup>Sr は一部であった。
- xviii. 不溶性残渣を捕集したろ紙をポリ袋に封入し,Ge検出器で測定した。

- **xix.** 不溶性残渣に多くの <sup>85</sup>Sr が残留していることが分かった。<sup>85</sup>Sr の多くは P-MAq に由 来するケイ酸との化合物中にあると考えられる。
  - (4) 結果と考察

塩基性条件下で EDTA を作用させることで、P-MAq のマトリックスから Ba を脱離 させ、P-MAq を溶解させることで  $^{85}$ Sr を脱離させることができた。これを酸性にする ことで EDTA+イオンを溶解度の小さな EDTA-4H として除去することを目指したが、 脱離させた Sr が不溶性のケイ酸塩化合物となったと考えられる。そのため、酸を追加 しても不溶残渣は溶解することがなく、Sr を回収することが困難であることが分かっ た。塩基性条件下で EDTA キレート錯イオンを生成し、脱離した Sr、Y は液性を酸性 とすると不溶性ケイ酸塩化合物となり、強酸によっても溶出されなくなる。これは Sr が P-MAq に吸着(収着)されると、強酸によっても Sr が脱離されないこととも関連 していると考えられる。これらは Avramenko らが Si-O-Sr の結合を形成するというモ デルを支持する結果となっている。EDTA がキレート錯体を生成しないようにするた めに pH を低くする場合は、緩衝液などを用いて pH をコントロールする必要があると 考えられる。

#### 4.2.6 EDTA 存在下における Y(OH)3 沈殿生成実験(2022 年 2 月実施)

(1) 実験の目的

塩基性で Y が Y(OH)<sub>3</sub>の沈殿を生成する条件を確認する。塩基性条件で EDTA のために P-MAg が溶解した溶液から Y を分離できるかどうかを確認する。

(2) 実験の概要

EDTA存在下においてY(OH)<sub>3</sub>沈殿を生成する。(コールド実験)

(3) 実験操作

i. ビーカー(100 mL)にY標準溶液(1.00mg/mL, 1M HNO<sub>3</sub>)2.0 mL, Sr標準 溶液(1.00mg/mL, 0.1M HNO<sub>3</sub>)10.0 mL, 0.05M EDTA 5.0 mL を入れた(液量17 mL)。 pHは2であった。

ii. 0.5M NaOH を 4 mL を加えたところ pH=3 となった。さらに、0.5M NaOH を 4 mL を加えたところ、pH は 10 となった。中和には 0.5M NaOH を 6mL 要したとみな せる。

iii. さらに 4 mL の 0.5M NaOH を加えたところ pH=11 となった。しかしながら Y(OH) $_3$ の沈殿は生成されなかった(液量 29 mL)。そのため,さらに NaOH を加える こととした。

iv. 6M NaOH を少量ずつ加えていったところ,8mL 追加したところでわずかに白濁 した。そのまま静置した(液量 37mL)。過剰の NaOH は 51 mmol であり,1.38 mol/L となる。

v. 4時間経過後には白色沈殿が生成されていた。

(4) 結果

EDTA の 200 倍の NaOH を加えることで Y(OH)3 の沈殿が生成した。

なお, 溶液中の Y<sup>3+</sup>, Sr<sup>2+</sup>, EDTA<sup>4</sup>, Na<sup>+</sup>の各々の化学種のモル濃度は, 以下の通りで

ある。

[Y<sup>3+</sup>]=0.022 m mol/37 mL=0.61 m mol/L

[Sr<sup>2+</sup>]=0.12 m mol/37 mL=3.1 m mol/L (EDTA の安定度定数が同程度であるので,

P-MAqの Baの模擬物質として Sr を用いた)

[EDTA4-]=0.25 m mol/37 mL=6.8 m mol/L

[Na<sup>+</sup>]=[OH<sup>-</sup>]=51 m mol/37 mL=1.4 mol/L

 $Y(OH)^{3} O K_{sp} = 1.0 \times 10^{-22}$ 

[Y (EDTA)]の安定度定数 β<sub>ML</sub>=8.1x10<sup>-19</sup>

(5) 考察

海水試料から P-MAq に吸着された <sup>90</sup>Sr は 0.05M EDTA-2Na, pH10~11 の条件で液相に 脱離される。液相に大過剰の NaOH を加え, Y(OH)3の沈殿を生成させることで <sup>90</sup>Y のミル キングができることが本実験により分かった。この操作で, Ra, Ba との分離が可能となる。 本法を <sup>90</sup>Sr トレーサーを用いた実験で実証する必要がある。また, 溶液中の単離された <sup>90</sup>Y を放射線測定に適した化学形態にし, これを液体シンチレーションカウンタ(LSC)あるいは 低バックグラウンドガスフロー検出器(LBC4601、日立製作所、以降 LBC)で測定すること で, 本研究の目的が達成されると考えられる。

## 4.3 大容量試料への適用

4.3.1 ピュアセラム MAg の EDTA 溶解と Y 回収方法の検討 1 (2022 年 2 月)

(1) 実験概要

海水から Sr を吸着させた P-MAq を、EDTA で溶解し、Fe 水酸化物沈殿共沈法に より、Y を回収し測定する方法を検討する。海水(小笠原)1 L を用い、<sup>85</sup>Sr トレー サーを加えて回収率を測定する。

- (2) 実験操作
- i. 海水(小笠原海藻研究会より入手)をメンブレンフィルター(0.45μm, 47mmφ
   MILLIPORE)で濾過した。conc.HCl 1~1.3mL/L を添加し、pH=2 を確認した。
- ii. 濾過済海水 1L (1043g) を 2L ビーカーに入れ、<sup>85</sup>Sr トレーサー溶液(原液:3M Bq/mL, No.21-007)50μL を添加し、撹拌した。20 mL 分取し測定した。

→ 出発試料 J2B-2a、全量 1043g

- iii. P-MAq 2g (2.0013g) を入れてスターラーで2時間撹拌した。(十字マグネット使用)
- iv. 上清を 20 mL 分取し、測定した。→ 上清 J2B-2b、全量 1043g
- v. ビーカー内の上清をアスピレーターで除去し, 沈殿懸濁液を 50 mL 遠沈管 2 本に移し て遠心分離した。(3000 rpm, 10 min)
- vi. 上清を除き、沈殿した P-MAq を 0.025M Na<sub>2</sub>SO<sub>4</sub> 20 mL を用いて洗浄しながら遠沈管
   2 本に移し集めて遠心分離した。(3000 rpm, 10 min)
- vii. 上清を 20mL 分取し、測定した。→ 洗浄液 J2B-2c、 全量 20g

- viii. 遠沈管の P-MAq を 0.05M EDTA 400 mL 用いて 1 L ビーカーに移した。
- ix. 8M NaOH を 5 mL 加え、pH=11 を確認し、スターラーで 45 分撹拌した。
- x. 上清を分取しシリンジフィルターで濾過し測定した。
   →上清 J2B·2d 、 シリンジフィルターJ2B·2e、全量 405g
- xi. 0.05M EDTA を 100 mL 追加して再撹拌した。30 分。
- xii. pH を確認したら pH=9 だったので 8M NaOH を 1.5 mL 加え、pH=10 を確認した。
   →上清 J2B-2f、 シリンジフィルターJ2B-2g、全量 405g
- xiii. 上清を分取しシリンジフィルターで濾過し測定した。

→上清 J2B-2h、 シリンジフィルターJ2B-2i、全量 403g

(3) 結果および考察

表 4.6 に <sup>85</sup>Sr による Sr 回収率の測定結果を示す。試料量1Lとなっても、液相に大過剰 の NaOH を加え, Y(OH)<sub>3</sub> の沈殿を生成させることができた。最終的には、水酸化物沈殿 への Sr の混入は 10%以下であった。より低濃度の Sr を測定するため海水試料量を増やす に従い、使用する P-MAq 量も増え、NaOH の量も多量に必要となることから、今後は EDTA を酸化剤で分解し、加える NaOH 量を抑えることを検討したい。

|         | G 1    | 重量      | $^{85}\mathrm{Sr}$ | 濃度         | 全重量  | 全量換算   | 章 <sup>85</sup> Sr | $\mathbf{Sr}$ |
|---------|--------|---------|--------------------|------------|------|--------|--------------------|---------------|
|         | Sample | g       | Вс                 | q/g        | g    | Вс     | 4                  | %             |
| 出発試料    | J2B-2a | 20.3448 | 352                | $\pm 6$    | 1043 | 18,053 | $\pm 290$          | 100           |
| PMAq 上清 | J2B-2b | 19.9327 | 18.2               | ±0.3       | 1043 | 950    | $\pm 17$           | 5.3           |
| 洗浄液     | J2B-2c | 19.3831 | 3.15               | ±0.10      | 20   | 3.3    | ±0.1               | 0.02          |
| 上清      | J2B-2d | 1.9930  | 73.09              | $\pm 2.19$ | 405  | 14,872 | $\pm 446$          | 82.4          |
| 沈殿      | J2B-2e | -       | 10.1               | ±0.8       | 405  | 2,060  | $\pm 157$          | 11.4          |
| 上清      | J2B-2f | 1.9849  | 72.99              | $\pm 2.19$ | 405  | 14,819 | $\pm 444$          | 82.1          |
| 沈殿      | J2B-2g | -       | 6.38               | $\pm 0.62$ | 405  | 1,296  | $\pm 126$          | 7.2           |
| 上清      | J2B-2h | 2.0028  | 65.6               | ±1.1       | 403  | 16,447 | $\pm 285$          | 91.1          |
| 沈殿      | J2B-2i | -       | 0.71               | ±0.09      | 403  | 179    | $\pm 22$           | 0.99          |

表 4.6 <sup>85</sup>Sr による Sr 回収率の測定結果

#### 4.3.2 ピュアセラム MAg の EDTA 溶解と Y 回収方法の検討 2(2022年2月)

(1) 実験の概要

海水から Sr を吸着させた P-MAq を、EDTA で溶解し、Fe 水酸化物沈殿共沈法により、Y を回収し測定する方法を検討する。海水(小笠原海藻研究会)1 L を用い、 <sup>90</sup>Y トレーサー を加えて回収率を測定する。

(2) 実験操作

- i. 海水(小笠原海藻研究会より入手)をメンブレンフィルター(0.45 μm, 47 mm φ
   MILLIPORE)で濾過した。conc.HCl 1~1.3 mL/L を添加し、pH=2 を確認した。
- ii. 濾過済海水1L(1023g) を2Lビーカーに入れ、P-MAq2g(2.009g)を入れてスタ ーラーで2時間撹拌した(十字マグネット使用)。ホットスターラーが90℃にセットさ れていて加熱してしまった。
- iii. スターラーOFF にしてそのまま一晩静置した。
- iv. ビーカー内の上清をアスピレーターで除去し, 沈殿懸濁液を遠沈管 2 本に移して遠心 分離した。(3000 rpm, 10 min)
- v. 上清を除き、沈殿した P-MAg を 0.05M EDTA 400 mL を用いて 1 L ビーカーに移した。
- vi. 8M NaOH を 5 mL 加え、pH=11 を確認し、スターラーで 1 時間撹拌した。
- vii. 溶解しないので 0.05M EDTA を 100 mL 加え、加熱した。
- viii. 8M NaOH を 1.5 mL 加え、pH=11 を確認し、加熱撹拌した。65℃程度、約 25 分。
- ix. 300mL 遠沈管に移し(278g+231.5g)、遠心分離(3000 rpm,10 min)し、上清をアス ピレーターで吸引除去したのち、沈殿懸濁液をガラス濾紙(GF/A 47mm φ)で吸引濾過 した。
- x. 上清を 1L ビーカーに入れ(液量 507g)、Y キャリア(1mgY/mL) 50 μL と <sup>90</sup>Y トレ ーサー溶液(2,875±48 Bq/g)1mL(2,875±48 Bq)を添加し、撹拌した。
- xi. 20mL 分取 J2B-1c 測定後、戻した。
- xii. Fe キャリア溶液(1 mgFe/mL)を 5 mL 加え、30% H<sub>2</sub>O<sub>2</sub> を 10 mL 加えホットスターラ
   (液温約 60℃) で加熱撹拌した。
- xiii. 無色になったので、30% H<sub>2</sub>O<sub>2</sub>を1 mL 加え、液温約 80℃で約 30 分加熱撹拌した。

- xiv. 8M NaOH を 5 mL 加えた。(沈殿生成せず、紫色に戻った)
- xv. 30% H<sub>2</sub>O<sub>2</sub> を 5 mL 加えホットスターラー(液温約 60℃)で約 1 時間加熱撹拌した。
- xvi. 30% H<sub>2</sub>O<sub>2</sub>を4 mL 加えホットスターラー(液温約 60℃)で約1時間加熱撹拌した。
- xvii. 白濁してきたため撹拌を止め、上清を分取しシリンジフィルターで濾過し測定した。

→上清 J2B-1d 、沈殿(シリンジフィルター) J2B-1e

- xviii. 30% H<sub>2</sub>O<sub>2</sub>を1 mL 加えたら紫色になったため、さらに 30% H<sub>2</sub>O<sub>2</sub>を4 mL 加え、ホッ トスターラー(液温約 60°C)で加熱撹拌した。
- xix. 30% H<sub>2</sub>O<sub>2</sub>を5mL 加え、ホットスターラー(液温約60℃)で約2時間加熱撹拌した。
- xx. 上清を分取しシリンジフィルターで濾過し測定した。

→上清 J2B-1f 、沈殿(シリンジフィルター)J2B-1g、全量 550 g

- xxi. 上清を 300 mL 遠沈管 2 本に入れ遠心分離した(5000 rpm, 20 min)。上清 20 mL を
   チェレンコフ測定後、戻した。→J2B-1h
- xxii. ガラス濾紙(GF/A 47mm φ)で吸引濾過した。上清 2 mL に D.W 8 mL 加えてチェレン
   コフ測定した。→ J2B-1 i, 沈殿(ガラスろ紙) J2B-1j
  - (4) 結果および考察

表 4.7 に <sup>90</sup>Y による Y 回収率の測定結果を示す。海水試料量 1 L でも P-MAq の吸着およ び分離回収は問題なく行うことができた。しかし、EDTA による分解および水酸化物沈殿 生成に関しては、Y の 70%以上が上清に留まり、期待したように Y を回収できなかった。

|      | Samula | 重量      | <sup>90</sup> Y 濃度 | 全重量 | 全量換算 90Y        | Y    |
|------|--------|---------|--------------------|-----|-----------------|------|
|      | Sample | g       | Bq/g               | g   | Bq              | %    |
| 出発試料 | J2B-1c | 19.6866 | $108.8 \pm 1.8$    | 508 | $2,808 \pm 47$  | 100  |
| 上清   | J2B-1d | 10.4989 | $16.9 \pm 0.3$     | 508 | $2,152 \pm 36$  | 81.8 |
| 沈殿   | J2B-1e | -       | $0.35 \pm 0.01$    | 508 | $45 \pm 1$      | 1.7  |
| 上清   | J2B-1f | 9.9148  | $7.8 \pm 0.1$      | 550 | $2,238 \pm 37$  | 97.5 |
| 沈殿   | J2B-1g | -       | $0.166 \pm 0.003$  | 550 | 48 ±1           | 2.1  |
| 上清   | J2B-1h | 19.9017 | $59.6 \pm 1.0$     | 521 | $21,560 \pm 26$ | 68.4 |
| 上清   | J2B-1i | 2.0346  | $6.9 \pm 0.1$      | 521 | $1,761 \pm 1$   | 78.7 |

表 4.7 <sup>90</sup>Y による Y 回収率の測定結果

## 4.4 実海水への応用 (2022年1月実施)

(1) 実験の目的

確立した P-MAq 迅速測定法を海水に応用する。<sup>90</sup>Sr をスパイクした海水(小笠原 海藻研究会)を用いて確認する。

(2) 実験の概要

海水(小笠原海藻研究会)に HCl を添加し, ろ過した後に <sup>90</sup>Sr を加えた試料を調製 した。試料 100 mL に P-MAq を 150 mg 加え, 2 時間撹拌後, 吸引ろ過し, ろ紙に捕集 した P-MAq をろ紙ごとバイアルに入れ乳化シンチレータを加えて LSC 測定した。ろ液 にさらに P-MAq を 50 mg 加え再吸着させ, LSC 測定した。

- (3) 実験操作
  - i. 20L ポリタンクに入っている海水(小笠原海藻研究会)より約1Lをビーカーに
     移した。これに conc.HCl 1mL を入れ、メンブレンフィルター(ミリポア社製, 0.45
     µm, 47 mm φ)を用いて、吸引ろ過した。保管用の1Lポリ容器にいれた。
  - ii. ろ過済の海水 102 mL を三角フラスコに入れ, <sup>90</sup>Sr 原液(9.96 kBq/100 µL at 2022.1.18) 100 µL を加えて撹拌後 2 mL 分取し, 乳化シンチレータ(クリアゾルII)
    18 mL を加え, LSC 測定を行った(J2A-7a: 2.0425 g)。
  - iii. <sup>90</sup>Srをスパイクした海水試料J2A-7に P-MAq 154.2 mgを加え、2時間撹拌した。
  - iv. ガラス繊維ろ紙(GF/A, 47 mm φ)を用いて吸引ろ過を行った(ろ液全量 104.2627 g)。
  - v. ろ液を 2mL 分取し、乳化シンチレータ 18mL 加え、LSC 測定を行った(J2A-7b:
     2.0363 g)。
  - vi. P-MAq を収集したガラス繊維ろ紙をガラスバイアルに入れ、乳化シンチレータ 19
     mL を加え, LSC 測定を行った(J2A-7c)。
  - vii. ろ液を三角フラスコに戻し、P-MAq 50.0 mg を加え 30 分撹拌した。

- viii. ガラス繊維ろ紙(GF/A)で吸引ろ濾過を行った。(ろ液全量:101.0478g)ろ液から
   2 mL 分取し、乳化シンチレータ 18 mL を加え LSC 測定を行った(J2A-7d:2.0380g)。同様にろ液から 20 mL 分取しチェレンコフ測定を行った(J2A-7d':19.2193g)。
- ix. P-MAqを捕集したろ紙をLSCバイアルにいれ、乳化シンチレータ19 mLを加え、
   LSC 測定を行った(J2A-7e)。
- (7) 結果と考察

表 4.4.1 に測定結果を示す。放射能は、<sup>90</sup>Sr と <sup>90</sup>Y の合算値である。1回目のろ 過液中の放射能の投与量に対する割合=収率は、6.46%であり、これが <sup>90</sup>Y だとす ると、<sup>90</sup>Y のうち 87%が P-MAq に吸着したこととなる。また、1回目の P-MAq に は、投与量の 1.18 倍の放射能が検出された。2回目のろ液の収率は 1.88%、P-MAq の収率は 5.26%であった。

|                        | 12 4.4 | 1.1 从为月日(     |          | 1)         |      |            |  |
|------------------------|--------|---------------|----------|------------|------|------------|--|
| Sample                 |        | Sample<br>放射能 | 全体<br>放射 | 全体の<br>放射能 |      | 収率         |  |
|                        |        | (Bq)          | (Be      | (Bq)       |      | %)         |  |
| <sup>90</sup> Sr スパイク後 | J2A-7a | 128 ±2        | 0 6,505  | ±103       | 100  |            |  |
| ろ液                     | J2A-7b | 8 ±0          | 2 420    | ±11        | 6.46 | $\pm 0.20$ |  |
| フィルター                  | J2A-7c | 7,704 ±1      | 16 7,704 | ±116       | 118  | $\pm 2.59$ |  |
| ろ液                     | J2A-7d | $2 \pm 0$     | 1 122    | $\pm 5$    | 1.88 | $\pm 0.09$ |  |
| フィルター                  | J2A-7e | $342 \pm 5$   | 2 342    | $\pm 5$    | 5.26 | ±0.12      |  |

表 4.4.1 放射能測定 (<sup>90</sup>Sr +<sup>90</sup>Y)

## 5 議論

#### 5.1 ピュアセラム MAq への Sr の吸着率について

SrのP-MAqへの吸着率(正確には「収着率」)は、本研究実施期間前に行った実験では、 海水における4時間の撹拌で98%以上であった。しかし、その後の実験では吸着率が低く、 2021年10月には同じ条件で80%程度であった。提供されたP-MAqを製造元の日本化学 工業社に返送して調査してもらったところ当初含まれていなかった「炭酸バリウム」が含 まれており、このことが吸着率の低下につながった可能性が高いとの結果であった。P-MAq は、密閉容器に入れ、デシケータ中で保管していたが、それでも空気中の二酸化炭素と反 応して炭酸バリウムに変化したものと考えられる。その後、2021年12月および2022年1 月にそれぞれ新しいP-MAqの提供を受けた(実質、新しいP-MAqを用いて本格的な実験 を行うことができたのがこの後であり、本研究遂行にあたって大きな障害となった)。日本 化学工業社によると、これまでのP-MAqと新たなロットのP-MAqとは、製造方法、特に 粉砕方法が異なるとのことであった。

P-MAq は製造方法が完成しているものではなく、未だ、試行錯誤の部分もあり、ロット や保管方法により吸着性能に差が出ると考えられる。また、吸着率は P-MAq の粒径によっ ても異なる。粉砕方法、粒度選別法などが影響することが分かっている。

表 5.1 に最近の吸着率を示す。実験は、固液比(固液重量比)1.5:1000 即ち、1,000 mL の海水に対し1.5 g の割合で P-MAq を投入し、2時間撹拌した結果である。この4つの実 験では、吸着率は比較的安定していた。保守的な設定で、吸着率を90%とすれば、安全側 の評価となる。なお、2時間撹拌後、遠心分離で P-MAq と上静を分離し、上静にさらに固 液比 0.5:1000 で P-MAq を加えて 30 分撹拌することにより、合計の吸着率が98%を超え ることを確認している。精密測定の場合、吸着率を上げておくことが望ましいと考える。 また、保管の方法としては、デシケータ中に水酸化ナトリウムなどの二酸化炭素吸収剤を 入れておく方法や使う量ごとに個包装とすることなどを検討している。

38

表 5.1 P-MAq への Sr 吸着率

| 実験番号   | 実験年月    | 試料容量 (mL) | Sr 吸着率(%)      |
|--------|---------|-----------|----------------|
| J2B-2  | 2022年2月 | 1,000     | 94.7±2.3       |
| J2A-1  | 2022年1月 | 80        | 93.6±2.2       |
| A2B-41 | 2022年2月 | 80        | 93.0±1.7       |
| A2A-1  | 2022年1月 | 80        | $92.8 \pm 2.8$ |
|        |         | 平均        | 93.5±2.3       |

#### 5.2 Sr 吸着の条件

P-MAq の組成 (ケイ酸バリウム BaSi<sub>2</sub>O<sub>5</sub>) および本実験の結果から Sr は難溶性の硫酸 塩として P-MAq に吸着していると推測する。純水を用いた実験で SO<sub>4</sub><sup>2</sup>イオンがない状態 では Sr の吸着は 0.1%以下であった。海水には SO<sub>4</sub><sup>2</sup>イオンが 0.28M の濃度で存在する。 また、Sr と同様に難溶性の硫酸塩となる Ba、Ra、Ac、Pb なども P-MAq に 70%以上吸着 することも分かった。日本化学工業社によると試料水中の Sr 存在量を ICP-AES で測定す ることにより固液比 1:1000 で4時間撹拌することにより 97%以上吸着すると報告してい る。この場合、試料は人工海水を用いたとのことで、2月に行った会合で、我々が有してい た小笠原海藻研究会より入手した海水を持ち帰ってもらい、「実海水」での試験を依頼した。 海水および陸水は、0.45 μm のメンブランフィルターで懸濁物を除去した後、プランクト ンなどの繁殖を防ぐため、1 L あたり 1mL の濃塩酸を加えている。イットリウム(Y)や鉄(Fe)

などが水酸化物沈殿を形成しないためにも弱酸性としておくことが必要となる。

海水中には Sr が約 7 mg kg<sup>-1</sup>含まれている。メーカによれば、この量の Sr を吸着させる に必要な P-MAq は、1 g である。我々は、Sr を確実に吸着させる量として、1 L あたり 1.5 g 投入し 2 時間撹拌することにより 90%以上吸着、さらに、遠心分離した上静に 0.5 g 投入 し 30 分間撹拌することにより 98%以上吸着することを推奨する。陸水の場合、含有する Sr の量によるが、1 ppm 以下であれば、海水の半分の量の P-MAg で 1 回の投入で 98%以 上吸着することが分かっている。一旦 P-MAq に吸着(収着)した Sr を脱離しようと様々 な濃度の酸やアルカリを用い、加温などを行ったが、芳しい結果は得られなかった。Sr は P-MAg に非常に安定して吸着している。

#### 5.3 <sup>90</sup>Y ミルキング操作の方法について

海水試料が 1 L 当たり 2 g の P-MAq で 90Sr は 98%以上吸着され、吸着された 90Sr から 放射壊変により生成した 90Y は塩基性で 20 mmol の EDTA を作用させることで、90Sr、90Y ともにほぼ定量的に脱離することができる。しかし、塩酸、硫酸などの酸によっては Sr、 Y は脱離されない。これは、V.A. Avramenko ら (Pacific Science Review, vol. 15, A. No. 3, pp. 40-47, 2013) が指摘しているように、Sr、Y がケイ酸バリウムに吸着されているので はなく、ケイ酸塩と化学結合を形成していることによると考えられる。従って、P-MAq に よる Sr の捕集現象は「吸着(adsorption)」ではなく、「収着(sorption)」とすべきであると 考えられる。また、Ba と EDTA の安定度定数  $\log K$ は 7.76 と大きな値であり、P-MAq の 主要構成成分である Ba が EDTA キレート錯イオン [Ba-EDTA]<sup>-2</sup> として溶解されるとともに、 Sr、Y も同様に、[Sr-EDTA]<sup>-2</sup>、[Y-EDTA]<sup>-</sup> として脱離されたと推測される。 P-MAq の Ba 含有率は 50±1% (放射化分析による測定結果、未発表) であり、2 g 中の Ba は 7.3 mmol となり、化学量論的にも説明できる。

脱離されたYを回収する方法は、NaOHを大過剰に加えることでY(OH)。沈殿を生成し、 遠心分離や吸引ろ過により、Sr との分離を行なうことが最も簡便である。しかし EDTA 存 在下で水酸化物沈殿を生成するためには、NaOHの溶液中濃度を1 mol・L<sup>-1</sup>以上としなけれ ばならない。廃液処理のことを考慮するならば、EDTA を酸化剤で分解し、加える NaOH 量を抑えることが必要である。そのため、30%過酸化水素水 H2O2を用いて EDTA を酸化 分解した。また、Y(III)キャリアとともに Fe(III)キャリアを加え、Y(OH)3の沈殿を Fe(OH)3 の沈殿との共沈により捕集することで、黄色の Fe(OH)3 沈殿生成を目視・観測できる利点 がある。また、 $H_2O_2$ による EDTA 酸化分解時にも  $Fe^{3+}$ イオンの存在で赤紫色に発色し、 $H_2O_2$ の分解も目視・観測できる。

加える鉄キャリアの量は公定法と同様に 5 mg としている。低バックグラウンドガスカウ ンタ LBC により 90Y の  $\beta$ 線を測定する際に、5 mg 程度の鉄キャリアでは自己吸収はほと んど影響しないことが確認されている。Y を脱離させた条件、0.05M EDTA、pH11 から NaOH が加えられ、Y(OH)<sub>3</sub>および Fe(OH)<sub>3</sub>の沈殿が生成されるときに考慮すべきは Y<sup>3+</sup>、 Fe<sup>3+</sup>と EDTA との安定度定数 log K ML、およびそれぞれの溶解度積 K sp である。表 5.3 に Y<sup>3+</sup>、Fe<sup>3+</sup>、Sr<sup>2+</sup>、Ba<sup>2+</sup>の EDTA との安定度定数および溶解度性を示す。EDTA、NaOH の 濃度が高く、モル濃度ではなく活動度  $\alpha$  で取り扱わなければならないなど、定量的に計算 で求めることは困難であり、実験により最適条件を得る必要がある。現時点では水酸化物 イオンの物質量が EDTA の 200 倍必要であることが得られている。過酸化水素による EDTA の分解方法について、過酸化水素水の濃度、反応時間、反応温度などに関して最適の条件 をまだ見いだしていない。

|                         | Y3+                  | Fe <sup>3+</sup>     | $\mathrm{Sr}^{2+}$ | Ba <sup>2+</sup> |
|-------------------------|----------------------|----------------------|--------------------|------------------|
| 安定度定数 $\log K_{\rm ML}$ | 18.09                | 25.1                 | 8.6                | 7.76             |
| 水酸化物の $K_{ m sp}$       | $1.0 	imes 10^{-22}$ | $2.8 	imes 10^{-39}$ | —                  | —                |

表 5.3 EDTA の安定度定数 log K<sub>ML</sub> および溶解度積 K<sub>sp</sub>

加える鉄キャリアを増加させることで Fe(OH)<sub>3</sub> 沈殿は生成しやすくなる。Fe、Y の水酸 化物の混合物から Fe を除去する方法は、陰イオン交換法、溶媒抽出法などがあり、いずれ も操作は簡単である。Y キャリアを 5 mg 以下にすれば、LBC で 90Y の  $\beta$ 線を自己吸収な く計測できる。

また、塩基性条件下で EDTA により P-MAq を溶解した後に、pH を適切にコントロール することで、Y を含まない不溶性ケイ酸塩化合物を生成し、遠心分離などでケイ酸塩化合物 を除去できる可能性がある。このような方法も今後検討されるべきであると考える。

#### 5.4 検出下限濃度

#### 5.4.1 迅速測定

試料水 100 mL に対し P-MAq を 150 mg 投入し、2 時間撹拌の後、P-MAq をメンブラ ンフィルター上に捕集し、乾燥後、熱圧着ポリエチレンフィルムで被覆する。この試料を プラスチックシンチレーターで挟み、低バックグランド液体シンチレーションカウンタで 測定する場合を想定した。迅速測定における検出下限濃度(*MDC*)は、以下の式で計算した。

$$n_{DL} = \frac{2}{t} + \sqrt{\frac{4}{t^2} + 8\frac{n_b}{t}} \tag{1}$$

$$A_{DL} = \frac{n_{DL}}{60 \cdot \varepsilon \cdot Y} \tag{2}$$

$$MDC = A_{DL} \frac{1000}{V} \tag{3}$$

ここで、tは測定時間(分)、 $\epsilon$ は計数効率、Yは Sr の化学収率、 $n_{DL}$ は検出下限計数率(cpm)、 A<sub>DL</sub>は検出下限放射能(Bq)、 $n_b$ はバックグラウンド(BG)計数率(cpm)、Vは試料容積(mL) である。BG計数率 8.1 cpm、化学収率 90%(投入1回)、試料容積 100 mL を入れた。計数 効率に分離直後( $^{90}$ Sr のみ)で 45%、2週間後( $^{90}$ Y 成長後)で 43%( $^{90}$ Sr+ $^{90}$ Y)を代入し、60 分 測定した。<u>MDC は、分離直後で 0.5 Bq·L<sup>-1</sup>、2週間後で 0.14 Bq·L<sup>-1</sup></u>となった。この値は、 <u>分離直後で</u>当初の目標値、即ち、 $^{90}$ Sr で排水中濃度限度(30 Bq·L<sup>-1</sup>)の 10 分の1 の6 0 分の 1 であり、目標値を確実に測定できることが分かった。

#### 5.4.2 精密測定

試料水 10 L に P-MAq を 15 g 投入し、2 時間撹拌、1 日後にデカンテーションで P-MAq を分離し、上静にさらに P-MAq を 5 g 投入し、30 分撹拌する。この2 回の P-MAq への Sr 吸着率は 99%を超える。この P-MAq を合わせ、容積と同量の 0.28M Na<sub>2</sub>SO<sub>4</sub>溶液に浸 して <sup>90</sup>Y の成長を2週間待つ。この P-MAq から Y を溶出させ、水酸化イットリウムとして ろ紙上に捕集する。この操作での Y の回収率を 90%とした。この試料を低バックグラウン ドガスフロー検出器で測定する。測定時間を 10 時間とすると、そ 10 時間での <sup>90</sup>Y の減衰 は、10%であるため、これも考慮に入れる。*MDC*は、上述の式を用い、計算値値から 5% の減衰補正を行う。

BG 計数率 0.1 cpm、化学収率 90%、試料容積 10 L、計数効率 35%を代入すると *MDC* は 0.22 mBq·L<sup>-1</sup>となり、現在の大洋中の <sup>90</sup>Sr 濃度=約 1 mBq·L<sup>-1</sup>を測定できる。

#### 5.5 放射線測定における妨害核種の評価

#### 5.5.1 迅速測定

迅速測定では P-MAq に吸着される難溶性硫酸塩を生じる元素 Ba、Ra、Pb の放射性同 位体が  ${}^{90}$ Sr、 ${}^{89}$ Sr 測定の妨害となる。天然放射性核種  ${}^{226}$ Ra の海洋中濃度は 1~4 mBq·L·1 (参考文献、Radionuclides in the Environment, Editor, D. A. Atwood, pp. 97-108, 2010, John Wiley & Sons Ltd., USA) であり、その子孫核種である  ${}^{210}$ Pb はその値より低くなる。 従ってこれらの核種が影響を与えることはないと考えられる。一方、原子力災害が発生し たときに影響を与える核種としては  ${}^{140}$ Ba が挙げられる。 ${}^{90}$ Sr、 ${}^{89}$ Sr と同じように核分裂収 率が大きく、また、同じアルカリ土類金属元素であり、その化学的挙動は Sr と類似してい る。ただし、 ${}^{140}$ Ba とその子核種である  ${}^{140}$ La はともに $\gamma$ 線放出核種であり、非破壊 $\gamma$ 線ス ペクトル分析により容易に定量でき、その影響を評価することができる。また、 ${}^{140}$ Ba の半 減期は 12.7 日であり 1~2 か月程度でその影響は無視できるようになる。

#### 5.5.2 精密測定

精密測定では分析に供する試料の量が多く、天然レベルの  $^{226}$ Ra、 $^{210}$ Pb が測定に影響を 与える可能性がある。前述したように  $^{226}$ Ra の海水中の濃度は 1~4 mBq·L·1 であり、現在 の  $^{90}$ Sr の濃度 1 mBq·L·1 の 1~4 倍となっている。ただし、 $^{90}$ Y ミルキング法を採用するこ とで  $^{90}$ Sr を分離するときに、同時に  $^{226}$ Ra とも分離され、 $^{90}$ Y の測定に影響を及ぼさない。  $^{210}$ Pb も  $^{90}$ Y ミルキング操作により水酸化物沈殿を生成せず、分離されると考えられる。高

43

濃度の NaOH 水溶液中では両性元素である Pb はテトラヒドロキソ鉛酸イオン[Pb(OH)<sub>4</sub>]<sup>2</sup> となり溶解する。しかしながら、<sup>210</sup>Pb の子核種 <sup>210</sup>Bi は Bi(OH)<sub>3</sub>沈殿を生成し、分離され ない。また <sup>210</sup>Bi の半減期は 5.0 日、 $\beta$ 線の最大エネルギーが 1.16 MeV であり、<sup>90</sup>Y の半 減期 2.7 日、 $\beta$ 線の最大エネルギーが 2.28 MeV の測定に影響を与える可能性があり注意が 必要となる。<sup>210</sup>Bi による妨害が懸念される場合は、鉄キャリアを除く操作で挙げた Cl 型 陰イオン交換樹脂を用いた分離法を用いれば、Bi も Fe と同じように陰イオン交換樹脂に吸 着され、吸着されない Y と分離される。

## 6 課題と今後の展望

#### 6.1 実験手法における課題

迅速測定法においては少量の試料を用いて、短時間で測定結果を得ることを主たる目的 としているために、Srの化学収率が90%程度となっている。この化学収率の値の統計的な 取扱は不十分であり、測定の再現性についてさらなる調査が必要である。Srの化学収率は P-MAqを加える前の試料中の安定 Srの濃度、および2時間の撹拌を行ない P-MAqをろ過 したろ液中の安定 Srの濃度を比較することで得られる。海水では8ppm程度であり、ICP 発光分析法などで定量することができる。本研究では安定 Srの定量分析を行なっていない。

迅速測定法では試料が 0.1 L であり、精密測定法では試料が 10 L 以上となる。日常モニ タリングとして試料が 1 L 程度で検出下限濃度も両者の中間となる測定法の確立を目指す 必要がある。

精密測定法においてはいくつかの課題が存在している。

 pH=11、EDTA 溶液で P-MAq を溶解し Y を脱離させた後に、H<sub>2</sub>O<sub>2</sub> で EDTA を分解す るときの、加える H<sub>2</sub>O<sub>2</sub>の濃度、反応温度、反応時間などに関する最適条件の検討が不 十分である。

- ② Y(OH)3・Fe(OH)3共沈法により沈殿生成させるときの最適な鉄キャリア量および最適 な鉄除去法の検討が不十分である。鉄キャリアの量を増やすことでYの化学収率を上げ ることが期待される。
- ③ Sr、Yを脱離させた EDTA 溶液を酸性にすることで、Yを含まない不溶性ケイ酸化合物の生成条件の検討が不十分である。不溶性ケイ酸化合物を遠心分離などで除去することで塩濃度を低下させることができ、90Yのミルキングを容易にすることができると期待される。
- ④ 塩基性条件下で EDTA により P-MAq を溶解した後に、pH を適切にコントロールする ことで、Y を含まない不溶性ケイ酸塩化合物を生成し、遠心分離などでケイ酸塩化合物 を除去できる可能性がある。このような方法も検討されるべきである。
- ⑤ EDTA を用いない <sup>90</sup>Y ミルキング法の開発が必要である。EDTA を用いると P-MAqの 主要構成成分である Ba が溶出されてしまい、高濃度のケイ酸溶液が生成されてしまう。 これを避けるために Y<sup>3+</sup>との安定度定数が大きく、Ba<sup>2+</sup>、Sr<sup>2+</sup>との安定度定数が小さい 配位子により、Y 錯イオンを生成する試薬の検討が必要である。

#### 6.2 測定における課題

今回、迅速測定法では、我々の開発したプラスチックシンチレーターボトル(Plastic Scintillator Bottle, PSB)を用い、100 mLの試料を測定することのできる日立社製の低バッ クグラウンド液体シンチレーションカウンタでの測定を想定して掲出下限を計算した。一 方、今回、本研究費で購入した低バックグラウンドガスフロー検出器(LBC)や通常の 20 mL のバイアルを用いる液体シンチレーションカウンタなどでの測定も今後の課題とする。低 バックグラウンドガスフロー検出器で P-MAq を測定する場合、乾燥後の P-MAq が飛散し ないように固める必要がある。分析シリーズで用いている「コロジオン」の 20 倍希釈液で 固めることを試したが、乾燥後にひび割れてしまい、飛散を防ぐことはできなかった。市 販の5%コロジオン溶液を用いるか、希釈倍率を低くし、乾燥後も P-MAq がしっかり固ま った状態を保つ条件を探るか、また、異なる試薬を用いる必要がある。そして、その条件 での自己吸収を評価することにより、検出下限を計算することができる。例えば、計数効 率を30%、バックグラウンドを0.2 cpm とした場合、*MDC*は0.12 Bq・L<sup>-1</sup>となり PSB 法 の場合の3.7 分の1になる。通常型の液体シンチレーションカウンタを用いる場合、P-MAq がバイアル下部に落下すると計数効率が変化することが予想される。P-MAq をろ紙上に保 持したまま計測するため、ゲル状の乳化シンチレータで測定する必要がある。また、メン ブランフィルターは、キシレン系有機溶媒の液体シンチレーションカクテルに溶け、茶色 を呈するため使用できない。ガラスろ紙もしくはシリカろ紙を用いる必要がある。この場 合、計数効率は100%に近い。計数効率を99%、バックグラウンドを30 cpm とした場合、 *MDC*は0.4 Bq・L<sup>-1</sup>となり PSB 法の場合とほぼ同等になる。

迅速測定では、日常モニタリングあるいは緊急時モニタリングで、少量の漏洩の早い検 知を目的とし、より低いレベルまで測定する要望もある。試料容量・化学操作法や測定系 を選ぶことにより、迅速測定でも、より低いレベルまで測定できるシステムの構築も可能 である。今後の課題の一つである。

精密測定では、90Y 水酸化物沈殿を低バックグラウンドガスフロー検出器で測定すること が最も低い *MDC* となる。他の測定法では、*MDC* は、より高い値となる。ただ、P-MAq から <sup>90</sup>Sr を抽出することができれば、長時間測定での <sup>90</sup>Y の減衰を考慮することなく、ま た、<sup>90</sup>Y の再成長を待つことができれば、より低濃度まで測定することは可能である。本件 も今後の課題の一つである。

46

## 7. まとめ

#### 7.1. 本研究において確立した迅速測定法

本研究で確立した迅速測定法の実験操作は以下のとおりである。

- i. 海水 (ろ過済・conc.HCl 1mL/L 添加) 100 mL に P-MAq 150 mg 入れ 2 時間撹拌する。
- ii. 吸引ろ過し、沈殿を①ガラスろ紙(シリカろ紙)あるいは②メンブレンフィルター上 に回収する。
- iii. 回収した沈殿からの<sup>90</sup>Sr によるベータ線を測定する
- iv. 沈殿をろ紙ごとガラスバイアルに入れ、液体シンチレーションカクテル\*20 mL を加え て液体シンチレーションカウンタで測定する。
- v. メンブレンフィルター上の沈殿を乾燥後、ポリエチレンフィルムで圧着し、プラスチ ックシンチレータを用いて液体シンシンチレーションカウンタで測定する。

迅速測定法における留意事項

- 沈殿を直接液体シンチレーションカウンタで測定する場合、バイアル内に均一に分散 させるため、ゲル状の乳化シンチレータ(例えば、エコシンチ GL, National Diagnotics) で測定することが望ましい。通常のシンチレーションカクテルの場合、混合直後の沈 殿が分散している場合と時間をおいて沈殿が沈降した後では、値が異なるため注意が 必要である。
- 沈殿をろ紙ごとガラスバイアルに入れて測定する場合、メンブレンフィルターは、キシレン系有機溶媒のカクテルに溶けて茶色を呈し、測定不能になる。ガラスろ紙あるいはシリカろ紙を使う必要がある。

#### 7.2. 本研究において提案する精密測定法

精密測定法については、前述のようにいくつか課題が存在するため、さらに検討し最適化 の条件を定める必要がある。現時点で提案できる実験操作は以下のとおりである。

- i. 海水 (ろ過済・conc.HCl 1mL/L 添加) 10 L に P-MAq を 15 g 入れ、2 時間撹拌する。
- ii. 撹拌停止後、一晩静置し、デカンテーションで上清と P-MAq を分離する。
- iii. 上清に P-MAq を 5g 入れ、30 分撹拌する。
- iv. 2回の P-MAq を合わせ、等容の 0.28M Na<sub>2</sub>SO<sub>4</sub>溶液に浸して約 2 週間置き、<sup>90</sup>Y の成 長を待つ。
- v. デカンテーションで上清を除き、P-MAq に EDTA および NaOH を加え、加熱撹拌し て溶解する。
- vi. この溶液に Y キャリアおよび Fe キャリアを加えた後、EDTA を分解するために H<sub>2</sub>O<sub>2</sub> を加え、80℃で約1時間加熱する。
- vii. 冷ました後、NaOH で pH 11 とし、 H2O2 を入れて 80℃で約 1 時間加熱する。
- viii. 生成した水酸化物沈殿を遠心分離で回収する。
- ix. 沈殿を 6M HCl 少量で溶解し、遠心分離で不溶残渣を除き、上清を回収する。
- x. 上清に NH4Cl およびアンモニア水を加え水酸化物沈殿を生成し、50℃に加熱して沈殿 を熟成させる。
- xi. 上清を除き、吸引濾過で沈殿を捕集する。
- xii. 乾燥後、コロジオン溶液を滴下し、LBC で測定する。

#### 7.3. Sr 分析法まとめ

Srの迅速測定法を確立し、海水に応用した。海水試料 100 mL と Sr 吸着剤 150 mg を混合し2時間撹拌するという条件で、Sr 回収率は 90%以上であった。実験操作にかかる時間は約3時間で、分離直後に測定した場合 0.5 Bq・L<sup>-1</sup>、2週間後の測定で 0.14 Bq・L<sup>-1</sup>の検出 下限値が達成された。この方法は、排水濃度の測定や、原子力災害等事故時の緊急モニタリングに利用できる。

平常時モニタリングレベルの精密測定法については、 克服すべき課題が生じ開発が遅れ たが、実用化への目途がついた。海水試料 10 L と Sr 吸着剤 15 g を混合し 2 時間撹拌後、 さらに Sr 吸着剤 5 g を加えて 30 分撹拌し、2 週間以上経過した後に <sup>90</sup>Y を回収して測定す るという実験操作で、0.22 mBq·L<sup>-1</sup>の検出下限値が達成できると考えられる。

#### 参考文献

- a) 文部科学省、放射能測定法シリーズ2 放射性ストロンチウム分析法 (2003)
- b) 箕輪はるか、緒方良至、小島貞男、加藤結花、ケイ酸バリウムを主成分とする 吸着剤の海水・陸水における Sr の吸着特性, Proceedings of the 21st Workshop on Environ-mental Radioactivity、KEK Proceedings 2020-4、176-179 (2020)
- c) 小島貞男、緒方良至、箕輪はるか、加藤結花、ケイ酸バリウムを主成分とする 吸着剤へのRaおよび放射性Pbの吸着特性, Proceedings of the 21st Workshop on Environ-mental Radioactivity、KEK Proceedings 2020-4、186-191 (2020)
- d) 加藤結花、箕輪はるか、緒方良至、プラスチックシンチレータボトルを用いた 放射性ストロンチウムの測定法の開発、Proceedings of the 19th Workshop on Environ-mental Radioactivity、KEK Proceedings 2018-7、85-90 (2018)
- e) 緒方良至、加藤結花、箕輪はるか、小島貞男、プラスチックシンチレータボト ルを用いた海水中の放射性ストロンチウム測定法、Proceedings of the 33th Workshop on Radiation Detectors and Their Uses、KEK Proceedings 2019-4、 33-41 (2019)
- f) Avramenko, V. A. et.al. Sorption Recovery of Strontiiom from Seawater. Radiochemistry 43, 433-436 (2001)
- g) Avramenko, V. A. et.al. Management of Liquid Radioactive Wastes Containing Seawater. Pacific Science Review 15, 40-47 (2013)
- h) Aoyama, M., HAMGlobal2021: Historical Artificial radioactivity database in Marine environment, Global integrated version 2021, http://www.ied.tsukuba.ac.jp/database/00085.html
- i) 出水丈志、佐久間貴志、小松誠、(荏原製作所)特開 2020-60385, 2020/4/16 公
   開、放射性ストロンチウム 90 の迅速分析方法
- j) 木ノ瀬豊、宮部慎介、小指健太、山岡かおり(日本化学工業)特許第5890568
   号 2016/2/26 登録、吸着剤及びその製造方法
- k) 木ノ瀬豊、宮部慎介、小指健太、山岡かおり(日本化学工業)特許第6526511
   号 2019/5/17 登録、吸着剤及びその製造方法

## 研究体制

研究代表者

|     | 東京慈恵会医科大学 | アイソトープ実験研究施設 | 准教授  | 箕輪はるか  |
|-----|-----------|--------------|------|--------|
| 分担研 | 究者        |              |      |        |
|     | 愛知医科大学    |              | 名誉教授 | • 小島貞男 |
|     | 筑波大学      |              | 客員教授 | • 青山道夫 |
| 研究協 | 力者        |              |      |        |
|     | 愛知医科大学    |              | 緒方良至 |        |
|     | 日立製作所     |              | 加藤結花 |        |
|     | 日本化学工業    |              | 宮部慎介 |        |
|     | 荏原製作所     |              | 佐久間貴 | 志      |

#### 付録

付録1. AnaLig-Sr を用いた 90Y 溶液の作成

AnaLig®-Sr は、ジーエルサイエンス社が製造する固相抽出剤を用い、IBC Advanced Technologies 社が販売する Sr 固相抽出用カラム<sup>\*</sup>である。このカラムを用いることにより、簡便に  $^{90}$ Y 溶液を得ることができる。この固相抽出剤には、Sr のみ吸着する。このため、 $^{90}$ Y と放射平衡に ある  $^{90}$ Sr 溶液をロードすると $^{90}$ Y のみカラムを通過する。また、 $^{90}$ Y が成長する 2~3 週間後に再び  $^{90}$ Y 溶液を得ることができる。

・初回の<sup>90</sup>Srロードと<sup>90</sup>Y 溶液取得

- Y キャリアー(1 mg/mL 程度)を含む 0.1M HCl 溶液をカ ラム容量の3倍程度=6mL 程度通液する(カラムが乾 燥し、通液できない場合、カラムの下に三方活栓をつな ぎ、別のシリンジで吸引することにより通液できる)。
- 2)<sup>90</sup>Sr 溶液を適量カラムにロードする。
- 3) Y キャリアーを含む 0.1M HCl 溶液を適量ロードする。 自然落下に任せて液を集める。およそ15分かかる。 この操作で、カラム通過液として <sup>90</sup>Y 溶液を得ることができ

る。

- ・2回目以降の<sup>90</sup>Y 溶液取得
  - 1)<sup>90</sup>Srを吸着した Analig カラムカラムの上から、Y キャリア ーを含む 0.1M HCl 溶液を注ぐ。
  - 2) カラムの通過液を回収する(カラムが乾燥し、通液できない場合、カラムの下に三方活栓をつなぎ、別のシリンジで吸引することにより通液できる)。自然落下に任せて液を集める。およそ15分かかる。



図 付録-1 AnaLig®-Srカ ラムからの 90Y 溶液取得

付録2.90Y溶液を用いた計測器の計数効率の確認

<sup>90</sup>Yは、β線最大エネルギーが高い(2.28 MeV)ため液体シンチレーション計測での計数効率は 98%前後となる。また、効率トレーサ(ETM)法が利用できる液体シンチレーションカウンタの場合、 校正された<sup>14</sup>C標準バイアルがあればそれを用いてサンプルの放射能を決定できる。この方法で、 上記の操作で得られた<sup>90</sup>Y溶液の放射能濃度を求める。次に、同じ溶液で液体シンチレーション カウンタを用いてチェレンコフ法で測定し、この液体シンチレーションカウンタでのチェレンコフ法に よる<sup>90</sup>Yの計数効率を求める。本実験では、東京慈恵会医科大学のアイソトープ実験研究施設の 液体シンチレーションカウンタ(LSC-6100、アロカ社)の<sup>90</sup>Yの計数効率は、あまり計数効率の体積 依存性がなく、60±0.6%であった。また、愛知医科大学核医学センターの液体シンチレーションカ ウンタ(LSC-6100、アロカ社)の<sup>90</sup>Yの計数効率も、あまり計数効率の体積依存性がなく、63±0.6% であった。

さらに、本研究費で購入した低バックグラウンドガスフロー検出器(LBC4601、日立製作所)の計 数効率を求めた。公定法でのサンプルと同様に鉄共沈 Y 沈殿を 5C ろ紙に集め、試料皿に糊付け し、その上に上記の<sup>90</sup>Y を滴下し乾燥の後、20 倍希釈のコロジオン溶液を滴下、乾燥しサンプ ルとした。また、鉄共沈 Y 沈殿作成段階、ろ紙に集める前に<sup>90</sup>Y を加え、鉄共沈 Y 沈殿を 5C ろ紙に集め、上記と同様の方法で測定試料を作製した。この実験で、<sup>90</sup>Y の LBC での計数効率は、 35.0±0.4%となった。上記の2つの方法で、計数効率に差はなかった。

#### 備考

\*参考 URL: https://www.gls.co.jp/brochure/individual\_catalogues/MetaSEPAnaLig.pdf ジーエルサイエンス社は、現在、固相抽出剤の AnaLig-Sr の販売を終了している。

付録3. <sup>90</sup>Sr のチェレンコフ測定の計数効率(2021年12月実施)

以下の方法で<sup>90</sup>Srのチェレンコフ測定の計数効率を実験的に確認した。

- <sup>90</sup>Sr-<sup>90</sup>Yの放射平衡にある溶液に安定Yキャリアを加え、pH=10~11とし、Yの水酸化物 沈殿を形成した。この試料をろ過して<sup>90</sup>Yを除去した。この操作を2回行った。
- 2) <sup>90</sup>Y を除去した試料の一部を、除去直後に通常の液体シンチレーション計測(LSC)法で <sup>90</sup>Sr の放射能を評価すると同時に他の一部をチェレンコフ測定した。
- LSC 法で確認した<sup>90</sup>Sr の放射能濃度は 696±12 Bq g<sup>-1</sup>であった。他方、同じ溶液 100 μL(98.2 mg)をチェレンコフ法で測定した結果、正味計数率で 35±8 cpm であった。

この実験の結果、<sup>90</sup>Srのチェレンコフ測定の計数効率は、0.9±0.2%であることが分かった。チェレンコフ測定の結果は、ほぼ<sup>90</sup>Yの放射能を示していることを実証した。

付録4. 学会発表要旨

- a) 小島貞男、緒方良至、加藤結花、高宮幸一、箕輪はるか「ケイ酸バリウム(BaSi<sub>2</sub>O<sub>5</sub>を 主成分とする Sr 吸着剤への Ba の吸着特性」日本放射化学会第 65 回討論会(2021 年 9月 23 日・オンライン開催)
- b) 緒方良至、小島貞男、箕輪はるか、加藤結花「ケイ酸バリウムを主成分とする Sr 吸着 剤を用いた <sup>90</sup>Sr の測定-子核種 <sup>90</sup>Y のチェレンコフ測定」日本放射化学会第 65 回討論 会(2021年9月 23日・オンライン開催)

日本放射化学会第65回討論会 発表要旨(2021年9月23日・オンライン開催)



日本放射化学会第65回討論会 発表要旨(2021年9月23日・オンライン開催)

ケイ酸バリウムを主成分とする Sr 吸着剤を用いた<sup>90</sup>Sr の測定 2K08 -子核種<sup>90</sup>Yのチェレンコフ測定-(大阪産業大1、愛知医大医2、慈恵医大アイソトープ3、日立製作所4) ○緒方良至<sup>1,2</sup>、小島貞男<sup>2</sup>、箕輪はるか<sup>3</sup>、加藤結花<sup>4</sup> 【緒言】ケイ酸バリウム(BaSi<sub>2</sub>O<sub>5</sub>)を主成分とする Sr 吸着剤(商品名:ピュアセラム MAq®、日本化学工業・荏原製作所)は選択的に Sr を吸着する性質を有しており、我々 はその性質を利用した水溶液(海水、陸水)中の 90Sr の分離・定量法の開発を行なっ てきた。本吸着剤 100 mg で 1 mg 程度の Sr を吸着する能力がある。測定条件にもよる が、測定試料が100mgを超えると、吸着剤中でのβ線の自己吸収の影響で定量的な測 定が困難となる。そこで、<sup>90</sup>Y と平衡状態にある <sup>90</sup>Sr 水溶液に本吸着剤を加え <sup>90</sup>Sr を 吸着させ、水溶液中に分離した<sup>90</sup>Yを測定することを試みた。今回は、<sup>90</sup>Yをチェレン コフ法で測定した場合の計数効率、バックグラウンド、検出下限放射能を報告する。 【実験】硫酸イオン濃度 0.02 M の水溶液 40 mL に~20 Bq の 90 Sr(同量の 90 Y を含む)およ び 80,100,140mgの Sr 吸着剤を加え2時間撹拌し、Sr を吸着剤に吸着させた。吸引ろ 過により Sr 吸着剤をメンブランフィルタ(孔径 40μm)上に捕集し、ろ液中に 90Y を分離 した。ろ液の一部を液体シンチレーションカクテルと混合し、汎用の液体シンチレー ションカウンタ(LSC-7400、日立製作所)で測定し放射能濃度を評価した。ろ液の残 りを 20mL のプラスチックバイアルに入れ、LSC-7400 と低バックグラウンド液体シン チレーションカウンタ(LSC-LB7、日立製作所)を用いチェレンコフ測定モードで測 定した。 【結果と考察】<sup>90</sup>Yのチェレンコフ測定の計数効率は、LSC-7400で 61±2%、LSC-LB7 で 59±2%とほぼ同じ値であった。これは、過去の文献値とも一致した。以下の式で検出 下限濃度(MDC)を求めた。  $n_{DL} = \frac{2}{t} + \sqrt{\frac{4}{t^2} + 8\frac{n_b}{t}}$ (1) $A_{DL} = \frac{n_{DL}}{60 \cdot \varepsilon \cdot Y}$ (2) $MDC = A_{DL} \frac{1000}{V}$ (3) ここで、t は測定時間(分)、E は計数効率、Y は化学収率、npL は検出下限計数率(cpm)、nb はバックグラウンド計数率(BG、cpm)、ADLは、検出下限放射能、Vはサンプル容量(cm<sup>3</sup>) である。BGは、LSC-7400およびLSC-LB7で、それぞれ8.82 cpm、3.30 cpmであった。化 学収率を 90%、試料容量(初期容量)を 10 L、測定時間を 240 分とすると、MDC は、LSC-7400 および LSC-LB7 で、それぞれ 1.7 mBq L<sup>-1</sup>、1 mBq L<sup>-1</sup>でと評価された。この値から、<sup>90</sup>Sr の濃度を推定することができる。劇物を使用することなく、極めて簡単な操作で<sup>90</sup>Srの測 定ができることが分かった。本吸着剤は、日本化学工業・荏原製作所から提供を受けた。

Estimation of <sup>90</sup>Sr activity with bariumsilicate-based adsorbent - application of Cerenkov measurement of progeny nuclide, <sup>90</sup>Y-OGATA Y., KOJIMA S., MINOWA H., KATO Y.

感謝の意を表する。