

基準地震動に対する標準応答スペクトルの影響検討 (コメント回答資料)

令和4年2月18日 国立研究開発法人日本原子力研究開発機構

1.	会合におけるコメント	••••••	2
2.	検討概要	••••••	З
3.	標準応答スペクトルを考慮した地震動評価	••••••	4
4.	まとめ	••••••	22
5.	参考文献		23

補足資料

1.	標準応答スペクトルに対する模擬地震波の応答スペクトル比	•••••	24
2.	地盤構造モデルの設定根拠(審査資料抜粋)	•••••	26
3.	基準地震動Ss-Dとの比較(加速度応答スペクトル)	•••••	50

No.	審査会合	コメント	回答概要	項
1	令和3年9月3日 第6回標準応 の規れへの取 り入置等のの 申 に係る会合	地震基盤相当面をVs=2,000m/sとして実施した 地震動評価は、規則の解釈のVs=2,200m/s以上と は異なっており見直すこと。その際、「参考資料で示 した再設定した地盤構造モデル(地震基盤相当面 Vs=2,200m/s)による評価」とするのか、「既許可の 地盤構造モデル(地震基盤相当面Vs=2,500m/s) による評価」とするのか整理検討が必要。なお、 「再設定した地盤構造モデルによる評価」とする場 合、その位置付けや理由を明確にし、再設定したモ デルの妥当性、根拠や記載の充実化、既許可の基 準地震動(統計的グリーン関数法による地震動評 価)への影響についても考慮する必要がある。	原子力科学研究所(JRR-3)は、既許可のSsに包 絡されることを確認するため、評価は既許可の内容 (地盤構造モデル)に基づき実施する。地震基盤相 当面の設定についても、G.L0.997km位置(Vs= 2,500m/s)として地震動評価を実施し、標準応答ス ペクトルを考慮した地震動が既許可のSsに包絡さ れることを確認した。	4~12
2	"	模擬地震波の作成や地盤の伝播特性について、 ばらつきや差異があることが否定できないため、乱 数位相の他に実位相を考慮し、複数の模擬地震波 を作成して応答スペクトルへの影響を確認すること。 例えば、敷地内の観測記録の活用等考慮の上、検 討すること。	模擬地震波の作成について、「乱数位相による検 討」に加えて「実位相による検討」を実施した。 「実位相による検討」にあたっては、敷地地盤の振 動特性に起因する位相特性を考慮をするため、敷 地近傍で発生した地震により得られた敷地観測記 録を用い模擬地震波を作成し、地震動評価を実施 した。 評価の結果、標準応答スペクトルを考慮した地震 動が既許可のSsに包絡されることを確認した。	13~21

- 試験研究の用に供する原子炉等の位置、構造及び設備の基準に関する規則の解釈の一部改正により、 震源を特定せず策定する地震動のうち全国共通に考慮すべき地震動の策定に当たっては、「震源近傍 の多数の地震動記録に基づいて策定した地震基盤相当面における標準的な応答スペクトル」(以下「標 準応答スペクトル」という。)を用いることが新たに規定された。
- 本資料では、標準応答スペクトルを考慮した地震動を設定し、標準応答スペクトルを考慮した地震動が、
 平成30年11月7日付けで設置変更許可(以下「既許可」という。)を受けた原子力科学研究所のJRR-3原
 子炉施設(以下「JRR-3」という。)の基準地震動に包絡されることを確認したことから、本件の改正に係る
 基準地震動の変更が不要であることを説明する。

3. 標準応答スペクトルを考慮した地震動評価 標準応答スペクトル

・新たに制定された標準応答スペクトルを考慮した地震動と基準地震動Ss-Dの比較を行う。

■標準応答スペクトルの概要

震源近傍の多数の地震動記録に基づいて策定した地震基盤 相当面(地震基盤からの地盤増幅率が小さく地震動としては地 震基盤面と同等とみなすことができる地盤の解放面で、せん断 波速度Vs=2,200m/s以上の地層をいう。)における標準応答 スペクトルとして次の図に示すものとする。

図 地震基盤相当面における標準応答スペクトル ※2021年4月21日原子力規制委員会資料より抜粋

基準地震動Ssを策定して いる解放基盤表面の せん断波速度Vs	検討方針
710m/s	 標準応答スペクトルに対し、地震基盤相当面から解放基盤表面までの伝播特性を解放基盤表面の応答スペクトルに反映させるとともに、設定された応答スペクトルと基準地震動Ss-Dとを比較し影響を確認する。 地震基盤相当面については、既許可の地盤構造モデルのG.L0.997km位置(Vs=2,500m/s)に設定し、解放基盤表面の地震動を評価する。

2. 標準応答スペクトルの影響検討 基準地震動Ssの応答スペクトル

- ・既許可の基準地震動Ss^{※1}の応答スペクトルを示す。
- ・標準応答スペクトルの影響検討結果については、既許可における基準地震動Ss-Dとの比較を実施。

 Ss-D
 応答スペクトル手法による基準地震動

 Ss-1
 F1断層~北方陸域の断層~塩ノ平地震断層による地震(短周期レベルの不確かさ,破壊開始点2)

 Ss-2
 F1断層~北方陸域の断層~塩ノ平地震断層による地震(断層傾斜角の不確かさ,破壊開始点2)

 Ss-3
 F1断層~北方陸域の断層~塩ノ平地震断層による地震(断層傾斜角の不確かさ,破壊開始点3)

 Ss-4
 2011年東北地方太平洋沖型地震(SMGA位置と短周期レベルの不確かさの重畳)

NS成分

·+

速度応答スペクトル(cm/s)

EW成分

※1 平成30年11月7日付けで設置変更許可を受 けた基準地震動

2.標準応答スペクトルの影響検討 基準地震動Ss(最大加速度値)

・既許可の基準地震動Ss^{※1}の最大加速度の一覧を示す。

	其准地雲動	最大加速度 ^{※2} (cm/s ²)					
	举于地 辰到	NS成分	EW成分	UD成分			
		8,	20	650			
Ss-D	応答スペクトル手法による基準地震動						
		919	897	555			
Ss−1	F1断層~北方陸域の断層~塩ノ平地震断層による地震 (短周期レベルの不確かさ、破壊開始点2)	1000 500 0	1000 V 897 500 ·	1000 500 - • • • • • • • • • • • • • • • • • •			
		-500 	500 1000 0 50 100 150 200	500 1000 0 50 100 150 200			
		613	578	483			
Ss-2	F1断層~北方陸域の断層~塩ノ平地震断層による地震 (断層傾斜角の不確かさ,破壊開始点2)	1000 Vol3 500 P	1000 \$\vee\$178 500 \$\vee\$1	1000 V 483 500 b			
		-300 -1000 0 50 100 150 200	-500 -1000 0 50 100 150 200				
		478	582	464			
Ss-3	F1断層~北方陸域の断層~塩ノ平地震断層による地震	1000 500 0	1000 V 552 500	1000 ▼454 500 Q			
		952	911	570			
Ss−4	2011年東北地方太平洋沖型地震 (SMGA位置と短周期レベルの不確かさの重畳)	1000 V42 500 - Ulation - U		1000 ▼570 500			

※1 平成30年11月7日付けで設置変更許可を受けた基準地震動

※2 表中のグラフは各基準地震動Ssの加速度時刻歴波形(縦軸:加速度[cm/s²], 横軸:時間[s])

2. 標準応答スペクトルの影響検討 標準応答スペクトルを考慮した地震動の検討

第6回審査会合(2021.9.3) 資料2 再掲

- 試験研究の用に供する原子炉等の位置、構造及び設備の基準に関する規則の解釈の一部改正を踏まえ、JRR-3において、標準応答スペクトルを考慮した地震動評価を実施する。
- 標準応答スペクトルを考慮した地震動評価を以下の流れで実施する。

標準応答スペクトルを考慮した地震動の 評価のイメージ

3. 標準応答スペクトルを考慮した地震動評価 地盤構造モデルの設定

第6回審査会合(2021.9.3) 資料2 修正

- ・標準応答スペクトルが、Vs=2,200m/s以上の地層で設定された応答スペクトルであることから、既許可の 地盤構造モデルのG.L.-0.997km位置(Vs=2,500m/s)を地震基盤相当面に設定する。
- ・設定した地震基盤相当面に模擬地震波を入力し、地震応答解析により、解放基盤表面における標準応 答スペクトルを考慮した地震動を評価する。

				at the second	水平成分			鉛直成分			
	層番号	層番号	上面 G.L. (km)	僧厚 (km)	省度 (α/cm^3)	S波速度	減衰	減衰定数		減衰定数	
		(KIII)	(KIII)	(g/cm/)	(km/s)	Qs	hs	(km/s)	Qp	hp	
▼解放基盤表面	1	0.000	0.360	-	_	—	—	_	—		
	2	-0.360	0.287	1.86	0.710			2.040			
	3	-0.647	0.327	2.11	1.200			2.610			
	4	-0.974	0.009	2.24	1.500	100	0.005	3.100	100	0.005	
▼地震基盤相当面	5	-0.983	0.014	2.42	2.000			3.950			
	6	-0.997	0.013	2.57	2.500			4.800			
	7	-1.010	3.790	2.66	2.900			5.490			
	8	-4.800	12.640	2.70	3.600	110 0.69	0.0045 6-0.69	5.960	110 0.69	0.0045 5-0.69	
	9	-17.440	14.560	2.80	4.170	110×1	0.0043×1	6.810	110×1	0.0043×1	
	10	-32.000	8	3.20	4.320			7.640			

地盤構造モデル※

※平成30年11月7日付けで設置変更許可を受けた地盤構造モデル

3. 標準応答スペクトルを考慮した地震動評価 地震基盤相当面における標準応答スペクトルに基づく模擬地震波の作成

第6回審査会合(2021.9.3) 資料2 修正

 ・模擬地震波※は、乱数の位相を持つ正弦波の重ね合わせによって作成するものとし、振幅包絡線の経時的変化については、Noda et al. (2002)¹⁾の方法に基づき、下記に示す形状とする。

	目標最大	継続時間	振幅包絡線の経時的変化(s)			
模擬地震 波	加速度 (cm/s ²)	(s)	t _B	t _c	t _D	
水平成分	600	28.0	3.3	15.0	28.0	
鉛直成分	400	28.0	3.3	15.0	28.0	

マグニチュード:M=6.9、等価震源距離:Xeq=10km

鉛直成分

※模擬地震波を見直し、標準応答スペクトルに対する適合度を向上させている。(補足資料1.参照)。

3. 標準応答スペクトルを考慮した地震動評価 地震基盤相当面における標準応答スペクトルに基づく模擬地震波の作成

- 作成した模擬地震波が、日本電気協会(2015)²⁾に示される以下の適合度の条件を満足していることを確認する。
- 目標とする応答スペクトル値に対する模擬地震波の応答スペクトル値の比(応答スペクトル比)が全周 期帯で0.85以上、応答スペクトル強さの比(SI比)が1.0以上。

*S*_{v2}(*T*):目標とする応答スペクトル値 *T*:固有周期(s)

作成した模擬地震波は、日本電気協会(2015)²⁾に示される適合度の条件を満足していることを 確認した。

3.標準応答スペクトルを考慮した地震動評価 解放基盤表面における地震動の算出

- 第6回審査会合(2021.9.3) 資料2 修正
- ・作成した模擬地震波を地震基盤相当面に入力し、解放基盤表面における標準応答スペクトルを考慮した
 ・地震動を評価する。
- ・解放基盤表面における標準応答スペクトルを考慮した地震動の加速度波形を下記に示す。

時間(s)

鉛直成分

解放基盤表面における標準応答スペクトルを考慮した地震動 加速度波形

Ss-D 応答スペクトル手法による基準地震動

 ・解放基盤表面における標準応答スペクトルを考慮した地震動と基準地震動Ss-Dを比較する。

標準応答スペクトルを考慮した地震動は、全周期帯で基準地震動Ss-Dに包絡される。

3. 標準応答スペクトルを考慮した地震動評価 実位相による検討(検討概要)

【検討目的】

・地震基盤相当面から解放基盤表面において、地震波の伝播特性には、ばらつきや差異があることが否定できないため、「乱数位相による検討」^{※1}の他に「実位相による検討」^{※2}を実施し、基準地震動Ss-Dとの比較を行う。

【検討方法】

- ・地震観測記録の位相特性には敷地地盤の振動特性に起因する特徴が反映されており、「基準地震動 及び耐震設計方針に係る審査ガイド」を踏まえ、地震基盤相当面における地震動の位相特性を用いて、 解放基盤表面における標準応答スペクトルを考慮した地震動を評価する。
- ・地震観測記録の位相特性については、浅部+深部地盤構造モデルを用いて、敷地の解放基盤表面位置の地震観測記録を地震基盤相当面に引戻した地震観測記録(地震応答解析結果)の位相特性を用いる。

JRR-3 地震観測位置

解放基盤表面位置から地震基盤相当面までの 引戻しのイメージ

※1:「乱数位相による検討」:乱数の位相を持つ正弦波の重ね合わせにより模擬地震波を作成し地震動評価。 ※2:「実位相による検討」:地震基盤相当面における地震動の位相特性を用いて模擬地震波を作成し地震動評価。

実位相による検討(地震観測記録の選定)

- ・標準応答スペクトルの作成にあたっては、震源近傍のMw5.0~6.6の内陸地殻内地震を対象と されている。
- ・敷地周辺で発生したMw5.0~6.6の内陸地殻内地震は、茨城県北部(震央距離が約30km)となる。
- 実位相による検討においては、敷地地盤の振動特性に起因する特徴を適切に反映させることが必要と考え、内陸地殻内地震のうち、敷地に最も近い位置で発生した観測記録(2011年7月 16日(M3.5,震源距離14km))とし、この地震観測記録の位相特性を模擬地震波に反映させる。

▶ 実位相による検討(解放基盤表面位置における地震観測記録)

 ・解放基盤表面位置(G.L.-0.360km)における地震観測記録(2011年7月16日(M3.5))の加速度波形を以下に示す。

時間(s)

鉛直成分

解放基盤表面位置における地震観測記録(2011年7月16日(M3.5)) 加速度波形

▶ 実位相による検討(浅部+深部地盤構造モデル)

 浅部+深部地盤構造モデルを用いて、解放基盤表面位置の地震観測記録を地震基盤相当面(G.L.-0.997km)に引戻し、地震基盤相当面における地震動を算出する。

上面GI	屋亘	密度	水平	乙成分	鉛直	〔 成分		
上面 O.L. (km)	/音/子 (km)	(α/cm^3)	S波速度	減衰定数	P波速度	減衰定数		
(MII)	(MII)	(g/cm)	(km/s)	194.32 12 32	(km/s)	19432 12 30		
0.000	0.001	1.97	0.192	1.052	0.504	0.521		
-0.001	0.005	1.97	0.199	$0.732 \times f^{-1.053}$	0.470	$0.546 \times f^{-0.531}$		
-0.006	0.003	1.92	0.333		1.196			,
-0.009	0.003	1.77	0.487		1.650			
-0.012	0.001	1.82	0.559	0.286×f ^{-1.478}	1.603	0.987×f ^{-1.081}		地震観測記録の波形
-0.013	0.017	1.82	0.483	0.200.1	1.764	0.007.1		(解放基盤表面位置)
-0.030	0.070	1.73	0.494		1.967			
-0.100	0.110	1.73	0.542	0.0.51 0-1.506	1.825	0,400, 0,-1,788		
-0.210	0.070	1.75	0.619	0.061×f 1.500	1.797	0.408×f	解放其般表面位置	
-0.280	0.080	1.78	0.760		2.119		开放全面衣面在直	
-0.360	0.287	1.86	0.710	-	2.040		Vs=710m/s, Vp=2,040m/s	8\$fB(x)
-0.647	0.327	2.11	1.200	0.005	2.610	0.005		
-0.974	0.009	2.24	1.500	0.005	3.100	0.005	'	3
-0.983	0.014	2.42	2.000		3.950		地辰至金伯当回	
-0.997	0.013	2.57	2.500		4.800		Vs=2,500m/s, Vp=4,800m/s	
-1.010	3.790	2.66	2.900	4	5.490			約11(2)
-4.800	12.640	2.70	3.600	$0.0045 \times f^{-0.69}$	5.960	0.0045×f ^{-0.69}		引戻し波
-1/.440	14.560	2.80	4.170	4	6.810			(地震其盤相当面)
-32.000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.20	4.320		7.640			(吃皮垄鱼怕当鱼)

※1 平成30年11月7日付けで設置変更許可を受けた地盤構造モデル

(添付書類6(その8)第5.5-2表 敷地の地盤構造モデル(浅部)~第5.5-3表 敷地の地盤構造モデル(深部)を用いて作成)

実位相による検討(地震基盤相当面における地震観測記録)

・ 地震基盤相当面における地震観測記録(2011年7月16日(M3.5))の加速度波形を以下に示す。

地震基盤相当面における地震観測記録(2011年7月16日(M3.5)) 加速度波形

🥙 実位相による検討(模擬地震波の作成結果)

- •模擬地震波は、地震基盤相当面における地震観測記録(2011年7月16日(M3.5))の位相特性を用いて 作成した。
- ・模擬地震波の加速度波形を以下に示す。

地震基盤相当面における標準応答スペクトルに適合する模擬地震波(実位相による検討) 加速度波形

実位相による検討(模擬地震波の作成結果)

- 作成した模擬地震波が、日本電気協会(2015)²⁾に示される以下の適合度の条件を満足していることを確認する。
- 目標とする応答スペクトル値に対する模擬地震波の応答スペクトル値の比(応答スペクトル比)が全周 期帯で0.85以上、応答スペクトル強さの比(SI比)が1.0以上。

作成した模擬地震波は、日本電気協会(2015)²⁾に示される適合度の条件を満足していることを 確認した。

「乱数位相による検討」と同様に地盤応答解析を行い、解放基盤表面における地震動を評価した。
 ・解放基盤表面における標準応答スペクトルを考慮した地震動(実位相による検討)の加速度波形を以下に示す。

鉛直成分

解放基盤表面における標準応答スペクトルを考慮した地震動(実位相による検討) 加速度波形

・既許可の基準地震動Ss-Dと解放基盤表面における標準応答スペクトルを考慮した地震動の応答スペクト ルを以下に示す。

標準応答スペクトルを考慮した地震動は、全周期帯で基準地震動Ss-Dに包絡される。

- ▶ JRR-3について、新たに規定された標準応答スペクトルを考慮した地震動と既許可の基準地震動Ss-D を比較した。
- ▶ 標準応答スペクトルはせん断波速度Vs=2,200m/s以上の地震基盤相当面にて定義されており、JRR-3の地震基盤相当面は、既許可の地盤構造モデルのG.L.-0.997km(Vs=2,500m/s)に設定した。
- 地震基盤相当面から解放基盤表面までの地震波の伝播特性を解放基盤表面における標準応答スペクトルを考慮した地震動に反映させた。
- 評価内容として以下の検討を実施した。 「乱数位相による検討」: 乱数の位相を持つ正弦波の重ね合わせにより模擬地震波を作成し地震動評価。 「実位相による検討」: 地震基盤相当面における地震動の位相特性を用いて模擬地震波を作成し地震動評価。
- ▶ 解放基盤表面における標準応答スペクトルを考慮した地震動は、基準地震動Ss-Dに包絡されることを 確認した。

基準地震動の変更は不要であると判断した。

- 1) Shizuo Noda, Kazuhiko Yashiro, Katsuya Takahashi, Masayuki Takemura, Susumu Ohno, Masanobu Tohdo, TakahideWatanabe. RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES. OECD-NEA Workshop on the Relations between Seismological Data and Seismic Engineering Analysis, Istanbul, 16-18 October, 2002.
- 2)日本電気協会(2015):原子力発電所耐震設計技術指針、JEAG4601-2015.
- 3) 加藤研一、武村雅之、八代和彦(1998): 強震記録から評価した短周期震源スペクトルの地域特性、地震第2輯、51巻、 123-138.
- 4) 震源を特定せず策定する地震動に関する検討チーム(2019):全国共通に考慮すべき「震源を特定せず策定する地震 動」に関する検討報告書、令和元年8月7日.
- 5) 震源を特定せず策定する地震動に関する検討チーム(2019):全国共通に考慮すべき「震源を特定せず策定する地震 動」に関する検討報告書 参考資料 標準応答スペクトルに係る検討について、令和元年8月7日.

補足資料

1. 標準応答スペクトルに対する模擬地震波の応答スペクトル比

- 2. 地盤構造モデルの設定根拠(審査資料抜粋)
- 3. 基準地震動Ss-Dとの比較(加速度応答スペクトル)

•「乱数位相による検討」における模擬地震波について、耐震評価に関係する短周期側の応答スペクトル 比(0.02s~0.05s)の適合度を向上させるため、模擬地震波を見直した。

標準応答スペクトルに対する応答スペクトル比(今回作成した応答スペクトル比)

補足資料

- 1. 標準応答スペクトルに対する模擬地震波の応答スペクトル比
- 2. 地盤構造モデルの設定根拠(審査資料抜粋)

3. 基準地震動Ss-Dとの比較(加速度応答スペクトル)

- 1. 基準地震動Ssの策定の概要
- 2. 敷地周辺の地震発生状況

3. 地下構造評価

- 3.1 評価の方針
- 3.2 敷地の解放基盤表面の設定
- 3.3 敷地の地震基盤及び深部地盤の速度構造の検討
- 3.4 敷地の地盤構造モデルの設定
- 3.5 観測記録及び模擬入力波を用いた敷地地盤の振動特性評価
- 4. 敷地ごとに震源を特定して策定する地震動
 - 4.1 プレート間地震
 - 4.2 海洋プレート内地震
 - 4.3 内陸地殼内地震
- 5. 震源を特定せず策定する地震動
- 6. 基準地震動Ssの策定
- 7. 基準地震動Ssの年超過確率の参照

参考資料

震源を特定せず策定する地震動(Mw6.5以上の地震に関する検討)

参考文献

3. 地下構造評価 3.3 敷地の地震基盤及び深部地盤の速度構造の検討

【目的】 敷地で得られた単点微動観測記録により「敷地地盤における基盤の拡がり及び速度構造の均質性の把握」、敷 地周辺で実施した広域にわたる反射法・屈折法地震探査により「敷地周辺の深部地盤の速度構造の把握」、微動 アレイ探査により「敷地周辺の深部地盤の最適な速度構造の把握」、地震波速度トモグラフィ解析による「地震 基盤以深の深部地盤の速度構造の推定」を実施する。

これらの探査、解析により、地震基盤を含む深部地盤の速度構造を把握する。

(1) 単点微動観測記録による検討

検討の概要

敷地内で等間隔に実施した単点微動観測で得られた地表 の微振動観測記録を用いて算出されるH/Vスペクトルを整 理することで、敷地地盤の速度構造の均質性及び敷地地盤に おける基盤の拡がりを確認する。

H/Vスペクトルによる検討

(2) 反射法・屈折法地震探査による検討

敷地周辺において重力異常を参照して東西、南北に配置し た探査線に沿って、反射法・屈折法地震探査を行い、3次元 的な深部地盤の空間分布を把握する。

弾性波探査によるP波速度分布、走時曲線の検討

(3) 微動アレイ探査による検討

解放基盤表面から地震基盤面の速度構造を把握するため、敷 地近傍で実施した微動アレイ探査記録から求まる観測位相速度 と、広域にわたる物理探査等から求まる理論位相速度を参照し て、最適な速度構造を求める。

観測位相速度と理論位相速度による最適化検討

(4) 地震波速度トモグラフィ解析による検討

各地の地震観測点で記録された自然地震(主に微小〜小地 震)の波形記録から到達時刻を読み取ることで得られる観測 走時をターゲットに、解析モデルによる計算走時を最適化す ることで地震基盤以深の深部地盤の速度構造を推定する。

自然地震の観測走時と解析モデルによる最適化検討

地震基盤面を含む深部地盤の速度構造を推定することにより、 敷地周辺の3次元的な地盤構造の把握及び深部地盤モデルの設定に資することができる

第225回審杳会合 資料1-4 再掲

■ H/Vスペクトルに関する検討方法

【検討の目的】

敷地において実施した単点微動計測によるH/Vスペクト ル比を計算し、各観測点の振動特性を評価することにより、 敷地直下の速度構造の均質性や基盤の拡がりを確認する。

【算出方法】

- ・微動測定時間は、1地点につき15分間
- ・観測時間分のデータを4096サンプル(40.96秒)ごとに 20.48秒ずつオーバラップさせながらセグメントに分割し、 0.1HzのParzen windowを用いてデータを作成
- 区間ごとにフーリエ変換を実施し、水平両成分を相乗平均 した観測H/Vスペクトル比を計算 → $\frac{H}{V} = \frac{\sqrt{NS^2 + EW^2}}{UD}$

UD

JRR-3原子炉建家

地震計LE-3D/5S レナーツ社(独) http://www.lennartz-electronic.de/

記録器 LS-8800 白山工業 http://www.hakusan.co.jp/

機器	機器名	製造会社	仕様	数量
			速度型上下·水平3成分	
14 10 1	L B AD ISO	レナーツ社(独)	固有周期・5/7秒切り替え式	
地融計	LE-3D/98		アージ社(30) 電圧:DC12V	
			出力感度:4V/kine	1
			チャンネル数:3	
	10,0000		分解能:24ビット	
AC 99 W	T9.9900		GPS時計内臟	9
			電圧:DC6.5~16V	

測定時間	15分
固有周期	7秒
サンプリング闇波数	100Hz

34

■ 単点微動観測によるH/Vスペクトルの検討結果のまとめ

観測H/Vスペクトルはばらつきが少ないことが確認でき、敷地全体の観測点において概ね同様の傾向を示すことが確認できた。

30

32

調査(D)

■ 微動アレイ探査位置と目的

 敷地周辺(No.1~6)の微動アレイ探査の主な目的 微動アレイ探査とは別の完全に独立した地球物理学的調査である「反射法・屈折法地震探査(Line-1(18km),Line-2 (22km),Line-A(17km))」による調査結果との対比を行う。

② 敷地近傍(No.7、No.8)の微動アレイ探査の主な目的 敷地周辺と同様に地球物理学的調査結果との比較の他、解放基盤表面から地震基盤にかけての速度構造を把握する。

③ 重力異常との関係 反射法・屈折法探査のライン は、重力異常の勾配と敷地の 位置関係を参考に決定してお り、微動アレイ探査の結果と 重力異常の傾向が調和的であ ることを確認する。

微動アレイ探査位置 (コンターは重力異常分布)

調査(E)

■ 地震波速度トモグラフィ解析の概要

地震基盤面以深の深部地盤の速度構造を把 握するため、文献による大規模な地殻構造(コ ンラッド面、モホ面、プレート)に対して、観 測事実に則した最適な速度構造を求める。

そのために、各地の地震観測点で記録され た自然地震(主に微小~小地震)の波形記録 から到達時刻を読み取ることで得られる観測 走時をターゲットに、モデルによる計算走時 を最適化することで深部の速度構造を評価す る「地震波速度トモグラフィ解析」を用いた。

地震観測点

震源

不均質構造を通過すると伝播速

度に影響を受け、地表到達時刻

したがって、自然地震波の観測

走時から地下の速度構造を求め

に差異を生じる。

ることができる。

3. 地下構造評価 3.3 敷地の地震基盤及び深部地盤の速度構造の検討

(4) 地震波速度トモグラフィ解析による検討

■ 地震波速度トモグラフィ解析において使用した地震・観測点位置と解析範囲

- ・解析に使用した地震と観測点及び震源位置は、気象庁・地震カタログに依った (2001-2006年)。
- ・M2以上の地震を対象に、水平0.05°,深さ2kmの領域で最も観測点数が多い地震を選択。さらに、震源深さの決定精度が1.5km以下の地震を選択。
- ・解析領域内の格子点に初期の速度値を与え、観測走時と計算走時の誤差が最小となるように最適解を求める。
- ・解の信頼性についてはレゾリューション行列の対角要素の値を指標とする。Aki and Lee(1976)によると、50%以上であれば解の信頼性は高いとされる。

43

■ 解析結果(平面: 1/2)

浅部(~5km)の平面的速度分布を以下に示す。各地域のP波速度及びS波速度が推定された。

■ 解析結果(平面: 2/2)

深部(10~25km)の平面的速度分布を以下に示す。各地域のP波速度及びS波速度が推定された。

45

3.地下構造評価 3.3 敷地の地震基盤及び深部地盤の速度構造の検討 (4) 地震波速度トモグラフィ解析による検討

■ 解析結果(断面: 1/2) 東西断面の速度分布を以下に示す。各深度のP波速度及びS波速度が推定された。

(4) 地震波速度トモグラフィ解析による検討

■ 解析結果(断面:2/2)

南北断面の速度分布を以下に示す。各深度のP波速度及びS波速度が推定された。

3. 地下構造評価

地震基盤面

地設

JAEA

3.4 敷地の地盤構造モデルの設定

部

地

盤

構

造

Ð デ

ル

イ

地震波速度トモグラフ

解析

- 主に解放基盤以深の地盤構造を表現したモデル ▶ 統計的グリーン関数法及び波数積分法による地震動評 価を行うために使用する。
- 敷地周辺及び近傍で実施した微動アレイ探査及び地震波速度 トモグラフィ解析の結果を踏まえて、深部地盤構造モデルを 得る。

深部地盤構造モデルの妥当性検証

▶ 深部構造の状況を整理した観測記録による検討と整合 的であることを確認する。

初期地盤構造モデルの作成

3.4 敷地の地盤構造モデルの設定

■ 初期地盤構造モデルの諸元

3. 地下構造評価

JAEA

浅部地盤構造モデルを評価するために作成する初期の地盤構造モデルについては、2章で設 定した解放基盤表面を基本とし、地震観測位置の近傍で実施した各種地質調査のデータを用い、 層厚・密度・せん断波速度を設定した。

▽:地震計位置

▼:解放基盤面位置

45

第225回審査会合

資料1-4 再掲

3. 地下構造評価 3.4 敷地の地盤構造モデルの設定 浅部地盤構造モデルの地盤同定解析

■ 地盤同定解析の諸条件及び浅部地盤構造モデルの評価結果

東北地方太平洋沖地震以降に発生した5つの地震観測記録を用いた地盤同結果から得られた浅部地盤構 造モデルの諸元を下表に示す。

- 一次元波動論に基づく理論伝達特性を当てはめる
 逆解析により同定
- ・ターゲットは、フィルタ処理(Parzenウィンド ウ(0.2Hz))を施した、観測記録の伝達関数
- ・同定対象は各層の速度、及び表層(GL-9m以浅)、 上部層(GL-9m~100m)、下部層(GL-100m以 深)の減衰定数
- ・遺伝的アルゴリズムを用い、初期乱数を変えた 10回の計算を実施し、最も適合度のよい計算結果 を最適地盤モデルして採用

 ・探索範囲は以下の通り設定 (速度)

表層:初期モデルの 0.8~1.0倍 上部層:初期モデルの 0.8~1.2倍 下部層:初期モデルの 0.8~1.2倍 (ただし、解放基盤表面以深は固定)

【減衰定数】

h(f)=h₀×f^{-α} h₀は 0.0~1.0 αは 0.0~2.0

・地震毎に評価された最適地盤モデルのうち、NS 成分及びEW成分を平均化することで水平成分の モデルとした

上面		obe the	水平方向			鉛直方向		
G.L.	/////////////////////////////////////	密度 (g/cm ³)	S波速度	減衰	減衰定数※		減衰定数 [※]	
(m)		(6) 011 7	(m/s)	h ₀	α	(m/s)	h ₀	α
0	1	1.97	192			504		
-1	5	1.97	199	0.732	1.053	470	0.546	0.531
-6	3	1.92	333			1196		
-9	3	1.77	487			1650		
-12	1	1.82	559	0.296	1 479	1603	0.987	1.081
-13	17	1.82	483	0.280	1.478	1764		
-30	70	1.73	494			1967		
-100	110	1.73	542			1825	0.408	
-210	70	1.75	619	0.061	1 506	1797		1 700
-280	80	1.78	760		1.006	2119		1.788
-360	~	1.86	710			2040		

※ h=h₀×f^{-a} ここでfは周波数(Hz)

3. 地下構造評価 3.4 敷地の地盤構造モデルの設定 JAEA

東北地方太平洋沖地震用の浅部地盤構造モデルの地盤同定解析

■ 地盤同定解析の諸条件及び東北地方太平洋沖地震用の浅部地盤構造モデルの評価結果

※ h=h₀×f^{-a} ここでfは周波数(Hz)

東北地方太平洋沖地震の観測記録を用いた地盤同結果から得られた東北地方太平洋沖地震用の浅部地盤構造 モデルの諸元を下表に示す。

上面		-	NS方向			EW方向			UD方向		
G.L. (m)	層厚 (m)	密度 (g/cm ³)	S波速度 (m/s)) 減衰)	定数**	S波速度 (m/s)	<u>減</u> 衰)	定数 [※]	P波速度 (m/s)	減衰) 、	定数 ^带
0	1	1.97	202	0.250 (a 0.438	196	0.469	α 0.594	532	0.313	α 0.094
-1	5	1.97	177			180			470		
-6	3	1.92	326			278			1213		
-9	3	1.77	393			388			1416		
-12	1	1.82	466	0.125 0.859	0.859	479	0.172	1.000	1787	0.750	1.000
-13	17	1.82	469			475			1787		
-30	70	1.73	454			469			2008		
-100	110	1.73	518	0.047	0.984	453	0.031	1.000	1690	0.250	0.984
-210	70	1.75	549			600			1760		
-280	80	1.78	771			704			2219		
-360	~	1.86	710			710			2040		
	上面 G.L. (m) 0 -1 -6 -9 -12 -13 -30 -100 -210 -280 -360	L:mi G.L. (m) Mips (m) 0 1 -1 5 -6 3 -9 3 -12 1 -13 17 -30 70 -100 110 -210 70 -280 80 -360 ∞	$E:\bar{m}$ Eeg Eeg G.L. (m) (g/cm^3) 0 1 1.97 -1 5 1.97 -6 3 1.92 -9 3 1.77 -12 1 1.82 -13 17 1.82 -30 70 1.73 -100 110 1.73 -210 70 1.75 -280 80 1.78 -360 ∞ 1.86	上面 G.L. (m) 層厚 (m) 密度 (g/cm ³) ····································	$ \begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$	Em MPF Rep NS5/m NS5/m G.L. (m) (m) $\frac{Rep}{(g/cm^3)}$ $\frac{Skjæg}{(m/s)}$ $\frac{kjæz m^*}{h_0}$ a 0 1 1.97 202 h_0 a -1 5 1.97 177 0.250 0.438 -6 3 1.92 326 0.250 0.438 -9 3 1.77 393 1.77 0.250 0.438 -12 1 1.82 466 0.125 0.859 -13 17 1.82 469 0.125 0.859 -30 70 1.73 454 0.047 0.984 -100 110 1.75 549 0.047 0.984 -280 80 1.78 771 0.047 0.984	Lmm G.L. (m) MPF (m) $\underbrace{\pounds \mathcal{R} \mathcal{R}}_{(g/cm^3)}$ NS5 π in Magc 2M* (m/s) Sky $\mathbb{R} \mathbb{R} \mathbb{R}$ (m/s) Magc 2M* (m/s) Sky $\mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R}$ (m/s) Mag 2 2M* (m/s) Sky $\mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R}$ (m/s) Mag 2 2M* (m/s) Ma	Lmm G.L. (m) MW (m) $\frac{& \tilde{g} \tilde{g}}{(g/cm^3)}$ $\tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} $	Em $BF Eg Mge KSfm Mge Mge $	Em erg	$\pm \bar{m}$ G.L. (m) \bar{m} (m) \bar{m} (g/cm) \bar{m} (g/cm) \bar{m} (m/s) \bar{m} \bar{m} (m/s)<

【減衰定数】

 $h(f)=h_0 \times f^{-\alpha}$

hold 0.0~1.0 α at 0.0~1.0

53

54

3. 地下構造評価 3.4 敷地の地盤構造モデルの設定 AEA 深部地盤構造モデルの設定結果

前節の設定手順に従って設定した深部地盤構造モデルの諸元を以下に示す。

上面 G.L. (km)	層厚 (km)	密度 (g/cm ³)	水平	四方向	鉛证	直方向]	
			S波速度	減衰定数*	P波速度	減衰定数率]	
	(init)	(g/ cm /	(km/s)	Qs	(km/s)	Qp		
0.000	0.360	-	-	-	-	-		
-0.360	0.287	1.86	0.710	(a	2.040		こ 浅部地盤構造モデル	
-0.647	0.327	2.11	1.200		2.610			
-0.974	0.009	2.24	1.500	100	3.100	100		
-0.983	0.014	2.42	2.000		3.950		(C)より設定	
-0.997	0.013	2.57	2.500		4.800			
-1.010	3.790	2.66	2.900		5.490			
-4.800	12.640	2.70	3.600	$110 \times f^{0.69}$	5.960	110 × (0.69		
-17.440	14.560	2.80	4.170		6.810	110×1	し 地震波速度トモクラ	
-32.000	8	3.20	4.320		7.640		設定	

※ fは周波数(Hz)

Yoshimura et al.(1982)*1に示されるVs-Vpの関係式より算出

Ludwig et al.(1970) *2に示されるVp-pの関係より換算

iasp91^{※3}を参考に設定

保守的な減衰Q値を設定

佐藤ほか(1994) ※4を参考に設定

- ※1 Masayoshi Yoshimura, Seishi Fujii, Kenji Tanaka, and Ken Morita (1982): On the relationship between P and S-wave velocities in soft rock, SEG Expanded Abstracts 1, 143.
- *2 Ludwig, W. J., J. E. Nafe, and C.L. Drake (1970) Seismic Refraction, in "The Sea. Vol.4", edited by A.E. Maxwell, Wiley Interscience, New York, 53-84. %3 Kennett, B. L. N. and E. R. Engdahl (1991) : Traveltimes for global earthquake
- location and phase identification, Geophys. J. Int., 105, 429-465.

※4 佐藤智美,川瀬博,佐藤俊明(1994):表層地盤の影響を取り除いた工学的基盤波の統計的スペク した事件、仙台地域のボデホールで観測された多数の中小地震記録を用いた解析、日本建築学会構 造系論文集, 第462号, pp.79-89.

補足資料

- 1. 標準応答スペクトルに対する模擬地震波の応答スペクトル比
- 2. 地盤構造モデルの設定根拠(審査資料抜粋)
- 3. 基準地震動Ss-Dとの比較(加速度応答スペクトル)

・既許可の基準地震動Ss-Dと解放基盤表面における標準応答スペクトルを考慮した地震動の応答スペクト ルを以下に示す。

標準応答スペクトルを考慮した地震動は、全周期帯で基準地震動Ss-Dに包絡される。