本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号機 工事計画審査資料				
資料番号	02-補-E-19-0620-3_改 19			
提出年月日	2021年12月6日			

補足-620-3 原子炉建屋の地震応答計算書に関する補足説明資料

1. 工事計画添付書類に係る補足説明資料

添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」の記載内容を補足するための資料を以下に示す。なお、他建物・構築物の地震応答計算書の記載内容を共通的に補足する内容についても、本資料で代表し説明する。

- 別紙 1 原子炉建屋の地震応答解析における既工認と今回工認の解析モデル及び手法の 比較
 - 別紙 1-1 原子炉建屋の地震応答解析モデルの各種ばねの算定について
 - 別紙 1-2 地震応答解析モデルの諸元の比較(既工認,シミュレーション解析, 今回工認)
- 別紙 2 原子炉建屋の地震応答解析における耐震壁のスケルトンカーブの設定
- 別紙3 原子炉建屋の地震応答解析における材料物性の不確かさに関する検討
 - 別紙 3-1 材料物性の不確かさを考慮した検討に用いる地震動の選定について
 - 別紙 3-2 材料物性の不確かさを考慮した地震応答解析結果
- 別紙4 地震応答解析モデルに用いる鉄筋コンクリート部の減衰定数に関する検討
 - 別紙 4-1 原子炉建屋の基準地震動 S s 及び弾性設計用地震動 S d に対する最大応答 せん断ひずみ
 - 別紙 4-2 各建屋の図面集
- 別紙 5 地震応答解析における原子炉建屋の重大事故等時の高温による影響
 - 別紙 5-1 重大事故時等の環境を考慮した大型機器系の地震応答解析モデルの設定
 - 別紙 5-2 SA 時環境考慮モデルにおける床ばねの応答について
- 別紙6 改造工事に伴う重量増加を反映した検討
 - 別紙 6-1 改造工事に伴う重量増加による建屋-機器連成地震応答解析結果に与える 影響
- 別紙7 原子炉建屋内の施設に対する「断層モデルを用いた手法による地震動」の影響 | 検討
 - 別紙 7-1 原子炉建屋の減衰定数を 7%とした場合の地震応答解析結果

_____本日の説明範囲

別紙6 改造工事に伴う重量増加を反映した検討

目 次

1.	概要		別紙	6- 1
2.	検討方	針	別紙	6- 2
3.	重量増	加を考慮した地震応答解析結果を踏まえた各施設の評価結果への		
	影響検	討	別紙	6- 3
3	.1 建物	の・構築物	別紙	6- 3
	3. 1. 1	使用済燃料プール及びキャスクピット	別紙	6- 3
	3. 1. 2	原子炉建屋原子炉棟(二次格納施設)	別紙	6- 8
	3. 1. 3	原子炉建屋ブローアウトパネル	別紙	6-17
	3. 1. 4	原子炉建屋エアロック	別紙	6-20
	3. 1. 5	原子炉建屋基礎版	別紙	6-23
	3. 1. 6	水密扉	別紙	6-26
3	.2 機器	・配管系	別紙	6-30
	3. 2. 1	検討方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙	6-30
	3. 2. 2	検討内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙	6-33
	3. 2. 3	檢討結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙	6-58
4.	検討結	果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙	6-82

別紙 6-1 改造工事に伴う重量増加による建屋-機器連成地震応答解析結果に与える影響

1. 概要

添付書類「VI-2-1-1 耐震設計の基本方針」に基づき、設備の補強や追加等の改造工事に伴う重量増加が有意な場合は、設備の補強や追加等の改造工事に伴う重量増加を考慮した地震応答解析を行い、応答比較の結果、補強反映モデルの応答が今回工認モデルの応答を一部上回る部分があることから、補足説明資料「補足-600-43 地震応答に影響を及ぼす不確かさ要因の整理」に基づき、「3.1 建物・構築物」及び「3.2 機器・配管系」において、建物・構築物及び機器・配管系の耐震性への影響について検討を行う。

なお、建屋の地震応答解析結果への影響については、地震応答解析モデルにおいて重量が重要な諸元であることを踏まえ、その結果を添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」(以下「地震応答計算書」という。)に反映する。

2. 検討方針

平成 18 年耐震設計審査指針改定及び平成 25 年新規制基準施行に伴う設備の補強や追加等の改造工事に伴う原子炉建屋の主要な増加重量及び増加重量比を表 2-1 に示す。

増加重量及び増加重量比は小さく、重量増加が建屋の応答性状に与える影響は極めて軽微と想定されるが、施設の重要性を踏まえて重量増加を反映した影響検討を行う。影響検討を行うに当たっては、地震応答計算書に示す重量増加を反映した地震応答解析結果を用いる。

表 2-1 原子炉建屋の増加重量及び増加重量比

①工認モデル重量	②増加重量	増加重量比(%)
[kN]	[kN]	2/(1+2)
3414970	43980	1.27

- 3. 重量増加を考慮した地震応答解析結果を踏まえた各施設の評価結果への影響検討
 - 3.1 建物·構築物

地震応答計算書の別紙に示す重量増加を考慮した地震応答解析結果の応答比率を用いて、各施設の評価結果への影響を検討する。

- 3.1.1 使用済燃料プール及びキャスクピット
 - (1) 検討方針

使用済燃料プール及びキャスクピットを対象として、設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率と添付書類「VI-2-4-2-1 使用済燃料プール(キャスクピットを含む)(第1,2号機共用)の耐震性についての計算書」(以下「使用済燃料プールの計算書」という。)に示す応力評価結果より、影響検討を行う。

使用済燃料プールの計算書では、水平地震力として、0. P. 22. 5m~33. 2m 位置(要素番号 13 (NS 方向)及び 14 (EW 方向))の最大応答せん断力を考慮し、鉛直地震力として、0. P. 22. 5m~33. 2m 位置(要素番号 6)の鉛直方向最大応答軸力より算出した鉛直震度(軸力係数)を考慮することから、水平方向は要素番号 13 (NS 方向)及び 14 (EW 方向)の最大応答せん断力の応答比率の最大値を、鉛直方向は要素番号 6 の最大応答軸力の応答比率の最大値を応答比率とし、各方向の応答比率の最大値を割増係数として設定し、応力評価結果の発生値に乗じて各許容値を超えないことを確認する。

表 3-1 に応答比率及び割増係数を示す。

表 3-1 重量増加を考慮した割増係数(使用済燃料プール及びキャスクピット)

位置 (0.P.)	NS 方向	EW方向	鉛直方向
22.5m∼33.2m	1.00*1	1.00*1	1.04*2
割増係数		1.04*3	

注記*1: 地震応答計算書の別紙に示す要素番号 13 (NS 方向) 及び 14 (EW 方向) の最大応答せん断力の応答比率の最大値。

*2: 地震応答計算書の別紙に示す要素番号 6(鉛直方向)の最大応答軸力 の応答比率の最大値。

*3:各方向の応答比率の最大値。

(2) 検討結果

各荷重時における評価結果を表 3-2 及び表 3-3 に示す。

重量増加を考慮した割増係数を乗じた結果においても、各許容値を超えないため、重量増加を考慮した場合においても、耐震評価に及ぼす影響がないことを確認した。

表 3-2 重量増加を考慮した評価結果 S d 地震時

部位	1	評価項目	方向	要素番号	組合せ ケース	発生値 ①	割増係数②	①×②	許容値
II desired	軸力 + 曲げモーメント	コンクリート圧縮応力度 (N/mm²)	水平	210	1-1	4. 79	1.04	4. 98	24. 3
	曲/デーメント + 面内せん断力	鉄筋引張応力度 (N/mm²)	鉛直	6	1-9	196	1.04	204	345
北側壁	面内せん断力	面内せん断応力度 (N/mm ²)		51	1-4	1. 59	1.04	1. 65	4. 53
	面外せん断力	面外せん断応力度 (N/mm ²)	水平	241	1-1	0.890	1.04	0. 926	1. 52
	軸力 + 曲げモーメント + 面内せん断力	コンクリート圧縮応力度 (N/mm²)	鉛直	386	1-11	7. 42	1.04	7. 72	21.6
		鉄筋引張応力度 (N/mm²)	鉛直	389	1-3	190	1.04	198	345
西側壁	面内せん断力	面内せん断応力度 (N/mm²)		390	1-9	1. 02	1.04	1.06	3. 02
	面外せん断力	面外せん断応力度 (N/mm²)	鉛直	386	1-11	0. 576	1.04	0. 599	1.06
底面スラブ	軸力 + 曲げモーメント	コンクリート圧縮応力度 (N/mm²)	EW	340	1-12	9. 30	1.04	9. 67	24. 3
		鉄筋引張応力度 (N/mm²)	EW	340	1-11	184	1.04	191	345
	面外せん断力	面外せん断応力度 (N/mm²)	EW	338	1-11	1.38*	1.04	1. 44	2. 59

注記*:応力の再分配等を考慮して、応力平均化を行った結果。

表 3-3 重量増加を考慮した評価結果 Ss地震時

部位	į	評価項目	方向	要素 番号	組合せ ケース	発生値 ①	割増係数②	①×②	許容値
	軸力 + 曲げモーメント	コンクリート圧縮ひずみ (×10 ⁻³)	鉛直	7	2-9	0. 269	1. 04	0. 280	3. 00
	曲りモーメント + 面内せん断力	鉄筋引張ひずみ (×10 ⁻³)	鉛直	6	2-9	1. 28	1. 04	1. 33	5. 00
北側壁	軸力	圧縮応力度 (N/mm²)	鉛直	3	2-10	2. 40	1. 04	2. 50	21.6
	面内せん断力	面内せん断応力度 (N/mm ²)	_	3	2-11	2. 21	1. 04	2. 30	5. 99
	面外せん断力	面外せん断応力度 (N/mm²)	水平	241	2-1	0.892	1. 04	0. 928	2. 08
	軸力 + 曲げモーメント + 面内せん断力	コンクリート圧縮ひずみ (×10 ⁻³)	鉛直	386	2-11	0.502	1. 04	0. 522	3. 00
		鉄筋引張ひずみ (×10 ⁻³)	水平	425	2-1	1. 30	1. 04	1. 35	5. 00
西側壁	軸力	圧縮応力度 (N/mm²)	鉛直	390	2-12	2. 40	1. 04	2. 50	21.6
	面内せん断力	面内せん断応力度 (N/mm²)	_	388	2-10	1. 14	1. 04	1. 19	4. 02
	面外せん断力	面外せん断応力度 (N/mm²)	鉛直	386	2-11	0.808	1. 04	0.840	1. 44
底面 スラブ	軸力 + 曲げモーメント	コンクリート圧縮ひずみ (×10 ⁻³)	EW	340	2-12	0. 409	1. 04	0. 425	3. 00
		鉄筋引張ひずみ (×10 ⁻³)	EW	341	2-11	0.964	1. 04	1. 00	5. 00
	面外せん断力	面外せん断応力度 (N/mm²)	EW	338	2-11	1.89*	1. 04	1. 97	2. 59

注記*:応力の再分配等を考慮して,応力平均化を行った結果。

3.1.2 原子炉建屋原子炉棟(二次格納施設)

(1) 検討方針

原子炉建屋原子炉棟(二次格納施設)を対象として、設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率と添付書類「VI-2-9-3-1 原子炉建屋原子炉棟(二次格納施設)の耐震性についての計算書」(以下「二次格納施設の計算書」という。)に示す各評価結果より、影響検討を行う。

二次格納施設の計算書における地震応答解析による評価では、せん断ひずみの評価として、原子炉建屋の耐震壁について基準地震動Ssに対する各層の最大せん断ひずみを考慮していることから、最大せん断ひずみの応答比率を割増係数として設定し、二次格納施設の計算書における各層の最大せん断ひずみに乗じた値が許容値(2.0×10^{-3})を超えないことを確認する。

二次格納施設の計算書における応力解析による評価のうち、屋根トラスの評価は、燃料取替床レベル(0.P.33.2m)より上部を対象とした立体フレームモデル(以下「屋根トラスモデル」という。)の地震応答解析により行っており、屋根トラスモデルへの入力地震動は、基準地震動Ssによる原子炉建屋全体の地震応答解析から得られる0.P.33.2m位置における応答加速度(水平方向及び鉛直方向)を用いている。このように、屋根トラスに関しては、原子炉建屋の応答加速度を用いて検討していることから、各方向における0.P.33.2m位置の最大応答加速度および床応答スペクトルの応答比率の最大値を割増係数として設定し、屋根トラスの応力評価結果の発生値に乗じて各許容値を超えないことを確認する。

二次格納施設の計算書における応力解析による評価のうち、屋根スラブ及び床スラブの評価は、地震荷重として鉛直震度を考慮することから、鉛直方向の最大応答加速度の応答比率を割増係数として設定し、応力評価結果の発生値に乗じて各許容値を超えないことを確認する。

二次格納施設の計算書における応力解析による評価のうち、耐震壁の評価は、 地震荷重として曲げモーメント、鉛直震度に重量を乗じて算定した軸力及びせん 断力を考慮することから、曲げモーメント、鉛直軸力及びせん断力の応答比率を 割増係数として設定し、応力評価結果の発生値に乗じて各許容値を超えないこと を確認する。

表 3-4~表 3-7 に応答比率及び割増係数を示す。

表 3-4(1) 重量増加を考慮した割増係数(屋根トラス,最大応答加速度)

位置 (0. P.)	NS 方向	EW 方向	鉛直方向
33.2m	1.01*1	1.00*1	1.02*2
割増係数	1.02*3		

注記*1:地震応答計算書の別紙に示す質点番号8と20(NS 方向)及び12と 22(EW 方向)の平均時刻歴から求まる最大応答加速度の応答比率。

*2: 地震応答計算書の別紙に示す質点番号 6 の最大応答加速度の応答比率の最大値。

*3:各方向の応答比率の最大値。

表 3-4(2) 重量増加を考慮した割増係数(屋根トラス,応答スペクトル)

1 3 1 (2)	重量相加を有感した問相所数(座低下)へ、心管ハーン下が
方向	鉛直方向
周期	鉛直方向1次
川 朔	0. 278s
	今回工認モデル 補強反映モデル
スペクトル図	鉛直方向 1 次 (0, 278s) 減衰定数: 0.02 (0, 278s) 減衰定数: 0.02 (0, 278s) 減衰定数: 0.02 (0, 278s) (0, 278s) 減衰定数: 0.02 (0, 278s) (0, 278s) (0, 278s) (0, 278s) (0, 278s) (0, 200 5.00 周期(s) (1) 今回工認モデル: 1300cm/s² (2) 補強反映モデル: 1310cm/s²
応答	
比率	1.01
2/1	
割増	1.01
係数	1. 01

表 3-5 重量増加を考慮した割増係数(屋根スラブ)

位置 (0.P.)	鉛直方向
48.725m	1.03*
割増係数	1.03

注記*:地震応答計算書の別紙に示す質点番号1~4の最大応答加速度の応答比率 の最大値。

表 3-6 重量増加を考慮した割増係数 (床スラブ)

位置 (0. P.)	鉛直方向
15. Om	1.01*
割増係数	1.01

注記*:地震応答計算書の別紙に示す質点番号8の最大応答加速度の応答比率の 最大値。

鉛直方向

表 3-7 重量増加を考慮した割増係数 (耐震壁)

位置 (0.P.)	曲げモーメント	軸力	せん断力
22.5m~33.2m	1.02*1	1.04*2	1.00*3
割増係数	1. 0	4*4	1.00

注記*1: 地震応答計算書の別紙に示す要素番号 21 (EW 方向) の最大応答曲げモーメントの応答比率。

*2: 地震応答計算書の別紙に示す要素番号 6(鉛直方向)の最大応答軸力の応 答比率。

*3:地震応答計算書の別紙に示す要素番号 21 (EW 方向) の最大応答せん断力 の応答比率。

*4:曲げモーメント及び軸力の応答比率の最大値。

EW方向

凡例

:要素番号:質点番号

鉛直方向

別紙 6-12

(2) 検討結果

a. 地震応答解析による評価

地震応答解析による評価について、材料物性の不確かさを考慮した最大せん断ひずみに設備の補強や追加等の改造工事に伴う重量増加を考慮した割増係数を乗じた評価値は、地震応答計算書の別紙 4.3 項に示す 1.75×10^{-3} (要素番号 7、NS 方向)となり、許容値(2.0×10^{-3})を超えないため、重量増加を考慮した場合においても、耐震評価に及ぼす影響がないことを確認した。

b. 応力解析による評価

(a) 屋根トラス

応力評価結果について、床スラブの評価結果を表 3-8 に示す。

重量増加を考慮した割増係数を乗じた評価においても,各応力が許容限界 を超えないため,重量増加を考慮した場合においても,耐震評価に及ぼす影響がないことを確認した。

表 3-8(1) 重量増加を考慮した評価結果 (屋根トラス) (1/2)

台	3位	評価項目	検定比 ①	割増係数	①×②	許容限界
		$\frac{\sigma}{f} + \frac{\sigma}{f}$	0.28	1.02	0. 29	1.0
	上弦材	$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$	0. 17	1.02	0. 17	1.0
	下弦材	$\frac{\sigma}{f} + \frac{\sigma}{f}$	0.79	1.02	0.81	1.0
主トラス	1, 177 (4)	$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$	0. 29	1.02	0.30	1.0
ラス	斜材	$\frac{\sigma}{f}$	0.03	1.02	0.03	1.0
	計材	σ _c f _c	0.61	1.02	0.62	1.0
	東材	$\frac{\sigma_{\mathrm{t}}}{\mathrm{f}_{\mathrm{t}}}$	0.06	1.02	0.06	1.0
		$\frac{\sigma}{f}$	0.18	1.02	0. 18	1.0
	上弦材	$\frac{\sigma_{t}}{f_{t}} + \frac{\sigma_{b}}{f_{b}}$	0.55	1.02	0. 56	1.0
		$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$	0.61	1.02	0.62	1.0
	下弦材	$\frac{\sigma}{f} + \frac{\sigma}{f}$	0.75	1.02	0.77	1.0
サブトラス		$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$	0.44	1.02	0.45	1.0
ドラス	斜材	$\frac{\sigma}{f}$	0.21	1.02	0.21	1.0
	新州	$\frac{\sigma}{f}$	0.80	1.02	0.82	1.0
	古材	$\frac{\sigma}{f}$	0.11	1.02	0.11	1.0
	東材	$\frac{\sigma_{c}}{f_{c}}$	0.23	1.02	0.23	1.0

表 3-8(2) 重量増加を考慮した評価結果(屋根トラス)(2/2)

部位	評価項目	検定比 ①	割増係数	①×②	許容限界
무무	$\frac{\sigma_{t}}{f_{t}} + \frac{\sigma_{b}}{f_{b}}$		1.02	0.72	1.0
母屋	$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$	0.72	1.02	0.73	1.0
+++	$\frac{\sigma}{f}$	0.24	1.02	0. 24	1.0
方杖	σ _c f _c	0.67	1.02	0.68	1.0

(b) 屋根スラブ

応力評価結果について、屋根スラブの評価結果を表 3-9 に示す。

重量増加を考慮した割増係数を乗じた評価においても,各応力が許容限界 を超えないため,重量増加を考慮した場合においても,耐震評価に及ぼす影響がないことを確認した。

表 3-9 重量増加を考慮した評価結果(屋根スラブ)

評価項目		発生値 ①	割増係数	①×②	許容限界
曲げモーメント	サント 鉄筋応力度 (N/mm²)		1.03	280	345
面外せん断力	発生せん断力 (kN/m)	42. 6	1.03	43.9	112. 2

(c) 床スラブ

応力評価結果について、床スラブの評価結果を表 3-10 に示す。

重量増加を考慮した割増係数を乗じた評価においても,各応力が許容限界 を超えないため,重量増加を考慮した場合においても,耐震評価に及ぼす影響がないことを確認した。

表 3-10 重量増加を考慮した評価結果(床スラブ)

評価項目		発生値 ①	割増係数 ②	①×②	許容限界
曲げモーメント	鉄筋応力度 (N/mm ²)	244	1.01	246	345
面外せん断力	発生せん断力 (kN/m)	322	1.01	325	912

(d) 耐震壁

応力評価結果について、耐震壁の評価結果を表 3-11 に示す。

重量増加を考慮した割増係数を乗じた評価においても、各応力が許容限界 を超えないため、重量増加を考慮した場合においても、耐震評価に及ぼす影響がないことを確認した。

表 3-11 重量増加を考慮した評価結果(耐震壁)

評価項目		発生値 ①		割増係数	①×②	組合せ	許容限界
				2	0	$\sigma_{t}+{}_{s}\sigma_{t}$	
曲げモーメント	鉄筋応力度		135	1.04	140		
に対する検討	(N/mm^2)	σ _t	133	1.04	140	335	0.45
せん断力	鉄筋応力度		105	1 00	105		345
に対する検討	(N/mm^2)	s O t	195	1.00	195		

3.1.3 原子炉建屋ブローアウトパネル

(1) 検討方針

原子炉建屋ブローアウトパネル(以下「原子炉建屋 BOP」という)を対象として,設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率を用いて,添付書類「VI-2-9-3-1-1 原子炉建屋ブローアウトパネルの耐震性についての計算書」(以下「原子炉建屋 BOP の計算書という。)に示す機能維持評価の影響検討を行う。

原子炉建屋 BOP の計算書では、Sd 閉機能維持評価は、0.P.38.5m 位置 (0.P.41.2m:質点番号 7,19 と 0.P.33.2m:質点番号 1,8,13,20,25 の線形補間) の NS 方向の応答加速度より定めた水平震度を用いて検討していることから、0.P.41.2m及び 0.P.33.2mの NS 方向の最大応答加速度の応答比率の最大値による 0.P.38.5m における線形補間値を割増係数として設定し、割増係数を乗じた Sd 地震荷重が開放荷重を超えないことを確認する。

原子炉建屋 BOP の計算書では、S s 開機能維持評価は、せん断ひずみの許容限界を層間変形角として層間変位の検討をしているが、ここでは O. P. 33. 2m \sim O. P. 41. 2m 位置(要素番号 11, 20, 32)の EW 方向の最大せん断ひずみの応答比率を割増係数として設定し、割増係数を乗じた層間変位が許容値を超えないことを確認する。

表 3-12 及び表 3-13 に応答比率及び割増係数を示す。

表 3-12 重量増加を考慮した割増係数 (原子炉建屋 BOP S d 閉機能維持)

位置 (0.P.)	NS 方向
41.2m	1.00*1
33.2m	1.05*2
割増係数	1.02*3

注記*1: 地震応答計算書の別紙に示す質点番号 7,19 の最大応答加速度の応答比率の最大値。

*2:地震応答計算書の別紙に示す質点番号 1,8,13,20,25 の最大応答加速度 の応答比率の最大値。

*3:0.P.41.2m 及び 0.P.33.2m の応答比率による 0.P.38.5m における線形補間値。

表 3-13 重量増加を考慮した割増係数 (原子炉建屋 BOP S s 開機能維持)

位置 (0.P.)	EW 方向
33.2m∼41.2m	1. 15*1
割増係数	1. 15

注記*:地震応答計算書の別紙に示す要素番号 11, 20, 32 の最大せん断ひずみの応答比率の最大値。

(2) 検討結果

a. S d 閉機能維持評価

評価結果を表 3-14 に示す。

重量増加を考慮した割増係数を乗じた結果においても、許容値を超えないた め、重量増加を考慮した場合においても、耐震評価に及ぼす影響がないことを 確認した。

表 3-14 重量増加を考慮した評価結果 (原子炉建屋 BOP Sd 閉機能維持)

項目	地震荷重(kN)	割増係数 ②	①×②	開放荷重*
開放時	59. 9	1.02	61. 1	80.1

注記*:実機大モックアップ試験結果。

b. S s 開機能維持評価

評価結果を表 3-15 に示す。

重量増加を考慮した割増係数を乗じた結果においても、許容値を超えないた め、重量増加を考慮した場合においても、耐震評価に及ぼす影響がないことを 確認した。

表 3-15 重量増加を考慮した評価結果 (原子炉建屋 BOP S s 開機能維持)

層間変位(mm) ①	割増係数 ②	①×②	許容値
8.4	1. 15	9.7	50

3.1.4 原子炉建屋エアロック

(1) 検討方針

原子炉建屋エアロック(以下「エアロック」という。)を対象として、設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率と添付書類「VI-2-9-3-3 原子炉建屋エアロックの耐震性についての計算書」(以下「エアロックの計算書」という。)に示す応力評価結果より、影響検討を行う。

エアロックの計算書では、0.P.22.5m 位置の最大応答加速度による水平震度及び鉛直震度を用いて検討していることから、各方向の最大応答加速度の応答比率の最大値を割増係数として設定し、応力評価結果の発生値に乗じて各許容値を超えないことを確認する。

表 3-16 に応答比率及び割増係数を示す。

表 3-16 重量増加を考慮した割増係数 (エアロック)

位置 (0.P.)	NS 方向	EW方向	鉛直方向
22.5m	1.01*1	1.03*2	1.01*3
割増係数		1.03*4	

注記*1:地震応答計算書の別紙に示す質点番号 2,9,14,21,26 の最大応答加速度の応答比率の最大値。

*2: 地震応答計算書の別紙に示す質点番号 2,6,13,16,23,28 の最大応答加速 度の応答比率の最大値。

*3:地震応答計算書の別紙に示す質点番号7の最大応答加速度の応答比率。

*4: 各方向の応答比率の最大値。

(2) 検討結果

エアロックの評価結果を表 3-17 に示す。重量増加を考慮した割増係数を乗じた結果においても、各許容値を超えないため、重量増加を考慮した場合においても、耐震評価に及ぼす影響がないことを確認した。

表 3-17 重量増加を考慮した評価結果

	評価部位	分類	発生値 割増係数 ① ②		①×②	許容限界
		曲げ (N/mm²)	28	1.03	29	215
	ヒンジ	せん断 (N/mm²)	3	1.03	3	124
ヒ	アーム	組合せ (N/mm²)	28	1.03	29	215
ン	2. 2. 28	曲げ (N/mm²)	182	1.03	187	345
ジ	ピンジ	せん断 (N/mm²)	17	1.03	18	199
部		組合せ (N/mm²)	184	1.03	190	345
	ヒンジ	引張 (N/mm²)	39	1.03	40	651
	ボルト	せん断 (N/mm²)	39	1.03	40	375
		曲げ (N/mm²)	7	1.03	7	205
カ	カンヌキ	せん断 (N/mm²)	2	1.03	2	118
ン		組合せ (N/mm²)	7	1.03	7	205
ヌ	カンヌキ受け	曲げ (N/mm²)	42	1.03	43	205
キ	ピン	せん断 (N/mm²)	4	1.03	4	118
部	カンヌキ受け ボルト	引張(N/mm²)	19	1.03	20	651

3.1.5 原子炉建屋基礎版

(1) 検討方針

原子炉建屋基礎版を対象として、設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率と添付書類「VI-2-9-3-4 原子炉建屋基礎版の耐震性についての計算書」(以下「基礎版の計算書」という。)に示す各評価結果より影響検討を行う。

基礎版の計算書における地震応答解析による評価では、接地圧の評価として、 基準地震動 S s に対する最大接地圧を考慮していることから、最大接地圧の応答 比率を割増係数として設定し、基礎版の計算書における各最大接地圧に乗じた値 が許容値(13700kN/m²)を超えないことを確認する。

基礎版の計算書における応力解析による評価では、地震荷重として、上部構造物からの基礎へのせん断力、曲げモーメント及び軸力(軸力係数)を考慮することから、基礎スラブ直上層である 0. P. -8. 1m~-0. 8m 位置の最大応答せん断力、最大応答曲げモーメント及び最大応答軸力の各方向の応答比率の最大値を割増係数として設定し、応力評価結果の発生値に乗じて各許容値を超えないことを確認する。

表 3-18 に応答比率及び割増係数を示す。

表 3-18 重量増加を考慮した割増係数 (原子炉建屋基礎版)

位置 (0.P.)	NS 方向	EW方向	鉛直方向	
-8.1m∼-0.8m	1.03*1	1.02*2	1.03*3	
割増係数		1.03*4		

注記*1: 地震応答計算書の別紙に示す要素番号 5, 12, 17, 24, 29 の最大応答せん断力及び最大応答曲げモーメントの応答比率の最大値。

*2: 地震応答計算書の別紙に示す要素番号 5,9,18,25,30 の最大応答せん断力及び最大応答曲げモーメントの応答比率の最大値。

*3:地震応答計算書の別紙に示す要素番号10の最大応答軸力の応答比率。

*4: 各方向の応答比率の最大値。

(2) 検討結果

a. 地震応答解析による評価

地震応答解析による評価について、設備の補強や追加等の改造工事に伴う重量増加を考慮した割増係数に乗じた、材料物性の不確かさを考慮した最大接地 圧は、地震応答計算書の別紙 4.3 項に示すとおり、S s 地震時は 3500kN/m² (NS 方向) となり、許容限界 (13700kN/m²) を超えないため、重量増加を考慮 した場合においても、耐震評価に及ぼす影響がないことを確認した。

b. 応力解析による評価

評価結果を表 3-19 に示す。

重量増加を考慮した割増係数を乗じた結果においても,各許容値を超えない ため,重量増加を考慮した場合においても,耐震評価に及ぼす影響がないこと を確認した。

表 3-19 重量増加を考慮した評価結果 Ss地震時

評	価項目	方向	要素番号	組合せケース	発生値 ①	割增 係数 ②	①×2	許容値
軸 <i>力</i> +	コンクリート 圧縮ひずみ (×10 ⁻³)	EW	1123	1-6	0. 766	1.03	0. 789	3. 00
曲げ モーメント	鉄筋 圧縮ひずみ (×10 ⁻³)	放射	169	1-2	0.488	1.03	0. 503	5. 00
面外せん断力	面外 せん断応力度 (N/mm²)	NS	1158	1-4	1.52*	1.03	1.57*	2. 42

注記*:応力の再配分等を考慮して応力の平均化を行った結果。

3.1.6 水密扉

(1) 検討方針

溢水防護設備である原子炉建屋の水密扉(以下「水密扉」という。)を対象として、設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率と添付書類「VI-2-10-2-7-2 水密扉(溢水防護設備)の耐震性についての計算書」(以下「水密扉の計算書」という。)に示す応力評価結果より、影響検討を行う。

水密扉の計算書では、0. P. 22. 50m 及び 0. P. -0. 80m 位置の最大応答加速度による水平震度及び鉛直震度を用いて検討していることから、各方向の最大応答加速度の応答比率の最大値を割増係数として設定し、応力評価結果の発生値に乗じて各許容値を超えないことを確認する。

表 3-20 及び表 3-21 に応答比率及び割増係数を示す。

表 3-20 重量増加を考慮した割増係数(水密扉 No. 9, 10, 12)

位置 (0.P.)	NS 方向	EW方向	鉛直方向
22.5m	1.01*1	1.03*2	1.01*3
割増係数		1.03*4	

注記*1:地震応答計算書の別紙に示す質点番号 2,9,14,21,26 の最大応答加速度の応答 比率の最大値。

*2: 地震応答計算書の別紙に示す質点番号 2, 6, 13, 16, 23, 28 の最大応答加速度の 応答比率の最大値。

*3:地震応答計算書の別紙に示す質点番号7の最大応答加速度の応答比率。

*4: 各方向の応答比率の最大値。

表 3-21 重量増加を考慮した割増係数(水密扉 No.1)

位置 (0.P.)	NS 方向	EW方向	鉛直方向
-0.80m	1.00*1	1.02*2	1.00*3
割増係数		1.02*4	

注記*1: 地震応答計算書の別紙に示す質点番号 5, 12, 24, 29 の最大応答加速度の応答比率の最大値。

*2: 地震応答計算書の別紙に示す質点番号 5,9,26,31 の最大応答加速度の応答比率の最大値。

*3:地震応答計算書の別紙に示す質点番号10の最大応答加速度の応答比率。

*4:各方向の応答比率の最大値。

(2) 検討結果

水密扉の評価結果を表 3-22 に示す。重量増加を考慮した割増係数を乗じた結果においても、各許容値を超えないため、重量増加を考慮した場合においても、耐震評価に及ぼす影響がないことを確認した。

表 3-22(1) 重量増加を考慮した評価結果 (1/2)

			3% /I / ! ©				
水密扉 No.	評価対象部位		発生値①(応力度,荷重)	割増係数 ②	①×②	許容限界値 (N/mm ² , N)	備考
			$(N/mm^2, N)$				
1	ヒンジ 部	ヒンジ板*1	67	1.02	68	235	組合せ
		ヒンジピン*1	173	1.02	176	345	組合せ
		ヒンジボルト	46	1.02	47	420	せん断
	カンヌキ部	カンヌキ*1	13	1.02	13	205	組合せ
		カンヌキ 受けピン* ²	12	1.02	12	345	曲げ
		カンヌキ 受けボルト	5	1.02	5	728	引張
	アンカーボルト*3		3497	1.02	3567	12824	せん断
9	ヒンジ 部	ヒンジ板*1	106	1.03	109	215	組合せ
		ヒンジピン*1	48	1.03	49	686	組合せ
		ヒンジボルト	42	1.03	43	420	せん断
	カン ヌキ部	カンヌキ*1	99	1.03	102	205	組合せ
		カンヌキ 受けピン* ²	123	1.03	127	345	曲げ
		カンヌキ 受けボルト	34	1.03	35	854	引張
	アンカーボルト*3		12290	1.03	12659	40302	せん断
	ヒンジ 部	ヒンジ板*1	62	1.03	64	215	組合せ
		ヒンジピン*1	93	1.03	96	345	組合せ
		ヒンジボルト	199	1.03	205	420	せん断
10	カン ヌキ部	カンヌキ*1	143	1.03	147	345	組合せ
		カンヌキ 受けピン* ²	75	1.03	77	345	曲げ
		カンヌキ 受けボルト	_	_	_	_	_
	アンカ	カーボルト*3	46030	1.03	47411	92284	せん断

注記*1:曲げ,せん断及び組合せのうち,評価結果が最も厳しい値を記載する。

*2:曲げ及びせん断のうち、評価結果が厳しい方の値を記載する。

*3: 引張, せん断及び組合せのうち, 評価結果が最も厳しい値を記載する。

表 3-22(2) 重量増加を考慮した評価結果(2/2)

水密 扉 No.	評価対象部位		発生値 <mark>①</mark> (応力度, 荷重) (N/mm², N)	割増係数	①×②	許容限界値 (N/mm², N)	備考
12	ヒンジ部	ヒンジ板*1	65	1.03	67	215	組合せ
		ヒンジピン*1	64	1.03	66	686	組合せ
		ヒンジボルト	33	1.03	34	493	せん断
	カン ヌキ部	カンヌキ*1	29	1.03	30	205	組合せ
		カンヌキ 受けピン* ² カンヌキ	44	1.03	45	345	曲げ
		カンヌキ 受けボルト	12	1.03	12	854	引張
	パネル取付ボルト		3	1.03	3	854	引張
	方立		40	1.03	41	235	曲げ
	マグサ		22	1.03	23	235	曲げ
	アンカーボルト*3		6012	1.03	6192	25826	せん断

注記*1:曲げ,せん断及び組合せのうち,評価結果が最も厳しい値を記載する。

*2:曲げ及びせん断のうち、評価結果が厳しい方の値を記載する。

*3: 引張, せん断及び組合せのうち, 評価結果が最も厳しい値を記載する。

3.2 機器·配管系

3.2.1 検討方針

設備の補強や追加等の改造工事に伴う重量増加による影響検討フローを図 3-2-1に示し、以下のとおり、改造工事に伴う重量増加による影響検討を行う。影響検討は、以下に示す工認モデル及び補強反映モデルの地震応答解析結果を用いて応答比率を作成し、それを考慮した耐震条件(以下「補強反映耐震条件」という。)を用いて行う。

【工認モデル】

- ・添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」に示す地震応答解析モ デル
- ・添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す原子炉圧力容器,原子炉しゃへい壁及び原子炉本体の基礎等(以下「大型機器系」という。)の地震応答解析モデル

【補強反映モデル】

- ・改造工事に伴う重量増加を反映した「地震応答計算書の別紙 3.2 地震応 答解析モデル」に示す原子炉建屋の地震応答解析モデル(基本ケース)
- ・改造工事に伴う重量増加を反映した別紙 6-1「改造工事に伴う重量増加による建屋-機器連成地震応答解析結果に与える影響 3.2 解析モデル」に示す大型機器系の地震応答解析モデル(基本ケース)

(1) 検討対象

原子炉建屋に設置される以下の機器・配管系を影響検討の対象とする。

- ・設計基準対象施設のうち、耐震重要度分類のSクラスに属する機器・配管系
- ・重大事故等対処施設のうち、常設耐震重要重大事故防止設備、常設重大事故 緩和設備、常設重大事故防止設備(設計基準拡張)(当該設備が属する耐震重 要度分類が S クラスのもの)及び常設重大事故緩和設備(設計基準拡張)に 属する機器・配管系
- ・波及的影響防止のために耐震評価を実施する機器・配管系

(2) 検討方法

a. 地震応答解析

3.2.1 項に示す工認モデル(基本ケース)及び補強反映モデルに対して基準地 震動Ss-D2を用いた地震応答解析を行う。

なお、「2.1 解析方針」に示すとおり、影響検討は b 項に示す応答比率を用いた手法により行うことから、応答比率の算出のための補強反映モデルを用いた地震応答解析は、位相特性の偏りがなく、全周期帯において安定した応答を生じさせる基準地震動S = D 2 を用いる。また、c 項に示す補強反映耐震条件の作成では、基準地震動S = C に対する応答を考慮する。

b. 応答比較

最大応答加速度、床応答曲線及び地震力に対する工認モデル(基本ケース)の地震応答解析結果と補強反映モデルの地震応答解析結果から応答比率「補強反映モデルの応答(Ss-D2)/工認モデル(基本ケース)の応答(Ss-D2)」を算定し、応答比較を行う。

応答比較の結果,応答比率が1を上回る場合,その応答による影響を検討する。

c. 影響検討に用いる耐震条件

b 項で算定した応答比率を工認モデル(不確かさケースを含む)及び基準地震動 S s (7 波)を用いた地震応答解析結果に乗じることで補強反映耐震条件を作成する。

また、補強反映耐震条件と工認モデル(不確かさケースを含む)の応答から作成した耐震計算に用いる耐震条件(最大応答加速度、床応答曲線及び地震力)との条件比率を作成する。ただし、耐震計算において非線形要素を用いた時刻歴応答解析により発生値を算定している原子炉建屋クレーンについては、固有周期の変動等の不確かさを考慮して 0.05~1.00s の周期帯での補強反映床応答曲線と設計用床応答曲線の比率の最大値を用いた比較を行う。

d. 簡易評価による検討対象設備の代表選定

(1)の検討対象設備に対する裕度(許容値/発生値)を整理の上, c 項で作成した条件比率と設備の裕度を比較(以下「簡易評価」という。)を行い, 簡易評価により条件比率が設備の裕度を上回る設備を検討対象設備の代表として選定する。

e. 詳細評価

検討対象設備の代表として選定した設備について、補強反映耐震条件を用いて、 当該設備の耐震計算書で適用している評価手法と同等の手法による評価を行い、 発生値が許容値以下となることを確認する。確認の結果、発生値が許容値を上回 る場合は、追加検討を行う。

f. 追加検討

詳細評価で発生値が許容値を上回った設備は、設備の評価結果等に応じて個別に設備対策、評価の精緻化等を行う。

図 3-2-1 原子炉建屋における改造工事に伴う重量増加を反映した影響検討フロー

3.2.2 検討内容

(1) 応答比率

応答比率の算定方法及び応答比率を以下に示す(建屋-機器連成地震応答解析結果を踏まえた応答比率は、「別紙 6-1 改造工事に伴う重量増加による建屋-機器連成地震応答解析結果に与える影響」参照)。

以下の a 項~c 項のとおり、応答比率が 1 を上回ることを確認したため、図 3-2-1 に示す影響検討フローに基づき、簡易評価による検討対象設備の代表選定、詳細評価及び追加検討を行う。

a. 最大応答加速度の応答比率

各標高について、基準地震動 S s - D 2 による工認モデル(基本ケース)と補強 反映モデルの最大応答加速度を比較し、補強反映モデルの最大応答加速度/工認 モデルの最大応答加速度により応答比率を算定する。なお、水平方向の最大応答加 速度の応答比率算定にあたっては、NS 方向と EW 方向の包絡値(以下、「NS/EW 包 絡」という。)を用いる。

原子炉建屋の最大応答加速度の応答比率を表 3-2-1~表 3-2-4 に示す。

表 3-2-1 最大応答加速度の応答比率 (基準地震動 S s - D 2 , 1.0ZPA, 水平方向(NS/EW 包絡):原子炉建屋)

標高	最大応答	応答比率	
(赤向 0. P. (m)	(×9.80665	(②/①)	
O. F. (III)	①工認モデル	②補強反映モデル	
50. 500	4.71	4. 37	0.93
41. 200	2.56	2.48	0.97
33. 200	2.03	1.98	0.98
22. 500	1.74	1.76	1.02
15. 000	1.39	1.35	0.98
6.000	1.30	1.28	0.99
1. 150	1.00	1.02	1.02
-0.800	0.99	1.00	1.02
-8.100	0.66	0.65	0.99

表 3-2-2 最大応答加速度の応答比率 (基準地震動 S s - D 2 , 1.0ZPA, 鉛直方向:原子炉建屋)

標高	最大応答	応答比率	
(赤向 0. P. (m)	$(\times 9.80665)$	$m/s^2) \times 1.0$	心各比率 (②/①)
U. F. (m)	①工認モデル	②補強反映モデル	(2/1)
48.725	1.58	1.61	1.02
41. 200	1.46	1.46	1.00
33. 200	1.38	1.40	1.02
22. 500	1.22	1. 23	1.01
15. 000	0.99	1.00	1.02
6.000	0.75	0.75	1.00
-0.800	0.62	0.61	0.99
-8. 100	0.55	0.55	1.00

表 3-2-3 最大応答加速度の応答比率 (基準地震動 S s - D 2, 1.2ZPA, 水平方向 (NS/EW 包絡):原子炉建屋)

標高	最大応答	応答比率	
0. P. (m)	(×9.80665	(2/1)	
(/	①工認モデル	②補強反映モデル	
50. 500	5.66	5. 24	0.93
41. 200	3.07	2.98	0.98
33. 200	2.44	2.38	0.98
22. 500	2.09	2.11	1.01
15. 000	1.67	1.62	0.98
6.000	1.55	1.54	1.00
1. 150	1.20	1.22	1.02
-0.800	1.18	1.19	1.01
-8. 100	0.79	0.78	0.99

表 3-2-4 最大応答加速度の応答比率 (基準地震動 S s - D 2 , 1.2ZPA, 鉛直方向:原子炉建屋)

標高	最大応答	応答比率	
(赤向 0. P. (m)	$(\times 9.80665)$	m/s^2) $\times 1.2$	心各比率 (②/①)
U. F. (m)	①工認モデル	②補強反映モデル	(2/1)
48.725	1.90	1.94	1.03
41. 200	1.75	1.75	1.00
33. 200	1.66	1.68	1.02
22. 500	1.46	1. 47	1.01
15. 000	1.19	1. 20	1.01
6.000	0.90	0.90	1.00
-0.800	0.74	0.73	0.99
-8. 100	0.66	0.66	1.00

b. 床応答曲線の応答比率

工認モデル(基本ケース)と補強反映モデルにおける基準地震動 S s - D 2 による床応答曲線を比較し、各標高・各減衰について、補強反映モデルの震度/工認モデルの震度により周期ごとの応答比率を算定する。なお、水平方向の床応答曲線の応答比率算定にあたっては、「NS/EW 包絡」を用いる。応答比率の算定例を図 3-2-2 に示す。

原子炉建屋の各標高・減衰定数 2.0%の工認モデル(基本ケース)と補強反映モデルの床応答曲線を図 3-2-3 及び図 3-2-4 に,周期ごとの応答比率を図 3-2-5 及び図 3-2-6 に示す。なお,床応答曲線の減衰定数は,耐震裕度の比較的小さい配管系の主要な減衰定数である 2.0%を代表として,設備評価に用いた標高の床応答曲線を記載している。

図 3-2-2 床応答曲線における応答比率の算定例 (水平方向 (NS/EW 包絡):原子炉建屋 0.P.15.0m, 固有周期 0.247s)

図 3-2-3 (1/8) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.41.2m)

図 3-2-3 (2/8) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.33.2m)

図 3-2-3 (3/8) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.22.5m)

図 3-2-3 (4/8) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.15.0m)

図 3-2-3 (5/8) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.6.0m)

図 3-2-3 (6/8) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.1.15m)

図 3-2-3 (7/8) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.-0.8m)

図 3-2-3 (8/8) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.-8.1m)

図 3-2-4 (1/7) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 鉛直方向:原子炉建屋 0.P.41.2m)

図 3-2-4 (2/7) 工認モデルと補強反映モデルの床応答曲線 (基準地震動S S - D 2, 鉛直方向:原子炉建屋 0.P.33.2m)

図 3-2-4 (3/7) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 鉛直方向:原子炉建屋 0.P. 22.5m)

図 3-2-4 (4/7) 工認モデルと補強反映モデルの床応答曲線 (基準地震動S S - D 2, 鉛直方向:原子炉建屋 0.P.15.0m)

図 3-2-4 (5/7) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 鉛直方向:原子炉建屋 0.P.6.0m)

図 3-2-4 (6/7) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 鉛直方向:原子炉建屋 0.P.-0.8m)

図 3-2-4 (7/7) 工認モデルと補強反映モデルの床応答曲線 (基準地震動 S s - D 2, 鉛直方向:原子炉建屋 0.P.-8.1m)

図 3-2-5 (1/8) 床応答曲線の応答比率

(基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.41.2m)

図 3-2-5 (2/8) 床応答曲線の応答比率

(基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.33.2m)

図 3-2-5 (3/8) 床応答曲線の応答比率

(基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.22.5m)

図 3-2-5 (4/8) 床応答曲線の応答比率

(基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.15.0m)

図 3-2-5 (5/8) 床応答曲線の応答比率 (基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.6.0m)

図 3-2-5 (6/8) 床応答曲線の応答比率 (基準地震動 $S \ s - D \ 2$, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.1.15m)

図 3-2-5 (7/8) 床応答曲線の応答比率

(基準地震動Ss-D2, 水平方向(NS/EW包絡):原子炉建屋 0.P.-0.8m)

図 3-2-5 (8/8) 床応答曲線の応答比率

(基準地震動 S s - D 2, 水平方向 (NS/EW 包絡):原子炉建屋 0.P.-8.1m)

図 3-2-6 (1/7) 床応答曲線の応答比率 (基準地震動 $S \ s - D \ 2$, 鉛直方向:原子炉建屋 0.P.41.2m)

図 3-2-6 (2/7) 床応答曲線の応答比率 (基準地震動 $S \ s - D \ 2$, 鉛直方向:原子炉建屋 0.P.33.2m)

図 3-2-6 (3/7) 床応答曲線の応答比率 (基準地震動 $S \ s - D \ 2$, 鉛直方向:原子炉建屋 0.P.22.5m)

図 3-2-6 (4/7) 床応答曲線の応答比率 (基準地震動 S s - D 2, 鉛直方向:原子炉建屋 0.P.15.0m)

図 3-2-6 (5/7) 床応答曲線の応答比率 (基準地震動 S S - D 2, 鉛直方向:原子炉建屋 O.P.6.0m)

図 3-2-6 (6/7) 床応答曲線の応答比率 (基準地震動 S s - D 2, 鉛直方向:原子炉建屋 0.P.-0.8m)

図 3-2-6 (7/7) 床応答曲線の応答比率 (基準地震動 S s - D 2, 鉛直方向:原子炉建屋 0.P.-8.1m)

c. 地震力の応答比率

建屋-機器連成地震応答解析モデルの各標高・要素について、工認モデル(基本ケース)と補強反映モデルにおける基準地震動Ss-D2による地震力(せん断力、モーメント、軸力等)を比較し、補強反映モデルの地震力/工認モデルの地震力により応答比率を算定する。なお、水平方向の応答比率算定にあたっては、「NS/EW 包絡」を用いる。

(2) 補強反映耐震条件

補強反映耐震条件は、最大応答加速度、床応答曲線及び地震力についてそれぞれ 以下のとおり応答比率を用いて作成する。なお、影響評価の観点から、応答比率が 1を下回る場合においても、応答比率の算出値をそのまま用いる。

a. 補強反映最大応答加速度

各標高について、工認モデル(基本ケース)を用いた地震応答解析から得られる応答波の最大応答加速度と、工認モデル(不確かさケースを含む)を用いた地震応答解析から得られる応答波の最大応答加速度を包絡させ設定した設計用最大応答加速度に(1)で算定した応答比率を乗じて作成する。

補強反映最大応答加速度の作成フローを図 3-2-7 に示す。

b. 補強反映床応答曲線

各標高・各減衰について、工認モデル(基本ケース)を用いた地震応答解析から得られる応答波を用いて作成した床応答曲線に(1)で算定した周期ごとの応答比率を乗じ±10%拡幅したものと、工認モデル(不確かさケース)を用いた地震応答解析から得られる応答波を用いて作成した床応答曲線に(1)で算定した周期ごとの応答比率を乗じたものを包絡させて作成する。

補強反映床応答曲線の作成フローを図 3-2-8 に示す。

c. 補強反映地震力

建屋-機器連成地震応答解析モデルの各標高・要素について、工認モデル(基本ケース)を用いた地震応答解析から得られる地震力と、工認モデル(不確かさケースを含む)を用いた地震応答解析から得られる地震力を包絡させ設定した設計用地震力に(1)で算定した応答比率を乗じて作成する。

補強反映地震力の作成フローを図 3-2-9 に示す。

注記:破線範囲は,添付書類「VI-2-1-7 設計用床応答曲線の作成方針」 における設計用最大応答加速度作成の実施事項を示す。

図 3-2-7 補強反映最大応答加速度の作成フロー

注記:破線範囲は,添付書類「VI-2-1-7 設計用床応答曲線の作成方針」 における設計用床応答曲線作成の実施事項を示す。

図 3-2-8 補強反映床応答曲線の作成フロー

注記:破線範囲は,添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」 及び「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに 原子炉格納容器及び原子炉本体の基礎の地震応答計算書」における 設計用地震力作成の実施事項を示す。

図 3-2-9 補強反映地震力の作成フロー

3.2.3 検討結果

(1) 簡易評価結果による検討対象設備の代表選定及び詳細評価結果

「3.2.1 検討方針」に示す影響検討フローに従った検討を行い,簡易評価により, 条件比率が設備の裕度を上回った 25 設備を検討対象設備の代表として選定した。

検討対象設備の代表として選定した 25 設備の簡易評価結果を表 3-2-5 に示す。 また、当該設備の詳細評価結果を表 3-2-6 に示す。

なお、配管の詳細評価対象は、評価に用いる各標高(質点)で応力評価結果の裕度が最小となる配管及び疲労累積係数が最大となる配管を代表としている。また、簡易評価は、対象設備の応力分類ごとに行っている。

検討対象設備の代表として選定した 25 設備に対して,詳細評価として補強反映耐震条件による耐震計算を行い,制御棒挿入性評価を除く 24 設備については,発生値が許容値以下となることを確認した。

詳細評価の結果,発生値が許容値を上回った制御棒挿入性評価に対する追加検討を行う。

表 3-2-5 検討対象設備の代表として選定した 25 設備の簡易評価結果 (1/3)

記 供 欠 私	亚压タ(4.*)	1 評価部位	3位 応力分類		震評価計算書 準地震動 S s		夕 件 山 宏	検討
設備名称	評価条件*1	計 個 部 仏	心刀分類	発生値* ² (MPa)	許容値 (MPa)	裕度	条件比率	結果
シュラウドサポート	DB	レグ	軸圧縮	189	209	1.10	1.12	×
燃料プール冷却	DB	胴板	一次+二次 応力	675	420	0.62	1.01	×
浄化系熱交換器	DВ	제 리 12X	疲労*3	0.31	1	ı	1.01	^
燃料プール冷却 浄化系配管	DB	配管本体	一次+二次 応力	436	376	0.86	1.07	×
(FPC-002)	סת	配官本件	疲労*3	0.0034	1	-	図 3-2-10	^
原子炉再循環系配管	DB	画 笠 七 仕	一次+二次 応力	663	354	0.53	1.06	×
(PLR-001)	DR	配管本体	疲労*3	0. 2091	1	-	図 3-2-11	×
原子炉再循環系配管	D.D.	■7 公公 → /→	一次+二次 応力	657	354	0.53	1.05	×
(PLR-002)	DB	配管本体	疲労*3	0.3181	1	-	図 3-2-12	
主蒸気系配管	DB	配管本体配管本体	一次+二次 応力	684	375	0.54	1.10	×
(MS-001)			疲労*3	0.614	1	-	図 3-2-13	
主蒸気系配管	D.D.		一次+二次 応力	630	375	0.59	1.10	
(MS-003)	DB		疲労*3	0.3706	1	-	図 3-2-14	×
主蒸気系配管	CA	配管本体	一次+二次 応力	468	386	0.82	1.07	
(MS-004)	SA	郎 官 本 体	疲労*3	0.8529	1	-	図 3-2-15	×
残留熱除去系	DB	no te	一次+二次 応力	783	497	0.63	1 01	
熱交換器	DR	胴板	疲労*3	0.38	1	-	1.01	×
残留熱除去系配管	D.D.	和答えた	一次+二次 応力	680	366	0.53	1.03	V
(RHR-003)	DB	配管本体	疲労*3	0.5620	1	-	図 3-2-16	×
残留熱除去系配管	D.D.	#7 <i>frfr</i>	一次+二次 応力	370	366	0.98	1.05	~
(RHR-004)	DB	配管本体	疲労*3	0.0887	1	-	⊠ 3-2-17	×

注記*1:設計基準対象施設の評価条件を「DB」, 重大事故等対処設備の評価条件を「SA」 と記載。

*2:一次+二次応力の発生値が許容値を上回った場合は、疲労評価を実施する。

*3:単位は無次元。

表 3-2-5 検討対象設備の代表として選定した 25 設備の簡易評価結果 (2/3)

=11 l#s /7 4/s	₹ /T ⁄2 /4 * 1	→1 /1 +1 /-	+ + // *=	耐	震評価計算書 準地震動Ss	ţ.		検討
設備名称	評価条件*1	評価部位	応力分類	発生値* ² (MPa)	許容値 (MPa)	裕度	条件比率	結果
残留熱除去系配管	D.D.	配管本体	一次+二次 応力	675	366	0.54	1.04	×
(RHR-005)	DB	11.11.11.11.11.11.11.11.11.11.11.11.11.	疲労*3	0.6667	1	-	図 3-2-18	^
残留熱除去系配管	SA	配管本体	一次+二次 応力	422	414	0.98	1.09	×
(RHR-010)	ON.	比音不停	疲労*3	0.7118	1	-	図 3-2-19	^
原子炉補機冷却水系 配管 (KRCW-205)	DB	配管本体	一次+二次 応力	440	458	1.04	1.16 図 3-2-20	×
制御棒 (挿入性評価)	DB	_	相対変位*4	54. 2	60	1. 10	1.11	×
制御棒駆動水圧系配管	DB	配管本体	一次+二次 応力	292	318	1.08	1.11	×
(CRD-005-1)	מע	11日本件	疲労*3	0.2729	1	-	図 3-2-21	^
制御棒駆動水圧系配管	DB	配管本体	一次+二次 応力	434	318	0.73	1.02	×
(CRD-017-3)	מע	11日本件	疲労*3	0.8674	1	-	図 3-2-22	^
ほう酸水注入系配管	SA	配管本体	一次+二次 応力	211	206	0.97	1.08	×
(SLC-003)	on.	比音不停	疲労*3	0.0001	1	-	図 3-2-23	
ドライウェルベント	DB	ドライウェル ベント開口部	一次+二次 応力	432	501	1. 15	1.26 図 3-2-24	×
開口部	SA	ドライウェル ベント開口部	一次+二次 応力	460	501	1.08	1.25 図 3-2-25	×
	DB	エンドプレー ト (上側)	一次応力 (組合せ)	248	264	1.06		
		ベントヘッダ	一次+二次 応力	516	458	0.88	1.26 図 3-2-24	×
ダウンカマ		(一般部以外)	疲労*3	0.284	1	-		
777 AX	7	エンドプレー ト (上側)	一次応力 (組合せ)	247	264	1.06		
	SA	ベントヘッダ	一次+二次 応力	592	473	0.79	1.25 図 3-2-25	×
		(一般部以外)	疲労*3	0.547	1	-		
	DB	ベント管 (一般部以外)	一次+二次 応力	371	393	1.05	1.26 図 3-2-24	×
ベント管	SA	ベント管	一次+二次 応力	418	393	0.94	1.25	×
	SA	(一般部以外)	疲労*3	0.489	1	-	図 3-2-25	_ ^

注記*1:設計基準対象施設の評価条件を「DB」, 重大事故等対処設備の評価条件を「SA」 と記載。

*2:一次+二次応力の発生値が許容値を上回った場合は、疲労評価を実施する。

*3:単位は無次元。*4:単位は「mm」。

表 3-2-5 検討対象設備の代表として選定した 25 設備の簡易評価結果 (3/3)

司 / 井 万 五十	評価条件*1	評価部位	応力分類		対震評価計算 長準地震動 S		条件比率	検討
設備名称	辞伽宋件	計 川 计 1	心刀刃類	発生値* ² (MPa)	許容値 (MPa)	裕度	宋 件 比	結果
可燃性ガス濃度 制御系配管	DB	配管本体	一次+二次 応力	200	150	0.75	1.02	×
(FCS-006)	מע	AL B TYPE	疲労*3	0.5717	1	ı	図 3-2-26	
原子炉格納容器フィルタベント系配管	SA	配管本体	一次+二次 応力	302	240	0.79	1.05	×
アダペント 新配官 (FCVS-003)			疲労*3	0.3849	1	-	図 3-2-27	
原子炉格納容器フィルタベント系配管		配管本体	一次+二次 応力	274	240	0.87	1.08	×
ルダヘント糸配官 (FCVS-004)			疲労*3	0.3833	1	-	図 3-2-28	×
非常用ディーゼル 発電設備配管 (DGDO-B008)	DB	配管本体	一次+二次 応力	439	398	0.90	1.08 図 3-2-29	×

注記*1:設計基準対象施設の評価条件を「DB」, 重大事故等対処設備の評価条件を「SA」 と記載。

*2:一次+二次応力の発生値が許容値を上回った場合は、疲労評価を実施する。

*3:単位は無次元。

検討対象設備の代表として選定した 25 設備の詳細評価結果(1/4) 表 3-2-6

							11	
75 47 #J UE	二次 任 *—	力 44 五 25	十 〈 《		詳細評価条件	補強反映耐震条件を用いた評価 (基準地震動Ss)	4を用いた評価 動Ss)	検討
政備名於	光	11年11年11年11日	ふろが親	最大応答加速度	床応答曲線	発生值*2 (MPa)	許容値 (MPa)	結果
イーポ 中 ☆ ウトゥッ	DB	Ž Ž	軸圧縮	I	原子炉圧力容器 *3 0.P. 11.310, 9.334 m 炉心シュラウド 0.P. 11.496, 10.324, 8.595 m タイロッド	204	209	0
然料プーア冷却	q	<u>1</u>	一次十二次応力	水平:1.93		299	420	
净化系熱交換器	UB	加奴	疲労*4	鉛直:1.39	I	0.30	1)
然料プーア冷却等の方式	r u	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	一次十二次応力	水平:2.60	原子炉建屋	426	376	(
(FPC-002)	UB	*	疲労*4	鉛直:1.81	0.F. 33.2, 22.3, 13.0 m (0.5%減衰)	0.0025	1)
原子炉再循環系配管	q	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	一次十二次応力	水平:1.62	原子炉本体の基礎	626	354	(
(PLR-001)	ЛВ	*	疲労*4	鈴直:0.90	O.F. 6.24 m (2.5%減衰)	0.1868	1)
原子炉再循環系配管	dd	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	一次十二次応力	水平:1.62	原子炉本体の基礎	629	354	(
(PLR-002)	ПВ	₹ ₹ □. Ы.	疲労*4	鉛直:0.90	0.r. 0.24 m (2.5%減衰)	0.2701	1)
主蒸気系配管	au	1	一次十二次応力	水平:1.93	原子炉しゃへい壁 0.0 10.6 m	633	375	(
(MS-001)	gπ	1	疲労*4	鉛直:1.33	0.5.10.0 III (2.0%減衰)	0.4641	1)
注記×1・設計其準対象協設の郵価多体を「NB」	多格勢の評価	各件を「DRI	電大車扮築対処設備の郵価条件を「 <a>↓		帯はて			

注記*1:設計基準対象施設の評価条件を「DB」,重大事故等対処設備の評価条件を「SA」と記載。 *2:一次+二次応力の発生値が許容値を上回った場合は,疲労評価を実施する。 *3:補強反映耐震条件(震度,地震力(せん断力,モーメント,軸力)の算出位置を床応答曲線の欄に記載。 *4:単位は無次元。

4
S
\mathbb{S}
맫
쏾
用
7
1111111
眾
詳新
111111111111111111111111111111111111111
6
撫
N N
認
25 穀俑
- 4
ZZ
)
fu l
定
幽
~
_
ر الح
イン
表とし
代表とし
の代表とし
可の代表とし
備の代表とし
設備の代表とし
段設備の代表とし
- 象設備の代表とし
対象設備の代表とし
対象
対象
対象
検討対象設備の代表とし
検討対象
検討対象
検討対象
検討対象
対象

	検 結 黒))		0 0			0		0	
	‡を用いた評価 動 S s)	許容値 (MPa)	375	П	386	1	497	1	366	П	366	1	366	1
(2/4)	補強反映耐震条件を用いた評価 (基準地震動 S s)	発生值*2 (MPa)	596	0.2885	484	0.9135*4	922	0.36	664	0.5066	338	0.0647	623	0.5037
<mark>設備の代表としく選圧した</mark> 25	詳細評価条件	床応答曲線	原子炉しゃへい壁 0.P. 13.4 m (2.0%減衰)		原子炉しゃへい壁	原十四 しゃへい壁 0.P. 13.4 m (2.0%減衰)		原子炉しゃへい壁 0.P. 15.95 m (2.5%減衰)		原子炉建屋 0.P. 22.5, 15.0 m 原子炉しゃへい壁 0.P. 21.55, 18.79, 15.95 m 原子炉格納容器 0.P. 25.858 m (2.5%減衰)		原子炉压力容器 0.P. 28.6 m	原子炉格納容器 0. P. 25.858 m (2.5%藏衰)	
大表として選定し	紅	最大応答加速度 水平:2.01 鉛直:1.59			水平:2.01	鈴直:1.59 水平:1.97 鈴直:1.42		水平:2.09	鉛直:1.78		水平:2.33 鉛直:1.93	가 <u>፲</u> · 3 7도	给直:1.47	
傾 引 対 家 設 慵 の	十 子 克	ふろろ親	一次+二次応力	疲労*3	一次+二次応力	疲労*3	一次+二次応力	疲労*3	一次+二次応力	疲労*3	一次+二次応力	疲労*3	一次+二次応力	疲労*3
本 3-2-6	計 型 型 型 型 型 型 型 型 型 型 型 型 型 型 型 型 型 型 型		1		1		胴板		配管本体 配管本体		配管本体		配管本体	
	評価条件*1		DB SA		SA.	DB		DB			DB) DB	
	設備名称 評価		主蒸気系配管	(MS-003)	主蒸気系配管	(MS-004)	残留熟除去系	熱交換器	残留熟除去系配管	(RHR-003)		残留熟除去糸配管 (RHR-004)	珠匃教除士玄퍼等	(RHR-005)

注記*1:設計基準対象施設の評価条件を「DB」,重大事故等対処設備の評価条件を「SA」と記載。 *2:一次+二次応力の発生値が許容値を上回った場合は,疲労評価を実施する。 *3:単位は無次元。 *4:設備の全固有周期に応じた等価繰返し回数の包絡値として,個別に設定する等価繰返し回数 181 回を適用。

1
7
3
完
캪
坦
a 社
無
詳新
備の
で備
談談
25
N
加
異気
剄
7
ر
4)
表
#
6

弘
长
和制
1×
11/2
後
9
3 - 2 - 6
$\frac{1}{2}$
\sim
表

	検討	架	0	0	×	0	0	0	0	0	0	
	件を用いた評価 動 S s)	許容値 (MPa)	414	458	09	318	318	1	206	501	501	
(3/4)	補強反映耐震条件を用いた評価 (基準地震動 S s)	発生值*2 (MPa)	406	442	60.2	292	420	0.7312	195	445	488	
: <mark> 設備の代表として選定した</mark> 25	詳細評価条件	床応答曲線	原子炉建屋 0.P. 6.0, 1.15, -0.8, -8.1 m (2%減衰)	原子炉建屋 0.P. 41.2, 33.2, 22.5, 15.0, 6.0, 1.15, -0.8, -8.1 m (2%減衰)	ı	原子炉建屋 0.P. 15.0, 6.0 m 原子炉格納容器 0.P. 14.295, 9.448 m (2.0%減衰)	原子炉本体の基礎 0.P. 7.040, 6.240, 4.950 m	制御棒駆動ハウジング 0.P. 3.258 m (0.5%減衰)	原子炉建屋 0.P. 22.5, 15.0 m 原子炉本体の基礎 0.P. 7.04 m 原子炉しゃへい壁 0.P. 13.4, 10.6 m 原子炉格納容器 0.P. 17.15, 14.295 m (2%減衰)	原子炉格納容器 0.P. 2.6 m*5 (1%減衰)	原子炉格納容器 0.P. 2.6 m*5 (1%減衰)	中はた
代表として 選正		最大応答加速度	水平:1.57 鉛直:1.09	水平:3.37 鉛直:1.89	I	水平:1.93 鉛直:1.39	水 近・1 66	鉛直:1.32	水平:2.15 鈴直:1.59	水平:- 鉛直:1.01	水平:- 鉛直:1.04	机設備の評価条件を「SAI)
傾討対象設備の	4 4 2	でして独	- 次 + 二 次 応 カ - 次 + 二 次 応 カ - 次 + 二 次 応 カ		相対変位*3	一次+二次応力	一次十二次応力	疲労*4	一次+二次応力	一次十二次応力	一次十二次応力	看 大 重 粉 等 好 机 設 備 の
表 3-2-6	評価条件*1		評価部位 配管本体 配管本体		I	配管本体		配管本体	配管本体	ドライウェ		
			SA	DB	DB	DB	DB		SA	DB	SA	多 な い が の が 年 る
			残留熟除去系配管 (RHR-010)	原子炉補機冷却水系 配管 (KRCW-205)	制御棒 (挿入性評価)	制御棒駆動水圧系 配管 (CRD-005-1)	制御棒駆動水圧系	西2 管 (CRD-017-3)	ほう酸水注入系配管 (SLC-003)	ドライウェルベント	開口部	注記*1・設計其準対象協設の評価条件を「NR」

注記*1:設計基準対象施設の評価条件を「DB」,重大事故等対処設備の評価条件を「SA」と記載。
*2:一次十二次応力の発生値が許容値を上回った場合は,疲労評価を実施する。
*3:単位は「mm」。
*4:単位は無次元。
*5:原子炉格納容器のせん断力及び曲げモーメントも使用。

(1/1) 田 宋 田 (1/1) c. C

	始 無 果		0			0			0	0		0		0		0		0	
<mark>検討対象設備の代表として選定した</mark> 25 設備の詳細評価結果(4/4)	補強反映耐震条件を用いた評価 (基準地震動Ss)		264	458	П	264	473	П	393	393	1	150	1	240	1	240	1	398	1
		発生值*2 (MPa)	255	530	0.317	261	628	0.771	382	444	0.635	204*4	0.6142*4	294	0.3510	278	0.4072	439	0.3983
	詳細評価条件	床応答曲緞	原子炉格納容器 0.P. 2.6 m (1%減衰)			原子炉格納容器 0.P. 2.6 m (1%減衰)			原子炉格納容器 0.P. 2.6 m (1%減衰)	原子炉格納容器	0.r. 2.0 III (1%减衰)	原子炉建屋	0.F. 42.9 III (1.0%減衰)		0.F. 33.2, 22.3, 13.0 III (3.0%減衰)	原子炉建屋 0.P. 50.5 (水平), 48.725 (鉛直), 33.2, 22.5 m (3.0%減衰)		軽油連絡ダクト 0.P. 12.100, 10.500, 9.500 m	原子炉建屋 0.P. 15.0, 6.0 m (2%減衰)
		最大応答加速度	ı			I			1 1		水平:2.15 鉛直:1.58		水平:2.60 鉛直:1.81		水平:6.77 鈴直:2.16		水平:1.93		
検討対象設備の	+ +-	ら カ 分 独	一次応力(組合せ)	一次+二次応力	疲労*3	一次応力(組合せ)	次十二次応力	疲労*3	一次十二次応力	一次+二次応力	疲労*3	次十二次応力	疲労*3	一次十二次応力	疲労*3	次十二次応力	疲労*3	一次十二次応力	疲労*3 鉛直:1.39
表 3-2-6			エンドプレー ト(上側) ベントヘッダ (一般部以外)			Hンドプレート(上側) ト(上側) ベントヘッダ (一般部以外)			ベント管 (一般部以外)			配管本体		配管本体		配管本体			
			DB			SA			DB	SA		DB		SA		SA		DB	
	北田	設備名称	ダウンカン			<i>> > > > > > > > > ></i>			が、			可燃性ガス濃度 制御系配管 (FCS-006)		原子炉格納容器 フィルタベント系 配管 (FCVS-003)		原子炉格納容器 フォルタベント系 配管 (FCVS-004)		非常用ディーゼル 発電設備配管 DB 配管本体 (DGD0-B008)	

注記*1:設計基準対象施設の評価条件を「DB」,重大事故等対処設備の評価条件を「SA」と記載。 *2:一次+二次応力の発生値が許容値を上回った場合は,疲労評価を実施する。 *3:単位は無次元。 *4:設備の固有周期に対応する応答比率の包絡値を耐震計算書の値(一次+二次応力)に乗じた値を適用。

図 3-2-10 燃料プール冷却浄化系配管 (FPC-002) (DB) の条件比率 (基準地震動 S s, 水平方向:原子炉建屋 0.P. m)

図 3-2-11 原子炉再循環系配管 (PLR-001) の条件比率 (基準地震動 S s, 水平方向:原子炉本体の基礎 0.P. m)

枠囲みの内容は商業機密の観点から公開できません。

図 3-2-12 原子炉再循環系配管 (PLR-002) の条件比率 (基準地震動Ss,水平方向:原子炉本体の基礎 0.P. ______m)

図 3-2-13 主蒸気系配管 (MS-001 クラス 1) (DB) の条件比率 (基準地震動 S s, 水平方向:原子炉しゃへい壁 0.P. m)

枠囲みの内容は商業機密の観点から公開できません。

図 3-2-14 主蒸気系配管 (MS-003 クラス 1) (DB) の条件比率 (基準地震動 S s, 水平方向:原子炉しゃへい壁 0.P. m)

図 3-2-15 主蒸気系配管 (MS-004) (SA) の条件比率 (基準地震動 S s, 水平方向:原子炉しゃへい壁 0.P. **m**

枠囲みの内容は商業機密の観点から公開できません。

図 3-2-16 残留熱除去系配管 (RHR-003) の条件比率 (基準地震動 S s, 鉛直方向:原子炉しゃへい壁 0.P. m)

図 3-2-17 残留熱除去系配管 (RHR-004) の条件比率 (基準地震動 S s, 水平方向:原子炉しゃへい壁 0.P. m

図 3-2-18 残留熱除去系配管 (RHR-005) の条件比率 (基準地震動 S s , 水平方向:原子炉格納容器 0.P. m)

図 3-2-19 残留熱除去系配管 (RHR-010) (SA) の条件比率 (基準地震動 S s, 水平方向:原子炉建屋 0.P. m)

図 3-2-20 原子炉補機冷却水系配管 (KRCW-205) の条件比率 (基準地震動 S s, 水平方向:原子炉建屋 0.P. m)

図 3-2-21 制御棒駆動水圧系配管 (CRD-005-1) の条件比率 (基準地震動 S s, 水平方向:原子炉格納容器 0.P. m)

図 3-2-22 制御棒駆動水圧系配管 (CRD-017-3) の条件比率 (基準地震動 S s , 鉛直方向:制御棒駆動機構ハウジング 0.P. m)

図 3-2-23 ほう酸水注入系配管 (SLC-003) (SA) の条件比率 (基準地震動 S s , 水平方向:原子炉格納容器 0.P. m)

図 3-2-24 ドライウェルベント開口部,ダウンカマ,ベント管 (DB) の条件比率 (基準地震動 S s, 水平方向:原子炉格納容器 0.P. m)

図 3-2-25 ドライウェルベント開口部,ダウンカマ,ベント管 (SA) の条件比率 (基準地震動 S s, 水平方向:原子炉格納容器 0.P. m)

図 3-2-26 可燃性ガス濃度制御系配管 (FCS-006) (DB) の条件比率 (基準地震動 S s, 鉛直方向:原子炉建屋 0.P. m)

図 3-2-27 原子炉格納容器フィルタベント系配管 (FCVS-003) (SA) の条件比率 (基準地震動 S s, 水平方向:原子炉建屋 0.P. _____m)

図 3-2-28 原子炉格納容器フィルタベント系配管 (FCVS-004) (SA) の条件比率 (基準地震動 S s, 水平方向:原子炉建屋 0.P. ______m)

図 3-2-29 非常用ディーゼル発電設備配管 (DGDO-B008) の条件比率 (基準地震動 S s , 水平方向:原子炉建屋 0.P. m)

(2) 追加検討結果

「3.2.1 検討方針」に示す原子炉建屋における改造工事に伴う重量増加を反映した影響検討フロー(図 3-2-1)に基づき、実施した制御棒挿入性評価の詳細評価評価の結果、補強反映耐震条件 60.2 mm(工認評価に用いる燃料集合体相対変位 54.2 mm)×応答比率(1.11、別紙 6-1 表 4-7 参照))が許容値 60mm を上回ったことを踏まえ、図 3-2-1 の影響検討フローに従い追加検討を行う。

追加検討は、以下の手順により検討した。なお、検討に用いる地震動は、燃料集合体相対変位が最大となる基準地震動Ss-D2を用いている。

- ① 工認モデルによる材料物性の不確かさを考慮する検討ケース*ごとに応答 比率を考慮した燃料集合体相対変位(各検討ケースの燃料集合体相対変位× 応答比率(1.11) を確認し、確認済相対変位を上回る検討ケース(ケース 3)を抽出(表 3-2-7 参照)。
- ② 抽出した検討ケースの地震応答解析モデルに改造工事に伴う重量増加を反映した地震応答解析モデルを作成。
- ③ 作成した地震応答解析モデルを用いて地震応答解析を行い,燃料集合体相対変位(55.2 mm)が確認済相対変位(60 mm)以下となることを確認。

対象の確認結果を表 3-2-7 に、追加検討の結果を表 3-2-8 に示す。

検討結果から,発生値(燃料集合体相対変位 55.2m)が許容値(確認済相対変位 60mm)以下となることを確認した。

注記*:添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉 格納容器及び原子炉本体の基礎の地震応答計算書」に示す検討ケース

表 3-2-7 各検討ケースにおける制御棒挿入性評価

工認モデルによる 材料物性の不確か さを考慮する検討 ケース	燃料集合体 相対変位(mm) (NS/EW 包絡)	応答比率を考慮した 燃料集合体相対変位 (燃料集合体相対変 位×応答比率 (1.11))	確認済 相対変位 (mm)	追加検討 ケース*
ケース 1 (基本ケース)	47.7	53. 0		_
ケース 2	50. 5	56. 1		_
ケース3	54. 2	60. 2		0
ケース 4	39. 9	44. 3	60	
ケース 5	40.6	45. 1		_
ケース 6	39. 0	43. 3		_
ケース7	48. 0	53. 3		_

注記*:応答比率を考慮した燃料集合体相対変位が許容値 60mm を上回るケースを追加検 討ケースとする。

表 3-2-8 追加検討<mark>の</mark>結果

検討ケース	入力地震動	燃料集合体 相対変位 (mm)	確認済 相対変位 (mm)	影響検討結果
ケース3	S s - D 2	55. 2	60	0

(3) 耐震計算書との比較

表 3-2-9 に原子炉建屋の設備の補強や追加等の改造工事に伴う重量増加による影響を踏まえた詳細評価及び追加検討による発生値と耐震計算書に記載の発生値との比較結果を示す。表 3-2-9 のとおり,詳細評価及び追加検討による発生値が当該設備の耐震計算書に記載の発生値を上回った設備は9設備である。

詳細評価及び追加検討による発生値と耐震計算書に記載の発生値との比較結果(1/3) 表 3-2-9

比較 結果*3	0								l					()
耐震計算書に記載の 発生値(MPa)*2 (基準地震動Ss)	189	675	0.31	436	0.0034	663	0.2091	657	0.3181	684	0.614	630	0.3706	468	0.8529
詳細評価による 発生値(MPa)*2 (基準地震動Ss)	204	299	0.30	426	0.0025	626	0.1868	629	0.2701	633	0.4641	596	0.2885	484	0.9135*5
応力分類	軸圧縮	一次十二次応力	疲労*4	一次十二次応力	疲労*4	一次十二次応力	疲労*4	一次十二次応力	疲労*4	一次十二次応力	疲労*4	一次十二次応力	疲労*4	一次十二次応力	距音本件 疲労*4
評価部位	7 %	17 E	MP 4X	五十级量	11.14.14	+7 +	11.11.11.11.11.11.11.11.11.11.11.11.11.	十十次日	11.13.4.14	+7 +	11.11.14.14.14.14.14.14.14.14.14.14.14.1	十十次日	11.13.4.14	田 茶 木 茶	11.13 4.14
評価条件*1	DB	ć	UB	d d	UB	ć	UB	ć.	UB	ć	UB	c c	UB	V	
設備名称	シュラウドサポート	然料プール冷却浄化系	熱交換器	燃料プール冷却浄化系配管	(FPC-002)	原子炉再循環系配管	(PLR-001)	原子炉再循環系配管	(PLR-002)	主蒸気系配管	(MS-001)	主蒸気系配管	(MS-003)	主蒸気系配管	(MS-004)

注記*1:設計基準対象施設の評価条件を「DB」,重大事故等対処設備の評価条件を「SA」と記載。
*2:一次十二次応力の発生値が許容値を上回った場合は,疲労評価を実施する。
*3:詳細評価による発生値が耐震計算書に記載の発生値を上回る場合「○」を記載。
*4:単位は無次元。
*5:設備の全固有周期に応じた等価繰返し回数の包絡値として,個別に設定する等価繰返し回数 181 回を適用。

(6/6)用代五 对不活 # 斯雷站给事计 双升陆 #

	評価条件*1	評価部位	応力分類	詳細評価による 発生値 (MPa) * 2 (基準地震動 S s)	耐震計算書に記載の 発生値 (MPa) *2 (基準地震動Ss)	比較 結果*3
	r z	ij	一次+二次応力	922	783	I
残留熟际古米熟文操布	ИВ	加州校	疲労*4	0.36	0.38	I
	4	五十岁日	一次+二次応力	664	089	I
	UB	世 中 田 田	疲労*4	0.5066	0.5620	ı
	- E	五十岁日	一次十二次応力	338	370	
	UB	4 4 年 日 日 日	疲労*4	0.0647	0.0887	I
	ď	五十段日	一次+二次応力	623	675	
	D D	1	疲労*4	0.5037	0.6667	
残留熟除去系配管 (RHR-010)	SA	配管本体	一次十二次応力	406	422	I
原子炉補機冷却水系配管 (KRCW-205)	DB	配管本体	一次+二次応力	442	440	0
制御棒駆動水圧系配管 (CRD-005-1)	DB	配管本体	一次+二次応力	292	292	I
制御棒駆動水圧系配管	ď	光	一次+二次応力	420	434	
	NB	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	疲労**4	0.7312	0.8674	
ほう酸水注入系配管 (SLC-003)	SA	配管本体	一次+二次応力	195	211	ı
日間 インジンドー 日	DB	ドライウェル	一次+二次応力	445	432	C
fi I	SA	ジント 踊口部	一次十二次応力	488	460	

と門敷。 注記*1:設計基準対象施設の評価条件を「DB」,重大事故等対処設備の評価条件を「SA」*2:一次+二次応力の発生値が許容値を上回った場合は,疲労評価を実施する。*3:詳細評価による発生値が耐震計算書に記載の発生値を上回る場合「○」を記載。*4:単位は無次元。

3-0-0

	比較 結果*³			()				0		()		I	()		I	0
, 比較結果 (3/3)	耐震計算書に記載の 発生値(MPa)*2 (基準地震動Ss)	248	516	0.284	247	592	0.547	371	418	0.489	200	0.5717	302	0.3849	274	0,3833	439	0.4011	54.2
加傾討による発生個と耐震計算書に記載の発生個との比較結果(3/3)	詳細評価による 発生値(MPa)*2 (基準地震動Ss)	255	530	0.317	261	628	0.771	382	444	0.635	204*5	0.6142*5	294	0.3510	278	0.4072	439	0.3983	55.2*7
る発生個と耐展計	応力分類	一次応力(組合せ)	一次十二次応力	疲労*4	一次応力 (組合せ)	一次十二次応力	疲労*4	一次十二次応力	一次十二次応力	疲労*4	一次十二次応力	疲労*4	一次十二次応力	疲労*4	一次十二次応力	疲労*4	一次十二次応力	疲労*4	相対変位*6
	評価部位	エンドプレート (上側)	メントヘッダ	(一般部以外)	エンドプレート (上側)	メントヘッダ	(一般部以外)		ペント 御(一般部以外)		五十五百二十五五十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	4 4 July 14 Ju	计	1		**	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 1	ı
	評価条件*1		DB			SA		DB	Ç	SA	ממ	g/J	C	NO.	Ç	PAC .	ad	UB	
表 3	設備名称			1 1 1 1 3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				が、アン・一部		可燃性ガス濃度制御系配管	(FCS-006)	原子炉格納容器フィルタ	(FCVS-003)	原子炉格納容器フィルタ	、 ト 六 門 日 日 (FCV S-004)	非常用ディーゼルな無地に	光电放闸监督 (DGD0-B008)	制御棒 (挿入性評価) DB

注記*1:設計基準対象施設の評価条件を「DB」,重大事故等対処設備の評価条件を「SA」と記載。
*2:一次十二次応力の発生値が許容値を上回った場合は,疲労評価を実施する。
*3:詳細評価による発生値が耐震計算書に記載の発生値を上回る場合「○」を記載。
*4:単位は無次元。
*5:設備の固有周期に対応する応答比率の包絡値を耐震計算書の値(一次十二次応力)に乗じた値を適用。
*6:単位は「mm」。
*7:詳細評価で発生値(燃料集合体相対変位)が許容値(確認済相対変位)を上回る検討ケース(ケース 3)における追加検討の結果。

4. 検討結果

改造工事に伴う重量増加の影響検討について、補足説明資料「補足-600-43 地震応答に影響を及ぼす不確かさ要因の整理」に基づき検討を行った。

応答比較の結果、補強反映モデルの応答が今回工認モデルの応答を一部上回る部分が あることから、以下の内容を確認した。

(1) 建物·構築物

・材料物性の不確かさ等を考慮した設計用地震力に応答比率を考慮した場合において も、原子炉建屋内の各施設に生じる応答が各許容値を超えないことを確認した。

(2) 機器·配管系

- ・改造工事に伴う重量増加を反映して作成した補強反映モデルを作成し、基準地震動 Ss-D2に対する補強反映モデルの応答及び工認モデルの応答の比から応答比率 を算定した。また、算定した応答比率を基準地震動Ssに対する工認モデルの応答 に乗じることで補強反映耐震条件を作成した。補強反映耐震条件と工認モデルの応 答から作成した耐震計算に用いる耐震条件との条件比率を作成した。
- ・簡易評価により、条件比率が設備の裕度を上回った 25 設備を検討対象設備の代表として選定した。
- ・検討対象設備の代表として選定した 25 設備に対して、補強反映耐震条件を用いた 詳細評価を行い、制御棒挿入性評価を除く 24 設備については、発生値が許容値以下 となることを確認した。
- ・詳細評価において発生値が許容値を上回った制御棒挿入性評価に対する追加検討を 行った。追加検討の結果,改造工事に伴う重量増加を反映して作成した地震応答解 析モデルを用いて地震応答解析を行い,発生値が許容値以下となることを確認した。

以上の結果から、改造工事に伴う重量増加の影響を考慮しても建物・構築物及び機器・ 配管系の耐震性が確保されることを確認した。

別紙 6-1 改造工事に伴う重量増加による建屋 - 機器連成 地震応答解析結果に与える影響

目 次

1.	概	要…		• •	• •	• •		• •	• • •	 • •	 • • •	 	• •	• •	• •	 • •	• •	•	 • •	 • •	• •	 	•	別紙	6-1-	1
2.	検	討方	針·							 	 	 				 			 	 		 		別紙	6-1-	1
3.	検	討条	件·							 	 	 				 			 	 		 		別紙	6-1-	1
3. 3		補強	等(こ作	半う	重	量	増	加·	 	 	 				 		•	 	 		 		別紙	6-1-	1
3. 2	2	解析	モ	デノ	レ・					 	 	 				 			 	 		 		別紙	6-1-	9
4.	解	析結	果·							 	 	 				 			 	 		 		別紙	6-1-	16

1. 概要

本資料は、建屋-機器連成地震応答解析モデルにおいて、補強等の改造工事に伴う質量の増加分を考慮した地震応答解析を実施し、「建屋-機器連成地震応答解析結果」に与える影響について確認するものである。

2. 検討方針

添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す工認評価に用いている質点系モデル(以下,「工認モデル」という。)では,添付書類「VI-2-2-1 原子炉建屋の地震応答計算書 別紙 原子炉建屋における改造工事に伴う重量増加を反映した地震応答解析」(以下「地震応答計算書の別紙」という。)の3.2.1項の表3-5に示すとおり,既工認*の質点系モデルからオペフロ耐震補強等,応答性状に影響を与える質量の変更を考慮している。

本検討では、上述した補強等の質量変更に加え、平成 18 年耐震設計審査指針改定及 び平成 25 年新規制基準施行に伴う安全対策工事等による質量の増加分を考慮したモデ ル(以下、「補強反映モデル」という。)と工認モデルの応答値を比較することにより、 質量変更による建屋-機器連成地震応答解析モデルの応答への影響を確認する。

なお、影響検討は別紙 6「改造工事に伴う重量増加を反映した検討」と同様に基準地 震動 S s - D 2 に対して実施することとする。

注記*:女川原子力発電所2号機

『既工事計画認可申請書 添付資料IV-2-3「原子炉本体の基礎の地震応答計算書」 (元資庁第 2015 号平成元年 6 月 8 日認可)』

『既工事計画認可申請書 添付資料W-2-2-1「炉心,原子炉圧力容器及び圧力容器内部構造物の地震応答計算書」(3 資庁第 10518 号平成 4 年 1 月 13 日認可)』

3. 検討条件

3.1 補強等に伴う増加質量

補強等に伴う増加質量の総質量は約4,570tであり、そのうち建物・構築物の増加質量は約770t,機器・配管系の増加質量は約3800tである。原子炉建屋の重量増加の内訳を表3-1に示す。なお、地震応答解析モデルの諸元の変更箇所は原子炉建屋の質点質量及び回転慣性質量並びにと原子炉格納容器、ベント管、原子炉しゃへい壁及び原子炉本体基礎の質点質量のみである。

補強等に伴う増加質量と補強後の変更となる補強反映モデルの原子炉建屋及び大型機器(原子炉本体の基礎等)の振動諸元を表 3-2~表 3-4 に示す。

表 3-1 原子炉建屋の重量増加の内訳

	項目	合計質量(t)
	屋上水素ベント飛来物防護対策	
建	屋根トラス補強 (サブトラス・母屋)	
物	竜巻防護フード	774
構築	フィルタ装置設置に伴う建屋改造	774
物	各部の防護扉	
	3 時間耐火要求扉	
	サプレッションチェンバの耐震補強	200
	フィルタ装置設置	182
	原子炉格納容器ベント系の耐震補強	85
	原子炉建屋ブローアウトパネル閉止装置設置	51
機	燃料交換機の耐震補強	22
器	代替循環冷却ポンプ設置	14
配管	直流駆動低圧注水系ポンプ設置	11
系	高圧代替注水系タービンポンプ設置	4
	静的触媒式水素再結合装置設置	3
	その他機器追加重量(電源盤設置等)	811
	その他配管追加重量(原子炉格納容器フィルタベント系,低圧代替注水系,高圧代替注水系,燃料プール代替注水系,代替循環冷却系設置等)	2413

表 3-2(1/2) 原子炉建屋の振動諸元(NS 方向)

1.		工認	モデル	質量	補強反	映モデル
質点番号*	標高 0.P.(m)	質量(t)	回転慣性質量 (×10 ⁴ t・m)	増加 (t)	質量(t)	回転慣性質量 (×10 ⁴ t・m)
1(1)	-14.100	46599	2306	0	46599	2306
2(2)	-8.100	76921	3816	490	77411	3841
3(3)	1.150	6957	92	0	6957	92
33 (61)	-0.800	6116	304	67	6183	307
34 (62)	6.000	5440	270	93	5533	274
35 (63)	15.000	4546	225	137	4683	232
36 (64)	22.500	2725	135	114	2839	140
37 (65)	33. 200	1765	87	58	1823	90
38 (66)	-0.800	11380	714	99	11479	720
39 (67)	6.000	11993	787	195	12188	800
40 (68)	15.000	10817	710	311	11128	730
41 (69)	22.500	11237	684	294	11531	702
42 (70)	33. 200	8368	509	179	8547	520
43 (71)	41.200	1788	31	13	1801	31
44 (72)	50.500	1055	14	81	1136	15
45 (73)	6.000	6311	76	23	6334	76
46 (75)	15.000	9533	115	83	9616	116
48 (76)	22.500	10722	93	72	10794	94
49 (77)	33. 200	5964	41	66	6030	42
50 (78)	-0.800	17490	1061	66	17556	1065
51 (79)	6.000	15818	994	157	15975	1004
52 (80)	15.000	13661	858	707	14368	903
53 (81)	22.500	15965	943	538	16503	975
54 (82)	33. 200	10365	612	214	10579	625
55 (83)	41. 200	1459	25	13	1472	25
56 (84)	50.500	1055	14	75	1130	15
57 (85)	-0.800	7115	352	38	7153	354
58 (86)	6.000	6896	341	41	6937	343
59 (87)	15.000	5179	256	106	5285	261
60 (88)	22.500	5082	251	112	5194	257
61 (89)	33. 200	2849	141	24	2873	142

注記*:括弧内は、炉内構造物モデルの質点を表す。

表 3-2(2/2) 大型機器 (原子炉本体の基礎等) の振動諸元 (NS 方向)

構造物*1	質点 番号	標高 0. P. (m)	工認 モデル 質量(t)	質量増加(t)	補強反映 モデル 質量(t)
原子炉本体の基礎	3 (90)			1.57	
	3 (90)			89. 09	
	4(4)			2.09	
	5 (5)			1.82	
	6(6)			1. 34	
	7(7)			1. 2	
原子炉しゃへい壁	16 (56)			2	
	17 (57)			1.75	
	18 (58)			2.46	
	19 (59)			1.83	
	20 (60)			2.65	
原子炉格納容器*3	21			2. 51	
	22			0	
	23			0.01	
	24			0	
	25			0.01	
	26			0	
	27			0	
	28			0	
	29			0	
	30			0	
ベント管*3	31			85	
所員用 エアロック* ³	32			0	

注記*1:本記載以外の構造物の重量変更はない。

*2:炉内構造物モデルの場合。

*3: 炉内構造物モデルに対応する質点はない。

表 3-3(1/2) 原子炉建屋の振動諸元(EW 方向)

質点			工認	モデル	質量	補強反映モデル			
2(2) -8.100 76921 4539 490 77411 4568 3(3) 1.150 6957 92 0 6957 92 33(61) -0.800 5304 312 38 5342 315 34(62) 6.000 5225 308 50 5275 311 35(63) 15.000 4389 258 168 4557 268 36(64) 22.500 4855 286 132 4987 294 37(65) 33.200 4404 259 161 4565 269 38(66) -0.800 15438 1115 81 15519 1121 39(67) 6.000 15231 1143 147 15378 1154 40(68) 15.000 13186 989 330 13516 1014 41(69) 22.500 6633 390 186 6819 401 42(70) 15.000 819 10 7	質点番号*	標高 0.P.(m)	質量(t)		増加	質量(t)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1(1)	-14.100	46599	2744	0	46599	2744		
33 (61) -0.800 5304 312 38 5342 315 34 (62) 6.000 5225 308 50 5275 311 35 (63) 15.000 4389 258 168 4557 268 36 (64) 22.500 4855 286 132 4987 294 37 (65) 33.200 4404 259 161 4565 269 38 (66) -0.800 15438 1115 81 15519 1121 39 (67) 6.000 15231 1143 147 15378 1154 40 (68) 15.000 13186 989 330 13516 1014 41 (69) 22.500 6633 390 186 6819 401 42 (70) 15.000 819 10 7 826 10 43 (71) 22.500 8090 583 140 8230 594 44 (72) 33.200 8250 561 128 <td>2(2)</td> <td>-8.100</td> <td>76921</td> <td>4539</td> <td>490</td> <td>77411</td> <td>4568</td>	2(2)	-8.100	76921	4539	490	77411	4568		
34 (62) 6,000 5225 308 50 5275 311 35 (63) 15,000 4389 258 168 4557 268 36 (64) 22,500 4855 286 132 4987 294 37 (65) 33,200 4404 259 161 4565 269 38 (66) -0.800 15438 1115 81 15519 1121 39 (67) 6.000 15231 1143 147 15378 1154 40 (68) 15.000 13186 989 330 13516 1014 41 (69) 22.500 6633 390 186 6819 401 42 (70) 15.000 819 10 7 826 10 43 (71) 22.500 8090 583 140 8230 594 44 (72) 33.200 8250 561 128 8378 570 45 (73) 41.200 2030 48 26 <td>3(3)</td> <td>1.150</td> <td>6957</td> <td>92</td> <td>0</td> <td>6957</td> <td>92</td>	3(3)	1.150	6957	92	0	6957	92		
35 (63) 15.000 4389 258 168 4557 268 36 (64) 22.500 4855 286 132 4987 294 37 (65) 33.200 4404 259 161 4565 269 38 (66) -0.800 15438 1115 81 15519 1121 39 (67) 6.000 15231 1143 147 15378 1154 40 (68) 15.000 13186 989 330 13516 1014 41 (69) 22.500 6633 390 186 6819 401 42 (70) 15.000 819 10 7 826 10 43 (71) 22.500 8090 583 140 8230 594 44 (72) 33.200 8250 561 128 8378 570 45 (73) 41.200 2030 48 26 2056 48 46 (74) 50.500 1055 25 78	33 (61)	-0.800	5304	312	38	5342	315		
36 (64) 22.500 4855 286 132 4987 294 37 (65) 33.200 4404 259 161 4565 269 38 (66) -0.800 15438 1115 81 15519 1121 39 (67) 6.000 15231 1143 147 15378 1154 40 (68) 15.000 13186 989 330 13516 1014 41 (69) 22.500 6633 390 186 6819 401 42 (70) 15.000 819 10 7 826 10 43 (71) 22.500 8090 583 140 8230 594 44 (72) 33.200 8250 561 128 8378 570 45 (73) 41.200 2030 48 26 2056 48 46 (74) 50.500 1055 25 78 1133 27 47 (75) 6.000 6311 76 23	34 (62)	6.000	5225	308	50	5275	311		
37 (65) 33.200 4404 259 161 4565 269 38 (66) -0.800 15438 1115 81 15519 1121 39 (67) 6.000 15231 1143 147 15378 1154 40 (68) 15.000 13186 989 330 13516 1014 41 (69) 22.500 6633 390 186 6819 401 42 (70) 15.000 819 10 7 826 10 43 (71) 22.500 8090 583 140 8230 594 44 (72) 33.200 8250 561 128 8378 570 45 (73) 41.200 2030 48 26 2056 48 46 (74) 50.500 1055 25 78 1133 27 47 (75) 6.000 6311 76 23 6334 76 48 (76) 15.000 8714 105 76	35 (63)	15.000	4389	258	168	4557	268		
38 (66) -0.800 15438 1115 81 15519 1121 39 (67) 6.000 15231 1143 147 15378 1154 40 (68) 15.000 13186 989 330 13516 1014 41 (69) 22.500 6633 390 186 6819 401 42 (70) 15.000 819 10 7 826 10 43 (71) 22.500 8090 583 140 8230 594 44 (72) 33.200 8250 561 128 8378 570 45 (73) 41.200 2030 48 26 2056 48 46 (74) 50.500 1055 25 78 1133 27 47 (75) 6.000 6311 76 23 6334 76 48 (76) 15.000 8714 105 76 8790 106 50 (78) 22.500 10722 161 72	36 (64)	22.500	4855	286	132	4987	294		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37 (65)	33.200	4404	259	161	4565	269		
40(68) 15.000 13186 989 330 13516 1014 41(69) 22.500 6633 390 186 6819 401 42(70) 15.000 819 10 7 826 10 43(71) 22.500 8090 583 140 8230 594 44(72) 33.200 8250 561 128 8378 570 45(73) 41.200 2030 48 26 2056 48 46(74) 50.500 1055 25 78 1133 27 47(75) 6.000 6311 76 23 6334 76 48(76) 15.000 8714 105 76 8790 106 50(78) 22.500 10722 161 72 10794 162 51(79) 33.200 5964 72 66 6030 73 52(80) -0.800 14985 1091 102 15087	38 (66)	-0.800	15438	1115	81	15519	1121		
41(69) 22.500 6633 390 186 6819 401 42(70) 15.000 819 10 7 826 10 43(71) 22.500 8090 583 140 8230 594 44(72) 33.200 8250 561 128 8378 570 45(73) 41.200 2030 48 26 2056 48 46(74) 50.500 1055 25 78 1133 27 47(75) 6.000 6311 76 23 6334 76 48(76) 15.000 8714 105 76 8790 106 50(78) 22.500 10722 161 72 10794 162 51(79) 33.200 5964 72 66 6030 73 52(80) -0.800 14985 1091 102 15087 1098 53(81) 6.000 13359 1012 188 13547	39 (67)	6.000	15231	1143	147	15378	1154		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 (68)	15.000	13186	989	330	13516	1014		
43(71) 22.500 8090 583 140 8230 594 44(72) 33.200 8250 561 128 8378 570 45(73) 41.200 2030 48 26 2056 48 46(74) 50.500 1055 25 78 1133 27 47(75) 6.000 6311 76 23 6334 76 48(76) 15.000 8714 105 76 8790 106 50(78) 22.500 10722 161 72 10794 162 51(79) 33.200 5964 72 66 6030 73 52(80) -0.800 14985 1091 102 15087 1098 53(81) 6.000 13359 1012 188 13547 1026 54(82) 15.000 11897 901 345 12242 927 55(83) 22.500 12203 924 315	41 (69)	22.500	6633	390	186	6819	401		
44(72) 33.200 8250 561 128 8378 570 45(73) 41.200 2030 48 26 2056 48 46(74) 50.500 1055 25 78 1133 27 47(75) 6.000 6311 76 23 6334 76 48(76) 15.000 8714 105 76 8790 106 50(78) 22.500 10722 161 72 10794 162 51(79) 33.200 5964 72 66 6030 73 52(80) -0.800 14985 1091 102 15087 1098 53(81) 6.000 13359 1012 188 13547 1026 54(82) 15.000 11897 901 345 12242 927 55(83) 22.500 12203 924 315 12518 948 56(84) 33.200 8768 664 157 <td< td=""><td>42 (70)</td><td>15.000</td><td>819</td><td>10</td><td>7</td><td>826</td><td>10</td></td<>	42 (70)	15.000	819	10	7	826	10		
45(73) 41.200 2030 48 26 2056 48 46(74) 50.500 1055 25 78 1133 27 47(75) 6.000 6311 76 23 6334 76 48(76) 15.000 8714 105 76 8790 106 50(78) 22.500 10722 161 72 10794 162 51(79) 33.200 5964 72 66 6030 73 52(80) -0.800 14985 1091 102 15087 1098 53(81) 6.000 13359 1012 188 13547 1026 54(82) 15.000 11897 901 345 12242 927 55(83) 22.500 12203 924 315 12518 948 56(84) 33.200 8768 664 157 8925 676 57(85) 41.200 1217 29 0 12	43 (71)	22.500	8090	583	140	8230	594		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44 (72)	33.200	8250	561	128	8378	570		
47 (75) 6.000 6311 76 23 6334 76 48 (76) 15.000 8714 105 76 8790 106 50 (78) 22.500 10722 161 72 10794 162 51 (79) 33.200 5964 72 66 6030 73 52 (80) -0.800 14985 1091 102 15087 1098 53 (81) 6.000 13359 1012 188 13547 1026 54 (82) 15.000 11897 901 345 12242 927 55 (83) 22.500 12203 924 315 12518 948 56 (84) 33.200 8768 664 157 8925 676 57 (85) 41.200 1217 29 0 1217 29 58 (86) 50.500 1055 25 78 1133 27 59 (87) -0.800 6374 376 49	45 (73)	41.200	2030	48	26	2056	48		
48 (76) 15.000 8714 105 76 8790 106 50 (78) 22.500 10722 161 72 10794 162 51 (79) 33.200 5964 72 66 6030 73 52 (80) -0.800 14985 1091 102 15087 1098 53 (81) 6.000 13359 1012 188 13547 1026 54 (82) 15.000 11897 901 345 12242 927 55 (83) 22.500 12203 924 315 12518 948 56 (84) 33.200 8768 664 157 8925 676 57 (85) 41.200 1217 29 0 1217 29 58 (86) 50.500 1055 25 78 1133 27 59 (87) -0.800 6374 376 49 6423 379 60 (88) 6.000 6332 374 101 <td>46 (74)</td> <td>50.500</td> <td>1055</td> <td>25</td> <td>78</td> <td>1133</td> <td>27</td>	46 (74)	50.500	1055	25	78	1133	27		
50(78) 22.500 10722 161 72 10794 162 51(79) 33.200 5964 72 66 6030 73 52(80) -0.800 14985 1091 102 15087 1098 53(81) 6.000 13359 1012 188 13547 1026 54(82) 15.000 11897 901 345 12242 927 55(83) 22.500 12203 924 315 12518 948 56(84) 33.200 8768 664 157 8925 676 57(85) 41.200 1217 29 0 1217 29 58(86) 50.500 1055 25 78 1133 27 59(87) -0.800 6374 376 49 6423 379 60(88) 6.000 6332 374 101 6433 380 61(89) 15.000 4731 279 418 <	47 (75)	6.000	6311	76	23	6334	76		
51 (79) 33. 200 5964 72 66 6030 73 52 (80) -0. 800 14985 1091 102 15087 1098 53 (81) 6. 000 13359 1012 188 13547 1026 54 (82) 15. 000 11897 901 345 12242 927 55 (83) 22. 500 12203 924 315 12518 948 56 (84) 33. 200 8768 664 157 8925 676 57 (85) 41. 200 1217 29 0 1217 29 58 (86) 50. 500 1055 25 78 1133 27 59 (87) -0. 800 6374 376 49 6423 379 60 (88) 6. 000 6332 374 101 6433 380 61 (89) 15. 000 4731 279 418 5149 303 62 (90) 22. 500 3228 190	48 (76)	15.000	8714	105	76	8790	106		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 (78)	22.500	10722	161	72	10794	162		
53 (81) 6.000 13359 1012 188 13547 1026 54 (82) 15.000 11897 901 345 12242 927 55 (83) 22.500 12203 924 315 12518 948 56 (84) 33.200 8768 664 157 8925 676 57 (85) 41.200 1217 29 0 1217 29 58 (86) 50.500 1055 25 78 1133 27 59 (87) -0.800 6374 376 49 6423 379 60 (88) 6.000 6332 374 101 6433 380 61 (89) 15.000 4731 279 418 5149 303 62 (90) 22.500 3228 190 285 3513 207	51 (79)	33.200	5964	72	66	6030	73		
54 (82) 15.000 11897 901 345 12242 927 55 (83) 22.500 12203 924 315 12518 948 56 (84) 33.200 8768 664 157 8925 676 57 (85) 41.200 1217 29 0 1217 29 58 (86) 50.500 1055 25 78 1133 27 59 (87) -0.800 6374 376 49 6423 379 60 (88) 6.000 6332 374 101 6433 380 61 (89) 15.000 4731 279 418 5149 303 62 (90) 22.500 3228 190 285 3513 207	52 (80)	-0.800	14985	1091	102	15087	1098		
55 (83) 22.500 12203 924 315 12518 948 56 (84) 33.200 8768 664 157 8925 676 57 (85) 41.200 1217 29 0 1217 29 58 (86) 50.500 1055 25 78 1133 27 59 (87) -0.800 6374 376 49 6423 379 60 (88) 6.000 6332 374 101 6433 380 61 (89) 15.000 4731 279 418 5149 303 62 (90) 22.500 3228 190 285 3513 207	53 (81)	6.000	13359	1012	188	13547	1026		
56 (84) 33. 200 8768 664 157 8925 676 57 (85) 41. 200 1217 29 0 1217 29 58 (86) 50. 500 1055 25 78 1133 27 59 (87) -0. 800 6374 376 49 6423 379 60 (88) 6. 000 6332 374 101 6433 380 61 (89) 15. 000 4731 279 418 5149 303 62 (90) 22. 500 3228 190 285 3513 207	54 (82)	15.000	11897	901	345	12242	927		
57 (85) 41. 200 1217 29 0 1217 29 58 (86) 50. 500 1055 25 78 1133 27 59 (87) -0. 800 6374 376 49 6423 379 60 (88) 6. 000 6332 374 101 6433 380 61 (89) 15. 000 4731 279 418 5149 303 62 (90) 22. 500 3228 190 285 3513 207	55 (83)	22.500	12203	924	315	12518	948		
58 (86) 50.500 1055 25 78 1133 27 59 (87) -0.800 6374 376 49 6423 379 60 (88) 6.000 6332 374 101 6433 380 61 (89) 15.000 4731 279 418 5149 303 62 (90) 22.500 3228 190 285 3513 207	56 (84)	33.200	8768	664	157	8925	676		
59 (87) -0.800 6374 376 49 6423 379 60 (88) 6.000 6332 374 101 6433 380 61 (89) 15.000 4731 279 418 5149 303 62 (90) 22.500 3228 190 285 3513 207	57 (85)	41.200	1217	29	0	1217	29		
60 (88) 6.000 6332 374 101 6433 380 61 (89) 15.000 4731 279 418 5149 303 62 (90) 22.500 3228 190 285 3513 207	58 (86)	50.500	1055	25	78	1133	27		
61 (89) 15.000 4731 279 418 5149 303 62 (90) 22.500 3228 190 285 3513 207	59 (87)	-0.800	6374	376	49	6423	379		
62 (90) 22. 500 3228 190 285 3513 207	60 (88)	6.000	6332	374	101	6433	380		
	61 (89)	15.000	4731	279	418	5149	303		
63(91) 33.200 1925 113 29 1954 115	62 (90)	22.500	3228	190	285	3513	207		
	63 (91)	33.200	1925	113	29	1954	115		

注記*:括弧内は、炉内構造物モデルの質点を表す。

表 3-3(2/2) 大型機器 (原子炉本体の基礎等) の振動諸元 (EW 方向)

構造物 * 1	質点 番号	標高 0. P. (m)	工認 モデル 質量(t)	質量増加(t)	補強反映 モデル 質量(t)
	3 (92)			1. 57	
	3 (92)			89. 09	
	4(4)			2.09	
	5(5)			1.82	
	6(6)			1.34	
	7(7)			1.2	
原子炉しゃへい壁	16 (56)			2	
	17 (57)			1.75	
	18 (58)			2.46	
	19 (59)			1.83	
	20 (60)			2.65	
原子炉格納容器*3	21			2.51	
	22			0	
	23			0.01	
	24			0	
	25			0.01	
	26			0	
	27			0	
	28			0	
	29			0	
	30			0	
ベント管*3	31			85	
所員用 エアロック* ³	32			0	

注記*1:本記載以外の構造物の重量変更はない。

*2:炉内構造物モデルの場合。

*3: 炉内構造物モデルに対応する質点はない。

表 3-4(1/2) 原子炉建屋の振動諸元(UD方向)

質点 番号	標高 0.P.(m)	工認 モデル 質量(t)	質量増加(t)	補強反映 モデル 質量(t)
1	48.725	1288	45	1333
2	41. 200	3247	26	3273
3	33. 200	29311	541	29852
4	22. 500	48186	1139	49325
5	15.000	43736	1344	45080
6	6.000	46458	509	46967
7	-0.800	51662	280	51942
8	-8.100	71863.9	471. 2	72335.1
9	-14. 100	46599	0	46599
10	48.725	333	42	375
11	48.725	326	46	372
12	48. 725	163	23	186

表 3-4(2/2) 大型機器 (原子炉本体の基礎等) の振動諸元 (UD 方向)

構造物*1	質点	標高	工認 モデル	. 質量増加(t)	補強反映 モデル
	番号	0. P. (m)	質量(t)	英里山柳	質量(t)
原子炉本体の基礎	14(14)			1.57	
	14(14) * 2			1.57	
	15 (15)			2.09	
	16 (16)			1.82	
	17 (17)			1.34	
	18 (18)			1.2	
	19 (19)			2	
	20(20)			1.75	
原子炉しゃへい壁	21(21)			2.46	
	22 (22)			1.83	
	23 (23)			2.65	
	32			87.51	
	33			0	
	34			0.01	
	35			0	
原子炉格納容器*3	36			0.01	
原于炉格納谷盆。	37			0	
	38			0	
	39			0	
	40			0	
	41			0	

注記*1:本記載以外の構造物の重量変更はない。

*2: 炉内構造物モデルの場合。

*3: 炉内構造物モデルに対応する質点はない。

3.2 解析モデル

大型機器系の地震応答解析モデルを図 3-1 に、炉内構造物系の地震応答解析モデルを図 3-2 に示す。地盤ばね定数は「地震応答計算書の別紙」に記載の値を使用する。

また, 重量増分に伴うせん断及び曲げスケルトンへの影響は軽微であるため工認モ デルの諸元を用いる。

枠囲みの内容は商業機密の観点から公開できません。

枠囲みの内容は商業機密の観点から公開できません。

枠囲みの内容は商業機密の観点から公開できません。

4. 解析結果

基準地震動 S s - D 2 による最大応答値を表 4-1~表 4-7 に,床応答曲線を表 4-8 に示す。

補強反映モデルの最大応答値は、工認モデルの結果と概ね整合することを確認した。

表 4-1(1/5) 最大応答加速度(基準地震動 S S - D 2, 1.0ZPA, 水平方向)

			最大応答		
構造物	質点番 <mark>号</mark>	標高 0.P.(m)	(×9.80665	応答比率	
			①工認	②補強反映	(2/1)
			モデル	モデル	
原子炉本体 の基礎	62/64		0.89	0.89	1.00
	4		0.95	0.95	1.00
	5		0.99	1.00	1.02
*> 2E H/C	6		1.02	1.03	1.01
	7		1.02	1.04	1.02
原子炉圧力	8		1.08	1.08	1.00
容器	15		3.23	3.00	0.93
	16		1.24	1.30	1.05
医乙烷	17		1.42	1.49	1.05
原子炉しゃへい壁	18		1.49	1.56	1.05
	19		1.58	1.54	0.98
	20		1.70	1.63	0.96
原子炉格納容器	21		0.90	0.91	1.02
	22		0.88	0.89	1.02
	23		0.84	0.87	1.04
	24		1.10	1.06	0.97
	25		1. 26	1. 22	0.97
	26		1.51	1.52	1.01
	28		1.73	1.75	1.02

注:設備評価に用いる質点<mark>(標高)</mark>に対する応答比率を記載。

表 4-1(2/5) 最大応答加速度(基準地震動 S S - D 2, 1.0ZPA, 水平方向)

		law -t-	最大応答加速度 (×9.80665 m/s ²) ×1.0		
構造物	質点番 <mark>号</mark>	標高 O.P.(m)	①工認	m/s²) ×1.0 ②補強反映	応答比率 (②/①)
			モデル	モデル	(2)/ 1)
気水分離器	37		7. 73	7.03	0.91
	36		3.71	3.00	0.81
及びスタン ドパイプ	35		2. 31	2. 19	0.95
	34		2.07	2.01	0.98
	33		1. 93	1.89	0.98
	32		1.83	1. 79	0.98
	31		1.71	1. 69	0.99
	30		1. 58	1. 58	1.00
炉心シュラ	29		1.45	1.50	1.04
ウド	28		1.40	1.44	1.03
	27		1. 37	1.42	1.04
	26		1. 33	1. 38	1.04
	25		1. 22	1. 27	1.05
	51		1. 12	1. 14	1.02
	53		1.55	1. 38	0.90
制御棒案内	45		1.81	2. 98	1.65
管	44		2.35	3.84	1.64
	52		2. 15	1.91	0.89
制御棒駆動機構ハウジング	43		1. 98	1.91	0.97
	38		1. 12	1. 19	1.07
	39		1.48	1.56	1.06
	40		2.30	2. 22	0.97
	41		2.90	2.05	0.71
	42		1.55	1. 27	0.82
燃料集合体	55		1.83	1.79	0.98
	50		2.68	2. 97	1.11
	49		3.60	4.03	1.12
	48		4.02	4. 32	1.08
	47		3.74	3.93	1.06
	46		2.75	2.91	1.06
	54		1.33	1.38	1.04
				-	-

注:設備評価に用いる質点 (標高) に対する応答比率を記載。

表 4-1(3/5) 最大応答加速度(基準地震動 S s - D 2, 1.2ZPA, 水平方向)

		最大応答加速度		答加速度	
構造物	質点番 <mark>号</mark>	標高	$(\times 9.80665 \text{ m/s}^2) \times 1.2$		応答比率
		0.P.(m)	①工認	②補強反映	(2/1)
			モデル	モデル	
	62/64		1.07	1.07	1.00
原子炉本体	4		1. 13	1.14	1.01
の基礎	5		1. 19	1.20	1.01
07 圣诞	6		1.22	1. 23	1.01
	7		1.23	1.24	1.01
原子炉圧力	8		1. 29	1.30	1.01
容器	15		3.88	3.60	0.93
	16		1.48	1.56	1.06
原子炉本体	17		1.70	1.79	1.06
の基礎	18		1.79	1.87	1.05
少基锭	19		1.90	1.84	0.97
	20		2.04	1.95	0.96
原子炉格納容器	21		1.08	1.09	1.01
	22		1.06	1.06	1.00
	23		1.01	1.05	1.04
	24		1.32	1. 27	0.97
	25		1.51	1.46	0.97
	26		1.81	1.82	1.01
	28		2.08	2.09	1.01

注:設備評価に用いる質点<mark>(標高)</mark>に対する応答比率を記載。

表 4-1(4/5) 最大応答加速度(基準地震動Ss-D2, 1.2ZPA, 水平方向)

	質点番 <mark>号</mark>	標高 0.P.(m)	最大応答加速度 (×9.80665 m/s ²) ×1.2			
構造物			①工認	m/s²) ×1.2 ②補強反映	応答比率 (②/①)	
			モデル	モデル		
	37		9.27	8.44	0.92	
	36		4. 45	3. 59	0.81	
	35		2.77	2.62	0.95	
	34		2.49	2.41	0.97	
	33		2.31	2. 27	0.99	
	32		2. 19	2. 15	0.99	
炉心シュラ	31		2.05	2.03	1.00	
ウド	30		1.90	1.89	1.00	
	29		1.74	1.80	1.04	
	28		1.68	1.73	1.03	
	27		1.64	1.70	1.04	
	26		1.60	1.66	1.04	
	25		1.46	1.52	1.05	
	51		1.35	1. 37	1.02	
	53		1.86	1.66	0.90	
制御棒案内	45		2. 17	3. 58	1.65	
管	44		2.82	4.61	1.64	
	52		2. 58	2. 29	0.89	
	43		2.38	2. 29	0.97	
	38		1.34	1. 43	1.07	
制御棒駆動	39		1.78	1.87	1.06	
機構ハウジーング	40		2.75	2.67	0.98	
	41		3.48	2.46	0.71	
	42		1.86	1. 52	0.82	
燃料集合体	55		2. 19	2. 15	0.99	
	50		3. 21	3. 56	1. 11	
	49		4. 32	4.83	1.12	
	48		4.82	5. 19	1.08	
	47		4. 48	4.72	1.06	
	46		3. 29	3.49	1.07	
	54		1.60	1.66	1.04	

表 4-1(5/5) 最大応答加速度(基準地震動 S s - D 2, 1.2ZPA, 水平方向)

			最大応答	·····································	
+# \# \#m	質点番 <mark>号</mark>	標高		$m/s^2) \times 1.2$	応答比率
構造物	I I I I I I I I I I I I I I I I I I I	0. P. (m)	①工認	②補強反映	(2/1)
			モデル	モデル	
	24		4.08	3.82	0.94
	23		3.36	3. 14	0.94
	22		2.85	2.75	0.97
	21		2.47	2.43	0.99
	20		2. 25	2. 23	1.00
	19		2.02	2.02	1.00
	18		1.93	1.91	0.99
	17		1.88	1.83	0.98
原子炉圧力	16		1.83	1.74	0.96
容器	15		1.78	1.68	0.95
	14		1.72	1.62	0.95
	13		1.66	1.57	0.95
	12		1.60	1.51	0.95
	11		1.53	1.44	0.95
	10		1.42	1.40	0.99
	9		1.35	1. 37	1.02
	8		1.29	1.33	1.04
	38		1.34	1. 43	1.07

注:設備評価に用いる質点 (標高) に対する応答比率を記載。

表 4-2(1/2) せん断力(基準地震動 S s - D 2)

野点 「中の						せ	ん断力()	ĸN)		
### Page 10. Page 14	\$ 7.7.1.	質点	標高	I	「認モデル	シレ	補引	鼠反映モ	デル	+ * 11. ==
原子炉	带4亿			NS	EW	_	NS	EW		
用子炉 用子炉 用子炉 下力容器 11 32 3960 4210 4210 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 1.00 3900 4180 4180 4180 1.00 3200 3200 3270 3340 3280 3340 1.03 4100 32800 8860 8860 1.00 88260 8930 8930 8110 8860 8860 1.00 38260 4100 3900 27100 27100 0.96 30200 28300 27100 27100 27100 0.96 32200 31200 32200 30800 31500 31500 0.98 32800 4100 32800 34100 32500 33300 33300 0.98 34100 32500 33300 33300 0.98 34100 32500 33300 33300 0.98 34100 32500 33300 33300 0.98 34100 32500 33300 33300 0.98 34100 32500 33500 42700 2700 2700 2700 2700 2700 2700 2				510	536	536	474	510	510	0.96
照子炉 E 力容器				1890	2130	2130	1930	2150	2150	1.01
展子炉 医力容 器				3960	4210	4210	3900	4180	4180	1.00
器 10 9 8 8 7 10 10 9 8 8 7 10 28300 27000 28300 27100 27100 10900 10900 0.99 10200 11000 11100 11100 9970 10900 10900 0.99 10200 28300 27100 27100 27100 27100 0.96 30200 29100 30200 28900 29300 29300 0.98 30200 31500 31500 31500 0.98 30200 31500 31500 31500 0.98 30200 31500 31500 31500 0.98 30200 11100 11100 11100 32800 34100 32500 33300 33300 0.98 30200 11100 11100 11100 11100 11100 0.96 1100 11100 11100 11100 11100 0.96 1100 1100 0.98 1100 1100 1100 1100 1100 1100 1100 11				3050	2550	3050	3390	2510	3390	1.12
日子炉 日本納容 日本納容 日本納容 日本 日本 日本 日本 日本 日本 日本 日				3270	3200	3270	3340	3280	3340	1.03
R				6150	6480	6480	6040	6460	6460	1.00
原子炉 本体の 基礎 4 34100 32800 34100 32500 33300 33300 0.98 原子炉 しやへ い壁 17 166 7 166 7 16600 14900 16600 15800 15100 12100 0.96 第子炉 格納容 器 20 556 522 556 556 512 556 1.00 29 28 3100 32200 32200 30800 31500 31500 0.98 8560 8610 8610 8610 8660 8540 8660 1.01 17 12500 11700 12500 12100 11600 12100 0.97 18 28 29 28 28 28 28 264 286 1.00 29 28 3100 3220 3220 3120 3010 3120 0.98 8 560 8610 8610 8610 8610 8610 15800 15100 15800 0.96 8 556 522 556 556 512 556 1.00 8 3100 3220 3220 3120 3010 3120 0.97 8 3920 3980 3980 3940 3750 3940 0.99 28 28 27 26 26 26 26 26 26 26 26 26 26 26 26 26				8260	8930	8930	8110	8860	8860	1.00
原子炉 本体の 基礎 4 3 34100 32800 34100 32500 33300 33300 0.98 原子炉 しゃへ い壁 17 16 7 16600 14900 16600 15800 15100 15800 0.96 28 27 26 格納容器器 22 2 21 21 21 20 29300 29300 0.98 31500 31500 31500 0.98 31500 31500 0.98 31500 31500 0.98 31500 31500 0.98 31500 31500 0.98 31500 32800 34100 32500 33300 33300 0.98 31500 31500 0.98 31500 31500 0.98 31500 31500 0.98 31500 31500 0.98 31500 32500 33300 33300 0.98 31500 32500 33300 33300 0.98 31500 32500 33300 0.98 31500 32500 33300 0.98 31500 32500 33300 33300 0.98 31500 32500 0.98 31500 32500 0.98 31500 32500 0.98 31500 32500 0.99 41 3100 32500 32500 12100 11600 12100 0.97 3100 12500 12100 11600 12100 0.97 3100 325000 32500 3				10200	11100	11100	9970	10900	10900	0 99
原子炉本体の基礎 4 34100 32800 34100 32500 33300 33300 0.98 京子炉				10200	11100	11100	3310	10300	10300	0.33
本体の 1				28300	27000	28300	27100	27100	27100	0.96
基礎 4 32200 31200 32200 30800 31500 31500 0.98 34100 32800 34100 32500 33300 33300 0.98 [原子炉 19				30200	29100	30200	28900	29300	29300	0.98
原子炉 格納容 器 器 器 器 器 器 器 器 器 器 器 器 器				32200	31200	32200	30800	31500	31500	0.98
原子炉 18 17 16600 14900 16600 15800 15100 15800 0.94 16600 14900 16600 15800 15100 15800 0.96 1.00 299 286 286 264 286 1.00 288 27 28 27 26 24 23 22 21 21 20 29800 29800 29800 29700 30000 30000 1.01 21 00 29800 28800 28900 29800 29800 29800 29800 29800 29800 29800 29800 29800 29800 29800 29800 28000 1.00 29800 1.00 28000 1.00 29800 1.00 29800 1.00 29800 29800 29800 29800 29800 1.00 29800 29800 29800 29800 29800 29800 29800 29800 1.00 29800 29800 29800 29800 29800 1.00 29800 29800 29800 29800 29800 1.00 29800 29800 29800 29800 29800 1.00 29800 29800 29800 29800 29800 1.00 29800 29800 1.00 29800 29800 29800 29800 29800 1.00 29800 29800 1.00 29800 29800 29800 29800 29800 1.00 29800 29800 1.00 29800 29800 29800 29800 29800 1.00 29800 29800 1.00 29800 29800 29800 29800 29800 1.00 29800 29800 29800 29800 29800 1.00 29800 29800 1.00 29800 29800 29800 29800 29800 29800 1.00 29800 29800 29800 29800 29800 29800 1.00 29800 29800 29800 29800 29800 29800 1.00 29800	五			34100	32800	34100	32500	33300	33300	0. 98
原子炉 しゃへい壁 17 16 7 16 7 8560 8610 8610 8660 8540 8660 1.01 12500 11700 12500 12100 11600 12100 0.97 16600 14900 16600 15800 15100 15800 0.96 29 28 27 28 27 26 格納容 器 器 29 28 27 26 28 27 26 28 27 26 28 27 26 28 27 26 27 28 29 28 27 29 28 27 29 28 27 29 28 27 29 28 27 29 28 27 29 28 27 29 28 27 29 28 27 29 28 27 29 29 28 27 29 29 29 29 29 29 29 29 29 29 29 29 29										
原子炉 しゃへい壁 17 16 7 16 7 8560 8610 8610 8660 8540 8660 1.01 12500 11700 12500 12100 11600 12100 0.97 16600 14900 16600 15800 15100 15800 0.96 28 27 28 27 26 格納容 器 24 23 22 21 21				6840	6040	6840	6370	5590	6370	0.94
17	原子炉			6190	6640	6640	6470	6360	6470	0.98
R				8560	8610	8610	8660	8540	8660	1.01
R	い壁			12500	11700	12500	12100	11600	12100	0.97
原子炉格納容器器 26 260 286 286 286 264 286 1.00 28 27 3100 3220 3220 3120 3010 3120 0.97 3920 3980 3980 3940 3750 3940 0.99 25 24 25 26500 27300 27300 27000 27200 27200 1.00 28700 29400 29400 29200 29400 29400 29400 29400 1.00 29200 29800 29800 29700 30000 30000 1.01				16600	14900	16600	15800	15100	15800	0.96
原子炉格納容器器 25 24 23 23 24 23 22 21 28 29 28 3100 3220 320 3220 3100 3220 3920 3980 3980 3940 3940 0.99 25 26 24 27400 28100 27900 27900 28000 28700 29400 29200 29800 29200				206	260	206	206	264	206	1 00
原子炉格納容器 25 23 24 23 22 23 22 21 300 3100 3220 320 3980 3980 3940 3940 0.99 25100 26200 2500 25600 26500 27300 27400 28100 28100 27900 29200 29400 29200 29800 29200 29800										
原子炉格納容器器 25 23 22 23 22 21 3100 3100 3220 3920 3980 3980 3940 3750 3940 25 25100 26500 26200 27300 27300 27400 28100 28100 27900 28000 29400 29200 29400 29200 29800 <		28								
原子炉格納容器 25 24 23 22 21 21 3920 3980 3980 3980 3940 3750 3940 0.99 2500 26200 26200 25600 26100 26100 1.00 26500 27300 27300 27000 27200 27200 1.00 27400 28100 28100 27900 28000 28000 1.00 28700 29400 29400 29200 29400 29400 1.00 29200 29800 29800 29700 30000 30000 1.01										
A	原 子 后									
器 24 27400 28100 27300 27000 27200 27200 1.00 27400 28100 28100 27900 28000 1.00 28700 29400 29400 29400 29400 1.00 29200 29200 29400 1.00 29200 29200 29200 29200 1.00 29200 29200 29200 29200 1.01 29200 29200 29200 29200 1.01 29200 29200 29200 29200 1.01 29200 29200 29200 29200 1.01 29200 29200 29200 29200 1.00 29200 29200 29200 1.00 29200 29200 29200 1.00 29200 29200 29200 1.00 29200 29200 29200 29200 1.00 29200 29200 29200 29200 1.00 29200 29200 29200 29200 1.00 29200 29200 29200 29200 1.00 29200 29200 29200 29200 1.00 29200 29200 29200 29200 1.00 29200 29200 29200 29200 29200 1.00 29200 29200 29200 29200 1.00 29200 29200 29200 29200 1.00 29200 29200 29200 29200 1.00 29200 29200 29200 29200 29200 29200 1.00 29200										
23 22 21 23/200 28700 29400 29400 29200 29200 29800 29800 29700 30800 31400 31400 30800 31400 30800 38800										
22 29200 29800 29800 29700 30000 30000 1.01										
29200 29800 29800 29700 30000 30000 1.01										
				29200	29800	29800	29700	30000	30000	1.01
				30200	31400	31400	30700	32000	32000	1.02

表 4-2(2/2) せん断力(基準地震動 S s - D 2)

					せ	ん断力(1	ςN)		
	質点	標高	I	認モデル	ン	補強	反映モラ	デル	
部位	番号	0. P. (m)	NS	EW	① 包絡値	NS	EW	② 包絡値	比率 (①/②)
	37		443	603	603	398	548	548	0.91
	36		909	1190	1190	842	1020	1020	0.86
	35		1350	1420	1420	1480	1170	1480	1.05
	34		1690	1820	1820	1910	1420	1910	1.05
	33		2120	2350	2350	2450	1780	2450	1.05
炉心	32		2990	2690	2990	2880	3520	3520	1.18
シュラウ	31		2790	2480	2790	2870	3210	3210	1.16
ド	30		2520	2650	2650	2940	2660	2940	1.11
	29 28		2850	3030	3030	3180	2850	3180	1.05
	27		3110	3350	3350	3390	3060	3390	1.02
	26		3330	3590	3590	3570	3220	3570	1.00
	25		4810	4330	4810	4930	5150	5150	1.08
	51		4730	4480	4730	4820	5180	5180	1.10
	53		688	633	688	1050	693	1050	1.53
制御棒	45			170		282		282	
案内管	44		178		178		188		1.59
	52		587	546	587	902	597	902	1.54
	43		900	807	900	1320	888	1320	1.47
制御棒	38		454	437	454	468	447	468	1.04
駆動機構	39		261	253	261	273	257	273	1.05
ハウジング	40		20.5	18.8	20.5	21.2	20.0	21.2	1.04
	41		255	236	255	264	241	264	1.04
	42		200	230	200	204	241	204	1.04
	55		3180	2750	3180	2820	3520	3520	1.11
	50		2240	2020	2240	1990	2510	2510	1.13
燃料	49		809	783	809	711	885	885	1.10
集合体	48		832	736	832	745	966	966	1. 17
	47		2230	2020	2230	1990	2510	2510	1.13
	46 54		3130	2840	3130	2770	3410	3410	1. 09
			l	<u> </u>	1	<u> </u>	1	1]

表 4-3(1/2) 曲げモーメント (基準地震動 S s - D 2)

			4 3 (1/2)	曲げモーメント(kN・m)						
新名		哲 占		Т	- 認エデル		I		 デル	
照子炉 は 14	部位					1			2	•
照子炉 (日子) (日子)		15		0	0	0	0	0	0	-
照子炉 圧力容器		14		1400	1470	1470	1300	1400	1400	0.96
照子炉 用子炉 用子炉 用子炉 水体の基 機 10 11 11 16100 16900 16900 16200 18200 18200 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.		13		5400	6120	6120	5500	6090	6090	1.00
日本の		12		12700	14100	14100	12900	14100	14100	1.00
10		11		16100	16900	16900	16200	18200	18200	1.08
8	//J/1/10 10 10 10 10 10 10 10 10 10 10 10 10 1	10		27500	27900	27900	27700	30100	30100	1.08
77800 77800 77800 77500 77100 77500 1.00 199000 195000 199000 197000 195000 197000 0.99		9		46700	45000	46700	47400	48300	48300	1.04
原子炉 存		8		59500	57500	59500	60600	59800	60600	1.02
原子炉本体の基 5 261000 246000 256000 256000 256000 0.99 261000 246000 261000 256000 245000 256000 0.99 321000 298000 314000 298000 314000 0.98 321000 385000 362000 375000 0.98 385000 360000 385000 375000 362000 375000 0.98 385000 360000 385000 375000 362000 375000 0.98 385000 360000 385000 375000 362000 375000 0.98 385000 360000 385000 375000 362000 375000 0.98 385000 360000 385000 375000 362000 375000 0.98 385000 362000 375000 0.98 385000 375000 362000 375000 0.98 385000 375000 362000 375000 0.98 385000 375000 362000 375000 0.98 385000 375000 362000 375000 0.98 385000 375000 362000 375000 0.98 385000 375000 362000 375000 0.98 385000 375000 362000 375000 0.98 385000 375000 362000 375000 0.98 385000 375000 375000 0.98 385000 375000 375000 0.98 385000 375000 375000 0.98 385000 375000 375000 0.98 385000 375000 375000 0.98 38500 375000 375000 0.98 38500 375000 375000 0.98 38500 375000 375000 0.98 38500 375000 375000 375000 0.98 38500 375000 375000 375000 0.98 38500 375000 375000 375000 0.98 38500 375000 375000 375000 0.98 38500 375000 37		7		77800	77800	77800	77500	77100	77500	1.00
藤子炉 本体の基 養 4 321000 298000 321000 314000 298000 314000 0.98 321000 298000 321000 314000 298000 314000 0.98 385000 360000 385000 375000 362000 375000 0.98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7		199000	195000	199000	197000	195000	197000	0.99
本体の基	原子炉	6		222000	214000	222000	219000	214000	219000	0.99
日子炉 日本	本体の基	5		261000	246000	261000	256000	245000	256000	0.99
原子炉 格納容器 原子炉 格納容器 20 19 19 18 18 32200 35300 35300 32200 33000 33000 0.94 32200 35300 53300 52900 51600 52900 1.00 7 10 10 7 10 10 7 10 10 10 10 10 10 10 10 10 10	礎	4		321000	298000	321000	314000	298000	314000	0.98
原子炉 しゃへい 壁 17 16 7 16 7 17 18 18 19 10 17 18 10 17 18 10 10 10 10 10 10 10 10 10 10 10 10 10		3		385000	360000	385000	375000	362000	375000	0.98
原子炉 18		20		0	0	0	0	0	0	-
18		19		18900	16700	18900	17600	15500	17600	0.94
度 17 50900 53300 53300 52900 51600 52900 1.00 7 76800 75300 76800 78100 75400 78100 1.00 30 0		18		32200	35300	35300	32200	33000	33000	0.94
万 122000 121000 122000 121000 121000 121000 121000 1.00 30 0 0 0 0 0 0 0 0 - 29 657 619 657 658 607 658 1.01 28 1850 1740 1850 1850 1700 1850 1.00 27 6160 6210 6210 6190 5890 6190 1.00 26 17600 17800 17800 17700 16800 17700 1.00 25 124000 129000 129000 126000 128000 128000 1.00 23 332000 343000 343000 338000 341000 341000 1.00 22 471000 484000 484000 479000 482000 482000 1.00 529000 543000 543000 538000 541000 541000 1.00		17		50900	53300	53300	52900	51600	52900	1.00
R		16		76800	75300	76800	78100	75400	78100	1.02
原子炉格納容器 25 657 619 657 658 607 658 1.01 28 1850 1740 1850 1850 1700 1850 1.00 27 6160 6210 6210 6190 5890 6190 1.00 26 17600 17800 17800 17700 16800 17700 1.00 25 124000 129000 129000 126000 128000 128000 1.00 24 200000 207000 207000 203000 206000 206000 1.00 23 332000 343000 343000 338000 341000 341000 1.00 22 471000 484000 484000 479000 482000 482000 1.00 529000 543000 543000 538000 541000 541000 1.00		7		122000	121000	122000	121000	121000	121000	1.00
原子炉格納容器 28 1850 1740 1850 1850 1700 1850 1.00 27 6160 6210 6210 6190 5890 6190 1.00 26 17600 17800 17800 17700 16800 17700 1.00 25 124000 129000 129000 126000 128000 128000 1.00 24 200000 207000 207000 203000 206000 206000 1.00 23 332000 343000 343000 338000 341000 341000 1.00 22 471000 484000 484000 479000 482000 482000 1.00 529000 543000 543000 538000 541000 541000 1.00		30		0	0	0	0	0	0	_
原子炉格納容器 25 6160 6210 6210 6210 6210 6190 5890 6190 1.00 17600 17800 17800 17700 16800 17700 1.00 124000 129000 129000 126000 128000 128000 1.00 23 332000 343000 343000 338000 341000 341000 1.00 22 471000 484000 484000 479000 482000 482000 1.00 529000 543000 543000 538000 541000 541000 1.00		29		657	619	657	658	607	658	1.01
原子炉格納容器 26 17600 17800 17800 17700 16800 17700 1.00 124000 129000 129000 126000 128000 128000 128000 1.00 24 200000 207000 207000 203000 206000 206000 1.00 23 332000 343000 343000 338000 341000 341000 1.00 22 471000 484000 484000 479000 482000 482000 1.00 529000 543000 543000 538000 541000 541000 1.00		28		1850	1740	1850	1850	1700	1850	1.00
原子炉 格納容器 25 124000 129000 129000 126000 128000 128000 1.00 24 200000 207000 207000 203000 206000 206000 1.00 23 332000 343000 343000 338000 341000 341000 1.00 22 471000 484000 484000 479000 482000 482000 1.00 529000 543000 543000 538000 541000 541000 1.00		27		6160	6210	6210	6190	5890	6190	1.00
格納容器 25 124000 129000 129000 126000 128000 128000 1.00 24 200000 207000 207000 203000 206000 206000 1.00 23 332000 343000 343000 343000 338000 341000 341000 1.00 22 471000 484000 484000 479000 482000 482000 1.00 529000 543000 543000 538000 541000 541000 1.00		26		17600	17800	17800	17700	16800	17700	1.00
24 200000 207000 207000 203000 206000 206000 1.00 23 332000 343000 343000 338000 341000 341000 1.00 22 471000 484000 484000 479000 482000 482000 1.00 21 529000 543000 543000 538000 541000 541000 1.00		25		124000	129000	129000	126000	128000	128000	1. 00
22 471000 484000 484000 479000 482000 482000 1.00 21 529000 543000 543000 538000 541000 541000 1.00	TH VIA. H HH	24		200000	207000	207000	203000	206000	206000	1.00
21 529000 543000 543000 538000 541000 541000 1.00		23		332000	343000	343000	338000	341000	341000	1.00
		22		471000	484000	484000	479000	482000	482000	1. 00
3 573000 587000 587000 580000 586000 586000 1.00		21		529000	543000	543000	538000	541000	541000	1.00
		3		573000	587000	587000	580000	586000	586000	1. 00

表 4-3(2/2) 曲げモーメント (基準地震動 S s - D 2)

					曲げモ	ーメント	(kN • m)		
· 大八 /士	質点	標高	I	「認モデル	ンレ	補強	反映モラ	デル	LL 交
部位	番号	0. P. (m)	NS	EW	① 包絡値	NS	EW	② 包絡値	比率 (②/①)
	37		0	0	0	0	0	0	_
	36		567	773	773	510	702	702	0.91
	35		1740	2300	2300	1580	2010	2010	0.88
	34		3990	4660	4660	3930	3670	3930	0.85
	33		5380	5980	5980	5600	4620	5600	0.94
	33		4630	5460	5460	4680	4270	4680	0.86
炉心	32		5870	6480	6480	6250	5090	6250	0.97
シュラウ	31		7550	7120	7550	8030	6630	8030	1.07
F	30		9230	8660	9230	9970	8200	9970	1.09
	29		10800	10300	10800	12000	9980	12000	1.12
	28		12200	12000	12200	14000	11300	14000	1. 15
	27		13600	13600	13600	16100	12200	16100	1. 19
	26		15100	15700	15700	18100	14400	18100	1.16
	25		19300	20800	20800	22400	19600	22400	1.08
	51		23800	26000	26000	27200	24900	27200	1.05
	53		0	0	0	0	0	0	-
制御棒	45		805	742	805	1230	811	1230	1.53
案内管	44		1020	941	1020	1560	1030	1560	1.53
	52		0	0	0	0	0	0	-
	43		0	0	0	0	0	0	_
	38		989	886	989	1450	976	1450	1.47
制御棒			479	479	479	498	489	498	1.04
駆動機構ハウジン	39		59. 1	59.8	59.8	59. 5	61.0	61.0	1.03
グ	40		279	253	279	287	258	287	1.03
	41		271	251	271	281	256	281	1.04
	42		0	0	0	0	0	0	-
	55		0	0	0	0	0	0	-
	50		2240	1930	2240	1980	2480	2480	1.11
141 VIV. 441	49		3810	3350	3810	3380	4230	4230	1.12
燃料集合	48		4350	3900	4350	3860	4840	4840	1. 12
	47		3770	3410	3770	3340	4160	4160	1.11
	46		2200	2000	2200	1950	2400	2400	1.10
	54		0	0	0	0	0	0	-
				1	I .	1	1	I .	

表 4-4(1/5) 最大<mark>応答</mark>加速度(基準地震動 S s - D 2, 1.0ZPA, 鉛直方向)

			最大応答		
構造物	質点番 <mark>号</mark>	標高		$m/s^2) \times 1.0$	応答比率
117.70	× = •	0. P. (m)	①工認モデル	②補強反映 モデル	(2/1)
	14		0.57	0.56	0.99
	15		0.61	0.61	1.00
原子炉本体	16		0. 68	0. 68	1.00
の基礎	17		0.74	0.74	1.00
			0.74		
	18			0.77	1.00
原子炉圧力	24		0.98	0.98	1.00
容器	25		1.01	1.01	1.00
	31		1.13	1. 15	1.02
	19		1.08	1.07	1.00
	20		1.28	1.28	1.00
原子炉しゃへい壁	21		1.44	1.44	1.00
	22		1.53	1.53	1.00
	23		1.56	1.57	1.01
	32		0.61	0.62	1.02
	33		0.65	0.65	1.00
	34		0.72	0.72	1.00
原子炉格納	35		0.78	0.78	1.00
容器	36		0.83	0.82	0.99
	37		0.88	0.89	1.02
	39		0.93	0.93	1.00
	41		0.96	0.94	0.98

表 4-4(2/5) 最大<mark>応答</mark>加速度(基準地震動 S s - D 2, 1.0ZPA, 鉛直方向)

		I Tre t- a	最大応答		
構造物	質点番号	標高 O.P.(m)	(×9.80665 ①工認	m/s ²) ×1.0 ②補強反映	応答比率 (②/①)
		0.1. (111)	モデル	モデル	(2)/ (I)
	55		1.33	1.32	1.00
	54		1.33	1.32	1.00
	53		1.32	1.32	1.00
	52		1.31	1.30	1.00
	51		1.20	1.19	1.00
	50		1. 19	1.18	1.00
	49		1. 17	1.16	1.00
炉心シュラ ウド	48		1. 15	1.14	1.00
	47		1. 13	1.12	1.00
	46		1. 11	1.10	1.00
	45		1.09	1.08	1.00
	44		1.07	1.06	1.00
	43		1.04	1.03	1.00
	42		1.00	0.99	0.99
	41		0.94	0.94	1.00
	64		1.32	1.31	1.00
制御棒	63		1.24	1. 23	1.00
案内管	62		1. 17	1. 15	0.99
	61		1.06	1.05	1.00
	61		1.06	1.05	1.00
# 1 Pm 11 *:	60		1.03	1.02	1.00
制御棒駆動機構ハウジング	59		1.04	1.03	1.00
	58		1.04	1.03	1.00
	57		1.05	1.04	1.00
	56		1.06	1.05	1.00

表 4-4(3/5) 最大<mark>応答</mark>加速度(基準地震動 S S - D 2, 1.2ZPA, 鉛直方向)

			最大応答	答加速度	
構造物	質点番 <mark>号</mark>	標高		$m/s^2) \times 1.2$	応答比率
HP 20 107	貝 杰 笛 <mark>ク</mark>	0. P. (m)	①工認	②補強反映	(2/1)
			モデル	モデル	
	14		0.68	0.68	1.00
原子炉本体	15		0.74	0.73	0.99
原子炉本体の基礎	16		0.81	0.81	1.00
7. 盆 WE	17		0.89	0.88	0.99
	18		0.92	0.92	1.00
	24		1.18	1.18	1.00
原子炉圧力 容器	25		1.21	1.21	1.00
727 1115	31		1.36	1.38	1.02
	19		1.29	1.28	1.00
	20		1.54	1.53	1.00
原子炉 しゃへい壁	21		1.73	1.73	1.00
	22		1.84	1.84	1.00
	23		1.88	1.88	1.00
	32		0.73	0.74	1.02
	33		0.77	0.78	1.02
	34		0.86	0.86	1.00
原子炉格納	35		0.94	0.93	0.99
容器	36		0.99	0.99	1.00
	37		1.06	1.06	1.00
	39		1.12	1. 11	1.00
	41		1. 15	1. 13	0.99

注:設備評価に用いる質点に対する応答比率を記載。

表 4-4(4/5) 最大<mark>応答</mark>加速度(基準地震動 S S - D 2, 1.2ZPA, 鉛直方向)

		I# +	最大応答		
構造物	質点番 <mark>号</mark>	標高 O.P.(m)	①工認	m/s ²) ×1.2 ②補強反映	応答比率 (②/①)
		0 V I V (III)	モデル	モデル	() ,
	55		1.60	1.59	1.00
	54		1.60	1.59	1.00
	53		1.59	1.58	1.00
	52		1.57	1.56	1.00
	51		1.44	1.43	1.00
	50		1.42	1.41	1.00
	49		1.40	1.39	1.00
炉心シュラ ウド	48		1.38	1.37	1.00
	47		1.36	1.34	0.99
	46		1.33	1.32	1.00
	45		1.31	1.30	1.00
	44		1. 29	1.28	1.00
	43		1.24	1. 23	1.00
	42		1.20	1. 19	1.00
	41		1. 13	1.12	1.00
	64		1.58	1.57	1.00
制御棒	63		1.49	1.48	1.00
案内管	62		1.40	1.38	0.99
	61		1. 28	1. 26	0.99
	61		1. 28	1. 26	0.99
n d Dan II am at	60		1.24	1. 23	1.00
制御棒駆動機構ハウジング	59		1. 24	1. 23	1.00
	58		1. 25	1.24	1.00
	57		1. 26	1.25	1.00
	56		1. 27	1.26	1.00

表 4-4(5/5) 最大<mark>応答</mark>加速度(基準地震動 S S - D 2, 1.2ZPA, 鉛直方向)

		標高		答加速度 m/s²) ×1.2	応答比率
構造物	質点番 <mark>号</mark>	0. P. (m)	①工認 モデル	②補強反映 モデル	(2/1)
	40		1.45	1.44	1.00
	39		1.45	1.44	1.00
	38		1.43	1.42	1.00
	37		1.39	1.38	1.00
	36		1.36	1.35	1.00
	35		1.32	1.31	1.00
	34		1. 29	1. 29	1.00
	33		1.28	1.27	1.00
原子炉 圧力容器	32		1.27	1. 26	1.00
/L// / / / / / / / / / / / / / / / / /	31		1. 25	1.24	1.00
	30		1. 23	1. 22	1.00
	29		1. 22	1.21	1.00
	28		1.20	1. 19	1.00
	27		1.18	1.18	1.00
	26		1. 16	1. 15	1.00
	25		1. 13	1. 12	1.00
	24		1.11	1.10	1.00

注:設備評価に用いる質点に対する応答比率を記載。

表 4-5(1/2) 軸力(基準地震動Ss-D2)

☆ 77 / ↓	質点	標高	軸力	(kN)	比率
部位	番号	0. P. (m)	①工認モデル	②補強反映モデル	(2/1)
	31		193	193	1.00
	30		1410	1410	1.00
	29		2430	2440	1.01
原子炉	28 27		3100	3130	1.01
圧力容器	26		4000	4040	1.01
	25		4810	4850	1.01
	24		5640	5670	1.01
	18		11800	11800	1.00
	18		32200	32400	1.01
原子炉	17		34000	34200	1.01
本体の基礎	16		35800	36000	1.01
	15 14		37400	37600	1.01
	23		2520	2630	1 00
	22	1	2580		1.02
原子炉	21		5790	5880	1.02
しゃへい壁	20	1	11300	11400	1.01
	19		15300	15400	1.01
	18		19100	19200	1.01
	41		140	138	0.99
	40		278	274	0.99
	39		1070	1070	1.00
	38		1510	1510	1.00
原子炉	37		2900	2890	1.00
格納容器	36		3900	3880	1.00
	35		4640	4610	1.00
	34		5930	5890	1.00
	32		6500	6460	1.00
	14		7760	8220	1.06

表 4-5(2/2) 軸力(基準地震動Ss-D2)

	質点	標高	軸ク	j (kN)	 比率
部位	番号	0. P. (m)	①工認モデル	②補強反映モデル	(2/1)
	55		103	103	1.00
	54		309	308	1.00
	53		476	474	1.00
	52		673	670	1.00
	51		977	968	1.00
	50		1150	1140	1.00
炉心	49		1180	1170	1.00
シュラウド	48		1220	1210	1.00
, , ,	47		1250	1240	1.00
	46		1280	1270	1.00
	45		1320	1300	0.99
	44		1630	1610	0.99
	43		1650	1640	1.00
	42		1670	1650	0.99
	64		2440	2420	1.00
制御棒	63		2510	2490	1.00
案内管	62				
	61		2570	2540	0.99
	61		2640	2620	1.00
that the Like	60		662	661	1.00
制御棒駆動機構	59		605	604	1.00
かりジング	58		546	546	1.00
	57			1	
	56		488	487	1.00
炉心シュラウ	51		15. 7	15.6	1.00
ド支持ロッド	25		10. 1	10.0	1.00

表 4-6 ばね反力, せん断力及び軸力(基準地震動 S s - D 2)

		ばね反力,せん断力及び軸力						
部位	応答種別 及び単位	工認モデル			補強反映モデル			応答
티기		NS	EW	① 包絡値	NS	EW	② 包絡値	比率 (②/①)
原子炉圧力容器 スタビライザ	ばね反力 (kN)	7700	7350	7700	7300	7710	7710	1.01
原子炉格納容器 スタビライザ	ばね反力 (kN)	13300	12800	13300	14300	12300	14300	1.08
原子炉格納容器 シヤラグ	ばね反力 (kN)	24200	25800	25800	25000	25000	25000	0.97
ベント管	ばね反力 (kN)	1630	1820	1820	4600	5160	5160	2.84
燃料交換 ベローズ	ばね反力 (kN)	1660	1500	1660	1580	1380	1580	0.96
所員用 エアロック	ばね反力 (kN)	261	281	281	260	281	281	1.00
制御棒駆動機構 ハウジング レストレント ビーム	ばね反力 (kN)	350	327	350	360	337	360	1.03
炉心シュラウド 回転ばね	ばね反力 (kN·m)	23800	26000	26000	27200	24900	27200	1.05
上部格子板	せん断力 (kN)	3320	2900	3320	2960	3670	3670	1. 11
炉心支持板	せん断力 (kN)	4110	3750	4110	4110	4410	4410	1.08
上部 サポート	ばね反力 (kN)	1680	1720	1720	1760	1540	1760	1.03
下部 スタビライザ	ばね反力 (kN)	453	441	453	446	428	446	0.99
炉心シュラウド支持ロッド (1 体あたり)	軸力 (kN)	164	168	168	187	158	187	1. 12

表 4-7 相対変位(基準地震動 S s - D 2)

		旧为久压							
		標高 0. P. (m)	相対変位(mm)						
部位	質点番号		工認モデル			補強反映モデル			比率
			NS	EW	① 包絡値	NS	EW	② 包絡値	(2/1)
	55		0.0	0.0	0.0	0.0	0.0	0.0	-
燃料集合体	50		23.2	20.6	23.2	20.6	25.7	25.7	1.11
	49		40.1	35.6	40.1	35.5	44.4	44.4	1.11
	48		46.2	41.2	46.2	40.9	51.2	51.2	1.11
	47		40.0	35.8	40.0	35.4	44.2	44.2	1.11
	46		23. 1	20.7	23. 1	20.5	25.5	25.5	1.11
	54		0.0	0.0	0.0	0.0	0.0	0.0	_

表 4-8(1/2) 床応答曲線 (基準地震動 S s - D 2)

++	地震応答解析 モデル	構造物	質点 番号	標高 0.P. (m)	減衰定数	図番		
方向						床応答曲線	応答比率	
	大機系型器	原子炉しゃへい璧	19		2.0	図 4-1(1/18)	図 4-2(1/18)	
			18			図 4-1(2/18)	図 4-2(2/18)	
			17			図 4-1(3/18)	図 4-2(3/18)	
			16			図 4-1(4/18)	図 4-2(4/18)	
		原子炉 本体の基礎	7			図 4-1(5/18)	図 4-2(5/18)	
			6			図 4-1(6/18)	図 4-2(6/18)	
			5			図 4-1(7/18)	図 4-2(7/18)	
			4			図 4-1(8/18)	図 4-2(8/18)	
水平			3			図 4-1(9/18)	図 4-2(9/18)	
八十		原子炉格納容器	26			図 4-1(10/18)	図 4-2 (10/18)	
			25			図 4-1(11/18)	図 4-2(11/18)	
			24			図 4-1(12/18)	図 4-2 (12/18)	
			23			図 4-1(13/18)	図 4-2 (13/18)	
			22			図 4-1 (14/18)	図 4-2 (14/18)	
			21			図 4-1(15/18)	図 4-2 (15/18)	
		原子炉 圧力容器	8			図 4-1(16/18)	図 4-2 (16/18)	
	炉内	炉心支持板	26			図 4-1(17/18)	図 4-2(17/18)	
	構造 物系	原子炉圧力 容器底部	38			図 4-1(18/18)	図 4-2(18/18)	

表 4-8(2/2) 床応答曲線 (基準地震動 S s - D 2)

方向	地震応 答解析 モデル	構造物	質点 番号	標高 0.P. (m)	減衰 定数	図番		
刀间						床応答曲線	応答比率	
		原子炉しゃへい璧	22		2.0	図 4-3(1/16)	図 4-4(1/16)	
			21			図 4-3(2/16)	図 4-4(2/16)	
			20			図 4-3(3/16)	図 4-4(3/16)	
			19			図 4-3(4/16)	図 4-4(4/16)	
		原子炉 本体の基礎	18			図 4-3(5/16)	図 4-4(5/16)	
			17			図 4-3(6/16)	図 4-4(6/16)	
			16			図 4-3(7/16)	図 4-4(7/16)	
	大型 機器		15			図 4-3(8/16)	図 4-4(8/16)	
	系		14			図 4-3(9/16)	図 4-4(9/16)	
		原子炉格納容器	37			図 4-3 (10/16)	図 4-4(10/16)	
			36			図 4-3 (11/16)	図 4-4(11/16)	
			35			図 4-3 (12/16)	図 4-4(12/16)	
			34			図 4-3 (13/16)	図 4-4(13/16)	
			33			図 4-3 (14/16)	図 4-4 (14/16)	
			32			図 4-3 (15/16)	図 4-4(15/16)	
		原子炉 圧力容器	24			図 4-3 (16/16)	図 4-4 (16/16)	

図 4-1 (1/18) 床応答曲線 (基準地震動 S s - D 2, 水平方向, 原子炉しゃへい壁 0.P. m)

図 4-1 (3/18) 床応答曲線

(基準地震動Ss-D2,水平方向,原子炉しゃへい壁 0.P. ┏)

図 4-1 (4/18) 床応答曲線

(基準地震動 S s − D 2, 水平方向, 原子炉しゃへい壁 0.P. ____m)

図 4-1 (5/18) 床応答曲線 (基準地震動 S s - D 2, 水平方向,原子炉本体の基礎 0.P. _______m)

(基準地震動 S s − D 2 , 水平方向,原子炉本体の基礎 0.P. m)

図 4-1 (7/18) 床応答曲線

(基準地震動Ss-D2,水平方向,原子炉本体の基礎 0.P. ┏) m)

図 4-1 (8/18) 床応答曲線

(基準地震動 S s − D 2 , 水平方向, 原子炉本体の基礎 0. P. □ n

図 4-1 (9/18) 床応答曲線

(基準地震動Ss-D2,水平方向,原子炉本体の基礎 0.P. m)

図 4-1 (10/18) 床応答曲線 (基準地震動 S s - D 2, 水平方向, 原子炉格納容器 0.P. **m**

図 4-1 (11/18) 床応答曲線 (基準地震動 S s - D 2, 水平方向,原子炉格納容器 0.P.

図 4-1 (12/18) 床応答曲線

(基準地震動 S s - D 2, 水平方向, 原子炉格納容器 0.P.

図 4-1 (13/18) 床応答曲線

(基準地震動Ss-D2, 水平方向, 原子炉格納容器 0.P. ┏) m)

図 4-1 (14/18) 床応答曲線

(基準地震動Ss-D2, 水平方向, 原子炉格納容器 0.P. ██️m)

図 4-1 (15/18) 床応答曲線 (基準地震動 S s - D 2, 水平方向, 原子炉格納容器 0.P. ______m)

図 4-1 (17/18) 床応答曲線 (基準地震動 S s - D 2, 水平方向, 炉心支持板 0.P. m)

図 4-1 (18/18) 床応答曲線

(基準地震動Ss-D2, 水平方向, 原子炉圧力容器底部 0.P. m)

図 4-2 (1/18) 応答比率

(基準地震動 S s − D 2, 水平方向, 原子炉しゃへい壁 0.P. _____m)

図 4-2 (2/18) 応答比率

(基準地震動Ss-D2,水平方向,原子炉しゃへい壁 0.P. m)

図 4-2 (3/18) 応答比率

(基準地震動 S s - D 2, 水平方向, 原子炉しゃへい璧 0.P. m)

図 4-2 (4/18) 応答比率

(基準地震動Ss-D2,水平方向,原子炉しゃへい璧 0.P. ■ m)

図 4-2 (5/18) 応答比率

(基準地震動 S s − D 2 , 水平方向, 原子炉本体の基礎 0.P. m)

図 4-2 (6/18) 応答比率

(基準地震動Ss-D2, 水平方向, 原子炉本体の基礎 0.P. ┏) m)

図 4-2 (7/18) 応答比率

(基準地震動Ss-D2,水平方向,原子炉本体の基礎 0.P. ■ m)

図 4-2 (8/18) 応答比率

(基準地震動Ss-D2,水平方向,原子炉本体の基礎 0.P. ┏) m)

図 4-2 (9/18) 応答比率

(基準地震動Ss-D2,水平方向,原子炉本体の基礎 0.P. m)

図 4-2 (10/18) 応答比率

(基準地震動Ss-D2,水平方向,原子炉格納容器 0.P. m)

図 4-2 (11/18) 応答比率

(基準地震動Ss-D2, 水平方向, 原子炉格納容器 0.P. m)

図 4-2 (12/18) 応答比率

(基準地震動Ss-D2, 水平方向, 原子炉格納容器 0.P. ┏) m)

図 4-2 (13/18) 応答比率

(基準地震動Ss-D2, 水平方向, 原子炉格納容器 0.P. m)

図 4-2 (14/18) 応答比率

(基準地震動Ss-D2,水平方向,原子炉格納容器 0.P. ┏)

図 4-2 (15/18) 応答比率

(基準地震動Ss-D2, 水平方向, 原子炉格納容器 0.P. m)

図 4-2 (16/18) 応答比率

(基準地震動Ss-D2,水平方向,原子炉圧力容器 0.P. m)

図 4-2 (17/18) 応答比率

図 4-2 (18/18) 応答比率

(基準地震動Ss-D2, 水平方向, 原子炉圧力容器底部 0.P. m)

図 4-3 (1/16) 床応答曲線

(基準地震動Ss-D2,鉛直方向,原子炉しゃへい壁 0. P. m)

図 4-3 (2/16) 床応答曲線

(基準地震動 S s - D 2, 鉛直方向, 原子炉しゃへい壁 0.P. m)

図 4-3 (3/16) 床応答曲線

(基準地震動Ss-D2,鉛直方向,原子炉しゃへい壁 0.P. m)

図 4-3 (4/16) 床応答曲線

(基準地震動Ss-D2,鉛直方向,原子炉しゃへい壁 0.P. m)

図 4-3 (5/16) 床応答曲線

(基準地震動Ss-D2, 鉛直方向, 原子炉本体の基礎 0.P. ■ m)

(基準地震動 S s - D 2, 鉛直方向,原子炉本体の基礎 0.P. m

図 4-3 (7/16) 床応答曲線

(基準地震動Ss-D2, 鉛直方向, 原子炉本体の基礎 0.P. ■ m)

図 4-3 (8/16) 床応答曲線

(基準地震動 S s − D 2 , 鉛直方向, 原子炉本体の基礎 0.P. m)

(基準地震動Ss-D2,鉛直方向,原子炉本体の基礎 0.P. ┏) m)

枠囲みの内容は商業機密の観点から公開できません。

(基準地震動 S s - D 2, 鉛直方向, 原子炉格納容器 0.P.

(基準地震動 S s − D 2, 鉛直方向, 原子炉格納容器 0.P. m)

(基準地震動 S s - D 2, 鉛直方向, 原子炉格納容器 0.P. m)

(基準地震動Ss-D2, 鉛直方向, 原子炉格納容器 0.P. ■ m)

枠囲みの内容は商業機密の観点から公開できません。

(基準地震動Ss-D2,鉛直方向,原子炉格納容器 0.P. m)

(基準地震動 S s - D 2, 鉛直方向, 原子炉格納容器 0.P. m)

枠囲みの内容は商業機密の観点から公開できません。

(基準地震動 S s - D 2, 鉛直方向, 原子炉圧力容器 0.P.

図 4-4 (1/16) 応答比率

(基準地震動Ss-D2,鉛直方向,原子炉しゃへい壁 0.P. ■ m)

図 4-4 (2/16) 応答比率

図 4-4 (3/16) 応答比率 (基準地震動 S s - D 2, 鉛直方向, 原子炉しゃへい壁 0.P. m)

図 4-4 (4/16) 応答比率

図 4-4 (5/16) 応答比率

(基準地震動 S s − D 2, 鉛直方向,原子炉本体の基礎 0.P. m)

図 4-4 (6/16) 応答比率

(基準地震動Ss-D2,鉛直方向,原子炉本体の基礎 0.P. ■m

図 4-4 (7/16) 応答比率 (基準地震動 S s - D 2, 鉛直方向,原子炉本体の基礎 0.P. m)

図 4-4 (8/16) 応答比率

(基準地震動Ss-D2, 鉛直方向, 原子炉本体の基礎 0.P. ■ m)

図 4-4 (9/16) 応答比率 (基準地震動 S s - D 2, 鉛直方向,原子炉本体の基礎 0.P.

図 4-4 (10/16) 応答比率

(基準地震動Ss-D2, 鉛直方向, 原子炉格納容器 0.P. ■

m)

m)

図 4-4 (11/16) 応答比率

(基準地震動Ss-D2,鉛直方向,原子炉格納容器 0.P. ┏)

図 4-4 (12/16) 応答比率

(基準地震動Ss-D2, 鉛直方向, 原子炉格納容器 0.P. m)

図 4-4 (13/16) 応答比率

(基準地震動Ss-D2,鉛直方向,原子炉格納容器 0.P. ■ m)

図 4-4 (14/16) 応答比率

(基準地震動Ss-D2,鉛直方向,原子炉格納容器 0.P. m)

図 4-4 (15/16) 応答比率

(基準地震動Ss-D2,鉛直方向,原子炉格納容器 0.P. m)

図 4-4 (16/16) 応答比率

(基準地震動 S s - D 2, 鉛直方向, 原子炉圧力容器 0.P. m

別紙7 原子炉建屋内の施設に対する「断層モデルを用いた

手法による地震動」の影響検討

目次

1.	は	じめに	別紙 7- 1
2.	基	準地震動Ss-F3について	別紙 7- 4
2.	1	海洋プレート内地震の検討	別紙 7- 4
2.	2	断層モデルを用いた手法による地震動評価の概要	別紙 7- 4
2.	3	基準地震動 S s - F 3 の選定	別紙 7- 4
3.	施	設の耐震設計への影響検討	別紙 7-8
3.	1	施設の耐震設計への影響に係る検討方針	別紙 7-8
3.	2	施設の耐震設計への影響検討に用いるF3候補波	別紙 7- 9
3.	3	施設の耐震設計への影響検討結果	別紙 7-14
4.	ま	とめ	別紙 7-21

別紙 7-1 原子炉建屋の減衰定数を 7%とした場合の地震応答解析結果

1. はじめに

女川原子力発電所第 2 号機の施設の耐震設計においては、基準地震動 S s に対して、設計上の保守性を考慮した設計用地震力を設定し、耐震重要施設等の安全機能が損なわれない設計としている。基準地震動 S s の概要を表 1-1 に、基準地震動 S s の応答スペクトルを図 1-1 及び図 1-2 に示す。

このうち基準地震動Ss-F3(以下「Ss-F3」という。)は、敷地ごとに震源を特定して策定する地震動のうち海洋プレート内地震の断層モデルを用いた手法による地震動であり、審査ガイドの要求事項を踏まえ、不確かさを考慮した複数の地震動評価結果から選定したものである。

本資料では、Ss-F3の選定の代表性を施設の耐震設計への影響の観点から確認するため、基準地震動として選定しなかった地震動(以下「F3候補波」という。)に対しても、Ss-F3を含めた基準地震動Ssによる耐震設計により施設の耐震性が確保されることを確認する。

表 1-1 女川原子力発電所第 2 号機の基準地震動 S s の概要

			·
	基準地震動 S s		備考
		S s - D 1	応答スペクトルに基づく手法
	プレート間地震	S s - F 1	断層モデルを用いた手法
敷地ごとに		S s - F 2	断層モデルを用いた手法
震源を特定して策定す		S s - D 2	応答スペクトルに基づく手法
る地震動	海洋プレート内地震	S s - D 3	応答スペクトルに基づく手法
		S s - F 3	断層モデルを用いた手法
	内陸地殼内地震	_	上記Ssで包絡
震源を特定せて	ず策定する地震動	S s - N 1	_

図 1-1 基準地震動 S s の応答スペクトル (水平方向)

(添付書類「VI-2-1-2 基準地震動Ss及び弾性設計用地震動Sdの策定概要」抜粋)

図 1-2 基準地震動S s の応答スペクトル(鉛直方向) (添付書類「VI-2-1-2 基準地震動S s 及び弾性設計用地震動S d の策定概要」抜粋)

2. 基準地震動 S s - F 3 について

Ss-F3は、敷地ごとに震源を特定して策定する地震動のうち海洋プレート内地震の断層モデルを用いた手法による地震動であり、海洋プレート内地震の強震動生成域を海洋性マントル内に設定したケースから、時刻歴波形の主要動の継続時間等の特性を考慮し不確かさケース3を基準地震動として選定したものである*。

注*:詳細は,添付書類「VI-2-1-2 基準地震動Ss及び弾性設計用地震動Sdの策定概要」による。

2.1 海洋プレート内地震の検討

地震の発生機構等の違いを踏まえ、地震タイプ別に海洋プレート内地震を想定し、 敷地への影響検討を行った上で、最も影響の大きい地震タイプとして、二重深発地震 面上面の地震「2011 年 4 月 7 日宮城県沖型地震」を検討用地震として選定した。

2.2 断層モデルを用いた手法による地震動評価の概要

2011年4月7日宮城県沖型地震の基本ケースは、2011年4月7日宮城県沖の地震 (以下「4.7 地震」という。)のシミュレーションモデルを踏まえたものとし、断層 の位置等は敷地への影響を踏まえた上で4.7 地震の震源位置等にしている。また、地 震規模については不確かさをあらかじめ考慮することとし、シミュレーションモデ ルの北側に断層を拡張して地震規模をM7.5 としている。

強震動生成域を海洋性マントル内に設定したケースは、基本ケースのほか不確か さケースとして、以下のとおり設定している。

- (1)基本ケース (破壊開始点 1~3)
- (2)不確かさケース1 (破壊開始点1~3)

4.7 地震の強震動生成域の位置を保守的に断層上端に設定

(3) 不確かさケース 3

強震動生成域を集約したケースを海洋性マントル位置で評価

最終的に断層モデルを用いた手法による地震動評価のうち、強震動生成域を海洋性マントル内に設定したケースは計7ケースとしている。地震動評価結果を図2-1及び図2-2に示す。

2.3 基準地震動 S s - F 3 の選定

(1) 継続時間,位相特性の特徴

海洋プレート内地震(強震動生成域を海洋性マントル内に設定)の断層モデルを 用いた手法による地震動評価結果は、内陸地殻内地震と比較すると短周期成分に富 んでいる。不確かさケース3は、敷地と強震動生成域との相対的位置関係から、主 要動が最も短い(緻密)という特徴を有している。

(2) 継続時間,位相特性の特徴が施設に与える影響

地震動はもともと短周期のフーリエ振幅がばらつく傾向を有しており、地震応答解析における建屋の非線形特性等の影響によって位相に相対的変化が加わると、短周期成分が重畳し、建屋応答としてもばらつく場合がある。このような短周期側の応答のばらつきは、短周期成分が富み、かつ主要動が短い(緻密)場合、さらに顕著になる傾向にある。

以上より、不確かさケース 3 は、短周期が卓越し、また主要動の継続時間が最も短いという特徴を有していることから、断層モデルを用いた手法による基準地震動として選定し、Ss-F3 としている。本資料においては、Ss-F3 以外のF3 候補波を表 2-1 のとおり整理する。

 本資料での呼称
 検討ケース

 A波
 基本ケース (破壊開始点 1)

 B波
 基本ケース (破壊開始点 2)

 C波
 基本ケース (破壊開始点 3)

 D波
 不確かさケース 1 (破壊開始点 1)

 E波
 不確かさケース 1 (破壊開始点 2)

 F波
 不確かさケース 1 (破壊開始点 3)

表 2-1 F 3 候補波一覧表

図 2-1 海洋プレート内地震の断層モデルを用いた手法による地震動評価結果 (応答スペクトル)

Ss-F3:不確かさケース3

図 2-2 海洋プレート内地震(強震動生成域を海洋性マントル内に設定)の断層 モデルを用いた手法による地震動評価結果(時刻歴波形:水平方向)

- 3. 施設の耐震設計への影響検討
 - 3.1 施設の耐震設計への影響に係る検討方針
 - (1) 原子炉建屋内に設置している主要な設備を対象として、F3候補波を用いた地震 応答解析を行い、それらの地震応答が基準地震動Ssによる耐震設計の裕度の範囲 内にあることを確認する。
 - (2) 影響検討に当たっては、Ss-F3及び女川原子力発電所の基準地震動Ssの中で支配的である(最大加速度が大きく、0.2 秒以下の短周期帯で他の基準地震動Ssを包絡する)基準地震動Ss-D2(以下「Ss-D2」という。)との関係を踏まえ、F3 候補波の比較を行い、より施設への影響が大きいと思われる地震波を選定する。また、F3 候補波の比較に当たっては、より施設への入力に近い原子炉建屋基礎版上での地震応答を用いることとし、床応答スペクトル、Ss-D2に対する応答加速度比 *1 及び最大応答加速度を算出する。

なお、機器・配管系の耐震設計に当たっては、設置位置での応答増幅が起きないようにできる限り剛側の設計とすることや設置建屋の固有周期と近接しない固有周期になるように配慮していることから、主要な施設の固有周期帯(0.05~0.24 秒)における応答加速度比及び最大応答加速度に着目して地震波を選定する。参考として、主要な施設の固有周期を表 3-1 に示す。

注記*1: Ss-D2に対する応答加速度比(F3候補波/Ss-D2)を,剛な機器を除く主要な施設の固有周期帯(0.05秒~0.24秒)で平均化した値。0.24秒は原子炉建屋の1次固有周期。

(3) 影響検討に用いる原子炉建屋の地震応答解析モデルは今回工認モデルを基本とする。2011 年東北地方太平洋沖地震の観測記録を用いたシミュレーション解析結果*2を踏まえると、原子炉建屋の減衰定数は7%であることが確認されているが、本影響検討では、設計条件と同様に減衰定数を5%とする。

なお,施設の影響検討において,より詳細な検討を実施する場合には,原子炉建屋 の減衰定数を7%とする。

注記*2:「補足 620-1 東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法への反映について 別紙 1 東北地方太平洋沖地震等に対する主要建屋のシミュレーション解析」による。

(s)機器名称 固有周期 0.237 (NS 方向), 0.230 (EW 方向) 原子炉建屋 原子炉圧力容器 0.09 0.229 (NS 方向), 0.231 (EW 方向) 燃料集合体 炉心シュラウド支持ロッド 0.080 (タイプ 1), 0.070 (タイプ 2) 主蒸気系配管 $0.115 \sim 0.150*$ 原子炉再循環系配管 $0.098 \sim 0.135*$ 残留熱除去系配管 $0.064 \sim 0.148 *$

表 3-1 主要な施設の固有周期

注記*:改造工事によって変更となる場合がある。

図 3-1 女川 2 号機における主な施設の固有周期

3.2 施設の耐震設計への影響検討に用いるF3候補波

(1) 原子炉建屋基礎版上における地震応答

F3候補波(A~Fの6波)に対する原子炉建屋基礎版上での地震応答結果として、 床応答スペクトル (NS 方向及び EW 方向、床応答スペクトルの減衰定数 5%及び 2%) を図 3-2~図 3-5 に、応答加速度比(床応答スペクトルの減衰定数 5%及び 2%) 及び 最大応答加速度の整理結果を表 3-2 に示す。

(2) 影響検討に用いるF3候補波

上記(1)のF3候補波($A\sim F$ の6波)による地震応答結果の比較により、以下の理由から、A波及びD波を影響検討に用いることとする。

- b. 剛な機器を除く主要施設の固有周期帯(0.05秒~0.24秒)における A 波及び

- D波の応答加速度比は、Ss-F3の応答加速度比と同等であり、A波及びD波を除くF3候補波の応答加速度比はそれよりも小さい。
- c. F 3 候補波(A \sim F の 6 波)の最大応答加速度は、いずれもおおむね 500 \sim 600Gal 程度であり、S s -F 3 の 756Gal に比べて有意に小さい。
- d. A 波及び D 波を影響検討として選定することは、Ss-F3の検討段階における基本ケース (3 波)、不確かさケース 1 (3 波) からそれぞれ選定していることになり、いずれも短周期成分に富み、主要動の継続時間が短いという Ss-F3 と同様の特徴を有している。

図 3-2 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル (NS 方向, 床応答スペクトルの減衰定数 5%)

図 3-3 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル (EW 方向,床応答スペクトルの減衰定数 5%)

図 3-4 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル (NS 方向,床応答スペクトルの減衰定数 2%)

図 3-5 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル (EW 方向,床応答スペクトルの減衰定数 2%)

表 3-2 F 3 候補波の原子炉建屋基礎版上での地震応答結果

	F3候補波							参考	
	基	基本ケース	ζ	不確かさケース 1					
	破壊開	破壊開	破壊開	破壊開	破壊開	破壊開	Ss-F3	Ss-D2	
	始点 1	始点 2	始点 3	始点 1	始点 2	始点 3		00 00	
	[A 波]	[B波]	[C波]	[D波]	[E波]	[F波]			
応答加速度比 (床応答スペク トルの減衰定数 5%)* ^{1,*2}	0.86	0.74	0.76	0.85	0.80	0. 79	0.84	1.00	
応答加速度比 (床応答スペク トルの減衰定数 2%)* ^{1,*2}	0.93	0.84	0.84	0.95	0.90	0.87	0.93	1.00	
最大応答 加速度(Ga1)* ²	625	546	554	605	479	614	756	644	

注記*1: F3候補波のSs-D2に対する応答加速度比(F3候補波/Ss-D2)

について,主要施設の固有周期帯(0.05秒~0.24秒)で平均化した値

*2: NS 方向と EW 方向の大きい方を採用

3.3 施設の耐震設計への影響検討結果

(1) 原子炉建屋の地震応答解析

3.2項で選定した A 波及び D 波を用いた原子炉建屋の地震応答を全体的に把握する ため、

- ・原子炉建屋各フロアの最大応答加速度
- ・原子炉建屋各フロアの床応答曲線
- ・建屋-大型機器連成地震応答解析モデルを用いた解析による地震力

を算定した。

これらを基準地震動 S s による設計用地震力と比較し、耐震設計の裕度の範囲内にあることにより、施設の耐震性が確保されることを確認する。

本項は、原子炉建屋の減衰定数を 5%とした地震応答解析結果に基づく影響検討結果を基本としている。なお、2011 年東北地方太平洋沖地震の観測記録を用いたシミュレーション解析から得られた原子炉建屋の減衰定数を 7%とした地震応答結果は、別紙 7-1 に示す。

(2) 影響検討結果

a. 原子炉建屋各フロアの最大応答加速度

原子炉建屋各フロアにおける A 波及び D 波による最大応答加速度と添付書類「VI -2-1-7 設計用床応答曲線の作成方針」に示す基準地震動 S s による設計用最大応答加速度の比較を表 3-3 及び図 3-6 に示す。

原子炉建屋各フロアにおけるA波及びD波による最大応答加速度は、基準地震動Ssによる設計用最大応答加速度に収まっていることを確認した。

これにより、各フロアに設置されている剛(固有周期 0.05 秒未満)な設備については、耐震設計の裕度の範囲内にあるものと考えられる。

なお、0.P.15.0m の最大応答加速度は A 波より D 波が大きくなっているが、最大応答値は EW 方向の質点 14 で発生しており、この質点は図 3-7 に示す 2 次固有振動モード (0.125 秒)で刺激係数が大きくなる傾向がある。図 3-2 を見ると D 波は 2 次固有振動モード (0.125 秒)の周期帯で A 波よりも応答スペクトルが大きくなっているため、この周期帯の影響により加速度応答値が大きくなっているものと考えられる。

b. 原子炉建屋各フロアの床応答曲線

A 波及び D 波による床応答曲線と添付書類「VI-2-1-7 設計用床応答曲線の作成 方針」に示す基準地震動 S s による設計用床応答曲線の比較を図 3-8 に示す。ここ で、床応答曲線の減衰定数は、耐震裕度の比較的小さい配管系の主要な減衰定数で ある 2.0%を代表として用いる。

A波及び D波による床応答曲線は、一部の周期を除き、基準地震動 S s による設

計用床応答曲線におおむね収まっていることを確認した。一部の周期で設計用床応答曲線を上回っているが、原子炉建屋に設置される機器のうち、A波が卓越する周期(0.242秒)に固有周期を持つ設備はなく、D波が卓越する周期(0.127秒)に固有周期を持つ設備は配管系のみであり、それらの配管系は十分な耐震裕度を有しており、ピークが振動モードの全体に影響を及ぼすものではないことから、配管系の耐震性に問題はないものと考える。

なお,より実態に近い応答状態を示す原子炉建屋の減衰定数を 7%とした地震応答解析結果 (別紙 7-1 の図 4-1 参照。)における A 波及び D 波の床応答曲線では,設計用床応答曲線とほぼ同等レベルとなっている。

これにより、各フロアに設置されている剛ではない(固有周期 0.05 秒以上)設備については、耐震設計の裕度の範囲内にあるものと考えられる。

c. 建屋-機器連成地震応答解析モデルの地震応答解析による地震力

建屋-機器連成地震応答解析モデルの地震応答解析から地震荷重を算定する主要な施設について、A 波及び D 波による地震力と添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す基準地震動 S s による設計用地震力の比較を表 3-4 に示す。

主要な施設に対する A 波及び D 波による地震力は、一部の設備を除き、基準地震動 S s による設計用地震力に収まっていることを確認した。

原子炉圧力容器スタビライザ及び原子炉格納容器スタビライザのばね反力については設計用地震力を上回っていることから、設計条件における評価結果との比較を行った。原子炉圧力容器スタビライザは荷重比 1.12 に対して設計条件の評価における裕度 1.40, 原子炉格納容器スタビライザは荷重比 1.10 に対して設計条件の評価における裕度 1.19 であり、いずれも裕度の範囲内にあることから評価結果への影響はない(添付資料「VI-2-3-4-2-1 原子炉圧力容器スタビライザの耐震性についての計算書」及び「VI-2-3-4-2-2 原子炉格納容器スタビライザの耐震性についての計算書」参照)。

なお,より実態に近い応答状態を示す原子炉建屋の減衰定数を 7%とした地震応答解析結果 (別紙 7-1 の表 5-1 参照。)における A 波及び D 波による地震力は,設計用地震力に包絡されていることを確認した。

これにより、建屋-大型機器連成地震応答解析モデルを用いた解析から地震荷重 を算定する施設については、耐震設計の裕度の範囲内にあるものと考えられる。

表 3-3 F 3 候補波による最大応答加速度と基準地震動 S s による設計用最大応答加速度 の比較

標高 0. P. (m)	基準地震動 S s に よる設計用最大 応答加速度 (×9.80665m/s²)	(×9.800	波による 答加速度 665m/s²) ർ衰 5%)	比率 (b/a)		
	(建屋減衰 5%)	(b)				
	(a)	A 波	D 波	A 波	D波	
50.5	6.07	5. 16	4. 29	0.85	0.71	
41.2	2.86	2.70	2.31	0.94	0.81	
33. 2	2.21	2.10	1.82	0.95	0.82	
22.5	1.77	1.58	1.31	0.89	0.74	
15.0	1.65	1. 22	1.61	0.74	0.98	
6.0	1.31	0.85	0.97	0.65	0.74	
-0.8	1. 12	0.82	0.83	0.73	0.74	
-8.1	0.82	0.65	0.62	0.79	0.76	

図 3-6 F 3 候補波による最大応答加速度と基準地震動 S s による設計用最大応 答加速度の比較

図 3-7 原子炉建屋の刺激関数図 (EW 方向)

図 3-8 F 3 候補波による床応答曲線と基準地震動 S s による設計用床応答曲線の比較

表 3-4 主要な施設に対するF3候補波による地震力と基準地震動Ssによる設計用地震力の比較(1/2)

機器名	基準地震動 S s による 設計用地震力 (建屋減衰 5%) (a)		F 3 候補波 による地震力 (建屋減衰 5%) (b)		比率(b/a)	
			A 波	D波	A 波	D波
原子炉本体	せん断力 (kN)	39300	34000	32400	0.87	0.83
の基礎	モーメント (kN·m)	428000	366000	361000	0.86	0.85
原子炉圧力容器	せん断力 (kN)	11500	11000	10400	0.96	0. 91
支持スカート	モーメント (kN·m)	89100	76700	73700	0.87	0.83
原子炉	せん断力 (kN)	17500	16100	15900	0.92	0. 91
しゃへい壁	モーメント (kN·m)	145000	105000	112000	0.73	0.78
百乙层故如应四	せん断力 (kN)	39900	26400	25800	0.67	0.65
原子炉格納容器	モーメント (kN·m)	759000	503000	495000	0.67	0.66
原子炉圧力容器 スタビライザ	ばね反力 (kN)	8250	9240	8650	1. 12*1	1.05*1
原子炉格納容器 スタビライザ	ばね反力 (kN)	15800	17300	15600	1. 10*2	0. 99
原子炉格納容器 シヤラグ	ばね反力 (kN)	34100	26900	23700	0.79	0.70

注記*1:設計用地震力を超過するが、比率は設計条件での評価における裕度(1.40)の 範囲内(添付資料「VI-2-3-4-2-1 原子炉圧力容器スタビライザの耐震性につ いての計算書」参照)

*2:設計用地震力を超過するが、比率は設計条件での評価における裕度(1.19)の 範囲内(添付書類「VI-2-3-4-2-2 原子炉格納容器スタビライザの耐震性につ いての計算書」参照)

表 3-4 主要な施設に対する F 3 候補波による地震力と基準地震動 S s による設計用地震力の比較 (2/2)

機器名	基準地震動Ssによる 設計用地震力 (建屋減衰5%) (a)		F3候補波 による地震力 (建屋減衰 5%) (b)		比率(b/a)	
シュラウド	せん断力 (kN)	6340	A 波 4940	D 波 3860	A 波 0.78	D 波 0.61
下部胴	モーメント (kN·m)	27700	21200	15200	0.77	0. 55
燃料集合体	相対変位 (mm)	54. 2	41.3	23. 4	0.77	0.44
出御传安古笠	せん断力 (kN)	1320	535	648	0.41	0.50
制御棒案内管	モーメント (kN·m)	2280	922	1120	0.41	0.50
制御棒駆動機構	せん断力 (kN)	608	519	389	0.86	0.64
ハウジング	モーメント (kN·m)	660	553	432	0.84	0.66
制御棒駆動機構 ハウジング レストレントビーム	ばね反力 (kN)	473	407	289	0.87	0.62
炉心シュラウド 支持ロッド	軸力(kN)	1360	226	156	0.17	0.12

4. まとめ

女川原子力発電所第 2 号機の耐震設計においては、基準地震動 S s である 7 波(S s -D 1,S s -D 2,S s -D 3,S s -F 1,S s -F 2,S s -F 3,S s -N 1)に対して設計上の保守性を考慮した設計用地震力を設定し、耐震重要施設等の安全機能が損なわれない設計を実施している。

別紙 7-1 原子炉建屋の減衰定数を 7%とした場合の地震応答解析 結果

1. F 3 候補波の原子炉建屋基礎版上におけるスペクトル

図 1-1 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル (NS 方向, 床応答スペクトルの減衰定数 5%)

図 1-2 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル (EW 方向,床応答スペクトルの減衰定数 5%)

図 1-3 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル (NS 方向, 床応答スペクトルの減衰定数 2%)

図 1-4 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル (EW 方向,床応答スペクトルの減衰定数 2%)

2. 応答加速度比及び最大応答加速度

表 2-1 F 3 候補波の原子炉建屋基礎版上での地震応答結果

	F 3 候補波							参考	
	基	基本ケース	ζ	不確かさケース1					
	破壊開	破壊開	破壊開	破壊開	破壊開	破壊開	Ss-F3	Ss-D2	
	始点 1	始点 2	始点 3	始点 1	始点 2	始点 3	05 10	00 02	
	[A 波]	[B波]	[C波]	[D波]	[E波]	[F波]			
応答加速度比 (床応答スペク トルの減衰定数 5%) *1,*2	0.86	0.74	0.75	0.85	0.79	0.78	0.83	1.00	
応答加速度比 (床応答スペク トルの減衰定数 2%) *1,*2	0.93	0.84	0.84	0.94	0.88	0.86	0.91	1.00	
最大応答 加速度(Ga1)* ²	611	532	546	592	465	606	747	632	

注記*1: F 3 候補波のS s - D 2 に対する応答加速度比(F 3 候補波/S s - D 2)について、主要施設の固有周期帯(0.05 秒 \sim 0.24 秒)で平均化した値

*2: NS 方向と EW 方向の大きい方を採用

3. 原子炉建屋各フロアの最大応答加速度

表 3-1 F 3 候補波による最大応答加速度と基準地震動 S s による設計用最大応答 加速度の比較

	基準地震動Ssに	F3候補	波による			
	よる設計用最大	最大応答	ទ加速度	比率		
標高	応答加速度	(×9.800	665m/s^2			
0. P. (m)	$(\times 9.80665 \text{m/s}^2)$	(建屋源	戏衰 7%)	(b/a)		
	(建屋減衰 5%)	(b)				
	(a)	A 波	D 波	A 波	D 波	
50.5	6.07	4. 27	3. 58	0.70	0.59	
41.2	2.86	2.35	1. 95	0.82	0.68	
33. 2	2.21	2.02	1.77	0.91	0.80	
22.5	1.77	1.24	1. 38	0.70	0.78	
15. 0	1.65	1. 11	1. 49	0.67	0.90	
6.0	1.31	0.86	0.98	0.66	0.75	
-0.8	1. 12	0.74	0.83	0.66	0.74	
-8.1	0.82	0.65	0.62	0.79	0.76	

図 3-1 F 3 候補波による床応答曲線と基準地震動 S s による設計用床応答曲線の比較

4. 原子炉建屋各フロアの床応答曲線

図 4-1 F 3 候補波による床応答曲線と基準地震動 S s による設計用床応答曲線の比較

5. 建屋-大型機器連成地震応答解析モデルの地震応答解析による地震力

表 5-1 主要な施設に対する F 3 候補波による地震力と基準地震動 S s による設計用地震力の比較 (1/2)

機器名	基準地震動 S s による 設計用地震力 (建屋減衰 5%) (a)		による (建屋)	英補波 地震力 域衰 7%)	比率(b/a)	
	せん断力		A 仮	D 波	A 波	D 波
原子炉本体	せん例り (kN)	39300	29700	30700	0.76	0.79
の基礎	モーメント (kN·m)	428000	312000	348000	0.73	0.82
原子炉圧力容器	せん断力 (kN)	11500	9680	9830	0.85	0.86
支持スカート	モーメント (kN·m)	89100	64600	71700	0.73	0.81
原子炉	せん断力 (kN)	17500	13800	15300	0.79	0.88
しゃへい壁	モーメント (kN·m)	145000	94500	108000	0.66	0.75
原子炉格納容器	せん断力 (kN)	39900	24300	24500	0.61	0.62
原丁炉俗构谷 裔	モーメント (kN·m)	759000	457000	473000	0.61	0.63
原子炉圧力容器 スタビライザ	ばね反力 (kN)	8250	7420	7220	0.90	0.88
原子炉格納容器 スタビライザ	ばね反力 (kN)	15800	14000	13300	0.89	0.85
原子炉格納容器 シヤラグ	ばね反力 (kN)	34100	21400	19200	0.63	0. 57

表 5-1 主要な施設に対する F 3 候補波による地震力と基準地震動 S s による設計用地震力の比較 (2/2)

機器名	基準地震動 S 設計用地 (建屋減	基準地震動 S s による 設計用地震力 (建屋減衰 5%) (a)		F3候補波 による地震力 (建屋減衰 7%) (b) A波 D波		比率(b/a) A波 D波	
シュラウド	せん断力 (kN)	6340	4710	4360	0. 75	0.69	
下部胴	モーメント (kN·m)	27700	18200	19100	0.66	0. 69	
燃料集合体	相対変位 (mm)	54. 2	34. 9	20.6	0.65	0. 39	
制御棒案内管	せん断力 (kN)	1320	620	638	0.47	0. 49	
即 脚 伊 未 7 1 目	モーメント (kN·m)	2280	1070	1110	0. 47	0. 49	
制御棒駆動機構	せん断力 (kN)	608	455	308	0.75	0. 51	
ハウジング	モーメント (kN·m)	660	484	344	0.74	0. 53	
制御棒駆動機構 ハウジング レストレントビーム	ばね反力 (kN)	473	359	231	0.76	0.49	
炉心シュラウド 支持ロッド	軸力 (kN)	1360	190	202	0. 14	0. 15	