本資料のらち，枠囲みの内容 は商業機密の観点から公開で
きません。

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－620－3 原子炉建屋の地震応答計算書に関する補足説明資料

1．工事計画添付書類に係る補足説明資料
添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」の記載内容を補足するための資料を以下に示す。なお，他建物•構築物の地震応答計算書の記載内容を共通的に補足す る内容についても，本資料で代表し説明する。

別紙1 原子炉建屋の地震応答解析における既工認と今回工認の解析モデル及び手法の比較

別紙 1－1 原子炉建屋の地震応答解析モデルの各種ばねの算定について
別紙 1－2 地震応答解析モデルの諸元の比較（既工認，シミュレーション解析，今回工認）
別紙2 原子炉建屋の地震応答解析における耐震壁のスケルトンカーブの設定
別紙 3 原子炉建屋の地震応答解析における材料物性の不確かさに関する検討
別紙 3－1 材料物性の不確かさを考慮した検討に用いる地震動の選定について
別紙 3－2 材料物性の不確かさを考慮した地震応答解析結果
別紙4 地震応答解析モデルに用いる鉄筋コンクリート部の減衰定数に関する検討
別紙 4－1 原子炉建屋の基準地震動 S s 及び弾性設計用地震動 S d に対する最大応答 せん断ひずみ
別紙 4－2 各建屋の図面集
別紙5 地震応答解析における原子炉建屋の重大事故等時の高温による影響
別紙 5－1 重大事故時等の環境を考慮した大型機器系の地震応答解析モデルの設定
別紙 5－2 SA 時環境考慮モデルにおける床ばねの応答について
別紙 6 改造工事に伴う重量増加を反映した検討
I 別紙 6－1 改造工事に伴う重量増加による建屋一機器連成地震応答解析結果に与える影響
別紙7原子炬建屋内の施設に対する「断層モデルを用いた手法による地震動」の影響
検討
別紙 7－1 原子炉建屋の減衰定数を 7% とした場合の地震応答解析結果

ーーーーーラ」本日の説明範囲

別紙6 改造工事に伴う重量増加を反映した検討
1．概要 別紙 6－ 1
2．検討方針 別紙6－2
3．重量増加を考慮した地震応答解析結果を踏まえた各施設の評価結果への 影響検討 別紙6－3
3.1 建物•構築物 別紙6－3
3．1．1 使用済燃料プール及びキャスクピット 別紙6－3
3．1．2 原子炉建屋原子炉棟（二次格納施設） 別紙6－8
3．1．3 原子炉建屋ブローアウトパネル 別紙 6－17
3．1．4 原子炉建屋エアロック 別紙6－20
3．1．5 原子炉建屋基礎版 別紙 6－23
3．1．6 水密扉 別紙 6－26
3.2 機器•配管系 別紙 6－30
3．2．1 検討方針 別紙 6－30
3．2．2 検討内容 別紙 6－33
3．2．3 検討結果 別紙6－58
4．検討結果 別紙 6－82
別紙 6－1 改造工事に伴う重量増加による建屋一機器連成地震応答解析結果に与える影響

1．概要

添付書類「VI－2－1－1 耐震設計の基本方針」に基づき，設備の補強や追加等の改造工事に伴う重量増加が有意な場合は，設備の補強や追加等の改造工事に伴う重量増加を考慮した地震応答解析を行い，応答比較の結果，補強反映モデルの応答が今回工認モデル の応答を一部上回る部分があることから，補足説明資料「補足－600－43 地震応答に影響 を及ぼす不確かさ要因の整理」に基づき，「3．1 建物•構築物」及び「3．2機器•配管系」において，建物•構築物及び機器•配管系の耐震性への影響について検討を行う。 なお，建屋の地震応答解析結果への影響については，地震応答解析モデルにおいて重量が重要な諸元であることを踏まえ，その結果を添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」（以下「地震応答計算書」という。）に反映する。

2．検討方針

平成 18 年耐震設計審査指針改定及び平成 25 年新規制基準施行に伴う設備の補強や追加等の改造工事に伴う原子炉建屋の主要な増加重量及び増加重量比を表2－1に示す。

増加重量及び増加重量比は小さく，重量増加が建屋の応答性状に与える影響は極めて軽微と想定されるが，施設の重要性を踏まえて重量増加を反映した影響検討を行う。影響検討を行うに当たつては，地震応答計算書に示す重量増加を反映した地震応答解析結果を用いる。

表 2－1 原子炉建屋の増加重量及び増加重量比

（1）工認モデル重量 $[\mathrm{kN}]$	（2）増加重量 $[\mathrm{kN}]$	増加重量比（\％） $(2) /(1)+(2))$
3414970	43980	1.27

3．重量増加を考慮した地震応答解析結果を踏まえた各施設の評価結果への影響検討

3.1 建物•構築物

地震応答計算書の別紙に示す重量増加を考慮した地震応答解析結果の応答比率を用 いて，各施設の評価結果への影響を検討する。

3．1．1 使用済燃料プール及びキャスクピット

（1）検討方針
使用済燃料プール及びキャスクピットを対象として，設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率と添付書類「VI－2－4－2－1 使用済燃料 プール（キャスクピットを含む）（第1，2号機共用）の耐震性についての計算書」
（以下「使用済燃料プールの計算書」という。）に示す応力評価結果より，影響検討を行う。

使用済燃料プールの計算書では，水平地震力として，0．P． $22.5 \mathrm{~m} \sim 33.2 \mathrm{~m}$ 位置（要素番号 13（NS 方向）及び 14 （EW 方向））の最大応答せん断力を考慮し，鉛直地震力として，0．P． $22.5 \mathrm{~m} \sim 33.2 \mathrm{~m}$ 位置（要素番号 6）の鉛直方向最大応答軸力より算出した鉛直震度（軸力係数）を考慮することから，水平方向は要素番号13（NS 方向）及び 14 （EW 方向）の最大応答せん断力の応答比率の最大値を，鉛直方向は要素番号 6 の最大応答軸力の応答比率の最大値を応答比率とし，各方向の応答比率 の最大値を割増係数として設定し，応力評価結果の発生値に乗じて各許容値を超 えないことを確認する。

表 3－1に応答比率及び割増係数を示す。

表 3－1 重量増加を考慮した割増係数（使用済燃料プール及びキャスクピット）

位置（0．P．）	NS 方向	EW 方向	鉛直方向
$22.5 \mathrm{~m} \sim 33.2 \mathrm{~m}$	$1.00 * 1$	$1.00 * 1$	$1.04 *^{2}$
割増係数	$1.04 * 3$		

注記＊1 ：地震応答計算書の別紙に示す要素番号13（NS 方向）及び 14 （EW 方
向）の最大応答せん断力の応答比率の最大値。
＊2：地震応答計算書の別紙に示す要素番号6（鉛直方向）の最大応答軸力 の応答比率の最大値。
＊ 3 ：各方向の応答比率の最大値。

NS 方向

EW 方向

鉛直方向
（2）検討結果
各荷重時における評価結果を表3－2及び表3－3に示す。
重量増加を考慮した割増係数を乗じた結果においても，各許容値を超えないた め，重量増加を考慮した場合においても，耐震評価に及ぼす影響がないことを確認した。

表 3－2 重量増加を考慮した評価結果 S d 地震時

部位	評価項目		方向	要素 番号	$\begin{aligned} & \hline \text { 組合せ } \\ & \text { ケース } \end{aligned}$	発生値 （1）	割増係数 (2)	（1）\times（2）	許容値
北側壁	軸力 曲げモーメント $+$面内せん断力	$\begin{gathered} \text { コンクリート圧縮応力度 } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	水平	210	1－1	4． 79	1． 04	4.98	24.3
		鉄筋引張応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	鉛直	6	1－9	196	1． 04	204	345
	面内せん断力	面内せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	－	51	1－4	1.59	1． 04	1． 65	4.53
	面外せん断力	面外せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	水平	241	1－1	0． 890	1． 04	0.926	1.52
西側壁	軸力曲げモーメント $+$面内せん断力	$\begin{gathered} \text { コンクリート圧縮応力度 } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	鉛直	386	1－11	7． 42	1.04	7． 72	21.6
		鉄筋引張応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	鉛直	389	1－3	190	1.04	198	345
	面内せん断力	面内せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	390	1－9	1． 02	1． 04	1． 06	3.02
	面外せん断力	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	鉛直	386	1－11	0.576	1.04	0.599	1． 06
$\begin{aligned} & \text { 底面 } \\ & \text { スラブ } \end{aligned}$	$\begin{gathered} \text { 軸力 } \\ + \\ +\quad ⿻ 口 卄 \end{gathered}$	$\begin{gathered} \text { コンクリート圧縮応力度 } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	EW	340	1－12	9． 30	1． 04	9.67	24.3
		鉄筋引張応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	EW	340	1－11	184	1.04	191	345
	面外せん断力	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	EW	338	1－11	1． $38 *$	1． 04	1． 44	2． 59

注記 $*$ ：応力の再分配等を考慮して，応力平均化を行った結果。

表 3－3 重量増加を考慮した評価結果 S s 地震時

部位	評価項目		方向	要素番号	$\begin{aligned} & \text { 組合せ } \\ & \text { ケース } \\ & \hline \end{aligned}$	発生値 （1）	割増係数 （2）	（1）\times（2）	許容値
北側壁	軸力 $+$曲げモーメント $+$面内せん断力	$\begin{gathered} \text { コンクリート圧縮ひずみ } \\ \left(\times 10^{-3}\right) \end{gathered}$	鉛直	7	2－9	0． 269	1.04	0．280	3.00
		鉄筋引張ひずみ $\left(\times 10^{-3}\right)$	鉛直	6	2－9	1． 28	1.04	1． 33	5.00
	軸力	圧縮応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	鉛直	3	2－10	2． 40	1.04	2.50	21.6
	面内せん断力	面内せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	－	3	2－11	2． 21	1.04	2． 30	5.99
	面外せん断力	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	水平	241	2－1	0．892	1.04	0.928	2.08
西側壁	$\begin{gathered} \text { 軸力 } \\ + \\ \text { 曲げモーメント } \\ + \end{gathered}$面内せん断力	$\begin{gathered} \text { コンクリート圧縮ひずみ } \\ \left(\times 10^{-3}\right) \end{gathered}$	鉛直	386	2－11	0.502	1.04	0.522	3.00
		鉄筋引張ひずみ $\left(\times 10^{-3}\right)$	水平	425	2－1	1． 30	1.04	1． 35	5.00
	軸力	圧縮応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	鉛直	390	2－12	2.40	1.04	2.50	21.6
	面内せん断力	面内せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	－	388	2－10	1.14	1.04	1． 19	4.02
	面外せん断力	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	鉛直	386	2－11	0．808	1.04	0.840	1． 44
$\begin{gathered} \text { 底面 } \\ \text { スブ } \end{gathered}$	$\begin{gathered} \text { 軸力 } \\ + \\ + \text { 曲げモーメント } \end{gathered}$	$\begin{gathered} \text { コンクリート圧縮ひずみ } \\ \left(\times 10^{-3}\right) \end{gathered}$	EW	340	2－12	0． 409	1.04	0． 425	3.00
		鉄筋引張ひずみ $\left(\times 10^{-3}\right)$	EW	341	2－11	0．964	1.04	1.00	5.00
	面外せん断力	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	EW	338	2－11	1． 89 ＊	1.04	1． 97	2.59

注記 $*$ ：応力の再分配等を考慮して，応力平均化を行った結果。

3．1．2 原子炉建屋原子炉棟（二次格納施設）

（1）検討方針
原子炉建屋原子炉棟（二次格納施設）を対象として，設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率と添付書類「VI－2－9－3－1 原子炉建屋原子炉棟（二次格納施設）の耐震性についての計算書」（以下「二次格納施設の計算書」という。）に示す各評価結果より，影響検討を行う。

二次格納施設の計算書における地震応答解析による評価では，せん断ひずみの評価として，原子炉建屋の耐震壁について基準地震動 S s に対する各層の最大せ ん断ひずみを考慮していることから，最大せん断ひずみの応答比率を割増係数と して設定し，二次格納施設の計算書における各層の最大せん断ひずみに乗じた値 が許容値（ 2.0×10^{-3} ）を超えないことを確認する。

二次格納施設の計算書における応力解析による評価のうち，屋根トラスの評価 は，燃料取替床レベル（0．P．33．2m）より上部を対象とした立体フレームモデル（以下「屋根トラスモデル」という。）の地震応答解析により行っており，屋根トラス モデルへの入力地震動は，基準地震動 S s による原子炉建屋全体の地震応答解析 から得られる 0．P．33． 2 m 位置における応答加速度（水平方向及び鉛直方向）を用 いている。このように，屋根トラスに関しては，原子炉建屋の応答加速度を用い て検討していることから，各方向における 0 ．P． 33.2 m 位置の最大応答加速度およ び床応答スペクトルの応答比率の最大値を割増係数として設定し，屋根トラスの応力評価結果の発生値に乗じて各許容値を超えないことを確認する。

二次格納施設の計算書における応力解析による評価のうち，屋根スラブ及び床 スラブの評価は，地震荷重として鉛直震度を考慮することから，鉛直方向の最大応答加速度の応答比率を割増係数として設定し，応力評価結果の発生値に乗じて各許容値を超えないことを確認する。

二次格納施設の計算書における応力解析による評価のうち，耐震壁の評価は，地震荷重として曲げモーメント，鉛直震度に重量を乗じて算定した軸力及びせん断力を考慮することから，曲げモーメント，鉛直軸力及びせん断力の応答比率を割増係数として設定し，応力評価結果の発生値に乗じて各許容値を超えないこと を確認する。

表3－4～表3－7に応答比率及び割増係数を示す。

表 3－4（1）重量増加を考慮した割増係数（屋根トラス，最大応答加速度）

位置（0．P．）	NS 方向	EW 方向	鉛直方向
33.2 m	$1.01 * 1$	$1.00 * 1$	$1.02 * 2$
割増係数	$1.02 * 3$		

注記＊1：地震応答計算書の別紙に示す質点番号 8 と 20（NS 方向）及び 12 と 22 （EW 方向）の平均時刻歴から求まる最大応答加速度の応答比率。 ＊2：地震応答計算書の別紙に示す質点番号 6 の最大応答加速度の応答比率の最大値。
＊3：各方向の応答比率の最大値。

鉛直方向

表 3－4（2）重量増加を考慮した割増係数（屋根トラス，応答スペクトル）

方向	鉛直方向
周期	鉛直方向 1 次 0.278 s
ス ペ ク ト ル 図	\qquad今回工認モデル －－－補強反映モデル 鉛直方向 質点番号 6（0．P． 33.2 m ） （1）今回工認モデル： $1300 \mathrm{~cm} / \mathrm{s}^{2}$ （2）補強反映モデル： $1310 \mathrm{~cm} / \mathrm{s}^{2}$
応答 比率 (2) / (1)	1． 01
割増係数	1． 01

表 3－5 重量増加を考慮した割増係数（屋根スラブ）

位置（0．P．）	鉛直方向
48.725 m	1.03^{*}
割増係数	1.03

注記＊：地震応答計算書の別紙に示す質点番号 $1 \sim 4$ の最大応答加速度の応答比率 の最大値。

表 3－6 重量増加を考慮した割増係数（床スラブ）

位置（0．P．）	鉛直方向
15.0 m	1.01^{*}
割増係数	1.01

注記＊：地震応答計算書の別紙に示す質点番号 8 の最大応答加速度の応答比率の最大値。

鉛直方向

表 3－7 重量増加を考慮した割増係数（耐震壁）

位置（0．P．）	曲げモーメント	軸力	せん断力
$22.5 \mathrm{~m} \sim 33.2 \mathrm{~m}$	$1.02 * 1$	$1.04^{* 2}$	$1.00 * 3$
割増係数	$1.04 * 4$		1.00

注記 $* 1$ ：地震応答計算書の別紙に示す要素番号 21 （EW 方向）の最大応答曲げモー メントの応答比率。
＊2：地震応答計算書の別紙に示す要素番号 6（鉛直方向）の最大応答軸力の応答比率。
＊ 3 ：地震応答計算書の別紙に示す要素番号 21 （EW 方向）の最大応答せん断力 の応答比率。
＊4：曲げモーメント及び軸力の応答比率の最大値。

EW方向

鉛直方向

別紙 6－12
（2）検討結果
a．地震応答解析による評価
地震応答解析による評価について，材料物性の不確かさを考慮した最大せん断ひずみに設備の補強や追加等の改造工事に伴う重量増加を考慮した割増係数 を乗じた評価値は，地震応答計算書の別紙 4.3 項に示す 1.75×10^{-3}（要素番号7，NS 方向）となり，許容値（2．0×10 3）を超えないため，重量増加を考慮 した場合においても，耐震評価に及ぼす影響がないことを確認した。
b．応力解析による評価
（a）屋根トラス
応力評価結果について，床スラブの評価結果を表3－8に示す。
重量増加を考慮した割増係数を乗じた評価においても，各応力が許容限界 を超えないため，重量増加を考慮した場合においても，耐震評価に及ぼす影響がないことを確認した。

表 3－8（1）重量増加を考慮した評価結果（屋根トラス）（1／2）

部位		評価項目	検定比	割増係数	（1）\times（2）	許容限界
$\begin{aligned} & \text { 主 } \\ & \stackrel{y}{ラ} \\ & \text { 亿 } \end{aligned}$	上弦材	$\frac{\sigma_{t}}{f_{t}}+\frac{\sigma_{b}}{f_{b}}$	0． 28	1.02	0.29	1． 0
		$\frac{{ }^{\sigma}{ }_{\mathrm{c}}{ }_{\mathrm{c}}{ }_{\mathrm{c}}}{}+\frac{{ }^{\sigma}{ }_{\mathrm{b}}}{\mathrm{f}_{\mathrm{b}}}$	0.17	1． 02	0.17	1.0
	下弦材	$\frac{\sigma_{\mathrm{t}}}{\mathrm{f}_{\mathrm{t}}}+\frac{{ }^{\sigma} \mathrm{b}}{\mathrm{f}_{\mathrm{b}}}$	0． 79	1． 02	0.81	1.0
		$\frac{\sigma_{\mathrm{c}}}{\mathrm{f}}{ }_{\mathrm{c}}{ }^{\text {a }}+\frac{{ }_{\mathrm{b}} \mathrm{f}_{\mathrm{b}}}{}$	0． 29	1． 02	0.30	1.0
	斜材	$\frac{\sigma_{t}}{f_{t}}$	0.03	1． 02	0.03	1.0
		$\frac{0}{}{ }^{\text {c }}$	0.61	1． 02	0.62	1.0
	束材	$\frac{{ }^{\sigma} \quad \mathrm{t}}{\mathrm{f}}$	0.06	1． 02	0.06	1.0
		$\frac{{ }^{\sigma}{ }_{\text {c }}}{\text { f }}$	0.18	1． 02	0.18	1． 0
$\begin{aligned} & \text { サ } \\ & \text { ブ } \\ & \text { ト } \\ & \text { ラ } \end{aligned}$	上弦材		0.55	1． 02	0.56	1． 0
		$\frac{{ }^{\sigma}{ }_{\mathrm{c}}{ }_{\mathrm{c}}{ }_{\text {c }}}{}+\frac{\sigma_{\mathrm{b}}}{\mathrm{f}_{\mathrm{b}}}$	0.61	1.02	0.62	1.0
	下弦材	$\frac{\sigma_{\mathrm{t}}}{\mathrm{f}_{\mathrm{t}}}+\frac{{ }_{\text {d }}{ }_{\text {b }}}{\mathrm{f}_{\mathrm{b}}}$	0.75	1． 02	0.77	1.0
		$\frac{{ }^{\sigma}{ }_{\mathrm{c}}{ }_{\mathrm{c}}}{}+\frac{{ }^{\sigma} \mathrm{b}}{\mathrm{f}_{\mathrm{b}}}$	0． 44	1.02	0.45	1.0
	斜材	$\frac{{ }^{\sigma}{ }_{\text {t }}}{\mathrm{f}_{\mathrm{t}}}$	0.21	1． 02	0.21	1． 0
		$\frac{{ }^{\circ} \mathrm{c}}{}$	0.80	1． 02	0.82	1.0
	束材	$\frac{{ }^{\sigma}{ }_{\text {t }}}{\mathrm{f}_{\mathrm{t}}}$	0.11	1.02	0.11	1.0
		$\frac{\sigma_{\text {c }}}{}$	0.23	1.02	0.23	1.0

表 3－8（2）重量増加を考慮した評価結果（屋根トラス）（2／2）

部位	評価項目	検定比 （1）	割増係数 （2）	（1）\times（2）	許容限界
母屋	$\frac{\sigma_{t}}{\mathrm{f}_{\mathrm{t}}}+\frac{{ }^{\text {a }} \mathrm{b}}{\mathrm{f}_{\mathrm{b}}}$	0． 71	1． 02	0． 72	1.0
		0． 72	1． 02	0.73	1.0
方杖	$\frac{\sigma^{\prime}{ }_{\text {t }}}{\text { f }}$	0.24	1． 02	0． 24	1.0
	$\frac{\sigma_{\text {c }}}{}$	0.67	1． 02	0.68	1.0

（b）屋根スラブ
応力評価結果について，屋根スラブの評価結果を表3－9に示す。
重量増加を考慮した割増係数を乗じた評価においても，各応力が許容限界 を超えないため，重量増加を考慮した場合においても，耐震評価に及ぼす影響がないことを確認した。

表 3－9 重量増加を考慮した評価結果（屋根スラブ）

評価項目		発生値 （1）	割増係数 （2）	$(1) \times(2)$	許容限界
曲げモーメント	鉄筋応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	272	1.03	280	345
面外せん断力	発生せん断力 $(\mathrm{kN} / \mathrm{m})$	42.6	1.03	43.9	112.2

（c）床スラブ
応力評価結果について，床スラブの評価結果を表 3－10に示す。
重量増加を考慮した割増係数を乗じた評価においても，各応力が許容限界 を超えないため，重量増加を考慮した場合においても，耐震評価に及ぼす影響がないことを確認した。

表 3－10 重量増加を考慮した評価結果（床スラブ）

評価項目		発生値 (1)	割増係数 (2)	（1）\times（2）	許容限界
曲げモーメント	鉄筋応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	244	1.01	246	345
面外せん断力	発生せん断力 $(\mathrm{kN} / \mathrm{m})$	322	1.01	325	912

（d）耐震壁
応力評価結果について，耐震壁の評価結果を表 3－11に示す。
重量増加を考慮した割増係数を乗じた評価においても，各応力が許容限界 を超えないため，重量増加を考慮した場合においても，耐震評価に及ぼす影響がないことを確認した。

表 3－11 重量増加を考慮した評価結果（耐震壁）

評価項目		発生値 （1）		割増係数 （2）	（1）\times（2）	組合せ $\sigma_{\mathrm{t}}+_{\mathrm{s}} \sigma_{\mathrm{t}}$	許容限界
曲げモーメント に対する検討	鉄筋応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	σ t	135	1． 04	140		
せん断力 に対する検討	鉄筋応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	s σ t	195	1． 00	195		

3．1．3 原子炉建屋ブローアウトパネル
（1）検討方針
原子炉建屋ブローアウトパネル（以下「原子炉建屋 BOP」という）を対象とし て，設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率を用いて，添付書類「VI－2－9－3－1－1 原子炉建屋ブローアウトパネルの耐震性についての計算書」（以下「原子炉建屋 BOP の計算書という。）に示す機能維持評価の影響検討 を行う。

原子炉建屋 BOP の計算書では，S d 閉機能維持評価は，O．P．38．5m 位置 （0．P．41． 2 m ：質点番号 7,19 と 0. P． 33.2 m ：質点番号 $1,8,13,20,25$ の線形補間） のNS 方向の応答加速度より定めた水平震度を用いて検討していることから， 0．P．41． 2 m 及び 0 ．P．33． 2 m のNS 方向の最大応答加速度の応答比率の最大値による 0．P． 38.5 m における線形補間値を割増係数として設定し，割増係数を乗じた S d地震荷重が開放荷重を超えないことを確認する。

原子炉建屋 BOPの計算書では，S s 開機能維持評価は，せん断ひずみの許容限界を層間変形角として層間変位の検討をしているが，ここでは 0．P． 33.2 m ～ 0．P． 41.2 m 位置（要素番号 $11,20,32$ ）の EW 方向の最大せん断ひずみの応答比率を割増係数として設定し，割増係数を乗じた層間変位が許容値を超えないことを確認する。

表 $3-12$ 及び表 $3-13$ に応答比率及び割増係数を示す。

表 3－12 重量増加を考慮した割増係数（原子炉建屋 BOP S d 閉機能維持）

位置（0．P．）	NS 方向
41.2 m	$1.00^{* 1}$
33.2 m	$1.05^{* 2}$
割増係数	$1.02 * 3$

注記 $* 1$ ：地震応答計算書の別紙に示す質点番号 7,19 の最大応答加速度の応答比率の最大値。
＊2：地震応答計算書の別紙に示す質点番号 $1,8,13,20,25$ の最大応答加速度 の応答比率の最大値。
＊3：0．P． 41.2 m 及び 0 ．P．33． 2 m の応答比率による 0. P． 38.5 m における線形補間値。

表 3－13 重量増加を考慮した割増係数（原子炉建屋 BOP S s 開機能維持）

位置（0．P．）	EW 方向
$33.2 \mathrm{~m} \sim 41.2 \mathrm{~m}$	$1.15^{* 1}$
割増係数	1.15

注記 $*: ~$ 地震応答計算書の別紙に示す要素番号 $11,20,32$ の最大せん断ひずみの応答比率の最大値。

（2）検討結果
a． S d 閉機能維持評価
評価結果を表3－14に示す。
重量増加を考慮した割増係数を乗じた結果においても，許容値を超えないた め，重量増加を考慮した場合においても，耐震評価に及ぼす影響がないことを確認した。

表 3－14 重量増加を考慮した評価結果（原子炉建屋 BOP Sd閉機能維持）

項目	地震荷重 (kN) （1）	割増係数 （2）	（1）\times（2）	開放荷重＊*
開放時	59.9	1.02	61.1	80.1

注記 $*: ~$ 実機大モックアップ試験結果。
b．S s 開機能維持評価
評価結果を表3－15に示す。
重量増加を考慮した割増係数を乗じた結果においても，許容値を超えないた め，重量増加を考慮した場合においても，耐震評価に及ぼす影響がないことを確認した。

表 3－15 重量増加を考慮した評価結果（原子炉建屋 BOP S s 開機能維持）

層間変位 (mm) (1)	割増係数 (2)	（1）$\times(2)$	許容値
8.4	1.15	9.7	50

3．1．4 原子炉建屋エアロック
（1）検討方針
原子炉建屋エアロック（以下「エアロック」という。）を対象として，設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率と添付書類「VI－2－9－ 3－3 原子炉建屋エアロックの耐震性についての計算書」（以下「エアロックの計算書」という。）に示す応力評価結果より，影響検討を行う。

エアロックの計算書では，0．P． 22.5 m 位置の最大応答加速度による水平震度及 び鉛直震度を用いて検討していることから，各方向の最大応答加速度の応答比率 の最大値を割増係数として設定し，応力評価結果の発生値に乗じて各許容値を超 えないことを確認する。

表 3－16に応答比率及び割増係数を示す。

表 3－16 重量増加を考慮した割増係数（エアロック）

位置（0．P．）	NS 方向	EW 方向	鉛直方向
22.5 m	$1.01^{* 1}$	$1.03 * 2$	$1.01^{* 3}$
割増係数	$1.03 * 4$		

注記 $* 1$ ：地震応答計算書の別紙に示す質点番号 $2,9,14,21,26$ の最大応答加速度 の応答比率の最大値。
＊2：地震応答計算書の別紙に示す質点番号 $2,6,13,16,23,28$ の最大応答加速度の応答比率の最大値。
＊ 3 ：地震応答計算書の別紙に示す質点番号 7 の最大応答加速度の応答比率。
＊ 4 ：各方向の応答比率の最大値。

NS 方向

EW 方向

鉛直方向
（2）検討結果
エアロックの評価結果を表 3－17に示す。重量増加を考慮した割増係数を乗じ た結果においても，各許容値を超えないため，重量増加を考慮した場合において も，耐震評価に及ぼす影響がないことを確認した。

表 3－17 重量増加を考慮した評価結果

評価部位		分類	発生値 （1）	割増係数 （2）	（1）\times（2）	許容限界
ヒ ン ジ部		曲げ（N／mm ${ }^{2}$ ）	28	1.03	29	215
		せん断（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	3	1.03	3	124
		組合せ（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	28	1． 03	29	215
	$\begin{gathered} \text { ヒンジ } \\ \text { ピン } \end{gathered}$	曲げ（N／mm²）	182	1． 03	187	345
		せん断（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	17	1． 03	18	199
		組合せ（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	184	1． 03	190	345
	ヒンジ	引張（N／mm²）	39	1． 03	40	651
	ボルト	せん断（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	39	1.03	40	375
力 ン ヌ キ 部	カンヌキ	曲げ（N／mm²）	7	1． 03	7	205
		せん断（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	2	1.03	2	118
		組合せ（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	7	1.03	7	205
	カンヌキ受け ピン	曲げ（N／mm ${ }^{2}$ ）	42	1.03	43	205
		せん断（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	4	1． 03	4	118
	カンヌキ受け ボルト	引張（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	19	1． 03	20	651

3．1．5 原子炉建屋基礎版
（1）検討方針
原子炉建屋基礎版を対象として，設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率と添付書類「VI－2－9－3－4 原子炉建屋基礎版の耐震性につ いての計算書」（以下「基礎版の計算書」という。）に示す各評価結果より影響検討を行う。

基礎版の計算書における地震応答解析による評価では，接地圧の評価として，基準地震動 S s に対する最大接地圧を考慮していることから，最大接地圧の応答比率を割増係数として設定し，基礎版の計算書における各最大接地圧に乗じた値 が許容値（ $13700 \mathrm{kN} / \mathrm{m}^{2}$ ）を超えないことを確認する。

基礎版の計算書における応力解析による評価では，地震荷重として，上部構造物からの基礎へのせん断力，曲げモーメント及び軸力（軸力係数）を考慮するこ とから，基礎スラブ直上層である 0．P．$-8.1 \mathrm{~m} \sim-0.8 \mathrm{~m}$ 位置の最大応答せん断力，最大応答曲げモーメント及び最大応答軸力の各方向の応答比率の最大値を割増係数 として設定し，応力評価結果の発生値に乗じて各許容値を超えないことを確認す る。

表 3－18に応答比率及び割増係数を示す。

表 3－18 重量増加を考慮した割増係数（原子炉建屋基礎版）

位置（0．P．）	NS 方向	EW 方向	鉛直方向
$-8.1 \mathrm{~m} \sim-0.8 \mathrm{~m}$	$1.03^{* 1}$	$1.02^{* 2}$	$1.03 * 3$
割増係数	$1.03 * 4$		

注記 $* 1$ ：地震応答計算書の別紙に示す要素番号 $5,12,17,24,29$ の最大応答せん断力及び最大応答曲げモーメントの応答比率の最大値。
＊2：地震応答計算書の別紙に示す要素番号 $5,9,18,25,30$ の最大応答せん断力及び最大応答曲げモーメントの応答比率の最大値。
＊3：地震応答計算書の別紙に示す要素番号 10 の最大応答軸力の応答比率。
＊4：各方向の応答比率の最大値。

NS 方向

EW 方向

鉛直方向
（2）検討結果
a．地震応答解析による評価
地震応答解析による評価について，設備の補強や追加等の改造工事に伴う重量増加を考慮した割増係数に乗じた，材料物性の不確かさを考慮した最大接地圧は，地震応答計算書の別紙 4.3 項に示すとおり， S s 地震時は $3500 \mathrm{kN} / \mathrm{m}^{2}$ （NS 方向）となり，許容限界（ $13700 \mathrm{kN} / \mathrm{m}^{2}$ ）を超えないため，重量増加を考慮 した場合においても，耐震評価に及ぼす影響がないことを確認した。
b．応力解析による評価
評価結果を表3－19に示す。
重量増加を考慮した割増係数を乗じた結果においても，各許容値を超えない ため，重量増加を考慮した場合においても，耐震評価に及ぼす影響がないこと を確認した。

表 3－19 重量増加を考慮した評価結果 S s 地震時

評価項目		方向	要素番号	組合せ ケース	発生値 （1）	割増係数 （2）	（1）\times（2）	許容値
軸力 $+$	コンクリート 圧縮ひずみ $\left(\times 10^{-3}\right)$	EW	1123	1－6	0． 766	1.03	0.789	3.00
$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \end{gathered}$	鉄筋 圧縮ひずみ $\left(\times 10^{-3}\right)$	放射	169	1－2	0． 488	1.03	0.503	5.00
面外 せん断力	面外 せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	NS	1158	1－4	1． 52 ＊	1.03	1． 57 ＊	2． 42

注記 $*: ~$ 応力の再配分等を考慮して応力の平均化を行った結果。

3．1．6 水密扉

（1）検討方針
溢水防護設備である原子炉建屋の水密扉（以下「水密扉」という。）を対象とし て，設備の補強や追加等の改造工事に伴う重量増加を考慮した応答比率と添付書類「VI－2－10－2－7－2 水密扉（溢水防護設備）の耐震性についての計算書」（以下「水密扉の計算書」という。）に示す応力評価結果より，影響検討を行う。

水密扉の計算書では，0．P． 22.50 m 及び 0. P．-0.80 m 位置の最大応答加速度によ る水平震度及び鉛直震度を用いて検討していることから，各方向の最大応答加速度の応答比率の最大値を割増係数として設定し，応力評価結果の発生値に乗じて各許容値を超えないことを確認する。

表 3－20 及び表 3－21に応答比率及び割増係数を示す。

表 3－20 重量増加を考慮した割増係数（水密扉 No．9，10，12）

位置（0．P．）	NS 方向	EW 方向	鉛直方向
22.5 m	$1.01^{* 1}$	$1.03 * 2$	$1.01^{* 3}$
割増係数	$1.03 * 4$		

注記 $* 1$ ：地震応答計算書の別紙に示す質点番号 $2,9,14,21,26$ の最大応答加速度の応答比率の最大値。
＊2：地震応答計算書の別紙に示す質点番号 $2,6,13,16,23,28$ の最大応答加速度の応答比率の最大値。
＊ 3 ：地震応答計算書の別紙に示す質点番号 7 の最大応答加速度の応答比率。 ＊4：各方向の応答比率の最大値。

表 3－21 重量増加を考慮した割増係数（水密扉 No．1）

位置（0．P．）	NS 方向	EW 方向	鉛直方向
-0.80 m	$1.00^{* 1}$	$1.02 * 2$	$1.00 * 3$
割増係数	$1.02 * 4$		

注記 $* 1$ ：地震応答計算書の別紙に示す質点番号 $5,12,24,29$ の最大応答加速度の応答比率の最大値。
＊2：地震応答計算書の別紙に示す質点番号 $5,9,26,31$ の最大応答加速度の応答比率の最大値。
＊ 3 ：地震応答計算書の別紙に示す質点番号 10 の最大応答加速度の応答比率。
＊ 4 ：各方向の応答比率の最大値。

（2）検討結果
水密扉の評価結果を表3－22に示す。重量増加を考慮した割増係数を乗じた結果においても，各許容値を超えないため，重量増加を考慮した場合においても，耐震評価に及ぼす影響がないことを確認した。

表3－22（1）重量増加を考慮した評価結果（1／2）

$\begin{gathered} \text { 水密扉 } \\ \text { No. } \end{gathered}$	評価対象部位		発生値（1） （応力度， 荷重） $\left(\mathrm{N} / \mathrm{mm}^{2}, \mathrm{~N}\right)$	割増係数 （2）	（1）\times（2）	許容限界値 $\left(\mathrm{N} / \mathrm{mm}^{2}, \mathrm{~N}\right)$	備考
1	ヒンジ 部	ヒンジ板＊1	67	1． 02	68	235	組合せ
		ヒンジピン＊1	173	1． 02	176	345	組合せ
		ヒンジボルト	46	1． 02	47	420	せん断
	$\begin{gathered} \text { カン } \\ \text { ヌキ部 } \end{gathered}$	カンヌキ＊1	13	1． 02	13	205	組合せ
		$\begin{gathered} \text { カンヌキ } \\ \text { 受けピン*2 } \end{gathered}$	12	1.02	12	345	曲げ
		$\begin{gathered} \text { カンヌキ } \\ \text { 受けボルト } \end{gathered}$	5	1.02	5	728	引張
	アンカーボルト＊3		3497	1.02	3567	12824	せん断
9	ヒンジ 部	ヒンジ板＊1	106	1． 03	109	215	組合せ
		ヒンジピン＊1	48	1． 03	49	686	組合せ
		ヒンジボルト	42	1． 03	43	420	せん断
		カンヌキ＊1	99	1． 03	102	205	組合せ
		$\begin{gathered} \text { カンヌキ } \\ \text { 受けピン*2 } \\ \hline \end{gathered}$	123	1.03	127	345	曲げ
		$\begin{gathered} \text { カンヌキ } \\ \text { 受けボルト } \end{gathered}$	34	1.03	35	854	引張
	アンカーボルト＊3		12290	1.03	12659	40302	せん断
10	ヒンジ部	ヒンジ板＊1	62	1． 03	64	215	組合せ
		ヒンジピン＊1	93	1． 03	96	345	組合せ
		ヒンジボルト	199	1． 03	205	420	せん断
	$\begin{gathered} \text { カン } \\ \text { ヌキ部 } \end{gathered}$	カンヌキ＊1	143	1． 03	147	345	組合せ
		$\begin{gathered} \text { カンヌキ } \\ \text { 受けピン*2 } \\ \hline \end{gathered}$	75	1.03	77	345	曲げ
		$\begin{gathered} \text { カンヌキ } \\ \text { 受けボルト } \end{gathered}$	－	－	－	－	－
	アンカーボルト＊3		46030	1． 03	47411	92284	せん断

注記 $* 1$ ：曲げ，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。
＊2：曲げ及びせん断のうち，評価結果が厳しい方の値を記載する。
＊3：引張，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。

表3－22（2）重量増加を考慮した評価結果（2／2）

水密扉 No	評価対象部位		発生値（1） （応力度， 荷重） $\left(\mathrm{N} / \mathrm{mm}^{2}, \mathrm{~N}\right)$	割増係数 （2）	（1）\times（2）	許容限界値 $\left(\mathrm{N} / \mathrm{mm}^{2}, \quad \mathrm{~N}\right)$	備考
12	ヒンジ 部	ヒンジ板＊1	65	1． 03	67	215	組合せ
		ヒンジピン＊1	64	1． 03	66	686	組合せ
		ヒンジボルト	33	1． 03	34	493	せん断
	$\begin{aligned} & \text { カン } \\ & \text { ヌキ部 } \end{aligned}$	カンヌキ＊1	29	1． 03	30	205	組合せ
		$\begin{gathered} \text { カンヌキ } \\ \text { 受けピン*2 } \end{gathered}$	44	1.03	45	345	曲げ
		カンヌキ受けボルト	12	1.03	12	854	引張
	パネル取付ボルト		3	1． 03	3	854	引張
		方立	40	1． 03	41	235	曲げ
	マグサ		22	1． 03	23	235	曲げ
	アンカーボルト＊3		6012	1． 03	6192	25826	せん断

注記 $* 1$ ：曲げ，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。
＊2：曲げ及びせん断のらち，評価結果が厳しい方の値を記載する。
＊3：引張，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。

3.2 機器•配管系

3．2．1 検討方針

設備の補強や追加等の改造工事に伴う重量増加による影響検討フローを図 3－2－ 1 に示し，以下のとおり，改造工事に伴う重量増加による影響検討を行う。影響検討は，以下に示す工認モデル及び補強反映モデルの地震応答解析結果を用いて応答比率を作成し，それを考慮した耐震条件（以下「補強反映耐震条件」という。） を用いて行う。

【工認モデル】

－添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す地震応答解析モ デル
－添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す原子炉圧力容器，原子炉しゃへい壁及び原子炉本体の基礎等（以下「大型機器系」とい う。）の地震応答解析モデル
【補強反映モデル】
－改造工事に伴う重量増加を反映した「地震応答計算書の別紙 3.2 地震応答解析モデル」に示す原子炉建屋の地震応答解析モデル（基本ケース）
－改造工事に伴う重量増加を反映した別紙6－1「改造工事に伴う重量増加によ る建屋一機器連成地震応答解析結果に与える影響 3．2 解析モデル」に示 す大型機器系の地震応答解析モデル（基本ケース）
（1）検討対象
原子炉建屋に設置される以下の機器•配管系を影響検討の対象とする。

- 設計基準対象施設のうち，耐震重要度分類のSクラスに属する機器•配管系
- 重大事故等対処施設のうち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がS クラスのもの）及び常設重大事故緩和設備（設計基準拡張）に属する機器•配管系
－波及的影響防止のために耐震評価を実施する機器•配管系
（2）検討方法
a．地震応答解析
3．2．1 項に示す工認モデル（基本ケース）及び補強反映モデルに対して基準地震動S s－D 2 を用いた地震応答解析を行う。

なお，「2．1 解析方針」に示すとおり，影響検討は b 項に示す応答比率を用い た手法により行うことから，応答比率の算出のための補強反映モデルを用いた地震応答解析は，位相特性の偏りがなく，全周期帯において安定した応答を生じさ せる基準地震動 S s－D 2 を用いる。また，c項に示す補強反映耐震条件の作成 では，基準地震動 S s（7波）に対する応答を考慮する。

b．応答比較

最大応答加速度，床応答曲線及び地震力に対する工認モデル（基本ケース）の地震応答解析結果と補強反映モデルの地震応答解析結果から応答比率「補強反映 モデルの応答（S s－D 2）／工認モデル（基本ケース）の応答（ S s－D 2）」 を算定し，応答比較を行う。

応答比較の結果，応答比率が 1 を上回る場合，その応答による影響を検討する。
c．影響検討に用いる耐震条件
b項で算定した応答比率を工認モデル（不確かさケースを含む）及び基準地震動 S S（7 波）を用いた地震応答解析結果に乗じることで補強反映耐震条件を作成する。

また，補強反映耐震条件と工認モデル（不確かさケースを含む）の応答から作成した耐震計算に用いる耐震条件（最大応答加速度，床応答曲線及び地震力）と の条件比率を作成する。ただし，耐震計算において非線形要素を用いた時刻歴応答解析により発生値を算定している原子炉建屋クレーンについては，固有周期の変動等の不確かさを考慮して $0.05 \sim 1.00 \mathrm{~s}$ の周期帯での補強反映床応答曲線と設計用床応答曲線の比率の最大値を用いた比較を行う。
d．簡易評価による検討対象設備の代表選定
（1）の検討対象設備に対する裕度（許容値／発生値）を整理の上，c 項で作成し た条件比率と設備の裕度を比較（以下「簡易評価」という。）を行い，簡易評価に より条件比率が設備の裕度を上回る設備を検討対象設備の代表として選定する。
e．詳細評価
検討対象設備の代表として選定した設備について，補強反映耐震条件を用いて，当該設備の耐震計算書で適用している評価手法と同等の手法による評価を行い，発生値が許容値以下となることを確認する。確認の結果，発生値が許容値を上回 る場合は，追加検討を行う。
f．追加検討
詳細評価で発生値が許容値を上回った設備は，設備の評価結果等に応じて個別 に設備対策，評価の精緻化等を行う。
図 3－2－1 原子炉建屋における改造工事に伴う重量増加を反映した影響検討フロー

検討対象設備 原子炉建屋に設置した以下の設備 - 耐震重要度分類のSクラス設備 - 常設耐震重要重大事故防止設備 - 常設重大事故緩和設備 - 常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの） - 常設重大事故緩和設備（設計基準拡張） - 波及的影響防止のために耐震評価を実施する機器•配管系
\downarrow
検討対象設備の裕度整理 （裕度＝許容値／発生値）

$\square-$

（3．2．2項（1）及び
別紙6－14．検討結果を参照）Yes
紋 \downarrow

i．－．－．！：添付書類「V－2－2－1 原子炉建胫の地需応答計算書」，「V－2－1－7 設計用床応答曲線の作成方針」及び地震応答計算書」の検討範囲。

3．2．2 検討内容

（1）応答比率
応答比率の算定方法及び応答比率を以下に示す（建屋 一 機器連成地震応答解析結果を踏まえた応答比率は，「別紙 6－1 改造工事に伴う重量増加による建屋一機器連成地震応答解析結果に与える影響」参照）。

以下の a 項～c 項のとおり，応答比率が 1 を上回ることを確認したため，図 3－ 2－1に示す影響検討フローに基づき，簡易評価による検討対象設備の代表選定，詳細評価及び追加検討を行う。
a．最大応答加速度の応答比率
各標高について，基準地震動 S s－D 2 による工認モデル（基本ケース）と補強反映モデルの最大応答加速度を比較し，補強反映モデルの最大応答加速度／工認 モデルの最大応答加速度により応答比率を算定する。なお，水平方向の最大応答加速度の応答比率算定にあたっては，NS 方向とEW 方向の包絡値（以下，「NS／EW 包絡」という。）を用いる。

原子炉建屋の最大応答加速度の応答比率を表 3－2－1～表3－2－4 に示す。

表 3－2－1 最大応答加速度の応答比率
（基準地震動 S s－D 2，1．0ZPA，水平方向（NS／EW 包絡）：原子炉建屋）

$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	最大応答加速度$\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0$		応答比率 （2）／（1）
	（1）工認モデル	（2）補強反映モデル	
50.500	4.71	4.37	0.93
41.200	2.56	2.48	0.97
33.200	2.03	1.98	0.98
22.500	1． 74	1． 76	1． 02
15.000	1． 39	1． 35	0.98
6． 000	1． 30	1． 28	0.99
1． 150	1． 00	1． 02	1． 02
－0．800	0.99	1.00	1． 02
－8．100	0.66	0.65	0.99

表 3－2－2 最大応答加速度の応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，1．0ZPA，鉛直方向：原子炉建屋）

標高 $0 . \mathrm{P} .(\mathrm{m})$	最大応答加速度 $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0$		応答比率 $(2) /(1))$
	（1）工認モデル	（2）補強反映モデル	
48.725	1.58	1.61	1.02
41.200	1.46	1.46	1.00
33.200	1.38	1.22	1.40
22.500	0.99	1.00	1.02
15.000	0.75	0.75	1.01
6.000	0.62	0.61	1.02
-0.800	0.55	0.55	0.99
-8.100			1.00

表 3－2－3 最大応答加速度の応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，1．2ZPA，水平方向（NS／EW 包絡）：原子炉建屋）

標高0. P. (m)	最大応答加速度$\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2$		応答比率 （2）／（1）
	（1）工認モデル	（2）補強反映モデル	
50.500	5.66	5.24	0.93
41.200	3.07	2.98	0.98
33.200	2． 44	2.38	0.98
22.500	2.09	2.11	1.01
15.000	1． 67	1． 62	0.98
6． 000	1． 55	1． 54	1． 00
1． 150	1． 20	1． 22	1． 02
－0．800	1． 18	1． 19	1． 01
－8．100	0． 79	0.78	0.99

表 3－2－4 最大応答加速度の応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，1．2ZPA，鉛直方向：原子炉建屋）

標高0. P. (m)	最大応答加速度$\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2$		応答比率((2) / (1)
	①認モデル	（2）補強反映モデル	
48． 725	1.90	1.94	1.03
41.200	1． 75	1． 75	1.00
33.200	1． 66	1． 68	1． 02
22.500	1． 46	1． 47	1.01
15.000	1． 19	1． 20	1． 01
6． 000	0.90	0.90	1． 00
－0．800	0． 74	0.73	0.99
－8． 100	0.66	0.66	1． 00

b．床応答曲線の応答比率
工認モデル（基本ケース）と補強反映モデルにおける基準地震動 S s－D 2 によ る床応答曲線を比較し，各標高•各減衰について，補強反映モデルの震度／工認モ デルの震度により周期ごとの応答比率を算定する。なお，水平方向の床応答曲線の応答比率算定にあたつては，「NS／EW 包絡」を用いる。応答比率の算定例を図 3－2－ 2 に示す。

原子炉建屋の各標高•減衰定数 2.0% の工認モデル（基本ケース）と補強反映モ デルの床応答曲線を図 3－2－3 及び図 3－2－4 に，周期ごとの応答比率を図 3－2－5 及 び図 3－2－6に示す。なお，床応答曲線の減衰定数は，耐震裕度の比較的小さい配管系の主要な減衰定数である 2.0% を代表として，設備評価に用いた標高の床応答曲線を記載している。

図 3－2－2 床応答曲線における応答比率の算定例
（水平方向（NS／EW 包絡）：原子炉建屋 0．P．15．0m，固有周期 0.247 s ）

図 3－2－3（1／8）工認モデルと補強反映モデルの床応答曲線 （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．41．2m）

図 3－2－3（2／8）工認モデルと補強反映モデルの床応答曲線 （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．33．2m）

図 3－2－3（3／8）工認モデルと補強反映モデルの床応答曲線 （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．22．5m）

図 3－2－3（4／8）工認モデルと補強反映モデルの床応答曲線 （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．15．0m）

図 3－2－3（5／8）工認モデルと補強反映モデルの床応答曲線 （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．6．0m）

図 3－2－3（6／8）工認モデルと補強反映モデルの床応答曲線 （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．1．15m）

図 3－2－3（7／8）工認モデルと補強反映モデルの床応答曲線 （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．-0.8 m ）

図 3－2－3（8／8）工認モデルと補強反映モデルの床応答曲線
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．－8．1m）

図 3－2－4（1／7）工認モデルと補強反映モデルの床応答曲線 （基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．41．2m）

図 3－2－4（2／7）工認モデルと補強反映モデルの床応答曲線 （基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．33．2m）

図 3－2－4（3／7）工認モデルと補強反映モデルの床応答曲線 （基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．22．5m）

図 3－2－4（4／7）工認モデルと補強反映モデルの床応答曲線 （基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．15．0m）

図 3－2－4（5／7）工認モデルと補強反映モデルの床応答曲線 （基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．6．0m）

図 3－2－4（6／7）工認モデルと補強反映モデルの床応答曲線 （基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．－0．8m）

図 3－2－4（7／7）工認モデルと補強反映モデルの床応答曲線 （基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．－8．1m）

図 3－2－5（1／8）床応答曲線の応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．41．2m）

図 3－2－5（2／8）床応答曲線の応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．33．2m）

図 3－2－5（3／8）床応答曲線の応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．22．5m）

図 3－2－5（4／8）床応答曲線の応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．15．0m）

図 3－2－5（5／8）床応答曲線の応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．6．0m）

図 3－2－5（6／8）床応答曲線の応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向（NS／EW 包絡）：原子炉建屋 $0 . P$ ． 1.15 m ）

図 3－2－5（7／8）床応答曲線の応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．－ 0.8 m ）

図 3－2－5（8／8）床応答曲線の応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．－8．1m）

図 3－2－6（1／7）床応答曲線の応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．41．2m）

図 3－2－6（2／7）床応答曲線の応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．33．2m）

図 3－2－6（3／7）床応答曲線の応答比率
（基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．22．5m）

図 3－2－6（4／7）床応答曲線の応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．15．0m）

図 3－2－6（5／7）床応答曲線の応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．6．0m）

図 3－2－6（6／7）床応答曲線の応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．－0．8m）

図 3－2－6（7／7）床応答曲線の応答比率
（基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．－8．1m）
c．地震力の応答比率
建屋一機器連成地震応答解析モデルの各標高•要素について，工認モデル（基本ケース）と補強反映モデルにおける基準地震動 S s－D 2 による地震力（せん断力，モーメント，軸力等）を比較し，補強反映モデルの地震力／工認モデルの地震力により応答比率を算定する。なお，水平方向の応答比率算定にあたつて は，「NS／EW 包絡」を用いる。
（2）補強反映耐震条件
補強反映耐震条件は，最大応答加速度，床応答曲線及び地震力についてそれぞれ以下のとおり応答比率を用いて作成する。なお，影響評価の観点から，応答比率が 1 を下回る場合においても，応答比率の算出値をそのまま用いる。
a．補強反映最大応答加速度
各標高について，工認モデル（基本ケース）を用いた地震応答解析から得られ る応答波の最大応答加速度と，工認モデル（不確かさケースを含む）を用いた地震応答解析から得られる応答波の最大応答加速度を包絡させ設定した設計用最大応答加速度に（1）で算定した応答比率を乗じて作成する。

補強反映最大応答加速度の作成フローを図 3－2－7 に示す。
b．補強反映床応答曲線
各標高•各減衰について，工認モデル（基本ケース）を用いた地震応答解析か ら得られる応答波を用いて作成した床応答曲線に（1）で算定した周期ごとの応答比率を乗じ $\pm 10 \%$ 拡幅したものと，工認モデル（不確かさケース）を用いた地震応答解析から得られる応答波を用いて作成した床応答曲線に（1）で算定した周期ご との応答比率を乗じたものを包絡させて作成する。
補強反映床応答曲線の作成フローを図3－2－8に示す。
c．補強反映地震力
建屋一機器連成地震応答解析モデルの各標高•要素について，工認モデル（基本ケース）を用いた地震応答解析から得られる地震力と，工認モデル（不確かさ ケースを含む）を用いた地震応答解析から得られる地震力を包絡させ設定した設計用地震力に（1）で算定した応答比率を乗じて作成する。

補強反映地震力の作成フローを図3－2－9に示す。

注記：破線範囲は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」
における設計用最大応答加速度作成の実施事項を示す。

図 3－2－7 補強反映最大応答加速度の作成フロー

注記：破線範囲は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 における設計用床応答曲線作成の実施事項を示す。

図 3－2－8 補強反映床応答曲線の作成フロー

注記：破線範囲は，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」及び「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」における設計用地震力作成の実施事項を示す。

図 3－2－9 補強反映地震力の作成フロー

3．2．3 検討結果

（1）簡易評価結果による検討対象設備の代表選定及び詳細評価結果
「3．2．1 検討方針」に示す影響検討フローに従った検討を行い，簡易評価により，
条件比率が設備の裕度を上回った 25 設備を検討対象設備の代表として選定した。
検討対象設備の代表として選定した 25 設備の簡易評価結果を表 3－2－5 に示す。 また，当該設備の詳細評価結果を表 3－2－6に示す。

なお，配管の詳細評価対象は，評価に用いる各標高（質点）で応力評価結果の裕度が最小となる配管及び疲労累積係数が最大となる配管を代表としている。また，簡易評価は，対象設備の応力分類ごとに行っている。

検討対象設備の代表として選定した 25 設備に対して，詳細評価として補強反映耐震条件による耐震計算を行い，制御棒挿入性評価を除く 24 設備については，発生値が許容値以下となることを確認した。

詳細評価の結果，発生値が許容値を上回った制御棒挿入性評価に対する追加検討 を行う。

表 3－2－5 検討対象設備の代表として選定した 25 設備の簡易評価結果（ $1 / 3$ ）

設備名称	評価条件＊${ }^{*}$	評価部位	応力分類	耐震評価計算書 （基準地震動 S s ）			条件比率	検討結果
				$\begin{gathered} \text { 発生値*2 } \\ (\mathrm{MPa}) \end{gathered}$	許容値 （MPa）	裕度		
シュラウドサポート	DB	レグ	軸圧縮	189	209	1． 10	1． 12	\times
燃料プール冷却浄化系熱交換器	DB	胴板	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	675	420	0.62	1． 01	\times
			疲労＊${ }^{3}$	0.31	1	－		
燃料プール泠却浄化系配管 （FPC－002）	DB	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	436	376	0.86	$\begin{gathered} 1.07 \\ \text { 図 } 3-2-10 \end{gathered}$	\times
			疲労＊3	0.0034	1	－		
原子炬再循環系配管 （PLR－001）	DB	配管本体	$\begin{gathered} \hline \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	663	354	0.53	$\begin{gathered} 1.06 \\ \text { 図 } 3-2-11 \end{gathered}$	\times
			疲労＊3	0． 2091	1	－		
原子炉再循環系配管 （PLR－002）	DB	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	657	354	0.53	$\begin{gathered} 1.05 \\ \text { 図 } 3-2-12 \end{gathered}$	\times
			疲労＊3	0.3181	1	－		
主蒸気系配管(MS-001)	DB	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	684	375	0.54	$\begin{gathered} 1.10 \\ \text { 図 } 3-2-13 \end{gathered}$	\times
			疲労＊3	0.614	1	－		
主蒸気系配管(MS-003)	DB	配管本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	630	375	0.59	$\begin{gathered} 1.10 \\ \text { 図 } 3-2-14 \end{gathered}$	\times
			疲労＊3	0.3706	1	－		
主蒸気系配管(MS-004)	SA	配管本体	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \end{gathered}$	468	386	0． 82	$\begin{gathered} 1.07 \\ \text { 図 } 3-2-15 \end{gathered}$	\times
			疲労＊3	0.8529	1	－		
残留熱除去系熱交換器	DB	胴板	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \end{gathered}$	783	497	0.63	1． 01	\times
			疲労＊3	0． 38	1	－		
残留熱除去系配管(RHR-003)	DB	配管本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	680	366	0.53	$\begin{gathered} 1.03 \\ \text { 図 } 3-2-16 \end{gathered}$	\times
			疲労＊3	0． 5620	1	－		
残留熱除去系配管(RHR-004)	DB	配管本体	$\begin{gathered} \hline \text { 一次+二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	370	366	0.98	$\begin{gathered} 1.05 \\ \text { 図 } 3-2-17 \end{gathered}$	\times
			疲労＊3	0.0887	1	－		

注記＊1：設計基準対象施設の評価条件を「DB」，重大事故等対処設備の評価条件を「SA」 と記載。
＊2：一次＋二次応力の発生値が許容値を上回った場合は，疲労評価を実施する。 ＊3：単位は無次元。

表 3－2－5 検討対象設備の代表として選定した 25 設備の簡易評価結果（2／3）

設備名称	評価条件＊${ }^{1}$	評価部位	応力分類	耐震評価計算書 （基準地震動 S s ）			条件比率	検討 結果
				$\begin{gathered} \text { 発生値*2 } \\ (\mathrm{MPa}) \end{gathered}$	許容値 （MPa）	裕度		
残留熱除去系配管(RHR-005)	DB	配管本体	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \end{gathered}$	675	366	0.54	$\begin{gathered} 1.04 \\ \text { 図 } 3-2-18 \end{gathered}$	\times
			疲労＊${ }^{3}$	0． 6667	1	－		
残留熱除去系配管(RHR-010)	SA	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	422	414	0.98	$\begin{gathered} 1.09 \\ \text { 図 } 3-2-19 \end{gathered}$	\times
			疲労＊3	0． 7118	1	－		
原子炉補機冷却水系配管 （KRCW－205）	DB	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	440	458	1.04	$\begin{gathered} 1.16 \\ \text { 図 } 3-2-20 \end{gathered}$	\times
制御棒 （挿入性評価）	DB	－	相対変位＊${ }^{4}$	54． 2	60	1． 10	1． 11	\times
制御棒駆動水圧系配管$(\text { CRD-005-1) }$	DB	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	292	318	1.08	$\begin{gathered} 1.11 \\ \text { 図 } 3-2-21 \end{gathered}$	\times
			疲労＊3	0． 2729	1	－		
制御棒駆動水圧系配管(CRD-017-3)	DB	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	434	318	0． 73	$\begin{gathered} 1.02 \\ \text { 図 } 3-2-22 \end{gathered}$	\times
			疲労＊3	0． 8674	1	－		
ほら酸水注入系配管 （SLC－003）	SA	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	211	206	0.97	$\begin{gathered} 1.08 \\ \text { 図 } 3-2-23 \end{gathered}$	\times
			疲労＊3	0． 0001	1	－		
$\begin{gathered} \text { ドライウェルベント } \\ \text { 開口部 } \end{gathered}$	DB	$\begin{gathered} \text { ドライウェル } \\ \text { ベント開ロ部 } \end{gathered}$	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	432	501	1． 15	$\begin{gathered} 1.26 \\ \text { 図 } 3-2-24 \end{gathered}$	\times
	SA	$\begin{gathered} \text { ドライウェル } \\ \text { ベント開ロ部 } \end{gathered}$	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	460	501	1.08	$\begin{gathered} 1.25 \\ \text { 図 } 3-2-25 \end{gathered}$	\times
ダウンカマ	DB	$\begin{gathered} \text { エンドプレー } \\ \text { ト (上側) } \end{gathered}$	一次応力 （組合せ）	248	264	1.06	$\begin{gathered} 1.26 \\ \text { 図 } 3-2-24 \end{gathered}$	\times
		ベントヘッダ （一般部以外）	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	516	458	0.88		
			疲労＊${ }^{3}$	0． 284	1	－		
	SA	$\begin{gathered} \text { エンドプレー } \\ \text { ト (上側) } \end{gathered}$	一次応力 （組合せ）	247	264	1.06	$\begin{gathered} 1.25 \\ \text { 図 } 3-2-25 \end{gathered}$	\times
		ベントヘッダ （一般部以外）	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	592	473	0． 79		
			疲労＊3	0.547	1	－		
ベント管	DB	ベント管 （一般部以外）	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	371	393	1.05	1.26 図 $3-2-24$	\times
	SA	ベント管 （一般部以外）	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	418	393	0.94	$\begin{gathered} 1.25 \\ \text { 図 } 3-2-25 \end{gathered}$	\times
			疲労＊${ }^{3}$	0． 489	1	－		

注記＊1：設計基準対象施設の評価条件を「DB」，重大事故等対処設備の評価条件を「SA」 と記載。
＊2：一次 + 二次応力の発生値が許容値を上回った場合は，疲労評価を実施する。
＊ 3 ：単位は無次元。
＊4：単位は「mm」。

表 3－2－5 検討対象設備の代表として選定した 25 設備の簡易評価結果（3／3）

設備名称	評価条件＊1	評価部位	応力分類	耐震評価計算書 （基準地震動 S s ）			条件比率	検討 結果
				発生値＊2 （MPa）	許容値 (MPa)	裕度		
可燃性ガス濃度制御系配管 （FCS－006）	DB	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	200	150	0.75	$\begin{gathered} 1.02 \\ \text { 図 } 3-2-26 \end{gathered}$	\times
			疲労＊3	0． 5717	1	－		
原子炉格納容器フィ ルタベント系配管 （FCVS－003）	SA	配管本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	302	240	0.79	1.05図 $3-2-27$	\times
			疲労＊3	0.3849	1	－		
原子炉格納容器フィ ルタベント系配管 （FCVS－004）	SA	配管本体	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \end{gathered}$	274	240	0.87	$\begin{gathered} 1.08 \\ \text { 図 } 3-2-28 \end{gathered}$	\times
			疲労＊3	0． 3833	1	－		
非常用ディーゼル発電設備配管 （DGD0－B008）	DB	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	439	398	0.90	$\begin{gathered} 1.08 \\ \text { 図 } 3-2-29 \end{gathered}$	\times

注記＊1：設計基準対象施設の評価条件を「DB」，重大事故等対処設備の評価条件を「SA」 と記載。
＊2：一次 + 二次応力の発生値が許容値を上回った場合は，疲労評価を実施する。 ＊ 3 ：単位は無次元。
表 3－2－6 検討対象設備の代表として選定した 25 設備の詳細評価結果（ $1 / 4$ ）

設備名称	評価条件＊${ }^{1}$	評価部位	応力分類	詳細評価条件		補強反映耐震条件を用いた評価 （基準地震動 S s ）		検討結果
				最大応答加速度	床応答曲線	$\begin{aligned} & \text { 発生値 *2 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \text { 許容値 } \\ \text { (MPa) } \end{gathered}$	
シュラウドサポート	DB	レグ	軸圧縮	－	原子炬圧力容器 ${ }^{* 3}$ 0．P． $11.310,9.334 \mathrm{~m}$ 炉心シュラウド O．P． $11.496,10.324,8.595 \mathrm{~m}$ タイロッド	204	209	\bigcirc
燃料プール冷却浄化系熱交換器	DB	胴板	一次＋二次応力	$\begin{aligned} & \text { 水平: } 1.93 \\ & \text { 鉛直: } 1.39 \end{aligned}$	－	667	420	\bigcirc
			疲労＊${ }^{\text {4 }}$			0． 30	1	
燃料プール冷却浄化系配管 （FPC－002）	DB	配管本体	一次＋二次応力	水平： 2.60 鉛直： 1.81	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. } 33.2,22.5,15.0 \mathrm{~m} \\ (0.5 \% \text { 減衰 }) \end{gathered}$	426	376	\bigcirc
			疲労＊${ }^{\text {4 }}$			0． 0025	1	
原子炉再循環系配管$($ PLR－001）	DB	配管本体	一次＋二次応力	水平： 1.62 鉛直： 0.90	原子炉本体の基礎 0．P． 6.24 m （ 2.5% 減衰）	626	354	\bigcirc
			疲労＊${ }^{\text {4 }}$			0． 1868	1	
原子炉再循環系配管 （PLR－002）	DB	配管本体	一次＋二次応力	水平： 1.62 鉛直：0．90	原子炉本体の基礎 0．P． 6.24 m （2．5\％減衰）	629	354	\bigcirc
			疲労＊${ }^{\text {4 }}$			0． 2701	1	
$\underset{(\text { MS－001 })}{\underset{\text { 主蒸気系配管 }}{ }}$	DB	配管本体	一次＋二次応力	水平： 1.93 鉛直： 1.33	原子炉しゃへい壁 0．P． 10.6 m （ 2.0% 減衰）	633	375	\bigcirc
			疲労＊${ }^{\text {4 }}$			0． 4641	1	

注記 $* 1$ ：設計基準対象施設の評価条件を「 $\mathrm{DB} 」$ ，重大事故等対処設備の評価条件を「 SA 」と記載。
＊3：補強反映耐震条件（震度，地震力（せん断力，モーメント，軸力）の算出位置を床応答曲線の欄に記載。
表 3－2－6 検討対象設備の代表として選定した 25 設備の詳細評価結果 $(2 / 4)$

設備名称	評価条件＊${ }^{1}$	評価部位	応力分類	詳細評価条件		補強反映耐震条件を用いた評価（基準地震動 S s ）		検討結果
				最大応答加速度	床応答曲線	$\begin{aligned} & \text { 発生値*2 } \\ & (\mathrm{MPa} \text {) } \end{aligned}$	$\begin{aligned} & \text { 許容値 } \\ & \text { (MPa) } \end{aligned}$	
主蒸気系配管 （MS－003）	DB	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 2.01 \\ & \text { 鉛直: } 1.59 \end{aligned}$	原子炉しゃへい壁 0．P． 13.4 m （ 2.0% 減衰）	596	375	\bigcirc
			疲労＊${ }^{\text {3 }}$			0． 2885	1	
主蒸気系配管（MS－004）	SA	配管本体	一次＋二次応力	水平： 2.01 鉛直： 1.59	原子炉しゃへい壁 0．P． 13.4 m （ 2.0% 減衰）	484	386	\bigcirc
			疲労＊${ }^{3}$			0．9135＊4	1	
残留熱除去系熱交換器	DB	胴板	一次＋二次応力	水平： 1.97 鉛直： 1.42	－	776	497	\bigcirc
			疲労＊${ }^{\text {3 }}$			0． 36	1	
残留熱除去系配管 （RHR－003）	DB	配管本体	一次＋二次応力	水平：2．09 鉛直： 1.78	原子炉しゃへい壁 0．P． 15.95 m （ 2.5% 減衰）	664	366	\bigcirc
			疲労＊3			0． 5066	1	
残留熱除去系配管 （RHR－004）	DB	配管本体	一次＋二次応力	水平：2． 33 鉛直：1．93	原子炉建屋 O．P． $22.5, ~ 15.0 \mathrm{~m}$原子炉しゃへい壁0．P． $21.55,18.79$ ， 15.95 m原子炬格納容器0．P． 25.858 m（2．5\％減衰）	338	366	\bigcirc
			疲労＊${ }^{3}$			0． 0647	1	
残留熱除去系配管 （RHR－005）	DB	配管本体	一次＋二次応力	水平：3． 75 鉛直： 1.47	原子炉圧力容器 0. ． 28.6 m	623	366	\bigcirc
			疲労＊${ }^{\text {3 }}$		$\begin{gathered} \text { O. P. } 25.858 \mathrm{~m} \\ (2.5 \% \text { 減衰) } \\ \hline \end{gathered}$	0． 5037	1	

[^0]＊2：一次十二次応力の発生値が許容値を上回った場合は，疲労評価を実施する。
＊4：設備の全固有周期に応じた等価繰返し回数の包絡値として，個別に設定する等価繰返し回数 181 回を適用。
表 3－2－6 検討対象設備の代表として選定した 25 設備の詳細評価結果 $(3 / 4)$

設備名称	評価条件＊${ }^{\text {P }}$	評価部位	応力分類	詳細評価条件		補強反映耐震条件を用いた評価 （基準地震動 S s ）		検討結果
				最大応答加速度	床応答曲線	$\begin{aligned} & \text { 発生値 }{ }^{\text {(MPa) }} \end{aligned}$	$\begin{gathered} \text { 許容値 } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	
残留熱除去系配管 （RHR－010）	SA	配管本体	一次＋二次応力	水平： 1.57 鉛直： 1.09	原子炬建屋 $1.15,-0.8,-8.1 \mathrm{~m}$ $(2 \%$ 減衰）	406	414	\bigcirc
原子炉補機泠却水系配管 （KRCW－205）	DB	配管本体	一次＋二次応力	水平：3． 37 鉛直： 1.89	$\begin{aligned} & \text { 原子炬建屋 } \\ & \text { 0. P. } 41.2, \quad 33.2, \quad 22.5, \quad 15.0, \\ & 6.0,1.15,-0.8, \quad-8.1 \mathrm{~m} \\ & (2 \% \text { 減衰 }) \end{aligned}$	442	458	\bigcirc
$\begin{gathered} \text { 制御棒 } \\ (\text { 挿入性評価) } \end{gathered}$	DB	－	相対変位＊3	－	－	60.2	60	\times
制御棒駆動水圧系配管 （CRD－005－1）	DB	配管本体	一次＋二次応力	水平： 1.93 鉛直： 1.39	原子炉建屋 0． $15.0,6.0 \mathrm{~m}$ 原子炉格納容器 0．P． $14.295,9.448 \mathrm{~m}$ （2．0\％減衰）	292	318	\bigcirc
制御棒駆動水圧系			一次＋二次応力		原子炉本体の基礎 0．P． $7.040,6.240,4.950 \mathrm{~m}$	420	318	\bigcirc
(CRD-017-3)	DB	配管本体	疲労＊${ }^{\text {4 }}$	鉛直： 1.32	$\text { 0. P. } 3.258 \mathrm{~m}$ （ 0.5% 減衰）	0． 7312	1	\bigcirc
ほう酸水注入系配管 （SLC－003）	SA	配管本体	一次＋二次応力	水平： 2.15 鉛直： 1.59	原子炉建屋 0．P．22．5， 15.0 m原子炉本体の基礎 0．P． 7.04 m原子炉しやへい壁 0．P．13．4， 10.6 m 原子炉格納容器 0．P．17．15，14． 295 m （ 2% 減衰）	195	206	\bigcirc
ドライウェルベント 開口部	DB	$\begin{gathered} \text { ドライウェ } \\ \text { ルベント } \\ \text { 開ロ部 } \end{gathered}$	一次＋二次応力	$\begin{gathered} \text { 水平: }- \\ \text { 鉛直: } 1.01 \end{gathered}$	原子炉格納容器 $0 . P .2 .6 \mathrm{~m} * 5$ $(1 \%$ 減衰）	445	501	\bigcirc
	SA		一次＋二次応力	水平：－鉛直：1．04	原子炉格納容器 0. P． $2.6 \mathrm{~m} * 5$ $(1 \%$ 減衰）	488	501	\bigcirc

[^1]\[

$$
\begin{aligned}
& * 3 \text { : 単位は「mm」。 } \\
& \text { * } 4 \text { : 単位は無次元 }
\end{aligned}
$$
\]

＊5：原子炉格納容器のせん断力及び曲げモーメントも使用。
表 3－2－6 検討対象設備の代表として選定した 25 設備の詳細評価結果 $(4 / 4)$

設備名称	評価条件＊${ }^{\text {1 }}$	評価部位	応力分類	詳細評価条件		補強反映耐震条件を用いた評価 （基準地震動 S s ）		検討結 果
				最大応答加速度	床応答曲線	$\begin{aligned} & \text { 発生値*2 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \text { 許容値 } \\ (\mathrm{MPa}) \end{gathered}$	
ダウンカマ	DB	$\begin{gathered} \text { エンドプレー } \\ \text { ト(上側) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \\ & \hline \end{aligned}$	－	$\begin{gathered} \text { 原子炉格納容器 } \\ \text { 0.P. } 2.6 \mathrm{~m} \\ (1 \% \text { 減衰) } \end{gathered}$	255	264	\bigcirc
		$\begin{aligned} & \text { ベントヘッダ } \\ & \text { (一般部以外) } \end{aligned}$	一次＋二次応力			530	458	
			疲労＊${ }^{\text {3 }}$			0． 317	1	
	SA	$\begin{gathered} \text { エンドプレー } \\ \text { ト(上側) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \end{aligned}$	－	$\begin{gathered} \text { 原子炉格納容器 } \\ \text { 0.P. } 2.6 \mathrm{~m} \\ (1 \% \text { 減裏) } \end{gathered}$	261	264	\bigcirc
		$\begin{aligned} & \text { ベントヘッダ } \\ & \text { (一般部以外) } \end{aligned}$	一次＋二次応力			628	473	
			疲労＊${ }^{\text {3 }}$			0． 771	1	
ベント管	DB	ベント管（一般部以外）	一次＋二次応力	－	原子炬格納容器 0．P． 2.6 m $(1 \%$ 減衰）	382	393	\bigcirc
	SA		一次 + 二次応力	－	原子炉格納容器 0．P． 2.6 m （1\％減衰）	444	393	\bigcirc
			疲労＊${ }^{3}$			0． 635	1	
可燃性ガス濃度制御系配管 （FCS－006）	DB	配管本体	一次＋二次応力	水平： 2.15 鉛直： 1.58	原子炉建屋 0．P． 22.5 m （ 1.0% 減衰）	204＊ 4	150	\bigcirc
			疲労＊${ }^{\text {3 }}$			$0.6142 * 4$	1	
$\begin{gathered} \text { 原子炉格納容器 } \\ \text { フィルタベント系 } \\ \text { (配管 } \\ \text { (FVVS-003) } \end{gathered}$	SA	配管本体	一次＋二次応力	水平： 2.60 鉛直： 1.81	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. } 33.2,22.5,15.0 \mathrm{~m} \\ (3.0 \% \text { 減衰 }) \end{gathered}$	294	240	\bigcirc
			疲労＊${ }^{3}$			0.3510	1	
原子炉格納容器フィルタベント系配管（FCVS－004）	SA	配管本体	一次＋二次応力	水平： 6.77 鉛直：2． 16		278	240	\bigcirc
			疲労＊${ }^{\text {3 }}$			0． 4072	1	
非常用ディーゼル発電設備配管 （DGD0－B008）	DB	配管本体	一次＋二次応力	水平： 1.93鉛直： 1.39	軽油連絡ダクトO．P． $12.100 \quad 10.500,9.500 \mathrm{~m}$原子炉建屋 0．P． $15.0,6.0 \mathrm{~m}$（2\％減衰）	439	398	\bigcirc
			疲労＊${ }^{3}$			0． 3983	1	

注記＊1：設計基準対象施設の評価条件を「DB」，重大事故等対処設備の評価条件を「SA」と記載。
＊3：単位は無次元。期に対応する応答比率の包絡値を耐震計算書の値（一次＋二次応力）に乗じた値を適用。

図 3－2－10 燃料プール冷却浄化系配管（FPC－002）（DB）の条件比率 （基準地震動 S S ，水平方向：原子炉建屋 $0 . \mathrm{P}$ 。

図 3－2－11 原子炉再循環系配管（PLR－001）の条件比率 （基準地震動 S s ，水平方向：原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

図 3－2－12 原子炉再循環系配管（PLR－002）の条件比率 （基準地震動 S s，水平方向：原子炉本体の基礎 O．P．$\square \mathrm{m}$ ）

図 3－2－13 主蒸気系配管（MS－001 クラス1）（DB）の条件比率
（基準地震動 S s，水平方向：原子炉しやへい壁 0．P．
 m）

図 3－2－14 主蒸気系配管（MS－003 クラス1）（DB）の条件比率
（基準地震動 S s ，水平方向：原子炉しやへい壁
O．P．
 m）

図 3－2－15 主蒸気系配管（MS－004）（SA）の条件比率
（基準地震動 S s，水平方向：原子炉しやへい壁
0．P．


```
m)
```

枠囲みの内容は商業機密の観点から公開できません。

図 3－2－16 残留熱除去系配管（RHR－003）の条件比率
（基準地震動 S s，鉛直方向：原子炉しやへい壁
0．P． \square m）

図 3－2－17 残留熱除去系配管（RHR－004）の条件比率
（基準地震動 S s，水平方向：原子炉しやへい壁 O．P． \square m）

図 3－2－18 残留熱除去系配管（RHR－005）の条件比率 （基準地震動 S s，水平方向：原子炉格納容器 0．P．$\square \mathrm{m}$ ）

図 3－2－19 残留熱除去系配管（RHR－010）（SA）の条件比率 （基準地震動 S s，水平方向：原子炉建屋 O．P．$\square \mathrm{m}$ ）

図 3－2－20 原子炉補機冷却水系配管（KRCW－205）の条件比率 （基準地震動 S s，水平方向：原子炉建屋 0．P．

図 3－2－21 制御棒駆動水圧系配管（CRD－005－1）の条件比率 （基準地震動 S s ，水平方向：原子炉格納容器 O．P
 m）

枠囲みの内容は商業機密の観点から公開できません。

図 3－2－22 制御棒駆動水圧系配管（CRD－017－3）の条件比率 （基準地震動 S s，鉛直方向：制御棒駆動機構ハウジング 0．P．$\square \mathrm{m}$ ）

図 3－2－23 ほう酸水注入系配管（SLC－003）（SA）の条件比率 （基準地震動 S s，水平方向：原子炉格納容器 O．P。 \square
枠囲みの内容は商業機密の観点から公開できません。

図 3－2－24 ドライウェルベント開口部，ダウンカマ，ベント管（DB）の条件比率 （基準地震動 S s，水平方向：原子炉格納容器

0．P．
 m）

図 3－2－25 ドライウェルベント開口部，ダウンカマ，ベント管（SA）の条件比率 （基準地震動 S s，水平方向：原子炉格納容器 0．P．
m）

図 3－2－26 可燃性ガス濃度制御系配管（FCS－006）（DB）の条件比率
（基準地震動 S s，鉛直方向：原子炉建屋 O．P．$\square \mathrm{m}$ ）

図 3－2－27 原子炉格納容器フィルタベント系配管（FCVS－003）（SA）の条件比率 （基準地震動 S s ，水平方向：原子炉建屋 O．P．$\square \mathrm{m}$ ）

図 3－2－28 原子炉格納容器フィルタベント系配管（FCVS－004）（SA）の条件比率 （基準地震動 S s，水平方向：原子炉建屋 0．P．$\square \mathrm{m}$ ）

図 3－2－29 非常用ディーゼル発電設備配管（DGD0－B008）の条件比率 （基準地震動 S s，水平方向：原子炉建屋 0．P． \square m）

（2）追加検討結果

「3．2．1 検討方針」に示す原子炉建屋における改造工事に伴う重量増加を反映した影響検討フロー（図 $3-2-1$ ）に基づき，実施した制御棒挿入性評価の詳細評価評価の結果，補強反映耐震条件 60.2 mm （工認評価に用いる燃料集合体相対変位 54.2 mm ）×応答比率（1．11，別紙 6－1 表 4－7参照））が許容値 60 mm を上回 つたことを踏まえ，図 3－2－1 の影響検討フローに従い追加検討を行う。

追加検討は，以下の手順により検討した。なお，検討に用いる地震動は，燃料集合体相対変位が最大となる基準地震動S s－D 2 を用いている。
（1）工認モデルによる材料物性の不確かさを考慮する検討ケース＊ごとに応答比率を考慮した燃料集合体相対変位（各検討ケースの燃料集合体相対変位×応答比率（1．11））を確認し，確認済相対変位を上回る検討ケース（ケース 3）を抽出（表 3－2－7 参照）。
（2）抽出した検討ケースの地震応答解析モデルに改造工事に伴う重量増加を反映した地震応答解析モデルを作成。

③ 作成した地震応答解析モデルを用いて地震応答解析を行い，燃料集合体相対変位（ 55.2 mm ）が確認済相対変位（ 60 mm ）以下となることを確認。

対象の確認結果を表 3－2－7に，追加検討の結果を表 3－2－8に示す。
検討結果から，発生値（燃料集合体相対変位 55．2m）が許容値（確認済相対変位 60 mm ）以下となることを確認した。

注記＊：添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す検討ケース

表 3－2－7 各検討ケースにおける制御棒挿入性評価

工認モデルによる材料物性の不確か さを考慮する検討 ケース	燃料集合体相対変位（mm） （NS／EW 包絡）	応答比率を考慮した燃料集合体相対変位 （燃料集合体相対変位×応答比率 （1．11））	確認済相対変位 （mm）	追加検討 ケース*
$\begin{gathered} \text { ケース } 1 \\ (\text { 基本ケース) } \end{gathered}$	47． 7	53.0	60	－
ケース 2	50.5	56.1		－
ケース 3	54.2	60.2		\bigcirc
ケース 4	39.9	44． 3		－
ケース 5	40.6	45.1		－
ケース 6	39.0	43.3		－
ケース 7	48.0	53.3		－

注記＊：応答比率を考慮した燃料集合体相対変位が許容値 60 mm を上回るケースを追加検討ケースとする。

表 3－2－8 追加検討の結果

検討ケース	入力地震動	燃料集合体 相対変位 (mm)	確認済 相対変位 (mm)	影響検討結果
ケース 3	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2$	55.2	60	\bigcirc

（3）耐震計算書との比較
表 3－2－9 に原子炉建屋の設備の補強や追加等の改造工事に伴う重量増加による影響を踏まえた詳細評価及び追加検討による発生値と耐震計算書に記載の発生値 との比較結果を示す。表 3－2－9 のとおり，詳細評価及び追加検討による発生値が当該設備の耐震計算書に記載の発生値を上回った設備は9設備である。
表 3－2－9 詳細評価及び追加検討による発生値と耐震計算書に記載の発生値との比較結果（1／3）

設備名称	評価条件＊${ }^{\text {1 }}$	評価部位	応力分類	$\begin{gathered} \text { 詳細評価による } \\ \text { 発生値 (MPa) *2 } \\ \text { (基準地震動 S s) } \end{gathered}$	耐震計算書に記載の 発生値（MPa）＊2 （基準地震動 S s ）	比較結果＊3
シュラウドサポート	DB	レグ	軸圧縮	204	189	\bigcirc
燃料プール泠却浄化系熱交換器	DB	胴板	一次＋二次応力	667	675	－
			疲労＊${ }^{\text {4 }}$	0.30	0.31	
燃料プール泠却浄化系配管 （FPC－002）	DB	配管本体	一次＋二次応力	426	436	－
			疲労＊${ }^{\text {4 }}$	0． 0025	0． 0034	
原子炉再循環系配管 （PLR－001）	DB	配管本体	一次＋二次応力	626	663	－
			疲労＊${ }^{\text {4 }}$	0． 1868	0． 2091	
原子炉再循環系配管 （PLR－002）	DB	配管本体	一次＋二次応力	629	657	－
			疲労＊${ }^{\text {4 }}$	0． 2701	0． 3181	
$\underset{(\text { MS－001 })}{\underset{\text { 主蒸気系配管 }}{ }}$	DB	配管本体	一次＋二次応力	633	684	－
			疲労＊${ }^{\text {4 }}$	0． 4641	0． 614	
主蒸気系配管$(M S-003)$	DB	配管本体	一次＋二次応力	596	630	－
			疲労＊${ }^{\text {4 }}$	0． 2885	0． 3706	
主蒸気系配管 （MS－004）	SA	配管本体	一次＋二次応力	484	468	\bigcirc
			疲労＊${ }^{\text {4 }}$	0． $9135 * 5$	0． 8529	

注記 $* 1$ ：設計基準対象施設の評価条件を「DB」，重大事故等対処設備の評価条件を「SA」と記載。
＊3：詳細評価による発生値が耐震計算書に記載の発生値を上回る場合「○」を記載。 ＊4：単位は無次元。
＊5：設備の全固有周期に応じた等価繰返し回数の包絡値として，個別に設定する等価繰返し回数 181 回を適用。
表 3－2－9 詳細評価及び追加検討による発生値と耐震計算書に記載の発生値との比較結果（2／3）

設備名称	評価条件＊${ }^{1}$	評価部位	応力分類	詳細評価による 発生値（MPa）＊2 $($ 基準地震動 S s ）	耐震計算書に記載の 発生値（MPa）＊2 （基準地震動 S s ）	比較結果＊3
残留熱除去系熱交換器	DB	胴板	一次＋二次応力	776	783	－
			疲労＊${ }^{\text {4 }}$	0.36	0． 38	－
残留熱除去系配管 （RHR－003）	DB	配管本体	一次＋二次応力	664	680	－
			疲労＊${ }^{\text {4 }}$	0.5066	0.5620	－
残留熱除去系配管 （RHR－004）	DB	配管本体	一次＋二次応力	338	370	－
			疲労＊${ }^{\text {4 }}$	0.0647	0． 0887	
残留熱除去系配管 （RHR－005）	DB	配管本体	一次＋二次応力	623	675	－
			疲労＊${ }^{\text {4 }}$	0.5037	0.6667	
残留熱除去系配管 （RHR－010）	SA	配管本体	一次＋二次応力	406	422	－
$\underset{\text { 原子炉補機冷却水系配管 }}{(\text { KRCW－205）}}$	DB	配管本体	一次＋二次応力	442	440	\bigcirc
制御棒駆動水圧系配管 $($ CRD $-005-1)$	DB	配管本体	一次＋二次応力	292	292	－
制御棒駆動水圧系配管 （CRD－017－3）	DB	配管本体	一次＋二次応力	420	434	－
			疲労＊${ }^{\text {4 }}$	0.7312	0． 8674	
ほう酸水注入系配管 $($ SLC－003）	SA	配管本体	一次＋二次応力	195	211	－
ドライウェルベント開口部	DB	$\begin{aligned} & \text { ドライウェル } \\ & \text { ベント開ロ部 } \end{aligned}$	一次＋二次応力	445	432	\bigcirc
	SA		一次＋二次応力	488	460	

注記 $* 1$ ：設計基準対象施設の評価条件を「DB」，重大事故等対処設備の評価条件を「SA」と記載。
＊2：一次十二次応力の発生値が許容値を上回った場合は，疲労評価を実施する。
＊3：評細評価による発生値が耐震計算書に記載の発生値を上回る場合「○」を記載。
＊ 4 ：単位は無次元。
表 3－2－9 詳細評価及び追加検討による発生値と耐震計算書に記載の発生値との比較結果（3／3）

設備名称	評価条件＊1	評価部位	応力分類	$\begin{gathered} \text { 詳細評価による } \\ \text { 発生値 (MPa) *2 } \\ \text { (基準地震動 S s) } \\ \hline \end{gathered}$	$\begin{gathered} \text { 耐震計算書に記載の } \\ \text { 発生値 (MPa) *2 } \\ \text { (基準地震動 S s) } \\ \hline \end{gathered}$	比較結果＊3
ダウンカマ	DB	$\begin{gathered} \text { エンドプレート } \\ \text { (上側) } \end{gathered}$	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \\ & \hline \end{aligned}$	255	248	\bigcirc
		ベントヘッダ （一般部以外）	一次＋二次応力	530	516	
			疲労＊${ }^{\text {4 }}$	0． 317	0． 284	
	SA	$\begin{gathered} \text { エンドプレート } \\ \text { (上側) } \end{gathered}$	$\begin{aligned} & \text { 一次応力 } \\ & \text { (組合せ) } \\ & \hline \end{aligned}$	261	247	
		ベントヘッダ （一般部以外）	一次＋二次応力	628	592	
			疲労＊${ }^{\text {4 }}$	0． 771	0.547	
ベント管	DB	ベント管 （一般部以外）	一次＋二次応力	382	371	\bigcirc
	SA		一次＋二次応力	444	418	
			疲労＊${ }^{\text {4 }}$	0． 635	0． 489	
可燃性ガス濃度制御系配管 （FCS－006）	DB	配管本体	一次＋二次応力	204＊5	200	\bigcirc
			疲労＊${ }^{\text {4 }}$	0．6142＊5	0.5717	
原子炉格納容器フィルタ ベント系配管 （FCVS－003）	SA	配管本体	一次＋二次応力	294	302	－
			疲労＊${ }^{\text {a }}$	0． 3510	0．3849	
原子炉格納容器フィルタ ベント系配管 （FCVS－004）	SA	配管本体	一次＋二次応力	278	274	\bigcirc
			疲労＊${ }^{4}$	0． 4072	0.3833	
非常用ディーゼル発電設備配管 （DGD0－B008）	DB	配管本体	一次＋二次応力	439	439	－
			疲労＊${ }^{\text {4 }}$	0． 3983	0.4011	
制御棒 （挿入性評価）	DB	－	相対変位＊6	55． $2^{* 7}$	54.2	\bigcirc

注記 $* 1$ ：設計基準対象施設の評価条件を「DB」，重大事故等対処設備の評価条件を「SA」と記載。
＊3：詳細評価による発生値が耐震計算書に記載の発生値を上回る場合「○」を記載。
＊4：単位は無次元
＊5：設備の固有周期に対応する応答比率の包絡値を耐震計算書の値（一次＋二次応力）に乗じた値を適用。
＊6：単位は「mm」。

別紙 6－81

4．検討結果
改造工事に伴う重量増加の影響検討について，補足説明資料「補足－600－43 地震応答 に影響を及ぼす不確かさ要因の整理」に基づき検討を行った。

応答比較の結果，補強反映モデルの応答が今回工認モデルの応答を一部上回る部分が あることから，以下の内容を確認した。
（1）建物•構築物
－材料物性の不確かさ等を考慮した設計用地震力に応答比率を考慮した場合において も，原子炉建屋内の各施設に生じる応答が各許容値を超えないことを確認した。
（2）機器 •配管系
－改造工事に伴う重量増加を反映して作成した補強反映モデルを作成し，基準地震動 S s－D 2 に対する補強反映モデルの応答及び工認モデルの応答の比から応答比率 を算定した。また，算定した応答比率を基準地震動S s に対する工認モデルの応答 に乗じることで補強反映耐震条件を作成した。補強反映耐震条件と工認モデルの応答から作成した耐震計算に用いる耐震条件との条件比率を作成した。
－簡易評価により，条件比率が設備の裕度を上回った 25 設備を検討対象設備の代表 として選定した。
－検討対象設備の代表として選定した 25 設備に対して，補強反映耐震条件を用いた詳細評価を行い，制御棒挿入性評価を除く 24 設備については，発生値が許容値以下 となることを確認した。
－詳細評価において発生値が許容値を上回った制御棒挿入性評価に対する追加検討を行った。追加検討の結果，改造工事に伴う重量増加を反映して作成した地震応答解析モデルを用いて地震応答解析を行い，発生値が許容値以下となることを確認した。

以上の結果から，改造工事に伴う重量増加の影響を考慮しても建物•構築物及び機器•配管系の耐震性が確保されることを確認した。

別紙 6－1 改造工事に伴ら重量増加による建屋一機器連成地震応答解析結果に与える影響
1．概要 別紙6－1－1
2．検討方針 別紙6－1－1
3．検討条件 別紙6－1－1
3.1 補強等に伴ら重量増加 別紙6－1－1
3.2 解析モデル 別紙6－1－9
4．解析結果 別紙 6－1－16

1．概要

本資料は，建屋一機器連成地震応答解析モデルにおいて，補強等の改造工事に伴う質量の増加分を考慮した地震応答解析を実施し，「建屋一機器連成地震応答解析結果」に与える影響について確認するものである。

2．検討方針
添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す工認評価に用いている質点系モデ ル（以下，「工認モデル」という。）では，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書 別紙 原子炉建屋における改造工事に伴う重量増加を反映した地震応答解析」
（以下「地震応答計算書の別紙」という。）の3．2．1項の表3－5に示すとおり，既工認 ＊の質点系モデルからオペフロ耐震補強等，応答性状に影響を与える質量の変更を考慮 している。

本検討では，上述した補強等の質量変更に加え，平成 18 年耐震設計審査指針改定及 び平成 25 年新規制基準施行に伴う安全対策工事等による質量の増加分を考慮したモデ ル（以下，「補強反映モデル」という。）と工認モデルの応答値を比較することにより，質量変更による建屋一機器連成地震応答解析モデルの応答への影響を確認する。

なお，影響検討は別紙6「改造工事に伴う重量増加を反映した検討」と同様に基準地震動 S s－D 2 に対して実施することとする。

注記 $*: ~ 女 川$ 原子力発電所 2 号機
『既工事計画認可申請書 添付資料IV－2－3「原子炉本体の基礎の地震応答計算書」 （元資庁第 2015 号平成元年 6 月 8 日認可）』

『既工事計画認可申請書 添付資料IV－2－2－1「炉心，原子炉圧力容器及び圧力容器内部構造物の地震応答計算書」（3 資庁第10518号平成 4 年 1 月 13 日認可）』

3．検討条件

3.1 補強等に伴う増加質量

補強等に伴う増加質量の総質量は約 4,570 t であり，そのうち建物•構築物の増加質量は約 770 t ，機器•配管系の増加質量は約 3800 t である。原子炉建屋の重量増加 の内訳を表 3－1 に示す。なお，地震応答解析モデルの諸元の変更箇所は原子炉建屋の質点質量及び回転慣性質量並びにと原子炉格納容器，ベント管，原子炉しやへい壁及 び原子炉本体基礎の質点質量のみである。

補強等に伴う増加質量と補強後の変更となる補強反映モデルの原子炉建屋及び大型機器（原子炉本体の基礎等）の振動諸元を表3－2～表3－4に示す。

表 3－1 原子炉建屋の重量増加の内訳

	項目	合計質量（t）
$\begin{aligned} & \text { 建 } \\ & \text { 物 } \\ & \text { 構 } \\ & \text { 笏 } \end{aligned}$	屋上水素ベント飛来物防護対策	774
	屋根トラス補強（サブトラス・母屋）	
	竜巻防護フード	
	フィルタ装置設置に伴ら建屋改造	
	各部の防護扉	
	3 時間耐火要求扉	
$\begin{aligned} & \text { 機 } \\ & \text { 器 } \\ & \text { 配 } \\ & \text { 筞 } \end{aligned}$	サプレッションチェンバの耐震補強	200
	フィルタ装置設置	182
	原子炉格納容器ベント系の耐震補強	85
	原子炉建屋ブローアウトパネル閉止装置設置	51
	燃料交換機の耐震補強	22
	代替循環冷却ポンプ設置	14
	直流駆動低圧注水系ポンプ設置	11
	高圧代替注水系タービンポンプ設置	4
	静的触媒式水素再結合装置設置	3
	その他機器追加重量（電源盤設置等）	811
	その他配管追加重量（原子炉格納容器フィルタベ ント系，低圧代替注水系，高圧代替注水系，燃料 プール代替注水系，代替循環冷却系設置等）	2413

表 3－2（1／2）原子炉建屋の振動諸元（NS 方向）

質点番号＊	$\begin{gathered} \text { 標高 } \\ 0 . \text { P. (m) } \end{gathered}$	工認モデル		質量 増加 （ t ）	補強反映モデル	
		質量（t）	回転慣性質量 $\left(\times 10^{4} \mathrm{t} \cdot \mathrm{~m}\right)$		質量（t）	回転慣性質量 $\left(\times 10^{4} \mathrm{t} \cdot \mathrm{~m}\right)$
1 （1）	－14．100	46599	2306	0	46599	2306
2 （2）	－8． 100	76921	3816	490	77411	3841
3 （3）	1． 150	6957	92	0	6957	92
33 （61）	－0．800	6116	304	67	6183	307
34 （62）	6.000	5440	270	93	5533	274
35 （63）	15.000	4546	225	137	4683	232
36 （64）	22.500	2725	135	114	2839	140
37 （65）	33.200	1765	87	58	1823	90
38 （66）	－0．800	11380	714	99	11479	720
39 （67）	6.000	11993	787	195	12188	800
40 （68）	15.000	10817	710	311	11128	730
41 （69）	22.500	11237	684	294	11531	702
42 （70）	33.200	8368	509	179	8547	520
43 （71）	41.200	1788	31	13	1801	31
44 （72）	50.500	1055	14	81	1136	15
45 （73）	6.000	6311	76	23	6334	76
46 （75）	15.000	9533	115	83	9616	116
48 （76）	22.500	10722	93	72	10794	94
49 （77）	33.200	5964	41	66	6030	42
50 （78）	－0．800	17490	1061	66	17556	1065
51 （79）	6.000	15818	994	157	15975	1004
52 （80）	15.000	13661	858	707	14368	903
53 （81）	22.500	15965	943	538	16503	975
54 （82）	33.200	10365	612	214	10579	625
55 （83）	41.200	1459	25	13	1472	25
56 （84）	50.500	1055	14	75	1130	15
57 （85）	-0.800	7115	352	38	7153	354
58 （86）	6.000	6896	341	41	6937	343
59 （87）	15.000	5179	256	106	5285	261
60 （88）	22.500	5082	251	112	5194	257
61 （89）	33.200	2849	141	24	2873	142

注記 $*: ~$ 括弧内は，炉内構造物モデルの質点を表す。

表 3－2（2／2）大型機器（原子炉本体の基礎等）の振動諸元（NS 方向）

注記 $* 1$ ：本記載以外の構造物の重量変更はない。
＊2：炬内構造物モデルの場合。
＊ 3 ：炉内構造物モデルに対応する質点はない。

表 3－3（1／2）原子炉建屋の振動諸元（EW 方向）

質点番号＊	$\begin{gathered} \text { 標高 } \\ 0 . \text { P. (m) } \end{gathered}$	工認モデル		質量 増加 （t）	補強反映モデル	
		質量（t）	回転慣性質量 $\left(\times 10^{4} \mathrm{t} \cdot \mathrm{~m}\right)$		質量（t）	回転慣性質量 $\left(\times 10^{4} \mathrm{t} \cdot \mathrm{~m}\right)$
1 （1）	－14．100	46599	2744	0	46599	2744
2 （2）	－8．100	76921	4539	490	77411	4568
3 （3）	1． 150	6957	92	0	6957	92
33 （61）	－0．800	5304	312	38	5342	315
34 （62）	6.000	5225	308	50	5275	311
35 （63）	15.000	4389	258	168	4557	268
36 （64）	22.500	4855	286	132	4987	294
37 （65）	33.200	4404	259	161	4565	269
38 （66）	－0．800	15438	1115	81	15519	1121
39 （67）	6.000	15231	1143	147	15378	1154
40 （68）	15.000	13186	989	330	13516	1014
41 （69）	22.500	6633	390	186	6819	401
42 （70）	15.000	819	10	7	826	10
43 （71）	22.500	8090	583	140	8230	594
44 （72）	33.200	8250	561	128	8378	570
45 （73）	41.200	2030	48	26	2056	48
46 （74）	50.500	1055	25	78	1133	27
47 （75）	6.000	6311	76	23	6334	76
48 （76）	15.000	8714	105	76	8790	106
50 （78）	22.500	10722	161	72	10794	162
51 （79）	33.200	5964	72	66	6030	73
52 （80）	-0.800	14985	1091	102	15087	1098
53 （81）	6.000	13359	1012	188	13547	1026
54 （82）	15.000	11897	901	345	12242	927
55 （83）	22.500	12203	924	315	12518	948
56 （84）	33.200	8768	664	157	8925	676
57 （85）	41.200	1217	29	0	1217	29
58 （86）	50.500	1055	25	78	1133	27
59 （87）	－0．800	6374	376	49	6423	379
60 （88）	6.000	6332	374	101	6433	380
61 （89）	15.000	4731	279	418	5149	303
62 （90）	22.500	3228	190	285	3513	207
63 （91）	33.200	1925	113	29	1954	115

注記 $~: ~$ 括弧内は，炉内構造物モデルの質点を表す。

表 3－3（2／2）大型機器（原子炉本体の基礎等）の振動諸元（EW 方向）

注記 $* 1$ ：本記載以外の構造物の重量変更はない。
＊ 2 ：炉内構造物モデルの場合。
＊ 3 ：炉内構造物モデルに対応する質点はない。

表 3－4（1／2）原子炉建屋の振動諸元（UD 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{gathered} \text { 工認 } \\ \text { モデル } \end{gathered}$	質量増加（t）	補強反映 モデル
		質量（t）		質量（t）
1	48.725	1288	45	1333
2	41.200	3247	26	3273
3	33.200	29311	541	29852
4	22.500	48186	1139	49325
5	15.000	43736	1344	45080
6	6.000	46458	509	46967
7	－0． 800	51662	280	51942
8	－8．100	71863.9	471.2	72335.1
9	－14．100	46599	0	46599
10	48.725	333	42	375
11	48.725	326	46	372
12	48.725	163	23	186

表 3－4（2／2）大型機器（原子炉本体の基礎等）の振動諸元（UD 方向）

注記 $* 1$ ：本記載以外の構造物の重量変更はない。
＊ 2 ：炉内構造物モデルの場合。
＊ 3 ：炉内構造物モデルに対応する質点はない。

3.2 解析モデル

大型機器系の地震応答解析モデルを図 3－1に，炉内構造物系の地震応答解析モデ ルを図 3－2に示す。地盤ばね定数は「地震応答計算書の別紙」に記載の値を使用す る。

また，重量増分に伴うせん断及び曲げスケルトン～の影響は軽微であるため工認モ デルの諸元を用いる。

原子炬建屋

K_{6}	ベント管

K_{1}	原子炉格納容器シヤラグ
K_{2}	原子炉格納容器スタビライザ
K_{3}	原子炉圧力容器スタビライザ
K_{4}	燃料交換ベローズ
K_{5}	所員用エアロック
K_{6}	ベント管

子炉圧力容器及び
子炉本体の基礎
$15 \bullet 0 . \mathrm{P}$.

原子炉格納容器

K_{θ}	トラス端部回転拘束ばね
記号	内容
\bullet	質点
1	軸ばね（構造物）
－	はり（屋根トラス部）
σ	回転ばね
ξ	鉛直ばね（地盤）

図 3－1（3／3）大型機器系地震応答解析モデル（UD 方向）

K_{1}	原子炉格納容器スタビライザ
K_{2}	原子炉圧力容器スタビライザ
K_{3}	制御棒駆動機構ハウジング レスレン
K_{4}	シュラウドサポート
K_{5}	上部サポート
K_{6}	下部スタビライザ
K_{7}	炉心シュラウド支持ロッド

図 3－2（1／3）炉内構造物系地震応答解析モデル（NS 方向）

図 3－2（2／3）炉内構造物系地震応答解析モデル（EW 方向）

曷
道

図 3－2（3／3）炉内構造物系地震応答解析モデル（UD 方向）

書䡮时上当
 0．P． 48.725
0．P． 41.200
0．P． 33.200
0．P． 22.500
0．P． 15.000
0．P．$\quad 6.000$
0．P．-0.800
0．P．-8.100
0．P．-14.100

4．解析結果
基準地震動S s－D 2 による最大応答値を表4－1～表4－7に，床応答曲線を表4－8 に示す。

補強反映モデルの最大応答値は，工認モデルの結果と概ね整合することを確認した。

表 4－1（1／5）最大応答加速度（基準地震動 S s－D 2，1．0ZPA，水平方向）

構造物	質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{aligned} & \text { 最大応答加速度 } \\ & \left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0 \end{aligned}$		応答比率 （2）／（1）
			$\begin{aligned} & \text { ①認 } \\ & \text { モデル } \end{aligned}$	（2）補強反映 モデル	
原子炉本体 の基礎	62／64		0.89	0.89	1． 00
	4		0.95	0.95	1． 00
	5		0.99	1.00	1． 02
	6		1． 02	1． 03	1． 01
	7		1． 02	1.04	1.02
$\begin{gathered} \text { 原子炉圧力 } \\ \text { 容器 } \end{gathered}$	8		1． 08	1.08	1． 00
	15		3.23	3.00	0.93
$\begin{gathered} \text { 原子炉 } \\ \text { しゃ~い壁 } \end{gathered}$	16		1． 24	1． 30	1.05
	17		1． 42	1． 49	1.05
	18		1． 49	1． 56	1.05
	19		1． 58	1． 54	0.98
	20		1． 70	1． 63	0.96
原子炉格納容器	21		0.90	0.91	1． 02
	22		0.88	0.89	1． 02
	23		0.84	0． 87	1． 04
	24		1． 10	1． 06	0.97
	25		1． 26	1． 22	0.97
	26		1． 51	1． 52	1.01
	28		1． 73	1． 75	1． 02

注：設備評価に用いる質点（標高）に対する応答比率を記載。

表 4－1（2／5）最大応答加速度（基準地震動 S s－D 2，1．0ZPA，水平方向）

構造物	質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	最大応答加速度$\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0$		応答比率 （2）／（1）
			（1）工認 モデル	（2）補強反映 モデル	
$\begin{gathered} \text { 気水分離器 } \\ \text { トびスタンプン } \\ \text { ドパイブ } \end{gathered}$	37		7.73	7.03	0.91
	36		3.71	3.00	0.81
	35		2.31	2.19	0.95
	34		2.07	2.01	0.98
$\begin{gathered} \text { 炉心シュラ } \\ \text { ウド } \end{gathered}$	33		1． 93	1． 89	0.98
	32		1.83	1． 79	0.98
	31		1． 71	1． 69	0.99
	30		1.58	1.58	1.00
	29		1． 45	1． 50	1． 04
	28		1． 40	1． 44	1.03
	27		1． 37	1． 42	1． 04
	26		1． 33	1． 38	1． 04
	25		1． 22	1． 27	1.05
	51		1． 12	1． 14	1.02
制御棒案内管	53		1.55	1.38	0.90
	45		1． 81	2.98	1． 65
	44		2.35	3.84	1． 64
	52		2.15	1． 91	0.89
制御棒駆動機構ハウジ ング	43		1． 98	1． 91	0.97
	38		1． 12	1． 19	1.07
	39		1． 48	1.56	1． 06
	40		2.30	2.22	0.97
	41		2.90	2.05	0.71
	42		1． 55	1． 27	0.82
燃料集合体	55		1.83	1． 79	0.98
	50		2.68	2.97	1． 11
	49		3.60	4.03	1． 12
	48		4.02	4.32	1． 08
	47		3.74	3.93	1.06
	46		2.75	2.91	1． 06
	54		1.33	1． 38	1． 04

注：設備評価に用いる質点（標高）に対する応答比率を記載。

表 4－1（3／5）最大応答加速度（基準地震動 S s－D 2，1．2ZPA，水平方向）

構造物	質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	最大応答加速度$\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2$		応答比率 （2）／（1）
			（1）工認 モデル	（2）補強反映 モデル	
原子炉本体 の基礎	62／64		1． 07	1． 07	1． 00
	4		1． 13	1． 14	1． 01
	5		1． 19	1． 20	1． 01
	6		1． 22	1． 23	1． 01
	7		1． 23	1． 24	1.01
原子炉圧力	8		1． 29	1． 30	1.01
容器	15		3.88	3.60	0.93
原子炉本体 の基礎	16		1． 48	1． 56	1.06
	17		1． 70	1． 79	1.06
	18		1． 79	1． 87	1． 05
	19		1.90	1.84	0.97
	20		2.04	1.95	0.96
原子炉格納容器	21		1.08	1.09	1.01
	22		1． 06	1． 06	1． 00
	23		1． 01	1． 05	1． 04
	24		1． 32	1． 27	0.97
	25		1． 51	1． 46	0． 97
	26		1.81	1.82	1． 01
	28		2.08	2.09	1.01

注：設備評価に用いる質点（標高）に対する応答比率を記載。

表 4－1（4／5）最大応答加速度（基準地震動 S s－D 2，1．2ZPA，水平方向）

構造物	質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	最大応答加速度		応答比率 （2）／（1）
			（1）工認 モデル	（2）補強反映 モデル	
$\begin{gathered} \text { 炉心シュラ } \\ \text { ウド } \end{gathered}$	37		9.27	8． 44	0.92
	36		4． 45	3.59	0.81
	35		2． 77	2.62	0.95
	34		2． 49	2． 41	0.97
	33		2.31	2． 27	0.99
	32		2． 19	2.15	0.99
	31		2.05	2.03	1． 00
	30		1． 90	1． 89	1． 00
	29		1． 74	1． 80	1． 04
	28		1.68	1． 73	1． 03
	27		1． 64	1． 70	1． 04
	26		1． 60	1． 66	1． 04
	25		1． 46	1． 52	1． 05
	51		1.35	1． 37	1． 02
制御棒案内管	53		1． 86	1． 66	0.90
	45		2.17	3.58	1． 65
	44		2.82	4． 61	1． 64
	52		2.58	2.29	0.89
制御棒駆動機構ハウジ ング	43		2.38	2． 29	0.97
	38		1． 34	1． 43	1． 07
	39		1． 78	1． 87	1.06
	40		2.75	2.67	0.98
	41		3． 48	2． 46	0． 71
	42		1． 86	1． 52	0.82
燃料集合体	55		2.19	2.15	0.99
	50		3.21	3.56	1.11
	49		4.32	4.83	1． 12
	48		4． 82	5.19	1． 08
	47		4． 48	4． 72	1． 06
	46		3.29	3． 49	1． 07
	54		1． 60	1． 66	1． 04

表 4－1（5／5）最大応答加速度（基準地震動 S s－D 2，1．2ZPA，水平方向）

構造物	質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{gathered} \text { 最大応答加速度 } \\ \left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2 \end{gathered}$		応答比率 （2）／（1）
			（1）工認 モデル	（2）補強反映 モデル	
原子炉圧力容器	24		4.08	3.82	0.94
	23		3.36	3.14	0． 94
	22		2.85	2． 75	0.97
	21		2． 47	2． 43	0.99
	20		2.25	2.23	1.00
	19		2.02	2.02	1.00
	18		1． 93	1． 91	0.99
	17		1.88	1.83	0.98
	16		1． 83	1． 74	0.96
	15		1.78	1.68	0.95
	14		1． 72	1． 62	0.95
	13		1． 66	1． 57	0.95
	12		1． 60	1． 51	0.95
	11		1． 53	1． 44	0.95
	10		1． 42	1． 40	0.99
	9		1.35	1． 37	1.02
	8		1． 29	1． 33	1． 04
	38		1．34	1． 43	1． 07

注：設備評価に用いる質点（標高）に対する応答比率を記載。

表 4－2（1／2）せん断力（基準地震動 S s－D 2）

[^2]表 4－2（2／2）せん断力（基準地震動 S s－D 2）

部位	質点番号	標高 0．P． （m）	せん断力（kN）						
			工認モデル			補強反映モデル			比率 （1）／（2）
			NS	EW	（1）包絡値	NS	EW	（2）包絡値	
$\begin{gathered} \text { 炉心 } \\ \text { シュラウ } \\ \text { ド } \end{gathered}$	37	443		603	603	398	548	548	0.91
	36	909		1190	1190	842	1020	1020	0.86
	35	1350		1420	1420	1480	1170	1480	1.05
	34	1690		1820	1820	1910	1420	1910	1.05
	33	2120		2350	2350	2450	1780	2450	1.05
	32	2990		2690	2990	2880	3520	3520	1． 18
	31	2790		2480	2790	2870	3210	3210	1． 16
	30	2520		2650	2650	2940	2660	2940	1． 11
	29	2850		3030	3030	3180	2850	3180	1.05
	28	3110		3350	3350	3390	3060	3390	1.02
	27								
	26	3330		3590	3590	3570	3220	3570	1.00
	26	4810		4330	4810	4930	5150	5150	1.08
	25	4730		4480	4730	4820	5180	5180	1.10
	51								
制御棒案内管	53		688	633	688	1050	693	1050	1． 53
	45		178	170	178	282	188	282	1． 59
	44								
	52		587	546	587	902	597	902	1． 54
制御棒駆動機構 ハウジン グ	43		900	807	900	1320	888	1320	1． 47
	38		454	437	454		447	468	1． 04
	39		261	253	261	273	257	273	1.05
	40				261				
	41		20.5	18.8	20.5	21.2	20.0	21.2	1． 04
	42		255	236	255	264	241	264	1.04
燃料 集合体	55		3180	2750	3180	2820	3520	3520	1． 11
	50								
	49		2240	2020	2240	1990	2510	2510	1． 13
	48		809	783	809	711	885	885	1． 10
	47		832	736	832	745	966	966	1． 17
	46		2230	2020	2230	1990	2510	2510	1.13
	54		3130	2840	3130	2770	3410	3410	1.09

[^3]表 4－3（1／2）曲げモーメント（基準地震動 S s－D 2）

部位	質点番号	標高 0 ．P． （m）	曲げモーメント（kN•m）						
			工認モデル			補強反映モデル			$\begin{gathered} \text { 比率 } \\ \text { ((2)/(1)) } \end{gathered}$
			NS	EW	（1）包絡値	NS	EW	（2）包絡値	
$\begin{aligned} & \text { 原子炉 } \\ & \text { 圧力容器 } \end{aligned}$	15		0	0	0	0	0	0	－
	14		1400	1470	1470	1300	1400	1400	0.96
	13		5400	6120	6120	5500	6090	6090	1.00
	12		12700	14100	14100	12900	14100	14100	1.00
	11		16100	16900	16900	16200	18200	18200	1． 08
	10		27500	27900	27900	27700	30100	30100	1.08
	9		46700	45000	46700	47400	48300	48300	1.04
	8		59500	57500	59500	60600	59800	60600	1． 02
	7		77800	77800	77800	77500	77100	77500	1.00
原子炉本体の基礎	7		199000	195000	199000	197000	195000	197000	0.99
	6		222000	214000	222000	219000	214000	219000	0.99
	5		261000	246000	261000	256000	245000	256000	0.99
	4		321000	298000	321000	314000	298000	314000	0.98
	3		385000	360000	385000	375000	362000	375000	0.98
$\begin{aligned} & \text { 原子炉 } \\ & \text { しゃへい } \end{aligned}$ 壁	20		0	0	0	0	0	0	－
	19		18900	16700	18900	17600	15500	17600	0.94
	18		32200	35300	35300	32200	33000	33000	0.94
	17		50900	53300	53300	52900	51600	52900	1.00
	16		76800	75300	76800	78100	75400	78100	1． 02
	7		122000	121000	122000	121000	121000	121000	1.00
原子炉格納容器	30		0	0	0	0	0	0	－
	29		657	619	657	658	607	658	1.01
	28		1850	1740	1850	1850	1700	1850	1． 00
	27		6160	6210	6210	6190	5890	6190	1． 00
	26		17600	17800	17800	17700	16800	17700	1． 00
	25		124000	129000	129000	126000	128000	128000	1． 00
	24		200000	207000	207000	203000	206000	206000	1.00
	23		332000	343000	343000	338000	341000	341000	1.00
	22		471000	484000	484000	479000	482000	482000	1.00
	21		529000	543000	543000	538000	541000	541000	1． 00
	3		573000	587000	587000	580000	586000	586000	1.00

[^4]表 4－3（2／2）曲げモーメント（基準地震動 S s－D 2）

枠囲みの内容は商業機密の観点から公開できません。

表 4－4（1／5）最大応答加速度（基準地震動 S s－D 2，1．0ZPA，鉛直方向）

構造物	質点番号	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} .(\mathrm{m}) \end{gathered}$	最大応答加速度		応答比率 （2）／（1）
			$\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0$		
			（1）工認 モデル	（2）補強反映 モデル	
原子炉本体 の基礎	14		0.57	0.56	0.99
	15		0.61	0.61	1． 00
	16		0.68	0.68	1． 00
	17		0． 74	0.74	1． 00
	18		0． 77	0． 77	1． 00
原子炉圧力容器	24		0.98	0.98	1． 00
	25		1． 01	1． 01	1． 00
	31		1． 13	1． 15	1． 02
$\begin{gathered} \text { 原子炉 } \\ \text { しゃへい壁 } \end{gathered}$	19		1.08	1． 07	1． 00
	20		1． 28	1． 28	1． 00
	21		1． 44	1． 44	1.00
	22		1． 53	1． 53	1． 00
	23		1． 56	1． 57	1.01
原子炉格納容器	32		0.61	0.62	1． 02
	33		0.65	0.65	1.00
	34		0． 72	0.72	1.00
	35		0.78	0.78	1． 00
	36		0.83	0.82	0.99
	37		0.88	0.89	1． 02
	39		0.93	0.93	1． 00
	41		0.96	0.94	0.98

表 4－4（2／5）最大応答加速度（基準地震動 S s－D 2，1．0ZPA，鉛直方向）

構造物	質点番号	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} .(\mathrm{m}) \end{gathered}$	最大応答加速度		応答比率 （2）／（1）
			（1）工認 モデル	（2）補強反映 モデル	
$\begin{gathered} \text { 炉心シュラ } \\ \text { ウド } \end{gathered}$	55		1.33	1.32	1． 00
	54		1． 33	1． 32	1． 00
	53		1． 32	1． 32	1． 00
	52		1.31	1． 30	1． 00
	51		1． 20	1． 19	1． 00
	50		1． 19	1.18	1.00
	49		1． 17	1． 16	1． 00
	48		1． 15	1． 14	1.00
	47		1． 13	1． 12	1． 00
	46		1． 11	1． 10	1． 00
	45		1． 09	1． 08	1． 00
	44		1． 07	1． 06	1． 00
	43		1． 04	1． 03	1． 00
	42		1． 00	0.99	0.99
	41		0.94	0.94	1． 00
制御棒案内管	64		1． 32	1．31	1． 00
	63		1． 24	1． 23	1． 00
	62		1． 17	1． 15	0.99
	61		1． 06	1． 05	1． 00
制御棒駆動機構ハウジ ング	61		1． 06	1． 05	1． 00
	60		1． 03	1． 02	1． 00
	59		1． 04	1． 03	1． 00
	58		1． 04	1． 03	1． 00
	57		1． 05	1． 04	1． 00
	56		1.06	1.05	1． 00

表 4－4（3／5）最大応答加速度（基準地震動 S s－D 2，1．2ZPA，鉛直方向）

構造物	質点番号	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} .(\mathrm{m}) \end{gathered}$	最大応答加速度		応答比率 （2）／（1）
			$\begin{aligned} & \text { ①認 } \\ & \text { モデル } \end{aligned}$	（2）補強反映 モデル	
原子炉本体 の基礎	14		0.68	0.68	1． 00
	15		0． 74	0.73	0.99
	16		0.81	0.81	1． 00
	17		0.89	0.88	0.99
	18		0.92	0.92	1.00
原子炉圧力容器	24		1． 18	1． 18	1． 00
	25		1． 21	1． 21	1． 00
	31		1． 36	1． 38	1． 02
$\begin{gathered} \text { 原子炉 } \\ \text { しゃ~い壁 } \end{gathered}$	19		1． 29	1． 28	1． 00
	20		1． 54	1． 53	1． 00
	21		1． 73	1． 73	1． 00
	22		1． 84	1． 84	1． 00
	23		1.88	1.88	1． 00
原子炉格納容器	32		0． 73	0． 74	1． 02
	33		0.77	0.78	1． 02
	34		0.86	0.86	1． 00
	35		0.94	0.93	0.99
	36		0.99	0.99	1.00
	37		1． 06	1． 06	1． 00
	39		1． 12	1． 11	1． 00
	41		1． 15	1． 13	0.99

注：設備評価に用いる質点に対する応答比率を記載。

表 4－4（4／5）最大応答加速度（基準地震動 S s－D 2，1．2ZPA，鉛直方向）

構造物	質点番号	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} .(\mathrm{m}) \end{gathered}$	最大応答加速度		応答比率 （2）／（1）
			（1）工認 モデル	（2）補強反映 モデル	
$\begin{gathered} \text { 炉心シュラ } \\ \text { ウド } \end{gathered}$	55		1． 60	1.59	1． 00
	54		1． 60	1． 59	1． 00
	53		1． 59	1.58	1． 00
	52		1． 57	1． 56	1． 00
	51		1． 44	1． 43	1． 00
	50		1． 42	1． 41	1.00
	49		1． 40	1． 39	1． 00
	48		1． 38	1． 37	1.00
	47		1． 36	1． 34	0.99
	46		1． 33	1． 32	1． 00
	45		1． 31	1． 30	1． 00
	44		1． 29	1． 28	1． 00
	43		1． 24	1． 23	1． 00
	42		1． 20	1． 19	1． 00
	41		1． 13	1． 12	1． 00
制御棒案内管	64		1． 58	1． 57	1． 00
	63		1． 49	1． 48	1． 00
	62		1． 40	1． 38	0.99
	61		1． 28	1． 26	0.99
制御棒駆動機構ハウジ ング	61		1． 28	1． 26	0.99
	60		1． 24	1． 23	1． 00
	59		1． 24	1． 23	1.00
	58		1． 25	1． 24	1． 00
	57		1． 26	1． 25	1． 00
	56		1． 27	1． 26	1． 00

枠囲みの内容は商業機密の観点から公開できません。

表 $4-4(5 / 5)$ 最大応答加速度（基準地震動 S s－D 2，1．2ZPA，鉛直方向）

構造物	質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{gathered} \text { 最大応答加速度 } \\ \left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2 \end{gathered}$		応答比率 （2）／（1）
			$\begin{aligned} & \text { ①認 } \\ & \text { モデル } \end{aligned}$	（2）補強反映 モデル	
$\begin{gathered} \text { 原子炉 } \\ \text { 圧力容器 } \end{gathered}$	40		1． 45	1． 44	1.00
	39		1． 45	1． 44	1． 00
	38		1． 43	1． 42	1． 00
	37		1． 39	1． 38	1． 00
	36		1． 36	1.35	1.00
	35		1． 32	1.31	1． 00
	34		1． 29	1． 29	1． 00
	33		1． 28	1． 27	1． 00
	32		1． 27	1． 26	1． 00
	31		1． 25	1． 24	1． 00
	30		1． 23	1． 22	1． 00
	29		1． 22	1． 21	1． 00
	28		1． 20	1． 19	1.00
	27		1． 18	1． 18	1.00
	26		1． 16	1． 15	1． 00
	25		1． 13	1． 12	1． 00
	24		1． 11	1． 10	1． 00

注：設備評価に用いる質点に対する応答比率を記載。

[^5]表 4－5（1／2）軸力（基準地震動 S s－D 2）

表 4－5（2／2）軸力（基準地震動 S s－D 2）

表 4－6 ばね反力，せん断力及び軸力（基準地震動 S s－D 2）

部位	応答種別及び単位	ばね反力，せん断力及び軸力						
		工認モデル			補強反映モデル			$-\begin{gathered} \text { 応答 } \\ \text { 比率 } \\ \text { ((2) / (1) }) \end{gathered}$
		NS	EW	（1）包絡値	NS	EW	（2）包絡値	
$\begin{gathered} \text { 原子炉圧力容器 } \\ \text { スタビライザ } \end{gathered}$	$\begin{gathered} \hline \text { ばね反力 } \\ (\mathrm{kN}) \end{gathered}$	7700	7350	7700	7300	7710	7710	1.01
原子炉格納容器 スタビライザ	ばね反力 （kN）	13300	12800	13300	14300	12300	14300	1.08
原子炉格納容器 シヤラグ	ばね反力 （kN）	24200	25800	25800	25000	25000	25000	0.97
ベント管	ばね反力 （kN）	1630	1820	1820	4600	5160	5160	2.84
燃料交換 ベローズ	ばね反力 （kN）	1660	1500	1660	1580	1380	1580	0.96
$\begin{gathered} \text { 所員用 } \\ \text { エアロック } \end{gathered}$	ばね反力 （kN）	261	281	281	260	281	281	1.00
制御棒駆動機構 $\begin{gathered} \text { ハウジング } \\ \text { レストレント } \\ \text { ビーム } \end{gathered}$	ばね反力 （kN）	350	327	350	360	337	360	1． 03
炉心シュラウド 回転ばね	$\begin{gathered} \hline \text { ばね反力 } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	23800	26000	26000	27200	24900	27200	1.05
上部格子板	せん断力 （kN）	3320	2900	3320	2960	3670	3670	1． 11
炉心支持板	せん断力 （kN）	4110	3750	4110	4110	4410	4410	1.08
上部 サポート	ばね反力 （kN）	1680	1720	1720	1760	1540	1760	1.03
$\begin{gathered} \text { 下部 } \\ \text { スタビライザ } \end{gathered}$	$\begin{gathered} \text { ばね反力 } \\ (\mathrm{kN}) \\ \hline \end{gathered}$	453	441	453	446	428	446	0.99
炉心シュラウド支持ロッド （1体あたり）	$\begin{gathered} \text { 軸力 } \\ (\mathrm{kN}) \end{gathered}$	164	168	168	187	158	187	1． 12

表 4－7 相対変位（基準地震動 S s－D 2）

部位	質点番号	$\begin{gathered} \text { 標高 } \\ \text { O. P. (m) } \end{gathered}$	相対変位（mm）						
			工認モデル			補強反映モデル			$\begin{aligned} & \text { 比率 } \\ & \text { (②/(1)) } \end{aligned}$
			NS	EW	（1）包絡値	NS	EW	（2）包絡値	
燃料集合体	55		0.0	0.0	0.0	0.0	0.0	0.0	－
	50		23.2	20.6	23.2	20.6	25.7	25.7	1． 11
	49		40.1	35.6	40.1	35.5	44.4	44.4	1． 11
	48		46.2	41.2	46． 2	40.9	51.2	51.2	1． 11
	47		40.0	35.8	40.0	35.4	44.2	44.2	1． 11
	46		23.1	20.7	23.1	20.5	25.5	25.5	1． 11
	54		0.0	0.0	0.0	0.0	0.0	0.0	－
				枠囲みの内容は商業機密の観点から公開できません。					

表 4－8（1／2）床応答曲線（基準地震動 S s－D 2）

枠囲みの内容は商業機密の観点から公開できません。

表 4－8（2／2）床応答曲線（基準地震動 S S－D 2）

方向	$\begin{array}{\|l\|l\|} \hline \text { 地震応 } \\ \text { 答解析 } \\ \text { モデル } \end{array}$	構造物	質点番号	$\begin{aligned} & \text { 標高 } \\ & \text { 0. P. } \end{aligned}$(m)	減衰定数	図番	
						床応答曲線	応答比率
鉛直	$\begin{gathered} \text { 大型 } \\ \text { 機器 } \\ \text { 系 } \end{gathered}$	原子炉 しゃへい璧	22		2． 0	図4－3（ $1 / 16$ ）	図 4－4（ $1 / 16$ ）
			21			図4－3（2／16）	図 4－4（ $2 / 16$ ）
			20			図4－3（3／16）	図 4－4（ $3 / 16$ ）
			19			図4－3（4／16）	図4－4（4／16）
		原子炉本体の基礎	18			図4－3（ $5 / 16$ ）	図 4－4（ $5 / 16$ ）
			17			図4－3（ $6 / 16$ ）	図 $4-4(6 / 16)$
			16			図 4－3（ 7／16）	図 4－4（ $7 / 16$ ）
			15			図4－3（8／16）	図 $4-4(8 / 16)$
			14			図 4－3（ 9／16）	図 $4-4(9 / 16)$
		原子炉格納容器	37			図 4－3（10／16）	図 4－4（10／16）
			36			図4－3（11／16）	図 4－4（11／16）
			35			図4－3（12／16）	図 4－4（12／16）
			34			図 4－3（13／16）	図 4－4（13／16）
			33			図 4－3（14／16）	図 $4-4(14 / 16)$
			32			図4－3（15／16）	図 4－4（15／16）
		原子炉圧力容器	24			図 4－3（16／16）	図 4－4（16／16）

図 4－1（1／18）床応答曲線
（基準地震動 S s－D 2，水平方向，原子炉しやへい璧 0．P．\square m）

図 4－1（2／18）床応答曲線
（基準地震動 S s－D 2，水平方向，原子炉しやへい璧 O．P．\square m）

図 4－1（3／18）床応答曲線
（基準地震動 S s－D 2，水平方向，原子炉しやへい璧 O．P．$\square \mathrm{m}$ ）

図 4－1（4／18）床応答曲線
（基準地震動 S s－D 2，水平方向，原子炉しやへい璧 0．P．$\square \mathrm{m}$ ）

図 4－1（5／18）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 0．P． \square

図 4－1（6／18）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

図 4－1（7／18）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 0．P． \square

図 4－1（8／18）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 0．P． \square m）

枠囲みの内容は商業機密の観点から公開できません。

図 4－1（9／18）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 $0 . \mathrm{P}$ 。 \square m）

図 4－1（ $10 / 18$ ）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉格納容器 0．P．$\square \mathrm{m}$ ）

図 4－1（11／18）床応答曲線
（基準地震動 S s－D 2，水平方向，原子炉格納容器 O．P．

図 4－1（12／18）床応答曲線
（基準地震動 S s－D 2，水平方向，原子炉格納容器 0．P．$\square \mathrm{m}$ ）
枠囲みの内容は商業機密の観点から公開できません。

図 4－1（ $13 / 18$ ）床応答曲線
（基準地震動 S s－D 2，水平方向，原子炉格納容器 0．P． \qquad m）

図 4－1（ $14 / 18$ ）床応答曲線
（基準地震動 S s－D 2，水平方向，原子炉格納容器 0．P．$\square \mathrm{m}$ ）

図 4－1（ $15 / 18$ ）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉格納容器 0．P．$\square \mathrm{m}$ ）

図 4－1（ $16 / 18$ ）床応答曲線
（基準地震動 S s－D 2 ，水平方向，原子炬圧力容器 0．P．$\square \mathrm{m}$ ）

枠囲みの内容は商業機密の観点から公開できません。

図 4－1（ $17 / 18$ ）床応答曲線
（基準地震動 S s－D 2，水平方向，炉心支持板 0．P． \square m）

図 4－1（18／18）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉圧力容器底部 $0 . \mathrm{P} . \square \mathrm{m}$ ）

枠囲みの内容は商業機密の観点から公開できません。

図 4－2（1／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炉しやへい璧 0．P．$\square \mathrm{m}$ ）

図 4－2（2／18）応答比率
（基準地震動 S s -D 2 ，水平方向，原子炉しやへい璧 O．P．

図 4－2（3／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炉しゃへい璧 0．P． \square m）

図 4－2（4／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炉しやへい璧 0．P．$\square \mathrm{m}$ ）

図 4－2（5／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炉本体の基礎 0．P． \square m）

図 4－2（6／18）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 0．P． \square m）

図 4－2（7／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

図 4－2（8／18）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 0．P． \square m）

固 有 周 期［s］
図 4－2（9／18）応答比率
（基準地震動 S s -D 2 ，水平方向，原子炉本体の基礎 $0 . \mathrm{P}$ 。

固 有 周 期［s］
図 4－2（ $10 / 18)$ 応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉格納容器 $0 . \mathrm{P} . \square \mathrm{Z}$ ）

図 4－2（11／18）応答比率
（基準地震動 S s -D 2 ，水平方向，原子炉格納容器 0．P。

固 有 周 期［5］
図 4－2（12／18）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉格納容器 0．P．

図 4－2（13／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炉格納容器 0．P． \square m）

図 4－2（14／18）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉格納容器 0．P． \square

図 4－2（ $15 / 18$ ）応答比率
（基準地震動 S s－D 2，水平方向，原子炉格納容器 0．P． \square

固 有 周 期［s］
図 4－2（16／18）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉圧力容器 0．P． \square

図 4－2（17／18）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，炉心支持板 $0 . \mathrm{P}$ ． \square m）

図 4－2（18／18）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉圧力容器底部 0．P．

図 4－3（1／16）床応答曲線
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁 0．P．$\square \mathrm{m}$ ）

図 4－3（2／16）床応答曲線
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁 O．P．$\square \mathrm{m}$ ）

図 4－3（3／16）床応答曲線
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁 O．P． \square m）

図 4－3（4／16）床応答曲線
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁 O．P． \square

図 4－3（5／16）床応答曲線
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

図 4－3（6／16）床応答曲線
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P． \square

枠囲みの内容は商業機密の観点から公開できません。

図 4－3（7／16）床応答曲線
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 O．P． \square

図 4－3（8／16）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向，原子炉本体の基礎 O．P． \square

図 4－3（9／16）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向，原子炉本体の基礎 0．P． \square

図 4－3（10／16）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向，原子炉格納容器 0．P． \square

枠囲みの内容は商業機密の観点から公開できません。

図 4－3（11／16）床応答曲線
（基準地震動 S s -D 2 ，鉛直方向，原子炉格納容器 $0 . \mathrm{P}$ 。

図 4－3（12／16）床応答曲線
（基準地震動 S s -D 2 ，鉛直方向，原子炉格納容器
0．P． \square

図 4－3（13／16）床応答曲線
（基準地震動 S s－D 2 ，鉛直方向，原子炉格納容器 0．P．

図 4－3（14／16）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向，原子炉格納容器 $0 . \mathrm{P} . \square \mathrm{m}$ ）

図 4－3（15／16）床応答曲線
（基準地震動 S s -D 2 ，鉛直方向，原子炉格納容器 0．P．

図 4－3（16／16）床応答曲線
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向，原子炉圧力容器 0．P． \square

図 4－4（1／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁 O．P．

図 4－4（2／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁 0．P．

朹囲みの内容は商業機密の観点から公開できません。

図 4－4（3／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁 0．P．$\square \mathrm{m}$ ）

図 4－4（4／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁 0．P．

朹囲みの内容は商業機密の観点から公開できません。

図 4－4（5／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P．

図 4－4（6／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P．

卆囲みの内容は商業機密の観点から公開できません。

図 4－4（7／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 O．P． \square

図 4－4（8／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

図 4－4（9／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P． \square

図 4－4（10／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉格納容器 0．P．

枠囲みの内容は商業機密の観点から公開できません。

図 4－4（11／16）応答比率
（基準地震動 $\mathrm{S} s-\mathrm{D} 2$ ，鉛直方向，原子炉格納容器 $0 . \mathrm{P}$ 。

図 4－4（12／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉格納容器 0．P．

枠囲みの内容は商業機密の観点から公開できません。

図 4－4（13／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉格納容器 0．P．

図 4－4（14／16）応答比率
（基準地震動 S s -D 2 ，鉛直方向，原子炉格納容器 0．P．

枠囲みの内容は商業機密の観点から公開できません。

図 4－4（15／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉格納容器 0．P．

図 4－4（16／16）応答比率
（基準地震動 S s－D 2 ，鉛直方向，原子炉圧力容器 0．P．
 m）

別紙 7 原子炉建屋内の施設に対する「断層モデルを用いた
手法による地震動」の影響検討

目次

1．はじめに 別紙7－1
2．基準地震動 S s－F 3 について 別紙 7－4
2.1 海洋プレート内地震の検討 別紙 7－4
2.2 断層モデルを用いた手法による地震動評価の概要 別紙7－4
2.3 基準地震動 S s－F 3 の選定 別紙 7－4
3．施設の耐震設計への影響検討 別紙7－8
3.1 施設の耐震設計への影響に係る検討方針 別紙 7－8
3.2 施設の耐震設計への影響検討に用いる F 3 候補波 別紙7－9
3.3 施設の耐震設計への影響検討結果 別紙 7－14
4．まとめ 別紙 7－21

1．はじめに
女川原子力発電所第 2 号機の施設の耐震設計においては，基準地震動 S s に対して，設計上の保守性を考慮した設計用地震力を設定し，耐震重要施設等の安全機能が損なわ れない設計としている。基準地震動 S s の概要を表1－1に，基準地震動 S s の応答スペ クトルを図1－1及び図1－2に示す。

このらち基準地震動S s－F 3（以下「S s－F 3 」という。）は，敷地ごとに震源を特定して策定する地震動のうち海洋プレート内地震の断層モデルを用いた手法による地震動であり，審査ガイドの要求事項を踏まえ，不確かさを考慮した複数の地震動評価結果から選定したものである。

本資料では，Ss－F 3 の選定の代表性を施設の耐震設計への影響の観点から確認す るため，基準地震動として選定しなかった地震動（以下「F3候補波」という。）に対し ても，S s－F 3 を含めた基準地震動 S s による耐震設計により施設の耐震性が確保さ れることを確認する。

表 1－1 女川原子力発電所第 2 号機の基準地震動 S s の概要

基準地震動 S s			備考
敷地ごとに震源を特定 して策定す る地震動	プレート間地震	S s－D 1	応答スペクトルに基づく手法
		S s－F 1	断層モデルを用いた手法
		S s－F 2	断層モデルを用いた手法
	海洋プレート内地震	S s－D 2	応答スペクトルに基づく手法
		S s－D 3	応答スペクトルに基づく手法
		S s－F 3	断層モデルを用いた手法
	内陸地殻内地震	－	上記 S s で包絡
震源を特定せず策定する地震動		S s－N 1	－

図 1－1 基準地震動 S s の応答スペクトル（水平方向）
（添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」抜粋）

図 1－2 基準地震動 S s の応答スペクトル（鉛直方向）
（添付書類「VI－2－1－2 基準地震動S s 及び弾性設計用地震動 S d の策定概要」抜粋）

2．基準地震動 S s－F 3 について
S s－F 3 は，敷地ごとに震源を特定して策定する地震動のうち海洋プレート内地震 の断層モデルを用いた手法による地震動であり，海洋プレート内地震の強震動生成域を海洋性マントル内に設定したケースから，時刻歴波形の主要動の継続時間等の特性を考慮し不確かさケース3を基準地震動として選定したものである＊。

注＊：詳細は，添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」による。
2.1 海洋プレート内地震の検討

地震の発生機構等の違いを踏まえ，地震タイプ別に海洋プレート内地震を想定し，敷地への影響検討を行った上で，最も影響の大きい地震タイプとして，二重深発地震面上面の地震「2011年4月7日宮城県沖型地震」を検討用地震として選定した。
2.2 断層モデルを用いた手法による地震動評価の概要

2011年4月7日宮城県沖型地震の基本ケースは，2011年4月7日宮城県沖の地震 （以下「4．7地震」という。）のシミュレーションモデルを踏まえたものとし，断層 の位置等は敷地への影響を踏まえた上で 4.7 地震の震源位置等にしている。また，地震規模については不確かさをあらかじめ考慮することとし，シミュレーションモデ ルの北側に断層を拡張して地震規模をM7．5としている。

強震動生成域を海洋性マントル内に設定したケースは，基本ケースのほか不確か さケースとして，以下のとおり設定している。
（1）基本ケース（破壊開始点 $1 \sim 3$ ）
（2）不確かさケース 1 （破壊開始点 $1 \sim 3$ ）
4.7 地震の強震動生成域の位置を保守的に断層上端に設定
（3）不確かさケース 3
強震動生成域を集約したケースを海洋性マントル位置で評価
最終的に断層モデルを用いた手法による地震動評価のうち，強震動生成域を海洋性マントル内に設定したケースは計 7 ケースとしている。地震動評価結果を図 $2-1$ 及 び図2－2に示す。

2.3 基準地震動 S s－F 3 の選定

（1）継続時間，位相特性の特徴
海洋プレート内地震（強震動生成域を海洋性マントル内に設定）の断層モデルを用いた手法による地震動評価結果は，内陸地殻内地震と比較すると短周期成分に富 んでいる。不確かさケース 3 は，敷地と強震動生成域との相対的位置関係から，主

要動が最も短い（緻密）という特徴を有している。
（2）継続時間，位相特性の特徴が施設に与える影響
地震動はもともと短周期のフーリエ振幅がばらつく傾向を有しており，地震応答解析における建屋の非線形特性等の影響によつて位相に相対的変化が加わると，短周期成分が重畳し，建屋応答としてもばらつく場合がある。このような短周期側の応答のばらつきは，短周期成分が富み，かつ主要動が短い（緻密）場合，さらに顕著になる傾向にある。

以上より，不確かさケース 3 は，短周期が卓越し，また主要動の継続時間が最も短 いという特徴を有していることから，断層モデルを用いた手法による基準地震動とし て選定し，S s－F 3 としている。本資料においては，S s－F 3 以外のF 3 侯補波を表 2－1 のとおり整理する。

表 2－1 F 3 侯補波一覧表

本資料での呼称		検討ケース
F 3 侯補波	A 波	基本ケース（破壊開始点1）
	B 波	基本ケース（破壊開始点2）
	C 波	基本ケース（破壊開始点3）
	D 波	不確かさケース 1（破壊開始点1）
	E 波	不確かさケース 1（破壊開始点2）
	F 波	不確かさケース 1（破壊開始点3）

図 2－1 海洋プレート内地震の断層モデルを用いた手法による地震動評価結果 （応答スペクトル）

基本ケース（破壊開始点 $1 \sim 3$ ）

——：主要動部
（最大加速度値の 0.5 倍以上）

Ss－F 3 ：不確かさケース 3
図 2－2 海洋プレート内地震（強震動生成域を海洋性マントル内に設定）の断層 モデルを用いた手法による地震動評価結果（時刻歴波形：水平方向）

3．施設の耐震設計への影響検討

3.1 施設の耐震設計への影響に係る検討方針
（1）原子炉建屋内に設置している主要な設備を対象として，F 3 候補波を用いた地震応答解析を行い，それらの地震応答が基準地震動S s による耐震設計の裕度の範囲内にあることを確認する。
（2）影響検討に当たっては，S s－F 3 及び女川原子力発電所の基準地震動 S s の中 で支配的である（最大加速度が大きく， 0.2 秒以下の短周期帯で他の基準地震動 S s を包絡する）基準地震動 S s－D 2 （以下「 S s－D 2 」という。）との関係を踏ま え，F 3 候補波の比較を行い，より施設への影響が大きいと思われる地震波を選定す る。また，F 3 侯補波の比較に当たっては，より施設への入力に近い原子炉建屋基礎版上での地震応答を用いることとし，床応答スペクトル，S s－D 2 に対する応答加速度比＊1及び最大応答加速度を算出する。

なお，機器•配管系の耐震設計に当たつては，設置位置での応答増幅が起きないよ うにできる限り剛側の設計とすることや設置建屋の固有周期と近接しない固有周期 になるように配慮していることから，主要な施設の固有周期帯（ $0.05 \sim 0.24$ 秒）に おける応答加速度比及び最大応答加速度に着目して地震波を選定する。参考として，主要な施設の固有周期を表3－1 に示す。

注記 $* 1$ ：S s－D 2 に対する応答加速度比（F 3 候補波／S s－D 2）を，剛な機器を除く主要な施設の固有周期帯（ 0.05 秒～0．24秒）で平均化した値。 0． 24 秒は原子炉建屋の 1 次固有周期。
（3）影響検討に用いる原子炉建屋の地震応答解析モデルは今回工認モデルを基本とす る。2011 年東北地方太平洋沖地震の観測記録を用いたシミュレーション解析結果＊2 を踏まえると，原子炉建屋の減衰定数は 7% であることが確認されているが，本影響検討では，設計条件と同様に減衰定数を 5% とする。

なお，施設の影響検討において，より詳細な検討を実施する場合には，原子炉建屋 の減衰定数を 7% とする。

注記 $* 2$ ：「補足 620－1 東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法への反映について 別紙 1 東北地方太平洋沖地震等に対する主要建屋のシミュレーション解析」による。

表 3－1 主要な施設の固有周期

機器名称	固有周期（s）
原子炉建屋	0.237 （NS 方向），0．230（EW 方向）
原子炉圧力容器	0.09
燃料集合体	0.229 （NS 方向），0．231（EW 方向）
炉心シュラウド支持ロッド	0.080 （タイプ 1），0．070（タイプ 2）
主蒸気系配管	$0.115 ~ 0.150^{*}$
原子炉再循環系配管	$0.098 ~ 0.135^{*}$
残留熱除去系配管	$0.064 ~ 0.148^{*}$

注記＊：改造工事によって変更となる場合がある。

図 3－1 女川 2 号機における主な施設の固有周期

3.2 施設の耐震設計への影響検討に用いる F 3 候補波

（1）原子炉建屋基礎版上における地震応答
F 3 侯補波（A～Fの 6 波）に対する原子炉建屋基礎版上での地震応答結果として，床応答スペクトル（NS 方向及びEW方向，床応答スペクトルの減衰定数 5% 及び 2% ） を図 3－2～図3－5に，応答加速度比（床応答スペクトルの減衰定数 5% 及び 2% ）及び最大応答加速度の整理結果を表3－2に示す。
（2）影響検討に用いるF 3 候補波
上記（1）の F 3 侯補波（A～Fの 6 波）による地震応答結果の比較により，以下の理由から，A波及び D 波を影響検討に用いることとする。
a．F 3 候補波（A～Fの 6 波）の床応答スペクトルは，いずれも，女川原子力発電所の支配的な基準地震動であるS s－D 2 におおむね包絡されているが，剛 な機器を除く主要施設の固有周期帯（ 0.05 秒～0． 24 秒）では A 波及び D 波が他 のF 3 候補波と比べて大きい傾向にある。
b．剛な機器を除く主要施設の固有周期帯（ 0.05 秒～0． 24 秒）における A 波及び

D 波の応答加速度比は，S s－F 3 の応答加速度比と同等であり，A波及び D 波 を除くF3侯補波の応答加速度比はそれよりも小さい。
c．F 3 候補波（A～Fの 6 波）の最大応答加速度は，いずれもおおむね 500～ 600Gal 程度であり，S s－F 3 の 756Galに比べて有意に小さい。
d．A 波及び D 波を影響検討として選定することは，S s－F 3 の検討段階にお ける基本ケース（3波），不確かさケース1（3波）からそれぞれ選定している ことになり，いずれも短周期成分に富み，主要動の継続時間が短いという S s－ F 3 と同様の特徴を有している。

A 波	E 波
B 波	F 波
C 波	S s－F 3
D 波	S s－D 2

図 3－2 F 3 侯補波の原子炉建屋基礎版上の床応答スペクトル （NS 方向，床応答スペクトルの減衰定数 5% ）

図 3－3 F 3 侯補波の原子炉建屋基礎版上の床応答スペクトル （EW 方向，床応答スペクトルの減衰定数 5\％）

A 波	E 波
B 波	F 波
C 波	S s－F 3
D 波	S s－D 2

図 3－4 F 3 侯補波の原子炉建屋基礎版上の床応答スペクトル （NS 方向，床応答スペクトルの減衰定数 2% ）

図 3－5 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル
（EW 方向，床応答スペクトルの減衰定数 2% ）

表 3－2 F 3 侯補波の原子炉建屋基礎版上での地震応答結果

	F 3 候補波						参考	
	基本ケース			不確かさケース 1			Ss－F3	Ss－D2
	破壊開 始点 1 ［A 波］	破壊開 始点 2 ［B 波］	破壊開 始点 3 ［C 波］	破壊開 始点 1 ［D 波］	破壊開 始点 2 ［E波］	破壊開 始点 3 ［F 波］		
応答加速度比 （床応答スペク トルの減衰定数 $5 \%)^{* 1, * 2}$	0.86	0.74	0． 76	0.85	0． 80	0.79	0.84	1.00
応答加速度比 （床応答スペク トルの減衰定数 2% ）${ }^{* 1, * 2}$	0.93	0.84	0． 84	0.95	0． 90	0.87	0.93	1.00
最大応答加速度（Gal）＊2	625	546	554	605	479	614	756	644

注記＊1：F 3 候補波のS s－D 2 に対する応答加速度比（F 3 候補波／S s－D 2） について，主要施設の固有周期帯（ 0.05 秒 ~ 0.24 秒）で平均化した値 ＊2：NS 方向と EW 方向の大きい方を採用
3.3 施設の耐震設計への影響検討結果
（1）原子炉建屋の地震応答解析
3．2項で選定したA波及びD波を用いた原子炉建屋の地震応答を全体的に把握する ため，

- 原子炉建屋各フロアの最大応答加速度
- 原子炉建屋各フロアの床応答曲線
- 建屋－大型機器連成地震応答解析モデルを用いた解析による地震力 を算定した。

これらを基準地震動 S s による設計用地震力と比較し，耐震設計の裕度の範囲内 にあることにより，施設の耐震性が確保されることを確認する。

本項は，原子炉建屋の減衰定数を 5% とした地震応答解析結果に基づく影響検討結果を基本としている。なお，2011 年東北地方太平洋沖地震の観測記録を用いたシミ ユレーション解析から得られた原子炉建屋の減衰定数を 7% とした地震応答結果は，別紙 7－1 に示す。
（2）影響検討結果
a．原子炉建屋各フロアの最大応答加速度
原子炉建屋各フロアにおける A 波及び D 波による最大応答加速度と添付書類「VI －2－1－7 設計用床応答曲線の作成方針」に示す基準地震動S s による設計用最大応答加速度の比較を表 3－3 及び図3－6に示す。

原子炉建屋各フロアにおける A 波及び D 波による最大応答加速度は，基準地震動 S s による設計用最大応答加速度に収まっていることを確認した。

これにより，各フロアに設置されている剛（固有周期 0.05 秒未満）な設備につい ては，耐震設計の裕度の範囲内にあるものと考えられる。

なお，O．P．15．0mの最大応答加速度は A 波より D 波が大きくなっているが，最大応答値はEW方向の質点 14 で発生しており，この質点は図 3－7に示す 2 次固有振動 モード（ 0.125 秒）で刺激係数が大きくなる傾向がある。図 $3-2$ を見ると D 波は 2次固有振動モード（ 0.125 秒）の周期帯で A 波よりも応答スペクトルが大きくなっ ているため，この周期帯の影響により加速度応答値が大きくなっているものと考え られる。
b．原子炉建屋各フロアの床応答曲線
A 波及び D 波による床応答曲線と添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す基準地震動S s による設計用床応答曲線の比較を図3－8に示す。ここ で，床応答曲線の減衰定数は，耐震裕度の比較的小さい配管系の主要な減衰定数で ある 2.0% を代表として用いる。

A 波及び D 波による床応答曲線は，一部の周期を除き，基準地震動 S s による設

計用床応答曲線におおむね収まっていることを確認した。一部の周期で設計用床応答曲線を上回っているが，原子炉建屋に設置される機器のらち，A 波が卓越する周期（ 0.242 秒）に固有周期を持つ設備はなく，D 波が卓越する周期（ 0.127 秒）に固有周期を持つ設備は配管系のみであり，それらの配管系は十分な耐震裕度を有して おり，ピークが振動モードの全体に影響を及ぼすものではないことから，配管系の耐震性に問題はないものと考える。

なお，より実態に近い応答状態を示す原子炉建屋の減衰定数を 7\％とした地震応答解析結果（別紙 7－1 の図 4－1 参照。）における A 波及びD 波の床応答曲線では，設計用床応答曲線とほぼ同等レベルとなっている。

これにより，各フロアに設置されている剛ではない（固有周期 0.05 秒以上）設備 については，耐震設計の裕度の範囲内にあるものと考えられる。
c．建屋－機器連成地震応答解析モデルの地震応答解析による地震力
建屋－機器連成地震応答解析モデルの地震応答解析から地震荷重を算定する主要 な施設について，A 波及び D 波による地震力と添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す基準地震動S s による設計用地震力の比較を表 3－4 に示す。

主要な施設に対するA波及びD波による地震力は，一部の設備を除き，基準地震動 S s による設計用地震力に収まっていることを確認した。

原子炉圧力容器スタビライザ及び原子炉格納容器スタビライザのばね反力につい ては設計用地震力を上回っていることから，設計条件における評価結果との比較を行った。原子炉圧力容器スタビライザは荷重比 1.12 に対して設計条件の評価にお ける裕度 1.40 ，原子炉格納容器スタビライザは荷重比 1.10 に対して設計条件の評価における裕度 1.19 であり，いずれも裕度の範囲内にあることから評価結果への影響はない（添付資料「VI－2－3－4－2－1 原子炉圧力容器スタビライザの耐震性につ いての計算書」及び「VI－2－3－4－2－2 原子炉格納容器スタビライザの耐震性につい ての計算書」参照）。

なお，より実態に近い応答状態を示す原子炉建屋の減衰定数を 7% とした地震応答解析結果（別紙 7－1 の表 5－1 参照。）における A 波及びD 波による地震力は，設計用地震力に包絡されていることを確認した。

これにより，建屋－大型機器連成地震応答解析モデルを用いた解析から地震荷重 を算定する施設については，耐震設計の裕度の範囲内にあるものと考えられる。

表 3－3 F 3 候補波による最大応答加速度と基準地震動 S s による設計用最大応答加速度 の比較

$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	基準地震動 S s に よる設計用最大応答加速度 $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right)$ （建屋減衰5\％） （a）	F 3 侯 最大 （ $\times 9$ ． （建	こよる 速度 $\mathrm{m} / \mathrm{s}^{2}$ ） $5 \%)$	比率(b/a)	
		A 波	D 波	A 波	D 波
50.5	6.07	5.16	4． 29	0.85	0.71
41． 2	2． 86	2． 70	2.31	0.94	0． 81
33.2	2． 21	2.10	1． 82	0.95	0． 82
22.5	1． 77	1． 58	1． 31	0.89	0.74
15.0	1． 65	1． 22	1.61	0． 74	0.98
6.0	1． 31	0.85	0． 97	0.65	0． 74
－0． 8	1． 12	0． 82	0.83	0.73	0.74
－8．1	0.82	0.65	0.62	0．79	0.76

図 3－6 F 3 侯補波による最大応答加速度と基準地震動 S s による設計用最大応答加速度の比較

固有周期	0． 125	S				
固有振動数	8.01	Hz				
刺激係数	1.925		－1	0	＋1	
R1 R2	R4	S．W．		R10		R11

2 次モード
図 3－7 原子炉建屋の刺激関数図（EW 方向）

図 3－8 F 3 侯補波による床応答曲線と基準地震動 S s による設計用床応答曲線の比較

表 3－4 主要な施設に対するF 3 候補波による地震力と基準地震動 S s による設計用地震力の比較 $(1 / 2)$

機器名	基準地震動 S s による設計用地震力 （建屋減衰5\％） （a）		F 3 侯補波 による地震力 （建屋減衰5\％） （b）		比率（b／a）	
			A 波	D 波	A 波	D 波
原子炉本体 の基礎	せん断力 （kN）	39300	34000	32400	0． 87	0.83
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	428000	366000	361000	0.86	0.85
原子炉圧力容器支持スカート	せん断力 （kN）	11500	11000	10400	0.96	0.91
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	89100	76700	73700	0.87	0.83
$\begin{gathered} \text { 原子炉 } \\ \text { しゃ~い壁 } \end{gathered}$	せん断力 （kN）	17500	16100	15900	0.92	0.91
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	145000	105000	112000	0.73	0.78
原子炉格納容器	せん断力 （kN）	39900	26400	25800	0.67	0.65
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	759000	503000	495000	0.67	0.66
原子炉圧力容器 スタビライザ	ばね反力 （kN）	8250	9240	8650	1． $12 * 1$	1． $05 * 1$
原子炉格納容器 スタビライザ	ばね反力 （kN）	15800	17300	15600	1． $10 * 2$	0.99
原子炉格納容器 シャラグ	ばね反力 （kN）	34100	26900	23700	0． 79	0.70

注記＊1：設計用地震力を超過するが，比率は設計条件での評価における裕度（1．40）の範囲内（添付資料「VI－2－3－4－2－1 原子炉圧力容器スタビライザの耐震性につ いての計算書」参照）
＊2：設計用地震力を超過するが，比率は設計条件での評価における裕度（1．19）の範囲内（添付書類「VI－2－3－4－2－2 原子炉格納容器スタビライザの耐震性につ いての計算書」参照）

表 3－4 主要な施設に対する F 3 侯補波による地震力と基準地震動 S s による設計用地震力の比較 $(2 / 2)$

機器名	基準地震動 S s による設計用地震力 （建屋減衰 5\％） （a）		F 3 侯補波 による地震力 （建屋減衰5\％） （b）		比率（b／a）	
			A 波	D 波	A 波	D 波
シュラウド 下部胴	せん断力 （kN）	6340	4940	3860	0.78	0.61
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	27700	21200	15200	0.77	0.55
燃料集合体	相対変位 （mm）	54.2	41.3	23.4	0.77	0． 44
制御棒案内管	せん断力 （kN）	1320	535	648	0.41	0.50
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	2280	922	1120	0.41	0.50
制御棒駆動機構 ハウジング	せん断力 （kN）	608	519	389	0.86	0.64
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	660	553	432	0.84	0.66
制御棒駆動機構 $\begin{gathered} \text { ハウジング } \\ \text { レストレントビーム } \end{gathered}$	ばね反力 （kN）	473	407	289	0.87	0.62
炉心シュラウド 支持ロッド	軸力（kN）	1360	226	156	0.17	0.12

4．まとめ
女川原子力発電所第 2 号機の耐震設計においては，基準地震動 S s である 7 波（ S s -D 1 ， $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ， $\mathrm{S} \mathrm{s}-\mathrm{D} 3$ ， $\mathrm{S} \mathrm{s}-\mathrm{F} 1$ ， $\mathrm{S} \mathrm{s}-\mathrm{F} 2$ ， $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ， $\mathrm{S} \mathrm{s}-\mathrm{N} 1$ ） に対して設計上の保守性を考慮した設計用地震力を設定し，耐震重要施設等の安全機能 が損なわれない設計を実施している。

本資料では，海洋プレート内地震の断層モデルを用いた手法の検討段階において基準地震動として選定しなかった地震動（F3候補波）に対する地震応答解析を行い，施設の耐震設計への影響を検討した結果，おおむね基準地震動 S s による設計用地震力に包絡 されることを確認した。また，設計用地震力を一部上回る地震応答については，耐震設計及び施設が有する裕度の範囲内にあり，施設の耐震性は確保されることを確認した。

したがって，S s－F 3 の代表性について，施設の耐震設計への影響の観点からも問題はないものと判断した。

別紙 7－1 原子炉建屋の減衰定数を 7% とした場合の地震応答解析結果

1．F 3 候補波の原子炉建屋基礎版上におけるスペクトル

図1－1 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル （NS 方向，床応答スペクトルの減衰定数 5\％）

図1－2 F 3 侯補波の原子炉建屋基礎版上の床応答スペクトル （EW 方向，床応答スペクトルの減衰定数 5\％）

A 波	E波
B 波	F 波
C 波	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~F} 3$
D 波	S s－D 2

図1－3 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル （NS 方向，床応答スペクトルの減衰定数 2% ）

図1－4 F 3 候補波の原子炉建屋基礎版上の床応答スペクトル （EW 方向，床応答スペクトルの減衰定数 2% ）

2．応答加速度比及び最大応答加速度

表 2－1 F 3 侯補波の原子炉建屋基礎版上での地震応答結果

	F 3 侯補波						参考	
	基本ケース			不確かさケース1			Ss－F3	Ss－D2
	破壊開 始点 1 ［A 波］	破壊開 始点2 ［B 波］	破壊開 始点 3 ［C 波］	破壊開 始点 1 ［D 波］	破壊開 始点2 ［E波］	破壊開 始点 3 ［F 波］		
応答加速度比 （床応答スペク トルの減衰定数 5%＊${ }^{1, * 2}$	0.86	0． 74	0． 75	0.85	0．79	0.78	0.83	1.00
応答加速度比 （床応答スペク トルの減衰定数 2% ）${ }^{* 1, * 2}$	0.93	0． 84	0.84	0.94	0.88	0.86	0.91	1.00
最大応答 加速度（Gal）＊2	611	532	546	592	465	606	747	632

注記＊1：F 3 侯補波の S s－D 2 に対する応答加速度比（F 3 候補波／S s－D 2）につ いて，主要施設の固有周期帯（ 0.05 秒～0．24秒）で平均化した値
＊2：NS 方向と EW 方向の大きい方を採用

3．原子炉建屋各フロアの最大応答加速度

表 3－1 F 3 侯補波による最大応答加速度と基準地震動 S s による設計用最大応答加速度の比較

$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	基準地震動 S s に よる設計用最大応答加速度 $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right)$ （建屋減衰 5\％） （a）	$\text { F } 3 \text { 伍 }$ 最大 $(\times 9$ （建	こよる速度 $\mathrm{m} / \mathrm{s}^{2}$ ） $7 \%)$	比率(b/a)	
		A 波	D 波	A 波	D 波
50.5	6.07	4.27	3.58	0.70	0.59
41.2	2.86	2.35	1.95	0.82	0.68
33.2	2.21	2.02	1． 77	0.91	0． 80
22.5	1． 77	1． 24	1． 38	0． 70	0.78
15.0	1． 65	1． 11	1． 49	0.67	0.90
6． 0	1． 31	0.86	0.98	0.66	0.75
－0． 8	1． 12	0． 74	0.83	0.66	0． 74
－8．1	0.82	0.65	0.62	0.79	0.76

図 3－1 F 3 侯補波による床応答曲線と基準地震動 S s による設計用床応答曲線の比較

4．原子炉建屋各フロアの床応答曲線

図 4－1 F 3 候補波による床応答曲線と基準地震動 S s による設計用床応答曲線の比較

5．建屋－大型機器連成地震応答解析モデルの地震応答解析による地震力

表 5－1 主要な施設に対する F 3 候補波による地震力と基準地震動 S s による設計用地震力の比較 $(1 / 2)$

機器名	基準地震動 S s による設計用地震力 （建屋減衰 5\％） （a）		F 3 候補波 による地震力 （建屋減衰7\％） （b）		比率（b／a）	
			A 波	D 波	A 波	D 波
原子炉本体 の基礎	せん断力 （kN）	39300	29700	30700	0.76	0． 79
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	428000	312000	348000	0.73	0． 82
原子炉圧力容器支持スカート	せん断力 （kN）	11500	9680	9830	0.85	0． 86
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	89100	64600	71700	0． 73	0.81
$\begin{gathered} \text { 原子炉 } \\ \text { しゃへい壁 } \end{gathered}$	せん断力 （kN）	17500	13800	15300	0． 79	0． 88
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	145000	94500	108000	0.66	0.75
原子炉格納容器	せん断力 （kN）	39900	24300	24500	0.61	0.62
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	759000	457000	473000	0.61	0.63
原子炉圧力容器 スタビライザ	ばね反力 （kN）	8250	7420	7220	0.90	0.88
原子炉格納容器 スタビライザ	ばね反力 （kN）	15800	14000	13300	0.89	0.85
原子炉格納容器 シヤラグ	ばね反力 （kN）	34100	21400	19200	0.63	0.57

表 5－1 主要な施設に対する F 3 侯補波による地震力と基準地震動 S s による設計用地震力の比較 $(2 / 2)$

機器名	基準地震動 S s による設計用地震力 （建屋減衰 5\％） （a）		F 3 侯補波 による地震力 （建屋減衰 7\％） （b）		比率（b／a）	
			A 波	D 波	A 波	D 波
シュラウド 下部胴	せん断力 （kN）	6340	4710	4360	0.75	0.69
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	27700	18200	19100	0.66	0.69
燃料集合体	相対変位 (mm)	54． 2	34.9	20.6	0.65	0.39
制御棒案内管	せん断力 （kN）	1320	620	638	0.47	0.49
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	2280	1070	1110	0． 47	0.49
制御棒駆動機構 ハウジング	せん断力 （kN）	608	455	308	0.75	0.51
	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	660	484	344	0． 74	0.53
制御棒駆動機構 $\begin{gathered} \text { ハウジング } \\ \text { レストレントビーム } \end{gathered}$	ばね反力 （kN）	473	359	231	0.76	0.49
炉心シュラウド 支持ロッド	軸力（kN）	1360	190	202	0.14	0.15

[^0]: 注記 $* 1$ ：設計基準対象施設の評価条件を「DB」，重大事故等対処設備の評価条件を「SA」と記載。

[^1]: 主記 $* 1$ ：設計基準対象施設の評価条件を「DB」，重大事故等対処設備の評価条件を「SA」と記載。 $*$ 。一次 + 二次応力の発生値が許容値を上回った場合は，疲労評価を実施する。

[^2]: 枠囲みの内容は商業機密の観点から公開できません。

[^3]: 朹囲みの内容は商業機密の観点から公開できません。

[^4]: 枠囲みの内容は商業機密の観点から公開できません。

[^5]: 枠囲みの内容は商業機密の観点から公開できません。

