| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

工事計画に係る説明資料

火災防護設備

（基本設計方針）

2021年12月
東北電力株式会社

8．4．3 火災防護設備の基本設計方針，適用基準及び適用規格
（1）基本設計方針

	変更前	変更後
∞ 1 \vdots 1 1 N		構築物，系統及び機器とする。 火災防護上重要な機器等は，上記構築物，系統及び機器のらち原子炉の高温停止及び低温停止を達成し，維持するために必要な構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器とする。 原子炉の高温停止及び低温停止を達成し，維持するために必要な構築物，系統及び機器は，発電用原子炉施設において火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な以下の機能を確保するための構築物，系統及び機器とする。 （1）原子炉冷却材圧力バウンダリ機能 （2）過剰反応度の印加防止機能 （3）炉心形状の維持機能 （4）原子炉の緊急停止機能 （5）未臨界維持機能 （6）原子炉冷却材圧力バウンダリの過圧防止機能 （7）原子炉停止後の除熱機能 （8）炉心冷却機能 （9）工学的安全施設及び原子炉停止系への作動信号の発生機能 （10）安全上特に重要な関連機能 （11）安全弁及び逃がし弁の吹き止まり機能 （12）事故時のプラント状態の把握機能 （13）制御室外からの安全停止機能 放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器は，発電用原子炉施設において火災が発生した場合に，放射性物質の貯蔵又は

	変更前	変更後
$\begin{aligned} & \infty \\ & \substack{1 \\ \omega \\ \omega \\ \omega \\ \hline} \end{aligned}$		閉じ込め機能を確保するために必要な構築物，系統及び機器とする。 重大事故等対処施設は，火災により重大事故等に対処するために必要な機能が損なわれないよう，重大事故等対処施設を設置する火災区域及び火災区画に対して，火災防護対策を講じる。 建屋等の火災区域は，耐火壁により囲まれ，他の区域と分離されている区域を，火災防護上重要な機器等及び重大事故等対処施設の配置を系統分離も考慮して設定する。 建屋内のらち，火災の影響轾減の対策が必要な原子炉の高温停止及び低温停止を達成し，維持するための安全機能を有する構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ达め機能を有する構築物，系統及び機器 を設置する火災区域は，3時間以上の耐火能力を有する耐火壁として，3時間耐火記設計上必要なコンクリート壁厚である 150 mm 以上の壁厚を有 するコンクリート壁や火災耐久試験により 3 時間以上の耐火能力を有す ることを確認した耐火壁（貫通部シール，防火扉，防火ダンパ）により隣接する他の火災区域と分離するように設定する。 火災区域又は火災区画のファンネルは，煙等流入防止装置の設置によっ て，他の火災区域又は火災区画からの煙の流入を防止する設計とする。屋外の火災区域は，他の区域と分離して火災防護対策を実施するため に，火災防護上重要な機器等を設置する区域及び重大事故等対処施設の配置を考慮するとともに，延焼防止を考慮した管理を踏まえた区域を火災区域として設定する。 この延焼防止を考慮した管理については，保安規定に定めて，管理する。火災区画は，建屋内及び屋外で設定した火災区域を系統分離の状況及び壁の設置状沉並びに重大事故等対処施設と設計基準事故対処設備の配置

変更前	変更後
2．火災の発生防止対策	に応じて分割して設定する。 設定する火災区域及び火災区画に対して，以下に示す火災の発生防止，火災の感知及び消火並びに火災の影響軽減のそれぞれを考慮した火災防護対策を講じる設計とする。 なお，発電用原子炉施設のうち，火災防護上重要な機器等又は重大事故等対処施設に含まれない構築物，系統及び機器は，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」に基づき設備に応じた火災防護対策を講じる設計とする。 発電用原子炉施設の火災防護上重要な機器等は，火災の発生防止，火災 の早期感知及び消火並びに火災の影響軽減の 3 つの深層防護の概念に基 づき，必要な運用管理を含む火災防護対策を講じることを保安規定に定め て，管理する。 重大事故等対処施設は，火災の発生防止，火災の早期感知及び消火の必要な運用管理を含む火災防護対策を講じることを保安規定に定めて，管理 する。 重大事故等対処施設のうち，可搬型重大事故等対処設備に対する火災防護対策についても保安規定に定めて，管理する。 その他の発電用原子炬施設については，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」に基づき設備に応じた火災防護対策を講 じることを保安規定に定めて，管理する。 外部火災については，設計基準対象施設及び重大事故等対処施設を外部火災から防護するための運用等について保安規定に定めて，管理する。 1．1 火災発生防止

変更前	変更後
2.1 発火性，引火性材料の予防措置 2．1．1 設備の対策 （1）潤滑油及び燃料油を内包する設備の対策 潤滑油又は燃料油を内包する設備は，オイルパン，ドレンリム及 び堰による漏えい防止対策を講じるとともに，ポンプの軸受部は溶接構造又はシール構造とする。 配管及びタンクは原則溶接構造とする。 また，安全機能を有する構造物，系統及び機器を設置する火災区域で使用する潤滑油及び燃料油は，必要以上に貯蔵しない。 （2）水素を内包する設備の対策 水素を内包する設備及び機器には，気体廃棄物処理設備及び蓄電池がある。 これらの設備及び機器は，以下に示す漏えい防止及び換気等によ る防爆対策を講じることにより火災の発生を防止する。 a．配管及び機器は原則溶接構造とし，弁は溶接構造，ベローズ弁等の漏えい防止構造とする。 b．溶接構造としている配管設置区域以外は，以下に示すとおり換気により雰囲気中での水素の滞留を防止する。 （a）気体廃棄物処理設備の構成機器を設置する区画は，空調設備	1．1．1 火災の発生防止対策 火災の発生防止における発火性又は引火性物質に対する火災の発生防止対策は，火災区域又は火災区画に設置する潤滑油又は燃料油を内包する設備並びに水素を内包する設備を対象とする。 潤滑油又は燃料油を内包する設備は，溶接構造，シール構造の採用による漏えいの防止及び防爆の対策を講じるとともに，堰等を設置し，漏えいした潤滑油又は燃料油が拡大することを防止する設計 とし，潤滑油又は燃料油を内包する設備の火災により発電用原子炉施設の安全機能及び重大事故等に対処する機能を損なわないよう，壁の設置又は離隔による配置上の考慮を行う設計とする。 潤滑油又は燃料油を内包する設備を設置する火災区域又は火災区画は，空調機器による機械換気又は自然換気を行う設計とする。 潤滑油又は燃料油を貯蔵する設備は，貯蔵量を一定時間の運転に必要な量にとどめる設計とする。 水素を内包する設備のらち気体廃棄物処理系設備及び発電機水素ガス供給設備の配管等は水素の漏えいを考慮した溶接構造とし，弁グランド部から水素の漏えいの可能性のある弁は，ベローズ弁等 を用いて防爆の対策を行う設計とし，水素を内包する設備の火災に より，発電用原子炉施設の安全機能及び重大事故等に対処する機能 を損なわないよう，壁の設置による配置上の考慮を行う設計とす る。 水素を内包する設備である蓄電池，気体廃棄物処理系設備，発電機水素ガス供給設備及び水素ボンべを設置する火災区域又は火災区画は，送風機及び排風機による機械換気を行い，水素濃度を燃焼

	変更前	変更後
$\begin{aligned} & \infty \\ & 1 \\ & \stackrel{1}{\omega} \\ & 0 \\ & \vdots \end{aligned}$	にて換気する。 （b）蓄電池室は，充電中に内部から水素が放出されることから，空調設備で換気する。	限界濃度以下とする設計とする。 水素ボンベは，ボンベ使用時のみ建屋内に持込みを行ら運用とし て保安規定に定めて，管理し，火災区域内に水素の貯蔵機器は設置 しない設計とする。 火災の発生防止における水素漏えい検出は，蓄電池室の上部に水素濃度検出器を設置し，水素の燃焼限界濃度である $4 \mathrm{vol} \%$ の $1 / 4$ に達する前の濃度にて中央制御室に警報を発する設計とする。 気体廃棄物処理系設備内の水素濃度については，水素濃度計によ り中央制御室で常時監視ができる設計とし，水素濃度が上昇した場合には中央制御室に警報を発する設計とする。 発電機水素ガス供給設備は，水素消費量を管理するとともに，発電機内の水素純度，水素圧力を中央制御室で常時監視ができる設計 とし，発電機内の水素純度や水素圧力が低下した場合には中央制御室に警報を発する設計とする。 水素ボンベを使用する火災区域又は火災区画については，ボンベ使用時のみ建屋内に持込みを行う運用として保安規定に定めて，管理し，機械換気により水素濃度を燃焼限界濃度以下とするように設計することから，水素濃度検出器は設置しない設計とする。 蓄電池室の換気設備が停止した場合には，中央制御室に警報を発 する設計とする。また，蓄電池室には，直流開閉装置やインバータ を設置しない。 放射性廃棄物処理設備及び放射性廃棄物貯蔵設備において，崩壊熱が発生し，火災事象に至るような放射性廃棄物を貯蔵しない設計 とする。

変更前	変更後
（3）換気設備の対策 換気設備で使用するチャコールフィルタは，固体廃葉物として処理するまでの間，鋼製容器内に収納し保管する。	また，放射性物質を含んだ使用済イオン交換樹脂，チャコールフ ィルタ及び HEPA フィルタは，固体廃棄物として処理を行うまでの間，金属容器や不燃シートに包んで保管することを保安規定に定め て，管理する。 放射性廃棄物処理設備及び放射性廃棄物貯蔵設備を設置する火災区域又は火災区画の換気設備は，火災時に他の火災区域又は火災区画や環境への放射性物質の放出を防ぐために，換気設備の停止及 び風量調整ダンパの閉止により，隔離ができる設計とする。 火災の発生防止のため，火災区域又は火災区画において有機溶剤 を使用する場合は必要量以上持ち込まない運用として保安規定に定めて，管理するとともに，可燃性の蒸気が滞留するおそれがある場合は，使用する作業場所において，換気，通風，拡散の措置を行 らとともに，建屋の送風機及び排風機による機械換気により滞留を防止する設計とする。 火災区域又は火災区画において，発火性又は引火性物質を内包す る設備は，溶接構造の採用及び機械換気等により，「電気設備に関 する技術基準を定める省令」及び「工場電気設備防爆指針」で要求 される爆発性雰囲気とならない設計とするとともに，当該の設備を設ける火災区域又は火災区画に設置する電気•計装品の必要な箇所 には，接地を施す設計とする。 火災の発生防止のため，可燃性の微粉を発生する設備及び静電気 が溜まるおそれがある設備を火災区域又は火災区画に設置しない ことによって，可燃性の微粉及び静電気による火災の発生を防止す る設計とする。

変更前	
2.2	電気設備の過電流による過熱防止対策
電気系統は，地絡及び短絡に起因する過電流による過熱防止のため，	
過負荷継電器又は過電流継電器等の保護継電装置と遮断器の組合せに	
より故障機器系統の早期遮断を行い，過熱及び焼損の未然防止を図る。	

2.3 不燃性材料，難燃性材料の使用

安全機能を有する構築物，系統及び機器は，以下のとおり不燃性又は難燃性材料を使用する。
（1）構築物は，不燃性である鉄筋コンクリート及び鋼材により構成す る。
（2）機器，配管，ダクト，トレイ，電線管及びこれらの支持構造物は，主要な構造材に不燃性である金属を使用する。

変更後
火災の発生防止のため，発火源への対策として，設備を金属製の筐体内に収納する等，火花が設備外部に出ない設備を設置するとと もに，高温部分を保温材で覆うことによって，可燃性物質との接触防止や潤滑油等可燃物の過熱防止を行ら設計とする。

火災の発生防止のため，発電用原子炉施設内の電気系統は，保護継電器及び遮断器によって故障回路を早期に遮断し，過電流による過熱及び焼損を防止する設計とする。

電気品室は，電源供給のみに使用する設計とする。
火災の発生防止のため，放射線分解により水素が発生する火災区域又は火災区画における，水素の蓄積防止対策として，社団法人火力原子力発電技術協会「BWR 配管における混合ガス（水素•酸素）蓄積防止に関するガイドライン（平成 17 年 10 月）」等に基づき，原子炉の安全性を損なうおそれがある場合には水素の蓄積を防止 する設計とする。

重大事故等時の原子炉格納容器内及び建屋内の水素については，重大事故等対処施設にて，蓄積防止対策を行う設計とする。

1．1．2 不燃性材料又は難燃性材料の使用
火災防護上重要な機器等及び重大事故等対処施設は，不燃性材料又は難燃性材料を使用する設計とし，不燃性材料又は難燃性材料が使用できない場合は，不燃性材料又は難燃性材料と同等以上の性能 を有するもの（以下「代替材料」という。）を使用する設計，若し くは，当該構築物，系統及び機器の機能を確保するために必要な代替材料の使用が技術上困難な場合は，当該構築物，系統及び機器に

変更前	変更後
（3）安全機能を有するケーブルは，実用上可能な限り「IEEE Standard for Type of Class 1E Electric Cables，Field Splices，and Connections for Nuclear Power Generating Stations」（I E E E Stdd383－1974）又は電気学会技術報告 II部第139号 （昭和 57 年 11 月）の垂直トレイ燃焼試験に合格した難燃性ケー ブルを使用する。また，必要に応じ延焼防止塗料を使用する。 （4）建屋内における変圧器は乾式とし，遮断器は実用上可能な限りオ イルレスとする。 （5）安全機能を有する動力盤及び制御盤は，不燃性である鋼製の筐体，塩化ビニル等難燃性の配線ダクト及びテフロン等実用上可能な限り難燃性の電線を使用する。 （6）換気設備のフィルタは，チャコールフィルタを除き難燃性のガラ ス繊維を使用する。 （7）保温材は，不燃性の金属保温並びに難燃性のロックウール，グラ スウール等を使用する。 （8）建屋内装材は，実用上可能な限り不燃性材料及び難燃性材料を使用する。	おける火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設において火災が発生することを防止するための措置を講じる設計とする。 火災防護上重要な機器等及び重大事故等対処施設のうち，機器，配管，ダクト，トレイ，電線管，盤の筐体及びこれらの支持構造物 の主要な構造材は，ステンレス鋼，低合金鋼，炭素鋼等の金属材料又はコンクリート等の不燃性材料を使用する設計とする。 ただし，配管のパッキン類は，その機能を確保するために必要な代替材料の使用が技術上困難であるため，金属で覆われた狭隘部に設置し直接火炎に晒されることのない設計とする。 金属に覆われたポンプ及び弁等の駆動部の潤滑油並びに金属に覆われた機器躯体内部に設置する電気配線は，発火した場合でも他 の火災防護上重要な機器等及び重大事故等対処施設に延焼しない ことから，不燃性材料又は難燃性材料でない材料を使用する設計と する。 火災防護上重要な機器等及び重大事故等対処施設に使用する保温材は，原則，「平成 12 年建設省告示第 1400 号」に定められたも の又は「建築基準法」で不燃性材料として認められたものを使用す る設計とする。 火災防護上重要な機器等及び重大事故等対処施設を設置する建屋の内装材は，「建築基準法」で不燃性材料として認められたもの を使用する設計とする。 ただし，管理区域の床や，原子炉格納容器内の床や壁に使用する耐放射線性のコーティング剤は，不燃性材料であるコンクリート表

変更前	変更後
2.4 落雷，地震等の自然現象による火災発生防止策 原子炉施設内の構築物，系統及び機器は，以下のとおり落雷，地震の自然現象により火災が生じることがないように防護した設計とする。 2．4．1 避雷設備 原子炉施設の避雷設備として，「建築基準法施行令」に従い，原子炉格納施設等に避雷針を設け，落雷による火災発生を防止する。 2．4．2 耐震設計 安全機能を有する構築物，系統及び機器は，「発電用原子炉施設 に関する耐震設計審査指針」の耐震設計上の重要度分類に従った耐震設計を行い，破損又は倒壊を防ぐことにより火災発生を防止す る。	清浄協会））」を満足する難燃性材料を使用する設計とする。 火災防護上重要な機器等及び重大事故等対処施設のうち，屋内の変圧器及び遮断器は，可燃性物質である絶縁油を内包していないも のを使用する設計とする。 1．1．3 自然現象による火災の発生防止 自然現象として，地震，津波，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災及び高潮を考慮する。 これらの自然現象のらち，火災を発生させるおそれのある落雷，地震，竜巻（風（台風）を含む。）及び森林火災について，これら の現象によって火災が発生しないように，以下のとおり火災防護対策を講じる設計とする。 落雷によって，発電用原子炉施設内の構築物，系統及び機器に火災が発生しないよう，避雷設備の設置及び接地網の敷設を行う設計 とする。 火災防護上重要な機器等は，耐震クラスに応じて十分な支持性能 をもつ地盤に設置する設計とするとともに，「実用発電用原子炉及 びその附属施設の技術基準に関する規則の解釈」（平成 25 年 6 月 19日原子力規制委員会）に従い，耐震設計を行ら設計とする。 重大事故等対処施設は，施設の区分に応じて十分な支持性能をも つ地盤に設置する設計とするとともに，「実用発電用原子炉及びそ の附属施設の技術基準に関する規則の解釈」（平成 25年6月19日原子力規制委員会）に従い，耐震設計を行ら設計とする。

| 変更前 |
| :---: | :---: |
| |
| |
| |
| |
| $3 . \quad$ 火災の検知及び消火対策 |
| 安全機能を有する構築物，系統及び機器に使用する材料は，実用上可能 |
| な限り不燃性又は難燃性とし，火災の発生を防止するための予防措置を講 |
| じていることから，火災の可能性は小さいが，万一の場合に備え，火災報 |
| 知設備及び消火設備を設ける。 |

1．2 火災の感知及び消火
火災区域又は火災区画の火災感知設備及び消火設備は，火災防護上重要な機器等及び重大事故等対処施設に対して火災の影響を限定し，早期 の火災感知及び消火を行う設計とする。
火災感知設備及び消火設備は，「1．1．3 自然現象による火災の発生防止」で抽出した自然現象に対して，火災感知及び消火の機能，性能が維持できる設計とする。

火災感知設備及び消火設備については，火災区域及び火災区画に設置 された火災防護上重要な機器等の耐震クラス及び重大事故等対処施設 の区分に応じて，地震に対して機能を維持できる設計とする。

1．2．1 火災感知設備
火災感知設備の火災感知器は，火災区域又は火災区画における放射線，取付面高さ，温度，湿度，空気流等の環境条件，予想される火災の性質を考慮し，火災感知器を設置する火災区域又は火災区画 の火災防護上重要な機器等及び重大事故等対処施設の種類に応じ，火災を早期に感知できるよう，固有の信号を発するアナログ式の煙感知器及びアナログ式の熱感知器の異なる種類の火災感知器を組

変更前	変更後
するに必要な系統及び機器並びにそれらが機能する必要な計測制御系，電源系及び冷却系等の関連系の設置区域に設置する，ただし， これら区域に設置される系統及び機器が火災による悪影響を受け る可能性がない場合等は，火災感知器を設置しない。 3．1．2 火災感知器設置要領 （1）火災感知器は，消防法施行規則に準じて，煙感知器又は熱感知器 を設置する。 （2）火災感知器の電源は，通常時は常用低圧母線から給電するが，交流電源喪失時には，火災受信機の蓄電池から給電することにより， その機能を失わないようにする。 3．1．3 火災受信機設置要領 火災受信機は中央制御室に設置し，火災発生時には警報を発信す るとともに，火災発生区域を表示できるようにする。	み合わせて設置する設計とする。 ただし，発火性又は引火性の雰囲気を形成するおそれのある場所及び屋外等は，環境条件や火災の性質を考慮し，非アナログ式の炎感知器，アナログ式の屋外仕様の熱感知カメラ，非アナログ式の屋外仕様の炎感知器，非アナログ式の防爆型の煙感知器及び非アナロ グ式の防爆型の熱感知器も含めた組み合わせで設置する設計とす る。 火災感知器については，消防法施行規則に従い設置する，又は火災区域内の感知器の網羅性及び火災報知設備の感知器及び発信機 に係る技術上の規格を定める省令に定める感知性能と同等以上の方法により設置する設計とする。 非アナログ式の火災感知器は，環境条件等を考慮することにより誤作動を防止する設計とする。 なお，アナログ式の屋外仕様の熱感知カメラ及び非アナログ式の屋外仕様の炎感知器は，監視範囲に火災の検知に影響を及ぼす死角 がないように設置する設計とする。 また，発火源となるようなものがない火災区域又は火災区画は，可燃物管理により可燃物を持ち込まない運用として保安規定に定 めて，管理することから，火災感知器を設置しない設計とする。 火災感知設備のらち火災受信機盤は中央制御室に設置し，火災感知設備の作動状況を常時監視できる設計とする。また，火災受信機盤は，構成されるアナログ式の受信機により作動した火災感知器を 1 つずつ特定できる設計とする。屋外の海水ポンプ室（補機ポンプ エリア）及びガスタービン発電設備燃料移送ポンプを監視するアナ

	変更前		変更後
			ログ式の屋外仕様の熱感知カメラの火災受信機盤においては，カメ
			ラ機能による映像監視（熱サーモグラフィ）により火災発生箇所の
			特定が可能な設計とする。
			火災感知器は，自動試験機能又は遠隔試験機能により点検ができ
			る設計とする。
			自動試験機能又は遠隔試験機能を持たない火災感知器は，機能に
			異常がないことを確認するため，「消防法施行規則」に準じ，煙等
			の火災を模擬した試験を実施する。
			火災感知設備は，外部電源喪失時又は全交流動力電源喪失時にお
			いても火災の感知が可能となるように蓄電池を設け，電源を確保す
			る設計とする。また，火災防護上重要な機器等及び重大事故等対処
			施設を設置する火災区域又は火災区画の火災感知設備の電源は，非
			常用電源又は常設代替交流電源設備からの受電も可能な設計とす
			火災区域又は火災区画の火災感知設備は，湅結等の自然現象によ
			つても，機能，性能が維持できる設計とする。
			屋外に設置する火災感知設備は，$-14.6^{\circ} \mathrm{C}$ まで気温が低下しても
			使用可能な火災感知設備を設置する設計とする。
			害の影響を受けた場合にも，早期に取替えを行うことにより機能及
			び性能を復旧する設計とする。
3.2	消火設備	1．2．2	2 消火設備
	消火設備は，消火栓設備，二酸化炭素消火設備及び消火器で構成する。		火災防護上重要な機器等及び重大事故等対処施設を設置する火

変更前	変更後
3．2．1 消火設備設置対象区域 （1）火災防護上，以下の区域に消火設備を設置する。 a．原子炉建屋，タービン建屋及び制御建屋等には，すべての区域 の消火活動に対処できるように屋内消火栓を設置する。 b．火災の影響軽減対策として，火災荷重の大きいディーゼル発電機室及びケーブル処理室には，二酸化炭素消火設備を設置する。 c．中央制御室には消火器を設置する。 3．2．2 消火設備の設置要領 消火設備は，「消防法施行令」に準じて設置する。 なお，汚染の可能性のある消火排水が建屋外へ流出するおそれが ある場合には，建屋外に通じる出入口部に堰又はトレンチあるいは床面スロープを設置し，消火排水を床ドレンより液体廃棄物処理設備に導く。 3．2．3 消火用水供給設備 消火检への消火用水供給設備は，消火水槽（第1，2号機共用（以下同じ。）），消火ポンプ（第1，2号機共用（以下同じ。））及び消火系配管等で構成する。消火用水は，消火ポンプで建屋内外に布設さ れた消火系配管に導かれ，必要箇所に送水される。また，消火ポン プ故障時には，中央制御室に警報を発信する。 3.3 消火設備の破損，誤作動又は誤操作対策 消火設備は，以下のとおり破損，誤作動又は誤操作によって安全機能 を有する構築物，系統及び機器の安全機能を喪失しないようにする。 （1）消火設備は，安全機能を有する構築物，系統及び機器に対し，地震に伴ら波及的影響を及ぼさないようにする。	災区域又は火災区画の消火設備は，破損，誤作動又は誤操作が起き た場合においても，原子炉を安全に停止させるための機能又は重大事故等に対処するために必要な機能を有する電気及び機械設備に影響を与えない設計とし，火災発生時の煙の充満又は放射線の影響 により消火活動が困難となるところは，自動消火設備又は手動操作 による固定式消火設備であるハロンガス消火設備及びケーブルト レイ消火設備を設置して消火を行ら設計とする。 火災発生時の煙の充満又は放射線の影響により消火活動が困難 とならないところは，消火器，移動式消火設備又は消火栓により消火を行ら設計とする。 なお，消火設備の破損，誤作動又は誤操作に伴ら溢水による安全機能及び重大事故等に対処する機能への影響については，浸水防護設備の基本設計方針にて確認する。 原子炉格納容器は，運転中は窒素に置換され火災は発生せず，内部に設置された火災防護上重要な機器等が火災により機能を損な うおそれはないことから，原子炉起動中並びに低温停止中の状態に対して措置を講じる設計とし，消火については，消火器又は消火栓 を用いた消火ができる設計とする。火災の早期消火を図るために原子炉格納容器内の消火活動の手順を定めて，自衛消防隊（運転員，初期消火要員）の訓練を実施する。 なお，原子炉格納容器内において火災が発生した場合，原子炉格納容器の空間体積（約 $7650 \mathrm{~m}^{3}$ ）に対してパージ用排風機の容量が約 $24000 \mathrm{~m}^{3} / \mathrm{h}$ であることから，煙が充満しないため，消火活動が可能 であることから，消火器又は消火栓を用いた消火ができる設計とす

（2）ディーゼル発電機は，二酸化炭素消火設備の誤動作又は誤操作に より，ディーゼル機関内の燃焼が阻害されることがないよう，ディ ーゼル機関に外気を直接吸気し，室外い排気する。

変更後

る。
中央制御室は，消火器で消火を行ら設計とし，中央制御室制御盤内の火災については，電気機器への影響がない二酸化炭素消火器で消火を行ら設計とする。また，中央制御室床下ケーブルピットにつ いては，自動消火設備であるハロンガス消火設備（局所）を設置す る設計とする。

トーラス室において火災が発生した場合，トーラス室の空間体積 （約 $11000 \mathrm{~m}^{3}$ ）に対して換気風量の容量が約 $21600 \mathrm{~m}^{3} / \mathrm{h}$ であることか ら，煙が充満しないため，消火活動が可能であることから，消火器 を用いた消火ができる設計とする。
火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の消火設備は，以下の設計を行う。
（1）消火設備の消火剤の容量
a．消火設備の消火剤は，想定される火災の性質に応じた十分な容量を確保するため，「消防法施行規則」及び試験結果に基づく容量を配備する設計とする。
b．消火用水供給系は， 2 時間の最大放水量を確保する設計とす る。
c．屋内，屋外の消火栓は，「消防法施行令」に基づく容量を確保 する設計とする。
（2）消火設備の系統構成
a．消火用水供給系の多重性又は多様性
屋内水消火系の水源は，消火水槽（第 1,2 号機共用（以下同 じ。）），消火水タンクを設置し，屋外水消火系は，屋外消火系

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\stackrel{1}{0}} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$		消火水タンクを 2 基設置し多重性を有する設計とする。 屋内水消火系の消火ポンプは，電動機駆動消火ポンプ（第 1 ， 2 号機共用（以下同じ。））を 2 台設置し，多重性を有する設計 とする。 屋外水消火系の消火ポンプは，屋外消火系電動機駆動消火ポン プ，屋外消火系ディーゼル駆動消火ポンプを設置し，多様性を有 する設計とする。 屋外消火系ディーゼル駆動消火ポンプの駆動用燃料は，屋外消火系ディーゼル駆動消火ポンプに付属する燃料タンクに貯蔵す る。 b．系統分離に応じた独立性 原子炉の高温停止及び低温停止を達成し，維持するために必要 な構築物，系統及び機器の相互の系統分離を行らために設けられ た火災区域又は火災区画に設置されるハロンガス消火設備及び ケーブルトレイ消火設備は，以下に示すとおり，系統分離に応じ た独立性を備えた設計とする。 （a）動的機器である選択弁は多重化する。 （b）容器弁及びボンベを必要数より 1 つ以上多く設置する。 重大事故等対処施設は，重大事故に対処する機能と設計基準事故対処設備の安全機能が単一の火災によって同時に機能喪失しないよう，区分分離や位置的分散を図る設計とする。 重大事故等対処施設のある火災区域又は火災区画，及び設計基準事故対処設備のある火災区域又は火災区画に設置するハ ロンガス消火設備は，上記の区分分離や位置的分散に応じた独

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{\infty}{山} \\ & \stackrel{1}{\infty} \\ & \frac{1}{\infty} \end{aligned}$		立性を備えた設計とする。 c．消火用水の優先供給 消火用水供給系は，飲料水系や所内用水系等と共用する場合に は，隔離弁を設置して遮断する措置により，消火用水の供給を優先する設計とする。 （3）消火設備の電源碓保 屋内水消火系の電動機駆動消火ポンプは，外部電源喪失時でも起動できるように非常用電源から受電する設計とする。 屋外水消火系のらち屋外消火系ディーゼル駆動消火ポンプは，外部電源喪失時にもディーゼル機関を起動できるように蓄電池を設 け，電源を碓保する設計とする。 ハロンガス消火設備は，外部電源喪失時にも消火ができるよう に，非常用電源から受電するとともに，設備の作動に必要な電源を供給する蓄電池も設け，全交流動力電源喪失時にも電源を確保する設計とする。 ケーブルトレイ消火設備については，作動に電源が不要な設計と する。 （4）消火設備の配置上の考慮 a．火災による二次的影響の考慮 ハロンガス消火設備（全域）のボンベ及び制御盤は，火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない よう消火対象となる機器が設置されている火災区域又は火災区画と別の区画に設置する設計とする。 また，ハロンガス消火設備（全域）は，電気絶縁性の高いガス

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{\infty}{4} \\ & \stackrel{1}{0} \\ & \stackrel{1}{6} \end{aligned}$		を採用し，火災の火炎，熱による直接的な影響のみならず，煙，流出流体，断線及び爆発等の二次的影響が，火災が発生していな い火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とする。 ハロンガス消火設備（局所）及びケーブルトレイ消火設備は，電気絶縁性の高いガスを採用するとともに，ケーブルトレイ消火設備及び電源盤用のハロンガス消火設備（局所）については，ケ ーブルトレイ内又は電源盤周囲の隔壁内に消火剂を留める設計 とする。 また，消火対象と十分離れた位置にボンベ及び制御盤を設置す ることで，火災の火炎，熱による直接的な影響のみならず，煙，流出流体，断線及び爆発等の二次的影響が，火災が発生していな い火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とする。 消火設備のボンベは，火災による熱の影響を受けても破損及び爆発が発生しないよう，ボンベに接続する安全弁によりボンベの過圧を防止する設計とする。 また，防火ダンパを設け，煙の二次的影響が火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とす る。 b．管理区域からの放出消火剤の流出防止 管理区域内で放出した消火剤は，放射性物質を含むおそれがあ ることから，管理区域外への流出を防止するため，管理区域と非管理区域の境界に堰等を設置するとともに，各フロアの建屋内排

変更前	変更後
3.4 自然現象に対する火災報知設備及び消火設備の性能維持 火災報知設備及び消火設備の耐震重要度分類はC クラスとする。ま た，屋外消火栓は凍結防止構造とする。さらに，消火設備を内蔵する建屋，構築物等は，台風に対し消火設備の性能が著しく阻害されないよう建築基準法施行令等に基づき設計する。	水系により液体廃棄物処理設備に回収し，処理する設計とする。 c．消火栓の配置 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画に設置する屋内，屋外の消火检は，「消防法施行令」に準拠し，全ての火災区域又は火災区画の消火活動に対処できるように配置する設計とする。 （5）消火設備の警報 a．消火設備の故障警報 電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケ ーブルトレイ消火設備は，電源断等の故障警報を中央制御室に発 する設計とする。 b．ハロンガス消火設備の職員退避警報 固定式消火設備であるハロンガス消火設備は，作動前に職員等 の退出ができるように警報又は音声警報を発する設計とする。 ケーブルトレイ消火設備は，消火剤に毒性がなく，消火時に生成されるフッ化水素は延焼防止シートを設置したケーブルトレ イ内に留まり，外部に有意な影響を及ぼさないため，消火設備作動前に退避警報を発しない設計とする。 （6）消火設備に対する自然現象の考慮 a．凍結防止対策 屋外消火設備の配管は，保温材により配管内部の水が湅結しな い設計とする。 屋外消火栓は，凍結を防止するため，自動排水機構により消火

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\omega} \\ & \stackrel{1}{0} \\ & \stackrel{u}{u} \end{aligned}$		栓内部に水が溜まらないような構造とする設計とする。 b．風水害対策 消火用水供給系の消火設備を構成する電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケーブルトレイ消火設備は，風水害に対してその性能が著しく阻害されることのないよう，建屋内に設置する設計とする。 c．地盤変位対策 地震時における地盤変位対策として，水消火配管のレイアウ ト，配管支持長さからフレキシビリティを考慮した配置とするこ とで，地盤変位による変形を配管系統全体で吸収する設計とす る。 さらに，屋外消火配管が破断した場合でも移動式消火設備を用 いて屋内消火栓へ消火用水の供給ができるよう，建屋に給水接続口を設置する設計とする。 （7）その他 a．移動式消火設備 移動式消火設備は，恒設の消火設備の代替として消火ホース等 の資機材を備え付けている化学消防自動車を 2 台及び泡原液搬送車を 1 台配備する設計とする。 b．消火用の照明器具 建屋内の消火栓，消火設備現場盤の設置場所及び設置場所まで の経路には，移動及び消火設備の操作を行らため，消防法で要求 される消火継続時間 20 分に現場への移動等の時間も考慮し，8

変更前	変更後
4．火災の影響軽減対策 原子炉の施設内のいかなる場所の想定火災に対しても，その火災により原子炉に外乱が及び，かつ，原子炉保護設備又は工学的安全施設作動設備 の作動を要求される場合に，動的機器の単一故障を想定しでも，原子炉を高温停止できるように，また，低温停止に必要な系統及び機器は，その安全機能を失わず，低温停止できるように，以下に示す火災の影響軽減対策 を実施する。 4． 1 耐火壁による軽減対策 （1）原子炉の安全確保に必要な設備を設置している原子炉建屋及び制御建屋に隣接するタービン建屋で火災が発生しても，原子炉建屋及び制御建屋に影響を及ぼさないように，原子炉建屋及び制御建屋 とタービン建屋の境界の壁は，2 時間の耐火能力を有する耐火壁 （以下「耐火壁」という。）とする。 （2）燃料油の漏えい油火災を想定する補機を設置するディーゼル発電機室（ディーゼル制御盤室も含む）は，それぞれトレン別に二つ の区域に分け，互いの区域及び周囲の区域に火災の影響を及ぼさな	設計とする。 1．3 火災の影響軽減 1．3．1 火災の影響軽減対策 火災の影響軽減対策の設計に当たり，発電用原子炉施設において火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な火災防護対象機器及び火災防護対象ケーブ ルを火災防護対象機器等とする。 火災が発生しても原子炉の高温停止及び低温停止を達成し，維持 するためには，プロセスを監視しながら原子炉を停止し，冷却を行 うことが必要であり，このためには，手動操作に期待してでも原子炉の高温停止及び低温停止を達成し，維持するために必要な機能を少なくとも 1 つ確保するように系統分離対策を講じる必要がある。 このため，火災防護対象機器等に対して，以下に示す火災の影響軽減対策を講じる設計とする。 （1）火災防護対象機器等の系統分離による影響軽減対策中央制御室及び原子炉格納容器を除く火災防護対象機器等は，原則として安全系区分 I と安全系区分II，IIIを境界とし，以下のいず れかの系統分離によって，火災の影響を軽減するための対策を講じ る。 a． 3 時間以上の耐火能力を有する隔壁等 互いに相違する系列の火災防護対象機器等は，火災耐久試験に より 3 時間以上の耐火能力を確認した隔壁等で分離する設計と する。

変更前	変更後
いようにそれぞれを耐火壁で囲む。 （3）耐火壁の貫通口は耐火シールを施工し，換気設備のダクトには防火ダンパ，出入口には防火戸を設置し，耐火壁効果を減少させない ようにする。 4．2 固定式消火設備による軽減対策 火災荷重の大きいディーゼル発電機室には，二酸化炭素消火設備を設置する。	b． 6 m 以上離隔，火災感知設備及び自動消火設備 互いに相違する系列の火災防護対象機器等は，仮置きするもの を含めて可燃性物質のない水平距離 6 m 以上の離隔距離を確保す る設計とする。 火災感知設備は，自動消火設備を作動させるために設置し，自動消火設備の誤作動防止を考慮した火災感知器の作動信号によ り自動消火設備を作動させる設計とする。 c． 1 時間耐火隔壁等，火災感知設備及び自動消火設備 互いに相違する系列の火災防護対象機器等は，火災耐久試験に より1時間以上の耐火能力を確認した隔壁等で分離する設計と する。 また，火災感知設備及び消火設備は，上記 b．と同様の設計と する。 （2）中央制御室の火災の影響軽減対策 a．中央制御室制御盤内の火災の影響軽減 中央制御室制御盤内の火災防護対象機器等は，以下に示すとお り，実証試験結果に基づく離隔距離等による分離対策，高感度煙検出設備の設置による早期の火災感知及び常駐する運転員によ る早期の消火活動に加え，火災により中央制御室制御盤の 1 つ の区画の安全機能が全て喪失しても，他の区画の制御盤は機能が維持されることを確認することにより，原子炉の高温停止及び低温停止の達成，維持ができることを確認し，上記（1）と同等の火災の影響軽減対策を講じる設計とする。 離隔距離等による分離として，中央制御室制御盤については，

変更前	変更後
4.3 その他の軽減対策 （1）中央制御室で煙が発生した場合には，中央制御室空調設備で排煙 できるようにする。	c．原子炉格納容器内の消火については，運転員及び初期消火要員 による消火器又は消火栓を用いた速やかな消火活動により消火 ができる設計とする。 起動中又は停止過程の空気環境において，原子炉格納容器内が広範囲な火災となり原子炉格納容器内への入域が困難な場合に は，原子炉格納容器内を密閉状態とし内部の窒息消火を行ら設計 とする。 なお，原子炉格納容器内点検終了後から窒素置換完了までの間 で原子炉格納容器内の火災が発生した場合には，火災による延焼防止の観点から窒素封入作業の継続による窒息消火又は窒素封入作業を中止し，早期の消火活動を実施する。 （4）換気設備に対する火災の影響軽減対策 火災防護上重要な機器等を設置する火災区域又は火災区画に設置する換気設備には，他の火災区域又は火災区画の境界となる箇所 に 3 時間耐火性能を有する防火ダンパを設置する設計とする。 換気設備のフィルタは，チャコールフィルタを除き難燃性のもの を使用する設計とする。 （5）火災発生時の煙に対する火災の影響軽減対策 運転員が常駐する中央制御室には，火災発生時の煙を排気するた め，「建築基準法」に準拠した容量の排煙設備を設置する設計とす る。 火災防護上重要な機器等を設置する火災区域又は火災区画のう ち，電気ケーブルや引火性液体が密集する火災区域又は火災区画に ついては，ハロンガス消火設備による早期の消火により火災発生時

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{1}{4} \\ & \stackrel{1}{1} \\ & \stackrel{1}{6} \end{aligned}$	（2）油タンクには，火災に起因した爆発を防ぐためにベント管を設 け，屋外に排気できるようにする。	の煙の発生が抑制されることから，煙の排気は不要である。 （6）油タンクに対する火災の影響軽減対策 火災区域又は火災区画に設置される油タンクは，換気空調設備に よる排気又はベント管により屋外に排気する設計とする。 （7）ケーブル処理室に対する火災の影響軽減対策 ケーブル処理室のケーブルトレイ間は，互いに相違する系列間を水平方向 0.9 m ，垂直方向 1.5 m の最小離隔距離を確保する設計とす る。最小分離距離を確保できない場合は，隔壁等で分離する設計と する。 1．3．2 原子炉の安全確保 （1）原子炉の安全停止対策 a．火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失を想定した設計 発電用原子炉施設内の火災によって，安全保護系及び原子炉停止系の作動が要求される場合には，当該火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失を想定しても，火災の影響軽減のための系統分離対策によって，多重化されたそれぞれの系統が同時に機能を失 うことなく，原子炉の高温停止及び低温停止が達成できる設計と する。 b．設計基準事故等に対処するための機器に単一故障を想定した設計 発電用原子炬施設内の火災によって運転時の異常な過渡変化

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\omega} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \omega \\ & \omega \end{aligned}$		又は設計基準事故が発生した場合に，「発電用軽水型原子炉施設 の安全評価に関する審査指針」に基づき，運転時の異常な過渡変化又は設計基準事故に対処するための機器に単一故障を想定し ても，制御盤間の離隔距離，盤内の延焼防止対策又は現場操作に よって，多重化されたそれぞれの系統が同時に機能を失うことな く，原子炉の高温停止及び低温停止を達成できる設計とする。 （2）火災の影響評価 a．火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失を想定した設計 に対する評価 設備等の設置状況を踏まえた可燃性物質の量等を基に想定さ れる発電用原子炉施設内の火災によって，安全保護系及び原子炉停止系の作動が要求される場合には，火災による影響を考慮して も，多重化されたそれぞれの系統が同時に機能を失うことなく，原子炉の高温停止及び低温停止を達成し，維持できることを，以下に示す火災影響評価により確認する。 （a）隣接する火災区域又は火災区画に影響を与えない場合当該火災区域又は火災区画に設置される不燃性材料で構成 される構築物，系統及び機器を除く全機器の機能喪失を想定し ても，原子炉の高温停止及び低温停止の達成，維持が可能であ ることを確認する。 （b）隣接する火災区域又は火災区画に影響を与える場合当該火災区域又は火災区画と隣接火災区域又は火災区画の 2 区画内の火災防護対象機器等の有無の組み合わせに応じて，

変更前	変更後
5．設備の共用 屋内水消火系の電動機駆動消火ポンプ及び消火水槽は，第 1 号機と共用するが，各号機に必要な容量を碓保するとともに，接続部の弁を閉操作 することにより隔離できる設計とすることで，共用により安全性を損なわ ない設計とする。	火災区域又は火災区画内に設置される不燃性材料で構成され る構築物，系統及び機器を除く全機器の機能霛失を想定して も，原子炉の高温停止及び低温停止の達成，維持が可能である ことを確認する。 b．設計基準事故等に対処するための機器に単一故障を想定した設計に対する評価 内部火災により原子炉に外乱が及び，かつ，安全保護系及び原子炉停止系の作動が要求される運転時の異常な過渡変化又は設計基準事故が発生する可能性があるため，「発電用軽水型原子炉施設の安全評価に関する審査指針」に基づき，運転時の異常な過渡変化又は設計基準事故に対処するための機器に対し単一故障 を想定しても，多重化されたそれぞれの系統が同時に機能を失う ことなく，原子炉の高温停止及び低温停止を達成できることを火災影響評価により確認する。 1.4 設備の共用 屋内水消火系の電動機駆動消火ポンプ及び消火水槽は，第 1 号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作することにより隔離できる設計とすることで，共用により安全性を損なわない設計とする。
6．主要対象設備 火災防護設備の対象となる主要な設備について，「表 1 火災防護設備 の主要設備リスト」に示す。	2．主要対象設備 火災防護設備の対象となる主要な設備について，「表1 火災防護設備 の主要設備リスト」に示す。

表1 火災防護設備の主要設備リスト $(1 / 69)$

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト $(2 / 69)$

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（3／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（4／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（5／69）

O 2 （6）II R 4

表1火災防謢設備の主要設備リスト（6／69）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基淮対象施設＊＊		重大事故等対処設備＊${ }^{*}$		名称	設計基淮対象施設＊11		重大事故等対処設備＊${ }^{* 1)}$			
			$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要 } \\ & \text { 分類 } \\ & \hline \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス			
$\begin{aligned} & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 分 } \\ & \text { 労 } \\ & \text { 栄 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－
				－					ハロン 1301 貯蔵容器～IA•SA 空気圧縮機（A）（B）室	C－2	クラス 3	－	－	
				－					B2F 東側通路分岐点～B2F 東側通路	C－2	クラス 3	－	－	
		$$	容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
		$\begin{aligned} & \text { 室 } \\ & \text { 消 } \\ & \text { 炎 } \\ & \hline \text { 系 } \\ & \hline \end{aligned}$	主配管	－					ハロン 1301 貯蔵容器～CRD ポンプ室	C－2	クラス 3	－	－	
		$\begin{aligned} & \text { M } \\ & \text { U } \\ & \text { W } \end{aligned}$	容器	－					ハロン 1301 貯蔵容器＊5	－	－	－	－	
		$\begin{aligned} & \text { 消ンフ } \\ & \text { 奚室 } \end{aligned}$	主配管	－					ハロン 1301 貯蔵容器～MUWC ポンプ室＊5	－	－	－	－	

表1 火災防謢設備の主要設備リスト $(7 / 69)$

$\begin{aligned} & \text { 醹 } \\ & \text { 分 } \end{aligned}$			機器区分	変更前					変更後					
			名称	設計基漼対象施設＊＊		重大事故等対処設储 ${ }^{11}$		名称	設計基淮詨象施設＊1		重大事故等対処設備＊1）			
			$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{array}{\|c\|c} \hline \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{array}$		機器クラス	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { 㕣 } \\ & \text { 贫 } \\ & \text { 染 } \\ & \text { 㴰 } \\ & \text { 設 } \\ & \text { 綗 } \end{aligned}$			容器	－					ハロン 1301 貯蔵容器	c－2	クラス3	－	－
				－					ハロン 1301 貯蔵容器～排風機室	C－2	クラス3	－	－	
				－					B1F 西側通路分皮点 \sim B1F 西側通路	C－2	クラス3	－	－	
				－					B2F 西側通路分咬点 \sim B2F 西側通路	C－2	クラス3	－	－	
				－					$1 F$ 西側通路分吱点 $\sim 1 F$ 西側通路	C－2	クラス3	－	－	
			容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－	

O 2 （6）II R 4

表1 火災防謢設備の主要設備リスト（8／69）

O 2 （6）II R 4

表1 火災防謢設備の主要設備リスト $9 / 69$ ）

	番森称		機器区分	変更前					変更後					
				設計基潅対象施設＊＊				名称	設計基漼詨象湤設＊1		重大事故等対処設備＊）			
			名称	$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 而震 } \\ \text { 要分類 } \end{array}$	機器クラス	設備分類	重大事故等機器クラス		
				容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－
				主配管	－					ハロン 1301 貯蔵容器～区分 I 非常用電気品室	C－2	クラス3	－	－
		$\begin{aligned} & \mathrm{D} \\ & \hline \mathrm{G} \end{aligned}$	容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
		室	主配管	－					ヘロン 1301 眝蔵容器～D／G 補機（ $($ ）室	C－2	クラス3	－	－	
				－					ディーゼル発電機（B）室分岐点～ディー ゼル発電機（B）室	C－2	クラス3	－	－	
		$\begin{aligned} & \text { 聜 } \\ & \widehat{R} \end{aligned}$		－					ディーゼル発電機（A）室分岐点～ディー ゼル発電機（A）室	c－2	クラス3	－	－	
		$\begin{aligned} & \text { 聜 } \\ & \text { 洸 } \\ & \text { 采 } \end{aligned}$		－					D / G 補機 (A) 室分岐点 $\sim D / G$ 補機 (A) 室	C－2	クラス3	－	－	
		B	容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
		$\begin{aligned} & \text { 消秷 } \\ & \text { 炎采 } \\ & \hline \end{aligned}$	主配管	－					ハロン 1301 貯蔵容器～B1F ハッチ室	C－2	クラス3	－	－	
			容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
			主配管	－					ハロン 1301 貯蔵容器～区分IIHPCS 電気品室	C－2	クラス3	－	－	

O 2 （6）II R 4

表 1 火災防護設備の主要設備リスト $(10 / 69)$

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト $(11 / 69)$

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（12／69）

O 2 （6）II R 4

表 1 火災防護設備の主要設備リスト（13／69）

$\begin{aligned} & \infty \\ & \stackrel{1}{\wedge} \\ & \stackrel{1}{\omega} \\ & \stackrel{1}{\perp} \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
				名称	設計基漼対象施設＊＊		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設備＊${ }^{*}{ }^{\text {a }}$			
				$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス			
		$\begin{aligned} & \text { 㕣 } \\ & \text { 爫 } \\ & \text { 学 } \\ & \text { 洸 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－
				主配管	－					ハロン 1301 貯蔵容器～DC125V バッテリ （A）-1 室	C－2	クラス 3	－	－	
					－					250 V 直流主母線盤室分岐点～250V 直流主母線盤室	C－2	クラス 3	－	－	
			$\begin{aligned} & \text { バD } \\ & \text { 学 } \mathrm{C} \end{aligned}$	容器	－					ハロン 1301 貯蔵容器＊5	－	－	－	－	
			$\begin{array}{r} \text { 䇌 } \\ \text { 䇣 } \end{array}$	主配管	－					$\text { (ハロン } 1301 \text { 貯蔵容器~DC250V バッテリ }$	－	－	－	－	
			$\widehat{C l}_{\widehat{\mathrm{B}} \text { 測 }}$	容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
	消		$\begin{aligned} & \text { 消御 } \\ & \text { 霫 } \end{aligned}$	主配管	－					ハロン 1301 貯蔵容器～計測制御電源 （B）室	C－2	クラス 3	－	－	
	設 備		$\begin{aligned} & \text { D 代 } \\ & C \text { 替 } \end{aligned}$	容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
				主配管	－					ハロン 1301 貯蔵容器～DC125V バッテリ （B）室	C－2	クラス 3	－	－	
					－					125 V 代替充電器盤室分岐点～125V 代替充電器盤室	C－2	クラス 3	－	－	
			$\widehat{\text { B }} \text { 鎜 }$		－					RSS 盤室分岐点～RSS 盤室	C－2	クラス 3	－	－	
			$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 系 } \end{aligned}$		－					DC125V バッテリ（A）室分岐点～DC125V バッテリ（A）室	C－2	クラス 3	－	－	
				容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
				主配管	－					ハロン 1301 貯蔵容器～常用•共通 M／C• P／C 室	C－2	クラス 3	－	－	

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（14／69）

	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基淮対象施設＊1		重大事故等対処設備＊1 ${ }^{\text {＊}}$		名称	設計基漼対象施設＊${ }^{\text {＊}}$		重大事故等対処設備＊1）			
			$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { 㕣 } \\ & \text { 齐 } \\ & \text { 学 } \\ & \text { 洸 } \\ & \text { 設 } \\ & \text { 犕 } \end{aligned}$	$\begin{array}{r} \text { 計 } \\ \text { 測 } \\ \text { 室制 } \\ \text { 消 } \\ \text { 監 } \\ \text { 系源 } \\ \underbrace{A} \end{array}$		容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－
			主配管	－					ハロン 1301 貯蔵容器～計測制御電源 （A）室	C－2	クラス 3	－	－	
			容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
		$\begin{aligned} & \text { 呈北 } \\ & \text { 測 } \\ & \text { 消篽 } \\ & \hline \end{aligned}$	主配管	－					ハロン 1301 貯蔵容器～T．S（計測制御電源（B）室北）	C－2	クラス 3	－	－	
		$\text { 北 }{ }^{\text {T }}$	容器		－				ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
		$\begin{array}{r} \text { 系更 } \\ \text { 荎 } \end{array}$	主配管		－				ハロン 1301 貯蔵容器～T．S（更衣室北）	C－2	クラス 3	－	－	
		$\text { 消衣 }{ }^{\text {T }}$	容器		－				ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
		$\text { 炎美西 } \frac{S}{\text { S }}$	主配管		－				ハロン 1301 貯蔵容器～T．S（更衣室西）	C－2	クラス 3	－	－	
		$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	容器		－				ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
		II	主配管	－					ハロン 1301 貯蔵容器～常用系ケーブル処理室	C－2	クラス 3	－	－	
		$$		－					区分 I ケーブル処理室分岐点 1～区分 I ケーブル処理室	C－2	クラス 3	－	－	
		$\begin{aligned} & \text { 処 } \\ & \text { 现 } \end{aligned}$		－					区分 I ケーブル処理室分岐点 2～区分 I ケーブル処理室	C－2	クラス 3	－	－	
		$\begin{aligned} & \text { 消 } \\ & \text { 系 } \end{aligned}$		－					区分 II ケーブル処理室分岐点～区分 II ケーブル処理室	C－2	クラス 3	－	－	

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト $(15 / 69)$

$\begin{array}{\|l\|l\|} \hline \text { 矍 } \\ \text { 分 } \end{array}$			機器区分	変更前					変更後					
				設計甚准対象施設＊1		重大事故等対处設犕＊${ }^{*}$		名称	設計基鹳效象施設＊1		重大事故等対处設備＊）			
			名称	$\begin{aligned} & \text { 耐震 } \\ & \text { 重要 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故等 } \\ & \text { 機器 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { 耐震 } \\ \text { 重度 } \\ \hline \text { 分類 } \\ \hline \end{array}$	機器クラス	設備分類	重大事故等機器クラス		
消 $\substack{\text { 設 } \\ \text { 備 }}$	$\begin{aligned} & \text { 㕣 } \\ & \text { 齐 } \\ & \text { 浮 } \\ & \text { 菼 } \\ & \text { 備 } \end{aligned}$			容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－
				主配管	－					ヘロン 1301 貯蔵容器～区分IIIケーブル处理室	C－2	クラス3	－	－
		$\begin{aligned} & \text { 僣 D } \end{aligned}$	容器	－					ヘロン 1301 眝蔵容器＊5	－	－	－	－	
			主配管	－					ハロン 1301 貯蔵容器～DC125V 代替バッ テリ室＊5	－	－	－	－	
		ブ．	容器		－				ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
			主配管		－				ハロン 1301 貯蔵容器～T．S（区分IIケー ブル処理室北）	C－2	クラス3	－	－	
			容器		－				ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
		$\begin{gathered} \text { 肖 } \\ \text { 絲区 } \\ \stackrel{\text { 分 }}{ } \end{gathered}$	主配管		－				ハロン 1301 貯蔵容器～PCPS 区分 I エリ ァ	C－2	クラス3	－	－	
			容器		－				ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
		$\begin{gathered} \text { 肖 } \\ \text { 絲貧 } \\ \text { II } \end{gathered}$	主配管		－				ハロン 1301 貯蔵容器～PCPS 区分IIエリ ァ	C－2	クラス3	－	－	
		P ¢ ¢ P P	容器		－				ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
		$\begin{gathered} \text { 熋 } \mathrm{s} \\ \text { 蒝分 } \\ \text { III } \end{gathered}$	主配管		－				ハロン 1301 貯蔵容器～PCPS 区分IIIエリ ァ	C－2	クラス3	－	－	

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（16／69）

表1 火災防護設備の主要設備リスト（ $17 / 69$ ）

表1 火災防護設備の主要設備リスト（18／69）

O 2 （6）II R 4

表1 火災防萲設備の主要設備リスト（19／69）

表1 火災防護設備の主要設備リスト（20／69）

表1 火災防護設備の主要設備リスト（ $21 / 69$ ）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト $(22 / 69)$

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（23／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（24／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト $(25 / 69)$

表1 火災防護設備の主要設備リスト（ $26 / 69$ ）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト $(27 / 69)$

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（28／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（29／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（30／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（31／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（32／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（33／69）

表1 火災防護設備の主要設備リスト（34／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（35／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（36／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（37／69）

表1 火災防護設備の主要設備リスト（38／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（39／69）

表1 火災防護設備の主要設備リスト（40／69）

表1 火災防護設備の主要設備リスト（41／69）

表1 火災防護設備の主要設備リスト（42／69）

表1 火災防護設備の主要設備リスト（43／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（44／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（45／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト $(46 / 69)$

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（47／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト $(48 / 69)$

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（49／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（50／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（51／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（52／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（53／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（54／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（ $55 / 69$ ）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（56／69）

表1 火災防護設備の主要設備リスト（57／69）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
				名称	設計基漼対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1）			
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス			
$\begin{aligned} & \infty \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { r } \\ & 1 \\ & \text { ブ } \\ & \text { ル } \\ & \text { ト } \\ & \text { K } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	主配管							FK－5－1－12 貯蔵容器（P700（5），P610 （2），P602（2）用）～ケーブルトレイ（P700 （5），P610（2），P602（2））	C－2	クラス 3	－	－	
											FK－5－1－12 貯蔵容器（K601，P600，P601 用） ～ケーブルトレイ（K601，P600，P601）	C－2	クラス 3	－	－
						－				FK－5－1－12 貯蔵容器（S601（2）用）～ケーブ ルトレイ（S601（2））	C－2	クラス 3	－	－	
						－				FK－5－1－12 貯蔵容器（K702（4），K706 （4），P701（4） 用）～ケーブルトレイ（K702 （4），K706（4），P701（4）	C－2	クラス 3	－	－	
						－				FK－5－1－12 貯蔵容器（P700（4），P610 （1），P602（1）用）～ケーブルトレイ（P700 （4），P610（1），P602（1）	C－2	クラス 3	－	－	
						－				FK－5－1－12 貯蔵容器（P201（6）用）～ケーブ ルトレイ（P201⑥）	C－2	クラス 3	－	－	
						－				FK－5－1－12 貯蔵容器（K702（1），K706 （1），P701（1）用）～ケーブルトレイ（K702 （1），K706（1），P701（1）	C－2	クラス 3	－	－	
						－				FK－5－1－12 貯蔵容器（P700 ① ，P500 （1），P501①）用）～ケーブルトレイ（P700 （1），P500（1），P501（1）	C－2	クラス 3	－	－	
						－				FK－5－1－12 貯蔵容器（K702（2），K706 （2），P701（2）用）～ケーブルトレイ（K702 （2），K706（2），P701（2）	C－2	クラス 3	－	－	
						－				FK－5－1－12 貯蔵容器（P700（2），P500 （2），P501（2）用）～ケーブルトレイ（P700 （2），P500（2），P501（2））	C－2	クラス 3	－	－	

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（58／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（59／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（ $60 / 69$ ）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（61／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（62／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（63／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（64／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（65／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（66／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（67／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（68／69）

O 2 （6）II R 4

表1 火災防護設備の主要設備リスト（69／69）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$		$\begin{aligned} & \text { 奚 } \\ & \text { 氍 } \\ & \text { } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基漼対象施設＊1		重大事故等対処設備＊${ }^{\text {¹ }}$		名称	設計基淮対象施設＊${ }^{\text {² }}$		重大事故等対処設備＊${ }^{*}$ ）	
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$		$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { イ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$	主配管	－					FK－5－1－12 貯蔵容器（C401（2）用）～ケーブ ルトレイ（C401（2）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（S603 用）～ケーブル トレイ（S603）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（P603（3）用）～ケーブ ルトレイ（P603（3）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（P401（2）用）～ケーブ ルトレ	C－2	クラス 3	－	－

注記 $* 1$ ：表1に用いる略語の定義は「原子炉本体」の「8 原子炬本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表 1」による。
$\stackrel{\text { 注記 } * 2 \text { ：重大事故等対処設備を防護する火災区域構造物及び火災区画構造物である。 }}{ }$
注記 $* 3$ ：消火設備における消火系ポンプのらち，ポンプを示す。
注記 $* 4$ ：消火設備における消火系ポンプのらち，原動機を示す
注記 $\boldsymbol{*} 5$ ：常設耐震重要重大事故防止設備•常設重大事故緩和設備を防護する消火設備である。
（2）適用基準及び適用規格

変
第1章 共通項目 火災防護設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。 なお，以下に示す火災防護設備に適用する共通項目の基準及び規格を適用する個別の施設区分については，「表 1．施設共通の適用基準及び適用規格（該当施設）」に示す。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第5号）

第1章 共通項目
火災防護設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。

なお，以下に示す火災防護設備に適用する共通項目の基準及び規格を適用する個別の施設区分については，「表 1．施設共通の適用基準及び適用規格（該当施設）」に示す。
－発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号）
－実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈 （平成 25 年 6 月 19 日原規技発第 1306194 号）
－実用発電用原子炉及びその附属施設の火災防護に係る審査基準（平成 25年6月19日原規技発第1306195号）
－発電用軽水型原子炉施設の火災防護に関する審査指針（平成 19 年 12 月 27日原子力安全委員会一部改訂）

- J I S A 4201－1992 建築物等の避雷設備（避雷針）
- J I S A 4 201 －2003 建築物等の雷保護
- 原子力発電所の火災防護規程（J E A C 4 6 2 6－2010）
- 原子力発電所の火災防護指針（J E A G 4 607－2010）

上記の他「原子力発電所の内部火災影響評価ガイド」を参照する。

表1．施設共通の適用基準及び適用規格（該当施設）

変更前	変更後
第2章 個別項目 火災防護設備に適用する個別項目の基準及び規格は以下のとおり。 －建築基準法（昭和 25 年 5 月 24 日法律第 201 号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） －消防法（昭和 23 年 7 月 24 日法律第 186 号） 消防法施行令（昭和 36 年 3 月 25 日政令第 37 号） 消防法施行規則（昭和 36 年 4 月 1 日自治省令第 6 号）	第2章 個別項目 火災防護設備に適用する個別項目の基準及び規格は以下のとおり。 －建築基準法（昭和 25 年 5 月 24 日法律第 201 号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） －高圧ガス保安法（昭和 26 年 6 月 7 日法律第 204 号） 高圧ガス保安法施行令（平成9年2月19日政令第20号） －消防法（昭和 23 年 7 月 24 日法律第 186 号） 消防法施行令（昭和 36 年 3 月 25 日政令第 37 号） 消防法施行規則（昭和 36 年 4 月 1 日自治省令第 6 号） 危険物の規制に関する政令（昭和 34 年 9 月 26 日政令第 306 号） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第 2 号） －平成 12 年建設省告示第 1400 号（平成 16 年 9 月 29 日国土交通省告示第 1178 号による改定） －発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成21年3月9日原子力安全委員会一部改訂） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 13 年 3 月 29日原子力安全委員会一部改訂） - J I S L 1 0 9 1－1999 繊維製品の燃焼性試験方法 - J SME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 －原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 601 •補－1984）

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{1}{1} \\ & \stackrel{1}{\omega} \\ & \stackrel{1}{\circ} \end{aligned}$	－I E E E S t d 3 8 3－1974 垂直トレイ燃焼試験	- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 公益社団法人日本空気清浄協会 空気清浄装置用ろ材燃焼性試験方法指針（J A C A No． 11 A－2003） －独立行政法人産業安全研究所技術指針 工場電気設備防爆指針（ガス蒸気防爆 2006） - I E E E S t d 383－1974 垂直トレイ燃焼試験 - I EEE S t d 1202－1991 垂直トレイ燃焼試験 - UL1581（Fourth Edition） 1080 ．VW－1 垂直燃焼試験 －社団法人電池工業会 蓄電池室に関する設計指針（SBA G 0603－ 2001） －＂Fire Dynamics Tools（FDTs）：Quantitative Fire Hazard Analysis Methods for the U．S．Nuclear Regulatory Commission Fire Protection Inspection Program，＂NUREG－1805，December 2004

