| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

補足－620－4 制御建屋の地震応答計算書に関する補足説明資料

1．工事計画添付書類に係る補足説明資料
添付書類「VI－2－2－3 制御建屋の地震応答計算書」の記載内容を補足するための資料 を以下に示す。

別紙1 制御建屋に対する平成23年（2011年）東北地方太平洋沖地震等の影響別紙 1－1 制御建屋の東北地方太平洋沖地震等に対する構造的影響評価（点検結果）
別紙 1－2 東北地方太平洋沖地震等に対する制御建屋のシミュレーション解析別紙 1－2－1 制御建屋の追設地震計による地震観測記録を用いた建屋モデルの検討別紙1－3 3 次元 FEM 等価線形モデルによるシミュレーション解析（制御建屋）別紙 1－3－1 3 次元 FEM 等価線形モデルによるシミュレーション解析と点検結果の比較（制御建屋）
別紙2 制御建屋の地震応答解析における既工認と今回工認の解析モデル及び手法の比較
－－別紙 2－1 制御建屋の床ばねの算定について

別紙4 制御建屋の地震応答解析における材料物性の不確かさに関する検討
別紙 4－1 材料物性の不確かさを考慮した検討に用いる地震動の選定について
別紙 4－2 材料物性の不確かさを考慮した地震応答解析結果

ーーーー・•本日の説明範囲

別紙2－1 制御建屋の地震応答解析モデルの床ばねの算定について
1．床ばね 別紙 2－1－1
1．1 床ばねの算定方法及び算定結果 別紙 2－1－1
1.2 床ばねの応答結果 別紙 2－1－2

1．床ばね
1．1 床ばねの算定方法及び算定結果
床ばねは，床のせん断剛性として，各質点ブロックの図心間の床スラブを，等価な せん断ばねに置換して評価する。

床ばね算定の基本式は次式による。また，床ばねの算定結果を表 $1-1$ に示す。

$$
\mathrm{K}=\frac{\mathrm{GA}_{\mathrm{S}}}{\kappa \cdot \ell}
$$

$$
\begin{aligned}
& \mathrm{K} \text { : 床ばね (} \mathrm{kN} / \mathrm{m} \text {) } \\
& \mathrm{A}_{\mathrm{S}} \text { : 床スラブのせん断断面積 (} \mathrm{m}^{2} \text {) } \\
& \text { G: せん断弾性係数 (} \left.1.16 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}\right) \\
& \text { l : スパン (m) } \\
& \kappa \text { : せん断変形形状係数 (1.0とする) }
\end{aligned}
$$

制御建屋の床スラブは全て厚さが 30 cm で一様なため，床ばね評価部位の床の内法幅と内法長さから床スラブのせん断断面積を評価する。

表 1－1（1）制御建屋 床ばね算定結果（NS 方向）

方向	階	部位	ばね値 $\left(\times 10^{5} \mathrm{kN} / \mathrm{m}\right)$
NS	屋上	CF 一屋根中央	70.00
		屋根中央 -CA	70.00
	3 階	$\mathrm{CF}-\mathrm{CA}$	35.00
	2 階	$\mathrm{CF}-\mathrm{CA}$	35.01
	1 階	$\mathrm{CF}-\mathrm{CA}$	35.02
	地下 1 階	$\mathrm{CF}-\mathrm{CA}$	35.03

表1－1（2）制御建屋 床ばね算定結果（EW 方向）

方向	階	部位	ばね値 $\left(\times 10^{5} \mathrm{kN} / \mathrm{m}\right)$
EW	屋上	$\mathrm{C} 1-$ 屋根中央	66.56
		屋根中央 -C 7	66.56
	3 階	$\mathrm{C} 1-\mathrm{C} 7$	33.27
	2 階	$\mathrm{C} 1-\mathrm{C} 7$	33.27
	1 階	$\mathrm{C} 1-\mathrm{C} 7$	33.26
	地下 1 階	$\mathrm{C} 1-\mathrm{C} 7$	33.25

1.2 床ばね（線形ばね）を採用していることの妥当性について

制御建屋の地震応答解析モデルでは，床ばねを線形モデルでモデル化していること から，その適用性について，補足説明資料「補足－600－43 地震応答に影響を及ぼす不確かさ要因の整理」に基づき確認する。
（1）質点系モデルによる床ばねの最大応答せん断応力度
床ばねは線形モデルとしていることから，概ね弾性範囲の応答であることを確認す る。ここでは，コンクリート強度より求められる床のせん断スケルトンカーブの第1折点 τ_{1} と応答最大せん断応力度を比較する。 τ_{1} を超える場合には別途検討を行う。

図1－1に制御建屋の地震応答解析モデルの床ばね部材番号を，表1－2に制御建屋の基準地震動 S s に対する地震応答解析における床ばねの最大応答せん断応力度の確認結果を示す。

表1－2より全ての床ばねの最大応答せん断応力度は，せん断スケルトンカーブの第 1折点 τ_{1} のせん断応力度以下であることを確認した。

NS 方向

EW 方向

図 1－1 制御建屋地震応答解析モデル（床ばね部材番号）

表 $1-2$ 制御建屋の床ばねの最大応答せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

	NS 方向	EW 方向
ケース1	1．40（部材（1）S s－D 2）	1．40（部材（2）S s－D 2）
ケース 2	1．39（部材（1）S s－D 2）	1．40（部材（2）S s－D 2）
ケース 3	1．40（部材（1）S s－D 2）	1．40（部材（2）S s－D 2）
ケース 4	1．46（部材（1）S s－D 2）	1．59（部材（2）S s－D 2）
ケース 5	1．46（部材（1）S s－D 2）	1．58（部材（2）S s－D 2）
ケース 6	1．47（部材（1）S s－D 2）	1．69（部材（2）S s－D 2）

注：床のせん断スケルトンカーブの第 1 折点 $\tau_{1}(0.31 \sqrt{ } \mathrm{Fc}): 1.78 \mathrm{~N} / \mathrm{mm}^{2}$
（2）まとめ
制御建屋の地震応答解析モデルの床ばねは線形ばねとしてモデル化しているが，基準地震動S s に対する地震応答解析の結果，全ての床ばねがせん断スケルトンカーブ の第1折点 τ_{1} のせん断応力度以下であることを確認したことから，線形ばねでモデル化することの適用性を確認した。

