本資料のうち，枠囲みの内容は商業機密の観点から公開できま せん。
※なお，本資料は抜粋版のため公開

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －工－B－02－0006＿改 5
提出年月日	2021 年 11 月 15 日

できない箇所はありません。

VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書

10

2021年11月
東北電力株式会社
1．概要 1
2．基本方針 1
2.1 構造概要 1
2．2 解析方針 4
2.3 適用規格•基準等 4
3．解析方法 4
3.1 入力地震動 4
3.2 地震応答解析モデル 7
3．2．1 大型機器系地震応答解析モデル 7
3．2．2 炉内構造物系地震応答解析モデル 24
3.3 解析方法 45
3．3．1 動的解析 45
3．3．2 静的解析 46
3.4 解析条件 47
3．4．1 耐震壁の復元力特性 47
3．4．2 地盤の回転ばねの復元力特性 47
3．4．3 原子炉本体の基礎の復元力特性 47
3．4．4 炉心シュラウド溶接線の分離想定ケースにおける荷重－変位特性． 51
3．4．5 材料物性の不確かさ等 54
4．解析結果 56
4． 1 固有値解析結果 56
4．1．1 大型機器系地震応答解析モデル 56
4．1．2 炉内構造物系地震応答解析モデル 56
4．2 地震応答解析結果及び静的解析結果 154
4．2．1 大型機器系地震応答解析モデル 154
4．2．2 炉内構造物系地震応答解析モデル 232
5．設計用地震力 318
5.1 弾性設計用地震動 S d 及び静的地震力 318
5.2 基準地震動 S s 318
今回提出範囲

3．4 解析条件

3．4．1 耐震壁の復元力特性

耐震壁の復元力特性については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す。

3．4．2 地盤の回転ばねの復元力特性
地盤の回転ばねの復元力特性については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す。

3．4．3 原子炉本体の基礎の復元力特性
女川原子力発電所第 2 号機の建設時工認で用いた基準地震動のレベルにおいては，原子炉建屋は非線形領域付近であったため非線形の復元力特性を設定していた。一方で，原子炉本体の基礎はおおむね線形領域に収まっていたことから，剛性一定の線形の復元力特性を設定していた。

今回工認では基準地震動のレベルが増大し，原子炉本体の基礎の地震応答が線形領域を超えることから，適正な地震応答に基づく評価を行うために，原子炉建屋の地震応答解析モ デルだけでなく，原子炉本体の基礎にもコンクリートの剛性変化を考慮した非線形の復元力特性を適用する。
（1）原子炉本体の基礎のせん断力－せん断変形角関係（Q－γ 関係）
原子炉本体の基礎のせん断力－せん断変形角関係（Q－γ 関係）は，コンクリートのひび割 れを表す第1折点と鋼板の降伏を表す第2折点までを設定する。原子炉本体の基礎のせん断力－せん断変形角関係を図 3－8に示す。

Q_{1} ：第1折点のせん断力
Q_{2} ：第 2 折点のせん断力
γ_{1} ：第1折点のせん断変形角
γ_{2} ：第 2 折点のせん断変形角
図 3－8 原子炉本体の基礎のせん断力－せん断変形角関係
（2）原子炉本体の基礎のせん断力－せん断変形角関係の履歴特性
原子炉本体の基礎のせん断力ーせん断変形角関係の履歴特性は，最大点指向型モデルとす る。原子炉本体の基礎のせん断力ーせん断変形角関係の履歴特性を図 3－9に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大
点が第 1 折点を超えていなければ，負側第 1 折点に向かう。
c．各最大点は，スケルトン上を移動することにより更新される。
d．安定ループは面積を持たない。
図 3－9 原子炉本体の基礎のせん断力－せん断変形角関係の履歴特性
（3）原子炉本体の基礎の曲げモーメント－曲率関係（ $\mathrm{M}-\phi$ 関係）
原子炉本体の基礎の曲げモーメント－曲率関係（M－ C 関係）は，コンクリートのひび割れ を表す第1折点と鋼板の降伏を表す第2折点までを設定する。原子炉本体の基礎の曲げモ ーメントー曲率関係を図3－10に示す。

M_{1} ：第1折点の曲げモーメント
M_{2} ：第2折点の曲げモーメント
ϕ_{1} ：第 1 折点の曲率
ϕ_{2} ：第 2 折点の曲率
図 3－10 原子炉本体の基礎の曲げモーメント－曲率関係
（4）原子炉本体の基礎の曲げモーメント－曲率関係の履歴特性
原子炉本体の基礎の曲げモーメントー曲率関係の履歴特性は，最大点指向型モデルとする。原子炉本体の基礎の曲げモーメント－曲率関係の履歴特性を図 3－11に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第 1 折点を超えていなければ，負側第 1 折点に向かう。
c．各最大点は，スケルトン上を移動することにより更新される。
d．安定ループは面積を持たない。
図 3－11 原子炉本体の基礎の曲げモーメント－曲率関係の履歴特性
（5）スケルトンカーブの諸数値
原子炉本体の基硙の各要素について算定したせん断力及び曲げモーメントのスケルトン カーブの諸数値を表 3－67～表3－70に示す。なお，曲げモーメントのスケルトンカーブの算定には，解析コード「SCC」を使用する。評価に用いる解析コードの検証及び妥当性確認等 の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

表 3－67 原子炉本体の基礎のせん断力のスケルトンカーブ（Q－γ 関係）（NS 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{Q}_{1} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{1} \\ \left(\times 10^{-4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{2} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{2} \\ \left(\times 10^{-4}\right) \end{gathered}$
7	6	5． 042	1． 775	34.90	32.51
6					
	5	2． 867	1． 859	24． 63	27． 17
	4	5． 343	1.808	29． 06	33． 23
3	3	5． 428	1． 837	29． 06	33． 23

表 3－68 原子炉本体の基礎の曲げモーメントのスケルトンカーブ（M－ϕ 関係）（NS 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{M}_{1} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{1} \\ \left(\times 10^{-8} 1 / \mathrm{mm}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{2} \\ \left(\times 10^{-8} 1 / \mathrm{mm}\right) \end{gathered}$
7	6	1． 032	1． 036	16． 81	38.53
6					
	5	1． 107	1． 151	15.98	38． 49
	4	1． 740	1． 721	16． 36	38． 39
3	3	1． 738	1． 799	15． 73	38． 50

表 3－69 原子炉本体の基礎のせん断力のスケルトンカーブ（Q－γ 関係）（EW 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{Q}_{1} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{1} \\ \left(\times 10^{-4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{2} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{2} \\ \left(\times 10^{-4}\right) \end{gathered}$
7	6	5． 042	1． 775	34.90	32.51
6					
	5	5． 400	1． 859	39． 48	31.21
	4	5． 343	1． 808	29． 06	33.23
3	3	5． 032	1． 837	27． 23	33.20

表 3－70 原子炉本体の基礎の曲げモーメントのスケルトンカーブ（M－ϕ 関係）（EW 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{M}_{1} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{1} \\ \left(\times 10^{-8} 1 / \mathrm{mm}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{2} \\ \left(\times 10^{-8} 1 / \mathrm{mm}\right) \end{gathered}$
7	6	1． 032	1． 036	16． 81	38.53
6					
	5	0． 8983	1． 441	10.66	38.90
	4	1． 740	1． 721	16． 36	38.39
	3	1． 767	1． 794	16． 01	38． 49
3					

3．4．4 炉心シュラウド溶接線の分離想定ケースにおける荷重－変位特性
炉心シュラウド溶接線の分離想定ケースは，健全ケース，H1 分離ケース，H6b 分離ケース及び全溶接線分離ケースの 4 通りを設定する。各分離想定ケースにおいて，炉心シュラウド の荷重－変位特性を以下のように設定する。

3．4．4．1 健全ケース
健全ケースにおける炉心シュラウドの荷重－変位特性は，線形として設定する。
3．4．4．2 溶接線分離ケース（H1 分離，H6b 分離及び全溶接線分離ケース）
溶接線分離ケースにおける炉心シュラウドの荷重－変位特性は非線形として設定する。 なお，溶接線分離ケースにおいては，以降に示す曲げ非線形特性を溶接線分離位置の各要素に対して設定する。
（1）炉心シュラウドの曲げモーメント－曲率関係（ $\mathrm{M}-\phi$ 関係）
炉心シュラウドの曲げモーメント－曲率関係（ $\mathrm{M}-\phi$ 関係）は，炉心シュラウド溶接線に分離が生じたことを表す折点を設定し，折点以降は曲げモーメントをそれ以上伝達しないよ ら設定する。炉心シュラウドの曲げモーメント－曲率関係を図 3－12 に示す。

M_{s} ：シュラウド溶接線が口開きするときの曲げモーメント
ϕ_{s} ：シュラウド溶接線が口開きするときの曲率
図 3－12 炉心シュラウドの曲げモーメント－曲率関係
（2）炉心シュラウドの曲げモーメント－曲率関係の履歴特性
炉心シュラウドの曲げモーメントー曲率関係の履歴特性は，原点指向型モデルとする。炉心シュラウドの曲げモーメント－曲率関係の履歴特性を図 3－13 に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：原点に向かう
（3）スケルトンカーブの諸数値
炉心シュラウドの各要素について算定した曲げモーメントのスケルトンカーブの諸数値 を表 3－71～表 3－73 に示す。H1 分離ケース及び H6b 分離ケースについては，各溶接線分離位置に基づき，以下の要素のみ折点を設定し，それ以外の要素の荷重－変位特性は線形とし て設定する。

- H1 分離ケース：要素番号 32
- H6b 分離ケース：要素番号 25

表 3－71 炉心シュラウドの曲げモーメントのスケルトンカーブ（ $\mathrm{M}-\phi$ 関係）（H1 分離ケース）

質点番号	要素番号	M_{s} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{mm}\right)$	$\phi \mathrm{s}$ $\left(\times 10^{-9} 1 / \mathrm{mm}\right)$
33	32	1.53	5.29
32			

表 3－72 炉心シュラウドの曲げモーメントのスケルトンカーブ（ $\mathrm{M}^{-\phi}$－関係）（H6b 分離ケース）

質点番号	要素番号	M_{s} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{mm}\right)$	$\phi \mathrm{s}$ $\left(\times 10^{-9} 1 / \mathrm{mm}\right)$
26	25	1.53	6.82
25	25		

表 3－73 炉心シュラウドの曲げモーメントのスケルトンカーブ（ $\mathrm{M}^{-} \phi$ 関係）（全溶接線分離ケース）

質点番号	要素番号	$\begin{gathered} \mathrm{M}_{\mathrm{s}} \\ \left(\times 10^{6} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{\mathrm{s}} \\ \left(\times 10^{-9} \mathrm{1} / \mathrm{mm}\right) \end{gathered}$
33	32	1． 53	5． 29
32			
	31	1． 53	6． 45
31	30	1． 53	
30			6． 45
	29	1． 53	6． 45
29			
	28	1． 53	6． 45
28			
	27	1.53	6． 45
27			
	26	1． 53	6． 45
26			
	25	1． 53	6． 82
25			
	24	1． 53	6． 82
51			

3．4．5 材料物性の不確かさ等

解析においては，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」にて考慮する材料物性の不確かさに加え，原子炉本体の基礎のコンクリート剛性を低下させたケースを考慮 する。設計用地震力は基本ケースと材料物性の不確かさ等を考慮したケースの包絡値を使用する。材料物性の不確かさ等を考慮する解析ケースを表 3－74に示す。

