本資料のうち、枠囲みの内容は 当社の商業機密を含むため、又 は他社の機密事項を含む可能性 があるため公開できません。

※ なお、本資料は抜粋版のため、 商業機密の観点又は他社の機密事 項の観点から公開できない箇所は ありません。

女川原子力発電所第2号	· · · · · · · · · · · · · · · · · · ·
資料番号	02-補-E-19-0600-2_改 11
提出年月日	2021年11月12日

補足-600-2 耐震評価対象の網羅性, 既工認との手法の相違点 の整理について

									目	,	次									
1.		女	川原-	子力	発電	所第	2 号标	幾にま	iける	耐震	評	価に	係る	整理	ł					. 1
	1.	1	耐震	Sク	ラン	ス施設	の評	価(面	対震 S	クラ	スカ	施設、	への	波及	的景	彡響訁	平価	及び	非常	j
			用取	水設	備	の評価	i含む													. 4
		1.	1.1	基準	地加	震動 S	s K	よる	評価.											. 4
		1.	1.2	弾性	設計	計用地	震動	Sd	によれ	る評値	面									11
		1.	1.3	静的]地寫	震力に	よる	評価												16
	1.	2	耐震	Βク	ラン	ス施設	の評	価												17
	1.	3	耐震	Сク	ラン	ス施設	の評	価												17
	1.	4	耐震	Sク	ラン	ス設備	の間	接支	持構え	告物(の評	価								17
	1.	5	耐震	Βク	ラン	ス設備	の間	接支	持構え	告物(の評	価								18
	1.	6	耐震	Сク	ラン	ス設備	の間	接支	持構え	告物(の評	価								18
2.		既	工認	との	手法	の相違	立点 ほ	の整理	፟											19
	2.	1	既工	認と	(D)=	手法の	整理	一覧												19
	2.	2	相違	点及	. Vi	適用性	の説	明												19
		2.	2.1	機器	·	记管系														19
		2	2 2	建物	7 • 村	畫築物	」 屋	外重	要十:	大構 i	告物	1								20

添付資料

- 添付-1 別表第二を踏まえた対象設備の網羅性
 - 添付 1-1 ドライウェルスプレイ管の耐震評価の省略理由
- 添付-2 対象設備の評価部位の網羅性
 - 添付2-1 機器・配管系設備のアンカー定着部の耐震評価
 - 添付 2-2 機器・配管系設備における鉛直方向動的地震力の導入による影響 検討
- 添付 2-3 最新プラントと比較して評価対象部位が異なる設備の構造
- 添付-3 対象設備の評価項目(応力分類)の網羅性
- 添付 4-1 対象設備の耐震重要度分類の区分(主要設備等)を踏まえた整理
- 添付 4-2 建物・構築物, 土木構造物及び浸水防護施設の耐震評価フロー並び に評価対象一覧
- 添付-5 別表第二の対象外である耐震 S クラス施設の耐震安全性評価結果

添付-6 既工認との手法の整理一覧表

- 添付 6-1 最新知見として得られた減衰定数の機器・配管系設備への適用
- 添付 6-2 シュラウドヘッドの応力評価への公式等による評価の適用
- 添付 6-3 炉内計装設備の応力評価へのスペクトルモーダル解析の適用
- 添付 6-4 機器・配管系設備に対する水平方向と鉛直方向の動的地震力の二 乗和平方根(SRSS)法による組合せ
- 添付 6-5 たて軸ポンプの解析モデルの精緻化
- 添付 6-6 炉心シュラウド支持ロッドの解析モデルの精緻化
- 添付-7 工認耐震計算書に地震応答解析が記載されていない設備の扱い

			1													*1 共通適用	引あり:規格・	基準類等	に基づきプラントの仕様	1		通の適用例がある手	E法 個別適用例あり:プラント個別に適り		個別の適用例がある手法
											既工認と今回工認との比較									(左欄にて比較した	前考 :自プラントの既工認)		他プラントを含めた既工認での適用例	ı	
	評価	五対象設備	(公式等に	よる評価。	解析手 スペクトルモ	注: ダル解析, 時刻歴解析他)				解析モ	デル			減衰定	数			(評価条	その他 (件の変更等)	申請回		*1 ○:共通適用例あり			減衰定数の実績 〇:構造上の差異なし
			○:同じ●:異なる			相違内容	○:同じ●:異なる				相違内容	○:同じ ●:異なる		*	1違内容		○:同じ■:異なる		相違内容	(認可・届出番号)	工認添付書類名称	□:個別適用例あり×:適用例なし	内容	参照した設備名称	×:構造上の差異あり (適用可能であること
			-:該当なし	工器	解析種別	内容	-:該当なし	工認	解析種別	方向	内容	-:該当な	し工認	解析種別	方向	内容	-:該当なし	工認	内容						の理由も記載)
核燃料					応答解析	-			応答解析	水平鉛直	_	-		応答解析	水平鉛直	-									
物物	使			既工認			-	既工認		-			既工認			_		既工認	線形解析						
物質の取扱	用 済 燃	使用済燃料プール	(応答解析)		応力解析	原子炉建屋の地震応答解析 結果を用いた静的応力解析			応力解析	水平 鉛直	3次元FEMモデル(構造的にほぼ対称で あることを踏まえて東西軸に対して北半 分のみをモデル化)			応力解析	水平 鉛直	-					IV-2-6-2-1 「使用済燃料プール				
設	料貯蔵	(キャスクビット)	(応力解析)				0			水平	-	-			水平	-	0			建設工認 第5回	(キャスクビットを含む。)の耐震性についての計算書	_	_	_	_
及び貯	設備		0	今回	応答解析	-		今回	応答解析	鉛直	-	1	今回	応答解析	鉛直	-		今回 工認	線形解析		いての計算者」				
蔵施設				工認	応力解析	原子炉建屋の地震応答解析 結果を用いた静的応力解析		工認	応力解析	水平鉛直	3次元FEMモデル(構造的にほぼ対称で あることを踏まえて東西軸に対して北半 分のみをモデル化)		工認	応力解析	水平	-		工設	940000						
-	敛									水平	質点系モデル(SRモデル)				鉛直 水平	ー ひずみエネル ギー比例型減衰									
放	体					時刻歷応答解析			応答解析	鉛直	_			応答解析	鉛直	-			制震装置取付(弾塑性ダン バー) 鉄鉄補強						
射性	液体又			既工認				既工認		水平	-		既工認		水平	-		既工認	バー), 鉄塔補強 一次元波動論による入力地 震動作成	3		(解析モデル)	(解析モデル) 応答解析: 柏崎6,7号機の既工認での共通		
廃棄	は田田		_		応力解析	部材応力評価	(応答解析)		応力解析	鉛直	-	1		応力解析	鉛直	-	_			工事計画届出	IV-1-2	応答解析:○ (その他)	適用例のある解析モデル。 (その他)	(柏崎刈羽) 同じ設備を参照	
物の廃棄	体廃棄物	排気筒	0		応答解析	時刻歷応答解析	(応力解析)		応答解析	水平鉛直	質点系モデル	0		応答解析	水平 鉛直	ひずみエネル ギー比例型減衰	•		制震装置取付(オイルダン	東北電土火第1号 (平成21年7月31日)	排気筒の耐震性及で 強度に関する計算書	ドオイルタンバーの適用:○2次元FEMによる入 力地震動:○	オイルダンバーの適用:柏崎6,7号機の既 工器での共通適用例のある手法。 2次元FEMによる入力地震動:女川2号既	(女川) 海水ポンプ室	=
施設	処理			今回 工認				今回 工認		水平	_		今回 工認		水平	_		今回 工認	バー), 鉄塔補強 2次元FEMモデルによる入				工認での共通適用例のある解析モデル。		
	設備				応力解析	部材応力評価			応力解析	鉛直	-			応力解析	鉛直	-			力地震動作成						
					応答解析	_			応答解析	水平	-			応答解析	水平	-									
				既工認	70 1377 77			既工認	70 0 77 17	鉛直 水平			既工認		鉛直 水平	-		既工認	_						
					応力解析	_			応力解析	鉛直	_			応力解析	鉛直	-									
							-			水平	[破物モデル] 水平:多軸球楽多質点系モデル 鉛直:1軸多質点系モデル (相互任用)				水平							(解析手法) 応答解析:〇 広力解析:〇	(解析手法) に答解析: 拍崎刈羽7号新規制基準対応 工器での共通適用例のある解析手法。 応力解析: 拍崎刈羽7号新規制基準対応		
		中央制御室しゃへい壁耐震壁	_	今回 工認	応答解析	時刻歷解析	_	今回工認	応答解析		SRモデル ○水平方向 基礎底面 :振動デドシタンス理論に基づき底面ばね (水平、同転)を評価 ○鈴成方向 基礎底面 :振動デドシッタンス理論に基づき底面ばね		今回 工認	応答解析		コンクリート:5% 基礎底面ばね:振 動アドミッタンス理 論に基づき JEAG4601-1991 の近似法で評価	•	今回 工認	非線形解析 (基礎浮上り非線形, 復元 力勢性)	-	_	応万解析:○ (解析モデル) 応答解析:× (減衰定数) 応答解析:○ (その他) 非線形解析:○	工認での共通適用例のある解析手法。 (解析モデル) 広客解析:シュレーション解析等に基づく 初期剛性の採用は適用例なし。 (該客解析: 柏崎川羽7号新規制基準対応 工設での共通適用例のある減衰定数。 (子の始)	同じ設備を参照	0
放射線管理	生体遮蔽装									鉛直	(鉛液)を評価 ・上記モデル構築にあたっては、平成23年 (2011年)東北地方太平洋地震の観測記録に よるシミュレーションで得られた知見(初期剛性の補正、床の条性)を反映している。				鉛直				37NLD				(ての把解析: 柏崎川羽7号新規制基準対応工器での共通適用例のある手法。		
施設	置				応力解析	静的応力解析			応力解析	水平	-	1		応力解析	水平	-									
										鉛直	-				鉛直	-									
					応答解析	_			応答解析	水平 鉛直		-		応答解析	水平 鉛直	-									
				既工認	応力解析	-		既工認	応力解析	水平	-		既工認	応力解析	水平	-		既工認	_	_	=	(解析手法)	(解析手法) 応力解析:柏崎7号新規制基準対応工認で		
		中央制御室しゃへい 壁 天井スラブ, 床スラブ	-				_			鉛直 水平	-	-			鉛直 水平		-					(解析手法) 応力解析:○ (解析モデル) 応力解析:○	応力解析: 柏崎1 ラ析規制基準対応工能で の共通適用例のある解析手法。 (解析モデル) 応力解析: 柏崎1 号新規制基準対応工器で	同じ設備を参照	=
				今回 工認	応答解析	_		今回 工認	応答解析	鉛直	_		今回工認	応答解析	鉛直	-		今回 工認	_	_	_		の共通適用例のある解析モデル。		
				1.50	応力解析	静的応力解析		1.86	応力解析	水平 鉛直	― 四辺固定版, 両端固定はり		1.86	応力解析	水平 鉛直	_		1.80							
\Box			1		1	1		1		1	L					I			1	1	1	1	1		

										既工認と今回工認との比較								(左綱にて比較):	備考 た自プラントの既工認)		他プラントを含めた既工認での適用例	
	評価対象設備	(公式等)	こよろ評価。	解析手	法 -ダル解析, 時刻歴解析他)				解析モ	デル			減衰定	数			その他 (評価条件の変更等)	(ALIMIC CAUSE)	- H > / V 1-36(1190)	*1		減衰定数の実績
	評恤对學設備	〇:同じ			相違内容	0:同じ				相違内容	〇:同じ		*	1違内容		〇:同じ	相違内容	申請回 (認可・届出番号)	工認添付書類名称	○:共通適用例あり□:個別適用例あり	内容参照した設	○:構造上の差異な ※:構造上の差異あ (適用可能であるこ
		●:異なる -:該当な	し工器	解析種別	内容	●:異なる-:該当なし		解析種別	方向	内容	●:異なる :該当なし	工認	解析種別	方向	内容	●:異なる一:該当なし	工認 内容			×:適用例なし		の理由も記載)
			既工認	応答解析	時刻歷解析		既工認	応答解析	水平鉛直	「組集モデル」 水平・多軸床剛多質点系モデル 【相互作用】 駅モデル の水平方向 基準度面 にはな、水平、回転)と評価 一		既工認	応答解析	水平 貮	rンクリート: 5% 両材: 2% E 構		非線形解析 既工器 (基礎停上9非線形,復元 力特性)				(解析モデル)	
	原子炉塘屋原子炉棒原子炉塘屋新興壁	0	今回 工認	応答解析	時刻歷解析	•	今回工認	応答解析	水平	「報告モデル」 本来:多様は長多質点系モデル 約点:14参質点系モデル 約点:14参質点系モデル (相互作用) SKモデル ○水平方向 ・提動アドンタンス理論に基づき底面 (近れ休平。回転)を存価 ・ 通動アドンタンス理論に基づき底面 (近れ休平。回転)を存価 ・ 上記・デル構築にあたっては、平成23年 には「14年度を表す。 は「14年度を表す。 は「14年度を表す。 が関係性の表する が関係性の表す。 が関係性の、 が関係性の、 が関係性の、 が関係性の、 が関係性の、 が関係性の、 が関係性の、 が関係性の、 が関係性の、 が関係性の、 が関係性の、 が関係性の、 が関係性の	0	今回工認	応答解析	報 車 間 II	マンクリート: 5% 解材: 2% 結構達施 はね: 振 情報を描ばね: 振 前に基づき 前に基づき がして評価	•	非線形解析 (基礎等上り非線形。復元 今回 力物性 工能 財飯情難工事の内容を反 技術情襲。供骨プレースの 追設)	地設工総第1回 (元資产第2015号 1989年6月8日)	N-2-6 「原子學格納施設の 耐機性についての計 集書」	(解析モデル) 此答解析(初期剛 性的:メ 定答解析(開辺地 盤による低減効 果):〇 定答解析(床の柔 性) (その他) 耐震補強工事:×	応答者所にグェルーション保持等に基が、 知期時他で経用については適用的なし、 期辺地盤による伝統効果の当歳(EFFA、 助江、柏崎和別のよう様件モデル、 適用例のある解析モデル、 大通適用例のある解析モデル、 大通適用例のある解析モデル、 (その他) 耐震神強工事・耐震・補強工事の反映については適用例なし、 が、 が、 が、 が、 が、 は、 が、 は、 が、 は、 が、 は、 が、 は、 が、 が、 は、 が、 は、 が、 は、 が、 が、 が、 に、 が、 が、 に、 が、 が、 に、 が、 が、 に、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が	-
	原子炉建屋原子炉棟	(応答解析	既工認	応答解析 応力解析	 静的応力解析	(応答解析)	既工認	応答解析 応力解析	水平 鉛直 水平 鉛直	- 2次元フレームモデル 2次元フレームモデル		既工認	応答解析 応力解析	水平 鉛直 水平 鉛直	= = =		既工認 一	建設工認第1回	IV-2-6	(解析手法) 応答解析:○ 応力解析:○ (解析モデル) 広答解析・×	(解析手法) 応答解析・指輪刈羽7号新規制基準対応 工器での共通適用例のある解析手法。 応力解析・指輪刈羽7号新規制基準対応 工器での共通前例のある解析手法。 (解析モデル) 応答解析、成力解析・シミュレーション解析 応答解析、成力解析・シミュレーション解析	
原子炉格納施設	屋根トラス	(応力解析	今回 工部	応答解析	原子炉建屋の地震応答解析 結果を用いた時刻歴応答解 析	(応力解析)	今回工認	応答解析	水平鉛直水平	3次元FEMモデル(オペフロより上部の架 構をモデル化) 上記モデル構築にあたっては、平成23年 (2011年)東北地方太平洋地震の観測記	芯答解析) ●	今回工認	応答解析	水平っ	ェンクリート:5% 興材:2%	•	非線形解析 基準地震動Ssに対して は、材料 (鉄骨)の非線形 等性を考慮した弾塑性解析 を実施。 部震補強工事の内容を反	(元資庁第2015号 1989年6月8日)	「原子炉格納施設の 耐震性についての計 算書」	応力解析:× (減衰定数) 応答解析:○ (その他) 非線形解析:○ 耐震補強工事:×	等に基づ初期剛性の採用は適用例なし。 は軟性電影 応答解析: 柏崎刈羽7号新規制基準対応 工設での共適適用例のある酸液定数。 (その他) 非線形解析: 柏崎刈羽7号新規制基準対 広北設での共適適用例のある手法。	0
BX				応力解析	部材応力評価			応力解析	鉛直水平	録によるシミュレーションで得られた知見 (初期剛性の補正)を反映している。			応力解析	鉛直	-		町展価加工事が行むを反映(耐震壁・鉄骨ブレースの 迫設)				耐震補強工事:耐震補強工事の反映は適用例なし。	
	原子炉建屋原子炉棟	0	既工認	応力解析	原子炉建屋の地震応答解析 結果を用いた静的応力解析		既工認	応力解析	鉛直	3次元FEMモデル		既工認	応力解析	鉛直	-	•	既工認 線形解析 非線形解析	一建設工認第1回 (元資庁第2015号	IV-1-4 「原子炉格納施設の	(その他)	(その他) 非線形解析: 柏崎刈羽7号新規制基準対 同じ設備を参照	_
	原子炉建屋 基礎版		今回工認	応力解析	原子炉建屋の地震応答解析 結果を用いた静的応力解析		今回工認	応力解析	水平 鉛直	3次元FEMモデル		今回 工認	応力解析	水平 鉛直	-		今回 工認 筋)の非線形特性を考慮し た弾塑性解析を実施。	1989年6月8日)	基礎に関する説明書」	非線形解析:〇	応工認での共通適用例のある手法。	
	原子炉建屋		既工認	応力解析	-		既工認	応力解析	水平鉛直	-		既工認	応力解析	水平鉛直	-		既工認 —			(解析手法) 応力解析:○	(解析手法) 応力解析: 拍崎刈羽7号新規制基準対応 工器での共通適用例のある解析手法。	
	大物搬入口 ヒンジ部,カンヌキ部	_	今回工認	応力解析	公式等による評価		今回工認	応力解析	水平鉛直	-	-	今回 工認	応力解析	水平 鉛直	-	-	今回 工認 許容応力度法		=	(その他) 許容応力度法:〇	(その他) 許容広力度法: 柏崎刈羽7号新規制基準 対応工設での共通適用例のある解析手 法。	_
	原子炉建屋エアロック		既工認	応力解析	-		既工認	応力解析	水平鉛直	-		既工認	応力解析	水平 鉛直	-		既工認 —			(解析手法) 応力解析:○	(解析手法) 応力解析: 柏崎刈羽7号新規制基準対応 工設での共通適用例のある解析手法。 (子の他) 同じ 診備を参写	
	エアロック ヒンジ部、カンヌキ部		今回工認	応力解析	公式等による評価		今回工認	応力解析	水平鉛直	-	_	今回 工認	応力解析	水平鉛直	-		今回 工器 許容応力度法			(その他) 許容応力度法:○	(その他) 許容広万度法:柏崎刈羽7号新規制基準 対応工認での共通適用例のある解析手 法。	
	原子炉建屋 ブローアウトパネル	_	既工認	応力解析	-		既工認	応力解析	-	-		既工認	-	-	-	_	既工認 —			(解析手法) 応力解析:○	(解析手法) 応力解析: 柏崎刈羽7号新規制基準対応 工設での共通適用例のある解析手法。 (解析モデル) 応力解析: 柏崎刈羽7号新規制基準対応	_
	止め板, テンションリン グ	_	今回工認	応力解析	静的応力解析		今回工認	応力解析	水平鉛直	3次元FEMモデル 3次元FEMモデル		今回 工認	-	-	-	_	今回 工部 非線形解析			(その他) 非線形解析:○	応 7 序析: 柏崎州 7 月 7 京新 京原 恵華 平 別 広 工設での 共通適	

										既工器と今回工器との比較									備 (左欄にて比較した)	考 自プラントの既工認)		他プラントを含めた既工認での適用例	
	平価対象設備	(公式等による評(価, スペク	解析手法 クトルモーダル解析, 時刻	歴解析他)				解析モ	デル			減衰定	数			その代評価条件の	也 変更等)			*1		減衰定数の実績 〇:構造上の差異なし
		○:同じ ●:異なる		相違内容		○:同じ●:異なる			_	相違内容	○:同じ●:異なる			相違内容		○:同じ●:異なる		相違内容	申請回 (認可·届出番号)	工認添付書類名称	○:共通適用例あり□:個別適用例あり×:適用例なし	内容参照した設備名称	※:構造上の差異あり (適用可能であること の理由も記載)
		一:該当なし 工設	8 解析	斤種別 内容	:	-:該当なし	工認	解析種別	方向	内容	-:該当なし	工認	解析種別	方向	内容	-:該当なし	工認	内容				(解析手法)	▽ン※四号記載/
			応答	š解析 —				応答解析	水平	-			応答解析	水平	-						(解析手法)	(789) TLC) 応答解析: 有効応力解析は柏崎刈羽7号 新規制基準対応工器での共通適用例のあ る解析手法。全応力解析は川内1,2号新規	
		既工	arr.				医丁級		鉛直	-		既工認		鉛直	-		既工認				応答解析(有効応 力解析):○ 応答解析(全応力	制基準対応工認での共通適用例のある解析手法。 構造解析: 許容応力度法は柏崎刈羽6,7号	
		Bt.Li	86				8年上総		水平	-		8年工188		水平	-		St 上級	-			牌析):○ 構造解析(許容応 力度法):○	版工部での共通適用例のある解析手法。 すべり安全率による評価は美深3号新規基 準対応工器で個別適用例のある解析手	
			構道	告解析 一				構造解析	鉛直	_			構造解析	鉛直	_						構造解析(すべり安 全率による評価): □	法。 (解析モデル) (柏崎刈羽)	
	防潮堤(鋼管式鉛直 壁)	-				_			水平		_			水平		-			_	_	(解析モデル) 応答解析(2次元 FEMモデル):○ 応答解析(質点系	応答解析:2次元FEMモデルは女川2号既 軽油タング基礎 工説での共通適用側のある解析モデル質 (川内) 成系モデル(上部エー下部工(杭))-地盤の 速成系)については適用例なし。 (英級) 開発解析:アレームモデルは自解/知36,7 防線提準盤改良部	0
			応答	時刻歴応答解析 (有効応力解析) (全応力解析)				応答解析		2次元FEMモデル 質点系モデル (上部エ-下部工(杭)-地盤の連成系)			応答解析	Ray 減	rleigh ∰						心谷所切(貝点ボ モデル):× 構造解析(フレーム	構造解析:アルームモデルは柏崎刈羽6.7 号既工認での共通適用例のある解析モデ ル。2次元FEMモデルは女川2号既工認で の共通適用例のある解析モデル。 質点系	
		今回 工能	1				今回 工認		鉛直			今回 工認		鉛直			今回 工認	_			モノルリ: ○ 構造解析(2次元 FEMモデル): ○ 構造解析(質点系	の共通適用例のある解析モデル。質点系 モデル(上部エー下部エ(杭)-地盤の連成 系)については適用例なし。 質点系モデルは質点系モデル(上部エ-下	
				鋼管杭:許容応力 RC遮水壁:許容の 置換コンクリート	カ度法 応力度法			構造解析	水平	フレームモデル(線形) 2次元FEMモデル			構造解析	水平	-						得垣所刊(貝点示 モデル):× (減衰定数) 応答解析:○	部工(杭)-地盤の連成系)については適用 例なし。	
			IFFAC	置換コンクリート等 全率による評価	弊:すべり安			11742/111/1	鉛直	質点系モデル (上部エ-下部工(杭)-地盤の連成系)			H742/JFVI	鉛直	-						PUTERTINI O	(減衰定数) 応答解析: 柏崎刈羽7号新規制基準対応 工認での共通適用例のある減衰定数。	
			応答					応答解析	水平	-			応答解析	水平	-								
		既工	\$8				既工認		鉛直 水平	_	-	既工認		鉛直 水平	_		既工認	-			(解析手法)	(解析手法) 応答解析: 柏崎刈羽7号新規制基準対応 工認での共通適用例のある解析手法。	
	防潮堤(盛土堤防)		構道	告解析 —				構造解析	鉛直	_			構造解析	鉛直	-						応答解析:○ 構造解析:□ (解析モデル)	構造解析:美浜3号新規基準対応工認で個 別適用例のある解析手法。 軽油タンク基礎	0
	8分例·矩(3版工-9矩80)		応答	等解析 時刻歷応答解析 (有効応力解析)				応答解析	水平	2次元FEMモデル			応答解析	水平	rleigh滅衰						応答解析:○ 構造解析:○ (減衰定数)	(昨桁モアル) 佐答解析、成力解析: 女川2号既工認での 共通適用例のある解析モデル。 (減衰定数)	
÷		今回 工能	B.				今回 工認		鉛直水平		-	今回 工認		鉛直 水平	_		今回 工認	-			応答解析:○	応答解析: 柏崎刈羽7号炉新規制基準対 応工器での共通適用例のある減衰定数。	
他発			構道	告解析 すべり安全率にJ	たる評価			構造解析	鉛直	2次元FEMモデル			構造解析	鉛直	-								
電用原子炉の			応答	答解析 —				応答解析	水平鉛直	_	-		応答解析	水平	_							(解析手法) 応答解析:川内1,2号新規制基準対応工認 での共通適用例のある解析手法。	
子が施		既工		is tractic			既工認	Marie Annie	水平	_		既工認	AND THE PERSON	水平	_		既工認	-			(解析手法) 応答解析:○ 構造解析:×	構造解析:限界状態設計法については適 用例なし。 (解析モデル)	
附属施	防潮壁(第2号機海水 ポンプ室)	_	梅追	告解析 —		_		構造解析	鉛直	-	_		構造解析	鉛直	-	_			_	_	(解析モデル) 応答解析:× 構造解析(質点系	応答解析: 質点系モデル(上部エー下部エ (抗)・地盤の連成系)については適用例な (東海第二)	0
設	NIO 2 H)			等解析 時刻歷応答解析 析)	(全応力解			応答解析	水平 鉛直	質点系モデル (上部エ-下部工(杭)-地盤の連成系)			応答解析	水平 Ray 鉛直	rleigh滅衰						モデル):× 構造解析(フレーム モデル):○	構造解析: 異点系モアル(上部ユート部ユ (杭)-地盤の連成系)については適用例な (土 フレームモデル(総形)については、東 軽油タンク基礎	
		今回工設	B	限界状態設計法 (曲げ系の破壊:			今回 工認	構造解析	水平	質点系モデル (上部エ-下部工(杭)-地盤の連成系)		今回 工認	構造解析	水平	-		今回 工認	-				海第二新規制基準対応工器での共通適用 例のある解析手法。 (減衰定数)	
			165-45	^{正所刊} ント, せん断破壊 カ)	:せん断耐			19542/31/1/	鉛直	フレームモデル(線形)			16-12/31-1/1	鉛直	-							広答解析: 柏崎刈羽7号新規制基準対応 工認での共通適用例のある減衰定数。 (解析手法)	
				学解析				応答解析	水平鉛直	-	1		応答解析	水平 鉛直	_						(解析手法)	(昨析于法) に答解析:川内1,2号新規制基準対応工認 での共通適用例のある解析手法。 構造解析:限界状態設計法については適	
		既工		時刻歴応答解析 15	(全応力解		既工認	構造解析	水平	-		既工認	構造解析	水平	-		既工認	-			応答解析:○ 構造解析:× (解析モデル)	用例なし。 (解析モデル) (川内)	
	防潮壁(第2号機放水 立坑)	-	-	et.)		-			鉛直 水平	_	-			鉛直		-			-	-	応答解析:× 構造解析(質点系 モデル):×	(杭)-地盤の連成系)については適用例な し。 構造解析・質点系モデル(上部エー下部工 防網堤(鋼製防護壁)	0
		今回		答解析 時刻歷応答解析			今回	応答解析	公 中 鉛直	質点系モデル (上部エ-下部工(杭)-地盤の連成系)		今回	応答解析	小平 鉛直	/leigh滅衰		今回				構造解析(フレーム モデル):○ (減衰定数)	構造所が、真点糸セデル(上部エー下部ユ (杭)-地盤の連成系)については適用例な し。フレームモデル(線形)については、東 海第二新規制基準対応工器での共通適用	
		工器	B	限界状態設計法 (曲げ系の破壊: ント、せん断破壊	降伏モーメ		工認	構造解析	水平	質点系モデル (上部エ-下部工(杭)-地盤の連成系)		工認	構造解析	水平	-		工認	-				例のある解析手法。 (減衰定数) 応答解析: 柏崎刈羽7号新規制基準対応	
			+	カ)					鉛直水平	フレームモデル(線形)				鉛直 水平	_							工器での共通適用例のある減衰定数。 (解析手法)	
		既工		学解析 一			既工認	応答解析	鉛直	-	1	既工認	応答解析	鉛直	-		既工認				(解析手法)	応答解析:川内1,2号新規制基準対応工器 での共通適用例のある解析手法。 構造解析:限界状態設計法については適	
		BC.L.I		告解析 —			84.1.88	構造解析	水平	-	4	84.1.85	構造解析	水平	-		84.土稻	-			応答解析:○ 構造解析:× (解析モデル)	用例なし。 (解析モデル) 応答解析:質点系モデル(上部エー下部エ 散水ビット	
	防潮壁(第3号機海水 ポンプ室)			出力開かかない	(Art+49	-			鉛直 水平	-	-			鉛直 水平	-	-			-	-	応答解析:× 構造解析(質点系 モデル):×	ル各解析: 質点系セデル(上部エート部上 (杭)-地盤の連成系)については適用例な し。 構造解析: 質点系モデル(上部エー下部エ (始終2月31)	0
		今回工能	70 1	等解析 時刻歷応答解析 析)			今回 工認	応答解析	鉛直	質点系モデル (上部エ-下部工(杭)-地盤の連成系)		今回 工認	応答解析	名直 鉛直	rleigh滅衰		今回工認	_			構造解析(フレーム モデル):○ (減衰定数)	(杭)-地盤の連成系)については適用例な 軽温タンク基礎 海第二新規制基準対応工器での共通適用	
		工設		限界状態設計法 (曲げ系の破壊: ント, せん断破壊	降伏モーメ		工認	構造解析	水平	質点系モデル (上部エ-下部エ(杭)-地盤の連成系)		工認	構造解析	水平	-		工認				応答解析:○	例のある解析手法。 (減衰定数) 応答解析: 柏崎刈羽7号新規制基準対応	
				力)					鉛直	フレームモデル(線形)				鉛直								工器での共通適用例のある減衰定数。	

											既工認と今回工認との比較							マエハ 再ル		(4×401××× U-4h)	備考 た自プラントの既工認)		他プラントを含めた既工認での適用例	
	評価	6対象設備	(公式等による評	平価, ス	解析手法 ペクトルモーダル	解析, 時刻歷解析他)				解析モデ				減衰定	数			その他(評価条件の	也 変更等)		こ目プラントの就工能)	*1		減衰定数の実績 ○:構造上の差異なし
			○:同じ •:異なる		相違内		○:同じ●:異なる				相違内容	○:同じ●:異なる			相違内容		○:同じ●:異なる		相違内容	申請回 (認可・届出番号)	工認添付書類名称	○:共通適用例あり□:個別適用例あり×:適用例なし	内容参照した設備名称	○:構造上の差異あり (適用可能であること の理由も記載)
			-:該当なし 工		解析種別	内容	-:該当なし	工認	解析種別	方向 水平	内容	-:該当なし	工認	解析種別	方向 水平	内容	-:該当なし	工認	内容				(解析手注) 応答解析:川内1,2号新規制基準対応工器	
			既工		応答解析	=		既工認	応答解析	鉛直	-		既工認	応答解析	鉛直	-		既工認	_			(解析手法)	応各解析:川内1.2号新規制基準対応上認 での共通適用例のある解析手法。 構造解析:限界状態設計法については適	
					構造解析	-			構造解析	水平鉛質				構造解析	水平鉛直	_						応答解析:○ 構造解析:× (解析モデル) 広然解析:×	用例なし。 (解析モデル) 応答解析:質点系モデル(上部エ-下部エ (川内) 取水ビット	
	1	防潮壁(第3号機放水 立坑)			応答解析 時刻 析)	歴応答解析(全応力解	-		応答解析	水平	当点系モデル (上部エ−下部工(杭)−地盤の連成系)	-		応答解析	水平	yleigh滅衰	_			_		構造解析(質点系 モデル):× 構造解析(フレーム	応答解析:質点系モデル(上部エ下部エ いかけん (体)・地盤の連成系)については適用例な (東海第一 (地)・地盤の連成系)については適用例な(相談の) (体)・地盤の連成系)については適用例な(相談の列) (力・カン・ナギル(総数)については 直 種か2つ 基礎	0
			숙I 고i		細いたななど (曲げ	状態設計法 『系の破壊:降伏モーメ せん断破壊:せん断耐		今回 工認	構造解析	鉛直 水平	質点系モデル (上部工-下部工(杭)-地盤の連成系)		今回 工認	構造解析	松 車	-		今回 工認	-			(減衰定数) 応答解析:○	し。プレームモデル(線形)については、東 総第二新規制基準対立工部での共通適用 側のある解析手法。 (減衰定数) 応答解析: 柏崎刈羽7号新規制基準対応	
					力)	C. O. D. HARRY C. C. O. D. H. H.				鉛直 水平	フレームモデル (線形)				鉛直 水平	_							工認での共通適用例のある減衰定数。	
	in.		既工		応答解析	-		既工認	応答解析	鉛直	=		既工認	応答解析	鉛直	-		既工認	_				(解析手法) 構造解析: 柏崎刈羽7号新規制基準対応	
	水防海	防潮壁(第3号機海水		į	構造解析	-			構造解析	水平鉛直	<u> </u>			構造解析	水平 鉛直	_						(解析手法) 構造解析:○ (解析モデル)	(解兵所)、和崎州475名別及明宏平対ル 工器での共通適用例のある解析手法。 (解析モデル) 解析モデル: 柏崎川377号毎担制基徴対応(柏崎川33)	
	施設	熱交換器建屋)	_		応答解析	-	_		応答解析	水平	-	_		応答解析	水平	-	_			_	_	解析モデル:○ (その他) 許容応力度法:○	工設での共通適用例のある解析モデル。 (その他) 許容応力度法:柏崎刈羽7号新規制基準	_
			수I エI		AR VEATAGE SA AALE	+L &2 &C		今回 工認	ARITH-ANAC	鉛直 水平	over the second		今回 工認	att ve Antác	鉛直 水平			今回 工認 許容	応力度法				対応工器での共通適用例のある解析手 法。	
				- 1	構造解析 静的原	芯力解析			構造解析	鉛直 水平	3次元フレームモデル			構造解析	鉛直 水平	-								
			既工		応答解析	=		既工認	応答解析	小十 鉛直	=		既工認	応答解析	公 直	_		既工認	_			(*****	(解析手法) 応答解析:女川2号既工認での共通適用例	
	1	取放水路流路縮小工			構造解析	-		00	構造解析	水平鉛直			00	構造解析	水平鉛直			00				(解析手法) 応答解析:○ 構造解析:×	のある解析手法。 構造解析: 限界状態設計法については適 用例なし。 (女川)	
	((第1号機取水路 (No.1), (No.2)), (第1 号機放水路)	-		応答解析 周波装	数応答解析	-		応答解析	水平	2次元FEMモデル	_		応答解析	水平構	造物の減衰5%	-			_	_	(解析モデル) 応答解析:○ 構造解析:○ (滅衰定数)	(解析モデル) 原子炉機器冷却海水配 応答解析, 構造解析: 女川2号既工認での 共通適用例のある解析モデル。	0
÷			숙I 고I					今回 工認		鉛直 水平		-	今回 工認		鉛直 水平	_		今回 工認	-			応答解析:○	(減衰定数) 応答解析: 女川2号既工認での共通適用例 のある減衰定数。	
他発				1	構造解析 限界/	状態設計法			構造解析	鉛直	2次元FEMモデル			構造解析	鉛直	-							(解析手法)	
電用原				J	応答解析	-			応答解析	水平鉛直	<u> </u>			応答解析	水平 鉛直	_							(NFの1-CZ) 応答解析: 有効応力解析は柏崎刈羽7号 新規制基準対応工器での共通適用例のあ る解析手法。全応力解析は川内1.2号新規	
炉の脚	非		既工	CEE .	構造解析		-	既工認	構造解析	水平	-		既工認	構造解析	水平	-		既工認	-			(解析手法) 応答解析(有効応 力解析):○	制基準対応工器での共通適用例のある解析手法。	
の附属施設	浸水店 浸水店	貯留堰(No.1), (No.2), (No.3),				THE ALL AND PAY AND	_			鉛直 水平	_			HFAEDIFVI	鉛直 水平	-				建設工認第4回 (3資庁第1003号 3	参考資料5 取水口の耐震性についての計算書	構造解析:× (解析モデル) 応答解析:○	構造序析:3次元静的材料弁線形解析,級 景状態設計法については適用例なし。 (解析モデル) 応答解析:女川2号既工認での共通適用例 取木ビット	_
	渡施設が	(No.4), (No.5), (No.6)	_		応答解析 (有效 (全応	歴応答解析 加応力解析), 5力解析)	_		応答解析	小平 鉛直	2次元FEMモデル	_		応答解析	水平 鉛直	yleigh減衰	_	88 Mir	丁せん断補強工法	成3年6月19日)	参与異作行 m. 1 nt above Verdeban	構造解析:×	のある解析モデル。 構造解析:3次元非線形ソリッドモデルについては適用例なし。 (は確言定数) (は確言定数)	0
	2		今I 工i		限界4	:静的材料非線形解析, 状態設計法 *系の破壊:コンクリート		今回 工認	構造解析	水平	3次元非線形ソリッドモデル		今回 工認	構造解析	水平	-		今回 後施 (セラ 法)	ミックキャップバーエ			後施工せん断補強 工法:×	応答解析: 柏崎刈羽7号新規制基準対応 工器での共通適用例のある減衰定数。 (その他)	
					ずみ、	王縮ひずみ,鉄筋のひ せん断破壊:せん断耐 間間変形角(面内))			HTALIST VI	鉛直	000009444000000000000000000000000000000			HFAEDIFVI	鉛直	-							後施工せん断補強工法:後施工せん断補 強工法(セラミックキャップバー工法)につ いては先行例なし。	
				1	応答解析	-			応答解析	水平	=			応答解析	水平	-								
			既工				1	既工認		鉛直 水平		-	既工認		鉛直 水平			既工認	_				(銀炉毛汁)	
	10	屋外排水路逆流防止 設備 (防潮堤南側(No.1),	_	1	構造解析		_		構造解析	鉛直	-	_		構造解析	鉛直	-	_			_	-	(解析手法) 構造解析:○ (その他)	(東海第二新規制基準対応工器 での共通適用例のある解析手法。 (東海第二) 構内排水路逆流防止設	_
	i	(No.2), (No.3)), (防 潮堤北側)			応答解析	-			応答解析	水平鉛直				応答解析	水平	-						許容応力度法:〇	許容応力度法:東海第二新規制基準対応 工認での共通適用例のある手法。	
	浸		수[그]		構造解析 公式等	等による評価		今回 工認	構造解析	水平	_		今回 工認	構造解析	水平	-		今回 許容	応力度法					
	水防護施				2270	47.4 - 0x - 2/8 BW			H7AE/JF VI	鉛直	-			HFAEDIFVI	鈴直	-								
	施設				応答解析	=			応答解析	水平鉛直		-		応答解析	水平 鉛直	_								
			既工		構造解析	-	1	既工認	構造解析	水平	-		既工認	構造解析	水平	-		既工認	_			(Amac -c M)	(解析手法) 維性ななに、地域等一位は1世界地域で12円	
		補機冷却海水系放水 路逆流防止設備 (No.1), (No.2)	-				_			鉛直 水平		-			鉛直 水平	-	-			_	-	(解析手法) 構造解析:○ (その他) 許容応力度法:○	構造解析:東海第二新規制基準対応工器 での共適適用例のある解析手法。 (東海第二) 様内排水路逆流防止設 開客応力度法:東海第二新規制基準対応 備	-
			쉬		応答解析			今回工認	応答解析	ハー 鉛直	-		今回 工認	応答解析	鉛直	-		今回 許容	応力度法			町谷心川茂街:〇	評容応力度法:東海第二新規制基準対応 工認での共通適用例のある手法。	
			I		構造解析 公式等	等による評価		工認	構造解析	水平	-		工認	構造解析	水平	-		工認 計谷	心刀及伍					
								Ш		鉛直	=		ļ		鉛直	-					1			

										既工認と今回工認との比較									(左欄にて比較し	備考 た自プラントの既工認)		他プラントを含めた既工認での適用を	ij	
評価	 新対象設備	(公式等に。	よる評価,	解析ョ スペクトルモ	手法 モーダル解析, 時刻歴解析他)				解析モデ	'n				減衰定数			(評価条	その他 :件の変更等)			*1			減衰定数の実績
	10 1 J 1 J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	○:同じ●:異なる			相違内容	○:同じ●:異なる		I		1違内容	○:同じ●:異なる			相違内容		○:同じ●:異なる		相違内容	申請回 (認可·届出番号)	工認添付書類名称	○:共通適用例あり□:個別適用例あり※:適用例なし	内容	参照した設備名称	○:構造上の差異なし ※:構造上の差異あり (適用可能であること の理由も記載)
	水密扉(第3号機海水	-:該当なし	工器	解析種別	内容	- :該当なし	工認	解析種別	方向 水平	内容	-:該当なし	工認	解核		内容	-:該当なし	工認	内容						▽>至四も6歳/
	熱交換器建屋海水ボ ンプ設置エリ ア)(No.1),(No.2), 原子			応答解析	_			応答解析	鉛直	_				答解析 鉛直	-									
	炉建屋浸水防止水密 扉(No.1),(No.2),制 御建屋浸水防止水密		既工認	構造解析	_		既工認	構造解析	水平	-		既工說		太平	-		既工認	-				(解析手法) 構造解析:柏崎刈羽7号新規制基準対応		
	扉(No.1), (No.2), (No.3), (No.4), (No.5), 計測制御電	-				-			鉛直 水平		-			鉛直 水平	-	-			_	_	(解析手法) 構造解析:○ (その他)	工記での共通適用例のある解析手法。 (その他) 許容応力度法:柏崎刈羽7号新規制基準	水密扉	-
	源室(B)浸水防止水密 扉(No.3),制御建屋 空調機械(A)字湯水防		今回	応答解析	_		会回	応答解析	鉛直			会回		答解析 鉛直	_		今回				許容応力度法:○	対応工認での共通適用例のある解析手法。		
	止水密扉,制御建屋 空調機械(B)室浸水防 止水密扉,第2号機		工器	構造解析	公式等による評価		今回 工認	構造解析	水平	-		今回 工認		水平	-		工認	許容応力度法						
	MCR浸水防止水密屏								鉛直 水平					鉛直 水平	-									
	浸水防止蓋 (原子炉機器冷却海水 配管ダクト),(揚水井 戸(第2号機海水ポン			応答解析	_			応答解析	鉛直					答解析 鉛直	_									
	プ室防潮壁区画 内)),(揚水井戸(第3		既工認	構造解析	_		既工認	構造解析	水平	_		既工設		水平	-		既工認	_				(解析手法) 構造解析:柏崎刈羽7号新規制基準対応		
	号機海水ポンプ室防 潮壁区画内)),(第3 号機海水熱交換器建	-				-			鉛直 水平		-			鉛直	-	-			-	_	(解析手法) 構造解析:○ (その他)	工器での共通適用例のある解析手法。 (その他) 許容応力度法:柏崎刈羽7号新規制基準	タービン補機冷却用海水 取水槽閉止板	-
	屋海水ポンプ設置エリ ア角落し部),(第3号 機海水熱交換器建屋		ΔП	応答解析	_		An	応答解析	鉛直			- 本同		答解析 鉛直	_		An				許容応力度法:○	対応工認での共通適用例のある解析手 法。		
	海水ポンプ設置エリア 点検用開口 部)(No.1),(No.2), (第2		今回 工認	構造解析	公式等による評価		今回 工認	構造解析	水平	_		今回 工認		水平	-		今回 工認	許容応力度法						
	号機軽油タンクエリア)								鉛直 水平	-			-	鉛直	-									
				応答解析	-			応答解析	· 公直					答解析 鉛直	_									
沙水防			既工認	構造解析	_		既工認	構造解析	水平	_		既工設	-	水平 告解析	-		既工認	_			(解析手法)	(解析手法) 構造解析:東海第二新規制基準対応工認 での共通適用例のある解析手法。		
施設	浸水防止蓋 (第3号機補機冷却海 水系放水ビット)	-				-			鉛直 水平		-		-	鉛直 水平	-	-			_	_	構造解析:○ (解析モデル) 構造解析:○	(解析モデル) 構造解析:東海第二新規制基準対応工認 での共通適用例のある解析モデル。	(東海第二) 海水ポンプ室エリア防護 対象施設	-
そ の 也	7,7,7,0,7,0		会回	応答解析	_		会回	応答解析	鉛直			会回		答解析 鉛直	_		今回				(その他) 許容応力度法:○	(その他) 許容応力度法:東海第二新規制基準対応 工器での共通適用例のある解析手法。	A) WARE	
発 駐 用			今回 工認	構造解析	許容応力度法		今回 工認	構造解析	水平 3	次元フレームモデル(線形)		今回 工認		水平	-		工認	許容応力度法				THE CONTRACTOR PROPERTY IN THE		
京 子 炉									鉛直 水平					鉛直 水平	_									
の 附 属			既工認	応答解析	_		既工認	応答解析	鉛直	=		既工說		答解析 鉛直	-		既工認	_						
施 設	浸水防止 套		00	応力解析	-		00-100	応力解析	水平 鉛直	=		00		力解析 公直	-		00				(1-11)	(解析手法)		
	(第2号機軽油タンクエ リア)	-		応答解析	_	-		応答解析	水平	_	-		広名	水平	-	-			-	_	(解析手法)	公式等による評価は、柏崎刈羽7号新規制 基準対応工認での共通適用例のある解析 手法。	相崎刈羽7号機取水槽閉 止板を参照	-
			今回 工認			-	今回 工認		鉛直 水平	=		今回 工認	1	鉛直 水平	-		今回 工認	-						
				応力解析	公式等による評価			応力解析	鉛直	_			応ス	力解析 鉛直	-									
				応答解析	=			応答解析	水平 鉛直					水平 鉛直	_									
			既工認	応力解析	_		既工認	応力解析	水平	-		既工設		水平	-		既工認	-			(解析手法)	(解析手法) 公式等による評価は、柏崎刈羽7号新規制 基準対応工器での共通適用例のある解析		
	浸水防止壁	-				-			鉛直 水平	=	-			鉛直	-	-			_	-	(解析手法) 〇 (その他)	手法。 (その他)	柏崎刈羽7号機取水槽閉 止板を参照	-
			今回 工認	応答解析	_		今回工認	応答解析	鉛直	-		今回工認		答解析 鉛直	-		今回 工認	許容応力度法			0	許客応力度法は、柏崎刈羽7号新規制基 準対応工認での共通適用例のある評価 法。		
			工総	応力解析	公式等による評価		1.88	応力解析	水平鉛直			1.88		大平 力解析 鉛直	_		工版							
				応答解析	周波数応答解析			応答解析	水平	次元FEMモデル			武力	水平	構造物の減衰5%							(解析手法)		
			既工認	7C-B7FVI	PHASACCETTI		既工認	70-B7FVI	鉛直	000000000000000000000000000000000000000		既工設		鉛直			既工認	-			(解析手法) 応答解析(有効応	応答解析:応答解析:有効応力解析は柏 崎刈羽7号新規制基準対応工認での共通 適用例のある解析手法。全応力解析は川		
非		(応答解析)		構造解析	3次元静的線形解析, 許容応力度法	(応答解析)		構造解析	水平 鉛直	次元線形シェルモデル	(応答解析)		構立	大平 告解析 鉛直	-					参考資料5 取水口の耐震性につ	力解析):○ 応答解析(全応力 解析):○	内1,2号新規制基準対応工認での共通適 用例のある解析手法。 構造解析:3次元静的材料非線形解析,限		
用取	取水口	(構造解析)		応答解析	時刻歷応答解析 (有効応力解析)。	0		応答解析	水平 2	次元FEMモデル	(構造解析)		飲食	水平	Ravleigh減衰	_			建設工認第4回 (3資庁第1003号 成3年6月19日)	平 かての計算書 ※者資料7	構造解析:× (解析モデル)	界状態設計法については適用例なし。 (解析モデル) 構造解析:3次元非線形ソリッドモデルにつ	(柏崎刈羽) 軽油タンク基礎 (川内)	0
設備		● (特/旦所付下)	会同	70-077F91	(全応力解析)	(構造解析)		PU BONEVI	鉛直	CONTRACTOR OF A 1-	(神)百胜何)	소교		鉛直	any magatiph, sx	-	会同	後施工せん断補強工法 (セラミックキャップパーエ 法)		取水路蓋渠漸縮部の 耐震性についての計 算書) 構造解析: × ・ (減衰定数) 応答解析: ○ (その他)	いては適用例なし。 (減衰定数) 応答解析:柏崎刈羽7号新規制基準対応	敢水ビット	
			今回 工認	構造解析	3次元静的材料非線形解析, 限界状態設計法 (曲げ系の破壊:コンクリート		今回 工認	構造解析	水平 3	次元非線形ソリッドモデル		今回 工認		水平 告解析	-		工認	(セラミックキャップバーエ 法)			(その他) 後施工せん断補強 工法:×	工器での共通適用例のある減衰定数。 (その他) 後施丁せん斯浦強丁法:後施丁せん斯浦		
				1件4旦月刊	の主圧縮ひずみ,鉄筋のひ ずみ,せん断破壊:せん断耐 力,層間変形角(面内))			神地門	鉛直	nへ <i>,</i> ルッド <i>雨 IIシ</i> ノンフトモノ <i>I</i> ビ			1993	鉛直	-							強工法(セラミックキャップバー工法)については先行例なし。		

											既工器と今回工器との比較		15.77	7624	, AL 177	* 傳樂物,	T/1 T/2	× -12/1-	117.2.177	1	前考 :自プラントの既工認)		他プラントを含めた既工認での適用例		,座外里安上小悟坦
					解析目	Eit													その他	(左欄にて比較した	:自プラントの既工認)		他ノノンドを占めた統工路での適用を	,	
	評価	i対象設備	(公式等に	よる評価。	スペクトルモ	:-ダル解析, 時刻歴解析他)		ı		解析モ			1	減衰定数				(評価多	その他 条件の変更等)	申請回	工認添付書類名科	*: ○:共通適用例あ	1 2 2 内容	参照した設備名称	減衰定数の実績 ○:構造上の差異なし ※:構造上の差異あり
			○:同じ●:異なる-:該当なし	工認	解析種別	相違内容	○:同じ●:異なる-:該当なし	工認	解析種別	方向	相違内容 内容	○:同じ●:異なる-:該当なし	工認	解析種別	遠内容 方向	内容	○:同じ●:異なる-:該当なし	工認	相違内容	(認可·届出番号)		¹ □:個別適用例あ ×:適用例なし	l) ri-tr	か 無した政権・日本が	(適用可能であること の理由も記載)
\vdash			.px=/4.0	1.50	79-171 (ME 7/1	114	.px=/aC	1.80	79F-171 (19E-01)	水平	F14F	. px = 1/4. C	1.80	79F T/I 19E/T/I	水平	1145	.px=/3.0		116						
					応答解析	周波数応答解析			応答解析	鉛直	2次元FEMモデル			応答解析	鉛直	構造物の減衰5%							(解析手法) 応答解析:川内1,2号新規制基準対応工認		
				既工認	応力解析	線形解析,		既工認	応力解析	水平	フレームモデル(線形)		既工認	応力解析	水平	-	•	既工認	_			(解析手法) 応答解析:○	での共通適用例のある解析手法。 構造解析:川内1,2号新規制基準対応工器		
			(応答解析)		ルンノカキヤ	許容応力度法	(応答解析)		ALSO JAPETI	鉛直	ラレームモ/ /レ(MK/J9)	(応答解析)		ルンノカキヤー	鉛直	-				建設工認第4回	参考資料6	構造解析:○ (解析モデル)	での共通適用例のある解析手法。 (解析モデル) 構造解析:川内1,2号新規制基準対応工認 の共済第四個のなる解析を通過。	(川内)	
	I	取水路(漸拡部)	(構造解析)		応答解析	時刻歴応答解析 (全応力解析)	(構造解析)		応答解析	水平	2次元FEMモデル	(構造解析)		応答解析	水平	構造物の履歴滅 衰, Rayleigh滅衰	-			成3年6月19日)	取水路蓋渠標準部 及び漸拡部の耐震 についての計算書	性 (減衰定数) 応答解析:○	での共通適用例のある解析モデル。 (減衰定数) 応答解析: 柏崎刈羽7号新規制基準対応	成ホビット (柏崎刈羽) 軽油タンク基礎	0
				今回 工認		部材非線形解析。	Ĭ	今回 工認		鉛直			今回		鉛直			今回 工認	後施工せん断補強工法 (セラミックキャップバーエ			(その他) 後施工せん断補引 工法:×	工認での共通適用例のある減衰定数。 (その他)		
				工設	応力解析	限界状態設計法 (曲げ系の破壊:限界層間変		工部	応力解析	水平	フレームモデル(部材非線形)		工認	応力解析	水平	-		工部	法)			-da-gate - 7	後施工せん斯補強工法:後施工せん斯補 強工法(セラミックキャップバー工法)につ いては先行例なし。		
						形角,降伏曲げモーメント, せん断破壊:せん断耐力)				鉛直					鉛直	-									
					応答解析	周波数応答解析			応答解析	水平	-2次元FEMモデル			応答解析	水平	構造物の減衰5%							(解析手法) 応答解析:有効応力解析は柏崎刈羽7号		
その				既工認				既工認		鉛直			既工認		鉛直			既工認	-			(解析手法) 応答解析(有効応	新規制基準対応工認での共通適用例のあ る解析手法。全応力解析は川内1,2号新規 制基準対応工認での共通適用例のある解		
他発電	非		(応答解析)		構造解析	線形解析, 許容応力度法	(応答解析)		構造解析	水平鉛直	フレームモデル(線形)	(応答解析)		構造解析	水平 鉛直							力解析):○ 応答解析(全応力 解析):○	析手法。 構造解析:3次元静的材料非線形解析,限		
用原	用取	取水路(標準部)	(構造解析)			時刻歷応答解析	(構造解析)			水平		(構造解析)			水平	構造物の履歴減	-			建設工認第4回 (3資庁第1003号 平 成3年6月19日)	参考資料6 取水路蓋渠標準部 及び漸拡部の耐震 についての計算書	生し時がモノルノ	界状態設計法については適用例なし。 (解析モデル) 構造解析:3次元非線形ソリッドモデルにつ	(柏崎刈羽) 軽油タンク基礎 (川内)	0
	水設備		(HFJE/HF01)		応答解析	(有効応力解析), (全応力解析)	(18-12-58-17)		応答解析	鉛直	2次元FEMモデル	- (1840.8471)		応答解析	鉛直	衰, Rayleigh減衰			後施工せん断補強工法		についての計算書	() () () () () () () () () () () () () (いては適用例なし。 (減衰定数) 応答解析: 柏崎刈羽7号新規制基準対応	取水ビット	
腕	Deep			今回 工認		3次元静的材料非線形解析, 限界状態設計法 (曲げ系の破壊:コンクリート		今回 工認		水平			今回 工認		水平	-		今回 工認	(セラミックキャップバーエ 法)			(その他) 後施工せん断補引 工法:×	工認での共通適用例のある減衰定数。 (その他)		
設					構造解析	(曲) 赤の板板:コンクリート の主圧縮ひずみ,鉄筋のひ ずみ,せん断破壊:せん断耐			構造解析	鉛直	3次元非線形ソリッドモデル			構造解析	鉛直	_						-da-gate - 7	後施工せん断補強工法:後施工せん断補 強工法(セラミックキャップバー工法)につ いては先行例なし。		
	ŀ					カ)				水平					水平										
				既丁級	応答解析	周波数応答解析		野丁級	応答解析	鉛直	2次元FEMモデル		医丁訳	応答解析	鉛直	構造物の減衰5%		野丁級					(解析手法) 応答解析:川内1,2号新規制基準対応工器 での共通適用例のある解析手法。		
				既上昭	構造解析	3次元静的線形解析,		8年上88	構造解析	水平	3次元線形シェルモデル		SE.T.88	構造解析	水平	_		8年1.88	=			(解析手法) 応答解析:○ 構造解析:×	構造解析:3次元静的材料非線形解析,限 界状態設計法については適用例なし。 (解析モデル)		
			(応答解析)		117423111	許容応力度法	(応答解析)		117-237-01	鉛直		(応答解析)		117523101	鉛直	_				建設工認第4回	. IV-1-2-1-1	(解析モデル)	構造解析:3次元非線形ソリッドモデルについては適用例なし。	(川内) 取水ビット	
	ì	海水ポンプ室	(構造解析)		応答解析	時刻歷応答解析 (全応力解析)	(構造解析)		応答解析	水平 鉛直	2次元FEMモデル	(構造解析)		応答解析	水平鉛直	Rayleigh減衰	-			(3資庁第1003号 平 成3年6月19日)	海水ポンプ室の耐炉 性についての計算	(減衰定数) 応答解析:○ (その他)		(柏崎刈羽) 軽油タンク基礎,軽油タン ク基礎(張出しダクト)	0
			•	今回 工認		3次元静的材料非線形解析,	•	今回 工認				-	今回工認					今回 工認	後施工せん断補強工法 (セラミックキャップバーエ			後施工せん断補引 工法:× 部材の増厚補強コ	(その他)(各施工サム斯舗強工法・各施工サム斯舗	ク 告報 (
				工認	構造解析	限界状態設計法 (曲げ系の破壊:コンクリート の主圧縮ひずみ,鉄筋のひ		工認	構造解析	水平	3次元非線形ソリッドモデル		工認	構造解析	水平			工認	法) 部材の増厚補強工事			事:〇	いては先行例なし。 部材の増厚補強工事:柏崎刈羽7号新規制		
						ずみ, せん断破壊: せん断耐 力, 層間変形角(面内))				鉛直					鉛直	-							基準対応工認で共通適用例のある補強工 法。		
					応答解析				応答解析	水平	-			応答解析	水平	-							(解析手法)		
				既工認	心容所切			既工認	ルン会が刊り	鉛直	=		既工認	心合併初	鉛直	-		既工認	_			(解析手法)	応答解析, 構造解析: 東海第二新規制基 準対応工認での共通適用例のある解析手		
					構造解析	_			構造解析	水平	=			構造解析	水平							応答解析:○ 構造解析:○ (解析モデル)	広。 (解析モデル) 応答解析:東海第二新規制基準対応工認	(東海第二)	
	ŀ	ドレーン	-				-			鉛直 水平	_	-			鉛直 水平	_	-			-	-	応答解析:○ 構造解析:○	での共通適用例のある解析モデル。 構造解析:東海第二新規制基準対応工認 での共通適用例のある解析モデル。		0
					応答解析	時刻歷応答解析 (全応力解析)			応答解析	小十 鉛直	1次元地盤モデル			応答解析	小十 鉛直	Rayleigh滅衰						(減衰定数) 応答解析:○ (その他)	(減衰定数) 広答解析: 東海第二新規制基準対応下認		
地				今回 工認		線形解析,		今回 工認		水平	2次元FEMモデル,フレームモデル(線		今回 工認		水平	-		今回 工認	許容応力度法			許容応力度法:○	での共通適用例のある減衰定数。 (その他) 許容応力度法:東海第二新規制基準対応		
水位低下					構造解析	許容応力度法			構造解析	鉛直	形)			構造解析	鉛直	-	•						工認での共通適用例のある手法。		
低下設	Ī				応答解析	_			応答解析	水平	_			応答解析	水平	-							(解析手法)		
備				既工認			1	既工認		鉛直	_	-	既工認		鉛直	-		既工認	=			(解析手法)	応答解析:東海第二新規制基準対応工認 での共通適用例のある解析手法。		
					構造解析	-			構造解析	水平 鉛直	_	+		構造解析	水平鉛直							応答解析:〇 構造解析:〇 (解析モデル)	構造解析:東海第二新規制基準対応工認 での共通適用例のある解析手法。 (解析モデル)	(東海第二)	
	Ŷ	接続桝	-			時刻歴応答解析	-			水平	_	-			水平		-			-	-	応答解析:○ (減衰定数)	応答解析:東海第二新規制基準対応工認	原子炉建屋地下排水設 備集水管	0
				今回	応答解析	時刻歴応答解析 (全応力解析)		今回	応答解析	鉛直	1次元地盤モデル		今回	応答解析	鉛直	Rayleigh減衰		今回				応答解析:○ (その他) 許容応力度法:○	応答解析:東海第二新規制基準対応工認 での共通適用例のある減衰定数。		
				今回 工認	構造解析	公式等による評価		工認	構造解析	水平	_	1	今回 工認	構造解析	水平	-		今回 工認	許容応力度法				(その他) 許容応力度法:東海第二新規制基準対応 工認での共通適用例のある手法。		
					16-JEMPT	シャケーチャーケージを下回			THE ALL PROT	鉛直	_			神・星がで	鉛直	-									

												// 1-12/0/	EX	9E-3X	(Æ10)	• 悔染物,	E/1 E 9	5 II / N	丹坦707		備考 た自プラントの既工認)			J-0 (建物・傳染物	, 25, 12, 25, 17,
					解析手	2法				解析モデル	既工器と今回工器との比較			油膏字:	iu.				その他 :件の変更等)	(左欄にて比較し	た自プラントの既工認)		他プラントを含めた既工認での適用を	1	
評	価対象設備		○:同じ ○: 異なる		スペクトルモ	:-ダル解析, 時刻歴解析他) 相違内容	○:同じ●:異なる		I	相迫	拿内容	○:同じ ●:異なる		+	1違内容		○:同じ●:異なる		相違内容	申請回 (認可・届出番号)	工認添付書類名称	*1 〇:共通適用例あり □:個別適用例あり ×:適用例なし	内容	参照した設備名称	減衰定数の実績 ○:構造上の差異なし ×:構造上の差異あり (適用可能であること の理由も記載)
			:該当なし	工部 既工部	解析種別 応答解析 構造解析	内容 — —	-:該当なし	既工認	解析種別 応答解析 構造解析	方向 水平 鉛直 水平 鉛直	内容 - - - -	-:該当なし	工部 既工部	解析種別 応答解析 構造解析	方向 水平 鉛直 水平	内容 - - -	-:該当なし	工認 既工認	内容			(解析手法) 応答解析:〇 構造解析:〇 (解析モデル)	(解析手法) (解析手法) に答解析, 構造解析: 実施第二新規制基 準約に工窓での共適適用例のある解析手 法: (解析モデル) に答解析: 実施第二新規制基準対応工器 での共適適用例のある解析手での共適適用例のある解析手の共適適用例のある解析手供	(東海第二)	
	揚水井戸		_	今回工認	応答解析	時刻歷応答解析 (有効応力解析), (全応力解析) (全応力解析) 線形解析, 許容応力度法		今回工認	応答解析構造解析	水平 鉛直	ー ス元FEMモデル ス元FEMモデル,フレームモデル(線	_	今回工認	応答解析構造解析	水平 鉛直 水平		_	今回工認	許容応力度法		-	応答解析:〇 構造解析:〇 (減衰定数) 応答解析:〇 (その他) 許容応力度法:〇	ての共通適用例のある解析でアル。 構造解析、実施第二条規则基準対応工程 での共通適用例のある解析でデル。 (減費定数) 広答解析、接海第二新規制基準対応工程 での共通適用例のある減衰を数、 (その他) 非常応力度法・東海第二新規制基準対応 工程での共通適用例のある非対応 工程での共通適用例のある手法。	SA用部水ビット取水店 原子炉運産地下排水設 備排水シャフト	0
	敷地ビット	担側集水 ト(北側)	_	既工認。	応答解析 構造解析 応答解析	周波数応答解析		既工認 今回 工認	応答解析 構造解析 応答解析	鉛直	- - - - に元地盤モデル	_	既工認 今回認	応答解析 構造解析 応答解析	水平 鉛直 水平 鉛直 水平		_	既工認 今回 工認	-	_	-	(解析手法) 応答解析:○ (解析形:○ (解析形:○ (解析形:○ (滅養症数) 応答解析:○	(解析子法) 広答解析:女川2号機工認での共通適用例 成答解析:女川2号機工認での共通 適用例のから解析子法, (解析子が)。 位常解析:英原第二素規制基準対応工設 での共適適用例のある解析子法。 (取析を利用のある解析子法)。 は高解析が、指導利別のである解析子が、 は無対象が、 は解析が、 は解析が、 は解析を が、 は解析を が、 は のよう は に を解析子が、 に を解析子が、 に を解析・ が、 に を解析子が、 に を解析・ が、 に を解析子が、 に を解析子が、 に を解析・ で のよう に を解析・ で のよう に に に に に に に に に に に に に	(女川) 原子炉機器冷却海水配 管ダクト (柏崎刈羽) 軽油タンク基礎 (東海第二) SA用海水ビット取水塔 原子恒津駅地下地水路	0
地下水位低下設備		也側集水	_	既工認・	構造解析 応答解析 構造解析	線形解析,許容応力度法	_	既工認	構造解析 応答解析 構造解析	水平 鉛直 水平 鉛直 水平 鉛直	ー トームモデル(線形) - トーカー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー		既工認	構造解析 応答解析 構造解析	水平 鉛直 水平 鉛直 水平	- - - - -		既工認	-			(解析手法) 応答解析:○ 構造解析:○ 構造形でデル)	のある演賞定集。 (解析手法) に答解析:女川2号機工謎での共適適用例 めた5億新年法 構造解析: 指線(現著6.7号度工謎での共通 通用例のある物件手法。 に答解析: 紫海第二新規配達対立工謎 での共通通用例のある物件で子法。	(女川) 原子炉機器冷却海水配 管ダクト	0
	ピット	ト(南側)		今回工認	応答解析	周波数応答解析 線形解析, 限界状態設計法 (曲げ系の破壊:曲げ耐力, セル断破壊:セル断耐力)		今回工認	応答解析構造解析	鉛直 水平	√元地盤モデル √一ムモデル(線形) √一ムモデル(線形) √一点・ボール・ボール・ボール・ボール・ボール・ボール・ボール・ボール・ボール・ボール		今回工認	応答解析構造解析	水平 鉛直 水平 鉛直	地盤の減衰定数		今回工認	-			応答解析:○ 構造解析:○ (減衰定数) 応答解析:○	での共通適用例のある解析モデル。 構造解析:指線の羽の1号度工器での共通 適用例のかる解析モデル。 (減衰定数) 応答解析: 坎川2号既工器での共通適用例 のある減衰定数。	SA用海水ビット取水塔 原子炉建屋地下排水設	
	(防治	排水路 潮堤横 折部)	_	既工認	応答解析	-		既工認	応答解析	鉛直 水平 鉛直 水平	- - -	_	既工認	応答解析構造解析	水平 鉛直 水平 鉛直	- - -		既工認	-	_	_	(解析手法) 応答解析:○ 構造解析:× (解析モデル) 応答解析:○ 構造解析:○	(解析手法) 広答解析: 全応力解析は川内1,2号新規制 基準対応工器での共通適用例のある解析 手法。 構造解析: 限界状態設計法については適 用例なた。 (解析モデル) 応答解析, 標定解析: 女川2号既工器での 定答解析, 積流解析: 女川2号既工器での	(川内) 取水ビット (女川) 原子炉機器冷却海水配 管ダクト	0
				今回工認	応答解析	時刻歷応答解析 (全応力解析) 限界状態設計法		今回工部	応答解析構造解析	発直 2次 発直 水平 2次 発直	v元FEMモデル v元FEMモデル		今回工認	応答解析構造解析	鉛直 水平 鉛直	Rayleigh滅衰 — —		今回工認	-			無垣所刊:○ (減衰定数) 応答解析:○	応告権制、構造所制、気がに方は、主動での 共通適用例のある解析モデル。 (減衰定数) 応答解析・拍輪刈羽7号新規制基準対応 工認での共通適用例のある減衰定数。	経油タンク基礎	
				既工認	応答解析	時刻歷解析		既工認	応答解析	水平 SR= ○ /	選手でル】 ・ 多軸原則多質点系モデル 互作用】 モデル 株平方向 環底面 実施が下にッタンス理論に基づき底面ばね 平、回転力を俘循 ー		既工認	応答解析	水平	コンクリート:5% 鋼材:2% 基礎底面ばね:振 動アドミッタンス理 輸に基づき JEAC4601-1991 の近似法で評価		既工認	非線形解析 (基礎浮上9非線形, 復元 力特性)	ē		(解析モデル)	(解析モデル) (窓を終わ・パンコレー・ジョン解析等に基づく		
間接支持構造物	原子炉地屋耐震壁		0	今回工器	応答解析	時刻歷解析	•	今回工認	応答解析	水平 水平 (RR (SR (SR (A) (基 (公 (金) (名 (名 (20) (20	第キアル 1 ※ 多様は本き質点系モデル に分様は本き質点系モデル 原作用 1 に作用 1 に対すた。 は一般的では、一般的では、 は一般的では、 は一般的では、 には、 には、 には、 には、 には、 には、 には、 に		今回工器	応答解析		コンクリート: 5% 解析: 2% 基礎底面はは: 振動アドミックンス理 動アドミックンス理 場合(4601–1991 の近似法で評価	•	今回工認	非線形解析 (基礎浮上り非線形、復元 力特性) 新膜神強工事の内容を反 映、創旗壁・鉄骨ブレースの 直設)	地設工認第1回 (元資7第2015号 1989年6月8日)	IV-2-6 「原子炉格納施設の 耐製性についての計 算書」	広客解析(初期剛 性): × 広客解析(周辺地 盤による低減効 ・限: ○ 広客解析(床の柔 (その他) 耐養補強工事: ×	応答解析・ジェルー・コル解析等に基べ が期解性の保証によび接減多果の考慮に呼入 別辺地壁によび接減多果の考慮に呼入 別は、指線の所でデル、 適用側のから解析モデル、 は、少心号が原土型での表達の についませから が成立した。 が成立した。 がは、 がは、 がは、 がは、 がは、 がは、 がは、 がは、	(柏崎/利羽) 同じ政権(を無限 (女川) タービン 建屋	-

										既工認と今回工認との比較										着考 :自プラントの既工認		他プラントを含めた既工認での適用化	ij	
評価対象設備		(公式等に	よる評価。	解析ミスペクトルモ	手法 モーダル解析, 時刻歴解析他)				解析モ	デル			減衰定	ά			(評価:	その他 条件の変更等)			*1			減衰定数の実績
計劃利率収入開		〇:同じ			相違内容	〇:同じ				相違内容	〇:同じ		†	違内容		〇:同じ		相違内容	申請回 (認可·届出番号)	工認添付書類名和	○:共通適用例あり	内容	参照した設備名称	○:構造上の差異な※:構造上の差異な(適用可能であるこ
	-	●:異なる一:該当なし	工器	解析種別	内容	●:異なる一:該当なし	工認	解析種別	方向	内容	●:異なる-:該当なし		解析種別	方向	内容	●:異なる一:該当なし	工認	内容			×:適用例なし			の理由も記載)
			既工認	応力解析	原子炉建屋の地震応答解析 結果を用いた静的応力解析		既工認	応力解析	水平	3次元FEMモデル		既工認	応力解析	水平	-		既工認	線形解析						
原子炉建屋基礎版	l l	0				0			鉛直 水平		-			鉛直 水平	-	•		非線形解析	建設工認第1回 (元資庁第2015号	IV-1-4 「原子炉格納施設の 非沸に関する説明	(その他)非線形解析:○	(その他) 非線形解析: 柏崎刈羽7号新規制基準対	同じ設備を参照	_
			今回 工認	応力解析	原子炉建屋の地震応答解析 結果を用いた静的応力解析	Ť	今回 工認	応力解析	鉛直	3次元FEMモデル		今回 工認	応力解析	鉛直	-		今回 工認	基準地震動Ssに対して は、材料(コンクリート,鉄 筋)の非線形特性を考慮し た弾塑性解析を実施。	1989年6月8日)	書」	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	応工器での共通適用例のある手法。		
				-to this from to-				-1-25-57-17	水平	-			ala del fra le	水平	-			7. 押型注解例を失能。				(解析手法)		
			既工認	応答解析	_		既工認	応答解析	鉛直	-		既工認	応答解析	鉛直	-		既工認	_			(解析手法) 応答解析:〇	応答解析:川内1,2号新規制基準対応工器 での共通適用例のある解析手法。 応力解析:川内1,2号新規制基準対応工器		
		(応答解析)		応力解析	静的応力解析	(応答解析))	応力解析	水平鉛直	2次元フレームモデル	(応答解析:)	応力解析	水平鉛直	_				建設工認第1回	IV-2-6	応力解析:○ (解析モデル)	での共通適用例のある解析手法。 (解析モデル) 応答解析, 応力解析:シミュレーション解析		
原子炉建屋 屋根トラス		(応力解析)		応答解析	原子炉建屋の地震応答解析 結果を用いた時刻歴応答解 は		,			3次元FEMモデル(オペフロより上部の架 標をモデル化)	_		応答解析	水平鉛直	コンクリート:5% 鋼材:2%	•		非線形解析 基準地震動Ssに対して は、材料 (鉄骨)の非線形	(元資庁第2015号 1989年6月8日)	「原子炉格納施設の 耐震性についての 算書」	から 応力解析: × (減衰定数) 応答解析: ○ (その他)	応合序析、応力解析:シミュレーション解析 等に基づく初期剛性の採用は適用例なし。 (減衰定数) 応答解析:川内1.2号新規制基準対応工器 での共通適用例のある減衰定数。		0
			今回 工認		01		今回 工認	応答解析 応力解析		上記モデル構築にあたっては、平成23年 (2011年)東北地方太平洋地震の観測記		今回 工認		水平	_		今回 工認	特性を考慮した弾塑性解析 を実施。 耐震補強工事の内容を反	ř		非線形解析:○ 耐震補強工事:×	(その他) 非線形解析:川内1,2号新規制基準対応工 認での共通適用例のある手法。		
				応力解析	部材応力評価				鉛直	(初期剛性の補正)を反映している。			応力解析	鉛直	-			映(耐震壁・鉄骨ブレースの 追設)				耐震補強工事:耐震補強工事の反映は適 用例なし。		
			既工認	応答解析	時刻歷解析		既工認	応答解析	水平鉛直	【雄屋モデル】 本平二軸参質点系モデル 【相互作用】 SRモデル 〇木平方向 基礎底面 :接動アドミッタンス理論に基づき底面 [江太(水平,回転)を評価		既工認	応答解析	水平	コンクリート: 5% 基礎底面ばね: 振 動アドミッタンス理 動に基づき JEAG4601-1991 の近似法で評価		既工認	非線形解析 (基礎浮上9非線形,復元 力特性)	3					
制御建星耐繁壁		0	今回	応答解析	時刻態解析	•	今回工器	応答解析	水平	【建物モデル】 水平多敏球系多質点系モデル 前面:1軸多質点系モデル 同面:1軸多質点系モデル (相互作用】 SRモデル (大東方向 基礎語で、シケンス理論に基づき底面 ・接動下に、シケンス理論に基づき底面 ・上記モデル解薬にあたっては、平成23 年(2011中)東北地方大平洋地震の報酬 の無はためくエレーションで得かれた知 及り別酬性の補正、床の来性)を反映 している。①、見		今回工器	応答解析	水平	コンクリート: 5% 基礎底面(ヹね: 振動) ドミックンス理 動 ドミックと ファ 山 EAG-4601 1991 の 近似法で評価	0	今回工器	非線形解析 (基礎序上り非線形、復元 力特性)	地設工部 第2回	IV-2-4 「制御建屋の耐寮性 についての計算書	性):×	(解析モデル) 応答解析:シミュレーション解析等に基づ 成功期間かり採用についてに適用例とし、 成の家性から進江。女化な今度工設でで 大適適用的のかる解析モデル。	タービン連星	_
			既工認	応力解析	制御建屋の地震応答解析系 果を用いた静的応力解析	i:	既工認	応力解析	水平鉛直	3次元FEMモデル		既工認	応力解析	水平鉛直	-		既工認	線形解析		W 2.4		(20th)		
制御建屋基礎版		0	今回	応力解析	制御建屋の地震応答解析系	0	今回	応力解析	水平	3次元FEMモデル	-	今回	応力解析	水平	-	•	今回	非線形解析 基準地震動Ssに対して は、材料(コンクリート、鉄	建設工認 第2回	N-2-4 「制御建屋の耐震性 についての計算書	性 (その他) 非線形解析:○	(その他) 非線形解析: 柏崎刈羽7号新規制基準対 応工器での共通適用例のある手法。	原子炉建屋基礎版	_
			工器	2022/04/01	果を用いた静的応力解析		工認	SUSSIMUI .	鉛直			工認	-0.7701701	鉛直	-		工認	筋)の非線形特性を考慮し た弾塑性解析を実施。						

										既工認と今回工認との比較							(工作時度物)	(doday) www.lades	備考 た自プラントの既工認)		他プラントを含めた既工認での適用例	
421	価対象設備	(公式等に	こよる評価。	解析手スペクトルモ	法 -ダル解析, 時刻歴解析他)				解析モ	デル			減衰定	ty .			その他 (評価条件の変更等)	(XEMMIC CIUNXC	こ日 フ ノン 下り 84 工 86)	ak 1		減衰定数の実績
AT I	III / 1 小 (X (III)	○:同じ●:異なる			相違内容	○:同じ●:異なる				相違内容	○:同じ●:異なる		Ħ	建内容		○:同じ ●:異かる	相違内容	申請回 (認可・届出番号)	工認添付書類名称	○:共通適用例あり□:個別適用例あり×:適用例なし	内容参照した設備名称	○:構造上の差異なし ×:構造上の差異あり (適用可能であること の理由も記載)
		-:該当なし	工認	解析種別	内容	-:該当なし	工認	解析種別	方向	内容	-:該当なし	工認	解析種別	方向	内容	-:該当なし	工認 内容					の埋田も記載)
			既工認	応答解析	時刻歷解析		既工認	応答解析	水平鉛直	条平、1場を賞点系モデル 【相互作用】 記代モデル のような は最かできる。 は最かできるシャンス理論に基づき底面はな (水平、1時間) の、水平方面 当、水平方面 当、水平方面 当、水平方面 当、水平方面 が、平地変動と基礎度面に直接入力		既工認	応答解析	3	コンクリート: 5% 基礎底面ばね: 振 動アドミッタンス理 輸に基づき JEAG4601-1991 の近似法で評価		非線形解析 既工部 (基端浮上り非線形、復元 力特性)	3				
									鉛直	【建物モデル】 水平:1軸多質点系モデル				鉛直								
	第3号標海水熱交換器建盤	0	今回工部	応答解析	時刻歷解析	•	今回工器	応答解析	水平	粉蔵、1場を賞点系モデル 旧版作用) に取作用う が発生デル の水平方向 の水平方向 が表現光面を存施 の粉度方向と呼称 にありたり、カース型施に基づき底面はねる (分成方向)を呼称 が成功を発生 にあります。 が成功を表現を が成功を表す。 (2014年) 東北市が大学が地震でありませた。 (2014年) 東北市が大学が地震でありませた。 が成功が表現れたが、では、平成立年 (2014年) 東北市が大学が地震でありませた。 の地に入り、地震でかく様々にかたっては、平成立年 の地に入り、大学が大学が地震でありませた。 が、またが、大学が地震でありませた。 が、またが、大学が地震でありませた。 が、またが、大学が地震が、地域にあり、 が、またが、大学が地震が、地域にあり、 が、またが、大学が地震が、地域にあり、 が、またが、大学が地震が、地域にあり、 が、またが、大学が地震が、地域にあり、 が、またが、 が、またが、 の地域にあり、 が、 の地域にあり、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは		今回工部	応答解析	鉛直	コンクリート:5% 基礎底面ばね:接 動下ドンクシン理 能に基づき JEAC4601-1991 の近似法で評価	0	今回 岸線形解析 【基礎幹上り非線形、復元 力物性】	3号炉建設工認第4回回	の耐震性についての	(辞好モデル) 近答解析(初期期間 性):メ 近答解析(間辺地 盤による低減効 果):〇	(場所モデル) 応答解析:ベスルーション解析等に基づ 初期解析の採用については適用解化し。 原子が建立の表別の表別の表別の表別の表別の表別の表別の表別の表別の表別の表別の表別の表別の	-
			既工認	応答解析	時刻歷応答解析		既工認	応答解析	水平鉛直	質点系モデル(SRモデル) -		既工認	応答解析	水平 鉛直	ひずみエネル ギー比例型減衰		既工認 —				(解析手法)	
間接支		(応答解析)) Dt.T.88	応力解析	排気筒(基礎)の地震応答解 析結果を用いた静的応力解	(応答解析)	既工総	応力解析	水平鉛質	2次元FEMモデル	(応答解析)	既上総	構造解析	水平	-		院上85 一	丁事計而届出	IV-1-2 排気筒の耐震性及び	(解析手法) 応答解析:〇	応答解析:川内1,2号新規制基準対応工器 での共通適用例のある解析手法。 (解析モデル) (解析モデル) (解析モデル)	
持構造物	排気筒基礎	● (応力解析) ○)	応答解析	時刻歷応答解析(全応力解 析)	(応力解析)		応答解析	水平	2次元FEMモデル	(応力解析)		応答解析	松直	Rayleigh減衰	-		工事計画庙出 東北電土火第1号 (平成21年7月31日	短及に関する町昇音 W/	(解析モデル) 応答解析:○ 応力解析:× (減衰定数) 応答解析:○	応答解析: 女川2号既工認での共通適用例 のある解析モデル。 な川) 海水ボンブ宝 流が解析・3次元線形ソリッドモデルについ (柏崎刈羽) 軽曲タンタ基礎	0
			今回 工認	応力解析	排気筒(基礎)の地震応答解 析結果を用いた静的応力解		今回 工認	応力解析	鉛直 水平	-3次元線形ソリッドモデル	_	今回 工認	構造解析	鉛直 水平	-		今回 工認 —			心合併刊.〇	(株長生級) 応答解析: 拍崎利羽7号新規制基準対応 工器での共通適用例のある減衰定数。	
				3C>3/1FV1	析			AL-27/14-01	鉛直 水平	OUTURNITY TO THE			HF423FVI	鉛直 水平	-						(脾析+)法) 応答解析:在答解析:有効応柏崎刈羽7号	
			既工認	応答解析	周波数応答解析		既工認	応答解析	鉛直	2次元FEMモデル		既工認	応答解析	鉛直	構造物の減衰5%		既工認 —			(解析手法) 応答解析(有効応	新規制基準対応工器での共通適用例のある解析手法。全応力解析は川内1,2号新規制基準対応工器での共通適用例のある解	
		(応答解析)		構造解析	3次元静的線形解析, 許容応力度法	(応答解析)		構造解析	水平鉛直	3次元線形シェルモデル	(応答解析)		構造解析	水平 鉛直	-			- 建設工認第4回		解析):○ 構造解析:×	所手法。 構造解析:3次元静的材料非線形解析, 限 界状態設計法については適用例なし。 (解析モデル) (解析モデル) (解析モデル)	
	第3号機海水ポンプ室	(応力解析))	応答解析	時刻歷応答解析 (有効応力解析)。 (全応力解析)	(構造解析) ●		応答解析	水平鉛直	2次元FEMモデル	● (応力解析) 一		応答解析	水平 鉛直	Rayleigh減衰	-		(東北電原第33号 平成9年8月12日)	参考資料4 海水ポンプ室の耐震 性についての計算書	(減衰定数) 応答解析:○	構造解析:3次元非線形ソリッドモデルにつ 地では適用例なし、 (減衰を数) 応答解形: 柏崎刈羽7号新規制基準対応 工器での共通適用例のある減衰定数。	0
			今回 工器	構造解析	3次元静的材料非線形解析, 限界状態設計法 (曲げ系の破壊:コンクリート の主圧縮ひずみ、鉄筋のひ		今回 工認	構造解析	水平	3次元非線形ソリッドモデル		今回 工認	構造解析	水平	-		今回 工認 法) 部材の増厚補強工事			(その他) 後施工せん断補強 工法:× 部材の増厚補強工 事:○	(その他) 後施工せん斯補強工法:後施工せん斯補 強工法(セラミックキャップバー工法)につ いては先行例なし。	
					ずみ, せん断破壊: せん断耐 力, 層間変形角(面内))				鉛直					鉛直	-						部材の増厚補強工事:柏崎刈羽7号新規制 基準対応工認で共通適用例のある補強工 注	
			既工認	応答解析	周波数応答解析		既工認	応答解析	水平鉛直	2次元FEMモデル		既工認	応答解析	水平 鉛直	構造物の減衰5%		既工認 —				(解析手法) 応答解析:川内1,2号新規制基準対応工器 マカサ海湾中間のちょを解析エ社	
		(応答解析))	構造解析	線形解析, 許容応力度法	(応答解析)	- HO	構造解析	水平鉛直	フレームモデル (線形)	(応答解析)	50	構造解析	水平鉛直	-			建設工認第4回	IV-1-2-1-2		いっかが、パロ12を分かびの必か、エルマ での共通適用例のある解析手法。 構造解析:川内1.2号新規制基準対応工器 での共通適用例のある解析手法。 (解析モデル) 環急等形と、川内1.2号新規制基準がドエフ28	
	原子炉機器冷却海水 配管ダクト(水平部)	(応力解析))	応答解析	時刻歷応答解析 (全応力解析)	(構造解析)		応答解析	水平鉛直	2次元FEMモデル	(応力解析)		応答解析	水平鉛直	構造物の履歴減 衰, Rayleigh減衰	-		(3資庁第1003号 成3年6月19日)	平原子炉機器冷却海 水配管ダクトの耐震 性についての計算書	応答解析:○ (その他)	(川内) 標治年所・川内1.2号景規制基準対応工認 での美通適用例める海新モデル。 (被疾定数) 応答解的・柏崎刈羽7号新規制基準対応 正認の共通適用例のある被変定数。	0
			今回工認	構造解析	部材非線形解析, 限界状態設計法 (曲げ系の破壊:限界層間変 形角,降伏曲げモーメント, せん断破壊:せん断耐力)		今回 工認	構造解析	水平	フレームモデル(部材非線形)		今回 工認	構造解析	水平鉛直	-		今回 工認 (セラミックキャップバー工 法)			後施工せん断補強 工法:×	上版: (ツ央地路川野ツルの東東正 級。 (その他) 後 施工 せん斯 補強工法: 後 施工 せん 斯補 独工法(セラン・クキャップバー工法) につ いては先行例なし。	

								既工認と今回工認との比較		/E/X							備考		他プラントを含めた既工認での適用例	
			解析手	E-法			ATT LE				Shirtrata	ar.			その他	(左欄にて比較	した自プラントの既工認)		EN NOTE TO LEGITIES CONSTITUT	
ř	平価対象設備	(公式等による評価	, スペクトルモ	:-ダル解析, 時刻歴解析他)			用戶	モデル			減衰定				(評価条件の変更等)	申請回	工認添付書類名称	*1 ○:共通適用例あり	内容 参照した設備名称	減衰定数の実績 ○:構造上の差異なし >・標準トの差異なり
		○:同じ ●:異なる -:該当なし 工部	1	相違内容 内容	○:同じ●:異なる-:該当なし	工認	解析種別 方向	相違内容	○:同じ●:異なる-:該当なし	工認	解析種別	方向	内容	○:同じ●:異なる-:該当なし	相違内容 工認 内容	(認可・届出番号	(2)	□:個別適用例あり※:適用例なし	1 th	※:構造上の差異あり (適用可能であること の理由も記載)
			用针打性的 加	MA	M34U	1.85	が 水三	I MA	RX =1/1. U		用年付T 包里为U	水平	næ	px=/4.C	T86 1/149					
		既工認	応答解析	周波数応答解析		既工認	応答解析	2次元FEMモデル		既工認	応答解析		物の減衰5%		既工認 —			(解析手法)	(解析手法) 応答解析:川内1,2号新規制基準対応工器 での共適適用例のある解析手法。 構造解析:川内1,2号新規制基準対応工器	
		(応答解析)	構造解析	線形解析, 許容応力度法	(応答解析)		構造解析 鉛油	Z フレームモデル(線形)	(応答解析)		構造解析	水平 鉛直	-			建設工認第4回	IV-1-2-1-2	応答解析:○ 構造解析:○ (解析モデル) 構造解析:○	での共通適用例のある解析手法。 (解析モデル) 構造解析:川内1.2号新規制基準対応工器 (川内)	
	原子炉機器冷却海水 配管ダクト(鉛直部)	(応力解析)	応答解析	時刻歷応答解析 (全応力解析)	(構造解析)		応答解析 松雪	2次元FEMモデル	(応力解析)		応答解析		物の履歴滅 tayleigh滅衰	-	後施工せん断補強工	(3資庁第1003号 成3年6月19日)	平 原子炉機器冷却海 水配管ダクトの耐震 性についての計算書	(減衰定数) 応答解析:○ (その他) 後施工せん断補強	版教定数) 応答解析: 柏崎刈羽7号新規制基準対応 工設での共通適用例のある演教定数。 (子の他)	0
		今回工認	構造解析	部材非線形解析, 限界状態設計法 (曲げ系の破壊:限界層間変		今回 工認	株造解析	フレームモデル(部材非線形)		今回 工認	構造解析	水平	-		今回 (セラミックキャップバ・ 工器 法) 鋼材による補強工事	T		工法:× 鋼材による補強工 事:×	後施工せん断補強工法:後施工せん断補 強工法(セラシックキャンプバー工法)につ いては先行例なし。 鋼材による補強工事:鋼材による補強工事	
				形角,限界ひずみ,せん断 破壊:せん断耐力)			给II 水平					鉛直 水平	-						については先行例なし。	
			応答解析	-			応答解析 鉛油				応答解析	鉛直	-						(解析手法) 応答解析:川内1,2号新規制基準対応工認	
		既工認	構造解析	_		既工認	構造解析	_		既工認	構造解析	水平	-		既工認 —			(解析手法) 応答解析:○	での共通適用例のある解析手法。 構造解析:3次元静的材料非線形解析, 限 界状態設計法については適用例なし。 (川内)	
			1851018501				鉛圖	-			19-12/9-71	鉛直	-					構造解析:× (解析モデル) 応答解析:○	(解析モデル) 応答解析:女川2号既工認での共通適用例 (カ川)	
	軽油タンク室	-	応答解析	時刻歴応答解析 (全応力解析)			応答解析 松雪	2次元FEMモデル	_		応答解析	水平 Raylei 鉛直	eigh滅衰	-		_	_	応告解析:○ (減衰定数) 応答解析:○ (その他)	構造解析: 柏崎刈羽7号新規制基準対応 工認での共通適用例のある解析モデル。 (減衰定数) (減衰定数) 常設代替交流電源設備	0
		今回 工認	構造解析	3次元静的材料非線形解析, 限界状態設計法 (曲げ系の破壊:コンクリート		今回 工認	株造解析	Z 3次元非線形シェルモデル		今回 工認	構造解析	水平	-		今回 後施工せん断補強工 工認 (セラミックキャップバ・ 法)			後施工せん断補強 T法・×	N-会件的: 土田県川州17南新泉町造半界州 工設での大連適用側のある減衰定数 (その他) 後施工せん斯補強工法: 後施工せん斯補 強工法(セラミックキャップバー工法)につ	
			1842/1971	の主圧縮ひずみ,鉄筋のひ ずみ,せん断破壊:せん断耐 力,層間変形角(面内))			19-12-19-10 鉛II				195,12,55571	鉛直	-						強工法(セラミックキャップバー工法)につ いては先行例なし。	
			応答解析	_			応答解析				応答解析	水平鉛直	_						(解析手法) 応答解析:川内1,2号新規制基準対応工認	
間接		既工認				既工認	水平			既工認	1	水平	-		既工認 一			(解析手法)	での共通適用例のある解析手法。 構造解析: 女川2号既工認での共通適用例	
支 持 構	軽油タンク室(H)	_	構造解析	-	_		構造解析		_		構造解析	鉛直	-	_		_	_	応答解析:○ 構造解析:○ (解析モデル) 広答解析:○	のある解析手法。 (解析干デル) 応答解析: 女川2号既工認での共通適用例 のある解析干デル	0
物物		今回 工認	応答解析	時刻歷応答解析 (全応力解析)		今回 工認	応答解析 鉛調	2次元FEMモデル		今回工認	応答解析	水平 Raylei 鉛直	eigh滅衰		今回 _			構造解析:○ (減衰定数) 応答解析:○	のある解析モデル。 様強解析、シ川2号既工認での共通適用例 のある解析モデル。 (減衰定数) 医治タンク基礎 応答解析・拍輪刈羽7号新規制基準対応	
		工認	構造解析	3次元静的線形解析, 許容応力度法		工認	構造解析 鉛油	Z 3次元線形シェルモデル		工認	構造解析	水平鉛直	-		工認				工器での共通適用例のある減衰定数。	
			応答解析	_			水 ³ 応答解析	_			応答解析	水平	-							
		既工認				既工認	鉛細			既工認		鉛直	-		既工認 —				(解析手法) 応答解析:川内1,2号新規制基準対応工認	
			構造解析	_			構造解析		_		構造解析	水平 鉛直	_					(解析手法) 応答解析:○	での共通適用例のある解析手法。 構造解析:川内1,2号新規制基準対応工器 (川内) での共通適用例のある解析手法。 取水ビット	
	軽油タンク連絡ダクト	-	応答解析	時刻歷応答解析 (全応力解析)	_		応答解析 水平	Z 2次元FEMモデル	-		応答解析	水平 構造物	物の履歴滅 tayleigh滅衰	-		_	-	構造解析:○ (解析モデル) 応答解析:○ 構造解析:○ (減衰定数)	(解析モデル) 応答解析: 女川2号既工認での共通適用例 のある解析モデル。 備資料が、川内1.2号新規制基準対応工認(和輸刈羽)	0
		今回 工認		部材非線形解析, 限界状態設計法		今回 工認	给ii 水平	Z.		今回 工認		鉛直 X, Ne	-		今回 工認 —			応答解析:○	での共通適用例のある解析モデル。 (減衰定数) 応答解析: 柏崎刈羽7号新規制基準対応	
			構造解析	限界状態設計伝 (曲げ系の破壊:限界層間変 形角,限界ひずみ,せん断 破壊:せん断耐力)			構造解析	フレームモデル(部材非線形)			構造解析	鉛直	-						工認での共通適用例のある減衰定数。	
			応答解析	周波数応答解析			応答解析 鉛脂	2次元FEMモデル			応答解析	水平 構造彩 鉛直	物の減衰5%						(解析手法)	
		(応答解析)	構造解析	線形解析, 許容応力度法	(応答解析)	既工認	横造解析	フレームモデル(線形)	(応答解析)	既工認	構造解析	水平鉛直	-		既工認 —		IV-2-2-1-1	応答解析(全応力	に答解形: 有効に力解析: 杜崎刈羽7号 新規制基準対応工器での共通適用例のあ る解析手法。全応力解析: 山内1.2号新規 制基準対応工器での共通適用例のある解 析手法。	
	排気筒連絡ダクト(土 砂部)	(応力解析)	応答解析	時刻歷応答解析 (有効応力解析), (全応力解析)	(構造解析) ●		水 ^工 応答解析 鉛ii	Z 2次元FEMモデル	(応力解析)		応答解析	水平構造物	物の履歴滅 tayleigh滅衰	-		建設工認第5回 (3資庁第10518号 平成4年1月13日	排気筒連絡ダクトの	解析):〇 標造解析:〇 (解析モデル) 応答解析:〇 標造解析:〇	構造解析:川内1,2号新規制基準対応工認 での共通適用例のある解析手法。 (解析モデル) 構造解析:川内1,2号新規制基準対応工認	0
		今回 工認	構造解析	部材非線形解析, 限界状態設計法 (曲げ系の破壊:限界層間変 形角,限界ひずみ, せん断 破壊:せん断耐力)		今回 工認	株造解析 给证	フレームモデル(部材非線形)		今回 工認	構造解析	水平鉛直	-		今回 工認			(減衰定数) 応答解析:○	での共通適用例のある解析モデル。 (減衰定数) に必称解・計・制・利等7号新規制基準対応 工器での共通適用例のある減衰定数。	

							既工器と今回工器との比較								(左欄にて比較):	備考 た自プラントの既工認)		他プラントを含めた既工認での適用	[8]			
	n for all the one side	(小才等にFA評価	解析手法 面,スペクトルモーダル解析,時刻歴解析他)			解析书	デル			減衰定	数		その他 (評価条件の)	(変更等)	Carinia Caraco	CH2 / V 1 -20C T-90/	± 1			減衰定数の実績		
H	P価対象設備	O:同じ	相違内容	0:同じ			相違内容	0:同じ		1	1違内容	0:同じ		相違内容	申請回 (認可・届出番号)	工認添付書類名称		内容	参照した設備名称	○:構造上の差異なし※:構造上の差異あり(適用可能であること		
		●: 異なる -: 該当なし 工認	解析種別 内容	●:異なる一:該当なし	工認	解析種別 方向	内容	●:異なる -:該当なし	工認	解析種別	方向 内容	●:異なる一:該当なし	工認	内容			×:適用例なし			の理由も記載)		
		EF T 28	応答解析 周波数応答解析		DF (AD	水平 応答解析 鉛直	-2次元FEMモデル		777 PV	応答解析	水平 構造物の減衰5% 鉛直							(解析手法) 応答解析:川内1.2号新規制基準対応工器 (川内) 応答解析:川内1.2号新規制基準対応工器 (川内) 成と2 (機度性数) 応答解析: 柏崎内別7.5新規制基準対応 ・起発で力を適適用何のある解析を放 ・起発で力を適適用のある解析を放 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・				
	排気筒連絡ダクト(岩	(応答解析)	海选解析 線形解析, 許容応力度法		既工認	構造解析 鉛直	フレームモデル (線形)	(応答解析)	既工認	構造解析	水平 一		既工認	-	建設工認第5回 —(3資庁第10518号 平成4年1月13日)	IV-2-2-1-1 排気筒連絡ダクトの 耐震性についての計 算書	(解析手法) 応答解析:○ (減衰定数) 応答解析:○		男 (川内)			
	盤部)	(構造解析)	応答解析 時刻歴応答解析 (全応力解析)	0		水平 応答解析 鉛直	2次元FEMモデル	(応力解析)		応答解析	水平 Rayleigh減衰 鉛直	_	今回						(柏崎刈羽)	0		
		工部	構造解析 線形解析, 許容応力度法		今回 工認	構造解析 鉛直	フレームモデル(線形)		今回工認	構造解析	水平 一		工認	_								
			応答解析 -			水平 応答解析 鉛直	-			応答解析	水平 一							(解析手法) 大學紀年, 川西1 2号年相相其準分大工等	17			
	出口側集水ビット(屋 外排水路逆端防止設 備 (防側堤南側))	既工設	構造解析		既工認	構造解析 松平 鉛直	-		既工認	構造解析	水平 一		既工認	二部 —			(解析手法) 応答解析:○ 構造解析:○ (解析モデル)	比答解析・川内12号景規制基準対応工設 の共適適用例から解析干法。 構造解析・拍輪列羽の7号度工器での共適 週用例から影解析・注。 【版料エデル) に溶解析・文加2号度工設での共適適用例 のかる解析・デル。 報意解析・文加2号度工設での共適適用例 (公内) 海域大学 (大学 (大学 (大学 (大学 (大学 (大学 (大学 (大学 (大学 (1 (川内) 取水ビット			
		- 今回	応答解析 時刻歴応答解析 (全応力解析)		今回	水平 応答解析 鉛直	2次元FEMモデル	_	今回	応答解析	水平 鉛直	_	今回		_	_	応答解析:○ 応力解析:○ (減衰定数) 応答解析:○		明 軽油タンク基礎 明 (女川) 海水ポンプ室	0		
		工部	構造解析 3次元静的線形解析, 許容応力度法		今回 工器	構造解析 鉛直	- 3次元線形シェルモデル		今回 工認	構造解析	水平 — 鉛直 —		工器	_								
	田口側集水ビット(屋 外排水路逆線防止設 値(防測堤北側))	既工部	応答解析 —		既工認	応答解析 始直	-		既工認	応答解析	水平 — 鉛直 —	-	既工認	_		-	応合解析:○ 構造解析:○ (解析モデル) 応答解析:○	(解析干法) 広答解析: 柏崎 利羽7号新規制基準対応 工設での共適適用例のある解析干法。 精造解析: 柏崎 利別5月等工 医空 マウ共通 (経済所 十 中級 所干法。 (経済所 大 中級 所干法。 (経済所 大 中級 所干法。 (経済所 大 中級				
間接支持		_	構造解析	_	00-10	構造解析 鉛直	-			構造解析	水平 — 鉛直 —								(柏崎刈羽)	0		
構造物		今回 工認	応答解析 時刻歷応答解析 (有効応力解析)		今回工認	応答解析 - 公直	2次元FEMモデル			応答解析	水平 Rayleigh減衰 鉛直		今回 工級	_								
		1.85	構造解析 3次元静的線形解析, 許容応力度法		1.85	構造解析 水平 鉛直	- 3次元線形シェルモデル		1.85	構造解析	水平 — 鉛直 —		1.85									
		既工說	応答解析 —		既工認	応答解析 松平 鉛直	· –	既工認一	応答解析	水平 一		既工認 —				(解析手法) 広答解析、構造解析: 東海第二新規制基 準対応工認での共通適用例のある解析手						
	揚水井戸(第3号機海 水ボンブ室防測壁区	_	構造解析 —			構造解析 鉛直	-	_		構造解析 -	水平 - 鉛直 -	_			_	_	応答解析:〇 構造解析:〇 (解析モデル) 応答解析:〇 構造解析:〇	法。 (解析モデル) 応答解析・東海第二新規制基準対応工器 (東海第二) での共通監視例のある解析モデル。 構造解析・東海第二条規制基準対応工器 原子炉建配地・デポース (原本・デオース)		0		
	画内)	今回 工認	応答解析 時刻歴応答解析 (全応力解析)		今回工認	応答解析 公直	1次元地盤モデル	-	今回工認	応答解析	水平 Rayleigh減衰 鉛直		今回工認	-			(減衰定数) 応答解析:○ (その他) 許容応力度法:○	での共通適用例のある解析モデル。 (減衰定数) 応答解析:東海第二新規制基準対応工認 での共通適用例のある減衰定数。 (その他) 許容応力度法:東海第二新規制基準対応				
			標造解析 許容応力度法			構造解析 鉛直	2次元FEMモデル, フレームモデル (線形)			構造解析	水平 - 鉛直 -							工器での共通適用例のある手法。				
		既工額	応答解析 —		既工認	水平 鉛直	-		既工認	応答解析	水平 - 鉛直 - 水平 -		既工認	-			(解析手法) 広黎解析:○	(解析手法) 応答解析:川内1.2号新規制基準対応工認 での共通適用例のある解析手法。 構造解析:東海第二新規制基準対応工認				
	第3号機補機冷却海水 系放水ビット	_	構造解析 —			株平 報造解析 鉛直 水平	-			構造解析	水平 — 鉛直 — 水平				_	-	構造解析:○ (解析モデル) 応答解析:○ 構造解析:○	での共通適用例のある解析手法。 (解析モデル) に答解析:東海第二新規制基準対応工認 での共通適用例のある解析モデル。 構造解析:東海第二新規制基準対応工認	(東海第二) 常設代替高圧電源装置	0		
		今回 工認	応答解析 時刻歴応答解析 (全応力解析)		今回工認	応答解析 鉛直 水平	- 2次元FEMモデル	-	今回工認	応答解析	和 和 和 和 和 和 和 和 一		今回 許容	芯力度法			(減衰定数) 応答解析:○ (その他) 許容応力度法:○	での大連適割用約つから解析モデル。 (減衰定数) 応答解析、実指第二級規則基準対応工設 での大連適用例のから減衰定数 (その他) 新春な力度比・東海第二新規制基準対応 工設での大連適用例のから手佐。				
			構造解析 許容応力度法			構造解析鉛直	フレームモデル(線形)			T.認 構造解析	鉛直 一											

										既工認と今回工認との比較								(左欄にて比較し	備考 た自プラントの既工認)		他プラントを含めた既工認での適用例	J	
22-	評価対象設備		解析手法 (公式等による評価、スペクトルモーダル解析、時刻歴解析他)					解析モデル					減衰定	ģ.			その他 (評価条件の変更等)			*1			減衰定数の実績
н	BH / CL 1/2- HA IND	○:同じ●:異なる			相違内容			相違內容			○:同じ●:異なる		Ħ	相違内容		O:同じ	相違内容	申請回 (認可·届出番号	工認添付書類名称	*1 ○:共通適用例あり □:個別適用例あり ×:適用例なし	内容	参照した設備名称	減衰定数の実績 ○:構造上の差異なし ※:構造上の差異あり (適用可能であること
		●: 異なる -:該当なし エ	188	解析種別	内容	●: 異なる -: 該当な	こし工部	解析種別 :	方向	内容	●:異なる一:該当なし	工認	解析種別	方向	内容	●:異なる一:該当なし	工認 内容			へ.適用かなし			の理由も記載)
	タービン塘屋	既コ	工部	応答解析 時	刻歷解析		既工認	応答解析	水平 (建陸エテル】 米干・多様球素多質点系モデル 採在手用 設在デカー 放化デカー 素磁を涵 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		既工認	応答解析	水平 責	コンクリート: 5% 瞬材: 2% 基礎底面 ばね: 振 助アドミッタンス理 論に基づき [EAG4601-1991 の近似法で評価		非線形解析 既工認 (基礎浮上9非線形, 復 力特性)	n.					
		O 숙 고	1回部	応答解析 時	刘陞解析	•	今回工部	応答解析 —	水平 【200	連座モデル1 東京・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・	ža	今回 応答	応答解析	\$ 3 B	ンクリート: 5% 移材: 2% 硬底面 ばね: 接 ヴドミックンス理 に基づき AC4601-1991 近似法で評価	O	今回 非線形解析 (基礎得上9非線形、像 力較性)	建設工器 第2回	書」	盤による仏滅効		(柏崎刈羽) 原子炉建屋	-
	補助ポイラー建屋	既コ	工認	応答解析	-		既工認	応答解析 -	水平 鉛直	-		既工認	-	-	-		既工認 —			(ABAC-CAL)	(解析手法) 応答解析:女川2号既工認での共通適用例		
		- 今 エ	· 回 :認	応答解析 時	1億屋モデル	今回 非線形解析 工器 (復元力特性)	-		(解析事法) 応答解析:○ (解析平デル) 応答解析:○ (減衰定数) 応答解析:○ (その他) 非線形解析:○	のある解析手法 (場解モデル) 広答解析: 女川以号既工認での共通適用例 のある解析モデル。 (複数定数) (複数定数) (複数定数) (本の解析: 女川以号既工認での共通適用例 (その他) (その他) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (本ou) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	0												
波及的影響に係る	第1号機制胂嗪量	既コ	工認	5 広答解析 時刻燃解析 応答解析 時刻燃解析		既工認	応答解析	水平 (建壁モデル 水平: 純多質点系モデル 相互作用 おモデル カボデカ向 基礎底面 : 底面は北の水平はおはバルカン式、回転 式わはチモシェンコズにて評価		既工認 今回 工部	応答解析	水平 5	コンクリート:5%	· 板堰型	既工認 線形解析			(解析モデル) に容解析(初期剛 に含解析(初期剛 に登解析(中の楽 性):〇 に容解析(中の楽 はね):〇 (減衰定数) に必称析(中の楽 はなる (本の地) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	地盤ばねの算定方法は、女川2号既工認 原 での共通適用例のある解析モデル。 (5	(柏崎刈羽) 原子が建屋 (次川) タービン建屋,原子炉建 屋		
○設備		O \$	/回		•	今回工部	応答解析 —	水平	- 「建物モデル」 東学・参輔末主参賞点系モデル 開在 毎月 設定デル 大平方向 基度施設でシウンス理論に基づき返面ばれ 大平 15年)と呼音 が発 15年) が発 15年) 近 15年 (15年) 大平 15年)と呼音 が設立方の 上記モデル機能にかっては、平成23年 上記モデル機能にかっては、平成23年 にといて、15年 (15年) に対して、15年 (15年) に対して、15年 (15年) (154)	ta.		応答解析	水平	コンクリート: 5% 基礎底面ばれ: 接 動ドミックンス理 論に基づき IEAC4601-1991 の近似法で評価		今回 非線形解析 (基礎性上5)非線形、後 力物性)	in	参考資料—2 「制即建量の強度計算書」				0	
		既コ	T.EE	応答解析 応力解析	-		既工認	応答解析 :	水平 鉛直 水平	- - -		既工認・	応答解析 応力解析	水平 鉛直 水平	- - -		既工認 —						-
	原子炉ウェルカバー	-	+			_			鉛直 水平	_	-			鉛直 水平	-	-		-	-	(解析手法) 応力解析:○	(解析手法) 応力解析:柏崎刈羽7号新規制基準対応 工認での共通適用例のある解析手法。	同じ設備を参照	
		今 工	·回 :認	応答解析	的応力解析		今回工認	応力解析	鉛直 水平 鉛直	- - -		今回 工認	応答解析	鉛直 水平 鉛直	- - -		今回 工認				- Augustivities		
			工器	応答解析 時 応力解析 部	刻歷応答解析 材応力評価		既工認	応答解析 応力解析		賞点系モデル (SRモデル)		既工認	応答解析		ンずみエネル ギー比例型減衰 -		既工認 —	1号炉建設工部 等	N-2-29 排気筒の耐震性につ				
	第1号機排気筒	〇 今 工	·回 :認	応答解析 時 応力解析 部	刻歴応答解析 材応力評価	0	今回工認	応答解析 応力解析	水平 鉛直	質点系モデル(SRモデル)	0	今回 工認	応答解析	水平できる。	ひずみエネル ギー比例型減衰	_	今回		が 排気筒の耐震性についての計算書	_	_	-	-

									既工認と今回工認との比較								(左欄にて比較した	備考 と自プラントの既工認)		他プラントを含めた既工認での適用例	
27 f	評価対象設備		る評価,	解析手スペクトルモ・	法 -ダル解析, 時刻歴解析他)		解析モデル 減衰定数 その他 (評価条件の変更等)										*1		減衰定数の実績 ○:構造上の差異なし		
			○:同じ●:異なる 相違内容日達内容日本						相違内容	○:同じ●:異なる			相違内容	○:同じ■:異かる	相違内容		申請回 (認可·届出番号)	工認添付書類名称	○:共通適用例あり□:個別適用例あり×:適用例なし	り 内容 参照した設備名称	×:構造上の差異あり (適用可能であること
	1	-:該当なし 工認		解析種別	内容	●: 異なる一: 該当なし	工認	解析種別 方向	内容	-:該当なし	工認	解析種別	方向 内容	-:該当な	工認 内容						の理由も記載)
			既工認 -	応答解析	_		既工認	応答解析 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		 	既工認	応答解析	水平 - 鉛直 -	-	既工認 —					(解析手法) 広答解析: 拍崎 刈羽7号新規制基準対応 工器での共適適用例のある解析手法。 精造解析・美成9号新規基準対応工器で 製油用例のある解析手法。 (解析モデル・ (探析モデル・	0
			M-T-80	構造解析	-		84.180	構造解析 鉛直			84.180	構造解析	水平 一		86.1.80				(解析手法) 応答解析:○ 構造解析:□		
	前面護岸			応答解析	時刻歷応答解析 (有効応力解析)	_		水平応答解析	2次元FEMモデル	-		応答解析	水平 Rayleigh減衰	_			-	_	(解析モデル) 応答解析:○ 構造解析:○ (減衰定数)	応答解析: 女川2号既工認での共通適用例 防瀬堤地盤改良部 のある解析モデル。 横造解析: 女川2号既工認での共通適用例 原子炉機器冷却海水配 のある解析モデル。 管ダクト	
			今回 工認	構造解析	すべり安全率による評価		今回 工認	鉛直 水平 構造解析	2次元FEMモデル		今回 工認	構造解析	新直 水平 -		今回工認 _				応答解析:○	でのの場所でする。 (域装定数) 広答解析: 柏崎刈羽7号新規制基準対応 工認での共通適用例のある被変定数。	
				1174271111	7 734211100011111			鉛直 水平				117527111	鉛直 - 水平								
			既工認 -	応答解析	周波数応答解析		既工認	応答解析	2次元FEMモデル		既工認	応答解析	構造物の減衰5% 鉛直		既工認 —				(解析手法)	(解析手法) 応答解析: 拍崎刈羽7号新規制基準対応 工認での共通適用例のある解析手法。 構造解析: 川内1,2号新規制基準対応工認	
	第1号機取水路	(応答解析)		構造解析	線形解析, 許容応力度法	(応答解析)		構造解析	フレームモデル (線形)	(応答解析)	今回工認	構造解析	水平 — — — — — — — — — — — — — — — — — — —	_			建設工認第4回 (東北電原第33号	参考資料3 取水路蓋渠標準部 及び漸拡部の耐震性 についての計算書	応答解析:○ 構造解析:○ (解析モデル) 構造解析:○ 生 (被験定数) 応答解析:○ (その他) 後施工せん断補強 工法:×	での共通適用例のある解析手法。 (解析モデル) 構造解析:川内1.2号新規制基準対応工器 (和崎刈羽) 軽油タンク基礎	0
	201 - 7 DE45/VEI	(応力解析)	今回	応答解析	時刻歷応答解析 (有効応力解析)		A回	水平 応答解析 鉛直	──2次元FEMモデル			応答解析	水平 構造物の履歴滅 衰, Rayleigh滅衰		今回後施工せん断補強	強工法	平成9年8月12日)			(減衰定数) (川内) 取水ビット で答解析: 柏崎刈羽7号新規制基準対応	0
			工器	構造解析	節材非線形解析, 限界状態設計法 (曲げ系の破壊:層間変形 角,せん断破壊:せん断耐		今回 工認	構造解析 水平	フレームモデル(部材非線形)			構造解析	水平 一		今回 工器 法)	プバーエ					
				応答解析	周波数応答解析			松直 水平 応答解析	2次元FEMモデル			応答解析	鉛直 - 水平 構造物の減衰5%						(解析手法) 応答解析(有効応 力解解析(全応力 解析):○ (解析デデル) (構造解モデル) (機能を数) (複数定数) (応答解析:○ (後数定数)	(解析手法) 広答解析:有効応力解析は柏峻川羽7号 新規制基準対応工設での共通適開例のあ る解析手法。在方解析は1月12号新規 耐基準対位工設での共通適開例のある解析 研究が表現が、1月12号報規制基準対立工認 (場所をデカー) (場所をデカー) (議院を第一) (表院を第一) (表述を第一) (表述を	
			既工認 -	#5:55-6745 線形	線形解析。		既工認	鉛直 水平	フレームモデル(線形)		既工認		か正	-	既工認 —						
	第3号機取水路	(応答解析)		構造解析	許容応力度法 時刻歴応答解析	(応答解析)		構造解析 鉛直 水平	(Fi	(応答解析)		構造解析	鉛直 - 水平	_			建設工認第4回 (東北龍原第33号 平成9年8月12日)				0
artr		(応力解析)	今回	応答解析	(有効応力解析), (全応力解析)	(構造解析)	今回	応答解析 鉛直		(応力解析)	今回 工認	応答解析	小十 構造物の履歴滅 賽, Rayleigh減衰 鉛直		今回 後施工せん断補効	強工法	T/((37-0/) 12 H)				
成及的影響に			今回工認	構造解析	部材非線形解析, 限界状態設計法 (曲げ系の破壊:限界層間変 形角,降伏曲げモーズント, せん断破壊:せん断耐力)		今回工認	構造解析 鉛直	フレームモデル(部材非線形)		上認	構造解析	水平 — 鉛直 —		上認 (E)	//			後施工せん斯補強 工法:×		
に係る設備	北側排水路			応答解析	-			応答解析 松平 鉛直	-		応答解析	水平 一							(解析手法) 六物部化、价值对30万元在相加矿物分六		
***			既工認	構造解析	_		既工認	株造解析		1	既工認	「認 株当	水平 -		既工認 —			-	(解析手法) 応答解析:○ 構造解析:○ (解答解析:○ (解答解析:○ (演答解析:○ (演奏定数) 応答解析:○	応答解析: 柏崎県河7号新規制基準対応 工能での共通適用例のある解析: 手法、 機造條所: 女川2号度工設での共通適用例 のある解析: デル2号度工設での共通適用例 のある解析: ケル。 (解析モデル) 応答解析: 女川2号度工設での共通適用例 のある解析モデル。 機造條所: 女川2号度工設での共通適用例 のある解析モデル。 (後責を定) 応答解析: 指韓川3号費工設での共通適用例 でグラト に落発析: 指韓川3円号所規制基準対応 工設での共通適用例のある減食性故	
		_		応答解析	時刻歷応答解析	-		鉛直 水平 応答解析	ー 2次元FEMモデル			応答解析	鉛直 水平 Rayleigh滅衰	-			-				0
			今回 工認		(有効応力解析) 線形解析,	1	今回 工認	鉛直 水平			今回 工認		鉛直 水平 −		今回 工部 —						
				構造解析	許容応力度法			構造解析 鉛直 水平				構造解析	鉛直 - 水平								
		1	既工認 -	応答解析	-		既工認	応答解析			既工認	応答解析	鉛直		既工認 —				(American)	(解析手法) 応答解析: 柏崎刈羽7号新規制基準対応 工器での共通適用例のある解析手法。	
	アクセスルート(防潮堤	_		構造解析	-	_		構造解析 鉛直	-			構造解析	水平 鉛直				_	_	(解析手法) 応答解析:○ 構造解析:□ (解析モデル)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
	(盛土堤防))		今回	応答解析	時刻歷応答解析 (有効応力解析)		会同	応答解析 -	2次元FEMモデル		会同	応答解析	水平 鉛直 Rayleigh減衰		今回				応答解析:○ 構造解析:○ (減衰定数) 応答解析:○	NA (中部: 外川2 今風上級との大通瀬田町 財研定地温以及即のある解析モデル。 構造解析: 女川2 号既工認での共通適用例 原子炉機器冷却海水配 管ダクト (減験定数)	
			工器	構造解析	すべり安全率による評価		今回 工認	構造解析 松平 鉛直			今回 工認	構造解析	水平		工認 —					(政策定級) 応答解析: 柏崎川羽7号新規制基準対応 工認での共通適用例のある減衰定数。	
				応答解析	-			水平 応答解析	-			応答解析	水平							(解析手法)	
		1	既工認	構造解析	_	-	既工認	鉛直 水平 構造解析	_		既工認	構造解析	鉛直 水平	-	既工認 —				心台所切	いた容解析: 柏崎刈羽7号新規制基準対応 工設での共適適用例のある解析手法。 構造解析: 川内1,2号新規制基準対応工認 での共適適用例のある解析手法。 極油タンク基礎	
	防護設備(防潮堤(鋼 管式鉛直壁))	-		応答解析	時刻壓応答解析	_		鉛直 水平 応答解析		-		応答解析	给直 水平 Rayleigh減衰	_	今回 工器 一		_	-	構造解析:○ (解析モデル) 応答解析:○ 構造解析:○ (減衰定数)	での共通適開例のある解析手法。 (解析モデル・ (解析モデル・ (解析モデル・ (解析・ (原析・ (原析・ (解析・ (解析・ (解析・ (解析・ (解析・ (解析・ (解析・ (解	Ō
			今回 工認		(有効応力解析) 許容応力度法		今回 工認	鉛直 水平			今回 工認		Ship Rayleigh演装 鉛直 水平	-							
				構造解析 限界状態設計法(終局耐	限界状態設計法(終局耐力, 変形量(指標として塑性率))			構造解析鉛直	フレームモデル(線形)			構造解析	鉛直							14-50、マンス血癌用が17/8万線表定数。	