| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

VI－3－別添 3－2－11 津波監視設備の強度計算書

2021年11月
東北電力株式会社

VI－3－別添3－2－11－1 取水ピット水位計の強度計算書

VI－3－別添 3－2－11－1 取水ピット水位計の強度計算書

目次

1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2.3 評価方針 4
2.4 適用規格•基準等 5
2.5 記号の説明 6
2.6 計算精度と数値の丸め方 8
3．評価部位 9
4．固有周期 9
4． 1 固有値解析方法 9
4．2 解析モデル及び諸元 9
4．3 固有値解析結果 9
5．構造強度評価 10
5.1 構造強度評価方法 10
5.2 荷重の組合せ及び許容応力 10
5.3 設計用地震力 12
5.4 計算方法 13
5.5 計算条件 18
5.6 応力の評価 18
6．評価結果 19
6.1 設計基準対象施設としての評価結果 19

1．概要

本計算書は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に基づ き，津波監視設備のらち取水ピット水位計の主要な構造部材が，津波荷重及び余震を考慮した荷重に対し，十分な構造強度を有していることについて説明するものである。

2．一般事項

2.1 配置概要

津波監視設備の配置図を図2－1 に示す。

（敷地全体図）

（拡大図：海水ポンプ室）

図 2－1 津波監視設備配置図
2．2 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
取水ピット水位計のバ ブラー管の上部は溶接に より検出器取付座（以下，フランジという。） に固定され，フランジは取付ボルトで固定され る。バブラー管の下部は取付治具で保護管に固定 される。保護管を固定す るサポートは取水ピット内壁面に基礎ボルトで固定される。	バブラー管 保護管サポート部 - 保護管 - 取付治具 －サポート	【取水ピット水位計】 上面図（ $\mathrm{A}-\mathrm{A}$ 断面） 拡大図（フランジ部詳細） （単位：mm）

2．3 評価方針

取水ピット水位計の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，応力評価 により実施する。応力評価では，取水ピット水位計の評価部位に作用する応力等が許容限界以下であることを「5．1 構造強度評価方法」に示す方法により，「5．5 計算条件」に示す評価条件を用いて評価し，「6．評価結果」にて確認する。

取水ピット水位計の強度評価フローを図 2－2 に示す。取水ピット水位計の強度評価において は，その構造を踏まえ，津波及び余震に伴う荷重の作用方向及び伝達過程を考慮し，評価部位 を設定する。強度評価に用いる荷重及び荷重の組合せは，津波に伴う荷重作用時（以下，「津波時」という。）及び津波に伴う荷重と余震に伴う荷重の作用時（以下，「重畳時」という。）を考慮し，評価される最大荷重を設定する。重畳時における余震荷重は，添付書類「VI－3－別添 3－1津波への配慮が必要な施設の強度計算の方針」に示す津波荷重との重畳を考慮する弾性設計用地震動 S d による地震力とする。余震荷重の設定に当たつては，弾性設計用地震動 S d を入力 して得られた設置床の最大応答加速度の最大値を考慮して設定した設計震度を用いる。

図 2－2 取水ピット水位計の強度評価フロー

2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1•補－1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）
（5）港湾の施設の技術上の基準•同解説

記 号	記 号 の 説 明	単 位
A_{b}	取付ボルトの軸断面積	mm^{2}
A_{f}	隣接する取付ボルト間の断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
d	取付ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F_{b}	取付ボルトに作用する引張力（1本当たり）	N
F x	取付ボルト及びフランジに作用する力（X方向）	N
F_{Y}	取付ボルト及びフランジに作用する力（Y方向）	N
F_{z}	取付ボルト及びフランジに作用する力（Z方向）	N
$f_{\text {s b }}$	せん断力のみを受ける取付ボルトの許容せん断応力	MPa
$f_{\text {S f }}$	フランジの許容せん断応力	MPa
f_{t} 。	引張力のみを受ける取付ボルトの許容引張応力	MPa
$f_{\mathrm{t} \text { s }}$	引張力とせん断力を同時に受ける取付ボルトの許容引張応力	MPa
$f_{\text {b f }}$	フランジの許容曲げ応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
ℓ_{1}	M_{x} によって取付ボルトにせん断力が発生する場合の取付ボルトとフラ ンジ中心との距離	mm
ℓ_{2}	M_{z} によって取付ボルトにせん断力が発生する場合の取付ボルトとフラ ンジ中心との距離	mm
$\ell_{\text {f } 1}$	取付ボルトと対角の取付ボルトとの距離	mm
$\ell_{\text {f } 2}$	隣接する取付ボルト間の距離	mm
M_{X}	取付ボルト及びフランジに作用するモーメント（X軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	取付ボルト及びフランジに作用するモーメント（Y軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{z}	取付ボルト及びフランジに作用するモーメント（ Z 軸周り ）	$\mathrm{N} \cdot \mathrm{mm}$
M_{f}	フランジに作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{m}_{\text {a }}$	バブラー管の質量	kg
n	取付ボルトの本数	－
n x	M_{X} の引張力に耐えうる取付ボルトの本数	－
n_{z}	M_{Z} の引張力に耐えうる取付ボルトの本数	－
Q_{b}	取付ボルトに作用するせん断力	N
Q_{f}	フランジに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{R} T)$	設計•建設規格 付録材料図表 Part5 表8に定める材料の $40^{\circ} \mathrm{C}$ におけ る値	MPa

	記 号	記 号 の 説 明	単 位
	π	円周率	－
	$\sigma \mathrm{tb}$	ボルトに生じる引張応力	MPa
	$\sigma \mathrm{bf}$	フランジに生じる曲げ応力	MPa
	$\tau \mathrm{b}$	ボルトに生じるせん断応力	MPa
	$\tau{ }_{\text {f }}$	フランジに生じるせん断応力	MPa
	P t	バブラー管据付フランジに作用する突き上げ津波荷重	N
	Al	突き上げ津波荷重及び静水頭圧を受けるフランジの面積	m^{2}
	ρ	海水の密度	$\mathrm{kg} / \mathrm{m}^{3}$
	T_{h}	入力津波高さ	m
	h	津波最大到達レベル	m
	z	評価対象部位のレベル	m
\bigcirc	Cd	抗力係数	－
$\stackrel{\square}{\square}$	U	フランジに作用する流速（上昇方向）	m／s
－	D	フランジの直径	mm
$\stackrel{1}{\square}$	t	フランジの厚さ	mm
N	Z f	フランジの断面係数	mm^{3}

2.6 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
本資料で表示する数値の丸め方は，表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位＊1
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位＊3

注記＊1：設計上定める値が小数点第 1 位以下の場合は，小数点以下第 1 位表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とす る。

3．評価部位

取水ピット水位計の構造強度評価は，「2．2 構造計画」にて設定している構造を踏まえて，津波に伴ら荷重の作用方向及び伝達過程を考慮し設定する。

津波時は，取水ピットからの突き上げ津波荷重がフランジ，取付ボルトに作用する。重畳時は，余震による慣性力がバブラー管に，取水ピットからの突き上げ津波荷重及び余震による慣性力が フランジ，取付ボルトに作用する。

構造強度評価においては，強度評価上厳しくなるフランジ部分の部材としてフランジ及びフラ ンジの取付ボルトを選定する。評価部位については，表 2－1 の構造計画に示す。

4．固有周期

4． 1 固有値解析方法
取水ピット水位計の固有値解析方法を以下に示す。
（1）取水ピット水位計は，「4．2 解析モデル及び諸元」に示す三次元はりモデルを用いる。

4．2 解析モデル及び諸元

取水ピット水位計の解析モデルの概要を以下に示す。
また，機器の諸元を本計算書の【取水ピット水位計の強度についての計算結果】のその他の機器要目に示す。
（1）バブラー管を支持する保護管サポート部は，添付資料「VI－2－10－2－13－2 取水ピット水位計の耐震性についての計算書」の「3．保護管サポート部」にて解析モデルを示 しており，「3．4．3 固有値解析結果」にて剛であることを確認している。
（2）バブラー管の解析モデルは，添付資料「VI－2－10－2－13－2 取水ピット水位計の耐震性 についての計算書」の「4．バブラー管」の解析モデルとする。

4．3 固有値解析結果

固有値解析結果は，添付資料「VI－2－10－2－13－2 取水ピット水位計の耐震性についての計算書」の「4．バブラー管」の解析モデルに示しており，固有周期は 0.05 秒以下であり剛であ ることを確認した。

5．構造強度評価

5.1 構造強度評価方法

（1）地震力は，取水ピット水位計に対して，水平方向及び鉛直方向から同時に作用するもの とする。
（2）取水ピット水位計のフランジ部に突き上げ津波荷重を付与する。
（3）強度計算に用いる寸法は，公称値を使用する。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ
強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．1 荷重及び荷重の組合せ」に示す荷重及び荷重の組合せを用いる。取水ピット水位計の荷重の組合せを表 5－1 に示す。

5．2．2 許容応力
取水ピット水位計の許容応力は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設 の強度計算の方針」の「4．2 許容限界」にて設定している許容応力に基づき表5－2 のとお りとする。

5．2．3 使用材料の許容応力評価条件
取水ピット水位計の使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用 いるものを表 5－3 に示す。

表 5－1 荷重の組合せ

施設区分	機器名称	荷重の組合せ＊1，＊2
浸水防護施設 （津波監視設備）	取水ピット水位計	

注記＊1：Dは固定荷重，Sdは余震荷重， P_{t} は突き上げ津波荷重を示す。
＊2：固定荷重（D）及び余震荷重（S d）の組合せが，強度評価上，突き上げ津波荷重 （ P_{t} ）を緩和する方向に作用する場合，保守的にこれらを組合せない評価を実施する。

表 5－2 許容応力（その他の支持構造物）

表 5－3 使用材料の許容応力評価条件

評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
取付ボルト		周囲環境温度	40	520	690	-
	フランジ	周囲環境温度	40	175	450	-

5.3 設計用地震力

「4．固有周期」に示したとおり取水ピット水位計の固有周期は 0.05 秒以下であることを確認したため，取水ピット水位計の強度計算に用いる設計震度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。耐震評価に用いる設計用地震力を表5－4に示 す。

表 5－4 設計用地震力

地震動	据付場所 及び 床面高さ （m）	余震による設計震度	
弾性設計用地震動$\mathrm{S} d-\mathrm{D} 2$	$\begin{gathered} \text { 海水ポンプ室 } \\ \text { 0.P. } 2.25^{*} \\ \text { (0.P. 2.00) } \end{gathered}$	水平方向 C_{H}	1． 05
		鉛直方向 C_{V}	1． 03

注記＊：基準床レベルを示す。

5.4 計算方法

取水ピット水位計に作用する応力及び算出式を示す。
5．4．1 突き上げ津波荷重の計算方法
取水ピット水位計に作用する突き上げ津波荷重 P_{t} は次式にて求める。
$\mathrm{P}_{\mathrm{t}}=\rho \cdot \mathrm{g} \cdot \mathrm{T}_{\mathrm{h}} \cdot \mathrm{A}_{1}+\frac{1}{2} \cdot \mathrm{Cd} \cdot \rho \cdot \mathrm{A}_{1} \cdot \mathrm{U}^{2}$
（5．4．1．1）
ここで，突き上げ津波荷重及び静水頭圧を受けるフランジの面積 A_{1} は次式にて求め る。
$\mathrm{A}_{1}=\frac{\pi}{4} \cdot \mathrm{D}^{2}$
（5．4．1．2）
ここで，入力津波高さ T_{h} は次式にて求める。
$T_{h}=h-z$
（5．4．1．3）

5．4．2 応力の計算方法

5．4．2．1 取付ボルトの計算方法
取付ボルトの応力は，地震による震度により作用するモーメント及び突き上げ津波荷重によって生じる引張力とせん断力について計算する。計算モデルを図 5－1 に示す。

図 5－1 計算モデル

H
Mz_{z}

地震応答解析によって得られたフランジ部の評価点における最大反力（ $\mathrm{D}+\mathrm{S}$ d）とモーメントを表 5－5 に示す。反力の計算においては保守的にバブラー管へ の突き上げ津波荷重を考慮する。

表 5－5 フランジ部発生反力，モーメント

評価部位	反力（ N$)$			モーメント $(\mathrm{N} \cdot \mathrm{mm})$			
	F_{x}	F_{Y}	F_{Z}	M_{X}	M_{Y}	M_{Z}	
フランジ							

（1）引張応力
取付ボルト（1本当たり）に対する引張応力は，下式により計算する。

引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{Y}}}{\mathrm{n}}+\frac{\mathrm{M}_{\mathrm{x}}}{\ell_{1} \cdot \mathrm{n}_{\mathrm{X}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\ell_{2} \cdot \mathrm{n}_{\mathrm{Z}}}+\mathrm{P}_{\mathrm{t}} \tag{5.4.2.1.1}
\end{equation*}
$$

ここでの突き上げ津波荷重 P_{t} は，フランジ～の突き上げ津波荷重とする。

引張応力
$\sigma_{\mathrm{tb}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
ここで，取付ボルトの軸断面積 A_{b} は次式により求める。
$\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}$
（2）せん断応力
取付ボルト（1 本当たり）に対するせん断応力は，下式により計算する。

せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}=\frac{\sqrt{\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{Z}}^{2}}}{\mathrm{n}} \tag{5.4.2.1.4}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.4.2.1.5}
\end{equation*}
$$

5．4．2．2 フランジの計算方法

フランジの応力は，地震による震度により作用するモーメント及び突き上げ津波荷重によって生じる曲げ応力とせん断力について計算する。計算モデルを図 5－2 に示す。

図 5－2 計算モデル
（1）曲げ応力
フランジに対する曲げ応力は，下式により計算する。

曲げモーメント
$\mathrm{M}_{\mathrm{f}}=\frac{\left(\mathrm{F}_{\mathrm{Y}}+\mathrm{P}_{\mathrm{t}}\right) \cdot \ell_{\mathrm{f} 1}}{4}+\frac{\mathrm{M}_{\mathrm{x}}}{2}$
ここで，フランジの断面係数 Z_{f} は次式により求める。
$Z_{f}=\frac{1}{6} \cdot \ell_{f 2} \cdot t^{2}$

曲げ応力

$$
\begin{equation*}
\sigma_{b f}=\frac{M_{f}}{Z_{f}} \tag{5.4.2.2.3}
\end{equation*}
$$

（2）せん断応力
フランジに対するせん断応力は，下式により計算する。

せん断力

$$
\begin{equation*}
Q_{f}=\sqrt{\left(F_{Y}+P_{t}\right)^{2}+F_{Z}^{2}} \tag{5.4.2.2.4}
\end{equation*}
$$

ここで，フランジの取付ボルト間の断面積 A_{f} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{f}}=\ell_{\mathrm{f} 2} \cdot \mathrm{t} \tag{5.4.2.2.5}
\end{equation*}
$$

せん断応力
$\tau_{f}=\frac{3}{2} \cdot \frac{Q_{f}}{A_{f}}$

5.5 計算条件

5．5．1 取付ボルト及びフランジの応力計算条件
応力計算に用いる計算条件は，本計算書の【取水ピット水位計の強度についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5．6．1 取付ボルトの応力評価
ボルトの引張応力 σ_{t} bは次式より求めた許容引張応力 f_{t} 以下であること。
ただし，f_{t} 。は下表による。

$$
\begin{equation*}
f_{\mathrm{t} \mathrm{~s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \tag{5.6.1.1}
\end{equation*}
$$

せん断応力 τ_{b} はせん断力のみを受ける取付ボルトの許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$ 以下であるこ と。ただし，$f_{\mathrm{s} \text { bは下表による。 }}$

| 弾性設計用地震動 S d
 又は張応力
 f_{to}
 荷重との組合せの震度による |
| :---: | :---: |
| 諹合 |
| f_{sb} 容せん断応力 |$\quad \frac{\mathrm{F}}{2} \cdot 1.5$

5．6．2 フランジの応力評価

曲げ応力 σ_{b} はフランジの許容曲げ応力 $f_{\mathrm{b} \mathrm{f}}$ 以下であること。ただし，$f_{\mathrm{b} \mathrm{f}}$ は下表によ る。

せん断応力 τ_{f} はフランジの許容せん断応力 $f_{\mathrm{s} \mathrm{f}}$ 以下であること。ただし，$f_{\mathrm{s} \mathrm{f}}$ は下表に よる。

弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	
許容曲げ応力 $f_{\mathrm{b} \mathrm{f}}$	$\frac{\mathrm{F}}{1.3} \cdot 1.5$
許容せん断応力 $f_{\mathrm{sf} \mathrm{f}}$	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．評価結果

6.1 設計基準対象施設としての評価結果

取水ピット水位計の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
取水ピット水位計	S	海水ポンプ室 0．P．2．25＊ （0．P．2．00）			$\mathrm{C}_{\mathrm{H}}=1.05$	$\mathrm{C}_{\mathrm{V}}=1.03$	－	－	40

注記＊1 ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

1．4．2 フランジの応力

評価部位	材 料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
フランジ		曲げ	$\sigma_{\text {b f }}=76$	$f_{\mathrm{b} \mathrm{f}}=201$	－	－
		せん断	$\tau_{\mathrm{f}}=7$	$f_{\text {S } \mathrm{f}}=101$	－	－

[^0]O 2 （5）VI－3－別添 3－2－11－1 R 10

（1）機器諸元			
項目	記号	単位	入力値
材質	－	－	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	40
縦弾性係数	E	MPa	
ポアソン比	v	－	
要素数	－	個	
節点数	－	個	
海水の密度	ρ	$\mathrm{kg} / \mathrm{m}^{3}$	
津波最大到達レベル	h	m	
評価対象部位のレベル	Z	m	
抗力係数	C d	－	
フランジに作用する流速 （上昇方向）	U	m／s	

O 2 (5) VI-3-別添3-2-11-1 R 10

[^0]: すべて許容応力以下である。

