本資料のうち,枠囲みの内容は商業機 密の観点から公開できません。

※ なお、本資料は抜粋版のため、商業 機密の観点から公開できない箇所はあ りません。

女川原子力発電所第2号機 工事計画審査資料				
資料番号	02-補-E-19-0600-10_改 8			
提出年月日	2021年11月11日			

補足-600-10 機電設備の耐震計算書の作成について

- 添付資料-1 「計算書作成の基本方針」を呼び込む設備の耐震計算書(Fパターン「横軸ポンプ」の耐震計算書記載例)
- 添付資料-2 「計算書作成の基本方針」を呼び込む設備の耐震計算書 (Fパターン「容器」の耐震計算書記載例)
- 添付資料-3 「計算書作成の基本方針」を呼び込む設備の耐震計算書 (Fパターン「たて軸ポンプ」の耐震計算書記載例
- 添付資料-4 「計算書作成の基本方針」を呼び込む設備の耐震計算書 (Fパターン「盤」の耐震計算書記載例)
- 添付資料-5 機能維持評価で詳細検討を実施する場合
- 添付資料-6 個別に地震応答解析の説明が必要な設備の耐震計算書 (Aパターンの耐震計算書記載例)
- 添付資料-7-1 個別に地震応答解析の説明が必要な設備の耐震計算書 (C-1パターン「解析」の耐震計算書記載例)
- 添付資料-7-2 個別に地震応答解析の説明が必要な設備の耐震計算書 (C-2パターン「手計算」の耐震計算書記載例)
- 添付資料-8 個別に地震応答解析の説明が必要な設備の耐震計算書 (Dパターンの耐震計算書記載例)
- 添付資料-9 機能維持評価のみを確認する設備の耐震計算書(Eパターンの耐震計算書記載例)
- 添付資料-10 「計算書作成の基本方針」を呼び込む設備の耐震計算書 (Fパターン「管」の耐震計算書記載例)

: 今回提出範囲

添付資料-3:「計算書作成の基本方針」を呼び込む設備の耐震計算書 (Fパターン「たて軸ポンプ」の耐震計算書記載例)

VI-○-○-○ ○○○ポンプの耐震性についての計算書

1. 概要
2. 一般事項1
2.1 構造計画1
3. 固有値解析及び構造強度評価3
3.1 構造強度評価方法
3.2 荷重の組合せ及び許容応力3
3.2.1 荷重の組合せ及び許容応力状態3
3.2.2 許容応力
3.2.3 使用材料の許容応力評価条件3
3.3 解析モデル及び諸元9
3.4 固有周期9
3.5 設計用地震力10
3.6 計算条件13
4. 機能維持評価
4.1 動的機能維持評価方法14
5. 評価結果
5.1 設計基準対象施設としての評価結果15
5.2 重大事故等対処設備としての評価結果15

DB+SAの場合の記載例を示す。

〔DB 単独又は SA 単独の場合は、それぞれの該当する項目のみ記載する。〕

目

次

3.3 解析モデル及び諸元

固有値解析及び構造強度評価に用いる解析モデル及び諸元は、本計算書の【○○○ ポンプの耐震性についての計算結果】の機器要目及びその他の機器要目に示す。解析 コードは、「○○○」を使用し、解析コードの検証及び妥当性確認等の概要について は、添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

3.4 固有周期

固有値解析の結果を表 3-7 に,振動モード図を図 3-1 に示す。固有周期は,0.05 秒を超えており,柔構造であることを確認した。

		10					
モード	占地十百	固有周期	水平方向刺激係数*		鉛直方向		
モード 卓越方向	早越万间	(s)	Х	Y	刺激係数*		
1次	水平方向						
• • •	鉛直方向						
n 次	水平方向						
n + 1 次	水平方向						
記事 *↑: 刺激係数は,モード質量を正規化し,固有ベクトルと質量マトリックスの積から							
算出した値を示す。 適用する刺激係数について記載する。固有周期が 0.05秒以下となる方向については「-」とする。							
n 次までは固有周期が 0.050s より長いモード, n + 1 次は固有周期が 0.050 s 以下の モードを示す。							
柔構造の場合は、振動モード図(最大で3次モードまで又は各方向の卓 越モード)を記載する。 剛構造の場合は、1次モードの振動モード図を記載する。							

表 3-7 固有值解析結果

図 3-1 振動モード(1次モード 水平方向 〇.〇〇s)