女川原子力発電所第2号機 工事計画審査資料						
資料番号	02-工-B-02-0007_改 8					
提出年月日	2021年11月11日					

VI-2-4-2-2 使用済燃料貯蔵ラック(第1,2号機共用)の耐震性

についての計算書

2021年11月

東北電力株式会社

1. 概要	•••
2. 一般事項	•••
2.1 構造計画 ······	•••
2.2 評価方針	•••
2.3 適用規格・基準等 ······	•••
2.4 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••
2.5 計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••
3. 評価部位	•••
4. 地震応答解析及び構造強度評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••
4.1 地震応答解析及び構造強度評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••
4.2 荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••
4.2.1 荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••
4.2.2 許容応力	•••
4.2.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••
4.3 解析モデル及び諸元	•••
4.4 固有周期 ·····	•••
4.5 設計用地震力 ······	•••
4.6 計算方法 ······	••
4.6.1 部材の応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••
4.6.2 基礎ボルトの応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••
4.7 計算条件	
4.8 応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••
4.8.1 部材の応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4.8.2 基礎ボルトの応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• •
5. 評価結果	••
5.1 設計基準対象施設としての評価結果	• •
5.2 重大事故等対処設備としての評価結果	• •

<mark>今回提出範囲</mark>

4.4 固有周期

固有値解析の結果を表 4-7 に、各モードにおける固有ベクトルの大きさを示した振動モード 図を図 4-6~図 4-9 に示す。鉛直方向は、5 次モード以降で卓越し、固有周期は、0.05 秒以下 であり、剛であることを確認した。

ラック		モード	卓越方向	固有周期	水平方向刺激係数*		鉛直方向
	799 モード 草越方向 (s)	X方向	Y方向	刺激係数*			
		1次					
110	110 体	2次					
	ラック	3次					
		5次					
17		1次					
	170 体	2次					
	ラック	3次					
		6次					

表 4-7 固有值解析結果

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から算 出した値を示す。

枠囲みの内容は商業機密の観点から公開できません。

枠囲みの内容は商業機密の観点から公開できません。

図 4-9 振動モード(170 体ラック)2 次モード