女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －補－E－19－0600－25－2＿改 15
提出年月日	2021年11月 11 日

補足－600－25－2【地下水位低下設備の耐震性に係る補足説明資料】

目 次

第1章 地下水位低下設備ドレーンの耐震性に係る補足説明

第2章 地下水位低下設備接続桝の耐震性に係る補足説明

第 3 章 地下水位低下設備揚水井戸の耐震性に係る補足説明

第4章 地下水位低下設備揚水ポンプの加振試験に関する補足説明

第4章 地下水位低下設備揚水ポンプの加振試験に関する補足説明

目次
1．試験概要 4－1
2．試験体及び試験装置 4－1
3．振動特性把握試験 4－3
3． 1 試験方法 4－3
3． 2 試験結果 4－5
3.3 没水による固有周期への影響について 4－5
4．加振試験 4－6
4． 1 試験方法 4－6
4.2 試験条件に対する妥当性確認 4－8
4．2．1 気中加振の妥当性 4－8
4．2．2 停止中加振の妥当性 4－8
4．3 試験結果 4－8

1．試験概要
地下水位低下設備のうち揚水ポンプは，ポンプと電動機が一体構造となった水中ポンプであり， J EAG 4 6 0 1 にて定められた機能確認済加速度との比較による評価方法が適用できる機種の範囲から外れることから，機能確認済加速度を設定することを目的とし，加振設備を用いて加振試験を実施する。

試験方法としては，振動特性把握試験を実施し，固有振動数を求め，剛構造であることを確認 した後，機器の据付位置における評価用加速度を包絡する加振波で加振を実施した。加振試験後 は，性能試験及び性能試験後の分解点検を実施することで健全性を確認した。

2．試験体及び試験装置

加振試験は，地下水位低下設備に設置する同形式の揚水ポンプを加振した。試験体と加振台の位置関係を示した加振台の平面図を図 2－1 に，加振台の取付状態を図 2－2 に，加振試験装置外観 を図 2－3に，加振台仕様を表 2－1に，試験体と実機の主な仕様の比較を表2－2 に示す。

図 2－1 加振台（平面図）

図 2－2 加振台の取付状態

図 2－3 加振試験装置外観

表 2－1 加振台仕様

寸法	$6[\mathrm{~m}] \times 6[\mathrm{~m}]$
最大積載質量	$100[\mathrm{ton}]$
周波数範囲	$0-50[\mathrm{~Hz}]$
加振力	水平 $120[\mathrm{ton} \cdot \mathrm{g}]$ 鉛直 $200[\mathrm{ton} \cdot \mathrm{g}]$

表 2－2 揚水ポンプの主な仕様の比較

仕様		試験体	実機
外形寸法		$\begin{aligned} & \hline \phi 825[\mathrm{~mm}] \text { (縦) } \\ & \phi 825[\mathrm{~mm}] \text { (横) } \\ & 1847[\mathrm{~mm}] \text { (高さ) } \end{aligned}$	同左
質量		1500＊［kg］	同左
ポンプ	種類	らず巻形	同左
	容量	$6.25\left[\mathrm{~m}^{3} / \mathrm{min}\right]$	同左
電動機	種類	誘導電動機	同左
	容量	110 ［kW］	同左

注記＊：ケーブルを除くポンプ単体概算乾燥質量

3．振動特性把握試験
3.1 試験方法

ポンプに加速度センサを取り付け，加振波として 50 Hz までの範囲でランダム波を使用し，水平 2 方向と鉛直方向の 3 方向で気中加振を実施し，応答加速度から周波数応答関数を得て，固有周期を求める。また，図 2－1 に示す加振方向に模擬地震波を付加するため，ポンプ加振時 は X 方向と Y 方向で 90 度回転させて設置する。加速度センサ取付位置を図 $3-1$ に，ポンプに取り付けた加速度センサの設置箇所を表 3－1に示す。

図 3－1（a）加速度センサ取付位置（水平 X 方向＋鉛直方向加振試験）

図 3－1（b）加速度センサ取付位置（水平 Y 方向＋鉛直方向加振試験）

表 3－1 加速度センサ設置箇所

部位	水平 X 方向	水平 Y 方向	鉛直方向
加振台	A 1 X	A 1 Y	$\mathrm{A} 1 Z$
ポンプ中央部	A 2 X	A 2 Y	$\mathrm{A} 2 Z$
ポンプ頂部	A 3 X	A 3 Y	$\mathrm{A} 3 Z$

3．2 試験結果
試験により得られた周波数応答関数を図 3－2に，各方向の最大応答共振点と固有周期を表 3－ 2 に示す。各方向について剛構造と見なせる固有周期 0.05 秒を十分に下回る結果が得られた。

図 3－2 周波数応答関数

表 3－2 各方向の最大応答共振点と固有周期

方向	共振点 (Hz)	固有周期 (s)
水平 X 方向	34.8 Hz	0.029
水平 Y 方向	32.3 Hz	0.031
鉛直方向	50 Hz 以上	0.02 以下

3.3 没水による固有周期への影響について

揚水ポンプは，水中ポンプであるため，没水による固有周期への影響を確認する。固有周期 は，0．037 秒となり，剛構造であることを確認した。

固有周期の算出にあたつては，補足説明資料「補足－600－40－40 耐震評価における流体中の構造物に対する付加質量及び応答低減効果の考慮」に基づいて算出した気中－水中間の補正比率に最も低い共振点となる固有振動数を乗じて固有振動数を求める。
$\sqrt{\frac{\mathrm{M}_{1}}{\mathrm{M}_{1}+\mathrm{M}_{11}}} \fallingdotseq 0.844 \quad \begin{aligned} & \mathrm{M}_{1}: 1500 \mathrm{~kg} \text {（ポンプ質量）}+250 \mathrm{~kg} \text {（ポンプ内包水質量）} \\ & \mathrm{M}_{11}: 708 \mathrm{~kg} \text {（水の付加質量）}\end{aligned}$
$32.3 \times 0.844 \fallingdotseq 27.2 \mathrm{~Hz}(0.037$ 秒）

4．加振試験
4． 1 試験方法
機器の据付位置における評価用加速度を包絡する加振波を作成し，加振試験を実施する。加振波は水平（X or Y）＋鉛直方向を加振方向として，次のように作成する。
－添付書類「VI－2－13－5 地下水位低下設備揚水井戸の地震応答計算書」に示す揚水井戸の地震応答から，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき作成した設計用床応答曲線を包絡するターゲットスペクトルを作成する。
－作成されたターゲットスペクトルを満足する模擬地震波を作成する。加振試験における試験条件を表4－1に，加振波を図4－1に示す。

表 4－1 加振試験条件

項目	試験条件
加振地震波	模擬地震波
加振方向	水平 X 方向＋鉛直方向 水平 Y 方向＋鉛直方向
試験環境	気中加振
運転状態	停止中加振
取付状態	加振台にボルトにて取り付け＊
至	

注記＊：実機と同じボルト本数及び配列により設置する。また，ボルトについては，実機 と同じ径のM24を適用し，ボルト材質についても，実機で使用するS U S 3 1 6 Lと同じ縦弾性係数のオーステナイト系ステンレス鋼のS U S 3 0 4 を使用する ことから取付状態に実機と差異はない。

b．鉛直方向（水平 X 方向＋鉛直方向加振）

c．水平 Y 方向（水平 Y 方向＋鉛直方向加振）

d．鉛直方向（水平 Y 方向＋鉛直方向加振）

図 4－1 加振試験に用いた加振波（加振台上での計測データ）の加速度波形

4． 2 試験条件に対する妥当性確認
4．2．1 気中加振の妥当性
揚水ポンプは，水中ポンプであるため，没水により応答が低減し，ポンプ機能に影響を与えるケーシングや支持構造物等に加わる荷重が軽減される。そのため，加振試験におい ては，厳しい条件となるよう応答の低減効果が得られない気中での加振を行い，加振後の性能試験及び分解点検により，健全性を確認する。

4．2． 2 停止中加振の妥当性
揚水ポンプは，運転中においても基準地震動 S s による地震力に対して機能維持する設計としているが，揚水ポンプ運転中は主軸の回転によりその回転状態が安定に維持され，加振による軸振れは軽減される。また，ポンプ構成部品への影響については，揚水ポンプ運転中は主軸を支持する軸受や狭隘なライナリング部で形成される水膜により，ばね効果 や減衰効果が作用し，ポンプ構成部品に加わる荷重が軽減されることから，加振に対して厳しい条件となる停止中加振を実施し，加振後の性能試験及び分解点検により，健全性を確認する。

4． 3 試験結果

加振試験及び加振試験後の性能試験について機器に異常がないことを確認した。本試験にお ける加振台での最大加速度を表 4－2に示し，機能確認済加速度を表 4－3 に示す。

図 4－2 に加速度応答スペクトルの比較を示す。また，加振試験後の性能試験結果を図 4－3 に示す。
（1）加振台の加速度応答スペクトルがターゲットスペクトル以上であること。（図 4－2 参照）
（2）加振試験後にポンプ取付ボルトの緩みが無いこと。
（3）加振試験後の性能試験において，ポンプの健全性並びに動作性に異常のないこと。
－性能試験時の吐出流量 $6.25 \mathrm{~m}^{3} / \mathrm{min}$ で，全揚程が 52 m 以上であること。（図 4－3 参照）
（4）性能試験後の分解点検において，内部構造物に割れ等の異常がないこと。

表 4－2 加振台の最大加速度（m／s $\left.{ }^{2}\right)$

加振方向	水平 X 方向＋鉛直方向	水平 Y 方向＋鉛直方向
水平	$28.5(2.90 \mathrm{G})$	$28.8(2.93 \mathrm{G})$
鉛直	$11.7(1.19 \mathrm{G})$	$12.3(1.25 \mathrm{G})$

表 4－3 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
揚水ポンプ	水平方向	2.90
	鉛直方向	1.19

図 4－3 加振試験後の性能試験結果

枠囲みの内容は商業機密の観点から公開できません。

