```
本資料のうち，枠囲みの内容 は商業機密の観点から公開で
きません。
```

女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－B－19－0455＿改 5
提出年月日	2021 年 11 月 11 日

VI－2－11－2－14 燃料チャンネル着脱機の耐震性についての計算書

目 次

1．概要 1
2．一般事項 1
2.1 配置概要 1
2.2 構造計画 2
2.3 評価方針 3
2.4 適用規格•基準等 4
2.5 記号の説明 5
2.6 計算精度と数値の丸め方 7
3．評価部位 7
4．地震応答解析及び構造強度評価 8
4.1 地震応答解析及び構造強度評価方法 8
4.2 荷重の組合せ及び許容応力 8
4．2．1 荷重の組合せ及び許容応力状態 8
4．2．2 許容応力 8
4．2．3 使用材料の許容応力評価条件及び許容荷重評価条件 8
4.3 解析モデル及び諸元 13
4． 4 固有周期 15
4.5 設計用地震力 19
4.6 計算方法 20
4．6．1 応力の計算方法 20
4．6．2 荷重の計算方法 23
4.7 計算条件 28
4.8 応力及び荷重の評価 28
4．8．1 フレーム，バックプレート及び可動台の応力評価 28
4．8．2 カーブ上面固定ボルト及びバックプレート押えボルトの応力評価 28
4．8．3 吊具の荷重評価 29
5．評価結果 29
5.1 設計基準対象施設としての評価結果 29
5.2 重大事故等対処設備としての評価結果 29

1．概要

本計算書は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設 の耐震評価方針」の耐震評価方針に基づき，下位クラス設備である燃料チャンネル着脱機（以下「着脱機」という。）（Bクラスの施設）が上位クラス施設と同じ運転状態におい て基準地震動 S s に対して十分な構造強度を有していることを確認することで，下部に設置された上位クラスである使用済燃料貯蔵ラック（Sクラスの施設及び重大事故等対処設備）に対して，波及的影響を及ぼさないことを説明するものである。

2．一般事項

2.1 配置概要

着脱機は，原子炉建屋の使用済燃料プール内に 2 台設置されている。着脱機は，図 2－1 の位置関係に示すように，上位クラスの施設である使用済燃料貯蔵ラックの近傍 に設置されていることから，転倒又は落下により，使用済燃料貯蔵ラックに対して波及的影響を及ぼすおそれがある。

図 2－1 燃料チャンネル着脱機と使用済燃料プール等の位置関係図
表2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
フレームに溶接された サポートブラケットが使用済燃料プール壁面 の埋込金物に溶接され たサポートラグに差し込まれている。 バックプレートはカー ブ上面固定ボルトによ りカーブ上部と，バッ クプレート押えボルト によりプール壁面上部 に取り付けられる。	着脱機本体は可動台，フレーム及びバ ックプレートで構成 されており，フレー ムとバックプレート は溶接により固定さ れている。可動台は フレームに支持され吊具（チェーン）を介して上下する。	（単位：mm）

構造計

2． 3 評価方針

着脱機の応力評価は，添付資料「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」にて設定したSクラスの施設及び重大事故等対処設備と同じ運転状態にお ける，荷重及び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」にて示す着脱機の部位を踏まえ「3．評価部位」にて設定する箇所において，「4．3 解析モデル及び諸元」及び

「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収ま ることを，「4．1 地震応答解析及び構造強度評価」にて示す方法にて確認することで実施す る。結果確認を「5．評価結果」に示す。

着脱機の耐震評価フローを図2－2に示す。

図 2－2 着脱機の耐震評価フロー

2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601•補－1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（4）J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）
（5）日本産業規格（J I S ）

2.5 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{1 \mathrm{~F}}$	フレームの断面積	mm^{2}
A_{yF}	せん断断面積（y 方向）	mm^{2}
A_{zF}	せん断断面積（z 方向）	mm^{2}
A_{L}	チェーンの許容荷重	N
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
E	フレーム及び可動台の縦弾性係数	MPa
F＊	設計•建設規格 SSB－3121．3 又は SSB－3133 に定める値	MPa
F \times F	フレームに作用する軸力	N
$\mathrm{F}_{\mathrm{y} F}$	フレームに作用するせん断力（ y 方向）	N
F_{zF}	フレームに作用するせん断力（ z 方向）	N
F_{C}	チェーンに作用する荷重	N
$f_{\text {s }}$	許容せん断応力	MPa
$f_{\text {s b }}$	せん断力のみを受けるボルトの許容せん断応力	MPa
f_{t}	許容引張応力	MPa
f_{t} o	引張力のみを受けるボルトの許容引張応力	MPa
f_{t}	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
$\mathrm{M}_{\mathrm{x} \text { F }}$	フレームのねじりモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\mathrm{y}} \mathrm{F}$	フレームの y 軸周り曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{zF}	フレームの z 軸周り曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
m_{F}	フレームの質量	kg
m_{K}	可動台の質量	kg
m_{m}	吊荷（可動台及び燃料）の質量	kg
m_{wH}	水平方向の水の付加質量	kg
m_{wN}	鉛直方向の水の付加質量	kg
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$S_{y}(R T)$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ にお ける値	MPa
K_{F}	フレームのねじり応力係数	mm^{-3}
$Z_{\text {y }}$	フレームのy軸周り断面係数	mm^{3}
$Z_{z F}$	フレームの z 軸周り断面係数	mm^{3}

記号	記号の説明	単位
v	ポアソン比	－
$\sigma \mathrm{tF}$	フレームの全引張応力	MPa
$\sigma \mathrm{c} 1 \mathrm{~F}$	フレームの組合せ応力	MPa
$\sigma \times \mathrm{F}$	x 方向の荷重によるフレームの引張応力	MPa
$\sigma \mathrm{bF}$	曲げモーメントによる応力	MPa
τ_{tF}	フレームの全せん断応力	MPa
$\tau 1 \mathrm{~F}$	フレームのせん断応力	MPa
$\tau 2 \mathrm{~F}$	フレームのねじりモーメントによるせん断応力	MPa
V 1	吊荷の最大速度	mm / s
V 2	着脱機の最大速度	mm / s
k_{W}	吊具のばね定数	$\mathrm{N} \cdot \mathrm{mm}$
T ${ }_{\text {w }}$	吊荷の固有周期	S
T ${ }_{\text {f }}$	着脱機鉛直方向の固有周期	S
$L_{\text {w }}$	吊荷荷重算出に使用するチェーン長さ	mm
$\mathrm{a}_{\text {w }}$	吊荷の固有周期において基準地震動 S s に基づく設計用床応答曲線 により得られる震度	－

注：記号右端添え字にFが付くものは，フレーム評価用を代表で示したもので，バックプレー ト評価用については $\mathrm{F} \rightarrow \mathrm{P}$ ，可動台評価用については $\mathrm{F} \rightarrow \mathrm{K}$ ，カーブ上面固定ボルト評価用については $\mathrm{F} \rightarrow \mathrm{B}$ に，バックプレート押えボルト評価用については $\mathrm{F} \rightarrow \mathrm{D}$ に置き換え る。

2.6 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示す通りとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第 3 位
震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
質量	kg	－	－	整数位＊2
長 下記以外の長さ $^{\text {a }}$	mm	－	－	整数位＊1
さ 厚さ	mm	－	－	小数点以下第 1 位
断面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁 ${ }^{*}{ }^{2}$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位＊3

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときはべき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とす る。
3．評価部位
着脱機の耐震評価は，「4．1地震応答解析及び構造強度評価方法」に示す条件に基づき，着脱機及び吊荷（可動台及び燃料）の転倒，落下により，使用済燃料貯蔵ラックが損傷することを防止 するために，着脱機本体（フレーム，バックプレート，可動台，カーブ上面固定ボルト，バック プレート押えボルト）及び吊具（チェーン）について実施する。着脱機の耐震評価部位について は，表2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価

4． 1 地震応答解析及び構造強度評価方法

（1）着脱機本体の応答解析には，はり要素を用いた3次元有限要素法モデルによる静解析を行う。
（2）地震力は，着脱機本体（フレーム，バックプレート及び可動台）に対して水平 2 方向及 び鉛直方向から個別に作用するものとし，強度評価において組合せるものとする。
（3）フレーム及びバックプレートは，使用済燃料プールのカーブ上面固定ボルト，バックプ レート押えボルト及びサポートブラケットにより荷重を支持する構造であるため，該当部位の拘束条件を設定する。
（4）可動台に搭載される燃料は，集中質量として設定する。
（5）可動台はチェーンにより保持されフレームに沿つて鉛直方向に昇降するため，可動台の位置について評価条件として新燃料搬入位置，常用上限及び常用下限を選定し，それぞ れの評価部位に対して最も厳しい評価条件を適用する。
（6）吊具については，鉛直方向の地震力により発生する荷重に対して評価を行う。
（7）耐震計算に用いる寸法は，公称値を使用する。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
着脱機の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力
着脱機の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のと おりとする。

4．2．3 使用材料の許容応力評価条件及び許容荷重評価条件
着脱機の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－4 に，重大事故等対処設備の評価に用いるものを表 4－6に示す。

着脱機の許容荷重評価条件のうち設計基準対象施設の評価に用いるものを表4－5 に，重大事故等対処設備の評価に用いるものを表 4－7 に示す。

| 施設区分 | | 耐震設計上の器名称
 重要度分類 | 機器等の区分 | 荷重の組合せ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

注記＊：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

| 施設区分 | | 機器名称 | 耐震設計上の
 重要度分類 | 機器等の区分 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad| 荷重の組合せ |
| :---: |

注記＊：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）			許容限界＊2 （ボルト等）	
	一次応力			一次応力	
	引張	せん断	組合せ	引張	せん断
$\underline{I V} \mathrm{~A}^{\text {S }}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$＊	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{ff}^{*}$	$1.5 \cdot \mathrm{fs}$＊
$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ としてIV A S の許容限界を用いる。）					

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行ら。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
O 2 VI－2－11－2－14 R 3
表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{u} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
フレーム		周囲環境温度	66	－			
バックプレート		周囲環境温度	50	－			
可動台		周囲環境温度	66	－			
カーブ上面固定ボルト		周囲環境温度	50	－			
$\begin{gathered} \text { バックプレート } \\ \text { 押えボルト } \end{gathered}$		周囲環境温度	50	－			

表 4－5 使用材料の許容荷重評価条件（設計基準対象施設）

| 評価部材 | 材料 | $\begin{array}{c}\text { 温度条件 } \\ \left({ }^{\circ} \mathrm{C}\right)\end{array}$ | | $\begin{array}{c}\text { 定格荷重 } \\ (\mathrm{N})\end{array}$ | 安全率 |
| :---: | :---: | :---: | :---: | :---: | :---: |\(\left.⿻ \begin{array}{c}許容荷重

（N）\end{array}\right]\)
O 2 VI－2－11－2－14 R 3
表 4－6 使用材料の許容応力評価条件（重大事故等対処設作）

評価部材	材料	温度条件 （ $\left.{ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
フレーム		周囲環境温度	100	－			
バックプレート		周囲環境温度	100	－			
可動台		周囲環境温度	100	－			
カーブ上面固定ボルト		周囲環境温度	100	－			
バックプレート 押えボルト		周囲環境温度	100	－			

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		定格荷重 (N)	安全率	許容荷重 （N）
チェーン		周囲環境温度	100			

4．3 解析モデル及び諸元

着脱機の解析モデルを図 4－1 に，解析モデル概要を以下に示す。また，機器諸元を【着脱機 の耐震性についての計算結果】の機器要目に示す。
（1）着脱機本体（フレーム，バックプレート及び可動台）をはり要素でモデル化した有限要素法モデルとする。なお，チェーンはモデル化を行わず質量をチェーンが接続する操作台 の質点に付与する。
（2）
（3）
（4）鉛直方向の解析にあたつては，可動台の質量はフレーム上部の質点に付与する。
（5）質量には着脱機自身の質量，燃料の質量並びに水の付加質量を考慮する。
（6）解析コードは「MSC NASTRAN」を使用し，固有値及び荷重を求める。
なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5計算機プログラム（解析コード）の概要」に示す。
\square
図 4－1 解析モデル

4． 4 固有周期

固有値解析の結果を表 4－8 に示す。また，振動モード図を図 4－2～図4－7 に示す。全ての可動台位置において固有周期は 0.05 秒以下であり，剛であることを確認した。

表 4－8 固有値解析結果

可動台位置	モード	固有周期 （s）	卓越方向	刺激係数＊1		
				水平方向 （EW）	水平方向 （NS）	鉛直方向
新燃料搬入位置	1 次					
	2 次					
常用上限	1 次					
	2 次					
常用下限	1 次					
	2 次					

注記＊1：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

図 4－2 新燃料搬入位置 1 次モード
\square

図 4－4 常用上限 1 次モード

枠囲みの内容は商業機密の観点から公開できません。
\square

図 4－6 常用下限 1 次モード

図4－7 常用下限 2 次モード

4.5 設計用地震力

水平方向の基準地震動 S s による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す作成方法に基づき EW 方向及びNS 方向について個別に策定する。なお，鉛直方向の基準地震動 S s による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に記載の設計震度を適用する。

耐震評価に用いる設計用地震力を表 4－9 及び表 4－10 に示す。

表 4－9 設計用地震力（設計基準対象施設）

据付場所 及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		
	水平 方向	鉛直 方向	水平 方向 設計 震度	鉛直 方向 設計 震度	水平方向設計震度		鉛直方向設計震度
					$\begin{gathered} \text { EW } \\ \text { 方向 } \end{gathered}$	NS 方向	
$\begin{gathered} \text { 原子炉 } \\ \text { 建屋 } \\ \text { O. P. 33. 2*1 } \end{gathered}$			－	－	$\begin{aligned} & \mathrm{C}_{\mathrm{H}}= \\ & 2.40 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{H}}= \\ & 2.65 \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}}= \\ 1.77 \end{gathered}$

注記 $~ 1 ~: ~$ 基準床レベルを示す。

表 4－10 設計用地震力（重大事故等対処設備）

据付場所 及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		
	水平 方向	鉛直 方向	水平 方向 設計 震度	鉛直 方向 設計 震度	水平方向設計震度		鉛直方向設計震度
					EW 方向	NS 方向	
$\begin{gathered} \text { 原子炉 } \\ \text { 建屋 } \\ \text { O. P. } 33.2^{* 1} \end{gathered}$			－	－	$\begin{aligned} & \mathrm{C}_{\mathrm{H}}= \\ & 2.40 \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 2.65 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{v}}= \\ 1.77 \end{gathered}$

注記＊1：基準床レベルを示す。

4.6 計算方法

4．6．1 応力の計算方法
（1）フレームの応力
a．全引張応力 $\sigma \mathrm{tF}$ の算出
（a）引張力 F_{xF} による引張応力 $\sigma \mathrm{xF}$

$$
\begin{equation*}
\sigma_{\mathrm{xF}}=\mathrm{F}_{\mathrm{xF}} / \mathrm{A}_{1 \mathrm{~F}} \tag{4.6.1.1}
\end{equation*}
$$

（b）曲げモーメント $\mathrm{M}_{\mathrm{z}} \mathrm{F}, ~ \mathrm{M}_{\mathrm{y}}$ によよる応力 σ_{bF}

$$
\begin{equation*}
\sigma_{\mathrm{bF}}=\mathrm{M}_{\mathrm{zF}} / \mathrm{Z}_{\mathrm{zF}}+\mathrm{M}_{\mathrm{yF}} / \mathrm{Z}_{\mathrm{yF}} \tag{4.6.1.2}
\end{equation*}
$$

（c）全引張応力 $\sigma_{t F}$

$$
\begin{equation*}
\sigma_{\mathrm{tF}}=\sigma_{\mathrm{xF}}+\sigma_{\mathrm{bF}} \tag{4.6.1.3}
\end{equation*}
$$

b．全せん断応力 τ_{tF} の算出
（a）せん断力 F_{zF} ， $\mathrm{F}_{\mathrm{y} F}$ によるせん断応力 $\tau_{1 \mathrm{~F}}$

$$
\begin{equation*}
\tau_{1 F}=\sqrt{\left(F_{z F} / A_{z F}\right)^{2}+\left(F_{y F} / A_{y F}\right)^{2}} \tag{4.6.1.4}
\end{equation*}
$$

（b）ねじりモーメント M_{xF} よるせん断応力 $\tau_{2 \mathrm{~F}}$

$$
\begin{equation*}
\tau_{2 \mathrm{~F}}=\mathrm{K}_{\mathrm{F}} \times \mathrm{M}_{\mathrm{xF}} \tag{4.6.1.5}
\end{equation*}
$$

（c）全せん断応力 τ_{tF}

$$
\begin{equation*}
\tau_{\mathrm{tF}}=\tau_{1 \mathrm{~F}}+\tau_{2 \mathrm{~F}} \tag{4.6.1.6}
\end{equation*}
$$

c．組合せ応力 $\sigma \mathrm{c} 1 \mathrm{~F}$

$$
\begin{equation*}
\sigma_{\mathrm{c} 1 \mathrm{~F}}=\sqrt{\sigma_{\mathrm{tF}}^{2}+3\left(\tau_{1 \mathrm{~F}}+\tau_{2 \mathrm{~F}}\right)^{2}} \tag{4.6.1.7}
\end{equation*}
$$

（2）バックプレートの応力
a．全引張応力 σ_{tP} の算出
（a）引張力 $\mathrm{F}_{\mathrm{xP}} \mathrm{P}$ による引張応力 $\sigma \mathrm{xP}$

$$
\begin{equation*}
\sigma_{\mathrm{xP}}=\mathrm{F}_{\mathrm{xP}} / \mathrm{A}_{1} \tag{4.6.1.8}
\end{equation*}
$$

（b）曲げモーメント $\mathrm{M}_{\mathrm{z} P}$ ， $\mathrm{M}_{\mathrm{y} \text { P }}$ による応力 $\sigma_{\mathrm{b} P}$

$$
\begin{equation*}
\sigma_{\mathrm{bP}}=\mathrm{M}_{\mathrm{zP}} / \mathrm{Z}_{\mathrm{zP}}+\mathrm{M}_{\mathrm{yP}} / \mathrm{Z}_{\mathrm{yP}} \tag{4.6.1.9}
\end{equation*}
$$

（c）全引張応力 σ_{tP}

$$
\begin{equation*}
\sigma_{\mathrm{tP}}=\sigma_{\mathrm{xP}}+\sigma_{\mathrm{bP}} \tag{4.6.1.10}
\end{equation*}
$$

b．全せん断応力 τ_{t} の算出
（a）せん断力 $\mathrm{F}_{\mathrm{z}} \mathrm{P}, \mathrm{F}_{\mathrm{y}} \mathrm{P}$ によるせん断応力 $\tau_{1 \mathrm{P}}$

$$
\begin{equation*}
\tau_{1 \mathrm{P}}=\sqrt{\left(\mathrm{F}_{z \mathrm{P}} / \mathrm{A}_{z \mathrm{P}}\right)^{2}+\left(\mathrm{F}_{\mathrm{yP}} / \mathrm{A}_{\mathrm{yP}}\right)^{2}} \cdots \tag{4.6.1.11}
\end{equation*}
$$

（b）ねじりモーメント $\mathrm{M}_{\mathrm{x}} \mathrm{P}$ よるせん断応力 $\tau_{2 \mathrm{P}}$

$$
\begin{equation*}
\tau_{2 P}=K_{P} \times M_{x \dot{P}} . \tag{4.6.1.12}
\end{equation*}
$$

（c）全せん断応力 τ_{tP}

$$
\begin{equation*}
\tau_{\mathrm{tP}}=\tau_{1 \mathrm{P}}+\tau_{2 \dot{\mathrm{P}}} \tag{4.6.1.13}
\end{equation*}
$$

C．組合せ応力 $\sigma_{\mathrm{c} 1 \mathrm{P}}$

$$
\begin{equation*}
\sigma_{\mathrm{c} 1 \mathrm{P}}=\sqrt{\sigma_{\mathrm{tP}}^{2}+3\left(\tau_{1 \mathrm{P}}+\tau_{2 \mathrm{P}}\right)^{2}} \cdot \cdots \cdot \cdot \cdot \cdot \tag{4.6.1.14}
\end{equation*}
$$

（3）可動台の応力
a．全引張応力 $\sigma_{t K}$ の算出
（a）引張力 F_{xK} による引張応力 σ_{xK}

$$
\begin{equation*}
\sigma_{\mathrm{xK}}=\mathrm{F}_{\mathrm{xK}} / \mathrm{A}_{1 \mathrm{~K}} \tag{4.6.1.15}
\end{equation*}
$$

（b）曲げモーメント $\mathrm{M}_{\mathrm{zK}}, ~ \mathrm{M}_{\mathrm{yK}}$ による応力 σ_{bK}

$$
\begin{equation*}
\sigma_{\mathrm{bK}}=\mathrm{M}_{\mathrm{zK}^{\prime}} / \mathrm{Z}_{\mathrm{zK}}+\mathrm{M}_{\mathrm{yK}} / \mathrm{Z}_{\mathrm{yK}} \tag{4.6.1.16}
\end{equation*}
$$

（c）全引張応力 $\sigma \mathrm{tK}$

$$
\begin{equation*}
\sigma_{\mathrm{tK}}=\sigma_{\mathrm{xK}}+\sigma_{\mathrm{bK}} \tag{4.6.1.17}
\end{equation*}
$$

b．全せん断応力 τ_{tK} の算出
（a）せん断力 $\mathrm{F}_{z \mathrm{~K}}, \mathrm{~F}_{\mathrm{y} \mathrm{K}}$ によるせん断応力 $\tau_{1 \mathrm{~K}}$

$$
\begin{equation*}
\tau_{1 \mathrm{~K}}=\sqrt{\left(\mathrm{F}_{\mathrm{zK}} / \mathrm{A}_{\mathrm{zK}}\right)^{2}+\left(\mathrm{F}_{\mathrm{yK}} / \mathrm{A}_{\mathrm{yK}}\right)^{2}} \tag{4.6.1.18}
\end{equation*}
$$

（b）ねじりモーメント M_{xK} によるせん断応力 $\tau 2 \mathrm{~K}$

$$
\begin{equation*}
\tau_{2 \mathrm{~K}}=\mathrm{K}_{\mathrm{K}} \times \mathrm{M}_{\mathrm{xK}} \tag{4.6.1.19}
\end{equation*}
$$

（c）全せん断応力 τ_{tK}

$$
\begin{equation*}
\tau_{\mathrm{tK}}=\tau_{1 \mathrm{~K}}+\tau_{2 \mathrm{~K}} \tag{4.6.1.20}
\end{equation*}
$$

c．組合せ応力 $\sigma \mathrm{c} 1 \mathrm{~K}$

$$
\begin{equation*}
\sigma_{\mathrm{c} 1 \mathrm{~K}}=\sqrt{\sigma_{\mathrm{tK}}^{2}+3\left(\tau_{1 \mathrm{~K}}+\tau_{2 \mathrm{~K}}\right)^{2}} \tag{4.6.1.21}
\end{equation*}
$$

（4）カーブ上面固定ボルトの応力
a．全引張応力 σ_{tB} の算出
（a）引張力 F_{xB} によよ引張応力 $\sigma \times \mathrm{B}$ の算出

$$
\begin{equation*}
\sigma_{\mathrm{xB}}=\mathrm{F}_{\mathrm{xB}} / \mathrm{A}_{1 \mathrm{~B}} \tag{4.6.1.22}
\end{equation*}
$$

（b）曲げモーメント $\mathrm{M}_{\mathrm{z} \text { в }}, ~ \mathrm{M}_{\text {у в }}$ による応力 σ bв

$$
\begin{equation*}
\sigma_{\mathrm{bB}}=\mathrm{M}_{\mathrm{zB}} / \mathrm{Z}_{\mathrm{zB}}+\mathrm{M}_{\mathrm{yB}} / \mathrm{Z}_{\mathrm{yB}} \tag{4.6.1.23}
\end{equation*}
$$

（c）全引張応力 σ t ${ }^{\text {B }}$

$$
\begin{equation*}
\sigma_{\mathrm{tB}}=\sigma_{\mathrm{xB}}+\sigma_{\mathrm{bB}} \tag{4.6.1.24}
\end{equation*}
$$

b．せん断力 $\mathrm{F}_{\mathrm{zB}}, \mathrm{F}_{\mathrm{y} \text { B }}$ によるせん断応力 $\tau_{1 \mathrm{~B}}$ の算出

$$
\begin{equation*}
\tau_{1 \mathrm{~B}}=\sqrt{\left(\mathrm{F}_{\mathrm{zB}} / \mathrm{A}_{1 \mathrm{~B}}\right)^{2}+\left(\mathrm{F}_{\mathrm{yB}} / \mathrm{A}_{1 \mathrm{~B}}\right)^{2}} \tag{4.6.1.25}
\end{equation*}
$$

（5）バックプレート押えボルトの応力
a ．全引張応力 $\sigma_{t D}$ の算出
（a）引張力 F_{xD} による引張応力 $\sigma \times \mathrm{D}$ の算出

$$
\begin{equation*}
\sigma_{\mathrm{xD}}=\mathrm{F}_{\mathrm{xD}} / \mathrm{A}_{1 \mathrm{D}} \tag{4.6.1.26}
\end{equation*}
$$

（b）曲げモーメント $\mathrm{M}_{\mathrm{zD}}, ~ \mathrm{M}_{\mathrm{yD}}$ による応力 $\sigma \mathrm{bD}$

$$
\begin{equation*}
\sigma_{\mathrm{bD}}=\mathrm{M}_{\mathrm{zD}} / \mathrm{Z}_{\mathrm{zD}}+\mathrm{M}_{\mathrm{yD}} / \mathrm{Z}_{\mathrm{yD}} \tag{4.6.1.27}
\end{equation*}
$$

（c）全引張応力 σ tD

$$
\begin{equation*}
\sigma_{\mathrm{tD}}=\sigma_{\mathrm{xD}}+\sigma_{\mathrm{bD}} \tag{4.6.1.28}
\end{equation*}
$$

b．せん断力 $\mathrm{F}_{\mathrm{zD}}, \mathrm{F}_{\mathrm{yD}}$ によるせん断応力 $\tau_{1 \mathrm{D}}$ の算出

$$
\begin{equation*}
\tau_{1 \mathrm{D}}=\sqrt{\left(\mathrm{F}_{\mathrm{zD}} / \mathrm{A}_{1 \mathrm{D}}\right)^{2}+\left(\mathrm{F}_{\mathrm{yD}} / \mathrm{A}_{1 \mathrm{D}}\right)^{2}} \tag{4.6.1.29}
\end{equation*}
$$

4．6．2 荷重の計算方法

（1）吊具に作用する荷重
着脱機の吊荷荷重を受ける部位として，損傷•破断により吊荷（可動台及び燃料）の落下に至る可能性がある吊具（チェーン）を評価対象とする。

チェーンの計算に当たっては，以下の基本事項で行らものとする。
－吊荷に作用する地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」基づ き，固有周期 $\mathrm{T} w$ において基準地震動 S s に基づく設計用床応答曲線により得られる値 を適用する。減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数である $\square \%$ を適用する。
－吊荷は水中にあり，実際の吊下げでは水の抵抗を受けるが，評価に当たっては，気中で の吊下げを想定して保守的に水の抵抗はないものとして行う。
－可動台及び吊荷の速度算出に当たっては，可動台，吊荷質量及びチェーン長さの評価条件を，固有周期と床応答曲線の関係から評価が厳しくなるように設定する。
（1）チェーン長さは，固有周期に対する床応答特性（加速度）がより厳しくなる長さと する。評価に当たっては，チェーン長さに応じて吊荷の固有周期が変化するため，吊具に作用する荷重を求める際に用いる設計用床応答曲線より，震度が最大となる固有周期に相当する新燃料搬入位置及び常用上限の中間の吊荷位置（チェーン長さ：
－での評価を行う。
（2）吊荷の質量は，燃料及び可動台の質量ならびに水の付加質量とする。
－チェーンの荷重は，吊荷を 1 自由度モデルにより求めた固有周期に対応する加速度，着脱機を4．5項で設定した設計用震度をもとに，吊荷が一度浮き上がって落下したときの衝撃荷重を算出する。
－着脱機と吊荷の位相差が吊荷に及ぼす影響については，吊荷とは逆位相に生じる着脱機 の速度を，吊荷に作用する相対速度として考慮する。
－衝撃荷重は，吊荷が持っている運動量の保存則を考慮して算出する。
（2）吊荷の浮上り後の落下速度の算出
吊荷は，図4－8に示すように，鉛直方向に浮き上がり再び自然長位置に戻った瞬間か ら，吊具の衝撃荷重を与える。

v_{1} ：上向き速度

下向き速度 v
（2），（3）まではエネルギー保存則より
下向き速度 v は
$\mathrm{v}<\mathrm{v}_{1}$
となるが，保守的に
$\mathrm{v}=\mathrm{v}_{1}$
として評価を行う。

図 4－8 吊荷の浮上りの様子
（3）吊荷の固有周期
図 4－9 に示すとおり，着脱機を剛体としたときの吊荷の固有周期 T_{w} を算出する。

着脱機（剛体）

$$
\text { 固有周期 : } \quad \mathrm{T}_{\mathrm{w}}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}_{\mathrm{m}}}{\mathrm{k}_{\mathrm{w}}}} \quad \cdots \text { (4.6.2.1) }
$$

図 4－9 吊荷の固有周期の算出
（4）吊荷，着脱機の速度の算出
以下の式に従い，吊荷及び着脱機に作用する最大加速度による速度を算出する。
$\mathrm{v}_{1}=\mathrm{a}_{\mathrm{w}} \cdot \mathrm{g} \cdot \mathrm{T}_{\mathrm{W}} /(2 \cdot \pi)$
（4．6．2．2）
$\mathrm{v}_{2}=\mathrm{C}_{\mathrm{V}} \cdot \mathrm{g} \cdot \mathrm{T}_{\mathrm{f}} /(2 \cdot \pi)$
（4．6．2．3）
（5）吊具に作用する衝撃荷重
以下のとおり，チェーンに作用する荷重 F を算出する。
図 4－10 及び図 4－11に示すように，チェーンの下端にある吊荷の運動量の変化は吊荷と着脱機の質量や固有値が異なることから v_{1} と v_{2} が同値にならないが，保守的にチェーン の減衰がなく完全弾性衝突を仮定して反発係数を1とすれば以下となる。

$$
\begin{equation*}
\left(\text { 力積) }: \int_{0}^{\frac{\mathrm{T}_{\mathrm{w}}}{4}} \mathrm{~F} \cdot \sin \quad\left(2 \cdot \pi \cdot \frac{\mathrm{t}}{\mathrm{~T}_{\mathrm{v}}}\right) \cdot \mathrm{dt}\right. \tag{4.6.2.4}
\end{equation*}
$$

（吊荷の運動量の変化）：$\quad \mathrm{m}_{\mathrm{m}} \cdot\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)$

$$
\begin{equation*}
\mathrm{m}_{\mathrm{m}} \cdot\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \tag{4.6.2.5}
\end{equation*}
$$

着脱機

力積発生後

最下点：速度 0

相対速度（ $\mathrm{v}_{1}+\mathrm{v}_{2}$ ）とする。

図 4－10 吊荷落下後の速度変化
吊荷の力積

図 4－11 吊荷の力積の概念図

吊荷の運動方向が変化する時間については，チェーンが完全弾性体で，吊荷と着脱機の運動が自由振動系であることを仮定すれば，吊荷の固有周期 T_{w} の 4 分の 1 となる。

以上から，運動量変化及び作用時間をもとに荷重は，自重分を追加して，チェーンに作用する荷重を以下のとおり計算する。

$$
\mathrm{F}_{\mathrm{C}}=\frac{2 \cdot \pi \cdot \mathrm{~m}_{\mathrm{m}} \cdot\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)}{\mathrm{T}_{\mathrm{w}}}+\mathrm{m}_{\mathrm{m}} \cdot \mathrm{~g} \quad \cdots \quad \text { (4.6.2.6) }
$$

4．7 計算条件
応力解析に用いる自重（着脱機•吊荷）及び荷重（地震荷重）は，本計算書の【着脱機の耐震性についての計算結果】の設計条件及び機器要目に示す。

4．8 応力及び荷重の評価

4．8．1 フレーム，バックプレート及び可動台の応力評価
4．6．1項で求めたフレーム，バックプレート及び可動台の発生応力 $\sigma_{\mathrm{tF}}, \sigma_{\mathrm{c} 1 \mathrm{~F}}, \sigma_{\mathrm{tP}}$ ，
 が，許容せん断応力 f_{s} 以下であること。

ただし，各許容応力は下表による。

	基準地震動 S s による荷重 との組合せの場合
許容引張応力 f_{t}	F^{*}
許容せん断応力 f_{s}	1.5 $\mathrm{~F}^{*}$

4．8．2 カーブ上面固定ボルト及びバックプレート押えボルトの応力評価
4．6．1項で求めたカーブ上面固定ボルト及びバックプレート押えボルトの引張応力 σ_{tB}及び σ_{tD} は次式より求めた許容引張応力 f_{t} 以下であること。ただし，f_{t} 。は下表によ る。また，バックプレート押えボルト評価用については添え字を $\mathrm{B} \rightarrow \mathrm{D}$ に置き換える。

$$
f_{\mathrm{ts}}=\mathrm{M} \text { i } \mathrm{n}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{1 \mathrm{~B}}, f_{\mathrm{to}}\right] \cdot \cdots \cdot \cdot \cdot(4.8 .2 .1)
$$

せん断応力 $\tau_{1 \mathrm{~B}}$ 及び $\tau_{1 \mathrm{D}}$ は，せん断力のみを受けるカーブ上面固定ボルト及びバック プレート押えボルトの許容せん断応力 f_{s} b 以下であること。ただし，各許容応力は下表に よる。

	基準地震動 S s による荷重 との組合せの場合
許容引張応力 f_{to}	$\frac{\mathrm{F}^{*}}{2}$
許容せん断応力 f_{sb}	F^{*} $1.5 \cdot \sqrt{3}$

4．8．3 吊具の荷重評価

4．6．2 項で求めたチェーンの荷重が許容荷重以下であること。

5．評価結果
5.1 設計基準対象施設としての評価結果

着脱機の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足し ており，設計用地震力（基準地震動 S s ）に対して十分な構造強度を有していることを確認 した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

5.2 重大事故等対処設備としての評価結果

着脱機の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力（基準地震動 S s ）に対して十分な構造強度を有している ことを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
【着脱機の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震設計上の重要度分類	据付場所 及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s			最高使用 温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平 方向	鉛直 方向	水平 方向 設計 震度	鉛直 方向 設計 震度	水平方向設計震度		鉛直方向設計震度		
							EW 方向	NS 方向			
燃料チャンネル着脱機	B	原子炬建屋 0．P．33．2＊1			－	－	$\mathrm{C}_{\mathrm{H}}=2.40$	$\mathrm{C}_{\mathrm{H}}=2.65$	$\begin{gathered} \mathrm{C}_{\mathrm{v}}=1.77 \\ \text { 又は*2 } \end{gathered}$	－	66／50

注記 $* 1$ ：基準床レベルを示す。
＊2：基準地震動 S s に基づく設計用床応答曲線により得られる値。吊荷の荷重算出に適用する。
1.2 機器要目

m_{F} (kg)	m_{K} (kg)	m_{m} (kg)	$\mathrm{m}_{\mathrm{wH}}(\mathrm{EW})$ (kg)	$\mathrm{m}_{\mathrm{wH}}(\mathrm{NS})$ (kg)	m_{wN} (kg)	$\mathrm{A}_{1 \mathrm{~F}}$ $\left(\mathrm{~mm}^{2}\right)$	A_{yF} $\left(\mathrm{mm}^{2}\right)$	$\mathrm{A}_{z \mathrm{~F}}$ $\left(\mathrm{~mm}^{2}\right)$	K_{F} $\left(\mathrm{mm}^{-3}\right)$	Z_{yF} $\left(\mathrm{mm}^{3}\right)$	$\mathrm{Z}_{Z \mathrm{~F}}$ $\left(\mathrm{~mm}^{3}\right)$

$Z_{z B}$	E

$\stackrel{2}{\circ}$

K_{B}
$\left(\mathrm{mm}^{-3}\right)$

$\mathrm{A}_{1 \mathrm{~B}}$
$\left(\mathrm{~mm}^{2}\right)$
\times
\sim
\sim
$Z_{z K}$
$\left(\mathrm{~mm}^{3}\right)$

$\mathrm{A}_{1 \mathrm{~K}}$ $\left(\mathrm{~mm}^{2}\right)$	A_{yK} $\left(\mathrm{mm}^{2}\right)$	$\mathrm{A}_{z \mathrm{~K}}$ $\left(\mathrm{~mm}^{2}\right)$	K_{K} $\left(\mathrm{mm}^{-3}\right)$	$Z_{y K}$ $\left(\mathrm{~mm}^{3}\right)$

$A_{1 K}$
$\left(\mathrm{~mm}^{2}\right)$
O 2 VI－2－11－2－14 R 4

$\begin{aligned} & \mathrm{A}_{1 \mathrm{p}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{yP}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{2 \mathrm{P}} \mathrm{P} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{K}_{\mathrm{P}} \\ \left(\mathrm{~mm}^{-3}\right) \end{gathered}$	$\begin{aligned} & Z_{y \mathrm{p}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{aligned} & Z_{z \mathrm{p}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$
$\begin{aligned} & \mathrm{A}_{1 \mathrm{D}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{K}_{\mathrm{D}} \\ \left(\mathrm{~mm}^{-3}\right) \end{gathered}$	$\begin{aligned} & Z_{y \mathrm{y}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{zD}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{gathered} \mathrm{L}_{\mathrm{w}} \\ (\mathrm{~mm}) \end{gathered}$	

$S_{y} \text { (フレーム) }$ （MPa）	$\mathrm{S}_{\mathrm{u}} \text { (フレーム) }$ (MPa)	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{RT}) \quad \text { (フレーム) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*}(\text { フレーム) } \\ (\mathrm{MPa}) \end{gathered}$

Sy（可動台） （MPa）	S_{u}（可動台） （MPa）	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{RT}) \quad \text { (可動台) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*}(\text { 可動台) } \\ \text { (MPa) } \end{gathered}$

O 2 VI－2－11－2－14 R 3

S_{y}（カーブ上面固定ボルト） (MPa)	S_{u}（カーブ上面固定ボルト） (MPa)	S_{y}（RT）（カーブ上面固定ボルト）	F^{*}（カーブ上面固定ボルト） (MPa)

Sy (バックプレート 押えボルト） （MPa）	S_{u}（バックプレート 押えボルト） （MPa）	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (RT) (バックプレート } \\ \text { 押えボルト) } \\ (\mathrm{MPa}) \end{gathered}$	F* (バックプレート 押えボルト） （MPa）

1．3．1 フレームの荷重及びモーメント

部 材	基準地震動S s					
	荷重			モーメント		
	$F_{x F}$ （N）	$F_{y F}$ （N）	$\mathrm{F}_{\mathrm{Z}} \mathrm{~F}$ （N）	$\begin{gathered} \mathrm{M}_{\mathrm{xF}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{yF}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{zF}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
フレーム						

> 1．3．2 バックプレートの荷重及びモーメント

部 材	基準地震動S s					
	荷重			モーメント		
	$F_{x P}$ （N）	F_{yP} （N）	$F_{z P}$ （N）	$\begin{gathered} \mathrm{M}_{\mathrm{xP}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{y} \mathrm{P}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{zP}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
バックプレート						

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{F}_{\mathrm{xK}} \\
(\mathrm{~N})
\end{array}
\end{aligned}
$$

1．3．3 可動台の荷重及びモーメント
1．3．4 カーブ上面固定ボルトの荷重及びモーメント

部 材	基準地震動S s					
	荷重			モーメント		
	$\begin{gathered} F_{x B} \\ (\mathrm{~N}) \end{gathered}$	F_{yB} （N）	$\mathrm{F}_{z \mathrm{~B}}$ （N）	$\begin{gathered} \mathrm{M}_{\times \mathrm{B}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{yb}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{zB}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
カーブ上面固定ボルト						

（単位：MPa）							
部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s		
			算 出 応 力	許 容 応 力	算 出 応 力	許 容	応力
フレーム		引 張 り	－	－	$\sigma_{\mathrm{tF}}=12$	$f_{\mathrm{t}}=$	
		せ ん 断	－	－	$\tau_{\mathrm{tF}}=52$	$f_{\mathrm{s}}=$	
		組 合 せ	－	－	$\sigma_{\mathrm{c} 1 \mathrm{~F}}=91$	$f_{\mathrm{t}}=$	
バックプレート		引張り	－	－	$\sigma_{\mathrm{tP}}=34$	$f_{\mathrm{t}}=$	
		せ ん 断	－	－	$\tau_{\mathrm{tP}}=102$	$f_{\mathrm{s}}=$	
		組 合 せ	－	－	$\sigma_{\mathrm{c} 1 \mathrm{P}}=180$	$f_{\mathrm{t}}=$	
可動台		引張 り	－	－	$\sigma_{\mathrm{tK}}=39$	$f_{\mathrm{t}}=$	
		せ ん 断	－	－	$\tau_{\mathrm{tK}}=20$	$f_{\mathrm{s}}=$	
		組 合 せ	－	－	$\sigma_{\text {c } 1 \mathrm{~K}}=\quad 52$	$f_{\mathrm{t}}=$	
カーブ上面		引 張 り	－	－	$\sigma_{\mathrm{tB}}=38$	$f_{\mathrm{ts}}=$	
固定ボルト		せ ん 断	－	－	$\tau_{1 \mathrm{~B}}=2$	$f_{\text {s b }}=$	
バックプレート		引張り	－	－	$\sigma_{\mathrm{tD}}=103$	$f_{\mathrm{ts}}=$	
		せ ん 断	－	－	$\tau_{1 \mathrm{D}}=7$	$f_{\text {s b }}=$	

 すべて許容応力以下である。

枠囲みの内容は商業機密の観点から公開できません。
O 2 VI－2－11－2－14 R 4
（単位：N）

すべて許容荷重以下である。

機器名称	耐震設計上の重要度分類	据付場所 及び 床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s			最高使用 温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平 方向	鉛直 方向	水平 方向 設計 震度	鉛直 方向 設計 震度	水平方向設計震度		鉛直方向設計震度		
							EW 方向	NS 方向			
燃料チャンネル着脱機	－	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. } 33.2^{* 1} \end{aligned}$			－	－	$\mathrm{C}_{\mathrm{H}}=2.40$	$\mathrm{C}_{\mathrm{H}}=2.65$	$\begin{gathered} \mathrm{C}_{\mathrm{v}}=1.77 \\ \text { 又は } 24 \end{gathered}$	－	100

注記＊1：基準床レベルを示す。
＊2：基準地震動 S s に基づく設計用床応答曲線により得られる値。吊荷の荷重算出に適用する。
O 2 VI－2－11－2－14 R 4

$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (バックプレート) } \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (バックプレート) } \\ (\mathrm{MPa}) \end{gathered}$	$\mathrm{S}_{\mathrm{y}}(\mathrm{RT}$	$\begin{aligned} & \text { (バックプレート) } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}^{*} \text { (バックプレート) } \\ (\mathrm{MPa}) \end{gathered}$

$\begin{array}{ll} \mathrm{S}_{\mathrm{y}} & \text { (可動台) } \\ & \text { (MPa) } \end{array}$	$\begin{aligned} \mathrm{S}_{\mathrm{u}} & (\text { 可動台) } \\ & (\mathrm{MPa}) \end{aligned}$	$S_{y}($ R T）（可動台） （MPa）	$\begin{gathered} \mathrm{F}^{*} \\ \quad(\text { 可動台) } \\ \quad(\mathrm{MPa}) \end{gathered}$

O 2 VI－2－11－2－14 R 3

S_{y}（カーブ上面固定ボルト） (MPa)	S_{u}（カーブ上面固定ボルト） (MPa)	S_{y}（RT）（カーブ上面固定ボルト） (MPa)	F^{*}（カーブ上面固定ボルト） (MPa)

Sy（バックプレート 押えボルト） （MPa）	S_{u}（バックプレート 押えボルト） （MPa）	$\mathrm{S}_{\mathrm{y}} \text { (RT) (バックプレート }$ 押えボルト） （MPa）	F* (バックプレート 押えボルト） （MPa）

A_{L}（チェーン）
（N）

部 材	基準地震動S s					
	荷重			モーメント		
	$F_{x F}$ （N）	F_{yF} （N）	$\mathrm{F}_{\mathrm{z}} \mathrm{~F}$ （N）	$\begin{gathered} \mathrm{M}_{\mathrm{xF}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{M}_{\mathrm{yF}} \\ & (\mathrm{~N} \cdot \mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{M}_{\mathrm{zF}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
フレーム						

2．3．2 バックプレートの荷重及びモーメント

部 材	基準地震動S s					
	荷重			モーメント		
	$F_{x P}$ （N）	$F_{y P}$ （N）	F_{zP} （N）	$\begin{aligned} & \mathrm{M}_{\mathrm{x} P} \\ & (\mathrm{~N} \cdot \mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{M}_{\mathrm{yP}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{zP}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
バックプレート						

2．3．4 カーブ上面固定ボルトの荷重及びモーメント

部 材	基準地震動S s					
	荷重			モーメント		
	$F_{x B}$ （N）	F_{yB} （N）	F_{zB} （N）	$\begin{gathered} \mathrm{M}_{\mathrm{x} \cdot \mathrm{~B}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{yb}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{zB}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
カーブ上面 固定ボルト						

（単位：MPa）							
	材 料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s		
			算 出 応 力	許 容 応力	算 出 応 力	許 容	応力
フレーム		引張 り	－	－	$\sigma_{\mathrm{tF}}=12$	$f_{\mathrm{t}}=$	
		せ ん 断	－	－	$\tau_{\mathrm{tF}}=52$	$f_{\text {s }}=$	
		組 合 せ	－	－	$\sigma_{\mathrm{c} 1 \mathrm{~F}}=91$	$f_{\mathrm{t}}=$	
バックプレート		引張り	－	－	$\sigma_{\mathrm{tP}}=34$	$f_{\mathrm{t}}=$	
		せ ん 断	－	－	$\tau_{\mathrm{tP}}=102$	$f_{\mathrm{s}}=$	
		組 合 せ	－	－	$\sigma_{\mathrm{c} 1 \mathrm{P}}=180$	$f_{\mathrm{t}}=$	
可動台		引張 り	－	－	$\sigma_{\mathrm{tK}}=39$	$f_{\mathrm{t}}=$	
		せ ん 断	－	－	$\tau_{\mathrm{tK}}=20$	$f_{\mathrm{s}}=$	
		組 合 せ	－	－	$\sigma_{\mathrm{c} 1 \mathrm{~K}}=\quad 52$	$f_{\mathrm{t}}=$	
カーブ上面		引張 り	－	－	$\sigma_{\mathrm{tB}}=38$	$f_{\mathrm{ts}}=$	
固定ボルト		せ ん 断	－	－	$\tau_{1 \text { в }}=2$	$f_{\text {s b }}=$	
バックプレート		引張 り	－	－	$\sigma_{\mathrm{tD}}=103$	$f_{\mathrm{ts}}=$	
押えボルト		せ ん 断	－	－	$\tau_{1 \mathrm{D}}=7$	$f_{\mathrm{sb}}=$	

注記＊1：$f_{\mathrm{t} \mathrm{s}}=\mathrm{M}$ i $\mathrm{n}\left[1.4 \cdot f_{\mathrm{t}}-1.6 \cdot \tau_{1 \mathrm{~B}}, f_{\mathrm{to}}\right]$ より算出。バックプレート押えボルト評価用については添え字を $\mathrm{B} \rightarrow \mathrm{D}$ に置き換える。 すべて許容応力以下である。
（単位：N）

[^0]枠囲みの内容は商業機密の観点から公開できません。

3．その他の機器要目
（1）解析モデル図
O 2 VI－2－11－2－14 R 3

部材	要素	部材断面	断面積 （ mm^{2} ）	断面係数 （ mm^{3} ）	材料	温度 $\left({ }^{\circ} \mathrm{C}\right)$	縦弾性係数 （MPa）	ポアソン比 （－）
バックプレート （上板）	f					50		0.3
バックプレート	g					$\begin{aligned} & 50 \\ & 66 \end{aligned}$		0． 3
$\begin{gathered} \text { バックプレート } \\ \text { フレーム } \end{gathered}$	h					66		0.3

注：可動台－フレーム間の部材は剛体要素として設定。

[^0]: すべて許容荷重以下である。

