女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-補-E-19-0600-25_改 1

補足-600-25 地下水位低下設備に係る補足説明資料

東北電力株式会社

工事計画添付書類に係る補足説明資料

添付書類の記載内容を補足するための資料を以下に示す。

工認添付書類	補足説明資料	
VI-2-1-1-別添 1	補足-600-25-1	
VI-2-1-1	地下水位低下設備の設計方針に係る補足説明資	
地下小位低下設備の設計力正	料	
VI-2-13	補足-600-25-2	
地下水位低下設備の耐震性についての計算書	地下水位低下設備の耐震性に係る補足説明資料	
VI-2-13-7	補足-600-25-3	
地下水位低下設備配管の耐震性についての計	地下水位低下設備配管の耐震評価における最高	
算書	使用圧力に関する補足説明資料	
VI-2-13-1	補足-600-25-4	
VI=Z=13=1 地下水位低下設備の耐震計算の方針	地下水位低下設備における水の付加質量の考慮	
地下小Ш限 説開の順辰計昇の万町	について	

女川原子力発電所第2	号機 工事計画審査資料
資料番号	02-補-E-19-0600-25-1_改 15

補足-600-25-1 地下水位低下設備の設計方針に係る補足説明資料

1.		は	じめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.		地	下水流入量の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	2.	1	検討方針 ・・・・・	2
	2.	2	モデルの妥当性確認 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
	2.	3	予測解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3.	. †	地下	「水位低下設備の機能喪失を仮定した到達時間の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
	3.	1	検討方針 ·····	13
	3.	2	到達時間の評価指標について・・・・・	13
	3.	3	評価条件	15
	3.	4	評価結果 · · · · · · · · · · · · · · · · · · ·	16
4		地	下水流入量と設備の排水能力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	4.	1	地下水流入量と排水能力(揚水ポンプ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	4.	2	地下水流入量と排水能力(ドレーン)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	4.	3	排水能力の妥当性について ・・・・・・	32
5.		復	旧措置に係る補足事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
	5.	1	揚水井戸内の揚水ポンプ配置例	33
	5.	2	可搬ポンプユニットによる水位低下措置の対応要員について・・・・・・・・・・・・・	33
6.		構	告強度設計方針に係る補足事項·····	35
	6.	1	電路(電源ケーブル、制御・計装ケーブル)の配置	35
7.		屋/	外排水路に係る補足事項 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
	7.	1	屋外排水路に係る補足事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36

参考資料1 浸透流解析モデル概要及びアウトプットと設備設計への反映事項

参考資料2 屋外排水路の機能及び耐震性に係る設計方針について

目次

1. はじめに

本書は、「VI-2-1-1 別添1 地下水位低下設備の設計方針」に引き継ぐ三次元浸透流解析結果 のうち、地下水流入量及び地下水位低下設備の機能喪失を仮定した到達時間*1の評価について、 詳細を補足するものである。

また,復旧措置に係る補足事項として,揚水井戸内の揚水ポンプ配置例と可搬ポンプユニット による水位低下措置の対応要員,構造強度設計方針に係る補足事項として電路(電源ケーブル, 制御・計装ケーブル)の配置等を示す。併せて,設計用揚圧力・設計用地下水位を保持し,技術 基準第5条(耐震)に適合した状態を維持することに対する屋外排水路の位置付けと設計方針に ついて示す。

注記*1: 「到達時間」とは、地下水位低下設備が同時に機能喪失し水位上昇することを仮 定した場合において、設計値に到達するまでの時間を指す。

> 地下水位が上昇する場合に耐震性へ与える影響として,建物・構築物へ作用する 揚圧力の上昇,周辺地盤の液状化に伴う施設へ作用する土圧等の変化,周辺地盤の 液状化に伴う地下構造物の浮上りが考えられるが,3.に示す通り,揚圧力に着目す ることで到達時間が最も短く(保守的に)評価される。

> このため、各建屋に作用する平均揚圧力に対応する水位が、設計用揚圧力に対応 する水位に到達するまでの時間を浸透流解析(非定常解析)により評価する。

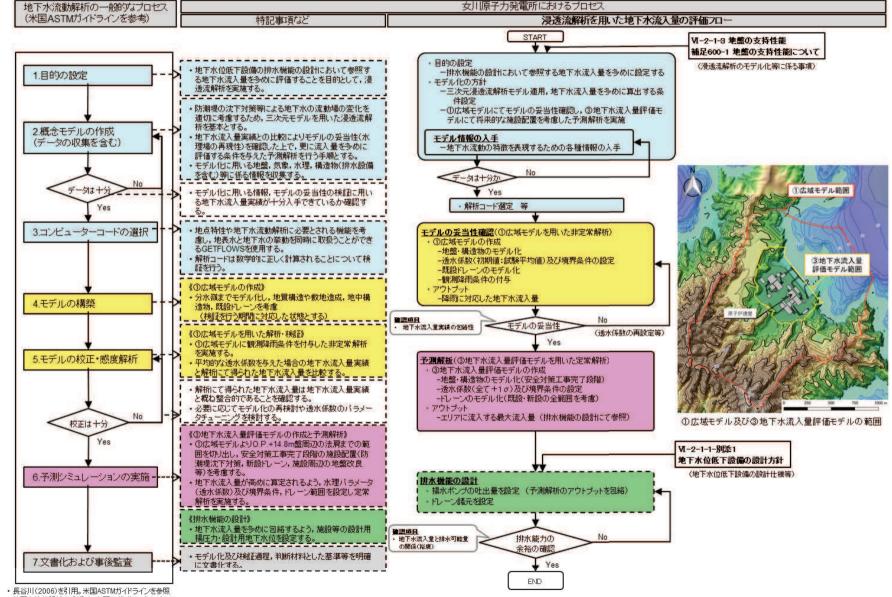
2. 地下水流入量の評価

2.1 検討方針

設置変更許可においては、地下水流入量は、保守的な条件(地下水流入量が多めに評価される 条件)を与えた浸透流解析により評価する方針としていた。この方針を踏まえて、地下水流入量 は地下水位低下設備の機能を考慮した三次元浸透流解析(非定常解析)を用いて評価する。

浸透流解析のアウトプットは, 揚水ポンプの排水能力設定において参照することも踏まえて, 妥当な浸透流解析モデルであることを確認した上で, 地下水流入量が多めに算出される解析条件 を与えた予測解析により評価する必要がある。

このため,設計用地下水位の設定に係るプロセスと同様に,①広域モデルを用いて実データと の比較によりモデルの妥当性を確認した上で,予測解析として解析の保守性を考慮した「③地下 水流入量評価モデル」を作成する。


①広域モデルを用いた妥当性確認は,実データ(既設地下水位低下設備における至近の揚水ポ ンプ稼働実績。以下,排水実績)との対比により確認するため,データ取得時の状態に対応する よう既設ドレーン範囲を全てモデル化した上で,解析の再現性が確保されるよう地下水流入量に 影響の大きい透水係数のパラメータチューニングを行う。

地下水流入量を評価する③地下水流入量評価モデルは,設計用地下水位の設定プロセスと同様, 安全対策工事として実施する防潮堤の沈下対策などの各種工事やドレーン新設等の工事完了段階 における施設配置等を反映し,①広域モデルより 0.P.+14.8m 盤周辺の領域を切り出した上で,地 下水流入量が多めに算出される解析条件を設定する。

ここでは、設計用地下水位の設定に係る予測解析に用いた「②水位評価モデル」*1における保 守性確保の考え方も参考に、地下水流入量の観点からも保守的な条件設定*2は踏襲した上で、更 に透水係数を大きめに、ドレーン範囲を広めに設定することで、流入量評価の保守性を確保する 方針とする。

地下水流入量の評価フローを図 2-1 に,浸透流解析の目的に対応したモデル選択と設備設計へのインプットの関係を図 2-2 及び参考資料 1 に示す。

- 注記*1: ②水位評価モデルの概要及び妥当性の確認結果については、「VI-2-1-3 地盤の支持性能に係る基本方針」に記載する。
 - *2:解析境界における水位は、流入量を多めに算出するため、②水位評価モデルと同様に山側を地表面 (法肩)に固定、海側を朔望平均満潮位に固定する。

地下水流動解析の手順は、各国のガイドラインによって 大きな差はなく、概ね同様の手順となっている。

X

 \sim

÷

圉

ᅱ

大流

ン量

1401

副

V

П

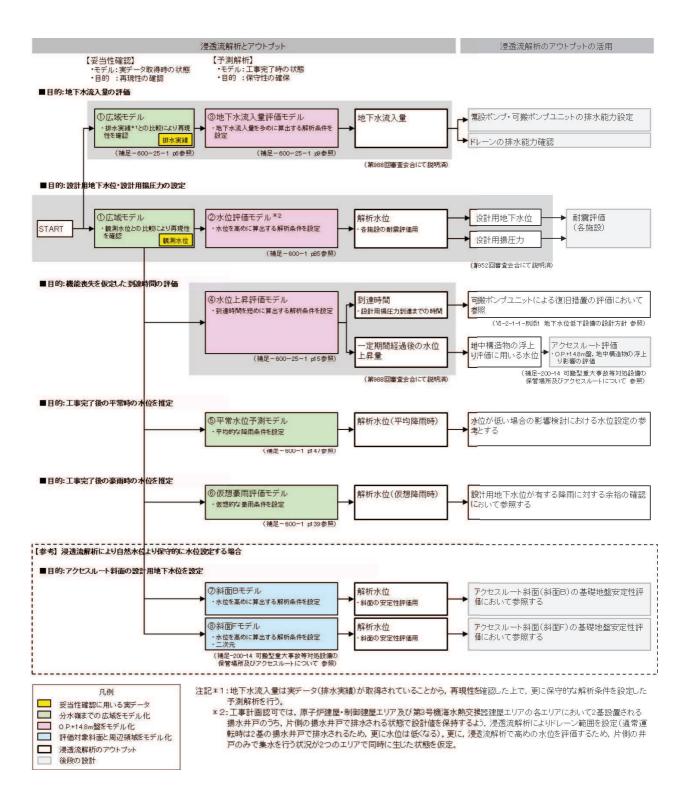


図 2-2 浸透流解析による評価と機器設計等への反映事項

2.2 モデルの妥当性確認

2.2.1 評価条件

モデルの妥当性確認においては,表 2-1 に示す排水実績(平成 27 年度~平成 30 年度)を参照する。妥当性確認に用いる期間は,最大値を確認している平成 29 年 9 月~平成 29 年 10 月を 選定する。

既往の揚水ポンプ月別排水量合計を図 2-3 に,妥当性確認において用いる①広域モデルの評価条件を表 2-2 に示す。

揚水ポンプ最大排水量(m ³ /日)				備考
H27 年度	H28 年度	H29 年度	H30年度	浦石
5042	4076	6228	2927	
(961)	(918)	(1050)	(1025)	
2377	2025	2711	1089	
(756)	(647)	(561)	(424)	
7419	6101	8939	4016	
(1717)	(1565)	(1611)	(1449)	
7239	5961	8522	3574	
(1661)	(1564)	(1610)	(1449)	
	5042 (961) 2377 (756) 7419 (1717) 7239	H27 年度H28 年度50424076(961)(918)23772025(756)(647)74196101(1717)(1565)72395961	H27 年度H28 年度H29 年度504240766228(961)(918)(1050)237720252711(756)(647)(561)741961018939(1717)(1565)(1611)723959618522	H27 年度H28 年度H29 年度H30 年度5042407662282927(961)(918)(1050)(1025)2377202527111089(756)(647)(561)(424)7419610189394016(1717)(1565)(1611)(1449)7239596185223574

表 2-1 排水実績(集計値)

注記*1:各エリア毎の日最大値,()内の数値は日平均値を示す。

*2:各エリアを合算した全体の排水量における日最大値,()内の数値は日平均値を示す。

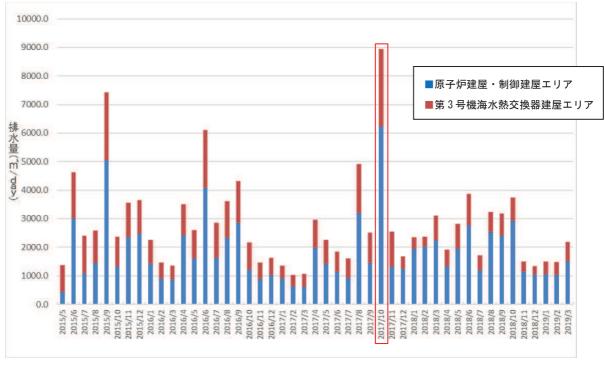
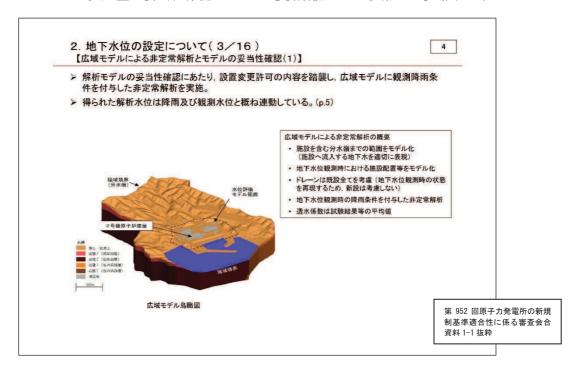


図 2-3 排水実績(月別)

衣 2-2 ①広域モアルにおける評価条件				
項目	①広域モデル			
1a.目的	・モデル化の妥当性を確認すること(観測結果の再現性を確保)			
1b.アウトプットの活用	- (モデル検証のみ)			
2. 解析コード	• GETFLOWS Ver. 6. 64. 0. 2			
3a. 解析領域	 ・分水嶺を山側境界とし②水位評価モデルを包絡する範囲 			
3b. 格子数	 ・ 平面格子数:約33.4万 ・ 総格子数:約1600万 ・ 格子寸法:0.5~6m程度 (構造物近傍は最小0.5m程度,山側領域は3~6m程度) 			
4. 解析種別	・非定常解析			
5a. 検証期間(流入量)	 ・平成 29 年 9 月~平成 29 年 10 月(排水実績の最大値を含む期間) 			
5b. 降雨条件	 ・初期状態:3.57mm/日 (観測降雨(2001-2018年)の日平均) ・降雨時:上記検証期間の降雨実績 			
5c. 気象条件	降水量・気温・日射量・相対湿度・風速:構内観測所データ(欠測 値は、周辺気象庁データから欠測補間)			
5d. 蒸発散	 ・ 定常状態:ハーモン法^{*1} ・ 非定常状態:熱収支法^{*2} 			
6a.モデル (地形)	・検証期間に対応した状態			
6b. 〃 (地盤)	・検証期間に対応した状態			
6c. 〃 (構造物)	・ 検証期間に対応した状態			
6d. 〃 (ドレーン)	 ・既設の全範囲を管路として考慮(新設は考慮しない) 			
7. 境界条件	 ・実態に則した設定 ー山側:閉境界 一海側:平均潮位に水位固定 ードレーン:ドレーン計画高に水位固定 			
8. 透水係数	 ・試験等の平均値より盛土・旧表土を+1 σ (初期値を試験等の平均値としパラメータチューニング) 			
9. 有効間隙率	 · 文献値*³ 			
10. 粗度係数	 · 文献値*4 			
	1			


表 2-2 ①広域モデルにおける評価条件

注記*1:平均気温・平均降水量は発電所内観測値,日照時間は地下水ハンドブックによる 注記*2:検証期間における敷地内の気温,風速,日射時間等を参照する 注記*3:地下水ハンドブック(建設産業調査会),水理公式集(土木学会)等を参照し設定 注記*4:水理公式集(土木学会),河川砂防技術基準(国土交通省)等を参照し設定

2.2.2 評価結果

①広域モデルにおける妥当性確認においては,流入実績と整合的な結果が得られるようモデル条件を設定する。ここでは,図 2-1 地下水流入量の評価フローに従い,解析領域における平均的な透水係数(試験結果等の平均値*1)を初期値として設定した。

注記*1:設計用地下水位の設定においては,透水係数を試験結果等の平均値とすること により,観測水位と整合的な結果となることを確認していることから,地下水 流入量の妥当性確認においても初期値として参照した。(図 2-4)

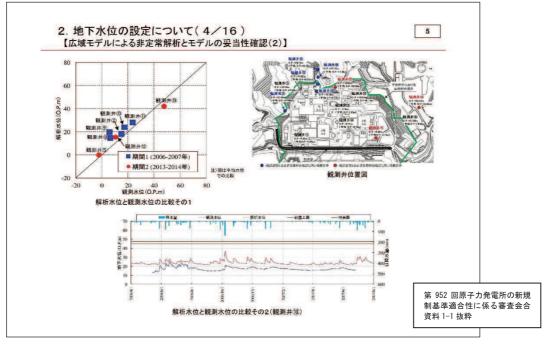


図 2-4 ①広域モデルによる水位側の妥当性確認状況

この結果,排水実績の再現性が不十分であったことから,解析結果が排水実績と整合するよう透水係数によるパラメータチューニングを行い,透水係数を大きめに設定(試験等の平均値より盛土・旧表土を+1 g) することにより,排水実績と整合的な解析結果を得た。 評価結果を表 2-3 に示す。

エリア	排水実績 (m ³ /日)	妥当性確認結果 (m ³ /日) *1	備考
原子炉建屋・制御建 屋エリア	6228	6363	各エリアの最大排 水量の合計値
第3号機海水熱交換 器建屋エリア	2711	3256	
排水量合計	8939	9619	
(参考) 日最大排水量	8522	9416	等時刻での合計値

表 2-3 ①広域モデルにおける妥当性確認結果(揚水ポンプ最大排水量)

注記*1:透水係数は試験等の平均値より盛土・旧表土を+1σ

(透水係数によるパラメータチューニングについて)

水位設定における妥当性確認(透水係数:試験結果等の平均値)において,解析水位は 観測水位と整合的であったが,観測水位に対し解析水位はやや高めに算出されていたこと から,実際の流動場より地下水が流れにくい設定となっており,流入量としては小さめに 算出された*2と考えられる。

このため,図 2-1 地下水流入量の評価フローに従い透水係数を見直した結果,表 2-3 の 通り排水実績をやや上回る解析結果が得られた。

なお,後段の予測解析に用いる透水係数は,妥当性確認より更に保守的な設定(全て試 験平均値の+1 σ)とし,保守性の確保を図っている。

注記<mark>*1</mark>:原子炉建屋・制御建屋エリアでは2463m³/日,第3号機海水熱交換器建屋エリアで は1170m³/日(排水量合計3633m³/日)(いずれも透水係数は試験等の平均値) 2.3 予測解析

2.3.1 評価条件

2.2 にて流入実績に対する再現性を確認したモデル条件(盛土・旧表土の透水係数を試験結果 等の平均値+1 σ)に対して、予測解析においては更に地下水流入量を多めに評価するようなモデ ル条件として、透水係数を大きく(全て試験結果等の平均値+1 σ)設定するとともに、図 2-5 の とおり、ドレーンは既設及び新設の全ての範囲を考慮する。

予測解析に用いる③地下水流入量評価モデルの評価条件を表 2-4 に示す。

項目	【参考】 ②水位評価モデル	③地下水流入量評価モデル				
1a.目的	 工事完了後に想定される地下水位を評価すること(液状化影響検討対象施設を幅広く抽出するため高めに評価) 	・工事完了後に想定される地下水の流入量を 評価すること(設備設計の保守性を確保する ため多めに評価)				
1b.アウトプットの活用	 ・ 耐震設計(各施設) 	・設備設計(ポンプ・ドレーンの排水能力)				
2. 解析コード	• GETFLOWS Ver. 6. 64. 0. 2					
3a.解析領域	Ryth来 (分本間) 2 号観原子伊達座 () 広域モデル	A A A A A A A A A A A A A A A A A A A				
3b. 格子数	 ・ 平面格子数:約16.7万 ・ 総格子数:約770万 ・ 格子寸法:0.5~2m程度 (構造物近傍は最小0.5m程度) 					
4. 解析種別	 ・定常解析 					
5a.モデル(地形)	 ・安全対策工事完了段階を反映 					
5b. 〃 (地盤)	 ・安全対策工事完了段階を反映(施設周辺の) 	地盤改良を含む)				
5c. 〃 (構造物)	 安全対策工事完了段階を反映 					
5d. 〃 (ドレーン)	 ・ 既設・新設のうち信頼性の確保状況に応じ、 信頼性が確保された範囲を管路として扱う (それ以外の範囲は耐久性・耐震性・保守 管理性等の確保状況に応じて透水層ま たは周辺地盤として扱う) 	 既設・新設の全範囲を管路として扱う 				
6. 境界条件	 水位が高めに評価されるよう設定 山側:地表面に水位固定 海側:H.W.L.に水位固定 ドレーン:ドレーン計画高*1 	 地下水流入量が多めに評価されるよう設定 山側:地表面に水位固定 海側:H.W.L.に水位固定 ドレーン:ドレーン計画高*1 				
7. 透水係数	 ・水位が高めに評価されるよう設定 ・流入量が多めに評価されるよう設定 (岩盤 I を試験結果の平均値-1σ) ・流入量が多めに評価されるよう設定 (妥当性確認の結果を踏まえ,全て試験結果等の平均値+1σ) 					
8. 有効間隙率	 ・ 文献値*2 					
9. 粗度係数	-					
注記*1・ドレーンの	(中) 中 2					

表 2-4 ③地下水流入量評価モデルにおける評価条件

注記*1:ドレーンの中心高さ

*2:地下水ハンドブック(建設産業調査会),水理公式集(土木学会)等を参照し設定

注)■は目的に対して妥当な評価とするために②水位評価モデルより変更している条件 ■は目的に対して妥当な評価とするために②水位評価モデルを踏襲している条件

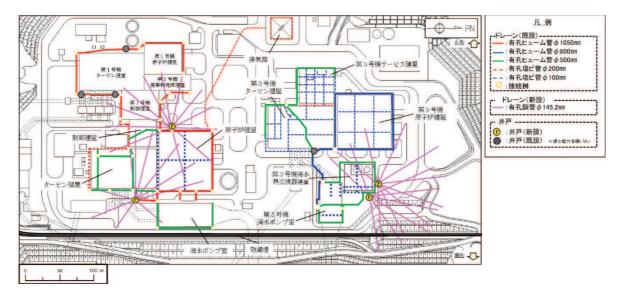


図 2-5 ③地下水流入量評価モデルにおけるドレーン範囲

地下水流入量の評価は,表2-4及び図2-5に示す条件にて実施するケース1を基本とするが, 既設ドレーン(有孔ヒューム管)の排水能力確認においては,保守的に新設するドレーン(鋼 管)を考慮しない場合(ケース2)の評価を行い,これを参照する。 2.3.2 評価結果

地下水流入量の評価結果を表 2-5 に示す。

表 2-5 における集水範囲は,原子炉建屋・制御建屋エリア,第3号機海水熱交換器建屋エリアのそれぞれにおいて,図 2-6 に示すとおり,建屋外周の既設ヒューム管(2号機:エリア ①,3号機:エリア③)と建屋下に新設する鋼管(2号機:エリア②,3号機:エリア④)に て整理している。

なお、下表における流入量は、集水範囲を構成するエリア単位で記載しており、揚水井戸へ の流入量とは異なるものである。

			地下水流入	量 (m ³ /日)		
		ケース 1 (基本)	ケース2			
		ドレーン (鋼管)	考慮	考慮しない	備考	
	解析条件	透水係数	試験結果等6	つ平均値+1σ		
		防潮堤 沈下対策	考	慮		
	原子炉建	エリア①	6083	6633	既設ヒューム管他	
集	屋・制御建	エリア②	1995	_	鋼管 (新設)	
水	屋エリア	計	8078	6633		
範	第3号機海	エリア③	1683	5449	既設ヒューム管他	
逬	水熱交換器	エリア④	5363	—	鋼管(新設)	
	建屋エリア	計	7046	5449		
	合計		15124	12082		

表 2-5 地下水流入量の評価結果

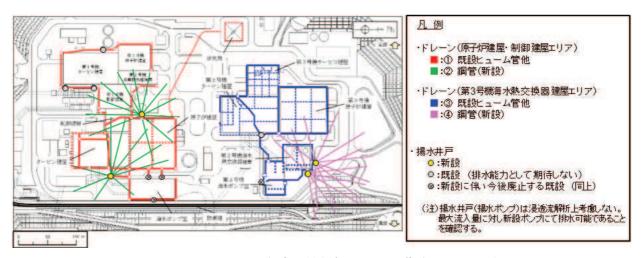


図 2-6 地下水流入量評価における集水エリア区分

前述の妥当性確認とドレーン等の条件が同一で透水係数の設定をすべて試験等の平均値+1 σであるケース2において,透水係数を大きく設定したこと及び境界条件の保守性により,モ デルの妥当性確認ケースBにおいて算定した地下水流入量(Q=9416m³/日)より大きな流入量 が評価された。さらに,建屋下ドレーンを考慮したケース1においては,ケース2よりも大き な流入量を示している。

また、ケース1においては、各エリアにおける建屋外周と建屋下の排水量の傾向が異なって おり、原子炉建屋・制御建屋エリアにおいては建屋外周(エリア①)、第3号機海水熱交換器建 屋エリアにおいては建屋下(エリア④)が支配的となっている。この相違の主な要因としては、 3号機側のドレーン(鋼管)が2号機側に比べて山側(地下水の流れ方向に対し上流側)に配 置されているためと考えられる。

以上の検討から, 揚水ポンプの排水能力の設定においてはケース1の地下水流入量を参照する。また, ドレーンの排水能力の確認においては, 建屋下に新設する鋼管(エリア②・④) についてはケース1, 建屋外周の既設ヒューム管(エリア①・③) についてはケース2の地下水流入量を参照する。

- 3. 地下水位低下設備の機能喪失を仮定した到達時間の評価
- 3.1 検討方針

設置変更許可においては、ポンプ故障等により通常の運転状態(各エリアにおいてそれぞれ2 系統にて集水する定常状態)から地下水位低下設備が同時に機能喪失し集水機能を失った場合を 仮定し、その後の水位上昇により設計値に到達するまでの到達時間*を浸透流解析(非定常解析) により評価し、地下水位低下設備の復旧措置に係る検討において参照する方針としていた。

また,アクセスルートの評価においては,地下水位低下設備が機能喪失した状態が長期間(約2ヵ月)継続した場合の浸透流解析(非定常解析)により解析水位を評価し,アクセスルートの設計用地下水位の設定において参照する方針としていた。

この場合の水位上昇を評価する場合は、②水位評価モデルをベースとして、水位上昇を速めに (水位上昇速度を短めに)算出される解析条件を与えた「④水位上昇評価モデル」を作成する。

到達時間の評価に用いる④水位上昇評価モデルは、②水位評価モデルと同様、安全対策工事と して実施する防潮堤の沈下対策などの各種工事やドレーン新設等の工事完了段階における施設配 置等を反映する。また、地下水位低下設備の機能喪失時における初期水位を高くすることで到達 時間が短めに算定されることから、ドレーン範囲や解析境界における水位、透水係数は②水位評 価モデルと同様に、信頼性の確保された範囲に限定する。

アクセスルートの評価において参照する解析水位も、到達時間の評価と同様に④水位上昇評価 モデルを用いるものとし、地下水位低下設備の機能喪失から2ヵ月後の水位を評価する。これは、 アクセスルートが2ヵ月後の水位上昇を仮定しても通行性に影響を与えないよう必要な対策を行 うことから、浮上りに対するアクセスルートの到達時間を2ヵ月間と設定したことに対応する。

3.2 到達時間の評価指標について

地下水位の上昇による施設の耐震性への影響として,揚圧力(建物・構築物へ作用する揚圧力の 上昇。基礎版の耐震性に影響),液状化(周辺地盤の液状化に伴う施設へ作用する土圧等の変化。 躯体の耐震性に影響),浮上り(周辺地盤の液状化に伴う地下構造物の浮上り。躯体の安定性と地 中構造物上方のアクセスルート通行性に影響)が考えられ,設置変更許可段階では,これらのうち 最も早く影響が生じる揚圧力に着目する方針としていた。

詳細設計段階においては、この方針を踏襲し、到達時間の評価指標として揚圧力に着目し、液状化(周辺地盤の液状化に伴う施設へ作用する土圧等の変化による影響)に対する到達時間(補足2 にて後述)、浮上りに対する到達時間(約2ヵ月)との比較から、その妥当性を確認した。 詳細設計段階における検討を踏まえた各影響に対する到達時間は図 3-1 の通りである。

注記*:到達時間は,通常の運転状態から地下水位低下設備が同時に機能喪失した状態に移行した場合に, その影響が早期に現れる指標として揚圧力に着目し,各建屋に作用する平均揚圧力に対応する水位 が設計用揚圧力に対応する水位に到達するまでの時間として定義。

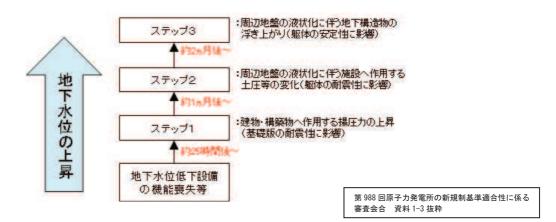


図 3-1 地下水位上昇による耐震性への影響

到達時間の評価に用いる④水位上昇評価モデルは、②水位評価モデルと同様、安全対策工事とし て実施する防潮堤の沈下対策などの各種工事やドレーン新設等の工事完了段階における施設配置等 を反映する。また、地下水位低下設備が機能喪失した時点の初期水位を高くすることで到達時間が 短めに算定されることから、ドレーン範囲や解析境界における水位、透水係数は②水位評価モデル と同様とする。

到達時間の評価対象施設は原子炉建屋,制御建屋,第3号機海水熱交換器建屋とする。

3.3 評価条件

④水位上昇評価モデルにおける評価条件を表 3-1 に示す。

項目	【参考】 ②水位評価モデル	④水位上昇評価モデル	
1.目的	 工事完了後に想定される地下水位を評価すること(液状化影響検討対象施設を幅広く抽出するため高めに評価) 	・工事完了後に想定される地下水の流入量を 評価すること(設備設計の保守性を確保する ため多めに評価)	
	 ・ 耐震設計(各施設) 	・設備設計(ポンプ・ドレーンの排水能力)	
2. 解析コード	• GETFLOWS Ver. 6. 64. 0. 2		
3a. 解析領域	・ 0. P. +14. 8m 盤及び 0. P. +14. 8m 周辺の法面		
3b.格子数	 ・ 平面格子数:約16.7万 ・総格子数:約770万 ・格子寸法:0.5~2m程度 (構造物近傍は最小0.5m程度) 		
4.解析種別	・定常解析	・非定常解析*1	
5a.モデル(地形)	 安全対策工事完了段階を反映 		
5b. 〃 (地盤)	・安全対策工事完了段階を反映(施設周辺の対	也盤改良を含む)	
5c. 〃 (構造物)	 安全対策工事完了段階を反映 		
5d. 〃 (ドレーン)	 ・既設・新設のうち信頼性の確保状況に応じ、 信頼性が確保された範囲を管路として扱う (それ以外の範囲は耐久性・耐震性・保守 管理性等の確保状況に応じて透水層ま たは周辺地盤として扱う) 	 初期水位(通常運転時)が高くなるよう, 既設・新設のうち耐久性・耐震性・保守管 理性等の確保された範囲を管路として扱う (それ以外の範囲については,耐震性等の 確保状況に応じて透水層または周辺地盤 として扱う) 	
6. 境界条件	 水位が高めに評価されるよう設定 ー山側:地表面に水位固定 一海側:H.W.L.に水位固定 ードレーン:ドレーン計画高*2 	 ・地下水位の上昇速度を速めに評価されるよう設定 ー山側:地表面に水位固定 ー海側:H.W.L.に水位固定 ードレーン:ドレーン計画高*2 	
7. 透水係数	 水位が高めに評価されるよう設定 (岩盤 I を試験結果の平均値-1 g) 	 初期水位が高くなるよう設定 (岩盤 I を試験結果の平均値-1σ) 	
8. 有効間隙率	 ・ 文献値*³ 		
9. 粗度係数	-	_	
10. ドレーンの状態	 各エリア1系統で設計値を保持するよう 設計(水位設定上の余裕として各エリア 1系統喪失の重畳を考慮) 	 通常運転時(各エリア両方の井戸で排水)から地下水位低下設備が同時に機能 喪失し、その状態が継続することを仮定 (到達時間は設計用揚圧力到達迄の時 間。アクセスルート評価では2ヵ月後 の水位を評価) 	

表 3-1 ④水位上昇評価モデルにおける評価条件

*2: トレーンの中心高さ *3: 地下水ハンドブック(建設産業調査会),水理公式集(土木学会)等を参照し設定

注) ■は目的に対して妥当な評価とするために②水位評価モデルより変更している条件 ■は目的に対して妥当な評価とするために②水位評価モデルを踏襲している条件

3.4 評価結果

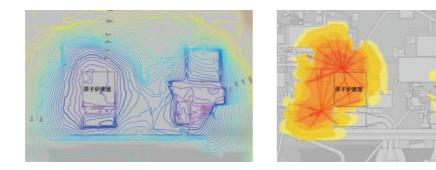

3.4.1 到達時間

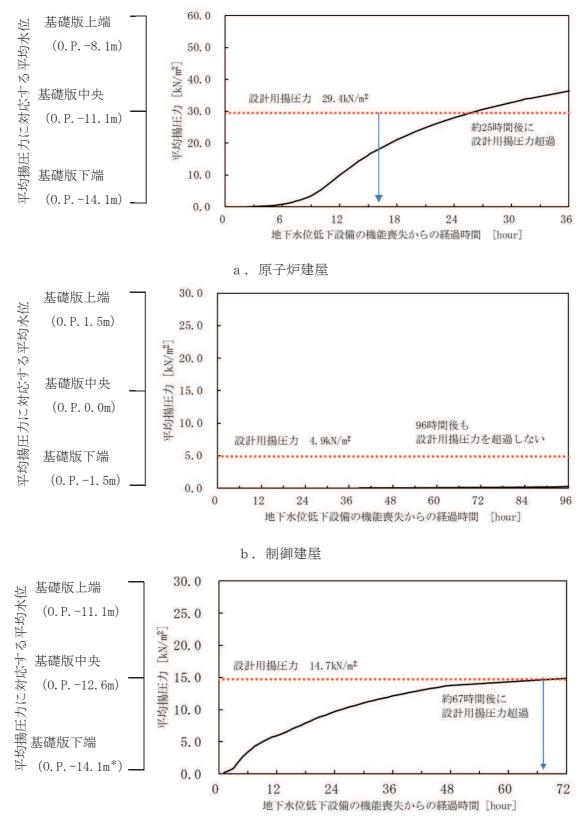
図 3-2 は排水機能を失ってから 10 時間後,図 3-3 は 25 時間後の解析結果であり、それぞれ解 析水位の分布と初期水位からの差分を示しているが、ドレーンの配置に対応して相対的に水位が 低い位置に保持されている範囲において水位上昇が大きく、水位上昇範囲が周囲に拡大していく。

> 通常運転状態 からの水位差分 15 く 10 - 5 5 - 10

> > 0.5 - 0.5

< -5

(a)解析水位分布図(b)初期水位からの差分図図 3-2 地下水位の分布(排水機能停止後10時間経過)



(a)解析水位分布図(b)初期水位からの差分図図 3-3 地下水位の分布(排水機能停止後 25 時間経過)

各建屋における揚圧力に着目した到達時間の評価結果を図 3-4 及び表 3-2 に示す。

解析より得られた平均揚圧力に対応する水位は経時的に漸増する傾向が確認され,設計用揚圧 力に対応する水位を上回るまでの到達時間は原子炉建屋において約25時間と最も短く,第3号機 海水熱交換器建屋において約67時間であった。また,制御建屋は96時間後も設計用揚圧力を超 過しないとの結果が得られた。

原子炉建屋・制御建屋エリアにおいては、制御建屋は原子炉建屋に対し相対的に設置レベルが 高いため、原子炉建屋に対して相対的に長い到達時間が確保されている。

注記*:基礎版下端は0.P.-12.5mから0.P-16.25mの平均高さ

c.第3号機海水熱交換器建屋図 3-4 機能喪失を仮定した到達時間の評価結果

エリア	建屋	到達時間			
原子炉建屋・制御建	原子炉建屋	約 25 時間			
屋エリア	制御建屋	96時間後も設計用揚圧力を超過しない			
第 3 号機海水熱交換	第 3 号機海水	約 67 時間			
器建屋エリア	熱交換器建屋				

表 3-2 機能喪失を仮定した到達時間の評価結果

また,到達時間の評価結果に係る補足事項として,(補足1)に揚水井戸内の水位と周辺地盤の 水位の関係性,(補足2)に液状化(周辺地盤の液状化に伴う施設へ作用する土圧等の変化による 影響)に対する到達時間,(補足3)に地下水位上昇時間評価に影響を与える水理パラメータと取 扱いを示す。

以上の検討から,地下水位低下設備の復旧措置に係る検討においては,最も早期に影響が生じ る揚圧量に着目した到達時間を参照する。

地下水位低下設備の復旧措置に係る検討については、「VI-2-1-1-別添1 地下水位低下設備の設計方針」に示す。

(補足1) 揚水井戸内の水位と周辺地盤の水位の関係性について

(1) エリア内の2系統が機能喪失した場合

到達時間の評価において,経過時間0の点は,ドレーン(ヒューム管・鋼管)により集水され, 揚水ポンプにより排水される通常の運転状態に対応し,地下水位が維持されている状態(①初期 水位)である。その後,エリア内の地下水位低下設備2系統が機能喪失した場合(②排水機能を 失った状態),揚水井戸内の水位はいずれもドレーンからの流入量に応じた速度で上昇する。

一方,地盤中の地下水位は地盤中の空隙を満たしながら緩やかに上昇,これに応じて各建屋に 作用する平均揚圧力も緩やかに漸増し,設計用揚圧力に対応する水位に到達する(③設計用揚圧 力に対応する水位に到達)。

図 3-5 に揚圧力の推移,図 3-6 に地盤中の水位及び図 3-7 に揚水井戸を移動する地下水の挙動 を示す。

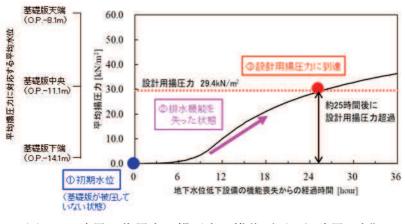


図 3-5 建屋に作用する揚圧力の推移(原子炉建屋の例)

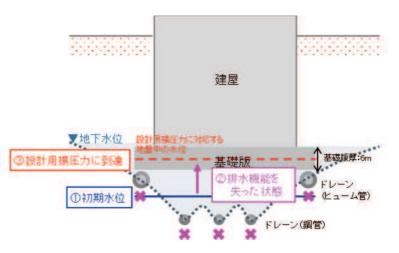


図 3-6 地盤中の地下水位の挙動(概念図)

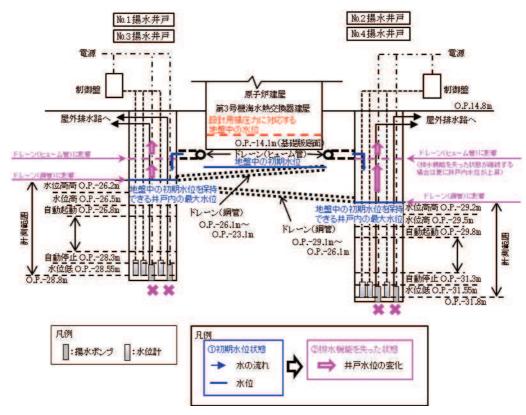


図 3-7 揚水井戸内の水の挙動(概念図)

(2) エリア内の1系統が機能喪失した場合

通常運転状態(①初期水位)から,エリア内の地下水位低下設備1系統が機能喪失した状態に 移行した場合(②排水機能を失った状態),当該井戸内の水位はドレーンからの流入量に応じた 速度で上昇し,ドレーン(ヒューム管)を介してもう一方の揚水井戸へ流入する。

一方,地盤中の地下水位は通常運転状態より上昇し,建屋に作用する揚圧力も変動(平均揚圧 力は上昇)するが,設計用揚圧力に対応する水位以下に維持される。

図 3-8 に地盤中の水位及び図 3-9 に揚水井戸を移動する地下水の挙動を示す。

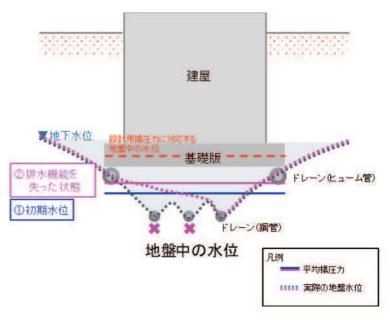


図 3-8 地盤中の地下水位の挙動(概念図)

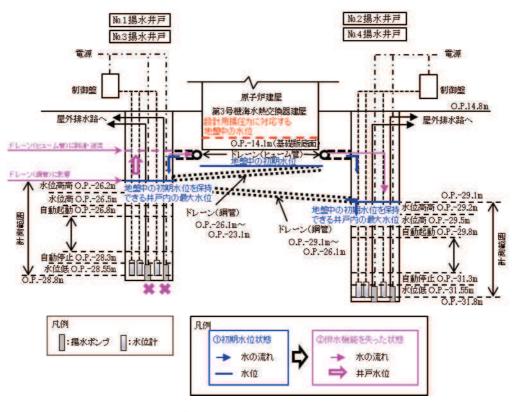


図 3-9 揚水井戸内の水の挙動(概念図)

(補足2) 液状化による影響に対する到達時間について

地下水位低下設備の復旧措置に係る検討において参照する到達時間について,原子炉建屋等 の揚圧力影響に着目し設定することの妥当性として,周辺の土木構造物等へ液状化による影響 が生じうるまでの時間を検討した。

ここでは、通常の運転状態から地下水位低下設備が機能喪失した状態に移行した場合に、土 木構造物の設計用地下水位に到達するまでの時間を評価した(土木構造物は岩盤中に設置され る施設及び地表面又は朔望平均満潮位に設計用地下水位を設定している施設を除く)。

評価結果を表 3-3 に示す。

この結果から,土木構造物においては,地盤の液状化による影響が生じうるまでに少なくと も1ヵ月以上の時間的な離隔があり,揚圧力に着目した到達時間に比べて大きいことを確認し た。

施設名称		設計用地下水位 と解析水位の差分	設計用地下水位 と解析水位の差分	設計用地下水位 と解析水位の差分	備考
		(初期水位)	(7日後の水位)	(30日後の水位)	
原子炉機器 冷却海水 横断 配管ダクト		-8.8m	-3.9m	-1.1m	
	横断	-25.6m	-12.8m	-8.9m	
	(断面①)				
排気筒	横断	-24.4m	-10.8m	-7.7m	
連絡ダクト	(断面②)				
	横断	-23.1m	-9.9m	-7.Om	
	(断面③)	20.11			
軽油タンク	連絡ダクト	-8.3m	-5.4m	-3.1m	
	曲がり部	-7.2m	-6.8m	-5.9m	
	南北	7.211	0.00	5. 911	
取水路	曲がり部	-5.6m	-4.2m	0.7	
	東西	-9.00	-4.20	-2.7m	
	漸拡部	-5.9m	-3.8m	-1.7m	
	東西	-0.911			

表 3-3 水位上昇と土木構造物の設計用地下水位との関係(1/4)

衣 3-3 小位工并と工作構造物の設計用地下水位との関係(2/4)							
施設名称		設計用地下水位	設計用地下水位	設計用地下水位			
		と解析水位の差分	と解析水位の差分	と解析水位の差分	備考		
		(初期水位)	(7日後の水位)	(30日後の水位)			
海水	縦断	-8.1m	-4.2m	-2.7m			
ポンプ室	横断	-3.3m	-2.0m	-1.Om			
軽油	南北	-11.6m	-5.4m	-3.1m			
タンク室	東西	-5.8m	-4.1m	-2.7m			
軽油	南北	-6.1m	-3.8m	-1.5m			
タンク室 (H)	東西	-5.8m	-4.1m	-2.7m			
復水貯蔵	南北	-11.6m	-5.4m	-3.1m			
タンク基礎	東西	-8.3m	-5.4m	-3.1m			

表 3-3 水位上昇と土木構造物の設計用地下水位との関係(2/4)

表 3−3 水位上昇と土木構造物の設計用地下水位との関係 (3/4)								
		設計用地下水位	設計用地下水位	設計用地下水位				
施設	名称	と解析水位の差分	と解析水位の差分	と解析水位の差分	備考			
		(初期水位)	(7日後の水位)	(30日後の水位)				
	横断 (一般部①)	-16.0m	-7.5m	-5.2m				
防潮堤	横断 (一般部②)	-5.0m	-4.7m	-4.3m				
(鋼管式鉛直 壁)	横断 (一般部③)	-9.5m	-8.7m	-7.3m				
	横断 (一般部④)	-21.0m	-14.6m	-13				
防潮堤 (盛土堤防)	横断①	-14.9m	-8.9m	-7.8m				
	第2号機 海水ポンプ室	-3.2m	-1.9m	0.2m	液状化による影響が 及ばないよう設計用 地下水位+1.0mの範 囲を地盤改良予定			
防潮壁	第2号機 放水立坑	-10.8m	-4.7m	-2.8m				
	第3号機 海水ポンプ室	-11.1m	-9.9m	-8.0m				
	第3号機 放水立坑	-2.8m	-2.4m	-1.8m				

表 3-3 水位上昇と土木構造物の設計用地下水位との関係(3/4)

		設計用地下水位	設計用地下水位	設計用地下水位	
施設名称		と解析水位の差分	と解析水位の差分	と解析水位の差分	備考
		(初期水位)	(7日後の水位)	(30日後の水位)	
第3号機	縦断	-3.1m	-2.1m	-1.0m	
海水ポンプ室	横断	-6.8m	-4.1m	-1.6m	
	南北	-2.3m	-1.8m	-0.3m	
揚水井戸 (第3号機 海水ポンプ室 防潮壁区画内)	東西	-3.0m	-1.8m	0.9m	液状化による影響が 及ばないよう設計用 地下水位+1.0mの範 囲を地盤改良予定
第3号機補機冷却海水系 放水ピット		-2.6m	-1.7m	-0.4m	

表 3-3 水位上昇と土木構造物の設計用地下水位との関係(4/4)

(補足3)地下水位上昇時間評価に影響を与える水理パラメータと取扱い

地下水位上昇時間評価については、下記式にして示される地盤の浸透速度に依存する。よっ て、浸透速度に影響を与える主な要因は、透水係数と有効間隙率の2つである。

 $V_i = V / n_e$

 $V = k \cdot i$

ここに,

V_i: 地盤の浸透流速(実流速)(m³/s)

V:地盤の浸透流速(ダルシー流速)(m/s)

n e: 有効間隙率

k:透水係数

i:動水勾配

透水係数については、水位評価用モデル同様に岩盤 I を試験結果の平均値-1σに設定することとしており、通常の運転状態における初期水位が高くなることでその保守性を確保している。 その妥当性については補足 600-1(参考資料 4)に示している。

有効間隙率については、文献等を参照し設定しているが、設定値とその根拠について表 3-4 に示す。また、盛土については現場粒度試験に基づく間隙率を、岩盤については試掘坑内で実 施した岩石試験結果を表 3-5 に示す。地下水位上昇時間の評価に用いる有効間隙率については、 試験値等より小さな値を設定しており、水位上昇時間を短く算定する安全側の設定となってい ると判断される。

以上より,地下水位上昇時間評価に影響を及ぼす要因に対して,いずれも保守側(水位上昇時間を短く算定*1)の設定となっている。

地層		設定値	設定根拠
盛土・旧表土		0.15	水理公式集(土木学会に基づき礫質土 砂の下限値
岩盤 孤崎部層		0.05	地下水ハンドブックに基づき砂岩及び
(岩盤 I)	牧の浜部層	0.05	頁岩の最大値の中間値

表 3-4 ④水位上昇評価モデルに用いた有効間隙率の設定根拠

表 3-5 有効間隙率に係る試験データ

地層		試験結果等の 平均値	備考
盛土・旧表土		0.28	現場粒度試験に基づく推定間隙率
岩盤	孤崎部層	砂岩:0.067 頁岩:0.057	試掘坑内で実施した岩石試験結果 (Cm級岩盤)
(岩盤 I)	(岩盤 I) 牧の浜部層		試掘坑内で実施した岩石試験結果 (CM級岩盤)

注記*1:3.4 に示す保守的条件にて算出した到達時間(原子炉建屋で約25時間)に対し,透水 係数を試験結果等の平均値とした場合の到達時間は原子炉建屋で約72時間と評価。 3.4.2 一定期間経過後の水位上昇量

地盤の液状化による影響として,地中構造物の浮上りによるアクセスルートの通行性への影響 が考えられる。

地盤の液状化によるアクセスルート(0.P.+14.8m盤)への影響については,設置変更許可の方 針(次頁参照)と同様に,通常の運転状態から地下水位低下設備が機能喪失した状態に移行する ことを仮定し,一定の期間(2ヵ月間。外部からの支援が可能となるまでの一定期間(7日間)を 超え,長期に及ぶ場合を想定し設定)が経過した後の地下水位を浸透流解析(非定常解析)によ り評価し,この水位を参照して地中構造物の浮上りを評価の上,アクセスルートの通行性を確保 する設計としている。

アクセスルート(0.P.+14.8m盤)の評価において参照する予測解析結果を図 3-10 に示す。 (保管場所及びアクセスルートの設計用地下水位の設定方法については,「補足-200-14 可搬型

重大事故等対処設備の保管場所及びアクセスルートについて」を参照)

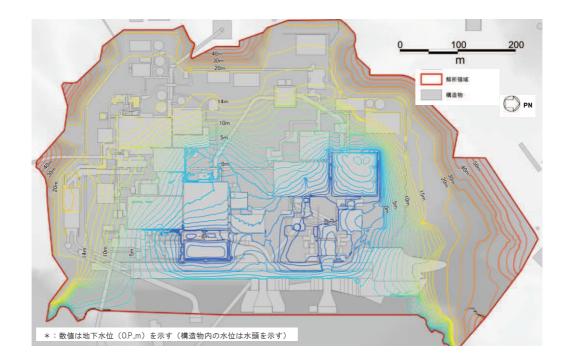


図 3-10 アクセスルート(0.P.+14.8m 盤)の評価において参照する予測解析結果(0.P., m)

<参考> 設置変更許可におけるアクセスルートの機能維持の方針(まとめ資料)

アクセスルートは、地震時の液状化に伴う地下構造物の浮き上がり*1の影響を受けること なく通行性を確保する設計とする。アクセスルートの機能維持に係る配慮事項を下表及び以下 に示す。

- 地下水位低下設備の重要安全施設への影響に鑑み、安全機能の重要度分類を踏まえて講 ずる設計上及び機能喪失時の配慮*2により、地下水位は一定の範囲に保持される。この ことから、地下水位低下設備の機能を考慮した設計用地下水位を設定する区間において は、地震時の液状化に伴う地下構造物の浮き上がりが発生せず、アクセスルートの通行 性は確保される。
- ・ また,地下水位低下設備の機能喪失を想定しても,地震時の液状化に伴う地下構造物の 浮き上がりに対してアクセスルートの通行性を一定期間確保する設計*^{3,*4}とする。
- 地下水位低下設備が機能喪失した場合に復旧作業等を行うため、必要な資機材として、 可搬型設備及び予備品を確保する。
- 地下水位低下設備の機能喪失が外部からの支援が可能となるまでの一定期間を超え長期
 に及ぶ場合においては、予め整備する手順と体制に従い、外部支援等によりアクセス
 ルートの通行性を確保する。
- 注記*1:アクセスルートの地下構造物の浮き上がり評価において用いる地下水位は,地下水位低下設備の 機能を考慮した水位又は地表面とする。
 - *2:機能喪失時の配慮については、第Ⅱ編で詳述する。
 - *3:地下水位低下設備が機能喪失した場合を想定して,工事計画認可段階で機能喪失に伴う地下水位 の上昇程度を評価した上で,地震時の液状化に伴う地下構造物の浮き上がりによるアクセスルー トへの影響について評価し,アクセスルートの通行性を一定期間確保する設計とする。この結果, アクセスルートの通行性が一定期間確保できない場合は,地盤改良等の対策を講ずる。
 - *4:外部からの支援が可能となるまでの期間を踏まえ、一定期間として2か月程度を確保することを 目安に、工認段階における詳細評価も踏まえて地盤改良等の対策要否を判断する。

配慮事項	通常運転状態	設計基準事故等状態	重大事故等状態			
地下水位低下設備に 対する設計上の配慮	 ・安全機能の重要度分類におけるクラス1相当の配慮(外部事象等への配慮, 非常用交流電源設備に接続等) ・耐震性の確保(Ss機能維持^{*5}) 					
	・常設代替交流電源設備(GTG)に接続				
地下水位低下設備に 対する機能喪失時の	・可搬型設備及び予備品による復旧					
記慮						
アクセスルートに	・アクセスルートの通行性が-	一定期間確保できない場合	合は、地盤改良等の対策			
対する配慮	・外部支援等の活用による通行性の確保					

表 3-6 アクセスルートの機能維持に係る配慮事項

注記<mark>*5</mark>:基準地震動 Ss に対し機能維持することを確認する。

- 4. 地下水流入量と設備の排水能力
- 4.1 地下水流入量と排水能力(揚水ポンプ)

各揚水井戸に設置する揚水ポンプの諸元を表 4-1 に示す。揚水ポンプの排水可能量は定格吐 出量 9000m³/日(0.104m³/s)であり、2.にて評価した地下水流入量を包絡する。

エリア	揚水井戸	地下水流入量	吐出量	全揚程	井戸深さ	備考	
	100小7十7	(m ³ /日)	(m ³ /日)	(m)	(m)	加方	
	R/B 西側			50	47 9	1台当たり	
原子炉建	(No.2 揚水井戸)	8078	9000	52	47.2	(全2台)	
屋・制御建	R/B 東側	0070	0000	EQ	44 9		
屋エリア	(No.1 揚水井戸)		9000	52	44.2	同上	
	小計		18000	_	—	—	
	第3号機 Hx/B 北側		9000	52	47.2		
第3号機海	第3号機海 (No.4揚水井戸)		9000	52	41.2	同上	
水熱交換器	第3号機 Hx/B 東側	7046	9000	52	44.2		
建屋エリア	(No.3 揚水井戸)		9000	52	44. 2	同上	
	小計	_	18000	_	—	—	
	合計	_	36000	_	—	—	

表 4-1 地下水流入量と排水能力(揚水ポンプ)

4.2 地下水流入量と排水能力(ドレーン)

既設のヒューム管(φ1050mm, 800mm, 500mm)及び新設の鋼管(φ145.2mm)を対象として, 自由水面を有する管路流れとして排水能力を評価し,三次元浸透流解析により得られる最大流 入量を流下させる能力を有しているかを確認する。

ドレーンにおける排水可能量は,表 4-2 のとおり,自由水面を有する管路流れの評価として, 以下のマニング式により算定する。

各ドレーンの排水可能量は、表 4-3 のとおり、いずれも地下水流入量を上回っている。

Q=V・A V=1/n・R^{2/3}・I^{1/2} ここに, Q:排水可能量(m³/s) V:平均流速(m/s) A:ドレーン流水断面積(m²) n:マニングの粗度係数 R:径深=A/S(m)(S:潤辺(m)) I:勾配

エリア	仕様	断面積*1	径深*1	粗度	勾配	流速	流量(排	水可能量)
		$[m^2]$	[m]	係数*2	[%]	[m/s]	$[m^3/s]$	[m ³ /日]
原子炉建 屋・制御建 屋エリア	ヒューム管 φ1050mm	0.697	0.317	0.013	0.1 以上	1.130	0. 787	67996
	鋼管 φ145.2mm	0.014	0.044	0.012	1以上	1.039	0.014	1209
空り早歩流	ヒューム管 <i>φ</i> 800mm	0.404	0.241	0.013	0.1 以上	0.943	0.381	32918
第3号機海水熱交換器建屋エリア	ヒューム管 <i>φ</i> 500mm	0.158	0.151	0.013	0.1 以上	0.689	0.109	9418
建産エリノ	鋼管 φ145.2mm	0.014	0.044	0.012	1以上	1.039	0.014	1209

表 4-2 ドレーンの断面諸元及び排水可能量

注記 *1: 有効水深を 3/4 水深(H=0.75D)として計算

*2:「火力原子力発電所土木構造物の設計-増補改訂版-((社)電力土木技術協会編)」を参照し、ヒュー ム管はコンクリート管:0.013、鋼管はライニングした水路(鋼,塗装なし,平滑):0.012に基づき設 定

エリア	仕様	地下水流入量 [m ³ /日]	流量(排水可能量) [m ³ /日]
原子炉建屋・制御	ヒューム管 φ1050mm	6633	67996
建屋エリア	鋼管 φ145.2mm	182*1	1209
	ヒューム管 φ800mm	5449	32918
第3号機海水熱交 換器建屋エリア	ヒューム管 φ 500mm	5449	9418
	鋼管 φ145.2mm	632 ^{* 2}	1209

表 4-3 地下水流入量と排水能力(ドレーン)

 注記 *1:原子炉建屋・制御建屋エリアの鋼管(全22本)の1本当たりの平均流入量(1995m³/日÷ 22本≒91 m³/日・本)に、ドレーン単位での流入量のばらつきを考慮して、2倍とする。
 *2:第3号機海水熱交換器建屋エリアの鋼管(全17本)の1本当たりの平均流入量(5363m³/ 日÷17本≒316 m³/日・本)に、ドレーン単位での流入量のばらつきを考慮して、2倍と する。 4.3 排水能力の妥当性について

各エリアにおける揚水ポンプ及びドレーンの設計上の地下水流入量と,前頁で設定した排水能 力との関係を表 4-4 に整理した。

揚水ポンプへの地下水流入量は,妥当性が確認されている②水位評価モデルをベースに,地下 水流入量の観点から保守的な透水係数・ドレーン範囲を設定した③地下水流入量評価モデルにて 算出しており,得られた地下水流入量を上回る排水可能量(ポンプ能力)が設定されている。

なお、地下水流入量は各集水範囲単位の値であるが、各集水エリアには揚水井戸を2箇所設置 し、各揚水井戸には各エリアへの地下水流入量を排水可能な揚水ポンプを2台常設する設計とし ており、各揚水井戸の揚水ポンプ1台を2系統同時に起動することも可能な設計であることから、 設計上は十分な余裕を有する。

また、ドレーンについては流入量に対して排水可能量が十分大きいことを確認している。

以上の評価から, 揚水ポンプ及びドレーンは想定される地下水流入量に対して余裕のある設備 構成であることを確認した。

秋年年 地十小加入重C 护水 引 肥重の比較相未							
エリア	項目	地下水流入量	排水可能量	安全率	備考		
	次口	$Q_1 \ (m^3/\boxminus)$	$Q_2 (m^3/\boxminus)$	$Q_2 \swarrow Q_1$	同行		
	揚水ポンプ	0.070	9000 *1	1.11 *1	ケース1		
	1万小小 ノノ	8078	(18000)	(2.22)	(エリア①+②)		
原子炉建屋·制御	ドレーン	6699	67006	10.05	ケース2		
建屋エリア	$(\phi \ 1050 { m mm})$	6633	67996	10.25	(エリア①)		
	ドレーン	100*2	1000	C C 4	ケース1		
	$(\phi 145.2 {\rm mm})$	182^{*2}	1209	6.64	(エリア①)		
	揚水ポンプ	7046	9000 *1	1.27 *1	ケース1		
			(18000)	(2.54)	(エリア③+④)		
	ドレーン		32918	6.04	ケース2		
第3号機海水熱交	(ϕ 800mm)	5440			(エリア③)		
換器建屋エリア	ドレーン	5449	0.44.0	1.73	ケース2		
	(ϕ 500mm)		9418		(エリア③)		
	ドレーン	60.0* ³	1000	1 01	ケース1		
	$(\phi 145.2 {\rm mm})$	632^{*3}	1209	1.91	(エリア④)		
스키		15104	18000 *1	1.19	ケース1		
合計	揚水ポンプ	15124	(36000)	(2.38)	(エリア①+②+③+④)		

表 4-4 地下水流入量と排水可能量の比較結果

注記 *1:各エリアに設置した揚水ポンプ4台(2台/井戸×2箇所)のうち1台のみ稼働時(3台待機)の値。 ()内は各井戸1台ずつ稼働時(各井戸1台稼働,1台待機)の値。

*2:2号機原子炉建屋下ドレーン(全22本)の1本当たりの平均流入量(1995m³/日÷22本≒91 m³/日・ 本)に、ドレーン単位での流入量のばらつきを考慮して、2倍とする。

*3:第3号機海水熱交換器建屋下ドレーン(全17本)の1本当たりの平均流入量(5363m³/日÷17本 ≒316 m³/日・本)に、ドレーン単位での流入量のばらつきを考慮して、2倍とする。

- 5. 復旧措置に係る補足事項
- 5.1 揚水井戸内の揚水ポンプ配置例

揚水井戸内の揚水ポンプ等の配置例について、図 5-1 に示す。 常設の揚水ポンプ,可搬ポンプユニットそれぞれに昇降用の開口部を設ける設計としている。

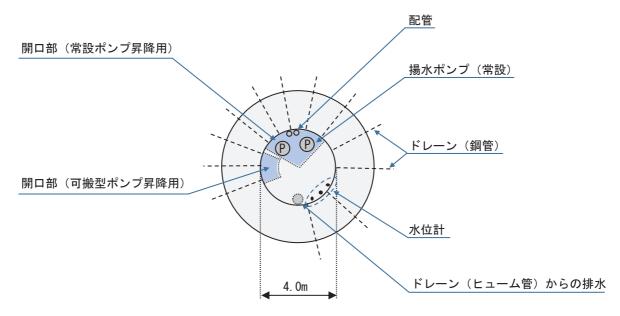


図 5-1 揚水井戸内の揚水ポンプ配置例

5.2 可搬ポンプユニットによる水位低下措置の対応要員について

可搬ポンプユニットによる水位低下措置を実施するために必要な力量を確保した要員を常時確 保する。平日の勤務時間帯は,発電所内の要員により対応が可能である。また,平日の勤務時間 帯以外は,発電所外から参集する重大事故等対策要員のうち,放射性物質拡散抑制対応要員6名 により対応が可能である。

重大事故等が発生していない場合,放射性物質拡散抑制対応要員6名は,参集後,速やかに可 搬ポンプユニットによる対応が可能である。

重大事故等が発生し、更に放射性物質拡散抑制対応(シルトフェンスの設置)と可搬ポンプユ ニットによる対応の両方が必要となった場合でも、放射性物質拡散抑制対応要員6名はシルトフェ ンス設置以外に特定の役割が無く、シルトフェンス設置後に可搬ポンプユニットによる対応が可 能である。この場合の対応時間の合計は、シルトフェンスの設置には約190分要することから、 原子炉建屋・制御建屋エリアで約22時間、第3号機海水熱交換器建屋エリアで約29時間であり、 各建屋に作用する平均揚圧力に対応する水位が設計用揚圧力に対応する水位に到達するまでの時 間(原子炉建屋・制御建屋エリアで約25時間、第3号機海水熱交換器建屋エリアで約67時間) 内に水位低下措置を完了できる。参集後、シルトフェンスを設置し、可搬ポンプユニットによる 水位低下措置を実施した場合の完了時間を図5-2に示す。

したがって、重大事故等対策要員である放射性物質拡散抑制対応要員6名に可搬ポンプユニットによる水位低下措置の役割を与えても、重大事故等対策に影響を与えることなく、可搬ポンプ ユニットによる水位低下措置の対応が可能である。 なお,重大事故等対策の有効性評価において,中央制御室の運転員および発電所構内に常駐し ている重大事故等対策要員による初動体制で対処可能であることを確認しており,有効性評価へ の影響は無い。

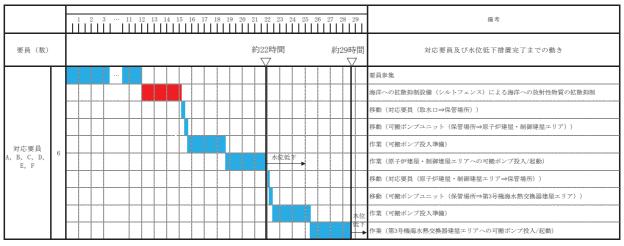


図 5-2 拡散抑制対応後に地下水位低下措置を実施した場合の水位低下措置完了時間

- 6. 構造強度設計方針に係る補足事項
- 6.1 電路(電源ケーブル,制御・計装ケーブル)の配置

電路の構造強度設計については、「VI-2-1-1-別添1 地下水位低下設備の設計方針」に示すとおり、耐震性が確保された建屋又は地震時の接地圧に対して十分な支持力がある地盤に支持させる 方針とし、制御建屋、原子炉建屋及び防潮堤(背面補強工)等に支持させる。

各揚水井戸に接続する電路の配置を図 6-1 に示す。なお,詳細位置は各設備との干渉等を考慮し設定する。

地震に伴い生じる構造物横断部の相対変位(揺すり込み沈下の影響含む)によるケーブル損傷 を防ぐため、ケーブルルート上に設置するマンホールの空間内においてケーブルに余長を確保し、 また、地震に伴い生じる構造物横断部の相対変位に対しケーブル損傷への影響を軽減するため可 とう管等を用いる。

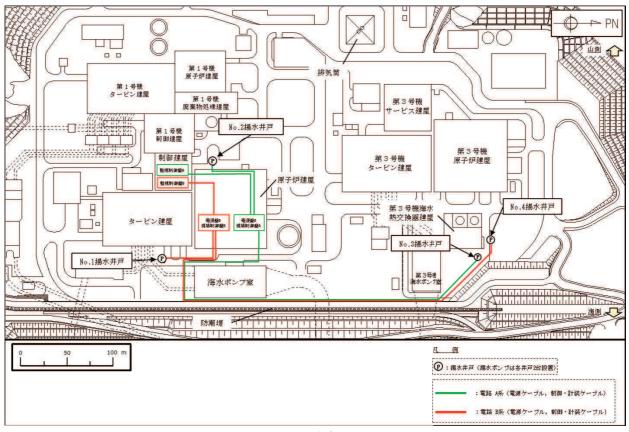
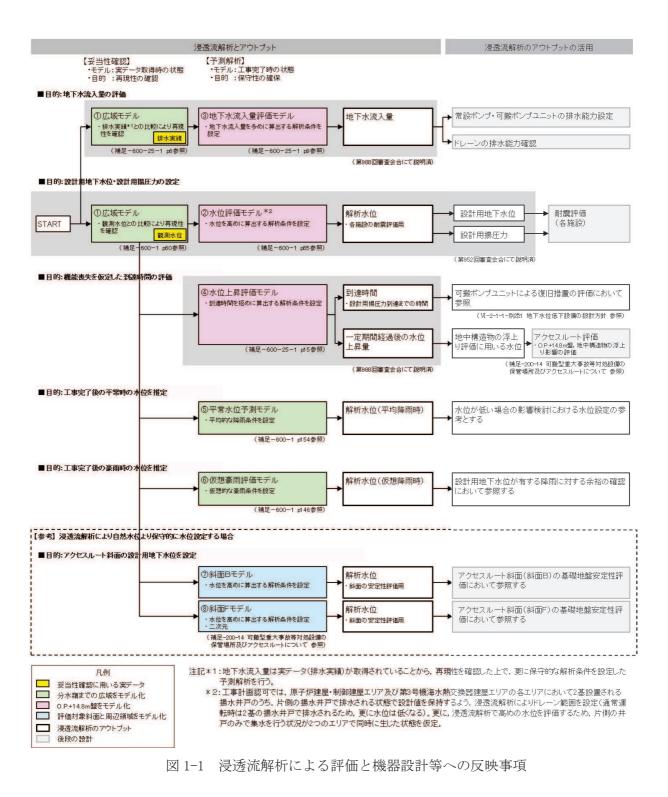


図 6-1 電路の配置

- 7. 屋外排水路に係る補足事項
- 7.1 屋外排水路に係る補足事項


地下水位低下設備で汲み上げた地下水は、支線排水路、敷地の北側及び南側に設置した幹線 排水路から構成される屋外排水路を通じて海へ排水することにより、設計用揚圧力・設計用地 下水位を保持し、技術基準第5条(耐震)に適合した状態を維持することができる。

このために必要な対応として,幹線排水路流末部の耐震性確保や,地震時における排水経路 の確保(敷地の形状又は仮設ホース等の取り付けによる)を整理しており,その詳細を参考資 料2に示す。 (参考資料1)浸透流解析モデル概要及びアウトプットと設備設計への反映事項

浸透流解析は設計用揚圧力・設計用地下水位の設定において参照する他,地下水流入量な ど,一部のアウトプットを後段の設計等において参照することとしており,解析目的に応じて 保守的となるようなモデル条件の設定を行っている。

ここでは、浸透流解析による評価モデルと設計等への反映事項についての関連を整理した。 また、各モデルの条件設定の概要及びモデルの比較を整理した。

 浸透流解析による評価と機器設計等への反映事項について 浸透流解析による評価と機器設計等への反映事項を図 1-1 に示す。 実データを参照した妥当性確認は①広域モデルで行う他,解析の目的に応じて保守的なアウ トプットが得られるよう,②~⑧の各予測解析モデルを用いる。

 浸透流解析モデルにおける目的に応じた保守性確保の考え方 浸透流解析においては、目的に応じた保守的な解析条件を設定する。 浸透流解析に影響を与えるパラメータ・境界条件と、設定内容による浸透流解析結果への影 響の概念について図 1-2 に示す。

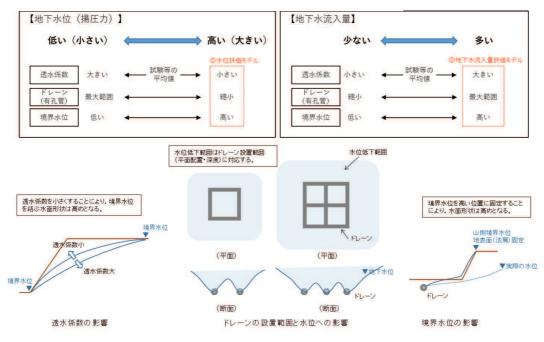


図 1-2 浸透流解析の目的に応じた条件設定例及び浸透流解析条件と評価への影響

浸透流解析モデルの概要について
 浸透流解析に用いる各モデルの概要を表 1-1~1-4 に示す。
 評価目的に対して保守的な評価結果となるよう、モデル条件の設定を行っている。

項目	①広域モデル [妥当性確認]	②水位評価モデル [予測解析]
1-1.目的	モデル化の妥当性を確認すること (降雨に対する観測水位,排水実績の再現性確保)	 工事完了後に想定される地下水位を評価すること (液状化影響検討対象施設を幅広く抽出するため高めに評価)
1-2.アウトプット の活用先	- (モデル検証のみ)	• 各施設の耐震設計における前提条件(設計用地下水位)
2.解析領域	 施設を含む分水嶺までの範囲(施設へ流入する地下水を適切に表現) (%************************************	 0.P+148m盤及び0.P+148m盤周辺の法面 つー ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.解析種別	 非定常解析 	 定常解析
4.降雨条件 (検証期間)	 検証期間の降雨実績参照 水位:検証期間1:2006-2007年,検証期間2:2013-2014年 流入量:2017年9月~2017年10月 	-
5.モデル	・ 検証期間における施設配置等を反映	• 詳細設計の結果を踏まえた工事完了段階における施設配置等を反映
6.ドレーン	 既設全ての範囲が管路として集水に寄与 (検証期間の状態を再現するため、新設は考慮しない) 	 集水に寄与する範囲を限定(既設・新設のうち耐久性・耐震性・保守管理 性等の確保された範囲を管路として扱う。それ以外の範囲は耐震性等の 確保状況に応じて透水層または周辺地盤として扱う) 各エリアにおいて片側の井戸へ臭水を行う状態で設計値を保持
7.境界条件	 実態に則した設定 山(御): 関境界 海御: 平均潮位に水位固定 ドレーン:ドレーン計画高に水位固定 	 水位が高めに評価されるよう設定 山側:地表面(法肩)に水位固定 海側: 朔望平均満潮位に水位固定 トレーン:トレーン計画高に水位固定
8.透水係数	 目的に応じて再現性を確保するよう設定 水位:試験結果等の平均値 流入量:磁土・旧表土を試験結果等の平均値+1σ 	 水位が高めに評価されるよう設定 - 岩盤 I を試験結果等の平均値-1 σ

表 1-1 解析モデル概要(①広域モデルと②水位評価モデル)

注) (は目的に対して保守的な評価とする目的で①広域モデルより変更している条件

第952回原子力発電所の新規制基準適合性に係る審査会合 資料1-1を一部加革

表 1-2 解析モデル概要(③地下水流入量評価モデル④水位上昇評価モデル)

項目	②水位評価モデル (対比のため)	③地下水流入量評価モデル	④水位上昇評価モデル
1-1.目的	エ事完了後に想定される地下水位を評価すること (液状化影響検討対象施設を幅広く抽出するため 高めに評価)	 工事完了後に想定される地下水の流入量を評価すること、設備設計の保守性を確保するため 多めに評価) 	 地下水位低下設備の機能喪失時における水位 上昇を評価すること
1-2.アウトプット の活用先	 各施設の耐震設計における前提条件(設計用地下 水位) 	 ・ 設備設計(常設ボンブ・可搬ボンブユニ・外の非 水能力設定) ・ ドレーンの排水能力確認 	 可搬ポンプユニッ化による復旧措置の評価 (設計用揚圧力に到達するまでの時間) 0.P.+14.8m盤アクセスルートの評価 (地下水位低下設備の機能喪失から2ヵ月後の 水位を地中構造物の浮上い評価(にて参照)
2.解析領域	 O.P.+14.8m 盤及びO.P.+14.8m 盤周辺の法面 ・ ・	(同左)	(同左)
3.解析種別	 定常解析 	(同左)	 非定常解析
4.降雨条件 (検証期間)	-	<u>e</u>	-
5.モデル	・ 詳細設計の結果を踏まえた工事完了 段階における 施設配置等を反映	(同左)	(同左)
6.ドレーン	 集水に寄与する範囲を限定(表1-1と同様) 各エリアにおいて片側の井戸へ集水を行び状態で 設計値を保持 	 既設・新設の全ての範囲が集水に寄与 	 水位上昇開始時の水位が高くなるよう、集水に 寄与する範囲を限定(初期状態) 通常の運転状態(初期状態)から、全て機能喪 失(=トレーンを全て無効)することを仮定
7.境界条件	 水位が高めに評価されるよご設定 山側:地表面(法肩)に水位固定 海側:朔望平均満潮位に水位固定 ドレーン:ドレーン計画高に水位固定 	 流入量が多めに評価されるよう設定 山側:地表面(法肩)に水位固定 海側:朔望平均満潮位に水位固定 凡・一ン:・トレーン計画高に水位固定 	 水位上昇開始時の水位が高ぐなるよ認定 山側:地表面(法肩)に水位固定 海側:朔望平均満潮位に水位固定 トレーン:トレーン計画高に水位固定
8.透水係数	 水位が高めに評価されるよう設定 岩盤 I を試験結果等の平均値-1σ 	 流入量が多めに評価されるよう設定 全て試験結果等の平均値+1σ 	 水位上昇開始時の水位が高なるよう設定 岩盤Iを試験結果等の平均値-1σ

注) は目的に対して妥当な評価とする目的で②水位評価モデルより変更している条件 は目的に対して妥当な評価とする目的で②水位評価モデルを踏襲している条件

項目	①広域モデル(対比のため)	⑤平常水位予測モデル	⑥仮想豪雨評価モデル
1-1.目的	 モデル化の妥当性を確認すること (降雨に対する観測水位,排水実績の再現性確保) 	 工事完了後に想定される実際の水位(設計用地 下水位より低い水位)を推定すること 	 工事完了後に想定される豪雨時の水位を推定 すること
1-2.アウトプット の活用先	- (モデル検証のみ)	 水位が低い場合の影響検討における水位設定の参考 	 設計用地下水位が有する余裕の確認において 参照
2.解析領域	 施設を含む分水嶺までの範囲(施設へ流入する地下水を適切に表現) (第2000年7月) (第200年7月) (第2000年7月) (第200年7月)	(同左)	(同左)
3.解析種別	 非定常解析 	 定常解析 	• 非定常解析
4.降雨条件 (検証期間)	 検証期間の降雨実績参照 水位:検証期間1:2006-2007年, 検証期間2:2013-2014年 流入量:2017年9月~2017年10月 	・ 357mm/日 (観測降雨(2001-2018年)の日平均)	 仮想の降雨条件(超過確率約400年程度) 初期状態:357mm/日 (観測降雨(2001-2018年)の日平均) 降雨時:150mm/日×3日 (総降水量450mm)
5.モデル	・検証期間における施設配置等を反映	 詳細設計の結果を踏まえた工事完了段階における施設配置等を反映 	(同左)
6.ドレーン	 ・ 既設全ての範囲が管路とて集水に寄与 (検証期間の状態を再現するため、新設は考慮しな い))))	 ・ 平常時の状態に対応,既設・新設の全範囲を 管路とて扱う 	 設計用地下水位の検証を目的とするため、既設・新設の汚耐久性・耐震性・保守管理性等の確保がた範囲を管路とて扱うCをわ以外の範囲については、耐震性等の確保状況に応え 透水層または周辺地盤とて扱う
7.境界条件	 実態に則た設定 山側・閉境界 海側・平均潮位に水位固定 ドレーン:・レーン計画高に水位固定 	(同左)	(同左)
8.透水係数	 目的に応じて再現性を確保するよご設定 水位:試験結果等の平均値 流入量:盛土・旧表土を試験結果等の平均値+1 σ 	 再現性を確保するよう設定 水位:試験結果等の平均値 	 再現性を確保するよう設定 水位:試験結果等の平均値

表 1-3	解析モデル概要	(①モデルと⑤平常水位予測モデル⑥仮想豪雨評価モデル)

注)■は目的に対して妥当な評価とする目的で①広域モデルより変更している条件

項目	⑦斜面Bモデル	⑧斜面Fモデル	備考
1-1.目的	・斜面の安定性評価に用いる斜面内水	位分布の設定	
1-2.アウトプット の活用先	・ 斜面安定性評価における前提条件(記	设計用地下水位)	-10 ⑦斜面Bモデル 0.広域モデル
2.解析領域	• 斜面Вと周辺領域	 斜面Fと周辺領域 40 年間の目的目前 40 年間の目前 40 年間の目前 50 年間の目前 	日田 日田 日田 日田 日田 日田 日田 日田 日田 日田
3.解析種別	• 非定常解析(三次元)	• 非定常解析(二次元)	0 250 560 750 1000 m
4.降雨条件	 年平均降雨をベースに豪雨条件を付 初期状態:3.48mm/日(観測降前 降雨時:108mm/日×3日(総降 	雨(1981-2010年)の日平均)	
5.モデル	・ 詳細設計の結果を踏まえた工事完了	段階における施設配置等を反映	
6.ドレーン	 モデル化ない(設置されていない) 		
7.境界条件	 水位分布を適切に得るため、実態に則 ー上流側:閉境界 ー下流側(O.P.14.8m盤):地表面に水(
8.透水係数	 水位が高めに評価されるよう設定 岩盤Iを試験結果等の平均値-1a 	1	

表 1-4 解析モデル概要(⑦斜面Bモデルと⑧斜面Fモデル)

*1 石巻、大船渡の両特別地域気象観測所の観測期間における72時間最大降雨

注) ■は目的に対して保守的な評価とする目的で①広域モデルより変更している条件

(参考資料2) 屋外排水路の機能及び耐震性に係る設計方針について

目次

1.	は	はじめに(参考)2-1
2.	刞	▶下水位低下設備について(参考)2-1
2	. 1	地下水位低下設備の範囲(参考)2-1
2	. 2	地下水位低下設備の設計流量(参考)2-3
2	. 3	地下水位低下設備からの排水経路(通常時・地震時)(参考)2-3
3.	討	と計用揚圧力・設計用地下水位を保持するための屋外排水路の方針(参考)2-5
3	. 1	屋外排水路の設備構成と排水能力(参考)2-5
3	. 2	屋外排水路の機能低下時における影響と対応の整理(参考)2-8
3	. 3	屋外排水路の耐震性確保の方針(参考)2-12
4.	他	1条文への影響(参考)2-14
5.	I	〔認図書における取扱い(参考)2-16
6.	ま	そとめ(参考)2-21

- 別紙1 屋外排水路に係るその他の自主的な対策
- 参考1 既設の屋外排水路の概要
- 参考2 No.1 揚水井戸から敷地側集水ピットへの排水経路
- 参考3 地震時における屋外アクセスルートの通行性に対する支線排水路の影響

1. はじめに

地下水位低下設備の機能を考慮した0.P.+14.8m盤の施設等における設計用揚圧力・設計用地下水位は、地下水位低下設備により地下水を汲み上げ、0.P.+14.8m盤から海へ屋外排水路を通じて排水されることにより保持される。

本書は,設計用揚圧力・設計用地下水位を保持し,技術基準第5条(耐震)に適合した 状態を維持することに対する屋外排水路の位置付けと設計方針について整理するもので ある。

- 2. 地下水位低下設備について
- 2.1 地下水位低下設備の範囲

設計用揚圧力・設計用地下水位を保持するための地下水位低下設備の範囲を図1に 示す。

ドレーン(ヒューム管・鋼管)により揚水井戸に集水した地下水は, 揚水井戸内に 設置する揚水ポンプにより配管を通じて0.P.+14.8m盤へ汲み上げ, 屋外排水路を通じ て海へ排水される。地下水位低下設備の構成を表1, 系統構成を図2に示す。

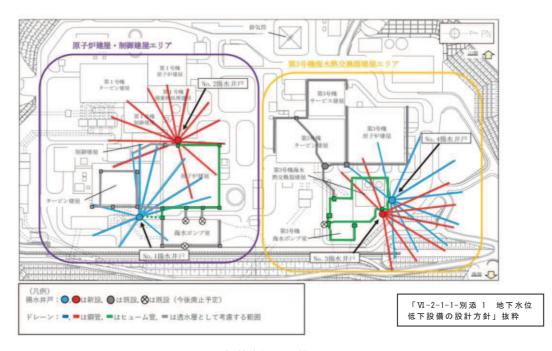
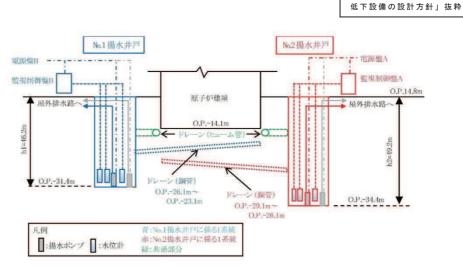



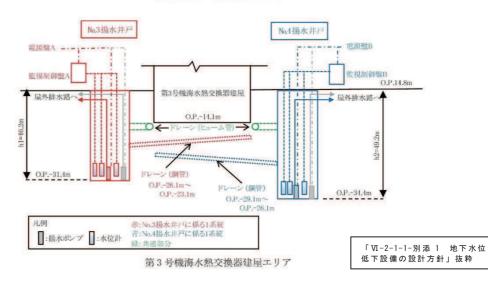
図1 地下水位低下設備の配置

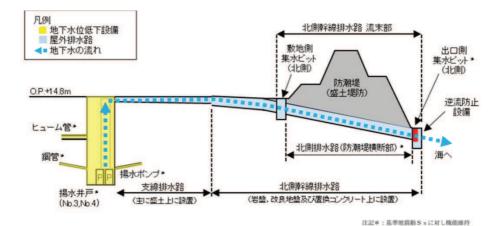
表1 地下水位低下設備の構成

	設備構成	
the state the		ドレーン
集水機能	・地下水を揚水井戸に集水する。	接続桝
L. L. Marshall - 197.11	・揚水井戸内の設備を支持する。	揚水井戸
支持・閉塞防止機能	 ・揚水井戸内の設備が外部事象の影響を受けないようにする。 	盖
LII. J. D.B. Al-		揚水ポンプ
排水機能	・揚水井戸に流入する地下水を排水する。	配管
	 ・揚水井戸の水位を測定することで揚水ボンプの起動及び停止を制御する。 ・揚水井戸水位を監視する。 ・揚水井戸水位及び設備の異常時に中央制御室に警報を発生させる。 	水位計
監視・制御機能		制御盤
775 Mari 6466 A41	北海ケータボムホナル体なよス	電源 (非常用ディーゼル発電機)
電源機能	・設備に必要な電力を供給する。	電源盤
		電路

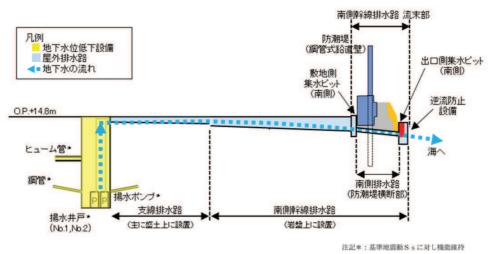
「VI-2-1-1-別添 1 地下水位

原子炉建屋・制御建屋エリア




図2 地下水位低下設備の系統構成


2.2 地下水位低下設備の設計流量


地下水位低下設備からの排水量は,保守的な解析条件(排水量を多めに評価するような透水係数設定など)を与えた浸透流解析により原子炉建屋・制御建屋エリアで 8078m³/d,第3号機海水熱交換器建屋エリアで7046m³/d(各エリアの流入量合計 15124m³/d)と評価しており,揚水ポンプの排水能力はこれを包絡するよう,設計流量 を各エリアで9000m³/d,流量合計18000m³/d(0.21m³/s)と設定している(詳細は「VI -2-1-1-別添1 地下水位低下設備の設計方針」を参照)。

- 2.3 地下水位低下設備からの排水経路(通常時・地震時)
 - (1) 通常時

地下水位低下設備から汲み上げた地下水は,地下水位低下設備配管より支線排水 路へ流れ,敷地の南北に設置される幹線排水路(北側幹線排水路,南側幹線排水路) を通じて海へ排水される(図3)。

(2) 南側幹線排水路への排水経路

図3 地下水位低下設備で汲み上げた地下水の排水経路

(2) 地震時

屋外排水路の一部が地震により損傷し機能低下した場合,排水経路が寸断され,海 への排出が出来なくなる可能性が否定できない。

このため,地下水位低下設備より汲み上げた地下水を海へ排出可能な経路を確保する必要がある。

- 3. 設計用揚圧力・設計用地下水位を保持するための屋外排水路の方針
- 3.1 屋外排水路の設備構成と排水能力
 - (1) 設備構成

屋外排水路は,第1号機~第3号機の主要建屋の北側と南側に設置される北側幹線 排水路・南側幹線排水路と,これに接続する支線排水路にて構成され,北側・南側幹 線排水路は,いずれも防潮堤横断箇所より上流側に敷地側集水ピット,下流側に出口 側集水ピットを設置しており,出口側集水ピットに耐震Sクラスの逆流防止設備を設 置している(図4)。

また,北側幹線排水路は岩盤,改良地盤及び置換コンクリート,南側幹線排水路は 岩盤により支持されている(図5)。支線排水路は0.P.+14.8m盤付近に設置され,そ の多くの区間が盛土上に構築される。

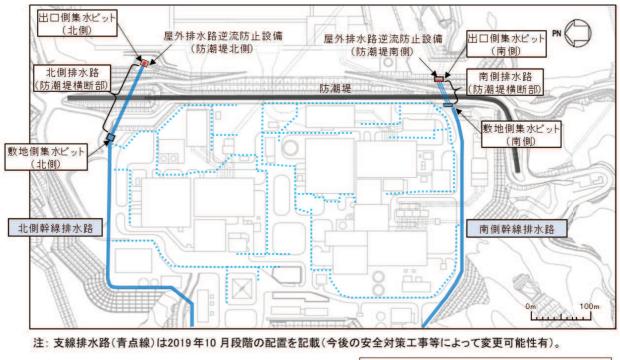
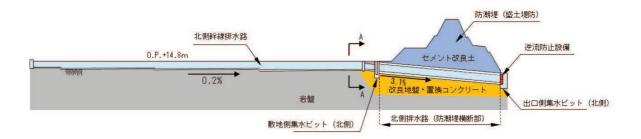
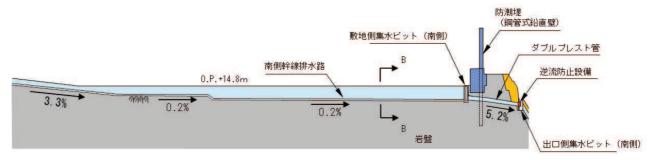




図4 屋外排水路の配置(設置変更許可段階)

北側幹線排水路の縦断図

南側幹線排水路の縦断図

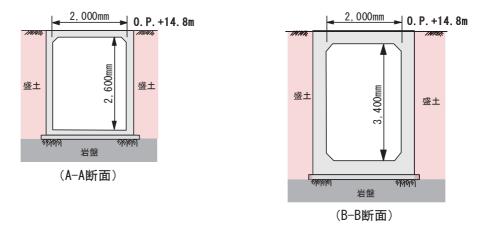


図5 北側・南側幹線排水路の縦断面図(設置変更許可段階)

「補足 140-1 津波への配慮に関する説明
書の補足説明資料」,「補足 600-1 地盤の
支持性能について」から抜粋・一部修正

(2) 排水能力

北側・南側幹線排水路の排水能力は表2に示すとおりであり,設計基準降水時 (91.0mm/h)における雨水流入量(m³/s),地下水位低下設備からの排水量(設計流量 0.21m³/s)を十分排出可能な設計となっている。

排水路名	設計基準降水時 (91.0mm/h) 雨水流入量(m ³ /s)	排水可能流量 (m ³ /s)			
北側幹線排水路	9.4	51.16			
南側幹線排水路	9.5	16.23			

表2 幹線排水路の排水能力

「女川原子力発電所 2 号炉設置変更許可申請書 02-NP-0272(改 114)別添資料 1 」より引用

- 3.2 屋外排水路の機能低下時における影響と対応の整理
- (1) 検討対象とする地下水の排水経路

地下水位低下設備と屋外排水路の平面配置を図 6 に示す。これは通常時の排水経路に相当するが、地震時*の検討として、屋外排水路の構成に対応した区間毎に、機能低下時の排水経路への影響と、排水経路確保に必要な対応を検討した。

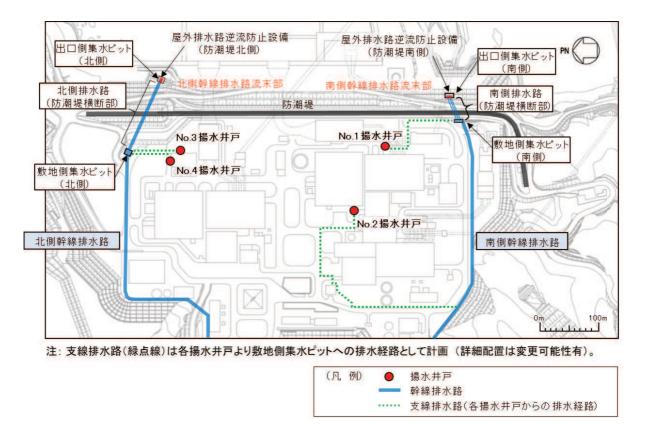


図6 地下水位低下設備と屋外排水路の平面配置

注記*: 屋外排水路は基準地震動Ssに対する耐震性が確保されていない範囲を含むこと,参考1のとおりがれき等が直接流入しにくい構造であることから, 排水機能低下が生じうる要因として地震を選定した。 (2) 支線排水路の機能喪失の取扱い

a. No.1 揚水井戸, No.3 揚水井戸, No.4 揚水井戸について

地下水位低下設備から汲み上げた地下水は,通常時は揚水井戸出口の配管より支 線排水路へ流すこととしているが,地震時は,支線排水路の耐震性がないため,排 水経路としての機能は期待しない。

このため、揚水井戸から汲み上げた地下水は地表面に溢れることになるが、この 水は揚水ポンプにより徐々に押し出され敷地側集水ピット(北側・南側)に向かう (図7,図8参照)。到達した水が、耐震性が確保されているピット上部の開口から 内部に落下することでピットへ向かう水の流れが生じる。

また,敷地側集水ピット(北側・南側)から海への排水経路を基準地震動Ssに 対し機能維持することで同経路は保たれるため,海へ自然流下できる状態となる。 ((3)に詳述する。)

以上より, 揚水井戸から敷地側集水ピットまでの排水経路が短い No.1 揚水井戸, No.3 揚水井戸, No.4 揚水井戸については, 支線排水路に期待せず敷地の形状により 地表面を通じて排水可能と整理した。なお, 敷地の形状により排水経路が確保でき ない場合においても, 揚水井戸内の配管上端に設置した接続口に仮設ホース等を接 続し流路を構成することにより, 地下水を確実に排水する。

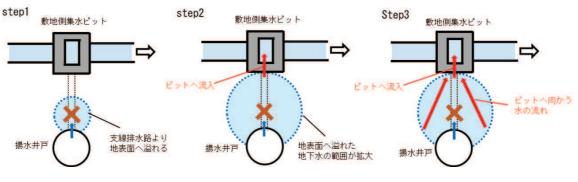


図7 地表面を通じた排水の考え方(平面図)

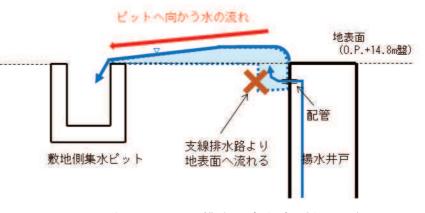


図8 地表面を通じた排水の考え方(断面図)

排水経路の選定の考え方として, No.1 揚水井戸から敷地側集水ピットへの排水経路の検討例を参考2に示す。

b. No.2 揚水井戸について

揚水井戸からの排水は、他の揚水井戸からの排水経路と比べて長いため、支線 排水路が地震時において機能喪失した場合に 0.P.+14.8m 盤に溢れ滞水するおそ れがある。

このため, 揚水井戸内の配管上端に設置した接続口に仮設ホース等を接続する ことで流路を構成し, 地下水を確実に排水する。

(3) 幹線排水路流末部の排水機能維持について

地下水を敷地側から海側へ流す経路となる範囲について,地震時に閉塞等が生じ た場合,排水に影響が生じ設計用揚圧力・設計用地下水位を保持できないおそれがあ る。

そのため、地震時においても排水機能を確保する必要がある。

具体的には、北側幹線排水路流末部(敷地側集水ピット(北側)、北側排水路(防 潮堤横断部)、出口側集水ピット(北側))と南側幹線排水路流末部(敷地側集水ピッ ト(南側)、南側排水路(防潮堤横断部)、出口側集水ピット(南側))について、基 準地震動Ssに対して排水機能を維持する。

(4) 影響検討と対応のまとめ

影響検討と対応のまとめを表3に示す。

上記(1)~(3)の検討から、No.1揚水井戸、No.3揚水井戸、及びNo.4揚水井戸から汲み上げた地下水について、地震時には地表に溢れ敷地の形状により自然流下し敷地側集水ピットへ流れるが、滞水のおそれがある場合は、仮設ホース等を用いた運用にて流路を構成することにより、敷地側集水ピットまでの排水を確保する。

No.2揚水井戸は、0.P.+14.8m盤に溢れ滞水するおそれがあるため、仮設ホース等を 用いた運用にて流路を構成することにより、敷地側集水ピットまでの排水を確保す る。

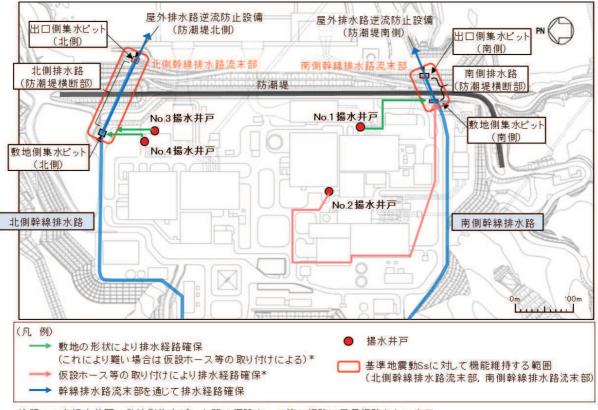
また,敷地側集水ピットより海側の幹線排水路流末部は,基準地震動Ssに対して, 排水機能を維持する。

排水位置	排水位置から海への排水経路上の 屋外排水路の区間			地震時の想定	排水経路保持にお ける対策の要否	排水経路確保方法
No. 1	揚水井戸出口から敷地側集水ピット(南 側)までの区間		也側集水ピット(南	支線排水路が機能喪失した場合は 0.P.+14.8m盤に溢れるが,敷地の 形状により,地表面を通じて近傍 の敷地側集水ピット(南側)に集水 される。	_	 ・敷地の形状により地表面を通じて排水する。 ・なお、敷地の形状により排水経路が確保できない場合においても、揚水井戸内の配管上端に設置した接続口に仮設ホース等を接続し流路を構成することにより排水経路を確保する。
揚水井戸	南側幹線 排水路	流末部	 敷地側集水ピット (南側) 南側排水路 (防潮堤横断部) 出口側集水ピット (南側) 	閉塞等が生じた場合,排水に影響 が生じ設計用揚圧力・設計用地下 水位を保持できないおそれがあ る。	必要	 基準地震動Ssに対する機能維持
	揚水井戸出口から南側幹線排水路までの 区間		則幹線排水路までの	支線・幹線排水路が機能喪失した 場合は 0. P. +14. 8m 盤に溢れる。敷 地側集水ピットまでの距離が長い	必要	 ・仮設ホース等の取り付けにより排水経路を確保する。
No. 2		流末部以		ため, 0.P.+14.8m 盤に溢れた水が 滞水する可能性がある。		
NO.2 揚水井戸	南側幹線 排水路	流末部	 敷地側集水ピット (南側) 南側排水路 (防潮堤横断部) 出口側集水ピット (南側) 	流末部に閉塞等が生じた場合,排 水に影響が生じ設計用揚圧力・設 計用地下水位を保持できないおそ れがある。	必要	• No.1 揚水井戸に同じ。
	+24 . 4 . 2 . 7 . 1	(前側) 揚水井戸出口から敷地側集水ピット(北 側)までの区間		支線排水路が機能喪失した場合は 0.P.+14.8m 盤に溢れるが,地表面 を通じて近傍の敷地側集水ピット (北側)に集水される。		・ No.1 揚水井戸に同じ。
No. 3, No. 4 揚水井戸	北側幹線 排水路	流末部	 敷地側集水ピット (北側) 北側排水路 (防潮堤横断部) 出口側集水ピット (北側) 	閉塞等が生じた場合,排水に影響 が生じ設計用揚圧力・設計用地下 水位を保持できないおそれがあ る。	必要	・ No.1 揚水井戸に同じ。

表3 地下水の排水経路を構成する屋外排水路の機能低下時における影響と対応まとめ

3.3 屋外排水路の耐震性確保の方針

表3の整理を踏まえ,地下水位低下設備で汲み上げた地下水を確実に海へ排水し,技術基準第5条(耐震)に適合した状態を維持するため,北側幹線排水路流末部を構成す る施設(敷地側集水ピット(北側),北側排水路(防潮堤横断部),出口側集水ピッ ト(北側))及び南側幹線排水路流末部を構成する施設(敷地側集水ピット(南側), 南側排水路(防潮堤横断部),出口側集水ピット(南側))について,基準地震動Ss に対する機能維持を確認することにより排水機能を確保する。また,この範囲につい て耐震Cクラス*に分類する(表4)。


技術基準第5条(耐震)適合上必要な屋外排水路の耐震性の確保範囲を図9に示す。

注記*:耐震重要度は、その重要度に応じたクラス分類(S, B, C)と、それらに該 当する施設が示されている。表4のとおり、屋外排水路はSクラス設備及びBク ラス設備のいずれにも該当しないため、耐震Cクラスに分類した。

耐震	定義	対象とする施設の例	該当
S	らの施設の機能喪失により事故に至った場合の影響を緩和し、放射線による公衆への	・原子炉冷却材圧力パウンダリを構成する機器・配管系 ・使用済燃料を貯蔵するための施設 ・原子炉の緊急停止のために急激に負の反応度を付加する ための施設、及び原子炉の停止状態を維持するための施設 ・原子炉停止後、炉心から崩壊熱を除去するための施設等	×
В	安全機能を有する施設のうち、機能喪失した場合の影響がSクラス施設と比べ小さい施 設	・原子の冷却材圧力パウンダリに直接接続されていて、一次 冷却材を内蔵しているか又は内蔵し得る施設 ・放射性廃棄物を内蔵している施設(ただし、内蔵量が少ない 又は貯蔵方式により、その破損により公衆に与える放射線の 影響が実用発電用原子がの設置、運転等に関する成射線の 約53年通商産業省合第77号)第2条第2項第6号に規定十 る「周辺整視又域(かにおける年間の線量限度に比べ十分 小さいものは除く。)等	×
С	Sクラスに属する施設及びBクラスに属する施設以外の一般産業施設又は公共施設と 同等の安全性が要求される施設	-	Ö

表 4 北側幹線排水路流末部及び南側幹線排水路流末部における耐震設計上の重要度分類

「Ⅵ-2-1-4_耐震重要度分類及び重大事故等対 処施設の施設区分の基本方針」を参照し作成

注記*:各揚水井戸~敷地側集水ピット間の仮設ホース等の経路は最長経路として表示。

図9 技術基準第5条(耐震)適合上必要な屋外排水路の耐震性の確保範囲

4. 他条文への影響

3.2 及び 3.3 に示す屋外排水路の設計方針を踏まえた各技術基準適合要求への影響に ついて確認し、いずれも影響がないことを確認した(詳細は表 5 参照)。

各技術基準適合要求への影響

	카. 빠 카 글 라	
技術基準	設置変更許可時の説明	技術基準適合への影響
第5条 (耐震)	- (屋外排水路は,設計基準降水量を上回 る排水能力を有する設計としているこ とから,水位保持上の前提としていた が,基準適合上の位置付けに係る説明 は無し)	 ・北側・南側幹線排水路流末部の耐震性を確保することにより、水位保持上の前提である 0. P. +14.8m 盤から海へ排水される状態が確実に維持される。(設定した設計用揚圧力・設計用地下水位への影響はない。)
第6条 (耐津波設計 (内郭防護))	 内郭防護における屋外タンク等の損傷による溢水影響にて、屋外排水路の機能に期待しない評価を説明。(耐津波設計で考慮する敷地への溢水源の設定では、屋外排水路による排水を期待せず、敷地に滞留した場合であっても、浸水防護重点化範囲に流入しないことを確認。) 	・屋外排水路の機能に期待しない評価を実施して いることから,北側・南側幹線排水路流末部の 耐震性を確保した場合においても基準適合への 影響はない。なお,屋外タンクの破損等により 発生した 0.P.+14.8m 盤の水は地震随伴事象に より発生するものであり,北側・南側幹線排水 路流末部の耐震性を確保することによって,確 実に屋外排水路を通じて海へ排水される。
第7条 (外部事象(自 然現象))	 ・想定される自然現象(地震,津波を除く) に対し,屋外排水路の機能に期待する 個別事象として,降水による浸水の影響評価を実施し,外部事象防護対象施 設等がその安全機能を損なわないこと を説明。(屋外排水路は,敷地への降水 を海域に排水するものであり,設計基 準降水量を上回る排水能力を有する設 計としている。3.1(2)参照。) ・自然現象の重畳について,事象(影響 モード)の内容を基に,影響が増長す る事象の組合せを網羅的に検討し,降 水を含む事象の組合せにおいて,影響 が増長するものはないことを説明。 (詳細については表 5(2)参照。) 	 ・考慮する自然現象は降水であり、北側・南側幹線排水路流末部の耐震性を確保した場合においても敷地への降水を海域に排水する機能に影響はなく、外部事象防護対象施設等の安全機能に影響を及ぼさないことから、基準適合への影響はない。また、自然現象の組合せの影響に対する確認結果は表5(2)に示すとおりであり、降水による浸水影響の個別評価と変わらず、外部事象防護対象施設等の安全機能に影響を及ぼさないことから、基準適合への影響はない。なお、北側・南側幹線排水路流末部の耐震性を確保することによって、地震時においても確実に屋外排水路を通じて海へ排水される。
第 12 条 (内部溢水)	 ・屋外排水路の機能に期待しない溢水評価を説明。(屋外タンク等の損傷における敷地への溢水源の設定では,屋外排水路による排水を期待せず,敷地に滞留した場合であっても,防護対象設備に対して溢水影響を及ぼさないことを確認。) 	 ・屋外排水路の機能に期待しない評価を実施していることから、北側・南側幹線排水路流末部の耐震性を確保した場合においても基準適合への影響はない。なお、屋外タンクの破損等により発生した 0.P.+14.8m 盤の水は地震随伴事象により発生するものであり、北・南側幹線排水路流末部の耐震性を確保することによって、確実に屋外排水路を通じて海へ排水される。
第 54 条 (アクセスルート)	 ・敷地への溢水(屋外タンク損傷)は、 アクセスルート復旧作業の開始前に排 水路から排水可能であり、アクセスル ート復旧作業への影響はない。 ・排水を考慮しない場合でも可搬型車両 の通行は可能であり、人員への影響も 小さい。 	 ・敷地への溢水(屋外タンク損傷)は、アクセス ルート復旧作業の開始前に耐震性を確保した北 側・南側排水路流末部より排水可能であり、ア クセスルート復旧作業への影響はない。 ・排水を考慮しない場合、アクセスルートから、 側溝やより沈下量の大きな建屋近傍へ流下する ため、可搬型車両の通行は可能であり、人員へ の影響も小さい。

表 5(1) 幹線排水路流末部の耐震性確保(技術基準第5条)を踏まえた

表 5(2) 女川原子力発電所において想定される自然現象の組合せがプラントに及ぼす

影響の評価結果(影響モード:浸水)	(設置変更許可時の説明内容)
-------------------	----------------

影響モード	事象の		
を含む事象	単家の組合せ	検討結果	備考
	風(台風)× 降水	降水による敷地の浸水の可能性が考えられるが、構内排 水路により排水することで敷地が浸水することはない。	女川原子力発電 所2号炉設置変
	1173*	また,風(台風)による影響(荷重)を組み合わせたとし	更許可申請書
		ても降水による浸水影響の個別評価と変わらない。	02-NP-0272 (改
	(風(台風)	降水による敷地の浸水の可能性が考えられるが、構内排	114) 外部からの
	×降水)×	水路により排水することで敷地が浸水することはない。	衝撃による損傷 の防止(その他
	凍結×積雪	また,風(台風)及び積雪による影響(荷重),及び,凍 結による影響(温度及び閉塞)を組み合わせたとしても,	の防止(その他 外部事象)別添
		降水による浸水影響の個別評価と変わらない。	資料1 第5.3-8
	(風(台風)	降水による敷地の浸水の可能性が考えられるが、構内排	表より抜粋
	×降水)×	水路により排水することで敷地が浸水することはない。	
	竜巻	また、風(台風)及び竜巻による影響(荷重)を組み合	
		わせたとしても、降水による浸水影響の個別評価と変わ	
	(風(台風)	らない。 降水による敷地の浸水の可能性が考えられるが,構内排	-
	 (風(日風)) ×降水) × 	本路により排水することで敷地が浸水することはない。	
	落雷	また、落雷による影響(電気的影響)を組み合わせたと	
		しても、降水による浸水影響の個別評価と変わらない。	
	(風(台風)	湿った降下火砕物が乾燥して固結することにより、排水	
	×降水)×	口等を閉塞させ浸水することが考えられるが、固結した	
	火山の影響	降下火砕物は降水により溶解するため浸水は生じない。 また,風(台風)による影響(荷重)及び降水による影	
		響(浸水)を組み合わせたとしても、降水による浸水影	
7夕 1.		響の個別評価と変わらない。	
降水	(風(台風)	降水による敷地の浸水の可能性が考えられるが、構内排	
	×降水)×	水路により排水することで敷地が浸水することはない。	
	生物学的事	また、風(台風)による影響(荷重)及び生物学的事象	
	象	による影響(閉塞,電気的影響)を組み合わせたとして も,降水による浸水影響の個別評価と変わらない。	
	(風(台風)	 6, 降水による投水影響の回加計画と変わらない。 降水による敷地の浸水の可能性が考えられるが,構内排 	-
	×降水) ×	水路により排水することで敷地が浸水することはない。	
	森林火災	また、風(台風)による影響(荷重)及び森林火災によ	
		る影響(温度、閉塞、電気的影響、摩耗)を組み合わせ	
		たとしても、降水による浸水影響の個別評価と変わらな	
	(周(台周)	い。 降水による敷地の浸水の可能性が考えられるが、構内排	-
	 (風(台風) ×降水) × 	降小による敷地の役小の可能性か考えられるか、権内排水路により排水することで敷地が浸水することはない。	
	地震	また,風(台風)及び地震による影響(荷重)を組み合	
		わせたとしても、降水による浸水影響の個別評価と変わ	
		らない。	
	(風(台風)	降水及び津波による浸水影響が重畳することにより、敷	
	×降水)× 津波	地に対する浸水影響が増長すると考えられるが,構内排 水路により排水することで敷地が降水により浸水するこ	
	伴仮	小路により排示することで敷地が降不により浸示することはないこと,基準津波は津波防護施設及び浸水防止設	
		備により敷地内に到達することはないことから、敷地が	
		浸水に至る可能性はない。なお、津波により所内の排水	
		設備が使用できない場合でも、津波の継続時間は短いこ	
		とから、降水により浸水に至る可能性はない。	

5. 工認図書における取扱い

3.2及び3.3に示す屋外排水路の設計方針について,表6のとおり各図書に整理する。

表 6(1) :	地下水位低-	下設備に係る	る図書における	屋外排水路の	記載について(1/5)
----------	--------	--------	---------	--------	---------	------

分類 対応箇所 対応内容(3.2及び3.3に示す対策の反) 基本設計方針(5/50条) シ以下の記載とする。 シ以下の記載とする。 原子炉冷却系統施設(共通項目) ・地下水位低下設備は、ドレーン及び接続 2.1 地震による損傷の防止 ・地下水位低下設備は、ドレーン及び接続 2.1.1 耐震設計 ・地下水位低下設備は、ドレーン及び接続 (5)設計における留意事項 ・地下水位低下設備は、ドレーン及び接続 b.主要施設への地下水の影響 ・地下水位低下設備は、ドレーン及び接続 ・ 地下水位低下設備は、ドレーン及び接続 ・場水ポンプに接続された配管を通 を屋外排水路へ排水する。 ・揚水ポンプは、地下水の最大流入量を打容量を有する設計とし、設備の信頼性性 100%容量のポンプを1系統当たり2個(置し、集水した地下水を排水できる設計	<u>.吠固灯</u>)
 原子炉冷却系統施設(共通項目) 2. 自然現象 2.1 地震による損傷の防止 2.1.1 耐震設計 (5)設計における留意事項 b.主要施設への地下水の影響 ・ 地下水位低下設備は、ドレーン及び接紙場水井戸に地下水を集水し、揚水ポンプ ・ 地下水位低下設備は、ドレーン及び接紙場水井戸に地下水を集水し、揚水ポンプ ・ 場水ポンプに接続された配管を通を屋外排水路へ排水する。 ・ 揚水ポンプは、地下水の最大流入量を都容量を有する設計とし、設備の信頼性目100%容量のポンプを1系統当たり2個(置し、集水した地下水を排水できる設計 	
 配管上端部には仮設ホース等を接続す- 続口を設置し、屋外排水路の排水異常は 面での滞水が確認された場合に、揚水: り汲み上げた地下水を仮設ホース等を; 可能なものとする。	プいし 非句信計るこポ通 てこよや でむ びこ置才の重こ は泉… テノ則文所 手也く (個て 水上8とたよンじ 運保,か のを 屋対及の実大定 ,排水 を卜集地部基水の井容)地 可の個すめりプて 転持可に 滞行 外処び配施事め 支水す 構(水側)準経形戸量(下 能た)るの地に排 上で搬開 水い 排で屋備方故た 線路る 成北ピ集及地路状配量(下 能た)るの地に排 上で搬開 水い 排で屋備方故た 排か設 す側ッ水び震を又管 に水 なめ設。接表よ水 のきポ始 が, 水き外,針等上 水ら計 る,トピ出動確は出よ

分類	対応箇所	対応内索(2.2.4.1、2.2.1、2.4.1.1、2.4.1 (2.4.1.1、2.4.1)(2.4.1.1)(2.4.1.1.1)(2.4.1.1.1)(2.4.1.1.1)(2.4.1.1.1)(2.4.1.1.1)(2.4.1.1.1)(2.4.1.1)(2.4.1.1.1)(2.4.1.1.1)(2.4.1.1.1)(2.4.1.1)(2.4.1.1.1)(2.4.1.1.1)(2.4.1.1)(2.4.1.1)(2.4.1.1)(2.4.1.1)(2.4.1.1)(2.4.1.1)(2.4.1.
万鬼	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	対応内容(3.2及び3.3に示す対策の反映箇所) ▶屋外排水路の排水機能喪失時の対応(仮設ホース等による対応)
	耐震設計の基本方針	を以下に記載
	VI-2-1-1-別添1	
	地下水位低下設備の	1. 概要
	設計方針	地下水位低下設備の機能喪失及び屋外排水路の排水異常を想定
		し、地下水位低下設備の復旧措置及び屋外排水路の排水異常時の措
		置に係る基本方針を整理し、基本方針に対する資機材の構成及び地
		下水位低下設備の復旧措置及び屋外排水路の排水異常時の措置に係
		る運用管理等を定めることを記載
		4. 機能の設計方針及び設計仕様
		4.3 排水機能(揚水ポンプ及び配管)
		4.3.1 排水機能の設計方針
		・屋外排水路の排水異常時の対応を記載(以下)
		「配管上端部には仮設ホース等を接続するための接続口を設
		置し,屋外排水路の排水異常により地表面での滞水が確認さ
		れた場合に, 揚水ポンプにより汲み上げた地下水を仮設ホー
		ス等を通じて排水可能なものとする。」
		4.2.0 批水機能の売ま件様
		<u>4.3.2 排水機能の設計仕様</u> ・配管図の追加(分岐管構造として)
		・揚程の説明に, 4.3.1と同主旨の説明を記載
		6. 地下水位低下設備の復旧措置及び屋外排水路の排水異常時の措
添付		置に必要な資機材の検討
資料		<u>6.4</u> 屋外排水路の排水異常時の措置
(1/4)		<u> ・ 仮設ホース長を記載</u>
		<u>7. 運用管理・保守管理</u>
		・資機材整備・手順策定について記載(以下)
		「地下水位低下設備の復旧措置及び屋外排水路の排水異常時
		の措置に的確かつ柔軟に対処できるように,地下水位低下設 備の復旧措置及び屋外排水路の排水異常時の措置に係る資
		機材を配備し、手順書及び必要な体制を整備し、教育及び訓
		線を実施することを保安規定に定めた上で社内規定に定め
		る。また、地下水位低下設備の復旧措置及び屋外排水路の排
		水異常時の措置に係る資機材は、社内規定に点検頻度等を定
		め,適切に維持管理する。」
		 • <u>7.1 運用管理の方針</u> 「7. 運用管理・保守管理」と同主旨の説明を記載
		「7. 連用官理・保寸官理」と回土盲の説明を記載
		 7.9 保守管理の方針
		 • <u>7.2 保守管理の方針</u> 「7. 運用管理・保守管理」と同主旨の説明を記載
	1	1

表 6(2) 地下水位低下設備に係る各図書における屋外排水路の記載について(2/5)

分類	対応箇所	対応内容(3.2及び3.3に示す対策の反映箇所)
	VI-2-13-1 地下水位低下設備の耐 震計算の方針	▶基本設計方針におけるSs機能維持の確保方法について、別紙にて記載する。
		 基準地震動Ssに対し機能維持するにあたり、敷地側集水ピット(北側),北側排水路(防潮堤横断部),出口側集水ピット(水側))、敷地側集水ピット(南側)及び出口側集水ピット(南側)については、各部材が終局状態に至らないことを目標性能と定め,許容限界を短期許容応力度,曲げ耐力,圧縮耐力,せん断耐力とする。 また,南側排水路(防潮堤横断部)については、敷地側集水ピット(南側)と出口側集水ピット(南側)の間のMMR内にある連続した空洞であることから,排水断面を保持する上で必要な施設範囲として空洞周辺のMMR(排水路部)を設定し,この範囲がおおむね弾性範囲にとどまることを目標性能と定め,許容限界を引張強度及びせん断強度とする。
添付 資料 (2/4)	Ⅵ-2-1-4 耐震重要度分類及び重 大事故等対処施設の施 設区分の基本方針	 ▶耐震重要度分類表(耐震Cクラス)に,幹線排水路流末部を構成 する施設を記載する。 ・屋外排水路(敷地側集水ピット(北側) ・北側排水路(防潮堤横断部) ・出口側集水ピット(北側) ・敷地側集水ピット(市側) ・南側排水路(防潮堤横断部) ・出口側集水ピット(南側))
	VI-2-13-4 地下水位低下設備揚水 井戸の耐震性について の計算書	 ▶以下を記載する。 ・敷地側集水ピット(北側)の計算結果 ・北側排水路(防潮堤横断部)の計算結果*1 ・出口側集水ピット(北側)の計算結果 ・敷地側集水ピット(南側)の計算結果 ・南側排水路(防潮堤横断部)の計算結果 ・出口側集水ピット(南側)の計算結果*^{3,4}

表 6(3) 地下水位低下設備に係る各図書における屋外排水路の記載について(3/5)

注記*1:防潮堤への波及的影響として,「VI-2-11-2-19 北側排水路の耐震性についての計算書」に収録

*2:耐震Sクラスの屋外排水路逆流防止設備の支持構造物として、「VI-2-10-2-6-1-2屋外排水路逆流防止設備(防潮堤北側)の耐震性についての計算書」に収録

*3:耐震Sクラスの屋外排水路逆流防止設備の支持構造物として,「VI-2-10-2-6-1-1 屋外排水路逆流防止設備(防潮堤南側)の耐震性についての計算書」に収録

*4:出口側集水ピットが支持する逆流防止設備の開機能維持については、「補足-140-1 津波への配慮に関す る説明書の補足説明資料」の「6.5.1.8 屋外排水路逆流防止設備の開閉機能の維持について」に詳細を 示す。

表 6(「係る各図書における屋外排水路の記載について (4/5)
分類		
次類 分類 (3/4)	対応箇所 VI-2-1-3 地盤の支持性能に係る基本方針	 (中、お日図目によびのご庭パ野が小師のご配報について(170) 対応内容(3.2及び3.3に示す対策の反映箇所) シ以下の記載とする。 5. 耐震評価における地下水位設定方針 5.1 基本方針
資料		維持することにより, 排水経路を確保する(図5-1(1))。 ・また, 地震時においては, 敷地の形状又は仮設ホース等の取り付け により, 排水路流末部までの排水経路を確保する設計とする。 No. 1, No. 3, No. 4揚水井戸は, 揚水井戸から敷地側集水ピットまでの 排水経路が短く, 支線排水路に期待せず敷地の形状により地表面を 通じて敷地側集水ピットへ排水可能である(図5-1(2))。No. 2揚水
(3/4)		・地下水位低下設備の詳細は「VI-2-1-1-別添1 地下水位低下設備の 設計方針」を参照。地下水位低下設備及び地下水の排水経路を構成 する屋外排水路の耐震評価方針については「VI-2-13-1 地下水位
		日日期集水ビット (防用電化期) (防用電化用) (防用用) (T) (T) (T) (T) (T) (T) (T) (T) (T) (T
		注册等相關水路 (月, 例) (月, 月) (月, 例) (月, 月) (月, 例) (月, 月) (月)
		 ← 一般大一ス等の取り付けにより「新本籍務確保* ・ ・
L		

表 6(4) 地下水位低下設備に係る各図書における屋外排水路の記載について(4/5)

分類	対応箇	が位低下設備に係る存因音における産外排水路の記載について(3/3) 対応内容(3.2及び3.3に示す対策の反映箇所)
	所 VI-2-1-	
	vi 2 1 3 地支能る 方 針	step1 揚水井戸から汲み上げた地下水 が地表面に溢れる 数地側集水ビットに到達し上部の開 口から流入する 数地側集水ビットに到達し上部の開 口から流入する 数地側集水ビットに到達し上部の開 し、ビットへ向かう流れが形成される 数地側集水ビット 数地側集水ビット し、ビットへ向かう流れが形成される 数地側集水ビット し、ビットへ向かう流れが形成される 数地側集水ビット し、ビットへ向かう流れが形成される
添付 資料 (4/4)		a. 平面図 ビットへ向かう水の流れ
		地表面 (0.P.+14.8m盤) (0.P.+14.8m盤) 配管 敷地側集水ピット 地表面へ流れる 易水井戸
		b. 断面図
		図 5-1(2) 敷地の形状により地表面を通じて排水する考え方
補説資料	補600-25-2地位設耐に補明補60下ラ設及響討い足の一下低備震係足資足の位スの的のにてんが下の性る説料 - 4 ク施波影検つ	 ▶敷地側集水ピット(北側)及び敷地側集水ピット(南側)の計算結果に係る詳細情報を記載する。 ▶南側排水路(防潮堤横断部) (防潮堤への波及的影響としての評価)

表 6(5) 地下水位低下設備に係る各図書における屋外排水路の記載について(5/5)

6. まとめ

地下水位低下設備の機能を考慮した0.P.+14.8m盤の施設等における設計用揚圧力・設計用地下水位を保持し,技術基準第5条(耐震)に適合した状態を維持することに対する 屋外排水路の機能及び耐震性に係る設計方針について,以下のとおり整理した。

- ・地下水位低下設備で汲み上げた地下水を,屋外排水路を介して海へ排水可能な経路を 確保するため,地震時における影響検討を行った結果を踏まえ,以下の通り整理した。
 - a. No.1揚水井戸, No.3揚水井戸,及びNo.4揚水井戸から汲み上げた地下水について, 地震時には地表に溢れ敷地の形状により自然流下し敷地側集水ピットへ流れる。 なお,敷地の形状により排水経路が確保できない場合においても,揚水井戸内の 配管上端に設置した接続口に仮設ホース等を接続し流路を構成することにより, 地下水を確実に排水する。
 - b. No.2揚水井戸は、0.P.+14.8m盤に溢れ滞水するおそれがあるため、仮設ホース等 を用いた運用にて流路を構成することにより、敷地側集水ピットまでの排水を確 保する.
 - c. また,敷地側集水ピットから海への排水経路を構成する北側幹線排水路流末部 (敷地側集水ピット(北側),北側排水路(防潮堤横断部)及び出口側集水ピット(北側)),南側幹線排水路流末部(敷地側集水ピット(南側),南側排水路 (防潮堤横断部),出口側集水ピット(南側))については,閉塞等による設計 用地下水位への影響が生じないよう,基準地震動Ssに対し機能維持することに より,排水経路を確保する。
 - d. 各幹線排水路流末部を構成する施設については,基準地震動Ssに対する機能維持を確認することにより排水機能を確保することとし,耐震Cクラスに分類する。
- ・この方針により、地下水位低下設備で汲み上げた地下水が海へ確実に排水されることから、技術基準第5条(耐震)に適合した状態を保持できることを確認した。また、
 関連する各技術基準適合要求への影響がないことを確認した。
- ・この方針について,技術基準第5条(耐震)適合上必要な設計として,本文(基本設計方針 第5/50条)並びに関連する添付資料,補足説明資料へ反映させる。

また、排水をより確実に行うための自主的な対策について、別紙1に整理した。

屋外排水路に係るその他の自主的な対策

1. 支線排水路の設計における揺すり込み沈下影響の考慮

敷地側集水ピットへ支線排水路を接続する No.1 揚水井戸, No.3 揚水井戸, No.4 揚水 井戸については, 揚水井戸より汲み上げた地下水が敷地側集水ピットへ自然流下される よう,敷地側集水ピット側壁に設置する通水孔を通じてピット内に排水する設計とする。 また, 南側幹線排水路へ支線排水路を接続する No.2 揚水井戸においても, 揚水井戸よ り汲み上げた地下水が南側幹線排水路へ自然流下されるよう, 南側幹線排水路側壁に設 置する通水孔を通じて南側幹線排水路内に排水する設計とする (図 10)。

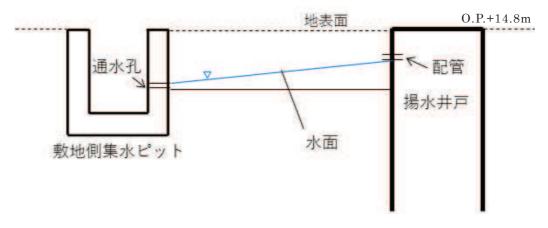


図 10(1) No. 1, 3, 4 揚水井戸~敷地側集水ピットの排水経路概念図

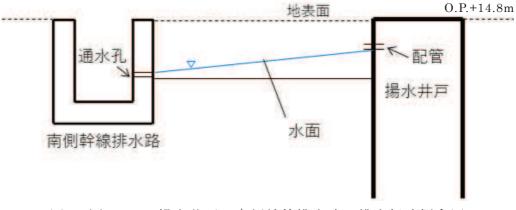


図 10(2) No.2 揚水井戸~南側幹線排水路の排水経路概念図

水面の高さは、揚水井戸の配管高さと集水ピットの通水孔の設置レベルにより規定されるが、揺すり込み沈下が発生したとしても地下水が支線排水路(側溝)から溢れないよう、側溝は十分高さのあるものを据付けておき、地震時における漏水防止を図る(図11)。

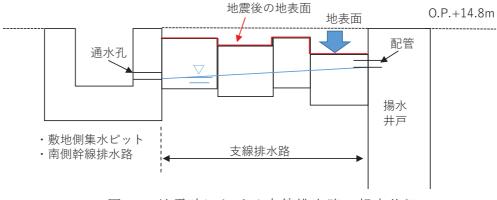


図 11 地震時における支線排水路の想定状況

以下,表7に各揚水井戸からの排水経路における想定沈下量を示す。なお、この沈下 量は図6の支線排水路線形に対応した評価であり、変更となる可能性がある。

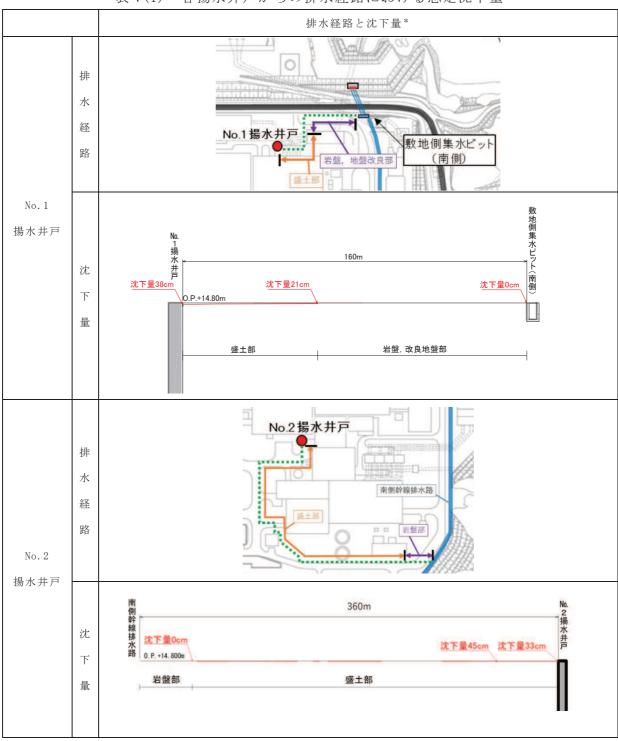


表7(1) 各揚水井戸からの排水経路における想定沈下量

注記*:盛土部の沈下率は参考3の通り1.4%と設定しており,盛土部の層厚を乗じて設 定した。沈下率設定の詳細は「補足200-14 可搬型重大事故等対処設備の保管場 所及びアクセスルートについて」を参照。

表 7(2) 各揚水井戸からの排水経路における想定沈下量

注記*:盛土部の沈下率は参考3の通り1.4%と設定しており,盛土部の層厚を乗じて設 定した。沈下率設定の詳細は「補足200-14 可搬型重大事故等対処設備の保管場 所及びアクセスルートについて」を参照。

2. 支線排水路の施工上の配慮

No.1 揚水井戸, No.3 揚水井戸, No.4 揚水井戸からの排水は,支線排水路の機能低下時は地表面を通じて敷地側集水ピットへ流れるが,この区間の支線排水路は,図13のとおり地表面より低い位置へ設置し,地表面に支線排水路へ向かう勾配を設ける。

この施工上の配慮により,支線排水路付近の地盤が低くなり,支線排水路が機能低下 した場合においても流路として選択されることにより,より確実に揚水井戸から敷地側 集水ピットへの排水を行うことが可能となる。

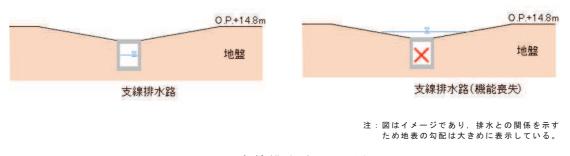


図 13 支線排水路の設置例

3. 点検・手入れ

アクセスルートについては地震後に点検を行う。この点検において,排水異常による アクセスルート範囲への地下水の流入等が確認された場合は,速やかに土のう等を用い た復旧対応を行う。

更に,排水異常による地表面での滞水が確認され,屋外アクセスルートに影響が生じ るおそれがある場合は,排水異常が発生している揚水井戸の揚水ポンプを停止し,揚水 井戸内の配管上端に設置した接続口(図14)に仮設ホース等を接続することで排水経路 を構成し,揚水ポンプを復旧する。

このことにより,アクセスルートへの地下水の流入を早期に発見し対応することがで きる。

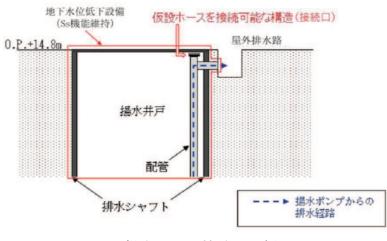


図 14 揚水井戸 接続口の概要図

既設の屋外排水路の概要

1. 配置と排水能力

屋外排水路は、図1-1に示すとおり第1号機~第3号機の主要建屋の北側と南側に設置 される幹線排水路及び幹線排水路に接続する支線排水路にて構成される。揚水井戸から 汲み上げた地下水は、降雨の際の表面水と共に支線排水路を通って図1-2に示す北側幹 線排水路・南側幹線排水路に流れ、排水勾配により海へ排水される。

北側・南側幹線排水路上には、いずれも防潮堤横断箇所より上流側に敷地側集水ピット,下流側に出口側集水ピットを設置しており,海側の出口にはSクラスの逆流防止設備を設置している。

幹線排水路は,表1-1に示すとおり,設計基準降水時(91.0mm/h)における雨水流入量 を十分排水可能な排水能力を有している。

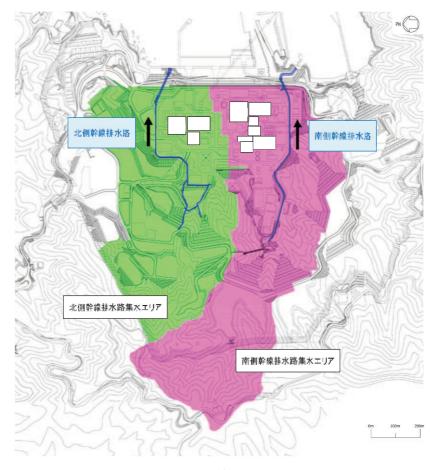


図1-1 既設の各幹線排水路の集水エリア

(参考)2-27

北側幹排水路(写真1)

南側幹線排水路(写真2)

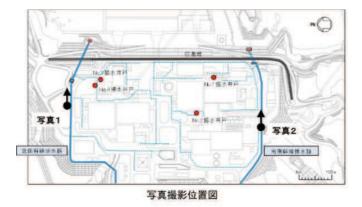
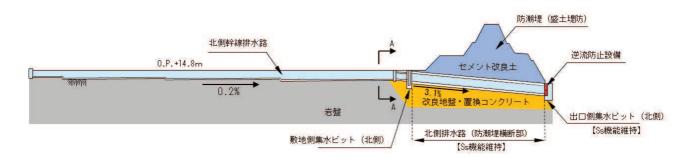


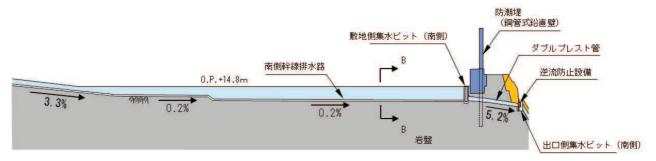
図 1-2 既設の各幹線排水路の設置状況

排水路名	設計基準降水時 (91.0mm/h) 雨水流入量(m ³ /s)	排水可能流量 (m ³ /s)
北側幹線排水路	9.4	51.16
南側幹線排水路	9.5	16.23

表1-1 幹線排水路の排水能力(本編 表2再掲)


「女川原子力発電所 2 号炉設置変更許可申請書 02-NP-0272(改 114)別添資料 1 」より引用

2. 構造及び支持の状況


北側・南側幹線排水路の断面図を図1-3に示す。

北側幹線排水路は岩盤,改良地盤及び置換コンクリート,南側幹線排水路は岩盤によ り支持されている。

また,支線排水路は0.P.+14.8m盤付近に設置され,その多くの区間が盛土上に構築される。

北側幹線排水路の縦断図

南側幹線排水路の縦断図

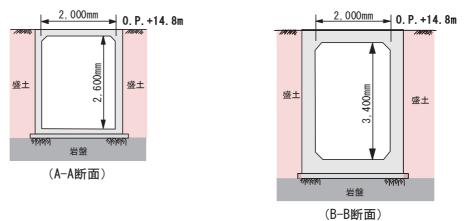


図1-3 北側・南側幹線排水路の断面図(本編図5再掲)

Γ	Г	補	足	1	40	-1		津	波	~	_ກ	配	慮	に	関	す	る	説	明	
L	書	Ø	補	足	説	明	資	料	J,	Γ	補	足	6	00	-1		地	盤	Ø	
	支	持	性	能	に	っ	い	τ	٦	か	6	抜	粋	·	-	部	修	ΤĒ		

参考 2

No.1 揚水井戸から敷地側集水ピットへの排水経路

No.1 揚水井戸から敷地側集水ピットへの排水経路を例に,排水経路の選定の考え方を示す。

排水経路は周囲の地上構造物を考慮し設定しており,図 2-1 に示すとおり,No.1 揚水井 戸から敷地側集水ピット(南側)までには,防潮堤,防潮壁(第2号機放水立坑)が存在 し,南東側には地盤改良,岩盤が地表面付近まで存在していることから,排水経路として は,設置性,距離の短さ,メンテナンス性,及び揺すり込み沈下の影響を極力回避する観 点から,防潮堤と防潮壁(第2号機放水立坑)の間にある構内道路脇を設定した(経路1)。

防潮壁(第2号機放水立坑)西側には,第2号機タービン建屋との間に南側幹線排水路 に通じる空間が存在し,そこを通すことも考えられるが(経路2),補機放水路等の構造物 もあり狭隘で設置性やメンテナンス性に劣るため,除外している。

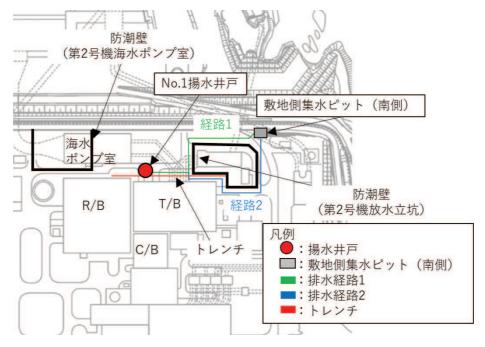


図2-1 No.1揚水井戸から敷地側集水ピットへの排水経路

なお,No.3,4 揚水井戸から敷地側集水ピット(北側)までの区間は,特段障害物が存在 しないことから直線的に排水経路を設定している。 地震時における屋外アクセスルートの通行性に対する支線排水路の影響

1. はじめに

地下水位低下設備から汲み上げた地下水は,本編 3.2の屋外排水路の設計方針により, 0.P.+14.8m 盤から海へ確実に排水されることから,地震時においても屋外アクセスルートの通行性への影響はない。

以下に,支線排水路が機能喪失した場合における屋外アクセスルートの通行性への影響を説明する。

2. 地震時における屋外アクセスルートの通行性

可搬型重大事故等対処設備の屋外アクセスルートについては,添付書類「VI-1-1-6-別 添 1 可搬型重大事故等対処設備の保管場所及びアクセスルートについて」において, 地震時における盛土及び旧表土の不等沈下による段差を評価し,補強材敷設による事前 の段差緩和対策,若しくは段差発生後の砕石を用いた重機による段差解消作業を実施す ることにより,車両の通行性に影響する急激な段差は発生せず,通行性を確保する設計 としている。

また,想定以上の段差が発生した場合に備えて,段差解消作業用の土のう等を準備していることから(図 3-1 及び「補足 200-14 可搬型重大事故等対処設備の保管場所及び アクセスルートについて」),地震により局所的に地表面が沈下し,想定箇所以外におい て通行に支障のある段差が発生した場合は,土のう等を用いた段差解消作業により通行 性を維持する。

3. 支線排水路が機能喪失した場合の屋外アクセスルートの通行性

地震により支線排水路が機能喪失した場合は,盛土及び旧表土の不等沈下により発生 する段差部に滞水する可能性があるが,補強材敷設による事前の段差緩和対策,若しく は段差発生後の砕石を用いた重機による段差解消作業を実施することとしていることか ら,屋外アクセスルートの通行性に影響を及ぼさない。

なお、図 3-2 のとおり、建屋近傍では地震時にくさび崩壊に伴う沈下が発生すること を想定し、建屋近傍の沈下量は屋外アクセスルートの沈下量より大きいと評価している ことから、支線排水路の機能喪失により汲み上げた地下水が支線排水路から溢れた場合 においても、0.P.+14.8m 盤に溢れた地下水は屋外アクセスルート脇の建屋近傍に流下す るため、屋外アクセスルートの通行性に影響を及ぼさないと考えられる。 想定以上の段差が発生した場合の対応について

アクセスルート上で地震により許容段差量15cm*以上の段差が発生する可能性のある箇所については、あらかじめ対策工を施すか、又は段差発生後にブルドーザで砕石を敷き均す段差解消作業を実施することで対応することから、大型車両の通行に支障となる段差は発生しない。

万一,許容段差量を超えて通行に支障が生じた場合の対応として,作業員1名があ らかじめブルドーザに積載している角材及び土のうを用いて段差を解消することに より,大型車両の通行性を確保できることを実証試験にて確認した。

なお、ブルドーザにより実施することを想定しているがれき撤去作業及び段差解消 作業は2名1組での作業を計画しており、上記の角材及び土のうによる段差解消作業 もこの2名1組で対応可能であることから、追加人員は不要である。

※ 依藤ら: 地震時の段差被害に対する補修と交通開放の管理・運用方法について (平成19年近畿地方整備局研究発表会)

段差復旧作業状況

(参考)実証試験において段差1箇所の復旧に要した時間:約20分 第1図 段差復旧実証試験の状況

第2図 角材及び土のうの積載箇所(ブルドーザ)

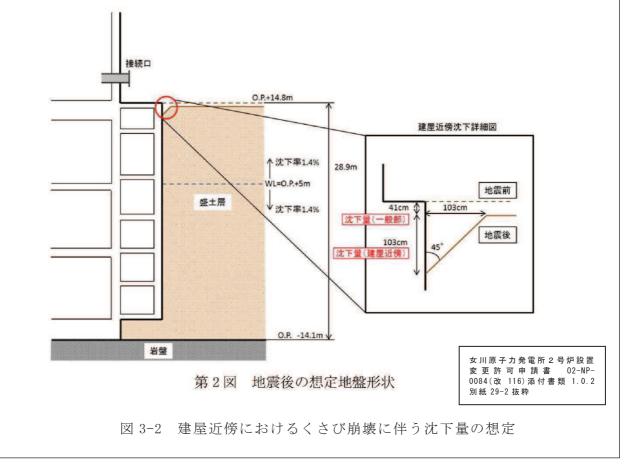
女川原子力発電所 2 号炉設置 変更許可申請書 02-NP-0084(改 116)添付書類 1.0.2 補足資料(5)抜粋

図 3-1 想定以上の段差が発生した場合の対応について

(1) 沈下量の想定

2011年東北地方太平洋沖地震の実績では,明らかなくさび崩壊に伴う建物近傍の大きな沈下は確認されていないが,本評価においては 2007 年新潟県中越沖地 震における東京電力柏崎刈羽原子力発電所の結果を参照して建屋近傍の沈下量 は一般部の 3.5 倍と想定して評価する。

a. 一般部の沈下量


原子炉建屋近傍における沈下評価対象層厚は28.9mであり,不飽和盛土及び 飽和盛土の沈下率1.4%を考慮し,41cmを想定する。

b. 建屋近傍の沈下量

建屋近傍の沈下について,一般部の想定 41cm の 3.5 倍である 144cm を想定 する。

c. 地震後の想定地盤形状

a. 及び b. の想定を踏まえ、地震後の想定形状を第2図に示す。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-補-E-19-0600-25-2_改 16

補足-600-25-2 地下水位低下設備の耐震性に係る補足説明資料

目 次

第1章 地下水位低下設備ドレーンの耐震性に係る補足説明

第2章 地下水位低下設備接続桝の耐震性に係る補足説明

- 第3章 地下水位低下設備揚水井戸の耐震性に係る補足説明
- 第4章 地下水位低下設備揚水ポンプの加振試験に関する補足説明

第1章 地下水位低下設備ドレーンの耐震性に係る補足説明

1.	概	要
2.	基	本方針2
2.	1	位置2
2.	2	構造概要
2.	3	評価方針
2.	4	適用基準9
3.	耐	震評価
3.	1	評価対象断面10
3.	2	荷重及び荷重の組合せ15
3.	3	解析方法18
3.	4	許容限界
3.	5	応力解析による評価方法 58
4.	耐	震評価結果
4.	1	構造部材の健全性に対する評価結果61
4.	2	基礎地盤の支持性能に対する評価結果76

参考資料1 せん断力がヒューム管の発生断面力に及ぼす影響について

参資資料2 ヒューム管のひび割れ保証モーメントの妥当性について(強度試験結果)

目次

1. 概要

本資料は,添付書類「VI-2-1-9 機能維持の基本方針」で設定している構造強度及び 機能維持の設計方針に基づき,地下水位低下設備のうちドレーンについて,地震時の構 造強度を有していることを確認するものである。

ドレーンに要求される機能の維持を確認するに当たっては,地震応答解析に基づく構 造部材の健全性評価及び基礎地盤の支持性能評価を行う。

2. 基本方針

設計用地下水位の評価においては,耐震性を含む信頼性を満足するドレーン(ヒュー ム管・鋼管)を,管路あるいは透水層として取り扱っている。

本図書では、管路あるいは透水層として設定するドレーン(ヒューム管・鋼管)を対象に、地震時における構造強度及び機能維持の確認を行う。

2.1 位置

地下水位低下設備のうちドレーンの設置位置を図2-1に示す。

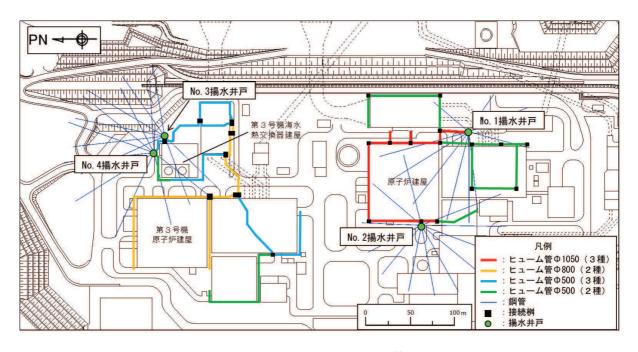
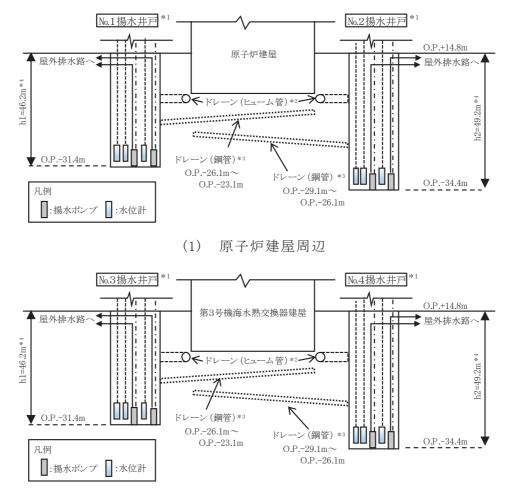
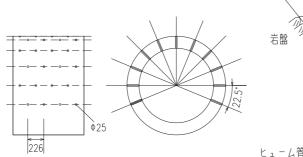



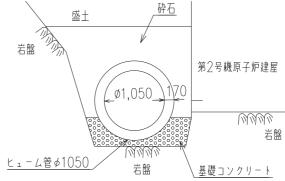
図 2-1 ドレーンの設置位置

2.2 構造概要

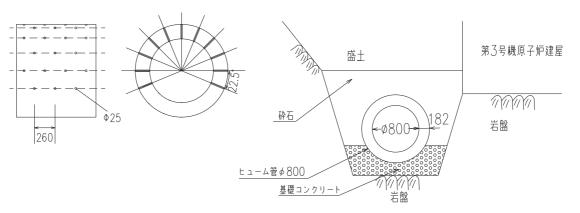
地下水位低下設備の構成概要を図2-2に示す。以下,ドレーンを構成するヒューム 管と鋼管の構造概要を説明する。

(2) 第3号機海水熱交換器建屋周辺

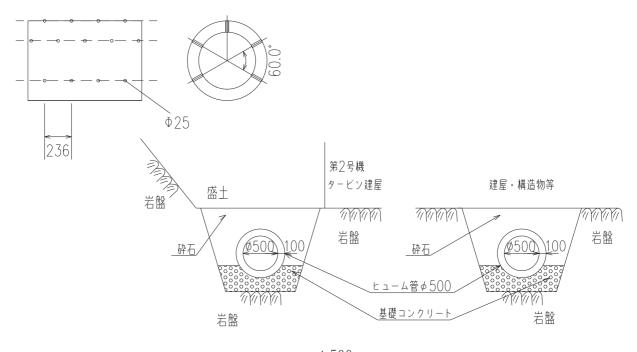

注記*1: 揚水井戸及び揚水井戸に内包する揚水ポンプ,水位計は新設する。 *2: ヒューム管(接続桝を含む)と揚水井戸との接続部分は新設する。 *3: 鋼管は揚水井戸を起点として放射状に新設する。 *4: h1 及び h2 は, GL より集水ピット底面までの高さを表す。


図 2-2 地下水位低下設備の構成概要

(1) ヒューム管


ヒューム管は建屋等構造物外縁部又は建屋基礎直下の掘込まれた岩盤内に設置 し、分岐・交差部等の一部に設けた接続桝を介して接続している。

ヒューム管はφ500mm,800mm及び1050mmがあり,外圧への耐性(外圧強さ) により2種類(2種あるいは3種(「技術資料ヒューム管設計施工要覧(日本ヒ ューム管協会,平成21年7月)」))を使用している。 ヒューム管の構造概要を図 2-3 に示す。



 ϕ 1050

 $\phi 800$

(2) 鋼管

図 2-1 に示すとおり, 鋼管は揚水井戸の集水ピットを起点として岩盤内に放射状に設置する。鋼管は φ 145.2 mmであり, No.1 揚水井戸及びNo.3 揚水井戸に接続される鋼管は 0.P.-23.1m~0.P.-26.1m, No.2 揚水井戸及びNo.4 揚水井戸に接続される鋼管は 0.P.-26.1m~0.P.-29.1m の範囲に設置する。

鋼管の構造概要を図 2-4 に示す。

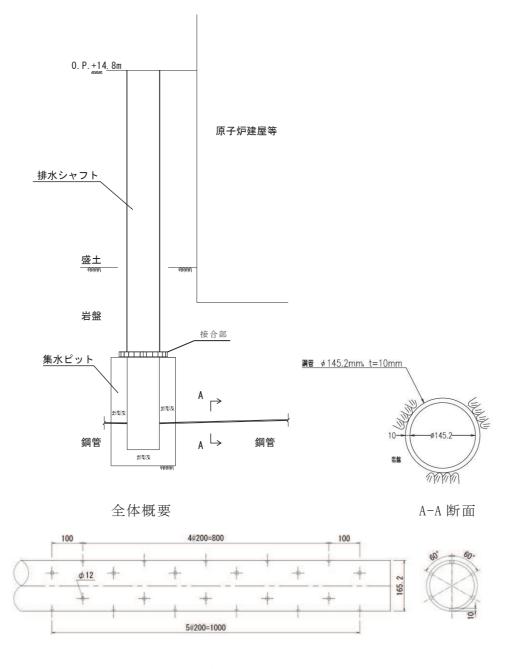


図 2-4 鋼管の構造概要(単位:mm)

2.3 評価方針

地下水位低下設備の機能は、施設の設計の前提が確保されるよう、地下水位を一定 の範囲に保持することであり、ドレーンは繰り返しの地震に対しても地下水の集水機 能を維持する必要がある。ドレーンを含む地下水位低下設備はCクラスに分類される が、その機能を維持するため、基準地震動Ssに対して耐震性を確保する設計として いる。なお、ドレーンは集水機能を有する有孔管であることから、水密性の観点から の要求はない。

ドレーンの耐震評価は地震応答解析に基づき実施し,表2-1に示すとおり,構造部 材の健全性評価及び基礎地盤の支持性能評価を行う。

構造部材の健全性評価については,添付書類「VI-2-1-9 機能維持の基本方針」に 基づき,発生する応力が許容限界以下であることを確認する。

基礎地盤の支持性能評価においては,添付書類「VI-2-1-9 機能維持の基本方針」 に基づき,発生する応力(接地圧)が許容限界以下であることを確認する。

構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで,構造強度を 有することを確認する。

評価方針	評価項目	部位	評価方法	許容限界
	構造部材の 健全性	ヒューム管	発生する応力が許容限 界以下であることを確	ひび割れ保証 モーメント
構造強度を		鋼管	認	短期許容応力度
有すること	基礎地盤の		発生する応力(接地圧)	
		基礎地盤	が許容限界以下である	極限支持力*
	支持性能		ことを確認	

表 2-1 ドレーンの評価項目

注記*:妥当な安全余裕を考慮する。

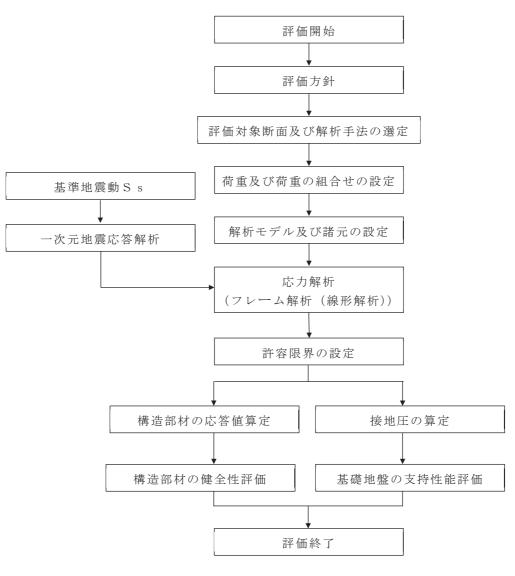


図 2-5 ヒューム管の耐震評価フロー

(2) 鋼管

鋼管は,図2-4に示すとおり岩盤内に埋め込まれており,地震時には地盤の挙 動に追従すると考えられることから,「既発電用原子炉設置変更許可申請 添付 書類六(原規規発第2002261号 令和2年2月26日許可)」に示す,原子炉建屋 の基礎地盤安定性評価に用いた二次元動的有限要素法解析より抽出した地盤応力 を用いて耐震評価を行う。

鋼管の評価フローを図 2-6 に示す。

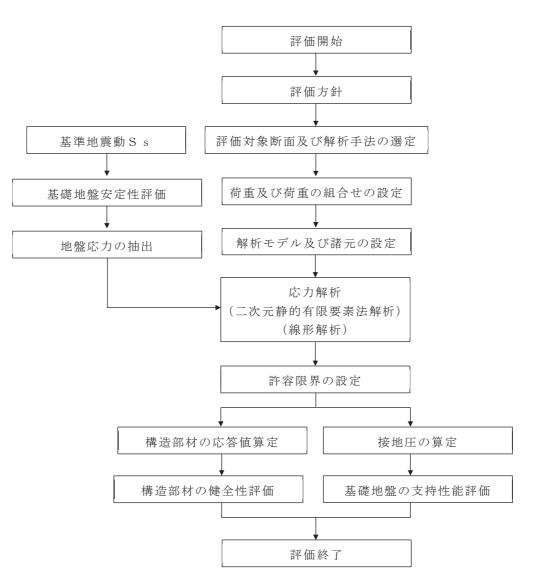


図 2-6 鋼管の耐震評価フロー

2.4 適用基準

ドレーンの評価において適用する規格・基準等を以下に示す。また,各項目で適用 する規格・基準類を表2-2に示す。

- ・ 日本下水道協会 2014 年 下水道施設の耐震対策指針と解説-2014 年版-(以下「下水道耐震指針」という。)
- ・ 土木学会 2002 年 コンクリート標準示方書[構造性能照査編]
- · 日本道路協会 平成 14 年 3 月 道路橋示方書・同解説 Ⅰ 共通編・Ⅱ 鋼橋編
- ・ 日本道路協会 平成 14 年 3 月 道路橋示方書・同解説 Ⅰ 共通編・Ⅳ下部構造
 編
- ・ 全国ヒューム管協会 平成 21 年 7 月 技術資料ヒューム管設計施工要覧

項目	適用する規格,基準類	備考
使用材料及び材料定数	・土木学会 2002 年 コンクリート標準	_
使用材料及び材料足数	示方書[構造性能照查編]	
	・土木学会 2002 年 コンクリート標準	·永久荷重+偶発荷重
共手工が共手の如人止	示方書[構造性能照查編]	+従たる変動荷重の
荷重及び荷重の組合せ		適切な組み合わせを
		検討
	·下水道耐震指針	・発生応力が許容限界
	 ・日本道路協会 平成 14 年 3 月 道路 	以下であること確認
	橋示方書(I 共通編 · IV 下部構造	
	編)・同解説	
許容限界	 ・日本道路協会 平成 14 年 3 月 道路 	
	橋示方書(I共通編・Ⅱ鋼橋編)・同	
	解説	
	・全国ヒューム管協会 平成 21 年 7 月	
	技術資料ヒューム管設計施工要覧	

表 2-2 各項目で適用する規格・基準類

3. 耐震評価

- 3.1 評価対象断面
 - (1) ヒューム管

ヒューム管は掘込まれた岩盤内に設置され,地震時には鉛直土圧が主たる荷重 として作用すると考えられる。また,場所により管径及び外圧強さが異なること を踏まえ,管径及び外圧強さごとに土被り厚が最大となる箇所を評価対象断面と して抽出する。

φ 500(2種)については、原子炉建屋周辺と第3号機海水熱交換器建屋周辺そ れぞれに設置されており、地震応答が異なると考えられることから、両エリアよ り抽出する。

建屋基礎直下の岩盤を掘込んで設置したヒューム管が存在するが,各建屋等外 縁部に設置したヒューム管と比べ,作用する鉛直荷重が十分に小さいため,評価 対象断面として選定しない。

以上を踏まえ,評価対象断面①~⑤を選定した。ヒューム管の評価対象断面候 補位置を図 3-1,各候補断面位置の土被り厚を表 3-1,評価対象断面位置の地質 状況を図 3-2 に示す。

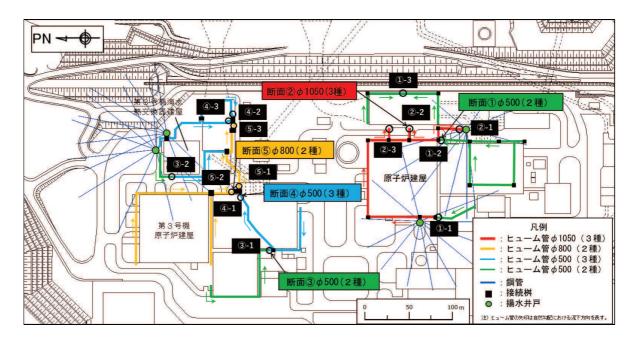
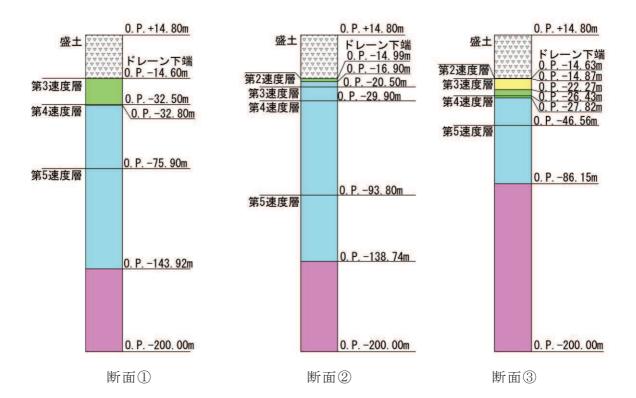
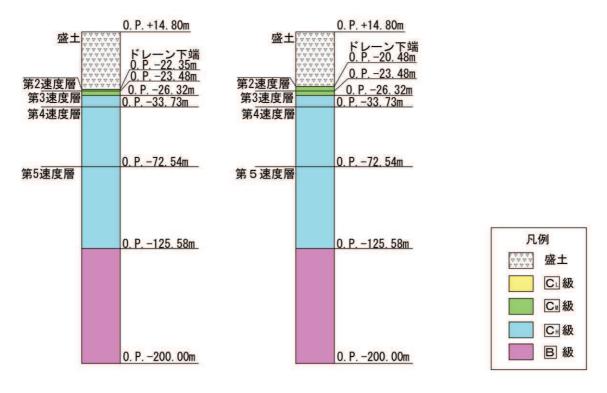




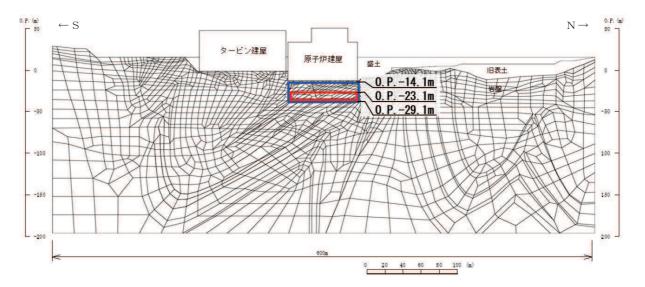
図 3-1 ヒューム管評価対象断面候補位置

エリア	管種	断面	土被り厚 (m)	備考
		①-1	28.46	
	φ 500 (2種)	①-2	28.70	評価対象断面①
第 2	、 /	1)-3	28.64	
		2-1	28.38	
	φ 1050	2-2	28.41	評価対象断面②
	(3種)	2-3	28.41	断面②-2 と近接しており地質条件も同等 であるため,断面②-2 で代表させる。
	φ 500	3-1	28.73	評価対象断面③
	(2種)	3-2	28.45	
		(4)-1	36.45	評価対象断面④
第 3	φ 500 (3種)	④ -2	30.70	
号機		(4)-3	29.10	
		5-1	33.42	
	φ 800 (2種)	5-2	34.12	評価対象断面⑤
	,	5-3	29.36	

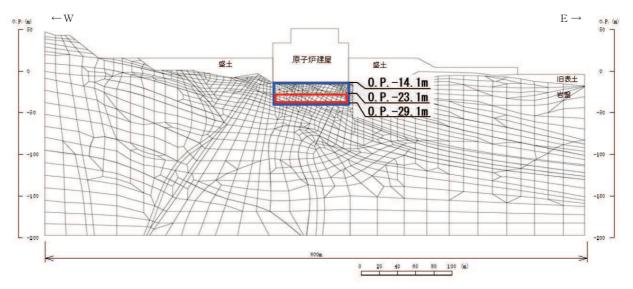
表 3-1 ヒューム管流末部の土被り厚

断面④

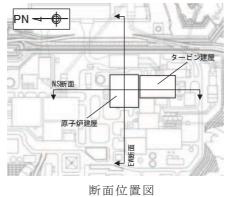
断面⑤


図 3-2 ヒューム管評価対象断面位置の地質状況

(2) 鋼管


鋼管は岩盤中に設置され、その一部は原子炉建屋等の直下に位置するため、こ れらの構造物の荷重が岩盤を介して作用するものと考えられる。この時、構造物 の重量が大きい程、鋼管に作用する荷重も大きくなるため、鋼管の設置範囲にお いて重量の大きい原子炉建屋の下に設置する鋼管を評価対象とする。

鋼管に作用する荷重は、地震時の原子炉建屋及び地盤の応答を評価できる基礎 地盤安定解析(NS, EW 断面)より抽出する。抽出範囲は、鋼管の設置範囲(0.P.-23.1m~0.P.-29.1m)を包絡するよう、鋼管設置範囲の下端(0.P.-29.1m)から上 端は保守的に原子炉建屋の荷重が直接作用する原子炉建屋底面レベル(0.P.-14.1m)までとする。抽出範囲を図 3-3 に示す。


抽出した応力状態については,鋼管を含めてモデル化した二次元有限要素法モ デルに外力として載荷させることで再現し,これにより鋼管の発生応力を確認す る。鋼管を含めた二次元有限要素法モデルは「3.3 解析方法」にて詳述する。

(1) NS 断面

(2) EW 断面

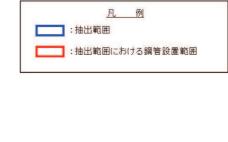


図 3-3 主応力の抽出範囲

3.2 荷重及び荷重の組合せ

耐震評価に用いる荷重及び荷重の組合せは,添付書類「VI-2-1-9 機能維持の基本 方針」に基づき設定する。

3.2.1 耐震評価上考慮する状態

耐震評価において、地震以外に考慮する状態を以下に示す。

- (1) 運転時の状態
 発電用原子炉が運転状態にあり、通常の条件下におかれている状態。ただし、
 運転時の異常な過渡変化時の影響を受けないことから考慮しない。
- (2) 設計基準事故時の状態

設計基準事故時の影響を受けないことから考慮しない。

- (3) 設計用自然条件 ヒューム管は積雪の影響を考慮し、埋設構造物であるため風の影響は考慮しない。鋼管は岩盤内構造物であるため、積雪、並びに風の影響は考慮しない。
- (4) 重大事故等時の状態重大事故等時の状態の影響を受けないことから考慮しない。
- 3.2.2 荷重
 - (1) ヒューム管
 作用する荷重は、ヒューム管が建屋等構造物外縁部の掘込まれた岩盤内に設置
 されていることを踏まえ設定する。

耐震評価において考慮する荷重を以下に示す。

- a. 固定荷重(G) 固定荷重として,躯体自重と上載盛土による鉛直土圧,水平土圧を考慮する。 常時の水平土圧は,鉛直土圧に静止土圧係数0.50を乗じて算定する。
- b. 積載荷重(P)

積載荷重として積雪荷重を含めて地表面に 4.9kN/m²を考慮する。

c. 積雪荷重(Ps)

積雪荷重については,発電所の最寄りの気象官署である石巻特別地域気象観 測所で観測された月最深積雪の最大値である 43cm に平均的な積雪荷重を与え るための係数 0.35 を考慮した値を設定する。また,建築基準法施行令第 86 条 第 2 項により,積雪量 1cm ごとに 20N/m²の積雪荷重が作用することを考慮す る。

d. 地震荷重(Ss)

地震荷重として,基準地震動Ssによる荷重を考慮する。

一次元応答解析により設計用震度を算出し,土圧増分のうち,鉛直増分土圧は,

設計用鉛直震度と常時鉛直土圧を乗じ、水平増分土圧は鉛直方向の増分土圧に側 圧係数 $k_0 = v_d / (1 - v_d)$ を乗じて算定する。ヒューム管周辺は砕石で埋め戻さ れているが、 v_d には盛土の動ポアソン比 0.48を用いる。

躯体慣性力については、設計用震度を躯体自重に乗じて求める。

(2) 鋼管

鋼管の耐震評価において考慮する荷重を以下に示す。

- a. 固定荷重(G) 固定荷重として, 躯体自重を考慮する。
- b. 積載荷重(P)
 積載荷重として建屋荷重を考慮する。
- c. 地震荷重(Ss)
 基準地震動Ssによる荷重を考慮する。
- 3.2.3 荷重の組合せ

ヒューム管及び鋼管の耐震評価における荷重の組合せを表 3-2 に示す。

表 3-2(1) 荷重の組合せ(ヒューム管)

外力の状態	荷重の組合せ
地震時 (Ss)	G + P + S s

G :固定荷重

P : 積載荷重(積雪荷重Psを含めて 4.9kN/m²を地表面に考慮)

Ss:地震荷重

表 3-2(2) 荷重の組合せ(鋼管)

外力の状態	荷重の組合せ
地震時 (S s)	G + P + S s

G :固定荷重

P : 積載荷重

Ss:地震荷重

		<u> </u>	2(0)	前里沙拉古巴	
利	重別	荷重		算定方法	
		躯体自重	0	 ・設計図書に基づいて、対象構造物の体積に 	
		%14 日 里	0	材料の密度を乗じて設定する。	
	固定	機器・配管自重		・対象構造物に作用する機器・配管はないた	
	荷重	微 荷 ・ 配 官 日 里		め考慮しない。	
	仰里	土被り荷重	0	・上載盛土による土圧を考慮する。	
جر ا		積載荷重	0	・積雪荷重を含めて 4.9(kN/m ²)を考慮す	
永久荷重				る。(ヒューム管のみ)	
们里	静止土圧		\bigcirc	・水平・鉛直土圧を考慮する。	
		外水圧		 内水圧とバランスするため考慮しない。 	
		内水圧		・外水圧とバランスするため考慮しない。	
		積雪荷重	0	 ・積載荷重に含めて考慮する。(ヒューム管 	
		慎 当 何 里	0	のみ)	
		風荷重		・地中構造物であることから考慮しない。	
·		水平地震動	0	・基準地震動Ssによる水平及び鉛直同時加	
偶多	爸荷重			振を考慮する。	
		鉛直地震動	0	・躯体の慣性力を考慮する。	

表 3-2(3) 荷重の組合せ

3.3 解析方法

ドレーンの耐震評価は,弱軸である横断方向断面(管軸直交方向)について照査を 実施し,照査用応答値が「3.4 許容限界」で設定した許容限界以下であることを確 認する。

3.3.1 解析方法

(1) ヒューム管

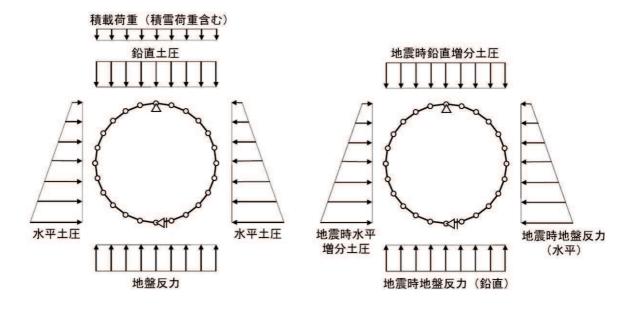
図 2-3 のとおり, ヒューム管は掘込んだ岩盤内に設置され, 周囲は砕石により 密実に埋め戻されている。そのため, 地震時には岩盤・砕石・ヒューム管が一体 的な挙動を示すことが想定され, ヒューム管に作用する荷重としては上載盛土に よる鉛直土圧が支配的になるものと考えられる。

よって、ヒューム管の要求機能(集水機能)が喪失しうる事象(損傷モード) としては、鉛直土圧が増大することによりヒューム管に生じる曲げモーメントが 許容限界を超過し、ひび割れ・損傷が発生することが想定される。以上を踏まえ、 解析方法を設定する。

なお、ヒューム管の上部には埋め戻し用の砕石を介して盛土が存在しており、 岩盤・砕石・ヒューム管との地震時挙動の相違から、せん断力が生じる可能性が 否定できない。そのため、せん断力が照査結果に与える影響について検討を実施 した。検討結果については「参考資料1 せん断力がヒューム管の発生断面力に 及ぼす影響について」に示す。

ヒューム管の耐震評価においては、「3.2.3 荷重の組合せ」のとおり常時及び 地震時荷重の組合せを考慮する。

常時荷重については, 躯体自重のほか, 常時の土圧として上載盛土による鉛直 土圧及び鉛直土圧に静止土圧係数 0.50 を乗じた水平土圧を考慮する。


地震荷重に用いる設計用震度は,一次元地震応答解析によりヒューム管下端位 置で得られる最大鉛直加速度及び同時刻の水平応答加速度を重力加速度で除して 算定する。

地震荷重のうち,地震時鉛直増分土圧は常時鉛直土圧に設計震度用を乗じ,水 平増分土圧は鉛直増分土圧に側圧係数 k₀を乗じて算定する。

慣性力については、水平・鉛直方向の設計用震度と躯体自重とを掛け合わせて 算定する。

ヒューム管の耐震評価は、ヒューム管断面を線形はり要素にモデル化した二次 元フレームモデルに常時荷重及び地震時荷重を載荷し行う。フレームモデルは「技 術資料ヒューム管設計施工要覧(全国ヒューム管協会、平成21年7月)」を参考 に円形部材を24分割して設定する。位置(深度)により変動しない自重等は各要 素に等分布荷重として、深度に応じて変動する常時水平土圧や地震時水平増分土 圧については、節点ごとに深度に応じた荷重を算出し、各要素に台形分布荷重として作用させる。

ヒューム管の解析モデル概念図を図 3-4 に示す。

(常時) *

(地震時) *

注記*:上記荷重の他,常時荷重として躯体自重,地震時荷重として躯体慣性力を考慮 する。

図 3-4 ヒューム管の解析モデル概念図

(2) 鋼管

図 2-4 のとおり,鋼管は岩盤内に設置される。そのため,地震時には,前述の とおり原子炉建屋から作用する荷重が岩盤を介して鋼管に作用する時が最も厳し い状況にあると考えられる。

よって,鋼管における要求機能(集水機能)を喪失しうる事象(損傷モード) としては,周囲の岩盤の圧縮力が鋼管に作用することにより,発生断面力が許容 限界(短期許容応力度)を超過し,ひび割れ・圧壊が発生することが想定される。

以上を踏まえ、解析方法を以下のとおり設定する。

鋼管の耐震評価は,基礎地盤安定解析の抽出範囲において地盤の最大圧縮応力 が最大となる要素の鉛直・水平応力及びせん断応力を抽出し,二次元静的有限要 素解析モデルに作用させることで行う。

鋼管の解析モデルを図 3-5 に示す。モデル化範囲は、地盤応力を抽出する基礎 地盤安定解析の要素の大きさ相当の 3m×3m とし、鋼管は線形はり要素、地盤は 平面ひずみ要素でモデル化する。

地盤要素の剛性が小さい程,鋼管の荷重負担が大きくなるため,保守的に鋼管の設置範囲で剛性が小さい CM級岩盤(第2速度層)の物性値を適用する。

なお,鋼管には集水孔が設けられるが,ここでは保守的に集水孔が無い場合の 鋼管の剛性を考慮し,断面照査において「3.5.1 構造部材の健全性に対する評価 方法」に示すとおりに,集水孔による断面欠損を考慮する。

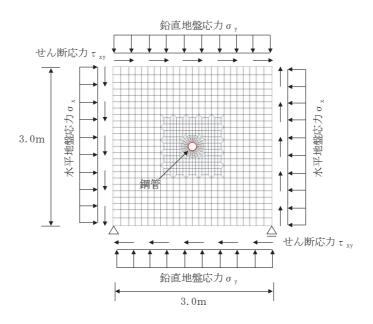


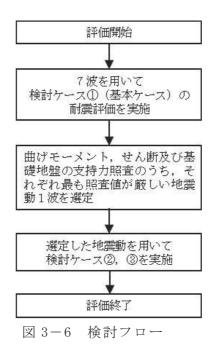
図 3-5 鋼管の解析モデル* 注記*:上記荷重の他,常時荷重として躯体自重,地震時 荷重として躯体慣性力を考慮する。

- 3.3.2 設計用震度の算定
 - (1) ヒューム管
 - a. 地盤物性のばらつき

地盤については,添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」に て設定している物性値を用いる。

また,地震応答解析においては,地盤物性(盛土部)のばらつきを考慮する。 地盤物性のばらつき考慮ケ-スを表 3-3 に示す。

	地盤物性			
解析ケース	盛土			
	(G ₀ :初期せん断弾性係数)			
ケース①	平均值			
(基本ケース)	一世の世			
ケース②	平均值+1 σ			
ケース③	平均值-1 σ			
-×3	平均旭一10			


表 3-3 解析ケース (ヒューム管)

b. 地震応答解析の解析ケースの選定

地震応答解析においてはすべての基準地震動Ssに対し,解析ケース①を実施し,解析ケース①において照査値が最も厳しい地震動を対象に,解析ケース ②,③を実施する。耐震評価における解析ケースを表 3-4,検討フローを図 3-6 に示す。

		ケース①	ケース②	ケース③				
	解析ケース		地盤物性のばらつ	地盤物性のばらつ				
,		基本ケース	き(+1σ)を考	き(-1σ)を考 慮した解析ケース				
			慮した解析ケース					
	地盤物性	平均值	平均值+1σ	平均值-1σ				
	S s - D 1	0						
	S s - D 2	0	↓ 其進地震動 S s ((7波)を用いて実				
地	S s - D 3	0	施するケース①(
震動	S s - F 1	0		も厳しい地震動を				
到	S s - F 2	0	用いてケース②,					
	S s - F 3	0						
	S s - N 1	0						

表 3-4 ヒューム管の耐震評価における解析ケース

c. 地下水位
 地下水位を管の中心高さ*に設定する。

- 注記*:ヒューム管の地下水位は浸透流解析における境界条件と同様の設定。なお、ヒ ューム管は地下水の最大流入量に対し十分大きな排水可能量を有している(浸 透流解析の詳細は「VI-2-1-3 地盤の支持性能に係る基本方針、ヒューム管の 構造概要は「VI-2-1-1-別添1 地下水位低下設備の設計方針」を参照)。
 - d. 地震応答解析

入力地震動は,添付書類「VI-2-1-1 耐震設計の基本方針」のうち「4.1(2)動 的地震力」及び添付書類「VI-2-1-6 地震応答解析の基本方針」のうち「2.3 屋 外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動 Ssを1次元重複反射理論により地震応答解析モデル底面位置で評価したもの を用いる。なお,入力地震動の設定に用いる地下構造モデルは,添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」のうち「6.1入力地震動の設定に用い る地下構造モデル」を用いる。

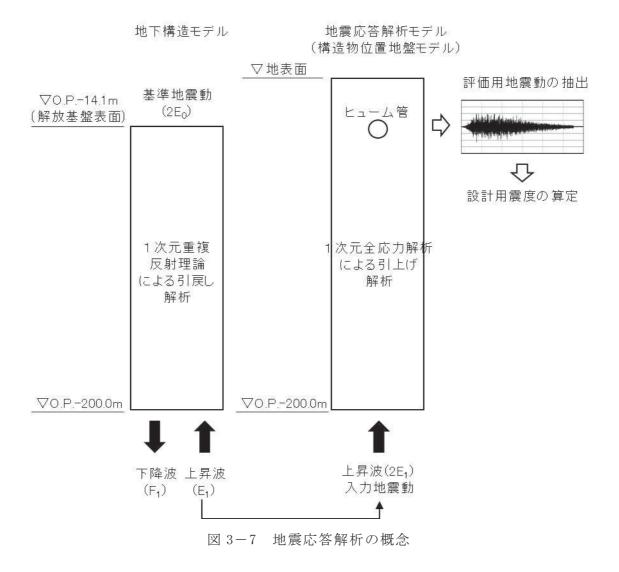
設計用震度は、入力地震動を地震応答解析モデルに入力してヒューム管位置 で得られる評価用地震動から算定する。

地震応答解析の概念を図 3-7 に、入力地震動の加速度時刻歴波形及び加速 度応答スペクトルを図 3-8 に示す。

ヒューム管は岩盤を掘込み設置しており,地下水位が岩盤内にあるため液状 化の影響が軽微であると考えられることから,液状化検討対象施設には該当せ ず,解析手法は全応力解析とする。

解析コードには、入力地震動算定に「SHAKE Ver1.6」を使用し、地震応答解 析による設計用震度算定には「TDAPⅢ Ver3.11」を使用する。解析コードの検 証及び妥当性確認の概要については、添付書類「VI-5 計算機プログラム(解 析コード)の概要」に示す。

① 引戻し解析


引戻し地盤モデル(地下構造モデル)を用いて,水平方向地震動及び鉛直方 向地震動をそれぞれ引戻し地盤モデル底面位置まで引戻す。

② 水平方向地震動の引上げ解析

引上げ地盤モデル(水平方向地震動用)を用いて,ヒューム管位置まで水平 方向地震動を引上げる。

③ 鉛直方向地震動の引上げ解析

引上げ地盤モデル(鉛直方向地震動用)を用いて,ヒューム管位置まで鉛直 方向地震動を引上げる。

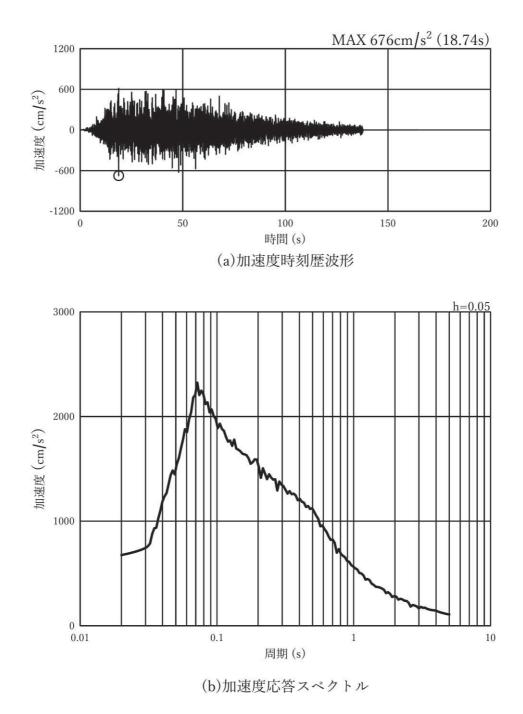


図 3-8(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-D1),第2号機側

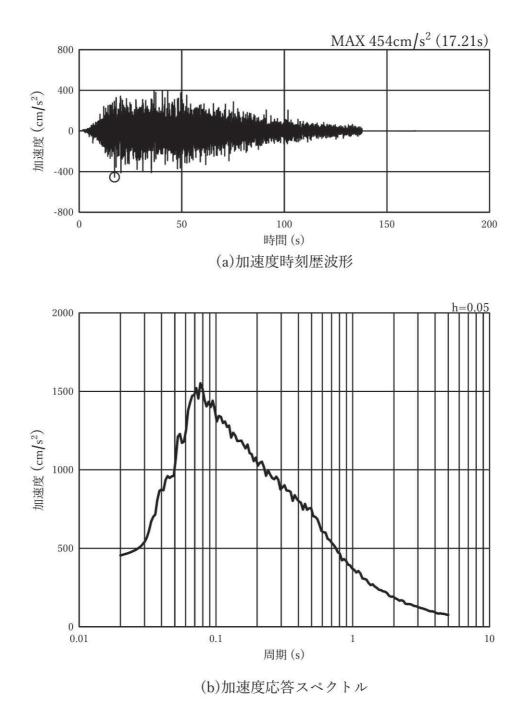


図 3-8(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (鉛直方向:Ss-D1),第2号機側

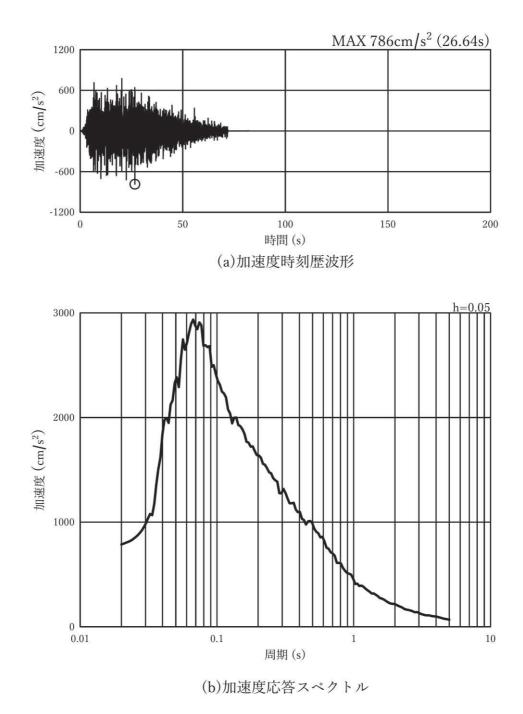


図 3-8(3) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-D2), 第2号機側

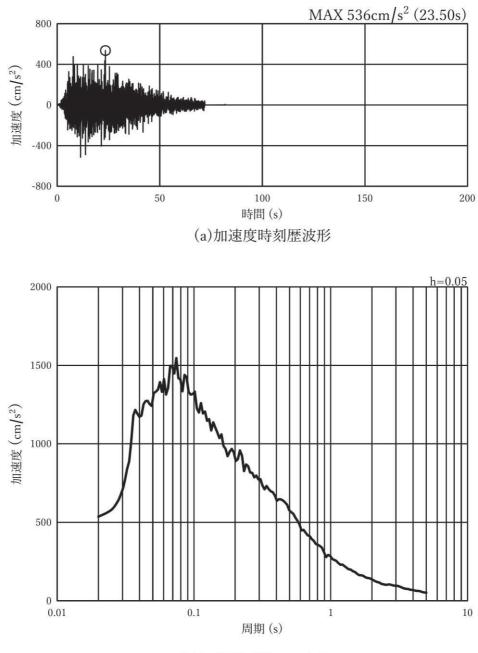


図 3-8(4) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-D2),第2号機側

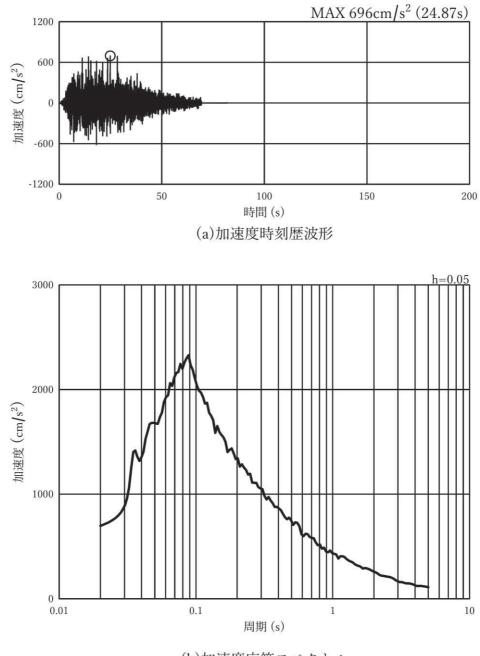


図 3-8(5) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-D3),第2号機側

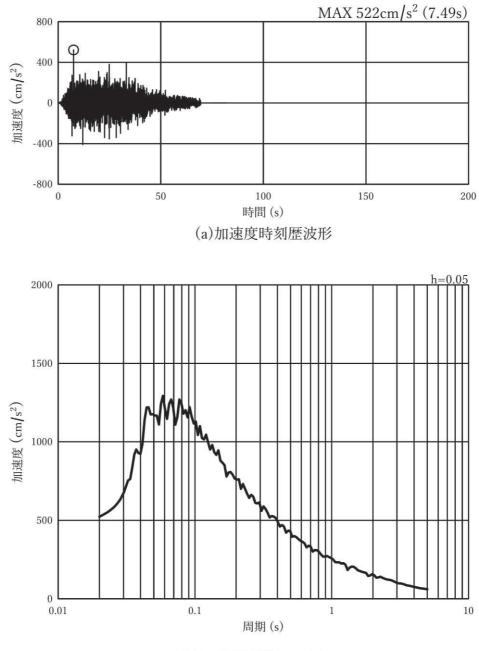


図 3-8(6) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-D3),第2号機側

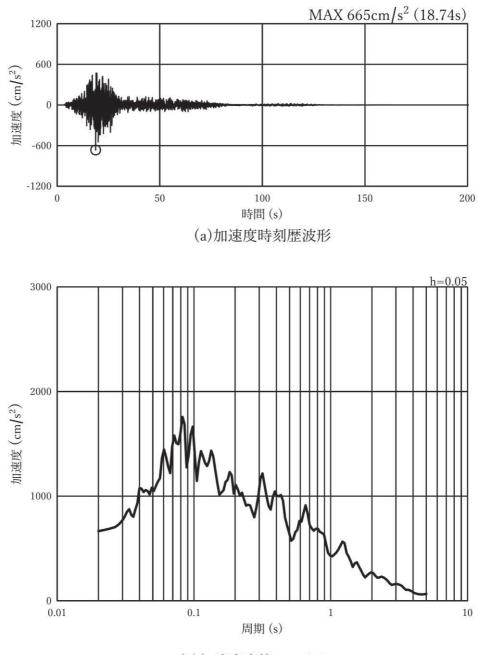


図 3-8(7) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-F1),第2号機側

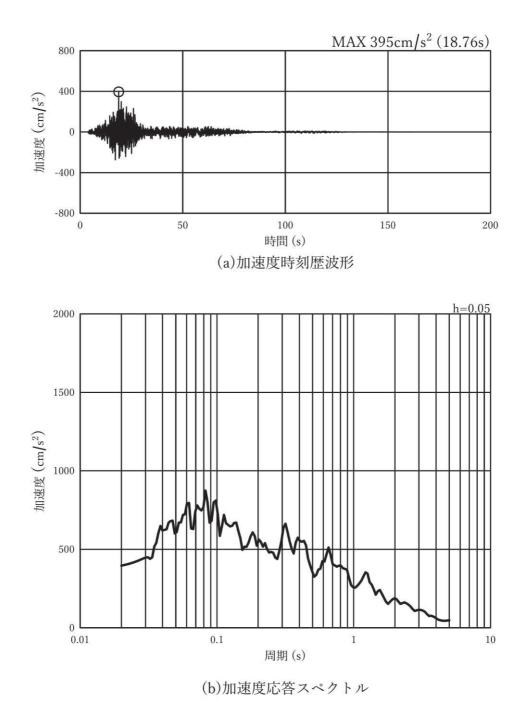


図 3-8(8) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-F1),第2号機側

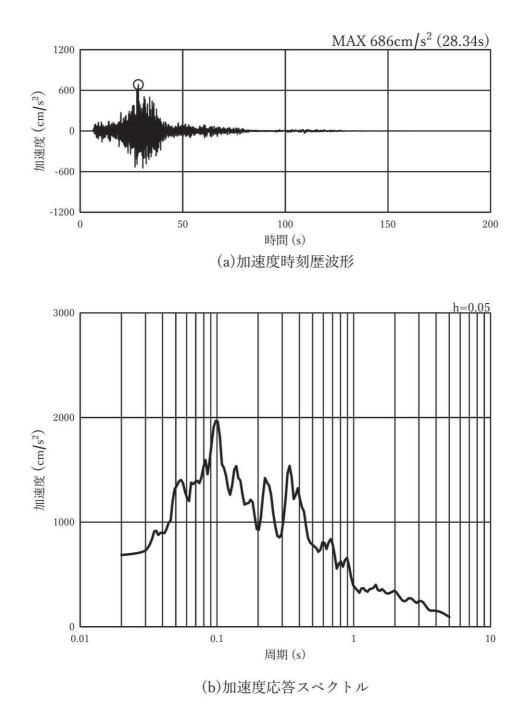


図 3-8(9) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-F2),第2号機側

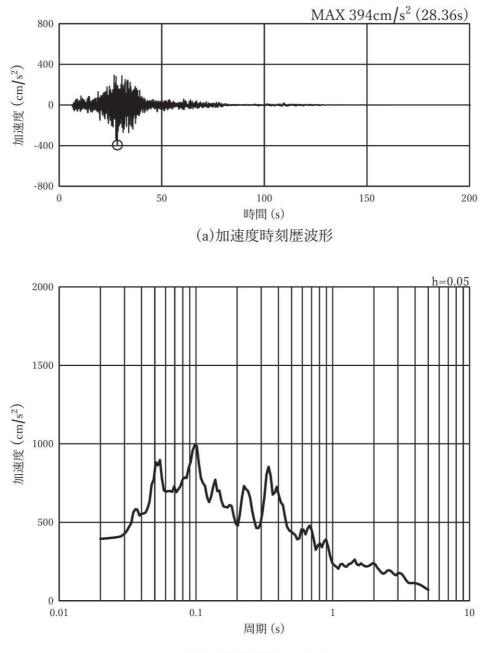


図 3-8(10) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (鉛直方向:Ss-F2),第2号機側

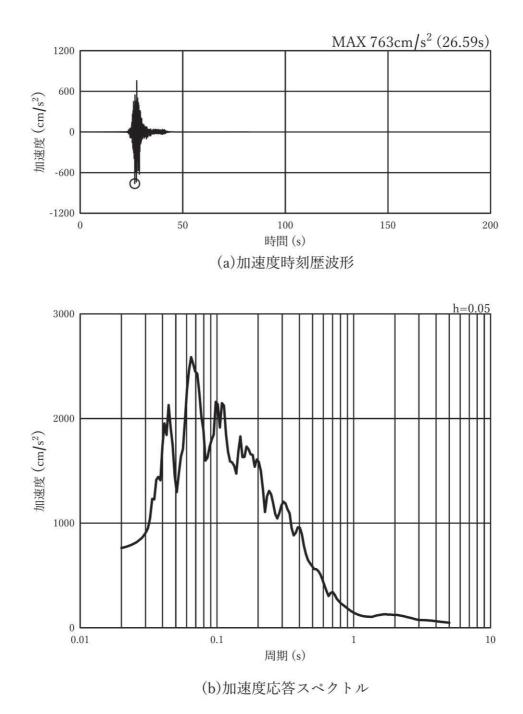


図 3-8(11) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-F3),第2号機側

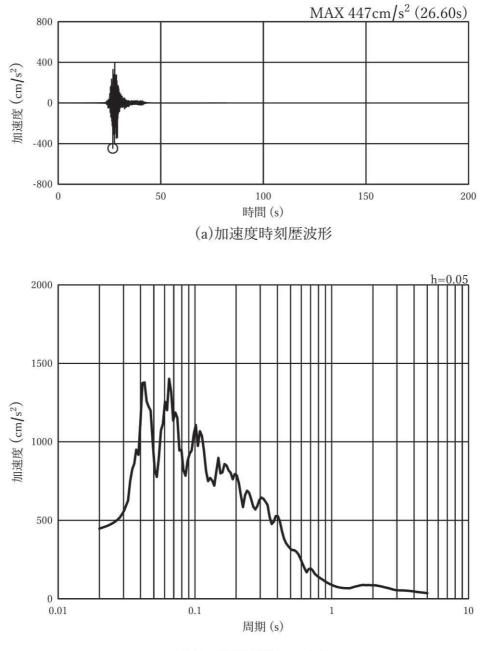


図 3-8(12) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-F3),第2号機側

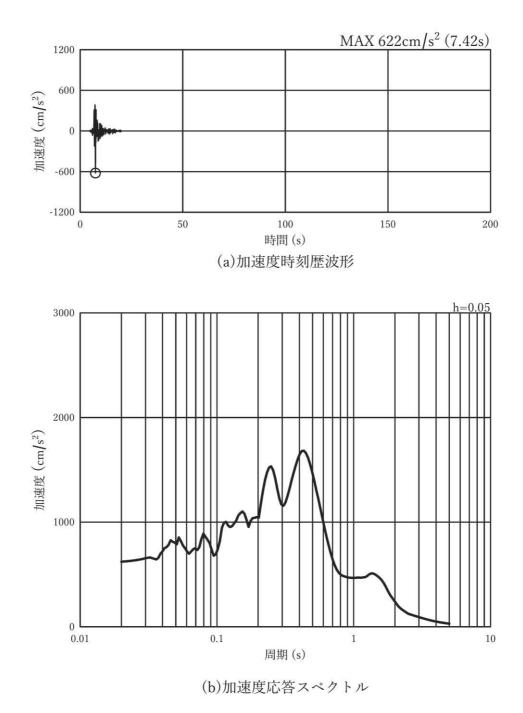


 図 3-8(13) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-N1),第2号機側

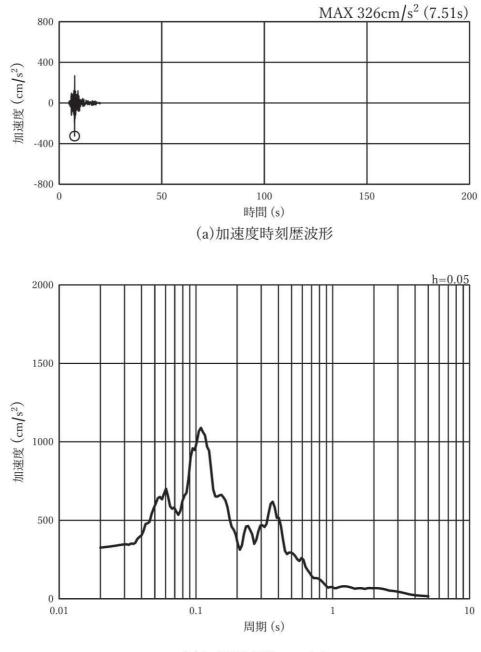


図 3-8(14) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (鉛直方向:Ss-N1),第2号機側

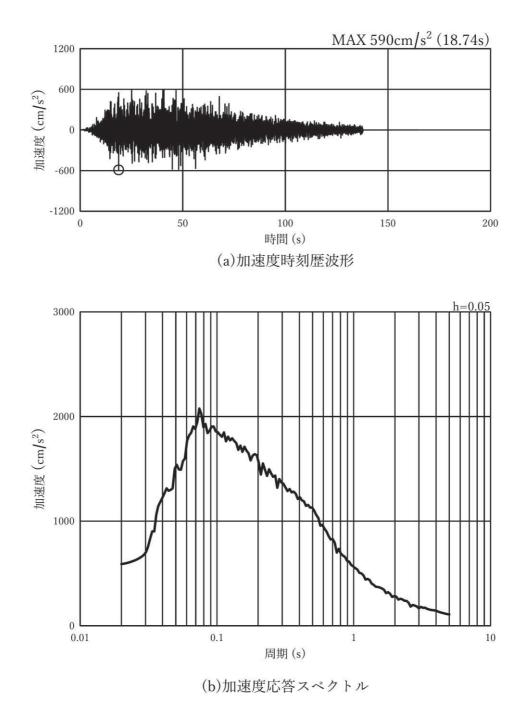


 図 3-8(15) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-D1),第3号機側

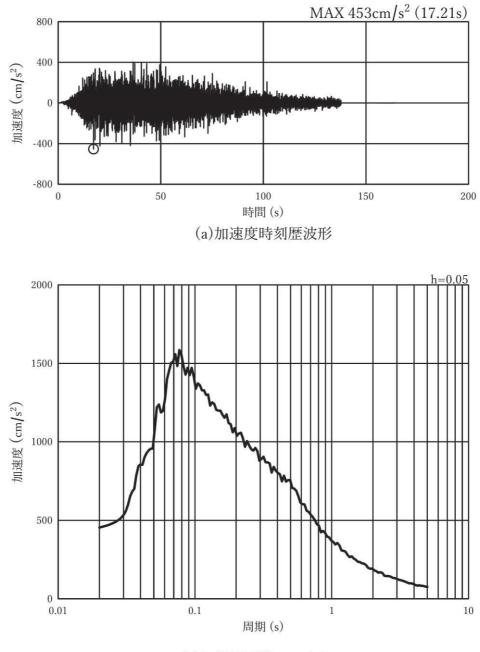


図 3-8(16) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (鉛直方向:Ss-D1),第3号機側

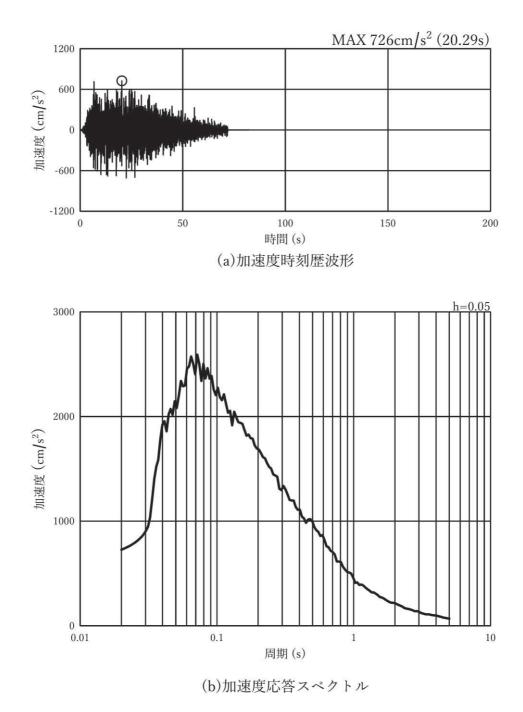


図 3-8(17) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-D2), 第3号機側

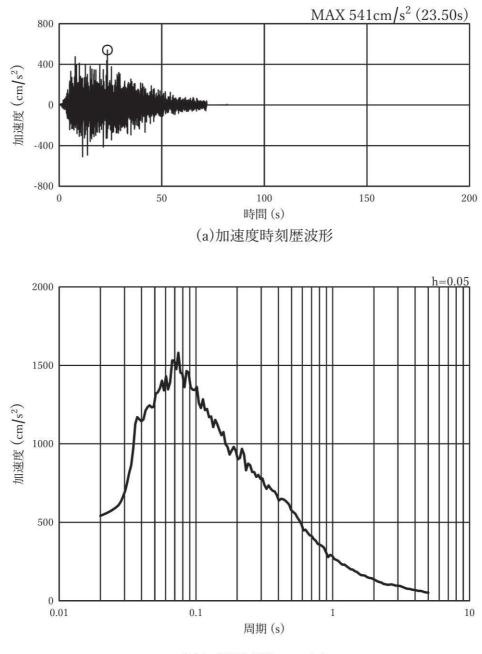


図 3-8(18) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (鉛直方向:Ss-D2),第3号機側

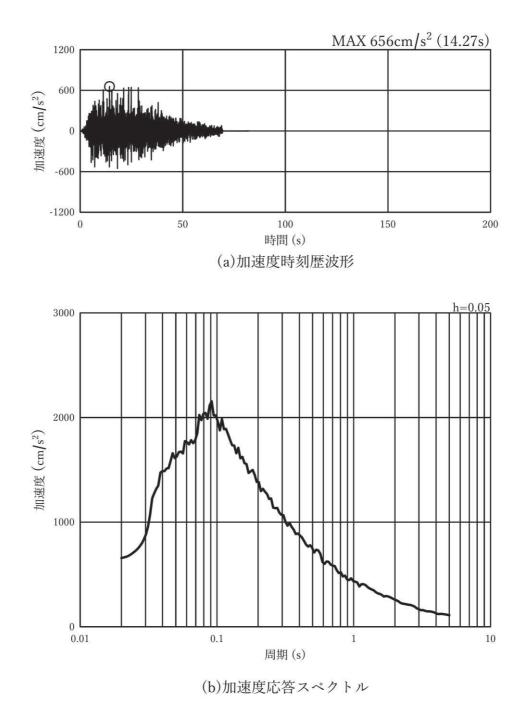


図 3-8(19) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-D3), 第3号機側

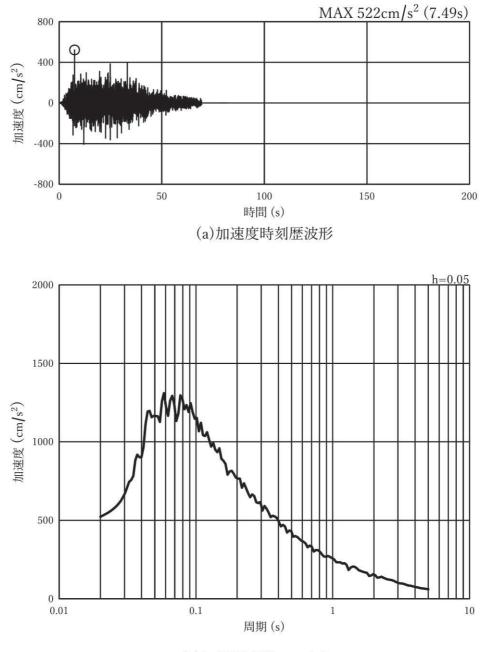


図 3-8(20) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (鉛直方向:Ss-D3),第3号機側

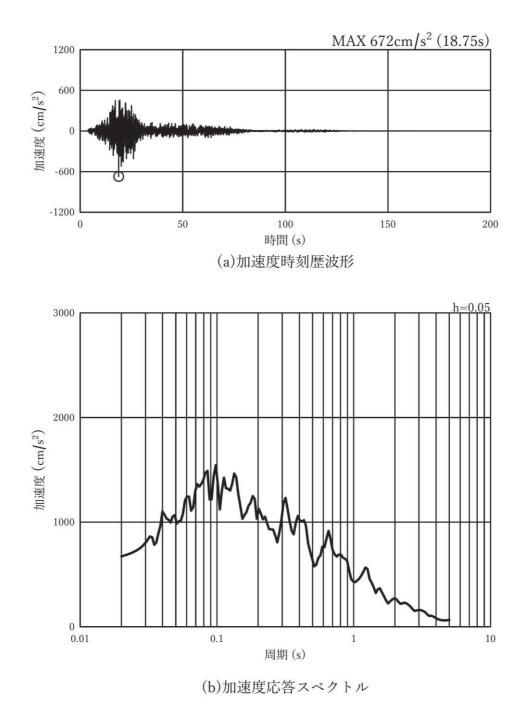


 図 3-8(21) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-F1),第3号機側

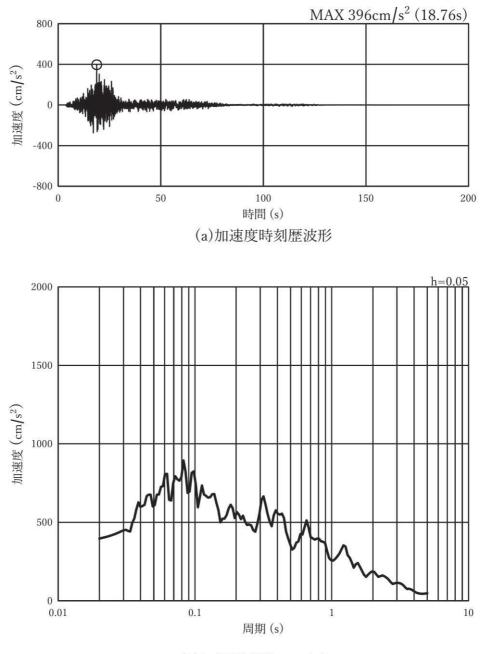


図 3-8(22) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-F1),第3号機側

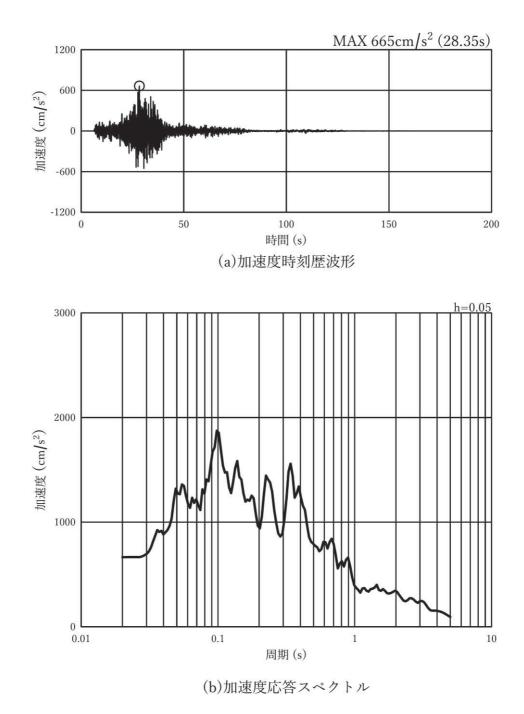


図 3-8(23) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-F2),第3号機側

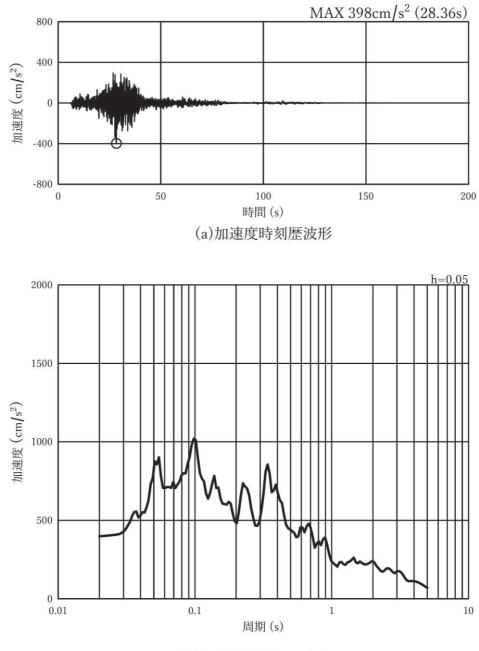


図 3-8(24) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-F2),第3号機側

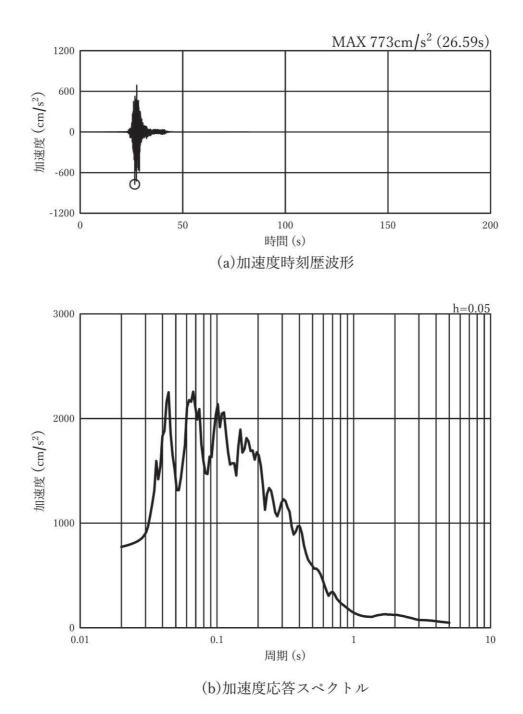


図 3-8(25) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-F3),第3号機側

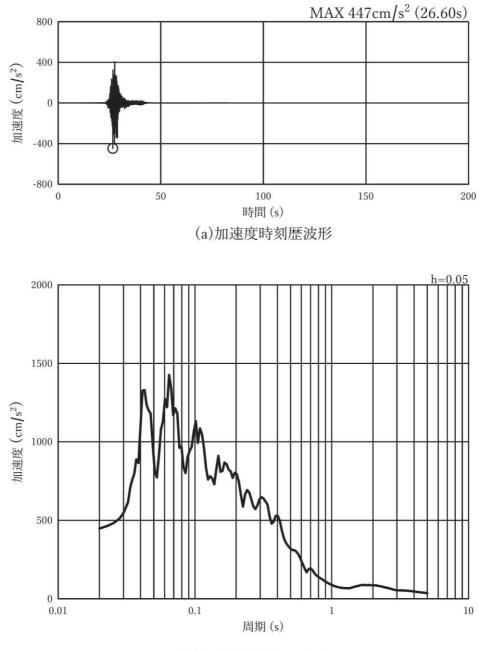


図 3-8(26) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (鉛直方向:Ss-F3),第3号機側

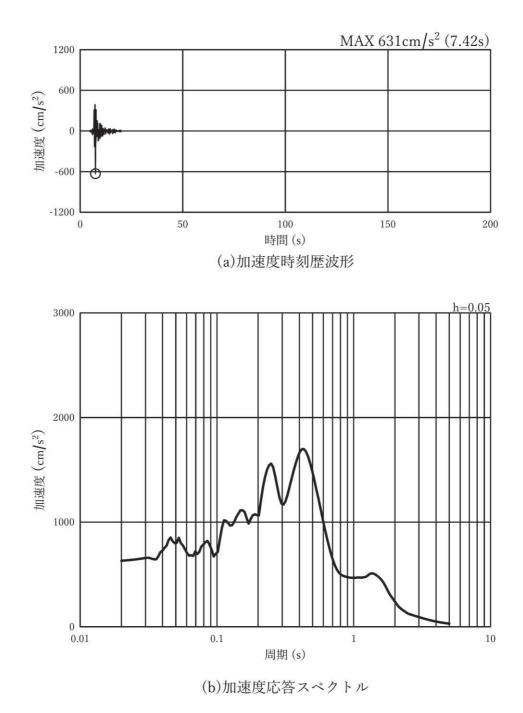


図 3-8(27) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-N1), 第3号機側

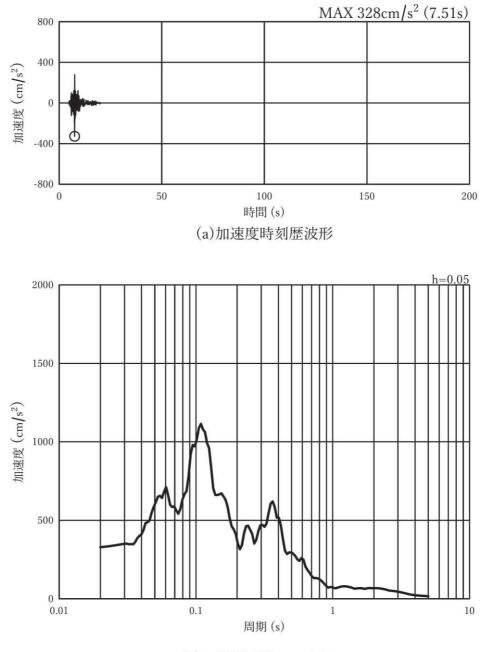


図 3-8(28) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (鉛直方向:Ss-N1),第3号機側

- (2) 鋼管
 - a. 鋼管評価に用いる応力

基準地震動Ss7波に対し,基礎地盤安定解析(NS・EW断面)より抽出した 地盤の最大圧縮応力を表 3-5 に示す。

鋼管設置用の掘削時には,鋼管がケーシングとして地山の安定を保持する工 法を採用することを踏まえ,常時の地盤応力(掘削前の地山応力)及び地震時 増分応力を考慮する。

原子炉建屋に近接する No.2 揚水井戸の一次元地震応答解析(解析コード: 「SHAKE Ver1.6」)において,地盤物性のばらつきを考慮した場合の,鋼管設 置深度(0.P.-14.1m~0.P.-29.1m)の地盤応力を表 3-6に示す。表 3-6に示 すとおり,地盤物性のばらつきを考慮すると,地盤応力は基本ケースと比較し 1.1 倍程度大きくなる。以上を踏まえ,鋼管の評価においては,最大圧縮応力 が最大となる基準地震動Ss-N1・EW断面を対象とし,基礎地盤安定解析よ り抽出した地震時増分応力を保守的に1.5倍した応力を用いることとする。

鋼管の評価に用いる地盤応力を表 3-7 に示す。

なお, No.2 揚水井戸の地盤条件は「VI-2-13-4 地下水位低下設備揚水井戸の 耐震性についての計算書」に示す。

基準地震動	断面	最大圧縮応力 (N/mm ²)
0 - D 1	NS	1.73
S s - D 1	EW	2.35
S s - D 2	NS	2.08
5 S - D 2	EW	2.79
S s - D 3	NS	1.61
55 05	EW	2.17
S s - F 1	NS	1.66
55-F1	EW	2.02
S s - F 2	NS	1.64
55-F2	EW	2.47
S s - F 3	NS	1.69
28-13	EW	2.52
S s - N 1	NS	2.35
	EW	3.90

表 3-5 基礎地盤安定解析より抽出した圧縮応力

		地盤物性(岩盤)の	地盤物性(岩盤)の	
項目	基本ケース	ばらつき(+1σ)を	ばらつき(−1σ)を	
		考慮した解析ケース	考慮した解析ケース	
基準地震動	S s - N 1			
最大地盤応力	337.7	342.6	335.0	
(kN/m^2)	221.1	(1.1) *	(1.0) *	

表 3-6 一次元地震応答解析(No.2 揚水井戸)による最大地盤応力

注記*:括弧内の数値は基本ケースに対する比率(変動率)を示す

項目	内訳	σ_x (N/mm^2)	σ_y (N/mm^2)	$ au_{xy}$ (N/mm ²)
基礎地盤安定解析より 得られた地盤応力*1	常時	-0.64	-0.92	0.07
	地震時増分	-0.99	-2.95	0.17
	合計	-1.63	-3.87	0.25
鋼管の耐震評価に用いる 地盤応力	常時	-0.64	-0.92	0.07
	地震時増分*2	-1.49	-4.43	0.26
	合計	-2.13	-5.35	0.33

表 3-7 鋼管の耐震評価に用いる応力

注記*1:基礎地盤安定解析において圧縮応力が最大となる要素(Ss-N1, EW 断面) の σ_x, σ_y, τ_{xy}を示す。

*2:基礎地盤安定解析より得られた地盤応力を保守的に1.5倍する。

3.4 許容限界

- 3.4.1 構造部材の健全性に対する許容限界
 - (1) ヒューム管

応力解析による評価に用いるヒューム管のひび割れ保証モーメントは、下水道 耐震指針より次式で算定する。各断面・材料のひび割れ保証モーメントを表 3-6 に示す。

Mc:ひび割れ保証モーメント (kN·m)

- P c : ひび割れ荷重 (kN/m)
- W:管きょの自重 (kN/m)
- r:管きょの管厚中心半径(m)

管径 (mm)	外圧 強さ* ¹	ひび割れ荷重 Pc(kN/m)	自重 W (kN/m)	管厚中心半径* ² r (m)	ひび割れ保証 モーメント M c (kN・m)
φ 500	2種	205.5	4.5	0.300	19.6
φ 500	3種	284.3	4.5	0.300	27.0
φ 800	2種	393.5	13.4	0.491	61.9
φ 1050	3種	332.9	15.6	0.610	65.6

表 3-6 ヒューム管のひび割れ保証モーメント

注記*1:外圧強さの分類は「技術資料ヒューム管設計施工要覧(日本ヒューム管協 会,平成21年7月)」による。

*2:管芯から管厚の中心までの半径を示す。

なお、(3-1)式は有孔管・無孔管のいずれにも適用可能である(「技術資料ヒュ ーム管設計施工要覧(日本ヒューム管協会,平成21年7月)」))。これは、一般に 集水管として使用されている管の穿孔率が1%未満であり、断面欠損が極めて小さ く、孔の有無がひび割れ保証モーメントに影響を及ぼさないという前提に基づいて いる。

女川原子力発電所において使用しているヒューム管も一般の集水管と同等の穿孔 率であるため(3-1)式の適用が可能であるが,強度試験により適用性の確認を実 施した。確認結果について「参考資料2 ヒューム管のひび割れ保証モーメントの 妥当性について(強度試験結果)」に示す。 (2) 鋼管

応力解析による評価に用いる鋼管の許容限界を表 3-7 に示す。

鋼材の種類	許容応力度 (N/mm ²)	短期許容応力度*2 (N/mm ²)	
SM570*1 (t≦40mm)	許容引張応力度 255		382.5

表 3-7 鋼材の許容応力度及び短期許容応力度

注記*1:使用材料SS-R890の降伏強度は686N/mm²であるが,ここでは保守的に SM570の降伏強度(450N/mm²)を適用する。

- *2:「日本道路協会 平成 24 年 3 月 道路橋示方書・同解説 I 共通編・Ⅱ鋼 橋編」により鋼材の許容応力度に対して 1.5 倍の割り増し を考慮する。
- 3.4.2 基礎地盤の支持性能に対する許容限界

基礎地盤に発生する接地圧に対する許容限界は,添付書類「VI-2-1-3 地盤の 支持性能に係る基本方針」に基づき,岩盤の極限支持力とする。

基礎地盤の支持性能に対する許容限界を表 3-8 に示す。

評価項目	基礎地盤	許容限界(N/mm ²)			
	狐崎部層*1	13.7			
極限支持力	牧の浜部層*1	11.4			
	C _L 級	1.8^{*2}			

表 3-8 基礎地盤の許容限界

注記*1:C_M級岩盤以上の岩盤が対象

*2:「日本道路協会 平成 14 年 3 月 道路橋示方書・同解説 Ⅰ <u>井通編・IV下部構造」</u>に基づき,一軸圧縮強度に応じた 最大地盤反力度の上限値より設定する。 3.5 応力解析による評価方法

3.5.1 構造部材の健全性に対する評価方法

(1) ヒューム管

「3.3.1 解析方法」に基づき,評価を実施する。ヒューム管の諸元及び物性値 を表 3-9 に示す。

解析コードには、「FRAME(面内) Ver5.0.7」を使用する。解析コードの検証及 び妥当性確認の概要については、添付書類「VI-5 計算機プログラム(解析コー ド)の概要」に示す。

管径	外圧	管厚	管厚中心半径*2	単位体積重量	ヤング係数
(mm)	強さ*1	(mm)	(mm)	(kN/m^3)	E (N/mm ²)
φ 500	2種	100	300	24.0	3. 3×10^4
φ 500	3種	100	300	24.0	3. 3×10^4
φ 800	2種	182	491	24.0	3. 3×10^4
φ 1050	3種	170	610	24.0	3. 3×10^4

表 3-9 ヒューム管の諸元及び物性値

注記*1:外圧強さの分類は「技術資料ヒューム管設計施工要覧(日本ヒューム管協 会, 平成21年7月)」による。

*2:管芯から管厚の中心までの半径を示す。

(2) 鋼管

「3.3.1 解析方法」に示す解析方法に基づき,評価を実施する。鋼管の諸元及 び物性値を表 3-10 及び表 3-11 に示す。

地盤の物性値は,添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」にて 設定している物性値に地盤剛性のばらつきを考慮し設定する。

解析コードには、「SLAP Ver6.64」を使用する。解析コードの検証及び妥当性 確認の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概 要」に示す。鋼管の横断方向断面の静的解析で算出した断面力は下式の曲げ軸力 照査により発生応力が許容限界以下であることを確認する。なお、鋼管には図 2 -4 に示すように集水孔が設けられるため、有効断面積及び有効断面係数にこの 影響を考慮する。

ここで,

σ:鋼管の曲げモーメント及び軸力より算定される応力(kN/m²)

- M:曲げモーメント (kN・m)
- Z:有効断面係数(m³)*1*2
- N:軸力(kN)
- A:有効断面積(m²)*1*2
- 注記*1:鋼管は土中に設置され,内外面共湿潤状態となるため,「日本道路協 会 平成14年3月 道路橋示方書・同解説 I共通編・IV下部構造編」

に基づき,鋼管の内側及び外側に1mmの腐食代を考慮する。

*2:集水孔の影響を考慮し、下記のとおり有効断面係数及び有効断面積 を設定する。

 $Z = (1 - \Sigma d) t^2 / 6$, $A = (1 - \Sigma d) t$

 $\Sigma d:$ 延長 1m 当たりの同一位置における孔径の合計(m)

t:腐食代を考慮した鋼管の板厚(m)

	F T	
部 材	使用材料	諸元
鋼管	SS-R890 (SM570 相当以上)	内径 145.2mm, 板厚 10mm (外径 165.2mm)

表 3-10 鋼管の諸元

項目	材料諸元
単位体積重量γ(kN/m ³)	77.0
ヤング係数E(N/mm ²)	2. 0×10^{5}
ポアソン比 ν	0.30

表 3-11 鋼管の物性値

3.5.2 基礎地盤の支持性能に対する評価方法

基礎地盤の支持性能に係る評価はヒューム管及び鋼管を支持する基礎地盤を対 象とし,基礎地盤に生じる応力(接地圧)が許容限界以下であることを確認する。

ヒューム管の接地圧の算出においては,図3-9のとおり管底部の約120°が基礎コンクリートに埋め込まれて設置されていることを踏まえ,ヒューム管に作用する反力を,支承角を120°としたときの荷重分布幅(図3-9の赤線)で除して算定する。

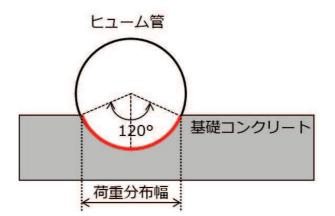


図 3-9 ヒューム管における基礎地盤の接地圧の考え方

- 4. 耐震評価結果
- 4.1 構造部材の健全性に対する評価結果
 - (1) ヒューム管

曲げモーメントに関する照査値一覧を表 4-1 に,照査値が最大となる地震動・ 解析ケースにおける加速度時刻歴波形を図 4-1 に,各代表断面の設計震度一覧を 表 4-2 に示す。また,ヒューム管の横断方向断面の静的解析で得られた各断面の 最大曲げモーメント図を図 4-2 に示す。

衣 4−1(1) 断面①(弗 2 亏機,φ 500(2 種))の評価結果						
	解析	最大曲げ	ひび割れ保証			
地震動	ケース	モーメント	モーメント	М∕Мс		
		$M(kN \cdot m)$	Мс(kN • m)			
S s - D 1		9.3 (9.23)		0.48		
S s - D 2		9.2	-	0.47		
S s - D 3	ケース①	9.1		0.47		
S s - F 1		ケース①	9.0		0.46	
S s - F 2		9.0	19.6	0.46		
S s - F 3		9.1		0.47		
S s - N 1		8.9		0.46		
S s - D 1	ケース2	9.3 (9.24)		0.48		
	ケース③	9.3 (9.23)		0.48		

表 4-1(1) 断面①(第2号機, φ500(2種))の評価結果

衣 4 ⁻ 1(2)						
	解析	最大曲げ	ひび割れ保証			
地震動	ケース	モーメント	モーメント	М∕Мс		
	1-X	M (kN \cdot m)	M c (kN \cdot m)			
S s - D 1		37.5		0.58		
S s - D 2		37.4		0.58		
S s - D 3	ケース①	37.0	65.6	0.57		
S s - F 1		36.5		0.56		
S s - F 2		36.4		0.56		
S s - F 3		36.9		0.57		
S s - N 1		36.1		0.56		
S . D 1	ケース②	37.6		0.58		
S s - D 1	ケース③	37.5		0.58		

表 4-1(2) 断面②(第2号機, φ1050(3種))評価結果

表 4-1(3) 断面③(第3号機, φ500(2種))評価結果

地震動	解析	最大曲げ モーメント	ひび割れ保証 モーメント	M∕M c
	ケース	$M(kN \cdot m)$	Mc(kN·m)	
S s - D 1		9.3 (9.224)		0.48
S s - D 2		9.2		0.47
S s - D 3		9.1	19.6	0.47
S s - F 1	ケース①	9.0		0.46
S s - F 2		9.0		0.46
S s - F 3		9.1		0.47
S s - N 1		8.9		0.46
S s - D 1	ケース②	9.3 (9.228)		0.48
55-01	ケース③	9.3 (9.220)		0.48

$\chi 4^{-1}(4)$)))) ($\pi 3.5$) ($\pi 0.00$ (3.2))))) $\pi 10.1$					
	解析	最大曲げ	ひび割れ保証		
地震動	ケース	モーメント	モーメント	М∕Мс	
		M (kN \cdot m)	Мс(kN • m)		
S s - D 1		11.7		0.44	
S s - D 2		11.6		0.43	
S s - D 3	ケース①	11.6	27.0	0.43	
S s - F 1		11.4		0.43	
S s - F 2		11.4		0.43	
S s - F 3		11.5		0.43	
S s - N 1		11.1		0.42	
S a D 1	ケース2	11.8 (11.71)		0.44	
S s - D 1	ケース③	11.8 (11.73)		0.44	

表 4-1(4) 断面④(第3号機, φ500(3種))評価結果

表 4-1(5) 断面②(第3号機, φ800(2種))評価結果

	布刀 十二	最大曲げ	ひび割れ保証	
地震動	解析 ケース	モーメント	モーメント	М∕Мс
	リース	$M(kN \cdot m)$	M c (kN \cdot m)	
S s - D 1		29.4 (29.37)		0.48
S s - D 2		29.0		0.47
S s - D 3		28.9		0.47
S s - F 1	ケース①	28.5		0.47
S s - F 2		28.5	61.9	0.47
S s - F 3		28.9		0.47
S s - N 1		27.9		0.46
S s - D 1	ケース2	29.4 (29.36)		0.48
5 S - D I	ケース③	29.4 (29.38)		0.48

	断面		地震動	解析	最大曲げモ ーメント	ひび割れ保証 モーメント	照查值	
				ケース	$M (kN \cdot m)$	M c (kN \cdot m)	M∕M c	
第	(1)	管径 :φ500mm		ケース②	9.3	19.6	0.49	
2	Û	外圧強さ:2種	S s — D 1	/ - / 2	9.0	19.0	0.48	
号		管径 :φ1050mm		£ 70	27 6		0 50	
機	2	外圧強さ:3種	S s - D 1	ケース2	37.6	65.6	0.58	
	3	管径 :φ500mm		ケース②	0.0	10 6	0.40	
第	3	外圧強さ:2種	S s — D 1	1-12	9.3	19.6	0.48	
3		管径 :φ500mm		ケース③	11.0	97.0	0 44	
号	4	外圧強さ:3種	S s - D 1	7-20	11.8	27.0	0.44	
機	(5)	管径 :φ800mm	S = -D 1	ケース③	29.4	61 0	0.49	
	0	外圧強さ:2種	S s - D 1	7 - 10	29.4	61.9	0.48	

表 4-1(6) ヒューム管の評価結果まとめ

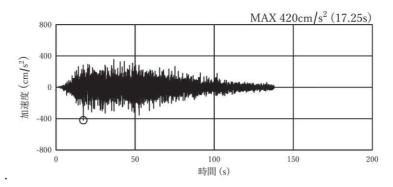


図 4-1(1) 加速度時刻歴波形(断面①)(鉛直方向: S s - D 1:地盤物性ケース②)

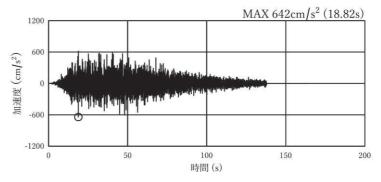


図 4-1(2) 加速度時刻歴波形(断面①) (水平方向: S s - D 1:地盤物性ケース②)

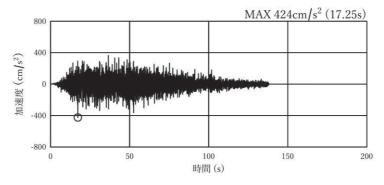


図 4-1(3) 加速度時刻歴波形(断面②) (鉛直方向: S s - D 1:地盤物性ケース②)

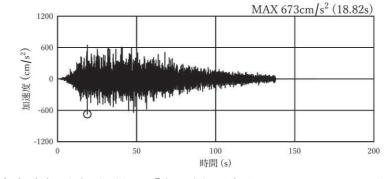


図 4-1(4) 加速度時刻歴波形(断面②) (水平方向: S s - D 1:地盤物性ケース②)

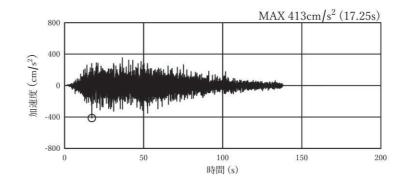


図 4-1(5) 加速度時刻歴波形(断面③) (鉛直方向: S s - D 1:地盤物性ケース②)

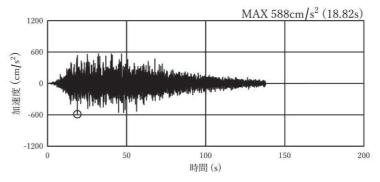


図 4-1(6) 加速度時刻歴波形(断面③) (水平方向: S s - D 1:地盤物性ケース②)

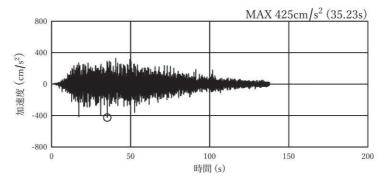


図 4-1(7) 加速度時刻歴波形(断面④) (鉛直方向: S s - D 1:地盤物性ケース③)

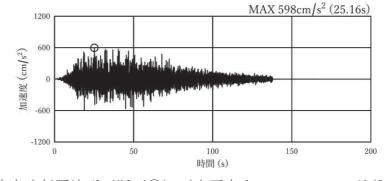


図 4-1(8) 加速度時刻歴波形(断面④) (水平方向: S s - D 1:地盤物性ケース③)

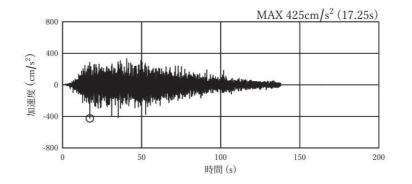


図 4-1(9) 加速度時刻歴波形(断面⑤) (鉛直方向: S s - D 1:地盤物性ケース③)

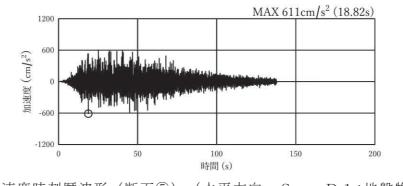


図 4-1(10) 加速度時刻歴波形(断面⑤) (水平方向: S s - D 1:地盤物性ケース③)

地震動	地震動 解析ケース		水平震度 k h	
S s - D 1		0.43 (0.427)	0.06	
S s - D 2		0.41	0.01	
S s - D 3		0.38	0.06	
S s - F 1	ケース①	0.33	0.16	
S s - F 2		0.33	0.37	
S s - F 3		0.37	0.05	
S s - N 1		0.30	0.33	
S a D 1	ケース②	0.43 (0.429)	0.07	
S s - D 1	ケース③	0.43 (0.426)	0.06	

表 4-2(1) 断面①(第2号機, φ500(2種))位置における設計鉛直・水平震度

表 4-2(2) 断面②(第2号機, φ1050(3種))位置における設計鉛直・水平震度

地震動	解析ケース	鉛直震度 kv	水平震度 kh
S s - D 1		0.44 (0.432)	0.07
S s - D 2		0.42	0.02
S s - D 3		0.38	0.05
S s - F 1	ケース①	0.33	0.12
S s - F 2	- - -	0.33	0.32
S s - F 3		0.37	0.05
S s - N 1		0.30	0.31
$S_{\alpha} = D_{\alpha}^{1}$	ケース②	0.44 (0.433)	0.08
S s - D 1	ケース③	0.44 (0.431)	0.07

地震動	解析ケース	鉛直震度 k v	水平震度 k h
S s - D 1		0.42	0.06
S s - D 2		0.41	0.01
S s - D 3		0.37	0.10
S s - F 1	ケース①	0.33	0.15
S s - F 2	- - -	0.33	0.36
S s - F 3		0.37	0.03
S s - N 1		0.29	0.33
S a D 1	ケース②	0.43	0.07
S s - D 1	ケース③	0.42	0.06

地震動	解析ケース	鉛直震度 k v	水平震度 k h	
S s - D 1		0.43	0.26	
S s - D 2		0.37	0.09	
S s - D 3	ケース①	0.37	0.11	
S s - F 1		0.33	0.19	
S s - F 2		0.32	0.13	
S s - F 3		0.36	0.16	
S s - N 1		0.24	0.32	
$S_{\alpha} = D_{\alpha}^{1}$	ケース②	0.43	0.04	
S s - D 1	ケース③	0.44	0.29	


表 4-2(4) 断面④(第3号機, φ500(3種))位置における設計鉛直・水平震度

表 4-2(5) 断面⑤(第3号機, φ800(2種))位置における設計鉛直・水平震度

入力地震動	地盤物性	鉛直震度 k v	水平震度 k h
S s - D 1		0.44 (0.433)	0.05
S s - D 2		0.39	0.02
S s - D 3		0.38	0.10
S s - F 1	ケース①	0.33	0.16
S s - F 2		0.32	0.07
S s - F 3		0.37	0.07
S s - N 1		0.26	0.31
S a D 1	ケース②	0.44 (0.432)	0.05
S s - D 1	ケース③	0.44 (0.434)	0.05

	衣4-2(0) 谷計恤刃家町面にわける成訂西直・小十長及(レユ・ム目)						
号機		断面	地震動	解析 ケース	鉛直震度 (kv)	水平震度 (kh)	
第 2	1	管径 : φ 500mm外圧強さ:2種	S s - D 1	ケース2	0.43	0.07	
号機	2	管径 : φ1050mm外圧強さ:3種	S s - D 1	ケース②	0.44	0.08	
	3	管径 : φ 500mm外圧強さ:2種	S s - D 1	ケース②	0.43	0.07	
第 3 号機	4	管径 : φ 500mm外圧強さ:3種	S s - D 1	ケース③	0.44	0.29	
	5	管径 : φ 800mm外圧強さ:2種	S s - D 1	ケース③	0.44	0.05	

表 4-2(6) 各評価対象断面における設計鉛直・水平震度(ヒューム管)

(断面② (φ1050mm, 3種), Ss-D1, t=17.25秒) (解析ケース:ケース②)

図 4-2(3) 曲げモーメント図
 (断面③ (φ500mm, 2種), Ss-D1, t=17.25秒)
 (解析ケース:ケース②)

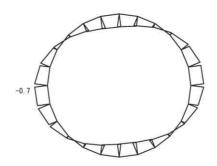
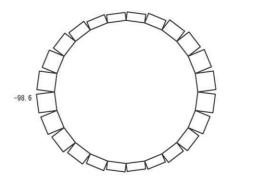
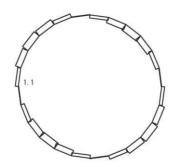

図 4-2(4) 曲げモーメント図 (断面④ (φ500mm, 3種), Ss-D1, t=35.23秒) (解析ケース:ケース③)

図 4-2(5) 曲げモーメント図 (断面⑤ (φ800mm, 2種), Ss-D1, t=17.25秒) (解析ケース:ケース③)


(2) 鋼管

鋼管の照査値が最大となるケースの断面力図を図 4-3 に,照査結果を表 4-2 に示す。



(a) 曲げモーメント

(b) 軸力(+:引張)

50 kN 25 0

(c) せん断力

図 4-3 鋼管の断面力図

(S s - N 1, t = 7.62)

(基礎地盤安定性解析における主応力(最大圧縮応力)最大時刻)

	1					
		発生断面	司力*	照查用	短期許容	
地震動	解析 ケース	曲げ モーメント (kN・m)	軸力 (kN)	照查用 応力度 (N/mm ²)(A)	运期計容 応力度 (N/mm ²)(B)	照查値 (A/B)
S s - N 1	ケース③	-0.7	-98.6	83.2	382.5	0.22

表 4-3 鋼管の評価結果

注記*:発生曲げモーメントは内側引張を正,軸力は引張を正として示す。

- 4.2 基礎地盤の支持性能に対する評価結果
 - (1) ヒューム管

ヒューム管の基礎地盤の支持性能に関する評価結果一覧を表 4-4 に示す。 ヒューム管の基礎地盤に生じる最大接地圧が極限支持力度以下であることを確認した。

表 4-4(1) 基礎地盤の支持性能評価結果(第2号機,断面①)

入力地震動	解析	最大接地圧	許容限界	照査値		
八刀地展朝	ケース	R $_{a}$ (N/mm ²)	R $_{\rm u~a}~({\rm N/mm^2})$	R $_{a}$ / R $_{u}$ $_{a}$		
S s - D 1		1.2 (1.163)		0.09		
S s - D 2		1.2 (1.15)		0.09		
S s - D 3	ケース①	1.2 (1.12)	13.7	0.09		
S s - F 1		1.1		0.09		
S s - F 2		1.1		0.09		
S s - F 3					1.2 (1.12)	
S s - N 1		1.1		0.09		
S a D 1	ケース2	1.2 (1.165)		0.09		
S s - D 1	ケース③	1.2 (1.162)		0.09		

表 4-4(2) 基礎地盤の支持性能評価結果(第2号機,断面②)

入力地震動	解析	最大接地圧	許容限界	照查值
八刀地展到	ケース	R_{a} (N/mm ²)	R $_{\rm u~a}~({\rm N/mm^2})$	R _a /R _{ua}
S s - D 1		1.2 (1.163)		0.09
S s - D 2		1.2 (1.15)		0.09
S s - D 3	ケース①	1.2 (1.12)		0.09
S s - F 1		1.1		0.09
S s - F 2				1.1 13.7
S s - F 3		1.2 (1.11)		0.09
S s - N 1		1.1		0.09
S - D 1	ケース2	1.2 (1.164)		0.09
S s - D 1	ケース③	1.2 (1.162)		0.09

X 1			画相木 (第3万版	, 戸田〇/
入力地震動	解析	最大接地圧	許容限界	照查值
八刀地展到	ケース	R_{a} (N/mm ²)	R $_{\rm u~a}~({\rm N/mm^2})$	R _a /R _{ua}
S s - D 1		1.2 (1.16)		0.67
S s - D 2		1.2 (1.15)		0.67
S s - D 3	k. 70	1.2 (1.12)		0.67
S s - F 1	ケース①	1.1		0.62
S s - F 2			1.1	1.8
S s - F 3		1.2 (1.12)		0.67
S s - N 1		1.1		0.62
C - D 1	ケース2	1.2 (1.17)		0.67
S s - D 1	ケース③	1.2 (1.16)		0.67

表 4-4(3) 基礎地盤の支持性能評価結果(第3号機,断面③)

表 4-4(4) 基礎地盤の支持性能評価結果(第3号機,断面④)

1 力地雲動	解析	最大接地圧	許容限界	照查值	
入力地震動	ケース	R_{a} (N/mm ²)	R $_{\rm u~a}$ (N/mm ²)	R _a /R _{ua}	
S s - D 1		1.5 (1.47)		0.14	
S s - D 2		1.5 (1.41)		0.14	
S s - D 3	ケース①	1.5 (1.42)		0.14	
S s - F 1		1.4		0.13	
S s - F 2				1.4	11.4
S s - F 3		1.4		0.13	
S s - N 1		1.3		0.12	
S - D 1	ケース2	1.5 (1.47)		0.14	
S s - D 1	ケース③	1.5 (1.48)		0.14	

			画相木 (第3万版	1, 戸田〇/	
入力地震動	解析	最大接地圧	許容限界	照查值	
八刀地展動	ケース	R_{a} (N/mm ²)	R $_{\rm u~a}~({\rm N/mm^2})$	R _a /R _{ua}	
S s - D 1		1.4 (1.393)		0.13	
S s - D 2		1.4 (1.35)		0.13	
S s - D 3	k. 70	1.4 (1.34)		0.13	
S s - F 1	ケース①	1.3		0.12	
S s - F 2			1.3 11.4	11.4	0.12
S s - F 3		1.4 (1.33)		0.13	
S s - N 1		1.3		0.12	
S s - D 1	ケース2	1.4 (1.392)		0.13	
5 S - D I	ケース③	1.4 (1.394)		0.13	

表 4-4(5) 基礎地盤の支持性能評価結果(第3号機,断面⑤)

表 4-4(6) 基礎地盤の支持性能評価結果 (ヒューム管)

断面	地震動	解析 ケース	最大接地圧 R a (N/mm ²)	許容限界 Rua (N/mm ²)	照查値 R a / R u a
1	S s - D 1	ケース②	1.2	13.7	0.09
2	S s - D 1	ケース②	1.2	13.7	0.09
3	S s - D 1	ケース②	1.2	1.8	0.67
4	S s - D 1	ケース③	1.5	11.4	0.14
5	S s - D 1	ケース③	1.4	11.4	0.13

(2) 鋼管

鋼管の基礎地盤の接地圧分布図を図 4-4 に,支持性能評価結果を表 4-5 に示す。

鋼管の基礎地盤に生じる最大接地圧が極限支持力度以下であることを確認した。

	解析	最大接地圧	許容限界	照査値
地震動		R a	R u a	R a∕R u a
	ケース	(N/mm^2)	(N/mm^2)	
S s - N 1	ケース③	1.9	13.7	0.14

表 4-5 基礎地盤の支持性能評価結果(鋼管)

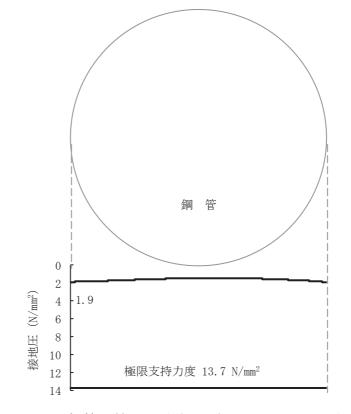


図 4-4 鋼管の接地圧分布図 (Ss-N1, EW 断面)

(参考資料1) せん断力がヒューム管の発生断面力に及ぼす影響について

ヒューム管は掘込んだ岩盤内に設置され,周囲は砕石により埋め戻されている(図2-3)。そのため,地震時においては,周囲の岩盤・砕石・ヒューム管が一体的な挙動を示 し、ヒューム管に作用する荷重としては,鉛直土圧が支配的になるものと考えられる。し かし、ヒューム管の上部には砕石を介して盛土が分布しており,砕石・岩盤と盛土との地 震時挙動の相違から,境界部にせん断力が生じる可能性が否定できない。

以上を踏まえ,盛土部に生じるせん断力がヒューム管に生じる曲げモーメントに与える 影響について検討した。

1. 検討方針

検討対象は,接地されている最大径かつ代表5断面のうち最も照査値の厳しい断面② (\ 0 1050) とする。

評価手法及び解析条件は本編と同様とし,地震応答の引き上げ解析によりヒューム管 部に作用するせん断力を抽出し,フレーム解析モデルに作用させて,発生断面力に与え る影響を確認する。

2. 検討結果

地震応答解析(解析コード「TDAPⅢ Ver3.11」)における地盤モデルの概念図を 図1に示す。ヒューム管は掘込んだ岩盤内に設置されているが、地震応答解析にお いては、深部からヒューム管底部までを岩盤、それより上部を盛土にてモデル化し ている。

なお,設計用震度に用いる最大鉛直及び水平地震応答加速度は,ヒューム管底部 の岩盤上面の節点から抽出している(図1赤丸部)

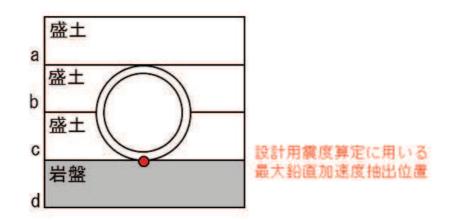


図1 地震応答解析モデル図

ヒューム管周辺要素(a~d)における鉛直加速度最大時の各要素のせん断力及びせ

要素	せん断力τ _{max} (kN/m²)	せん断ひずみγ _{max} (%)
а	6.41	0.018
b	5.12	0.019
С	4.55	0.019
d	39.35	0.003

表1 ヒューム管周辺要素におけるせん断力及びせん断ひずみ

ヒューム管の設置状況を踏まえ、せん断力が作用するのは上部のうちの一部であると 考えられることから、耐震計算で考慮している荷重に加え、地震応答解析から得られた ヒューム管上部のせん断力(b要素)を、ヒューム管上部90°分に分布荷重として載 荷した場合の(図2)曲げモーメントを算出する。算出結果を表2に示す。

表2に示すとおり、ヒューム管に作用する荷重としては鉛直土圧が支配的であり、 せん断力が曲げモーメントに及ぼす影響は極めて小さいことを確認した。

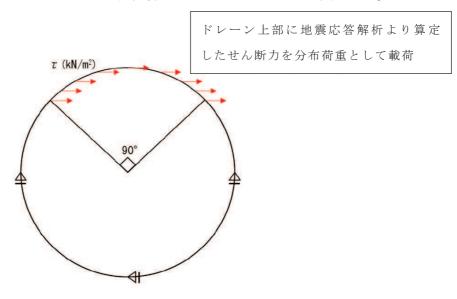


図2 ヒューム管へのせん断力載荷概要図

表2 曲げモーメント算定編

検討ケース	曲げモーメント (kN・m)
(参考) 本資料掲載ケース	37.506
せん断力を考慮したケース	37.518
ひび割れ保証モーメント	65. 6

(参資資料2) ヒューム管のひび割れ保証モーメントの妥当性について(強度試験結果)

1. はじめに

本文記載のとおり、応力解析による評価に用いるヒューム管のひび割れ保証モーメ ントは、下水道耐震指針より(1)式で算定されており、各断面・材料のひび割れ保 証モーメントを表1のとおりである。

 $M c = 0.318 \cdot P c \cdot r + 0.239 \cdot W \cdot r \cdot (1)$

Mc:ひび割れ保証モーメント (kN·m)

P c : ひび割れ荷重 (kN/m)

W:管きょの自重 (kN/m)

r:管きょの管厚中心半径(m)

管径 (mm)	外圧 強さ	ひび割れ荷重 Pc(kN/m)	自重 W (kN/m)	管厚中心半径* r (m)	ひび割れ保証 モーメント M c (kN・m)
φ 500	2種	205.5	4.5	0.300	19.6
φ 500	3種	284.3	4.5	0.300	27.0
φ 800	2種	393.5	13.4	0.491	61.9
φ 1050	3種	332.9	15.6	0.610	65.6

表1 ヒューム管のひび割れ保証モーメント

注記*:管芯から管厚の中心までの半径を示す。

(1)式は無孔管・有孔管に係らず適用されるものであるが、同式の有孔管への適用性の観点から、φ1050 ヒューム管を対象に強度試験を実施し、ひび割れ保証モーメント設定値の妥当性・保守性の確認を行った。その内容について、以下に示す。

2. 検証方法

(1) 式, ひび割れ保証モーメントMcとひび割れ荷重Pcには1対1の関係が成り 立つことから, 耐震評価に用いている, φ1050 ヒューム管のひび割れ保証モーメント Mcが妥当であり, 保守性を有していることを確認するためには, ひび割れ荷重が 332.9kN/m以上であることが確認できればよい。

そこで,実際に女川原子力発電所で使用している φ 1050 ヒューム管と同寸法の供 試体を製造し,圧縮強度試験を実施した。

3. 試験方法概要

外圧試験は、JIS A 5372「プレキャスト鉄筋コンクリート製品」に基づき実施をした。

建設当時の製造方法・工程・品質管理を再現して試験体を3体製作し,外観・寸法 検査試験にて許容値内に収まっていることを確認した上で,外圧試験を実施した。

試験概要図を図2に示す。L=1.0mの供試体の中心(端部からL=0.5m位置)に載荷し,ひび割れが発生する荷重を記録した。ひび割れ荷重とは、管に幅0.05mmのひび割れを生じたときの試験機が示す荷重を有効長Lで除した値である。

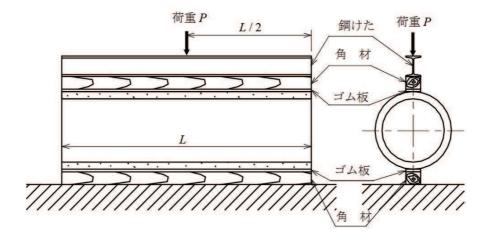


図2 外圧試験概要図

4. 試験結果

外圧試験結果を表2に示す。

計3回の試験とも理論値を上回る結果となっており、ひび割れ保証モーメントの設 定は十分保守的であることを確認した。

試験年月日	ひび割れ荷重 (kN/m)
平成 31 年 3 月 20 日	①368
	②377 平均
	375.0
(参考) 理論値	332.9

表 2-1 外圧試験結果

第2章 地下水位低下設備接続桝の耐震性に係る補足説明

1.		概	要
2.		基	本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.	1	位置
	2.	2	構造概要
	2.	3	評価方針・・・・・・
	2.	4	適用基準
3.	Ā	討震	ことを見ている (1997) [19] [19] [19] [19] [19] [19] [19] [19]
	3.	1	評価対象・・・・・ 6
	3.	2	荷重及び荷重の組合せ・・・・・ 17
	3.	3	解析方法
	3.	4	許容限界 · · · · · · · · · · · · · · · · · · ·
	3.	5	応力解析による評価方法・・・・・ 54
4.		耐	震評価結果・・・・・・・・・・・・・
	4.	1	構造部材の健全性に対する評価結果・・・・・ 63
	4.	2	基礎地盤の支持性能に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・114

(参考資料)既設揚水井戸の取り扱いについて

1. 概要

本資料は、添付書類「VI-2-1-9 機能維持の基本方針」で設定している構造強度及び機 能維持の設計方針に基づき、地下水位低下設備のうち接続桝について、地震時の構造強度 を有していることを確認するものである。

接続桝に要求される機能の維持を確認するに当たっては,地震応答解析に基づく構造部 材の健全性評価及び基礎地盤の支持性能評価を行う。

2. 基本方針

設計用地下水位の評価において,集水機能を期待する接続桝は,耐震性を含む信頼性を 満たす範囲の中から抽出し,管路あるいは透水層として設定している。

本図書では,管路あるいは透水層として設定する接続桝を対象に地震時における構造強度及び機能維持の確認を行う。

2.1 位置

地下水位低下設備のうち接続桝の設置位置を図2-1に示す。

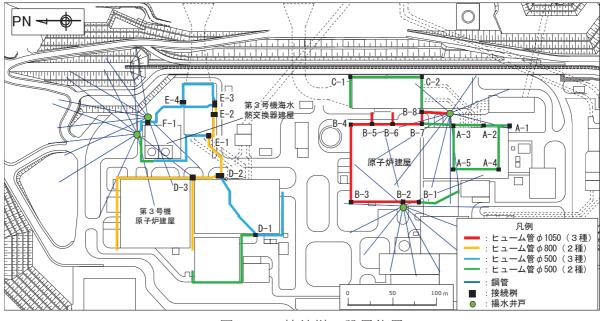
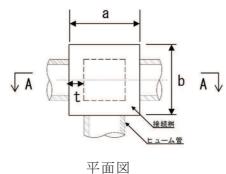
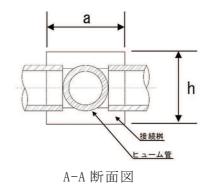
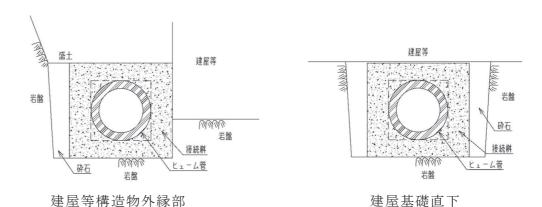




図 2-1 接続桝の設置位置


2.2 構造概要

接続桝は,建屋等構造物外縁部または建屋基礎直下の掘込まれた岩盤内に設置され た鉄筋コンクリート造の箱型構造物であり,複数のヒューム管が接続されている。接続 桝は既設を活用し,揚水井戸と既設ヒューム管との接続部等において,一部新設する。 接続桝の上部には盛土もしくは構造物基礎が存在している。接続桝の構造概要を図2 -2,各接続桝の諸元を表2-1に示す。

(1) 構造概要

(2) 設置状況

図 2-2 接続桝構造概要

表 2-1 接続桝諸元

	/L ==	<i>A</i>	▶寸 (m)	* 1	部材厚 (m)	土被り厚 (m)	
No.	位置	а	b	h	t	L	設置状況
A-1		1.30	1.30	1.30	0.30	16.42	
A-2		1.30	1.60	1.60	0.30	25.85	建屋等 構造物外縁部
A-3	タービン建屋周辺	1.30	1.85	1.30	0.30	27.36	
A-4		1.30	1.90	1.30	0.30		建屋基礎直下
A-5		1.55	1.90	1.52	0.30		建度莖硬固下
B-1		2.40	2.40	3.30	0.50	26.70	
B-2*2		2.40	2.40	2.20	0.50	27.92	
B-3		2.40	2.40	2.20	0.50	27.88	
B-4	原子炉建屋周辺	2.40	2.40	2.20	0.50	27.96	
B-5	原于炉建座向辺	2.40	2.40	2.20	0.50	27.98	
В-6		2.40	2.40	2.20	0.50	27.98	
В-7		2.40	2.40	2.20	0.50	27.95	
B-8*2		2.40	2.40	2.20	0.50	27.95	
C-1	海水ポンプ室周辺	1.50	1.50	1.50	0.40	28.20	建屋等
C-2	海水がシノ主向及	1.50	1.50	1.50	0.40	28.20	構造物外縁部
D-1		1.30	1.85	1.30	0.30	29.88	
D-2	第3号機タービン 建屋周辺	3.80	6.20	5.90	1.00	32.55	
D-3		2.40	2.40	2.20	0.50	28.56	
E-1		2.40	2.40	2.20	0.50	28.80	
E-2*2	第3号機海水	3.50	4.60	5.80	1.00	26.10	
E-3*2	ポンプ室周辺	3.50	4.50	5.00	1.00	28.25	
E-4*2		3.60	4.50	5.10	1.00	27.92	
F-1*2	第3号機海水熱交 換器建屋周辺	1.50	1.50	1.50	0.40	30.63	

注記*1:外寸の記載のうち,aは短辺,bは長辺を示す。

*2:新設する接続桝。

2.3 評価方針

地下水位低下設備に要求される機能は,施設の設計の前提が確保されるよう,地下水 位を一定の範囲に保持することであり,繰り返しの地震に対しても集水機能を維持する 必要がある。接続桝を含む地下水位低下設備はCクラスに分類されるが,その機能を維 持するため,基準地震動Ssに対して耐震性を確保する設計としている。なお,接続桝 とドレーンの接続部については,ドレーンが有孔管であることから,水密性の観点から の要求はない。

接続桝の耐震評価は地震応答解析に基づき実施し、表2-2に示すとおり、構造部材の 健全性評価及び基礎地盤の支持性能評価を行う。

構造部材の健全性評価については,添付書類「VI-2-1-9 機能維持の基本方針」に基づき,発生する応力が許容限界以下であることを確認する。

基礎地盤の支持性能評価においては,添付書類「VI-2-1-9 機能維持の基本方針」に 基づき,発生する応力(接地圧)が許容限界以下であることを確認する。

構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで,構造強度を有 することを確認する。

	評価方針	評価項目	部位	評価方法	許容限界
	皆 造 強 度 を す る こと	構造部材の 健全性	接続桝 (頂版 側底版 人	発生する応力が許容限 界以下であることを確 認	短期許容応力度
有す	199022	基礎地盤の 支持性能		発生する応力(接地圧) が許容限界以下である ことを確認	極限支持力*

表2-2 接続桝の評価項目

注記*:妥当な安全余裕を考慮する。

接続桝の評価フローを図2-3に示す。

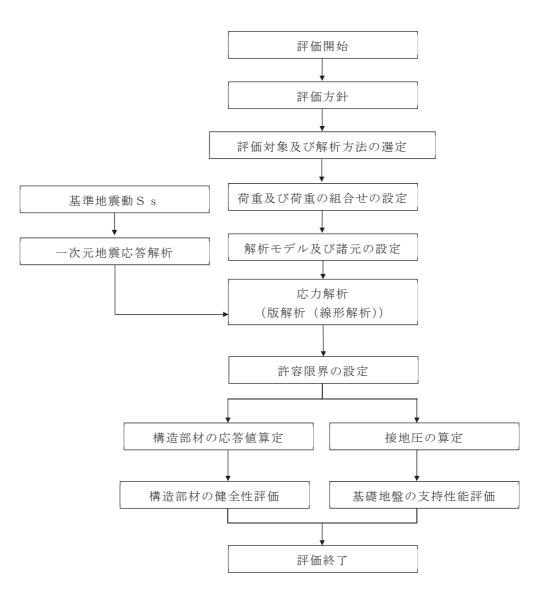


図 2-3 接続桝の評価フロー

2.4 適用基準

接続桝の評価において適用する規格・基準等を以下に示す。また,各項目で適用する 規格・基準類を表2-3に示す。

- ・日本建築学会 1991 年 鉄筋コンクリート構造計算規準・同解説
- ・土木学会 2002 年 コンクリート標準示方書[構造性能照査編](以下,「コンクリート標準示方書」という。)
- ・日本道路協会 平成 14 年 3 月 道路橋示方書・同解説 Ⅰ 共通編・IV下部構造編

	表 2-3 谷頃日で週用する規格・基準類	
項目	適用する規格・基準類	備考
使用材料及び材料定数	・土木学会 2002 年 コンクリート標準示方	
	書[構造性能照査編]	
荷重及び荷重の組合せ	・土木学会 2002 年 コンクリート標準示方	·永久荷重+偶発荷重
	書[構造性能照査編]	+従たる変動荷重の
		適切な組み合わせを
		検討
応力解析 (版解析)	・日本建築学会 1991年 鉄筋コンクリート	・4 辺固定版,3 辺固定
	構造計算規準・同解説	1辺自由版の形状と
		応力の関係を用いて
		曲げモーメント及び
		せん断力を算出
	・土木学会 2002 年 コンクリート標準示方	・引張強度及びせん断
	書「構造性能照査編]	強度に対して,発生
許容限界	・日本道路協会 平成 14 年 3 月 道路橋示方	応力が許容限界以下
	日本追路協会 中版 I4 中 5 万 追路福小万 書・同解説 Ⅰ 共通編・IV下部構造編	であること確認

表 2-3 各項目で適用する規格・基準類

3. 耐震評価

3.1 評価対象

接続桝は,躯体が掘込まれた岩盤内に設置され,地震時には鉛直土圧が主たる荷重と して作用すると考えられる。接続桝ごとに構造,設置状況,地震応答が異なることを踏 まえ,各号機ごとに同一寸法,又は相似・包含関係にあるものをグループ化し,各グル ープの接続桝のうち,土被り厚が最大となるものを評価対象として選定した。評価対象 とする接続桝及び選定理由を表3-1に示す。

なお、タービン建屋基礎直下の岩盤を掘込んで設置した接続桝(A-4, A-5)は、各建 屋構造物外縁部に設置した接続桝と比べ、作用する鉛直荷重が十分に小さいため、評価 対象外とする。

以上を踏まえ,評価対象として接続桝①~⑨を選定した。

評価対象とする接続桝の位置を図3-1に,構造概要を図3-2に示す。また,接続桝設 置位置の地質状況を図3-3に示す。

表 3-1(1) 評価対象とする接続桝(第2号機側)

下線:検討対象とする接続桝

N	14 平	構造による グループ	\$	卟寸 (m)		部材厚 (m)	土被り厚 (m)	選定理由
No.	位置	クループ 分類	а	b	h	t	L	備考
A-1		(ア)	1.30	1.30	1.30	0.30	16.42	
<u>A-2</u>			<u>1.30</u>	<u>1.60</u>	<u>1.60</u>	<u>0.30</u>	<u>25.85</u>	グループ(ア)のうち,寸法・ 土被り厚が最大のため検討対 象とする。
<u>A-3</u>	タービン 建屋周辺	(イ)	<u>1.30</u>	<u>1. 85</u>	<u>1.30</u>	<u>0.30</u>	<u>27.36</u>	グループ (イ) の接続桝が1基 のみのため,検討対象とする。
A-4		_	1.30	1.90	1.30	0.30		建屋基礎直下に設置されてお り,作用する鉛直荷重が十分に 小さいため,検討対象外とす
A-5			1.55	1.90	1.52	0.30		<i>る</i> ₀
<u>B-1</u>		(ウ)	<u>2.40</u>	<u>2.40</u>	<u>3. 30</u>	<u>0.50</u>	<u>26.70</u>	グループ (ウ)の接続桝が1基 のみのため,検討対象とする。
B-2			2.40	2.40	2.20	0.50	27.92	
B-3			2.40	2.40	2.20	0.50	27.88	
B-4	原子炉建		2.40	2.40	2.20	0.50	27.96	
B-5	屋周辺	(エ)	2.40	2.40	2.20	0.50	27.98	B-6と近接しており,地質条件 も同等であるため, B-6で代表 させる
<u>B-6</u>			2.40	<u>2.40</u>	<u>2.20</u>	<u>0.50</u>	<u>27. 98</u>	グループ (エ) のうち土被り厚 が最大のため,検討対象とす る。
B-7			2.40	2.40	2.20	0.50	27.95	
B-8			2.40	2.40	2.20	0.50	27.95	
<u>C-1</u>	海水ポン	(才)	<u>1. 50</u>	<u>1. 50</u>	<u>1. 50</u>	<u>0.40</u>	<u>28. 20</u>	グループ (オ) のうち土被り厚 が最大のため,検討対象とす る。
C-2	プ室周辺		1.50	1.50	1.50	0.40	28.20	C-1と近接しており,地質条件 も同等であるため,C-1で代表 させる

表 3-1(2) 評価対象とする接続桝(第3号機側)

下線:検討対象とする接続桝

N	No. 位置	構造による グループ	外寸 (m)			部材厚 (m)	土被り厚 (m)	選定理由
NO.		クループ 分類	а	b	h	t	L	備考
<u>D-1</u>		(力)	<u>1.30</u>	<u>1.85</u>	<u>1.30</u>	<u>0.30</u>	<u>29.88</u>	グループ (カ)の接続桝が1基 のみのため,検討対象とする。
<u>D-2</u>	第 3 号機 タービン 建屋周辺	(キ)	<u>3.80</u>	<u>6. 20</u>	<u>5. 90</u>	<u>1.00</u>	<u>32. 55</u>	グループ(キ)のうち,寸法, 土被り厚が最大のため検討対 象とする。
D-3		(71)	2.40	2.40	2.20	0.50	28.56	
<u>E-1</u>		(ク)	<u>2.40</u>	<u>2.40</u>	<u>2.20</u>	<u>0. 50</u>	<u>28.80</u>	グループ(ク)のうち土被り厚 が最大のため,検討対象とす る。
E-2	第3号機 海水ポン		3.50	4.60	5.80	1.00	26.10	
E-3	プ室周辺	(キ)	3.50	4.50	5.00	1.00	28.25	
E-4	4		3.60	4.50	5.10	1.00	27.92	
<u>F-1</u>		(ケ)	<u>1.50</u>	<u>1.50</u>	<u>1.50</u>	<u>0.40</u>	<u>30.63</u>	グループ (ケ) の接続桝が1基 のみのため,検討対象とする。

表 3-1(3)	評価対象とする接続桝

No.	接続桝
A-2	1)
A-3	2
B-1	3
В-6	<u>(4)</u>
C-1	(5)
D-1	6
D-2	\overline{O}
E-1	8
F-1	9

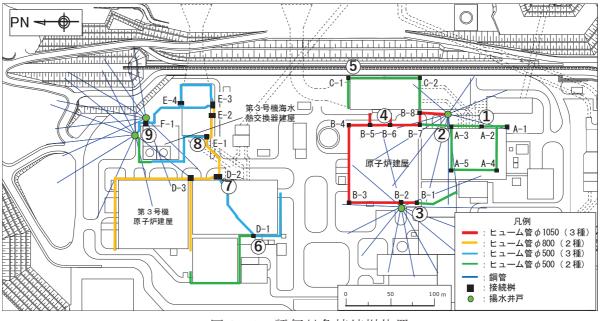
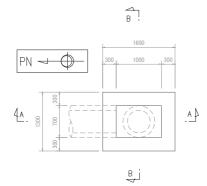
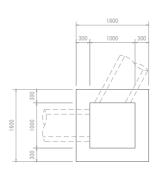




図 3-1 評価対象接続桝位置

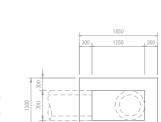
平面図

PN 🕂

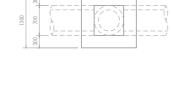
A

1250

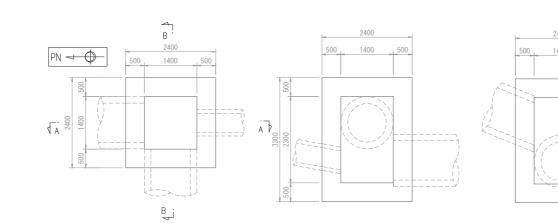
 \oplus


B

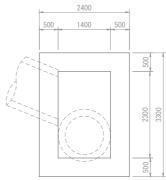
₿j


A-A 断面図

B-B 断面図



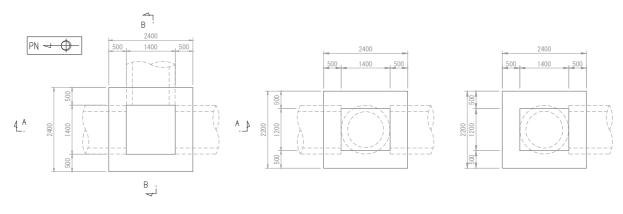
00, 700, 300


A-A 断面図

(接続桝②:A-3)

B-B 断面図

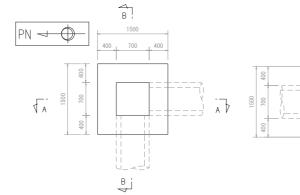
A

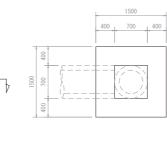


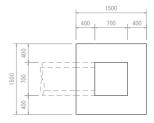
A-A 断面図

B-B 断面図

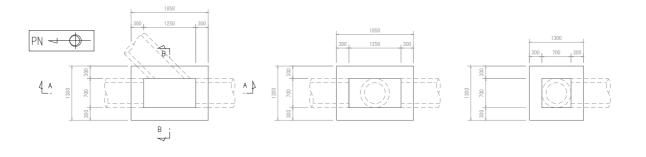
(接続桝③:B-1)


図 3-2(1) 接続桝構造概要図(単位:mm)




平面図

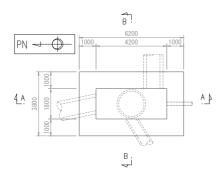
A-A 断面図 (接続桝④:B-6)

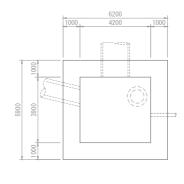


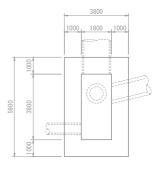
平面図

A-A 断面図 (接続桝⑤:C-1)

B-B 断面図

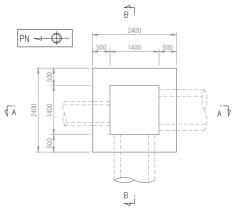

A-A 断面図

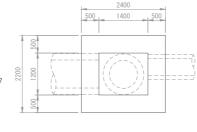

B-B 断面図

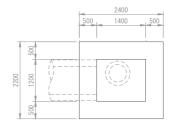

平面図

(接続桝⑥:D-1)

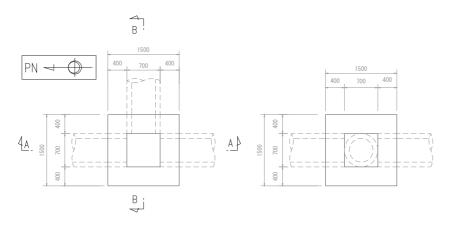
図 3-2(2) 接続桝構造概要図(単位:mm)

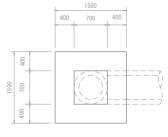





平面図

A-A 断面図 (接続桝⑦:D-2)





A-A 断面図 (接続桝⑧:E-1) B-B 断面図



A-A断面図 (接続桝⑨:F-1) B-B断面図

図 3-2(3) 接続桝構造概要図(単位:mm)

接続桝④

接続桝⑤

接続桝⑥

図 3-3(1) 接続桝周辺の地質状況(接続桝①~⑥)

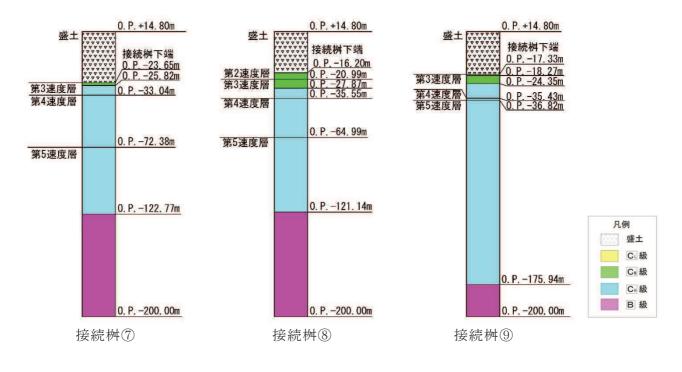


図 3-3(2) 接続桝周辺の地質状況(接続桝⑦~⑨)

3.2 荷重及び荷重の組合せ

耐震評価に用いる荷重及び荷重の組合せは,添付書類「VI-2-1-9 機能維持の基本方 針」に基づき設定する。

3.2.1 耐震評価上考慮する状態

耐震評価において、地震以外に考慮する状態を以下に示す。

- (1) 運転時の状態 発電用原子炉が運転状態にあり、通常の条件下におかれている状態。ただし、運転時の異常な過渡変化時の影響を受けないことから考慮しない。
- (2) 設計基準事故時の状態設計基準事故時の影響を受けないことから考慮しない。
- (3) 設計用自然条件積雪の影響を考慮する。なお、埋設構造物であるため風の影響は考慮しない。
- (4) 重大事故等時の状態重大事故等時の状態の影響を受けないことから考慮しない。
- 3.2.2 荷重

接続桝に作用する荷重は,接続桝が建屋等構造物外縁部の掘込まれた岩盤内に設置されていることを踏まえ,以下のとおり設定する。

- (1) 固定荷重(G)
 固定荷重として, 躯体自重と上載盛土による鉛直土圧, 水平土圧を考慮する。常
 時の水平土圧は, 鉛直土圧に静止土圧係数 0.50 を乗じて算定する。
- (2) 積載荷重(P)

積載荷重として積雪荷重を含めて地表面に 4.9kN/m²を考慮する。

(3) 積雪荷重(Ps)

積雪荷重については,発電所の最寄りの気象官署である石巻特別地域気象観測所 で観測された月最深積雪の最大値である 43cm に平均的な積雪荷重を与えるための 係数 0.35 を考慮した値を設定する。また,建築基準法施行令第 86 条第 2 項によ り,積雪量 1cm ごとに 20N/m²の積雪荷重が作用することを考慮する。

(4) 地震荷重(Ss)

地震荷重として,基準地震動Ssによる荷重を考慮する。

ー次元応答解析により設計用震度を算出し、土圧増分のうち、鉛直増分土圧は、 設計用鉛直震度と常時鉛直土圧を乗じ、水平増分土圧は鉛直方向の増分土圧に側圧 係数 $k_0 = \nu_d / (1 - \nu_d)$ を乗じて算定する。接続桝周辺は砕石で埋め戻されてい るが、 ν_d は保守的に盛土の動ポアソン比 0.48 を用いる。

躯体慣性力については、設計用震度を躯体自重に乗じて求める。

3.2.3 荷重の組合せ

耐震評価における荷重の組合せを表 3-2 に,考慮する荷重の詳細を表 3-3 に示 す。

表 3-2 荷重の組合せ

外力の状態	荷重の組合せ	
地震時 (Ss)	G + P + S s	

G:固定荷重

P:積載荷重(積雪荷重Psを含めて4.9kN/m²を地表面に考慮)

Ss:地震荷重

種別		荷重		算定方法	
永久荷重	固定荷重	躯体自重	0	・設計図書に基づいて、対象構造物の体積に	
				材料の密度を乗じて設定する。	
		機器・配管自重	_	・対象構造物に作用する機器・配管はないた	
				め考慮しない。	
		土被り荷重	0	・上載盛土による土圧を考慮する。	
		積載荷重	0	·積雪荷重を含めて 4.9(kN/m ²)を考慮する。	
	静止土圧		0	・水平・鉛直土圧を考慮する。	
	外水圧			 内水圧とバランスするため考慮しない。 	
	内水圧		_	 外水圧とバランスするため考慮しない。 	
	積雪荷重		0	 積載荷重に含めて考慮する。 	
	風荷重		_	・埋設構造物であることから考慮しない。	
偶発荷重		水平地震動		・ 基準地震動 S s による水平及び鉛直同時加	
				振を考慮する。	
		鉛直地震動	\bigcirc	・躯体の慣性力,増分土圧を考慮する。	

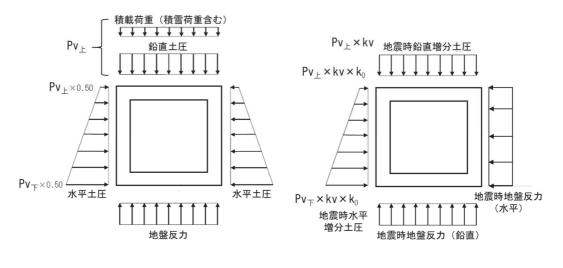
表 3-3 考慮する荷重の詳細

3.3 解析方法

接続桝の耐震評価は,各面の照査(版解析)を実施し,照査用応答値が「3.4 許容限 界」で設定した許容限界以下であることを確認する。

3.3.1 解析方法

接続桝の耐震評価においては、常時及び地震時荷重の組合せを考慮する。


常時荷重については, 躯体自重のほか, 常時の土圧として上載盛土による鉛直土 圧及び鉛直土圧に静止土圧係数 0.50 を乗じた水平土圧を考慮する。

地震荷重に用いる設計用震度(kv,kh)は、一次元地震応答解析により接続 桝下端位置で得られる最大鉛直加速度及び同時刻の水平応答加速度を重力加速度 で除して算定する。

地震荷重のうち,地震時鉛直増分土圧は常時鉛直土圧と積載荷重を足し合わせた 荷重(Pv_上)に設計用鉛直震度kvを乗じて算定する。

水平増分土圧は深度に応じた鉛直増分土圧に側圧係数k₀を乗じて算定する。な お,水平増分土圧は深度が大きくなるにつれて大きくなるが、側壁の照査において は、上端・下端に作用する水平増分土圧の平均値((Pv_上+Pv_下)×kv×k₀/ 2)を等分布荷重として作用させる。

慣性力については,水平・鉛直方向の設計用震度と躯体自重とを掛け合わせて算 定する。接続桝に作用する荷重の概念図を図 3-4 に示す。

(常時) *

(地震時) *

注記*:上記荷重の他,常時荷重として躯体自重,地震時荷重として躯体慣性力を考慮 する。

図 3-4 接続桝に作用する荷重の概念図

- 3.3.2 設計用震度の算定
 - (1) 地盤物性のばらつき

地盤物性は, 添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」に従って設 定する。

また,地震応答解析においては地盤物性のばらつきを考慮する。地盤物性のばら つき考慮ケースを表 3-4 に示す。

	地盤物性			
解析ケース	盛土			
	(G ₀ :初期せん断弾性係数)			
ケース①	亚也店			
(基本ケース)	平均値			
ケース②	平均值+1σ			
ケース③	平均值-1σ			

表 3-4 解析ケース

(2) 地震応答解析の解析ケースの選定

耐震評価においてはすべての基準地震動Ssに対し,解析ケース①を実施し,解 析ケース①において照査値が最も厳しい地震動を対象に,解析ケース②,③を実施 する。耐震評価における解析ケースを表 3-5,検討フローを図 3-5 に示す。

表 3-5 接続桝の耐震安全性評価における解析ケース

解析ケース		ケース①	ケース②	ケース③	
			地盤物性のばらつ	地盤物性のばらつ	
		基本ケース	き(+1σ)を考慮	き(-1σ)を考慮	
			した解析ケース	した解析ケース	
地盤物性		平均值	平均值+1σ	平均值-1σ	
地震動	S s - D 1	0	 基準地震動Ss(7波)を用いて実 施するケース①(基本ケース)にお いて、照査値が最も厳しい地震動を 		
	S s - D 2	0			
	S s - D 3	0			
	S s - F 1	0			
	S s - F 2	0	用いてケース②,③を実施する。		
	S s - F 3	0			
	S s - N 1	0			

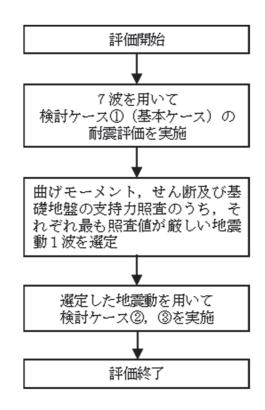


図 3-5 検討フロー

(3) 地下水位

地下水位を接続桝の中心高さ*に設定する。

- 注記*:接続桝の地下水位は浸透流解析におけるドレーン(ヒューム管)の境界条件と 同様の設定。なお、ヒューム管は地下水の最大流入量に対し十分大きな排水可 能量を有しており、これを接続する接続 p 桝はヒューム管と同等以上の通水断 面を有している(浸透流解析の詳細は「VI-2-1-3 地盤の支持性能に係る基本方 針、ヒューム管の構造概要は「VI-2-1-1-別添1 地下水位低下設備の設計方針」 を参照)。
 - (4) 地震応答解析

入力地震動は、添付書類「VI-2-1-1 耐震設計の基本方針」のうち「4.1(2)動的 地震力」及び添付書類「VI-2-1-6 地震応答解析の基本方針」のうち「2.3 屋外重要 土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ss を1次元重複反射理論により地震応答解析モデル底面位置で評価したものを用い る。なお、入力地震動の設定に用いる地下構造モデルは、添付書類「VI-2-1-3 地 盤の支持性能に係る基本方針」のうち「6.1 入力地震動の設定に用いる地下構造モ デル」を用いる。

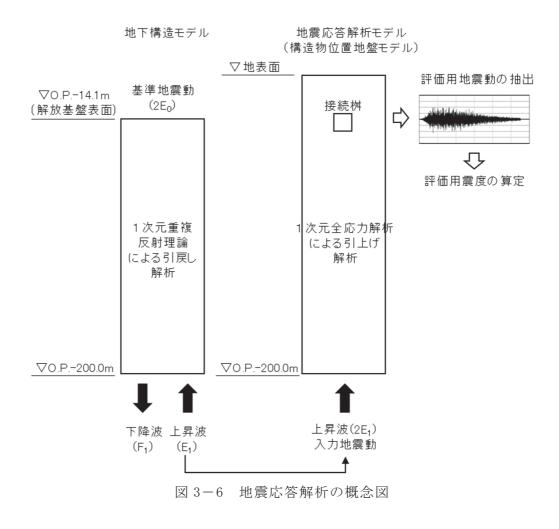
設計用震度は,入力地震動を地震応答解析モデルに入力して得られる接続桝位置 での評価用地震動から算定する。

地震応答解析の概念図を図 3-6 に,第2号機側(接続桝①~⑤),第3号機側 (接続桝⑥~⑨)の地震応答解析時に用いる入力地震動の加速度時刻歴波形及び加 速度応答スペクトルを図 3-7 に示す。

接続桝は岩盤を掘込み設置しており,地下水位が岩盤内にあるため液状化の影響 が軽微であると考えられることから,液状化検討対象施設には該当せず,解析手法 は全応力解析とする。

解析コードには、入力地震動算定に「SHAKE Ver1.6」を使用し、地震応答解析に よる設計用震度の算定には「TDAPⅢ Ver3.11」を使用する。解析コードの検証及び 妥当性確認の概要については、添付書類「VI-5 計算機プログラム(解析コード) の概要」に示す。

① 引戻し解析


引戻し地盤モデル(地下構造モデル)を用いて,水平方向地震動及び鉛直方向地震 動をそれぞれ引戻し地盤モデル底面位置まで引戻す。

② 水平方向地震動の引上げ解析

引上げ地盤モデルを用いて, 接続桝位置まで水平方向地震動を引上げる。

③ 鉛直方向地震動の引上げ解析

引上げ地盤モデルを用いて, 接続桝位置まで鉛直方向地震動を引上げる。

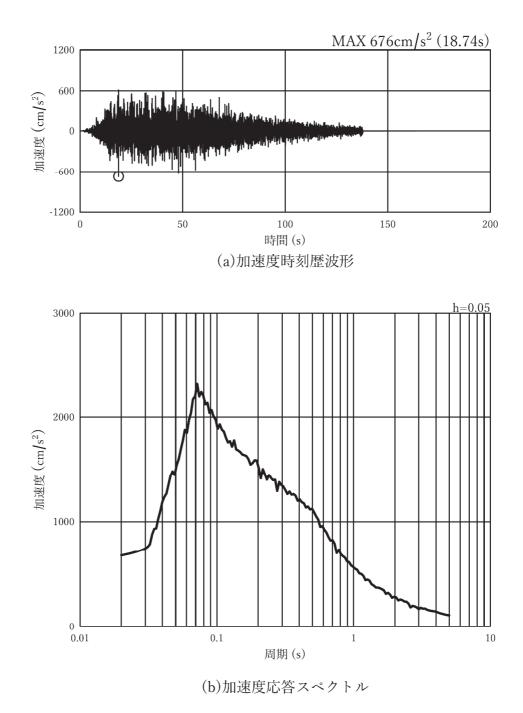


図 3-7(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-D1), 第2号機側

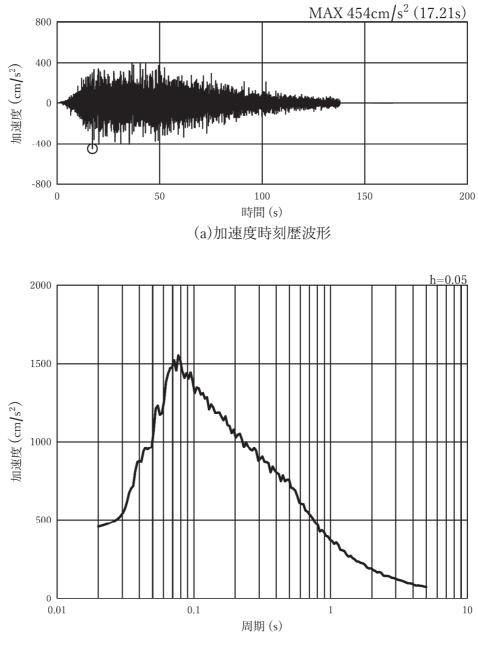


図 3-7(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-D1), 第2号機側

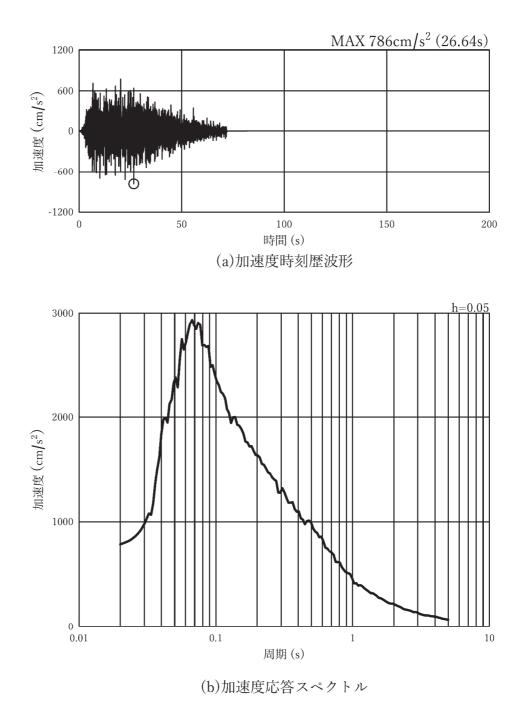


図 3-7(3) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-D2), 第2号機側

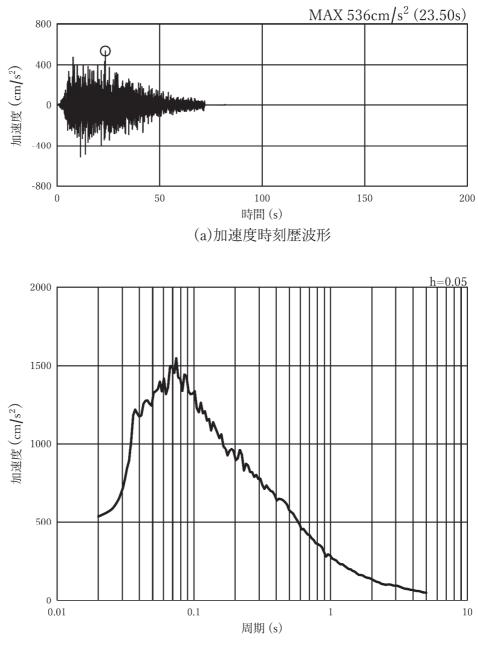


図 3-7(4) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-D2), 第2号機側

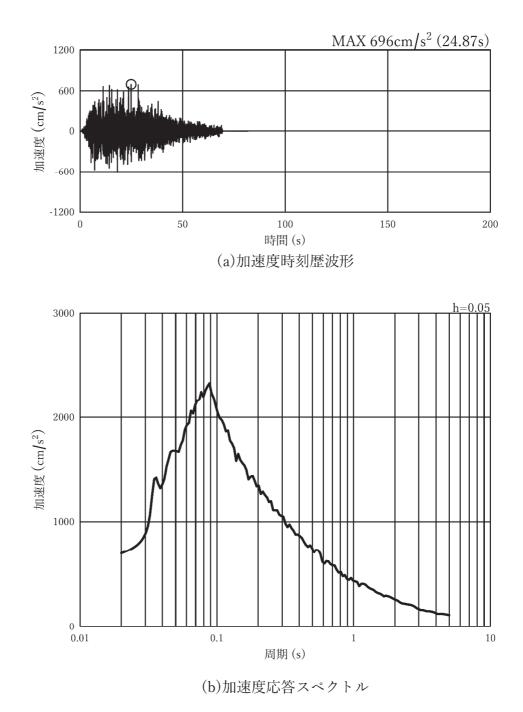
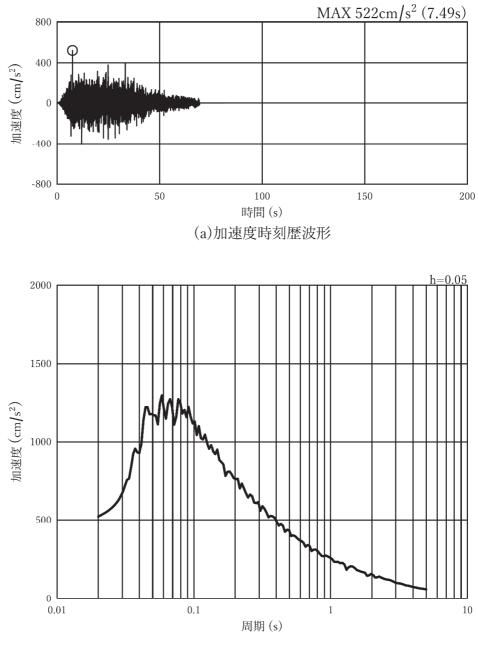



図 3-7(5) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-D3), 第2号機側

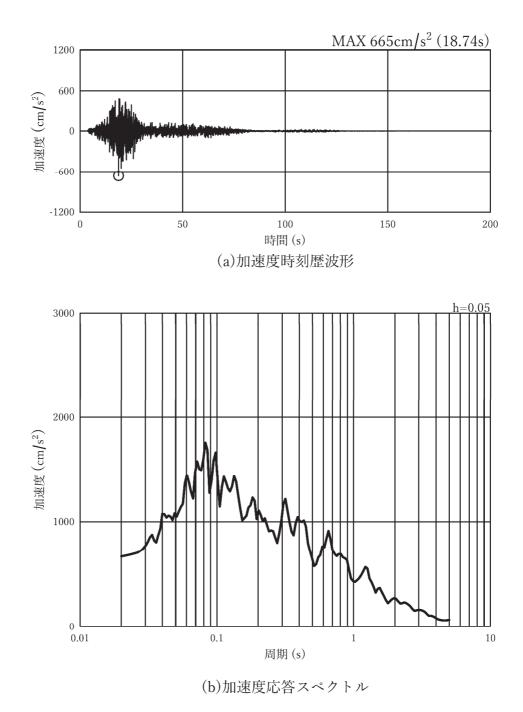


図 3-7(7) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-F1), 第2号機側

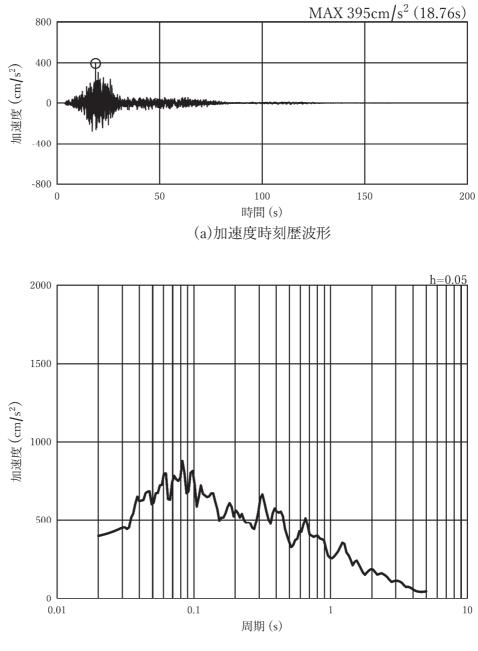


図 3-7(8) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-F1),第2号機側

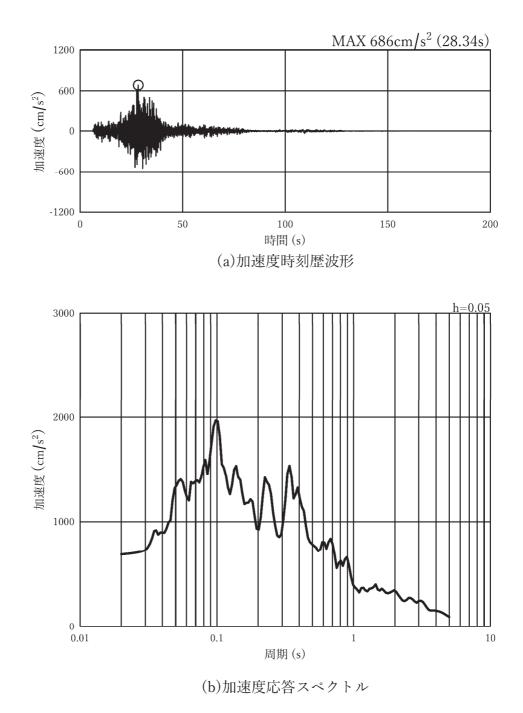


図 3-7(9) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-F2), 第2号機側

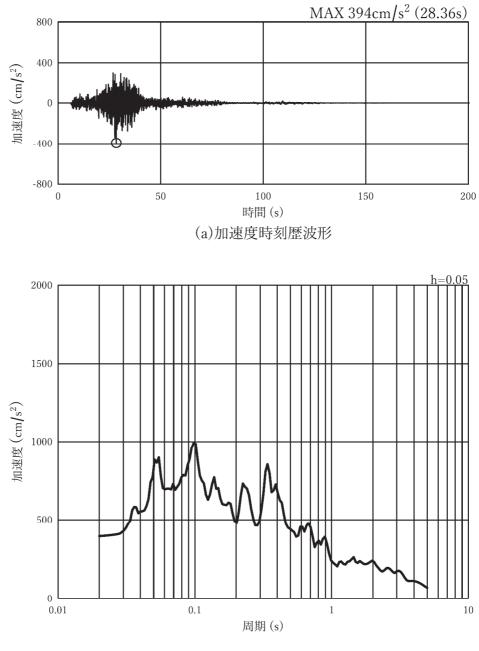


図 3-7(10) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-F2),第2号機側

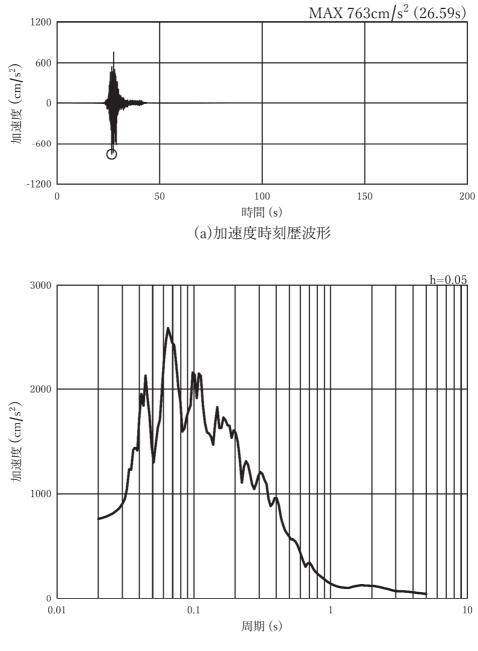


図 3-7(11) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-F3),第2号機側

図 3-7(12) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(鉛直方向:Ss-F3),第2号機側

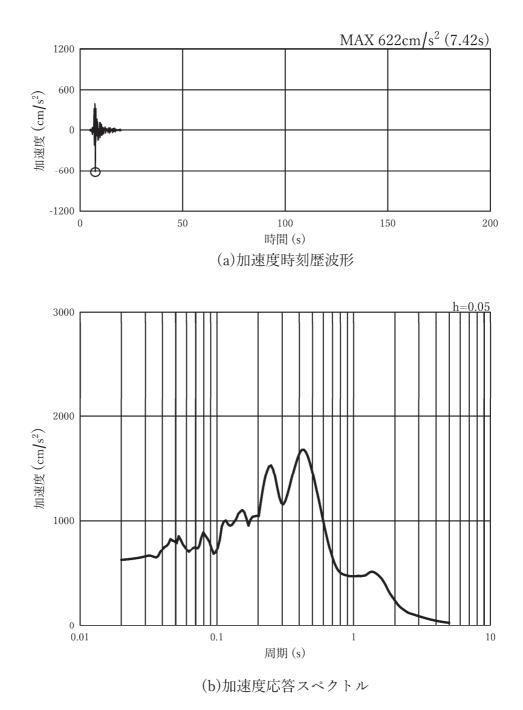


図 3-7(13) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-N1),第2号機側

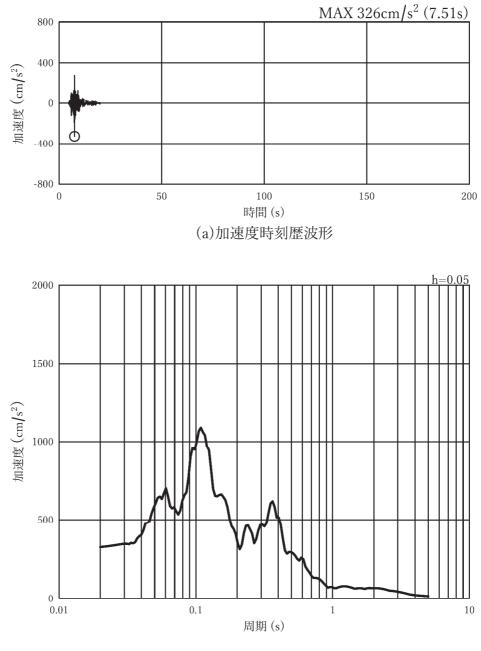


図 3-7(14) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (鉛直方向: Ss-N1),第2号機側

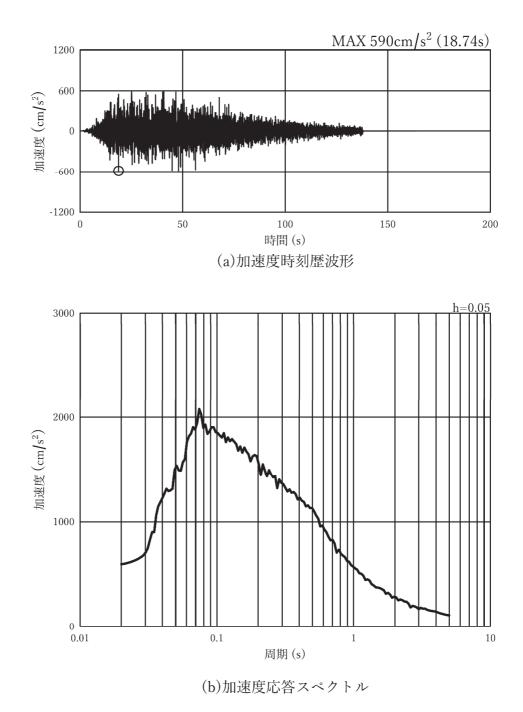


図 3-7(15) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-D1), 第3号機側

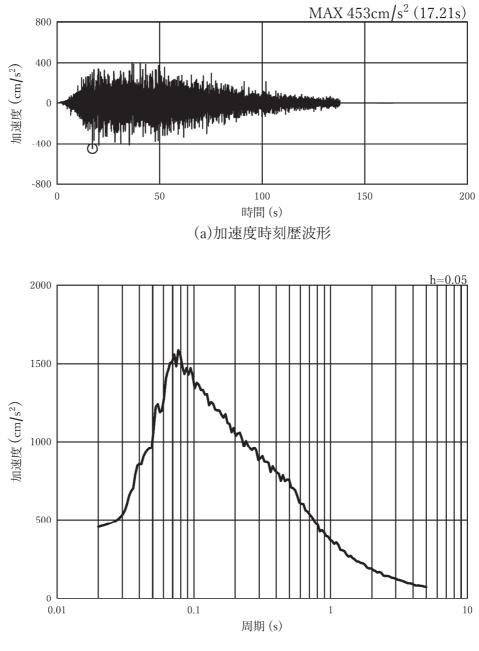


図 3-7(16) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-D1), 第3号機側

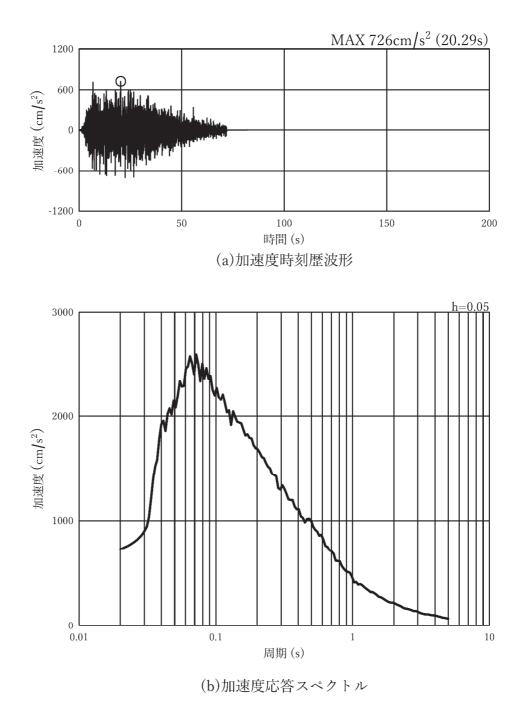


図 3-7(17) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-D2),第3号機側

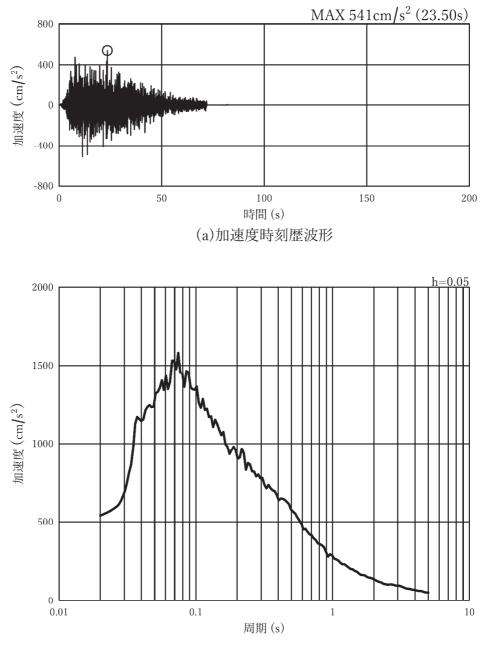


図 3-7(18) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-D2), 第3号機側

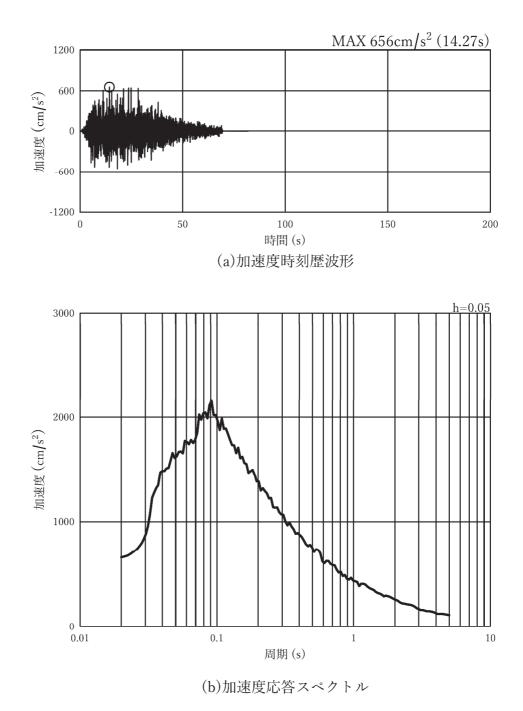


図 3-7(19) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-D3), 第3号機側

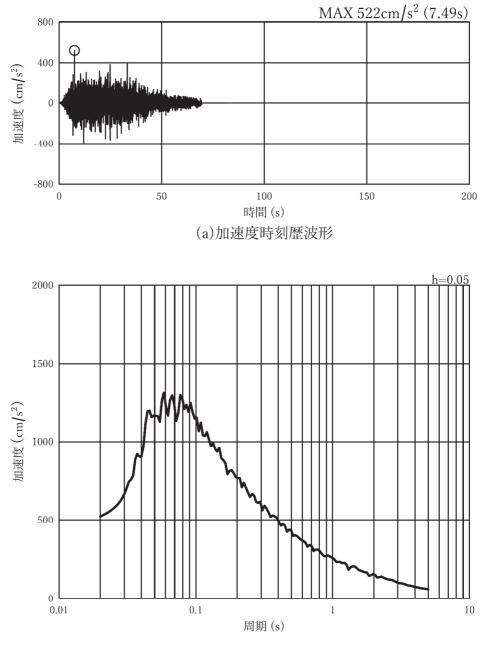


図 3-7(20) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-D3), 第3号機側

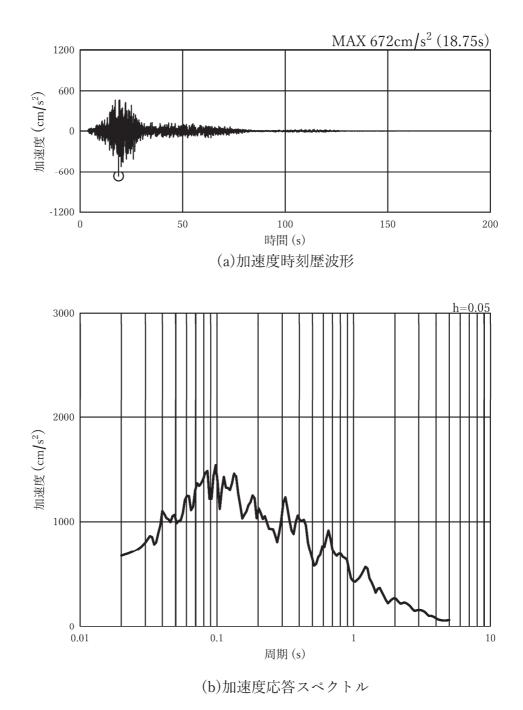


図 3-7(21) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-F1),第3号機側

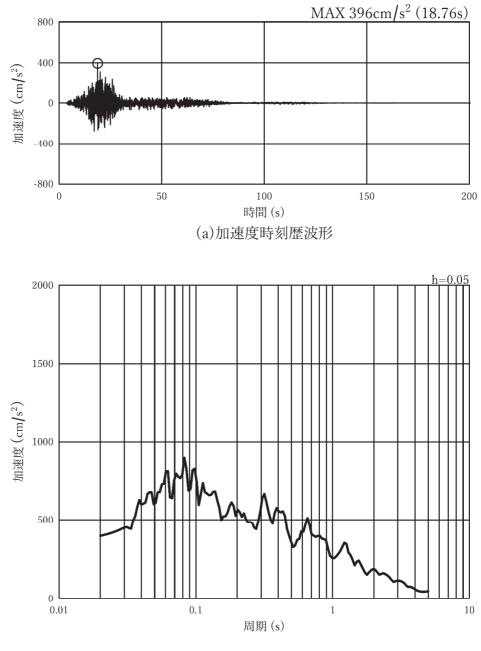


図 3-7(22) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (鉛直方向: Ss-F1),第3号機側

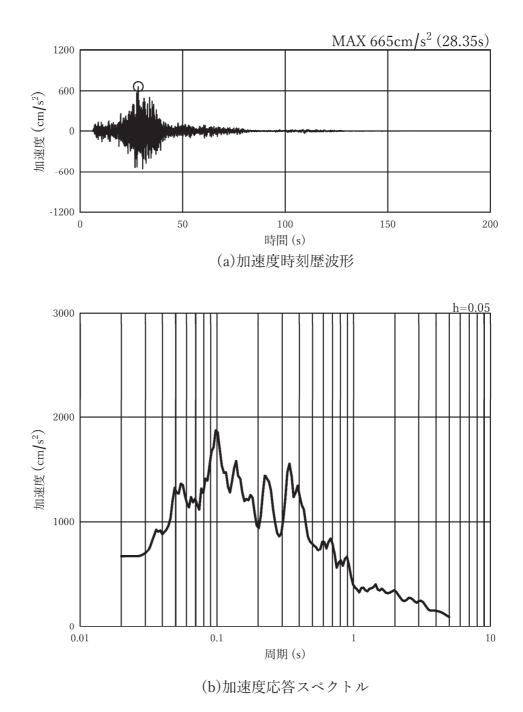


図 3-7(23) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-F2),第3号機側

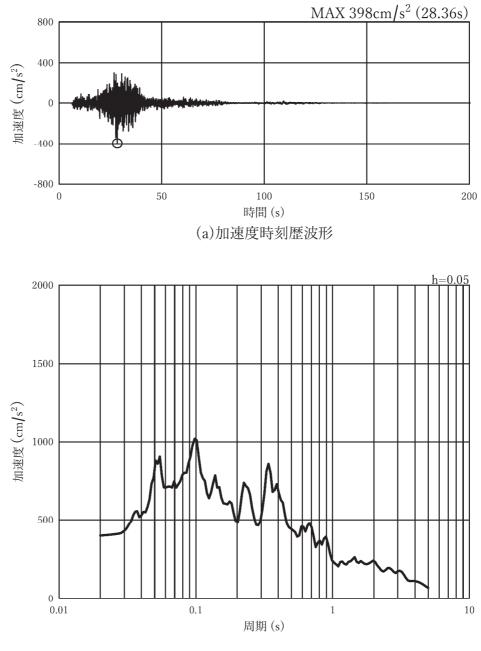


図 3-7(24) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-F2),第3号機側

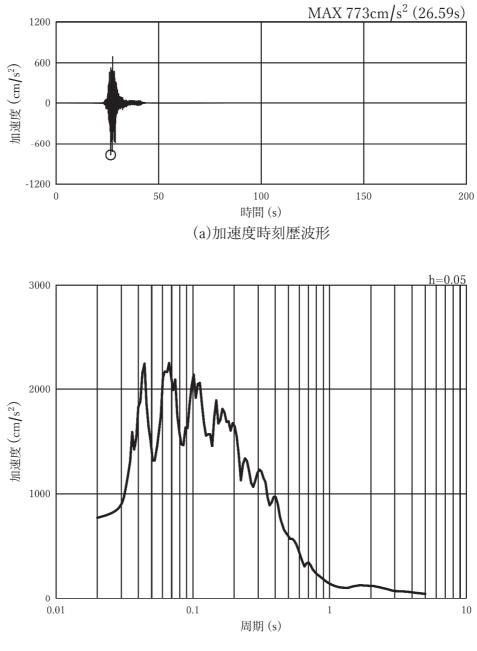
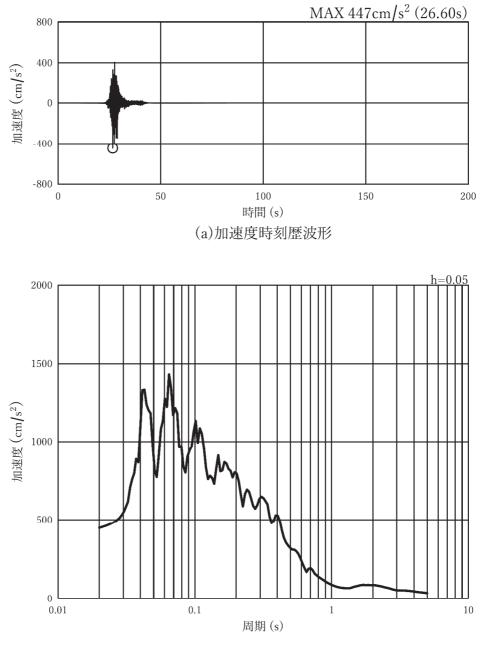



図 3-7(25) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-F3), 第3号機側

(b)加速度応答スペクトル

図 3-7(26) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-F3),第3号機側

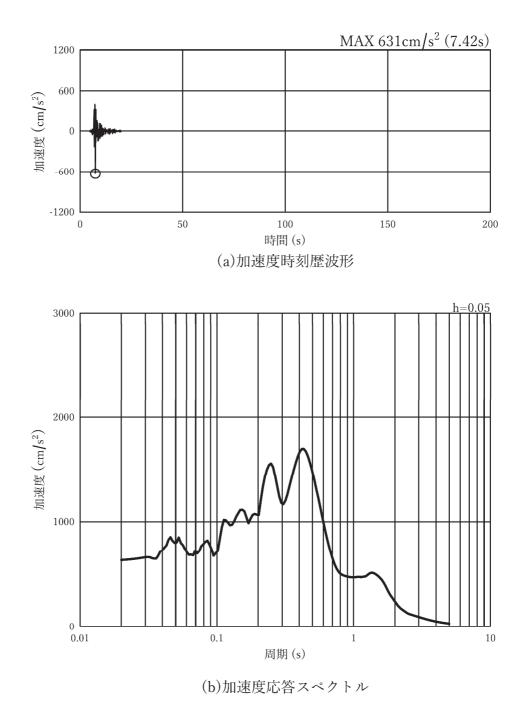
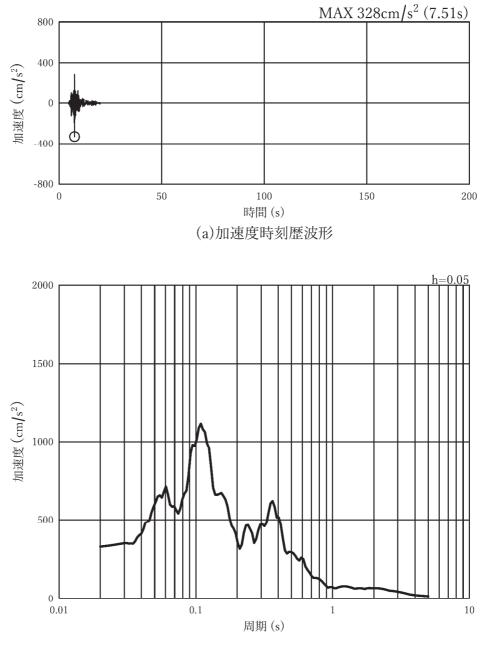



図 3-7(27) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-N1),第3号機側

(b)加速度応答スペクトル

図 3-7(28) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (鉛直方向:Ss-N1),第3号機側

3.4 許容限界

3.4.1 構造部材の健全性に対する許容限界

応力解析時に用いるコンクリート及び鉄筋の許容応力度を表 3-5 及び表 3-6 に 示す。

せん断破壊に対する許容限界は,表 3-6 及び表 3-7 に示すコンクリートと鉄筋 の短期許容応力度から算定した短期許容せん断力とする。

設計基準強度 f'c k(N/mm ²)	許容応力度 (N/mm ²)		短期許容応力度*1 (N/mm ²)	
20.5^{*2}	許容曲げ圧縮応力度σca	7.8	11.7	
20.5	許容せん断応力度 τ a	0.42	0.63	
23.5^{*2}	許容曲げ圧縮応力度σca	8.8	13.2	
23. 5	許容せん断応力度 τ a	0.45	0.67	
20	許容曲げ圧縮応力度σca	11.0	16.5	
30	許容せん断応力度 τ a	0.50	0.75	

表 3-6 コンクリートの許容応力度及び短期許容応力度

注記*1:コンクリート標準示方書により地震時の割り増し係数として1.5を 考慮する。

- *2:設計基準強度=18N/mm², 24N/mm²及び 27N/mm²の許容応力度から 線形補間により算出した。
 - ・ f ' c k = 20.5 (N/mm²) のとき σ c a = {7+(20.5-18) × (9-7) / (24-18)} ≒ 7.8 (N/mm²) τ a = {0.4+(20.5-18) × (0.45-0.4) / (24-18)} ≒ 0.42 (N/mm²) • f ' c k = 23.5 (N/mm²) のとき σ c a = {7+(23.5-18) × (9-7) / (24-18)} ≒ 8.83=13.25 (N/mm²) τ a = {0.4+(23.5-18) × (0.45-0.4) / (24-18)} ≒ 0.45 (N/mm²)

表 3-7 鉄筋 (SD345) の許容応力度及び短期許容応力度

鉄筋の種類	許容応力度(N/mm ²)		短期許容応力度* (N/mm ²)
SD345	許容引張応力度	196	294
注記*:コンクリート標準示方書により地震時の割り増し係数として1.5を			

考慮する。

3.4.2 基礎地盤の支持性能に対する許容限界

基礎地盤に発生する接地圧に対する許容限界は,添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」に基づき,岩盤の極限支持力とする。

基礎地盤の支持性能に対する許容限界を表 3-8 に示す。

評価項目	基礎地盤	許容限界(N/mm ²)
	狐崎部層*1	13.7
極限支持力	牧の浜部層*1	11.4
	C _L 級	1.8^{*2}

表 3-8 基礎地盤の許容限界

注記*1:CM級岩盤以上の岩盤が対象

*2:「日本道路協会 平成14年3月 道路橋示方書・同解説 Ⅰ共 通編・Ⅳ下部構造編」に基づき,一軸圧縮強度に応じた最 大地盤反力度の上限値より設定する。

なお、C_L級岩盤の許容限界について、以下のとおり設定する。

「日本道路協会 平成14年3月 道路橋示方書・同解説 I 共通編・IV下部構造編」 では、岩盤の極限支持力について、「岩盤の極限支持力は亀裂・割れ目等により左 右されるため、地盤定数の評価には不確定な要素が多く、支持力推定式により極限 支持力を算定するのは困難である。岩盤においては、設計の実情を考慮し、母岩の 一軸圧縮強度を目安として、最大地盤反力度を表-解10.3.2(下表)に示す上限値 程度に抑えるのがよい。」としている。

C_L級岩盤は軟岩・土丹に分類され,表-解 10.3.2 の最大地盤反力度は安全係数
 (常時:3,レベル1地震時:2)を考慮した値であることを踏まえ,

 $600 \text{kN}/\text{m}^2 \times 3=1.8 \text{N}/\text{mm}^2$

を許容限界として採用する。

表-解10.3.2 岩盤の最大地盤反力度の上限値

		最大地盤反力度 (kN/m ²)		目安とする値	
	岩盤の種類	常時	レベル1 地震時	一軸圧縮強度 (MN/m ²)	孔内水平載荷試験によ る変形係数(MN/m ²)
硬	亀裂が少ない	2,500	3,750	10 12 4	500 以上
岩	亀裂が多い	1,000	1,500	10以上	500 未満
	軟岩・土丹	600	900	1以上	500 木個

注)ただし、暴風時にはレベル1地震時の値を用いるものとする。

「日本道路協会 平成14年3 月 道路橋示方書・同解説 Ⅰ共通編・Ⅳ下部構造編」より抜粋

- 3.5 応力解析による評価方法
 - 3.5.1 構造部材の健全性に対する評価方法

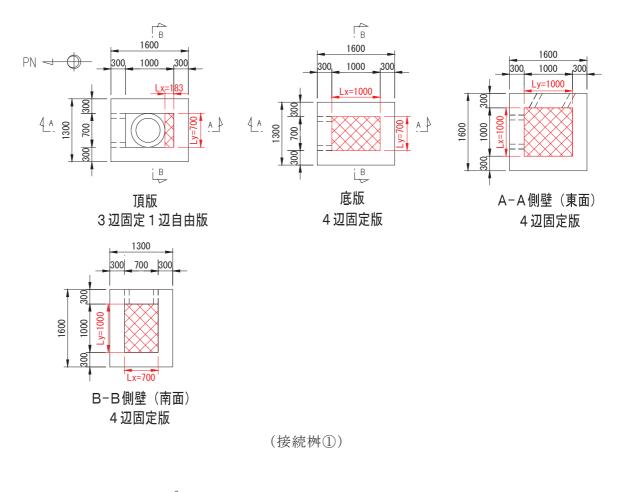
「3.3.1 解析方法」に示す解析方法に基づき,評価を実施する。

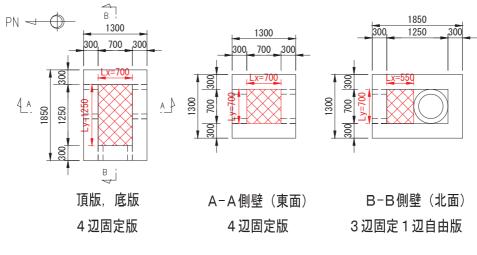
接続桝側壁にはヒューム管が接続されていること、並びに接続桝①・⑦には頂版 に開口が存在することを踏まえ評価を実施する。

(1) 解析モデル

頂版,底版及び側壁の検討においては,各面を壁により支持された版とみなし, 開口部の存在しない面については4辺固定版として,開口部の存在する面について は開口規模に応じ4辺固定版もしくは開口部と接する辺を自由端とした3辺固定1 辺自由版としてモデル化し,4辺固定版もしくは3辺固定1辺自由版の形状と応力 の関係を用いて曲げモーメント及びせん断力を算出する。なお,側壁の断面力の算 定に用いる分布荷重w(t/m²)は,前述のとおり照査する面に作用する荷重の平均 値とする。

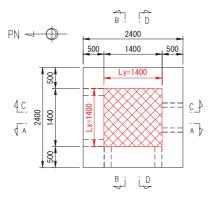
接続桝を構成するコンクリート及び鉄筋の物性値を表 3-9 に,解析モデルを図 3-8 に示す。

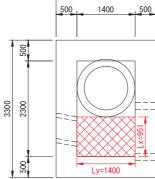

版解析の具体的な手順は以下の通り。


- 「3.3 解析方法」に示す手順にて,接続桝各面に作用する分布荷重w(t/m²) を算出する。
- ② 接続桝の構造図(図 3-2)より,各面が4辺固定版もしくは3辺固定1辺 自由版かを判定する。

ヒューム管は設計基準強度 50N/mm²のコンクリートにより(接続桝の設計 基準強度:20.5~30N/mm²)製造され,かつ円形のため外圧に対して堅固な構 造であり,基準地震動Ssに対して十分な耐震性を有している(詳細は 「VI-2-13-2 地下水位低下設備ドレーンの耐震性についての計算書」参照)。 さらに,接続桝との接合部には開口補強筋が設置され,一体構造として施工 している(図3-9)ことから,接続桝各辺は拘束された固定条件と見なされ る。

- ③ Lx(短辺), Ly(長辺)を採寸する。(図 3-8)
- ④ 版の固定条件に応じた応力図(図 3-10)から、当該版のLy/LxのM、
 Qの係数を読み取り、①で算出した分布荷重を用い、版に作用する曲げモー
 メント及びせん断力を算出する。
- ⑤ 算出された曲げモーメント及びせん断力から、応力を算定し、許容限界との比較を行う。


なお,各版の応力度算定には,解析コード「RC 断面計算 Ver8.0.7」を使用する。 解析コードの検証及び妥当性確認の概要については,添付書類「VI-5 計算機プログ ラム(解析コード)の概要」に示す。



(接続桝2)

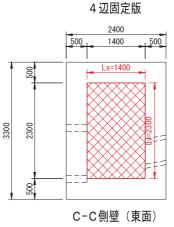
図 3-8(1) 接続桝の解析モデル(Lx:短辺,Ly:長辺)(単位:mm)

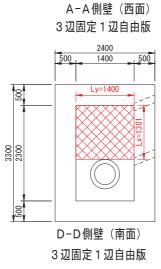
頂版,底版

2400

500

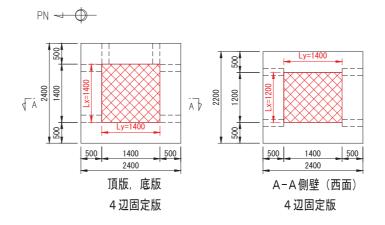
500

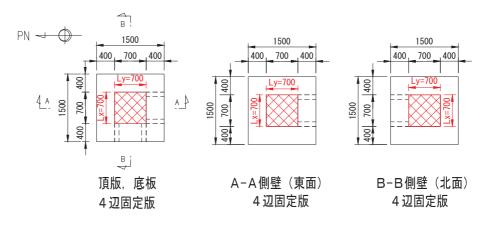

2400


1400

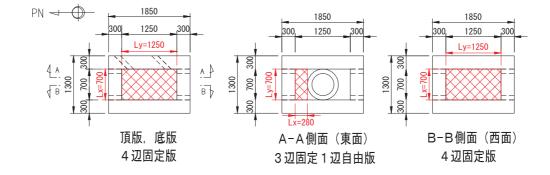
Ly=1400

500


3 辺固定 1 辺自由版

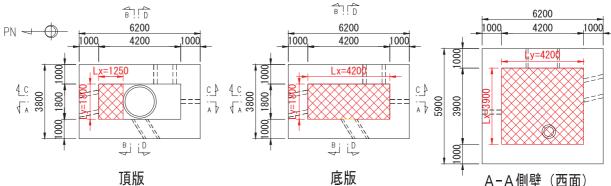

4 辺固定版

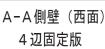
(接続桝③)

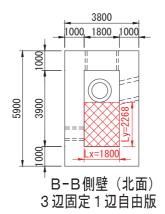


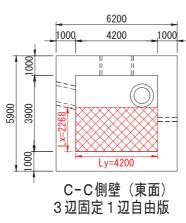
(接続桝④)

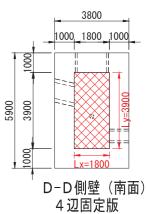
図 3-8(2) 接続桝の解析モデル(Lx:短辺,Ly:長辺)(単位:mm)




(接続桝⑥)


図 3-8(3) 接続桝の解析モデル(Lx:短辺,Ly:長辺)(単位:mm)




頂版 3 辺固定 1 辺自由版

4 辺固定版

(接続桝⑦)

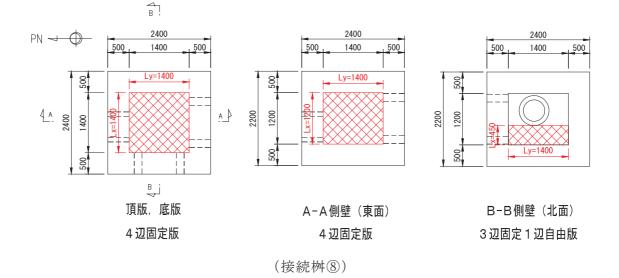
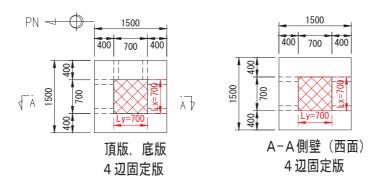



図 3-8(4) 接続桝の解析モデル(Lx:短辺,Ly:長辺)(単位:mm)

(接続桝⑨)

図 3-8(5) 接続桝の解析モデル(Lx:短辺,Ly:長辺)(単位:mm)

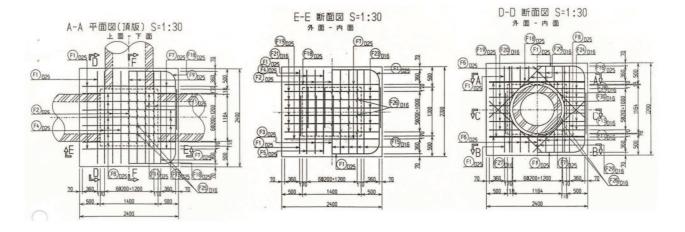


図 3-9 接続桝 (D-3) の配筋図(上)及び配筋状況(下)

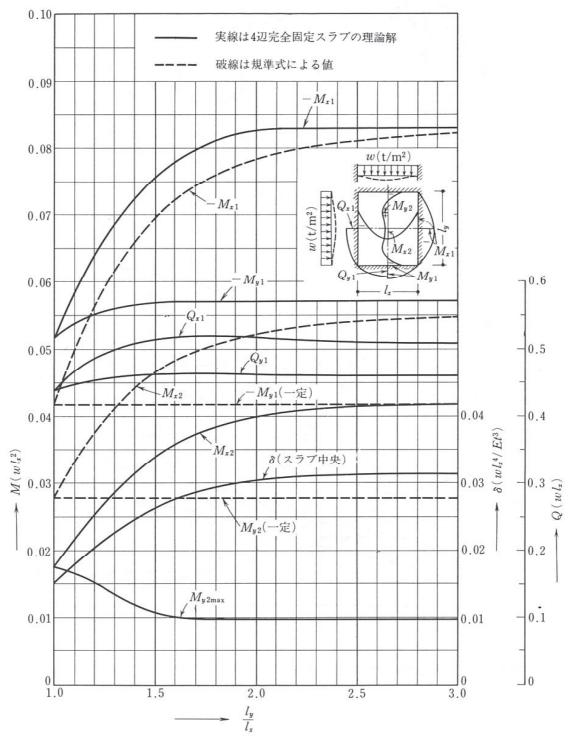


図 3-10(1) 等分布荷重時 4 辺固定スラブの応力図と中央点のたわみδ (ν=0) (日本建築学会 1991 年 鉄筋コンクリート構造計算規準・同解説))

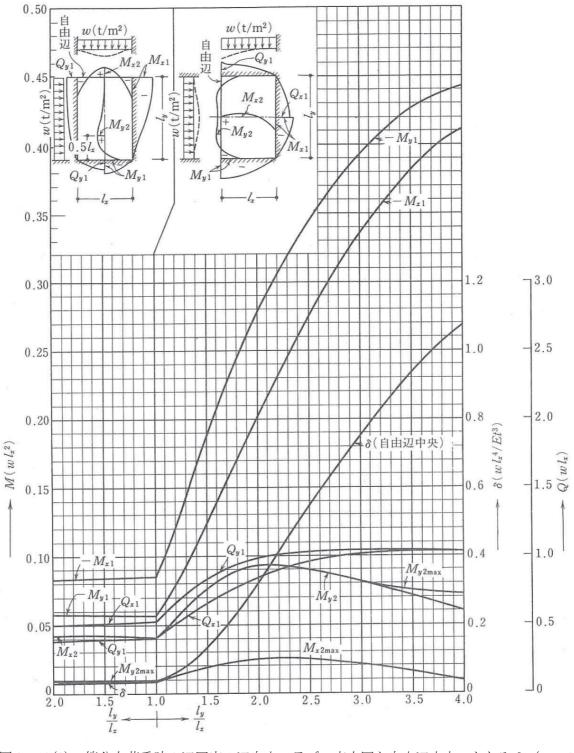


図 3-10(2) 等分布荷重時 3 辺固定 1 辺自由スラブの応力図と自由辺中央のたわみδ (ν=0) (日本建築学会 1991 年 鉄筋コンクリート構造計算規準・同解説)

	当日四	• / / / / / / / / / / / / / / / / / / /	安航神を構成するー	A J 9
	単位体積		コンクリート	
	重量	鉄筋	設計基準強度	接続桝
	(kN/m^3)		f'c k (N/mm ²)	
	24.0	SD345	20.5	1
	24.0	SD345	20.5	2
	24.0	SD345	20.5	3
	24.0	SD345	20.5	4
	24.0	SD345	20.5	5
	24.0	SD345	23.5	6
	24.0	SD345	23.5	7
	24.0	SD345	23.5	8
	24.0	SD345	30.0*	9
- - -	24. 0 24. 0 24. 0 24. 0 24. 0 24. 0 24. 0 24. 0	SD345 SD345	20. 5 20. 5 20. 5 20. 5 20. 5 20. 5 20. 5 20. 5 23. 5 23. 5 23. 5 23. 5	2 3 4 5 6 7 8

表 3-9 接続桝を構成するコンクリート及び鉄筋の物性値

注記*:新設する接続桝

3.5.2 基礎地盤の支持性能に対する評価方法

基礎地盤の支持性能に係る評価は接続桝の支持地盤を対象とし,基礎地盤に生じ る応力度(接地圧)が許容限界以下であることを確認する。

4. 耐震評価結果

4.1 構造部材の健全性に対する評価結果

基準地震動Ss及び各解析ケースにおける曲げモーメント, せん断及び地盤の支持性能の最大照査値の一覧を表4-1~4-3, 各ケースにおける鉛直・水平方向の設計用震度(接続桝下端位置)の一覧を表4-4示す。

また,照査値が最大となるケースの加速度時刻歴波形を図4-1,各ケースにおける曲 げモーメント,せん断力,地盤の支持性能に対する照査結果の詳細を表4-5~4-7に示 す。

		ケース①	ケース②	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	基本ケース	つき (+1σ)	つき (−1 σ)	
		基本クース	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.30	0.30	0.30	
	S s - D 2	0.30	_	—	
+J/1	S s - D 3	0.29	_	—	
地震	S s - F 1	0.28	_	—	
動	S s - F 2	0.29	_	—	
	S s - F 3	0.29		_	
	S s - N 1	0.28	_	_	

表 4-1(1) 曲げモーメント照査値(接続桝①)

表 4-1(2) 曲げモーメント照査値(接続桝②)

		ケース①	ケース②	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	基本ケース	つき (+1σ)	つき (-1 σ)
		本本クロス	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.35	0.35	0.35
	S s - D 2	0.35	_	_
+H1	S s - D 3	0.34		—
地震動	S s - F 1	0.33	_	—
則	S s - F 2	0.34	_	_
	S s - F 3	0.34		_
	S s - N 1	0.35	_	_

r					
		ケース①	ケース2	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	基本ケース	つき (+1 σ)	つき (−1σ)	
		本本ケース	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.22	0.22	0.22	
	S s - D 2	0.21	_	—	
+J/1	S s - D 3	0.21	_	—	
地震	S s - F 1	0.20	_	—	
動	S s - F 2	0.20	_	_	
	S s - F 3	0.21	_	_	
	S s - N 1	0.20		_	

表 4-1(3) 曲げモーメント照査値(接続桝③)

表 4-1(4) 曲げモーメント照査値(接続桝④)

		ケース①	ケース②	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	基本ケース	つき (+1σ)	つき (−1σ)
		金平り一へ	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.38	0.37	0.38
	S s - D 2	0.37	_	_
地	S s - D 3	0.36	_	_
震	S s - F 1	0.35	—	_
動	S s - F 2	0.35	_	—
	S s - F 3	0.36	_	_
	S s - N 1	0.34		_

		ケース①	ケース2	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	基本ケース	つき (+1σ)	つき (−1σ)	
		基本クース	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.26	0.26	0.26	
	S s - D 2	0.26	—	—	
+th	S s - D 3	0.25	—	—	
地震	S s - F 1	0.24	—	—	
動	S s - F 2	0.24	_	_	
	S s - F 3	0.25	_	_	
	S s - N 1	0.24	_	_	

表 4-1(5) 曲げモーメント照査値(接続桝⑤)

表 4-1(6) 曲げモーメント照査値(接続桝⑥)

		ケース①	ケース②	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	基本ケース	つき (+1σ)	つき (−1σ)
		基本クース	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.40	0.40	0.40
	S s - D 2	0.39	_	_
地	S s - D 3	0.38	_	—
震	S s - F 1	0.37	_	—
動	S s - F 2	0.37	_	_
	S s - F 3	0.38	_	_
	S s - N 1	0.36		_

		ケース①	ケース②	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	基本ケース	つき (+1σ)	つき (−1σ)	
		基本クース	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.86	0.84	0.86	
	S s - D 2	0.79	_	—	
+H1	S s - D 3	0.79	_	—	
地震	S s - F 1	0.75	_	—	
動	S s - F 2	0.75	_	—	
	S s - F 3	0.78		_	
	S s - N 1	0.68	_	_	

表 4-1(7) 曲げモーメント照査値(接続桝⑦)

表 4-1(8) 曲げモーメント照査値(接続桝⑧)

		ケース①	ケース2	ケース③
格型 十二 km 、 マ			地盤物性のばら	地盤物性のばら
	解析ケース	基本ケース	つき(+1σ) を考慮した解析	つき(-1σ) を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.40	0.40	0.40
	S s - D 2	0.39	_	—
+H1	S s - D 3	0.37	_	—
地 震 動	S s - F 1	0.36	—	—
到	S s - F 2	0.35	_	—
	S s - F 3	0.38	_	_
	S s - N 1	0.34	_	_

_		ケース①	ケース②	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	甘木ないフ	つき (+1σ)	つき (−1σ)	
		基本ケース	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.21	0.21	0.21	
	S s - D 2	0.21	—	—	
μh	S s - D 3	0.21	—	—	
地震	S s - F 1	0.20	—	—	
動	S s - F 2	0.20	—	—	
	S s - F 3	0.20		_	
	S s - N 1	0.19	_	—	

表 4-1(9) 曲げモーメント照査値(接続桝⑨)

		ケース①	ケース②	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	甘まないス	つき (+1 σ)	つき (−1 σ)	
		基本ケース	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.66	0.66	0.66	
	S s - D 2	0.65	_	—	
+lh	S s - D 3	0.63	_	—	
地震	S s - F 1	0.62	_	—	
動	S s - F 2	0.62	_	_	
	S s - F 3	0.64	_	_	
	S s - N 1	0.60	_	_	

表 4-2(1) せん断照査値(接続桝①)

表 4-2(2) せん断照査値(接続桝②)

		ケース①	ケース2	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	甘まないス	つき (+1 σ)	つき (-1 σ)
		基本ケース	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.75	0.75	0.75
	S s - D 2	0.74	_	—
地	S s - D 3	0.72	_	—
震	S s - F 1	0.70	_	—
動	S s - F 2	0.70	_	—
	S s - F 3	0.72		_
	S s - N 1	0.68	_	_

	秋4 2(3) ビル阿照直直()安航炉(の)				
		ケース①	ケース②	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	基本ケース	つき (+1 σ)	つき (−1σ)	
		基本クース	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.51	0.52	0.51	
	S s - D 2	0.51	_	—	
+J/1	S s - D 3	0.50	_	—	
地震	S s - F 1	0.48	_	—	
動	S s - F 2	0.48		_	
	S s - F 3	0.49	_	_	
	S s - N 1	0.47	_	_	

表 4-2(3) せん断照査値(接続桝③)

表 4-2(4) せん断照査値(接続桝④)

_		ケース①	ケース2	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	基本ケース	つき (+1 o)	つき (−1σ)
		金平り一へ	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.53	0.53	0.53
	S s - D 2	0.52	_	_
+H1	S s - D 3	0.51		_
地 震 動	S s - F 1	0.49	_	_
到	S s - F 2	0.49	_	_
	S s - F 3	0.50	_	_
	S s - N 1	0.48	_	_

	秋4 2(5) ビル阿照直直()安航炉(0)				
		ケース①	ケース②	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	基本ケース	つき (+1 σ)	つき (−1σ)	
		本本ケース	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.42	0.42	0.42	
	S s - D 2	0.41	_	—	
+J/1	S s - D 3	0.40	_	—	
地震	S s - F 1	0.39	_	—	
動	S s - F 2	0.39			
	S s - F 3	0.40	_	_	
	S s - N 1	0.38	_	_	

表 4-2(5) せん断照査値(接続桝⑤)

表 4-2(6) せん断照査値(接続桝⑥)

		ケース①	ケース2	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	甘まないス	つき (+1σ)	つき (-1 σ)
		基本ケース	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.96	0.97	0.96
	S s - D 2	0.95	_	—
地	S s - D 3	0.92	_	—
震	S s - F 1	0.87	—	—
動	S s - F 2	0.87	_	—
	S s - F 3	0.90	_	_
	S s - N 1	0.83	_	_

		ケース①	ケース②	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	甘まないス	つき (+1 σ)	つき (−1σ)	
		基本ケース	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.94	0.93	0.94	
	S s - D 2	0.87	_	—	
+lh	S s - D 3	0.87	_	—	
地震	S s - F 1	0.83	_	—	
動	S s - F 2	0.83	—	—	
	S s - F 3	0.86		_	
	S s - N 1	0.74		_	

表 4-2(7) せん断照査値(接続桝⑦)

表 4-2(8) せん断照査値(接続桝⑧)

		ケース①	ケース2	ケース③
-			地盤物性のばら	地盤物性のばら
	解析ケース	甘まないス	つき (+1σ)	つき (-1 σ)
		基本ケース	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.49	0.49	0.49
	S s - D 2	0.48	_	—
+H1	S s - D 3	0.47	_	—
地震動	S s - F 1	0.45	_	—
到	S s - F 2	0.45	_	—
	S s - F 3	0.47		_
	S s - N 1	0.44	_	_

_		ケース①	ケース②	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	基本ケース	つき (+1σ)	つき (−1σ)
		基本クース	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.32	0.32	0.32
	S s - D 2	0.32	_	—
+J/1	S s - D 3	0.31	_	—
地震動	S s - F 1	0.30	—	—
到	S s - F 2	0.30	_	—
	S s - F 3	0.31	_	_
	S s - N 1	0.29	_	_

表 4-2(9) せん断照査値(接続桝⑨)

_		ケース①	ケース2	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	甘まないス	つき (+1 σ)	つき (-1 σ)
		基本ケース	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.06	0.06	0.06
	S s - D 2	0.06	_	—
+H1	S s - D 3	0.06	_	—
地震	S s - F 1	0.06	_	—
動	S s - F 2	0.06	_	—
	S s - F 3	0.06		
	S s - N 1	0.06		_

表 4-3(1) 地盤の支持性能照査値(接続桝①)

表 4-3(2) 地盤の支持性能照査値(接続桝②)

		ケース①	ケース②	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	基本ケース	つき (+1σ)	つき (−1σ)	
		金平り一へ	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.06	0.06	0.06	
	S s - D 2	0.06	_	_	
+H1	S s - D 3	0.06		—	
地震	S s - F 1	0.06	—	—	
動	S s - F 2	0.06	—	—	
	S s - F 3	0.06	_	_	
	S s - N 1	0.06	_	_	

		ケース①	ケース2	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	基本ケース	つき (+1 σ)	つき (-1 σ)	
			を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.06	0.06	0.06	
	S s - D 2	0.06	_	—	
Ηh	S s - D 3	0.06	_	—	
地震	S s - F 1	0.06	_	—	
動	S s - F 2	0.06	_	—	
	S s - F 3	0.06			
	S s - N 1	0.06		_	

表 4-3(3) 地盤の支持性能照査値(接続桝③)

表 4-3(4) 地盤の支持性能照査値(接続桝④)

		ケース①	ケース2	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	基本ケース	つき (+1σ)	つき (−1σ)	
		金平り一へ	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.07	0.07	0.07	
	S s - D 2	0.06	_	_	
+H1	S s - D 3	0.06		—	
地震	S s - F 1	0.06	—	—	
動	S s - F 2	0.06	—	—	
	S s - F 3	0.06	_	_	
	S s - N 1	0.06	_	_	

		ケース①	ケース2	ケース③	
			地盤物性のばら	地盤物性のばら	
	解析ケース	甘まないス	つき (+1 σ)	つき (-1 σ)	
		基本ケース	を考慮した解析	を考慮した解析	
			ケース	ケース	
	地盤物性	平均值	平均值+1σ	平均值-1σ	
	S s - D 1	0.06	0.06	0.06	
	S s - D 2	0.06	_	—	
Ηh	S s - D 3	0.06	_	—	
地震	S s - F 1	0.06	_	—	
動	S s - F 2	0.06			
	S s - F 3	0.06			
	S s - N 1	0.06	_	_	

表 4-3(5) 地盤の支持性能照査値(接続桝⑤)

表 4-3(6) 地盤の支持性能照査値(接続桝⑥)

		ケース①	ケース2	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	甘木ないフ	つき (+1σ)	つき (−1σ)
		基本ケース	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.50	0.50	0.50
	S s - D 2	0.50	—	—
地	S s - D 3	0.50	—	—
震	S s - F 1	0.45	—	_
動	S s - F 2	0.45	—	_
	S s - F 3	0.45	_	_
	S s - N 1	0.45		

		ケース①	ケース②	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	甘木なニッ	つき (+1σ)	つき (−1 σ)
		基本ケース	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.10	0.10	0.10
	S s - D 2	0.09	_	—
+H1	S s - D 3	0.09	_	—
地震	S s - F 1	0.09	_	—
動	S s - F 2	0.09	_	—
	S s - F 3	0.09		
	S s - N 1	0.08		_

表 4-3(7) 地盤の支持性能照査値(接続桝⑦)

表 4-3(8) 地盤の支持性能照査値(接続桝⑧)

		ケース①	ケース2	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	甘まないス	つき (+1σ)	つき (-1 σ)
		基本ケース	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.08	0.08	0.08
	S s - D 2	0.08	—	—
Η	S s - D 3	0.08	—	—
地震	S s - F 1	0.08	—	_
動	S s - F 2	0.08	—	_
	S s - F 3	0.08	_	_
	S s - N 1	0.08		_

		ケース①	ケース②	ケース③
			地盤物性のばら	地盤物性のばら
	解析ケース	基本ケース	つき (+1σ)	つき (−1 σ)
		基本クース	を考慮した解析	を考慮した解析
			ケース	ケース
	地盤物性	平均值	平均值+1σ	平均值-1σ
	S s - D 1	0.50	0.50	0.50
	S s - D 2	0.50	_	—
Ηh	S s - D 3	0.50	_	—
地震	S s - F 1	0.50	_	—
動	S s - F 2	0.45	_	—
	S s - F 3	0.50		
	S s - N 1	0.45	_	_

表 4-3(9) 地盤の支持性能照査値(接続桝⑨)

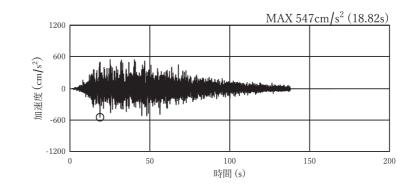


図 4-1(1) 加速度時刻歴波形(接続桝①) (水平方向: S s - D 1:解析ケース②)

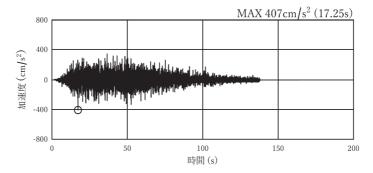


図 4-1(2) 加速度時刻歴波形(接続桝①)(鉛直方向: S s - D 1:解析ケース②)

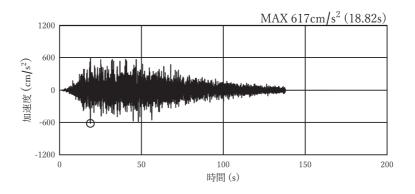


図 4-1(3) 加速度時刻歴波形(接続桝②) (水平方向: S s - D 1:解析ケース②)

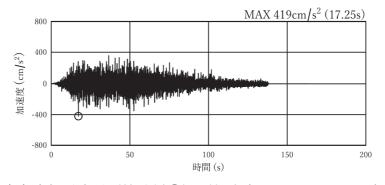


図 4-1(4) 加速度時刻歴波形(接続桝②)(鉛直方向: S s - D 1:解析ケース②)

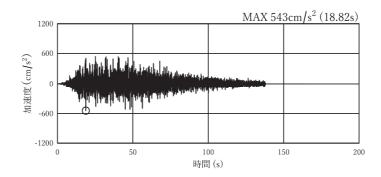


図 4-1(5) 加速度時刻歴波形(接続桝③) (水平方向: S s - D 1:解析ケース②)

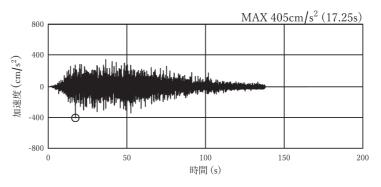


図 4-1(6) 加速度時刻歴波形(接続桝③) (鉛直方向: S s - D 1:解析ケース②)

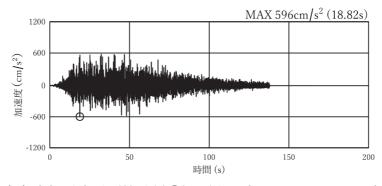


図 4-1(7) 加速度時刻歴波形(接続桝④) (水平方向: S s - D 1:解析ケース②)

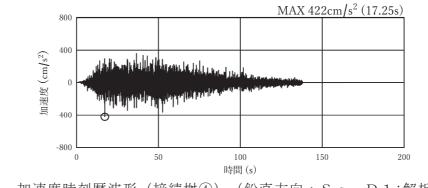


図 4-1(8) 加速度時刻歴波形(接続桝④)(鉛直方向: S s - D 1:解析ケース②)

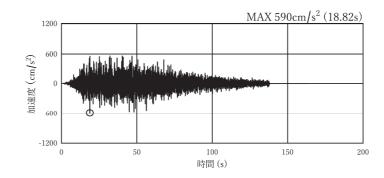


図 4-1(9) 加速度時刻歴波形(接続桝⑤) (水平方向: S s - D 1:解析ケース②)

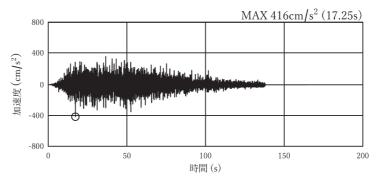


図 4-1(10) 加速度時刻歴波形(接続桝⑤)(鉛直方向: S s - D 1:解析ケース②)

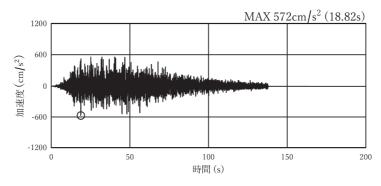


図 4-1(11) 加速度時刻歴波形(接続桝⑥) (水平方向: S s - D 1:解析ケース②)

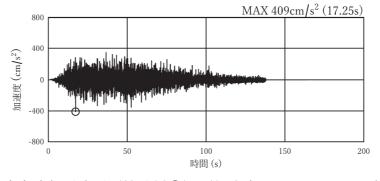


図 4-1(12) 加速度時刻歴波形(接続桝⑥)(鉛直方向: S s - D 1:解析ケース②)

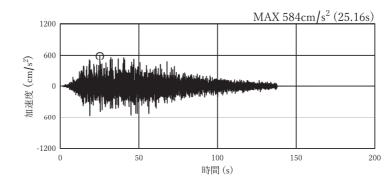


図 4-1(13) 加速度時刻歴波形(接続桝⑦) (水平方向: S s - D 1:解析ケース③)

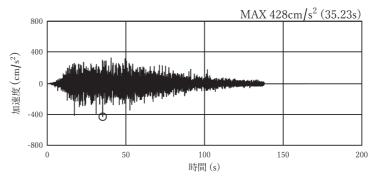


図 4-1(14) 加速度時刻歴波形(接続桝⑦)(鉛直方向: S s - D 1:解析ケース③)

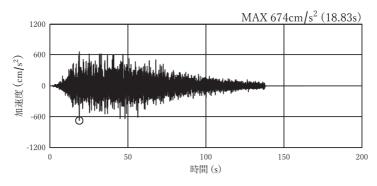


図 4-1(15) 加速度時刻歴波形(接続桝⑧) (水平方向: S s - D 1:解析ケース③)

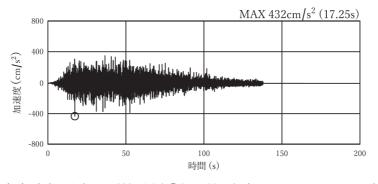


図 4-1(16) 加速度時刻歴波形(接続桝⑧) (鉛直方向: S s - D 1:解析ケース③)

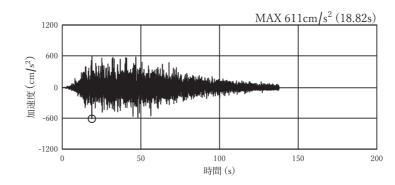


図 4-1(17) 加速度時刻歴波形(接続桝⑨) (水平方向: S s - D 1:解析ケース②)

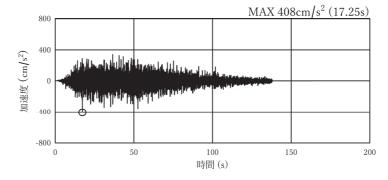


図 4-1(18) 加速度時刻歴波形(接続桝⑨) (鉛直方向: S s - D 1:解析ケース②)

		1	
入力地震動	解析ケース	鉛直震度 k v	水平震度 k h
S s - D 1		0.42 (0.414)	0.05
S s - D 2		0.40	0.03
S s - D 3	4. 7 (1)	0.36	0.10
S s - F 1	ケース①	0.33	0.19
S s - F 2	(平均值)	0.34	0.38
S s - F 3		0.37	0.05
S s - N 1		0.29	0.34
S s - D 1	ケース②(+1σ)	0.42 (0.415)	0.05
	ケース③ (-1σ)	0.41	0.05

表 4-4(1) 設計用震度(接続桝①)

表 4-4(2) 設計用震度(接続桝②)

入力地震動	解析ケース	鉛直震度 k v	水平震度 k h
S s - D 1		0.43 (0.426)	0.07
S s - D 2		0.41	0.01
S s - D 3		0.37	0.08
S s - F 1	ケース①	0.33	0.16
S s - F 2		0.34	0.35
S s - F 3		0.38	0.07
S s - N 1		0.30	0.32
ケース②	ケース②	0.43 (0.428)	0.07
S s - D 1	ケース③	0.43 (0.424)	0.07

表 4-4(3) 設計用震度(接続桝③)

入力地震動	解析ケース	鉛直震度 k v	水平震度 k h
S s - D 1		0.42 (0.411)	0.04
S s - D 2		0.40	0.03
S s - D 3	ケース①	0.37	0.10
S s - F 1		0.33	0.20
S s - F 2		0.33	0.40
S s - F 3		0.36	0.07
S s - N 1		0.28	0.35
	ケース②	0.42 (0.414)	0.05
S s - D 1	ケース③	0.41	0.04

入力地震動	解析ケース	鉛直震度 k v	水平震度 k h	
S s - D 1		0.43 (0.429)	0.07	
S s - D 2		0.41	0.01	
S s - D 3		0.38	0.08	
S s - F 1	ケース①	0.33	0.15	
S s - F 2		0.33	0.34	
S s - F 3		0.37	0.09	
S s - N 1		0.29	0.32	
S s - D 1	ケース②	0.43 (0.430)	0.07	
55-01	ケース③	0.43 (0.428)	0.06	

表 4-4(4) 設計用震度(接続桝④)

表 4-4(5) 設計用震度(接続桝⑤)

入力地震動	解析ケース	鉛直震度 k v	水平震度 k h			
S s - D 1		0.43 (0.423)	0.06			
S s - D 2		0.41	0.01			
S s - D 3		0.37	0.09			
S s - F 1	ケース①	0.33	0.16			
S s - F 2		0.33	0.36			
S s - F 3		0.37	0.05			
S s - N 1		0.29	0.33			
S s - D 1	ケース②	0.43 (0.424)	0.07			
55-01	ケース③	0.43 (0.422)	0.06			

表 4-4(6) 設計用震度(接続桝⑥)

入力地震動	解析ケース	鉛直震度 k v	水平震度 k h
S s - D 1		0.42 (0.415)	0.05
S s - D 2		0.40	0.02
S s - D 3		0.37	0.10
S s - F 1	ケース①	0.33	0.17
S s - F 2		0.32	0.37
S s - F 3		0.36	0.03
S s - N 1		0.28	0.33
S . D 1	ケース②	0.42 (0.417)	0.05
S s - D 1	ケース③	0.42 (0.415)	0.05

入力地震動	解析ケース	鉛直震度 k v	水平震度 k h	
S s - D 1		0.44 (0.432)	0.29	
S s - D 2		0.37	0.08	
S s - D 3		0.37	0.12	
S s - F 1	ケース①	0.32	0.20	
S s - F 2		0.32	0.14	
S s - F 3		0.36	0.13	
S s - N 1		0.23	0.32	
S s - D 1	ケース②	0.43	0.27	
5 S - D I	ケース③	0.44 (0.437)	0.32	

表 4-4(7) 設計用震度(接続桝⑦)

表 4-4(8) 設計用震度(接続桝⑧)

入力地震動	解析ケース	鉛直震度 k v	水平震度 k h			
S s - D 1		0.44	0.09			
S s - D 2		0.42	0.02			
S s - D 3		0.38	0.03			
S s - F 1	ケース①	0.33	0.12			
S s - F 2		0.33	0.28			
S s - F 3		0.38	0.18			
S s - N 1		0.30	0.28			
S s - D 1	ケース②	0.44	0.10			
55-D1	ケース③	0.45	0.09			

表 4-4(9) 設計用震度(接続桝⑨)

入力地震動	解析ケース	鉛直震度 k v	水平震度 k h
S s - D 1		0.42 (0.415)	0.06
S s - D 2		0.40	0.01
S s - D 3		0.37	0.08
S s - F 1	ケース①	0.32	0.15
S s - F 2		0.31	0.34
S s - F 3		0.36	0.03
S s - N 1		0.28	0.32
S s - D 1	ケース②	0.42 (0.416)	0.06
5 S - D I	ケース③	0.42 (0.415)	0.05

r	1		-3(1) 光生				the t
入力地震動	解析	部位		- · · ·	-メント	せん断力	
7 17 1 2 2 2 2 2	ケース		固定条件		• m)		N)
	-	und they		短辺Lx	長辺Ly	短辺Lx	長辺Ly
		頂版	3 辺固定	-9.43	-10.22	23.68	75.02
		側壁(東面)	4 辺固定	-22.96	-22.96	135.97	135.97
S s - D 1	ケース①	側壁(西面)	4 辺固定	-22.96	-22.96	135.97	135.97
55 D1		側壁(南面)	4辺固定	-15.80	-12.33	90.06	99.51
		側壁(北面)	3辺固定	-4.15	-4.46	69.29	39.59
		底版	4辺固定	-25.72	-20.09	146.69	162.07
		頂版	3辺固定	-9.28	-10.06	23.32	73.88
		側壁(東面)	4辺固定	-22.43	-22.43	132.84	132.84
		側壁 (西面)	4辺固定	-22.43	-22.43	132.84	132.84
S s - D 2	ケース①	側壁(南面)	4辺固定	-15.43	-12.05	87.99	97.22
		側壁(北面)	3辺固定	-4.06	-4.36	67.69	38.68
		底版	4辺固定	-25.33	-19.78	144.44	159.59
		頂版	3.辺固定	-9.05	-9.81	22.72	71.98
		側壁 (東面)	4.辺固定	-21.60	-21.60	127.92	127.92
		側壁 (西面)	4.辺固定	-21.60	-21.60	127.92	127.92
S s - D 3	ケース①	側壁 (南面)	4.辺固定	-14.86	-11.60	84.73	93.62
		側壁(北面)	3.辺固定	-3.91	-4.20	65.18	37.25
		底版	4.辺固定	-24.68	-19.27	140.73	155.49
			<u>4.0</u> 固定 3.辺固定	-24.00	-19.27	22.16	70.20
			3辺固定 4辺固定	-8.82 -20.83	-9.56	123.34	123.34
		側壁(東面)					
S s - F 1	ケース①		4 辺固定	-20.83	-20.83	123.34	123.34
		側壁(南面)	4 辺固定	-14.33	-11.19	81.69	90.26
		側壁(北面)	3 辺固定	-3.77	-4.05	62.85	35.91
		底版	4 辺固定	-24.07	-18.79	137.24	151.64
		頂版	3 辺固定	-8.93	-9.68	22.42	71.03
		側壁(東面)	4 辺固定	-21.28	-21.28	126.01	126.01
S s - F 2	ケース①	側壁(西面)	4 辺固定	-21.28	-21.28	126.01	126.01
	_	側壁(南面)	4 辺固定	-14.64	-11.43	83.46	92.22
		側壁(北面)	3 辺固定	-3.85	-4.14	64.20	36.69
		底版	4 辺固定	-24.36	-19.02	138.88	153.45
		頂版	3 辺固定	-9.11	-9.88	22.88	72.50
		側壁(東面)	4 辺固定	-21.82	-21.82	129.21	129.21
Ss-F3	ケース①	側壁 (西面)	4 辺固定	-21.82	-21.82	129.21	129.21
		側壁 (南面)	4 辺固定	-15.01	-11.72	85.58	94.56
		側壁(北面)	3 辺固定	-3.95	-4.24	65.84	37.63
		底版	4 辺固定	-24.86	-19.41	141.75	156.62
		頂版	3 辺固定	-8.60	-9.32	21.59	68.42
		側壁 (東面)	4 辺固定	-20.08	-20.08	118.92	118.92
S s - N 1	ケース①	側壁 (西面)	4 辺固定	-20.08	-20.08	118.92	118.92
		側壁(南面)	4辺固定	-13.81	-10.79	78.76	87.03
		側壁(北面)	3辺固定	-3.63	-3.90	60.59	34.62
		底版	4 辺固定	-23.46	-18.32	133.77	147.80
		頂版	3 辺固定	-9.44	-10.23	23.71	75.12
		側壁 (東面)	4辺固定	-23.00	-23.00	136.24	136.24
Sa D1	5-70	側壁 (西面)	4辺固定	-23.00	-23.00	136.24	136.24
S s - D 1	ケース②	側壁 (南面)	4辺固定	-15.83	-12.36	90.24	99.70
		側壁(北面)	3辺固定	-4.16	-4.47	69.42	39.67
		底版	4辺固定	-25.76	-20.11	146.87	162.28
		頂版	3 辺固定	-9.41	-10.20	23.62	74.85
		側壁 (東面)	4辺固定	-22.88	-22.88	135.49	135.49
0 51	5 7 8	側壁(西面)	4辺固定	-22.88	-22.88	135.49	135.49
S s - D 1	ケース③	側壁(南面)	4辺固定	-15.74	-12.29	89.74	99.16
		側壁(北面)	3 辺固定	-4.14	-4.45	69.04	39.45
		底版	4 辺固定	-25.66	-20.04	146.34	161.69
	I	100					

表 4-5(1) 発生断面力(接続桝①)

	1	衣 4-5			・メント せん断力		
入力地震動	解析	部位	固定条件	曲りモー (kN	· . ·		EN)
	ケース	이 이미	固之不日	短辺Lx		短辺Lx	長辺Ly
		頂版	4 辺固定	-29.48	-20.75	154.50	181.77
		側壁 (東面)	4 辺固定	-11.98	-11.98	82.72	82.72
		側壁 (西面)	-	_	_	_	-
S s - D 1	ケース①	側壁 (南面)	3 辺固定	-12.66	-19.34	103.40	104.88
		側壁 (北面)	3 辺固定	-12.66	-19.34	103.40	104.88
		底版	4 辺固定	-30.09	-21.18	157.67	185.50
		頂版	4 辺固定	-29.08	-20.46	152.37	179.27
		側壁 (東面)	4 辺固定	-11.73	-11.73	80.97	80.97
		側壁 (西面)	-	_	—	-	-
S s - D 2	ケース①	側壁 (南面)	3 辺固定	-12.39	-18.93	101.21	102.66
		側壁(北面)	3 辺固定	-12.39	-18.93	101.21	102.66
		底版	4 辺固定	-29.68	-20.88	155.50	182.95
		頂版	4 辺固定	-28.33	-19.94	148.44	174.65
		側壁 (東面)	4 辺固定	-11.29	-11.29	77.97	77.97
		側壁 (西面)	-	-	_	-	-
S s - D 3	ケース①	側壁 (南面)	3辺固定	-11.93	-18.23	97.46	98.86
		側壁(北面)	3 辺固定	-11.93	-18.23	97.46	98.86
		底版	4 辺固定	-28.91	-20.35	151.49	178.24
		頂版	4 辺固定	-27.47	-19.33	143.94	169.35
		側壁 (東面)	4 辺固定	-10.79	-10.79	74.52	74.52
	, ,	側壁 (西面)	-	-	_	-	-
S s - F 1	ケース①	側壁(南面)	3 辺固定	-11.40	-17.42	93.15	94.48
		側壁 (北面)	3 辺固定	-11.40	-17.42	93.15	94.48
		底版	4 辺固定	-28.03	-19.73	146.89	172.82
		頂版	4 辺固定	-27.59	-19.42	144.58	170.10
		側壁 (東面)	4 辺固定	-10.90	-10.90	75.26	75.26
		側壁(西面)	-	_	—	-	-
S s - F 2	ケース①	側壁 (南面)	3 辺固定	-11.52	-17.60	94.08	95.42
		側壁(北面)	3辺固定	-11.52	-17.60	94.08	95.42
		底版	4辺固定	-28.16	-19.82	147.55	173.59
		頂版	4辺固定	-28.39	-19.98	148.78	175.05
		側壁 (東面)	4辺固定	-11.33	-11.33	78.22	78.22
		側壁 (西面)	-	-	_	-	-
S s - F 3	ケース①	側壁 (南面)	3辺固定	-11.97	-18.29	97.77	99.17
		側壁(北面)	3辺固定	-11.97	-18.29	97.77	99.17
		底版	4辺固定	-28.98	-20.39	151.84	178.65
	1	頂版	4辺固定	-26.80	-18.86	140.41	165.19
		側壁 (東面)	4辺固定	-10.42	-10.42	71.94	71.94
0 - NT 1	k. 7 1	側壁 (西面)	-	-	—	-	-
S s - N 1	ケース①	側壁 (南面)	3辺固定	-11.01	-16.82	89.92	91.21
		側壁(北面)	3辺固定	-11.01	-16.82	89.92	91.21
		底版	4辺固定	-27.35	-19.24	143.29	168.59
		頂版	4辺固定	-29.52	-20.77	154.68	181.98
		側壁 (東面)	4辺固定	-12.00	-12.00	82.87	82.87
S = D	ケース②	側壁 (西面)	-	_	_	-	-
S s - D 1	7-20	側壁 (南面)	3辺固定	-12.68	-19.37	103.59	105.07
		側壁(北面)	3辺固定	-12.68	-19.37	103.59	105.07
		底版	4辺固定	-30.12	-21.20	157.85	185.72
		頂版	4辺固定	-29.44	-20.72	154.27	181.51
		側壁 (東面)	4辺固定	-11.95	-11.95	82.55	82.55
S = D	ケース③	側壁 (西面)	-			_	-
S s - D 1	7-13	側壁 (南面)	3辺固定	-12.63	-19.30	103.18	104.66
		側壁(北面)	3辺固定	-12.63	-19.30	103.18	104.66
		底版	4辺固定	-30.05	-21.14	157.44	185.24

表 4-5(2) 発生断面力(接続桝②)

表 4-5(3) 先生例面力(接続件の) 曲げモーメント せん断力								
入力地震動	解析	±n /±	田ウタル					
	ケース	部位	固定条件	(kN 短辺Lx		〔K 短辺Lx	N) 長辺Ly	
		頂版	4 辺固定	-73.82	長辺Ly -73.82	286.79	286.79	
		側壁(東面)	4.辺固定	-72.49	-52.30	219.08	235.93	
		側壁(東面)	3.辺固定	-51.57	-78.44	219.08	235.95	
S s - D 1	ケース①	側壁(南面)	3.辺固定	-50.61	-76.30	218. 52	223.12	
		側壁(北面)	3.辺固定	-49.45	-75.79	217.34	223.12	
		底版	4.辺固定	-79.06	-79.06	307.15	307.15	
			4.辺固定	-72.84	-72.84	282.98	282.98	
		側壁(東面)	4.辺固定	-71.04	-51.26	214.71	231.22	
		側壁 (東面)	3.辺固定	-50.54	-76.87	214.71	235.41	
S s - D 2	ケース①	側壁(南面)	3.辺固定	-49.60	-74.77	213. 50	218.66	
		側壁(北面)	3.辺固定	-48.46	-74.28	213.19	213.00	
		底版	4.辺固定	-78.01	-78.01	303.07	303.07	
			4.辺固定	-71.39	-71.39	277.37	277.37	
		側壁(東面)	4.辺固定	-69.08	-49.84	208.78	224.84	
		側壁(東面)	3.辺固定		-74.75		224.04	
S s - D 3	ケース①	側壁(西面) 側壁(南面)	3辺固定 3辺固定	-49.14 -48.23	-72.71	208.05 207.31	228.90	
		侧壁(角面) 侧壁(北面)	3.辺固定	-48.23	-72.23	207.31	212.63	
		底版		-76.46	-72.23 -76.46	200.82	219.74	
			<u>4</u> 辺固定 4辺固定	-69.12	-69.12	268.53	268.53	
		側壁(東面)	4.辺固定	-65.94	-47.58	199.31	208.55	
		側壁(東面)	3.辺固定	-46.91	-71.35	199.51	214.04	
S s - F 1	ケース①	側壁(南面)	3.辺固定	-46.04	-69.42	198.00	203.00	
		側壁 (北面)	3.辺固定	-44.99	-68.96	191.72	209.78	
		底版	4.辺固定	-74.02	-74.02	287.59	287.59	
		頂版	4.辺固定	-69.18	-69.18	268.78	268.78	
		側壁(東面)	4.辺固定	-66.41	-47.92	200.71	216.15	
		側壁(西面)	3.辺固定	-47.23	-71.84	199.97	220.00	
S s - F 2	ケース①	側壁(南面)	3辺固定	-46.37	-69.91	199.33	204.44	
		側壁(北面)	3辺固定	-45.31	-69.45	193.09	211.28	
		底版	4 辺固定	-74.09	-74.09	287.86	287.86	
		頂版	4.辺固定	-70.97	-70.97	275.72	275.72	
		側壁 (東面)	4.辺固定	-68.39	-49.34	206.69	222.59	
		側壁(西面)	3.辺固定	-48.65	-74.00	205.98	226.62	
S s - F 3	ケース①	側壁(南面)	3辺固定	-47.75	-71.99	205.24	210.51	
		側壁(北面)	3辺固定	-46.66	-71.51	198.81	217.54	
		底版	4 辺固定	-76.00	-76.00	295.29	295.29	
		頂版	4.辺固定	-66.88	-66.88	259.84	259.84	
		側壁(東面)	4 辺固定	-62.97	-45.43	190.31	204.95	
		側壁 (西面)	3辺固定	-44.79	-68.12	189.61	208.61	
S s - N 1	ケース①	側壁 (南面)	3 辺固定	-43.97	-66.29	189.00	193.85	
		側壁(北面)	3辺固定	-42.97	-65.85	183.08	200.33	
		底版	4辺固定	-71.63	-71.63	278.29	278.29	
		頂版	4 辺固定	-73.98	-73.98	287.43	287.43	
		側壁 (東面)	4 辺固定	-72.73	-52.48	219.81	236.72	
0 51		側壁 (西面)	3辺固定	-51.74	-78.70	219.05	241.00	
S s - D 1	ケース②	側壁 (南面)	3辺固定	-50.78	-76.55	218.26	223.86	
		側壁(北面)	3辺固定	-49.62	-76.04	211.42	231.34	
		底版	4辺固定	-79.23	-79.23	307.83	307.83	
		頂版	4辺固定	-73.69	-73.69	286.29	286.29	
		側壁 (東面)	4辺固定	-72.30	-52.16	218.51	235.31	
		側壁 (西面)	3辺固定	-51.44	-78.23	217.75	239.57	
S s - D 1	ケース③	側壁 (南面)	3辺固定	-50.47	-76.10	216.97	222.53	
		側壁(北面)	3辺固定	-49.32	-75.59	210.17	229.97	
		底版	4辺固定	-78.92	-78.92	306.62	306.62	

表 4-5(3) 発生断面力(接続桝③)

入力地震動	解析		-3(4) 光生	曲げモー	ーメント		断力
	ケース	部位	固定条件	· · · ·	・m) 「長辺しい	(k 短辺しx	N) 長辺L v
		15 HC		短辺Lx	長辺Ly	,	
		頂版	4 辺固定	-78.23	-78.23	303.96	303.96
		側壁(東面)		-	-	-	-
S s - D 1	ケース①	創壁(西面)	4 辺固定	-43.71	-38.77	164.48	169.93
		側壁 (南面)	-			-	-
		側壁(北面)	-	-	-	-	-
		底版	4 辺固定	-81.00	-81.00	314.72	314.72
		頂版	4 辺固定	-77.00	-77.00	299.18	299.18
		側壁 (東面)	-	-	-	-	-
S s - D 2	ケース①	側壁(西面)	4 辺固定	-42.63	-37.82	160.44	165.76
00 01	, ,	側壁(南面)	-			-	-
		側壁(北面)	-			-	-
		底版	4 辺固定	-79.73	-79.73	309.77	309.77
		頂版	4辺固定	-75.07	-75.07	291.66	291.66
		側壁 (東面)	-			-	-
S s - D 3	ケース①	側壁 (西面)	4辺固定	-41.12	-36.48	154.74	159.88
35-03		側壁 (南面)	-	_	-	-	-
		側壁(北面)	-		-	-	-
		底版	4辺固定	-77.73	-77.73	301.99	301.99
		頂版	4辺固定	-72.64	-72.64	282.24	282.24
		側壁 (東面)	-	—	-	-	-
	2 7 0	側壁 (西面)	4辺固定	-39.21	-34.78	147.54	152.43
S s - F 1	ゲース①	側壁 (南面)	-	-	_	-	-
		側壁(北面)	-	_	_	-	-
		底版	4辺固定	-75.21	-75.21	292.23	292.23
		頂版	4辺固定	-72.40	-72.40	281.31	281.31
		側壁 (東面)	-	_	-	-	-
		側壁 (西面)	4 辺固定	-39.21	-34.78	147.54	152.43
S s - F 2	ケース①	側壁 (南面)	-	-	-	-	-
		側壁(北面)	-	-	-	-	-
		底版	4 辺固定	-74.97	-74.97	291.26	291.26
		頂版	4 辺固定	-74.67	-74.67	290.12	290.12
		側壁 (東面)	-	-	-	-	-
		側壁 (西面)	4 辺固定	-40.81	-36.20	153.56	158.65
S s - F 3	ケース①	側壁 (南面)	-	-	-	-	-
		側壁(北面)	-	_	_	-	-
		底版	4 辺固定	-77.31	-77.31	300.39	300.39
	1	頂版	4 辺固定	-70.60	-70.60	274.29	274.29
		側壁 (東面)	-	_	-	-	-
_		側壁 (西面)	4 辺固定	-37.71	-33.45	141.91	146.61
S s - N 1	ケース①	側壁 (南面)	-	-	-	-	-
		側壁 (北面)	_	_	-	_	_
		底版	4 辺固定	-73.10	-73.10	284.00	284.00
	1	頂版	4 辺固定	-78.32	-78.32	304.31	304.31
		側壁 (東面)	-	-	-	-	-
_		側壁 (西面)	4 辺固定	-43.78	-38.84	164.76	170.23
S s - D 1	ケース②	側壁 (南面)	-	-	-	-	-
		側壁 (北面)	_	_	-	_	_
		底版	4 辺固定	-81.10	-81.10	315.08	315.08
	1	頂版	4 辺固定	-78.18	-78.18	303.75	303.75
		側壁 (東面)		-	-	-	-
		側壁 (西面)	4 辺固定	-43.66	-38.73	164.29	169.73
S s - D 1	ケース③	側壁 (南面)		-	-	-	-
		側壁 (北面)	-	_	—	-	-
		底版	4 辺固定	-80.95	-80.95	314.50	314.50
	1	12N/IX	니시 (브) 스노	00.00	00.00	011.00	011.00

表 4-5(4) 発生断面力(接続桝④)

入力地震動	解析		-3(5) 光生	曲げモー	ーメント	せん	
	ケース	部位	固定条件	(KN 短辺Lx	・m)	(k 短辺しx	N) 長辺Ly
		頂版	4 辺固定	-19.54	長辺Ly -19.54	超辺LX 101.20	<u> 表辺</u> L y 101.20
		側壁(東面)	4.辺固定	-12.34	-12.34	63.90	63.90
		側壁(東面)	4.2回足		-	-	-
S s - D 1	ケース①	側壁 (南面)				_	
		側壁 (北面)	4 辺固定	-12.34	-12.34	63.90	63.90
		底版	4.辺固定	-20.02	-20.02	103.67	103.67
		頂版	4.辺固定	-19.28	-19.28	99.87	99.87
		側壁(東面)	4.辺固定	-12.09	-12.09	62.60	62.60
		側壁 (西面)		-	-	-	-
S s - D 2	ケース①	側壁 (南面)	_	_	_	_	_
		側壁(北面)	4 辺固定	-12.09	-12.09	62.60	62.60
		底版	4.辺固定	-19.75	-19.75	102.31	102.31
		頂版	4 辺固定	-18.78	-18.78	97.26	97.26
		側壁 (東面)	4.辺固定	-11.64	-11.64	60.27	60.27
	-	側壁 (西面)		_	_	-	-
S s - D 3	ケース①	側壁(南面)	_	_	_	_	-
		側壁(北面)	4 辺固定	-11.64	-11.64	60.27	60.27
		底版	4.辺固定	-19.24	-19.24	99.63	99.63
		頂版	4.辺固定	-18.19	-18.19	94.22	94.22
		側壁 (東面)	4 辺固定	-11.11	-11.11	57.53	57.53
		側壁 (西面)	-	_	_	-	-
S s - F 1	ケース①	側壁 (南面)	-	_	_	_	_
		側壁 (北面)	4 辺固定	-11.11	-11.11	57.53	57.53
		底版	4 辺固定	-18.63	-18.63	96.52	96.52
		頂版	4 辺固定	-18.20	-18.20	94.28	94.28
		側壁 (東面)	4 辺固定	-11.17	-11.17	57.84	57.84
		側壁(西面)	_	-	-	-	_
S s - F 2	ケース①	側壁(南面)	-	-	-	-	-
		側壁(北面)	4辺固定	-11.17	-11.17	57.84	57.84
		底版	4辺固定	-18.65	-18.65	96.59	96.59
		頂版	4辺固定	-18.69	-18.69	96.79	96.79
		側壁(東面)	4辺固定	-11.54	-11.54	59.77	59.77
S s - F 3	ケース①	側壁(西面)	-	-	—	-	-
58-15	7 - × 0	側壁(南面)	_	—	—	-	_
		側壁(北面)	4辺固定	-11.54	-11.54	59.77	59.77
		底版	4辺固定	-19.14	-19.14	99.15	99.15
		頂版	4辺固定	-17.72	-17.72	91.76	91.76
		側壁 (東面)	4 辺固定	-10.71	-10.71	55.45	55.45
S s - N 1	ケース①	側壁 (西面)	-	-		-	-
55 111	, ,, <u>,</u>	側壁 (南面)	-	_	_	-	-
		側壁(北面) 東原	4 辺固定	-10.71	-10.71	55.45	55.45
		底版	4 辺固定	-18.15	-18.15	94.00	94.00
		頂版	4 辺固定	-19.56	-19.56	101.31	101.31
		側壁(東面)	4 辺固定	-12.36	-12.36	64.01	64.01
S s - D 1	ケース2	側壁(西面)	-	—	_	-	-
		側壁(南面)	- ()7000	-	-	-	-
		側壁(北面)	4辺固定	-12.36	-12.36	64.01	64.01
		底版	4辺固定	-20.04	-20.04	103.79	103.79
		頂版	4辺固定	-19.52	-19.52	101.11	101.11
		側壁(東面)	4辺固定	-12.32	-12.32	63.81	63.81
S s - D 1	ケース③	側壁(西面) 側壁(南西)	_	—	—	-	-
		側壁(南面)		-	- 10.00	-	-
		側壁(北面)	4 辺固定	-12.32	-12.32	63.81	63.81
		底版	4 辺固定	-20.00	-20.00	103.58	103.58

表 4-5(5) 発生断面力(接続桝⑤)

		A 1 0		列 囬 刀 (せん断力	
入力地震動	解析	部位	固定条件		• m)	(kN)	
	ケース			短辺Lx	長辺Ly	短辺Lx	長辺Ly
		頂版	4辺固定	-31.89	-22.44	167.10	196.60
		側壁 (東面)	3辺固定	-10.95	-13.57	63.15	84.19
0 D 1	5 7 1	側壁 (西面)	4辺固定	-20.09	-14.14	105.24	123.82
S s - D 1	ケース①	側壁 (南面)	-	—	—	-	-
		側壁(北面)	-	—	—	-	-
		底版	4辺固定	-32.49	-22.86	170.25	200.31
		頂版	4辺固定	-31.50	-22.17	165.08	194.22
		側壁 (東面)	3辺固定	-10.75	-13.32	62.00	82.66
	ケース①	側壁 (西面)	4辺固定	-19.72	-13.88	103.32	121.56
S s - D 2	7 - XU	側壁 (南面)	-	—	—	-	-
		側壁(北面)	-	—	—	-	-
		底版	4辺固定	-32.10	-22.59	168.19	197.88
		頂版	4辺固定	-30.81	-21.68	161.43	189.93
		側壁 (東面)	3辺固定	-10.41	-12.90	60.03	80.04
	ケーマの	側壁 (西面)	4辺固定	-19.09	-13.44	100.05	117.71
S s - D 3	ケース①	側壁 (南面)	-	—	—	-	-
		側壁(北面)	-	_	_	-	-
		底版	4辺固定	-31.39	-22.09	164.48	193.51
		頂版	4辺固定	-29.77	-20.95	155.97	183.50
		側壁 (東面)	3辺固定	-9.89	-12.26	57.04	76.05
0 . D 1	k. 70	側壁 (西面)	4辺固定	-18.14	-12.77	95.07	111.85
S s - F 1	ケース①	側壁 (南面)	-	-	-	-	-
		側壁(北面)	-	—	-	-	-
		底版	4辺固定	-30.33	-21.34	158.91	186.96
		頂版	4辺固定	-29.64	-20.86	155.33	182.75
		側壁 (東面)	3辺固定	-9.86	-12.22	56.86	75.81
	5	側壁 (西面)	4辺固定	-18.09	-12.73	94.77	111.50
S s - F 2	ケース①	側壁 (南面)	-	—	—	-	-
		側壁(北面)	-	—	—	-	-
		底版	4辺固定	-30.20	-21.25	158.25	186.19
		頂版	4辺固定	-30.55	-21.50	160.06	188.31
		側壁 (東面)	3辺固定	-10.27	-12.72	59.19	78.92
S s – F 3	ケース①	側壁(西面)	4辺固定	-18.83	-13.25	98.65	116.07
55-13	7 - XU	側壁 (南面)	_	—	—	-	-
		側壁(北面)	_	—	—	-	-
		底版	4辺固定	-31.12	-21.90	163.07	191.86
		頂版	4辺固定	-28.78	-20.25	150.79	177.41
		側壁(東面)	3辺固定	-9.42	-11.67	54.29	72.39
S s - N 1	ケース①	側壁(西面)	4辺固定	-17.27	-12.15	90.48	106.46
3 s = N I	NU	側壁 (南面)	_	_	_	-	-
		側壁(北面)	_	_	_	-	-
		底版	4辺固定	-29.32	-20.63	153.63	180.75
		頂版	4辺固定	-31.93	-22.47	167.31	196.85
		側壁(東面)	3辺固定	-10.97	-13.60	63.27	84.36
S s - D 1	ケース②	側壁(西面)	4辺固定	-20.13	-14.16	105.45	124.06
32-01		側壁(南面)	-	—	_	-	-
		側壁(北面)	-	—	_	-	-
		底版	4辺固定	-32.53	-22.89	170.47	200.56
		頂版	4辺固定	-31.88	-22.43	167.03	196.51
		側壁(東面)	3辺固定	-10.95	-13.56	63.11	84.14
S s - D 1	ケース③	側壁(西面)	4辺固定	-20.07	-14.13	105.17	123.74
5 S - D I	7-20	側壁 (南面)	_	—	—		-
		側壁(北面)	_	—	—	-	-
		底版	4辺固定	-32.48	-22.85	170.18	200.22

表 4-5(6) 発生断面力(接続桝⑥)

	r		-3(7) 光生				Not 1
入力地震動	解析	-br /-b	四古夕川	曲げモー		せん	
	ケース	部位	固定条件		• m)		N)
		頂版	0 江田孛	短辺Lx	長辺Ly	短辺Lx	長辺Ly
		側壁(東面)	3辺固定 3辺固定	-161.74 -565.84	-246.87 -804.26	429.04 863.18	403.56 1014.51
				-505.84		805.18	
S s - D 1	ケース①		4 辺固定		-487.20		808.13
		 側壁(南面) 側壁(北面) 	4 辺固定	-162.53	-111.62	246.59	372.11
		底版	3 辺固定	-168.20	-114.14	257.09	346.87
			<u>4</u> 辺固定 3辺固定	-268.68 -154.13	-184.52 -235.24	407.63 408.83	630.29 384.56
		_{貝瓜} 	3.辺固定	-154.13 -522.36	-742.45		
				-522.36		796.84	936.55
S s - D 2	ケース①	側壁(西面)	4 辺固定		-449.68	744.13	745.89
		何壁(角面) 何壁(北面)	4 辺固定	-150.01	-103.02	227.59	343.45
			3辺固定	-155.27	-105.37	237.34	320.21
		底版	4 辺固定	-256.03	-175.83	388.44	600.60
		頂版 (東三)	3辺固定	-154.16	-235.29	408.91	384.63
		側壁(東面)	3 辺固定 4 辺田室	-523.42	-743.95	798.45	938.44
S s - D 3	ケース①	側壁(西面)	4 辺固定	-484.61	-450.60	745.67	747.42
		側壁(南面) (側壁(北西)	4 辺固定	-150.32	-103.23	228.06	344.16
		側壁(北面)	3 辺固定	-155.59	-105.58	237.82	320.86
		底版	4辺固定	-256.08	-175.86	388.51	600.72
		頂版 (東王)	3辺固定	-148.92	-227.30	395.03	371.58
		側壁(東面)	3辺固定	-498.63	-708.72	760.64	893.99
S s - F 1	ケース①	側壁(西面)	4 辺固定	-461.70	-429.30	710.42	712.09
		側壁(南面)	4辺固定	-143.22	-98.35	217.28	327.89
		側壁(北面)	3辺固定	-148.22	-100.58	226.55	305.66
		底版	4 辺固定	-247.38	-169.89	375.32	580.33
		頂版	3辺固定	-148.89	-227.25	394.94	371.49
		側壁(東面)	3 辺固定	-497.16	-706.64	758.41	891.37
S s - F 2	ケース①	側壁(西面)	4 辺固定	-460.32	-428.02	708.29	709.96
		側壁(南面)	4辺固定	-142.79	-98.06	216.63	326.91
		側壁(北面)	3辺固定	-147.78	-100.28	225.89	304.77
		底版	4辺固定	-247.33	-169.85	375.24	580.20
		頂版	3辺固定	-152.89	-233.36	405.56	381.48
		側壁(東面)	3辺固定	-517.35	-735.33	789.20	927.56
S s - F 3	ケース①	側壁(西面)	4 辺固定	-479.00	-445.39	737.04	738.77
		側壁(南面)	4辺固定	-148.58	-102.04	225.42	340.17
		側壁(北面)	3 辺固定 4 辺田室	-153.78	-104.35	235.06	317.14
		底版	4 辺固定	-253.98	-174.42	385.33	595.80
		<u>頂版</u> 側壁(東面)	3辺固定	-138.45	-211.32	367.26	345.45
			3 辺固定 4 辺国定	-447.97	-636.72	683.37	803.18
$\rm S~s-N~1$	ケース①		4 辺固定	-414.86	-385.75	638.35 105.24	639.85
		側壁(南面) 御路(北面)	4 辺固定 2 辺固定	-128.69	-88.38	195.24	294.62
		側壁(北面) 底版	3辺固定	-133.16	-90.36	203.54	274.61
		底版	4辺固定	-229.99	-157.95	348.94	539.53
		頂版 (東南)	3辺固定	-160.64	-245.19	426.12	400.82
		側壁(東面)	3辺固定	-559.72	-795.55	853.83	1003.53
S s - D 1	ケース②		4 辺固定	-518.29	-481.92	797.48	799.36
			<u>4</u> 辺固定 3辺固定	-160.77	-110.41	243.91 254.31	368.07
		<u>(</u> 恒堂(北面) 底版		-166.38	-112.90	404.86	343.11
			<u>4 辺固定</u> 3 辺固定	-266.85	-183.26		626.00
				-162.34	-247.78	430.62	405.06
		側壁(東面)	3辺固定	-569.41	-809.33	868.62	1020.91
S s - D 1	ケース③		4辺固定	-527.29	-490.28	811.33	813.24
		側壁(南面) 御路(北面)	4 辺固定 2 辺固定	-163.56	-112.32	248.15	374.46
		<u>側壁(北面)</u>	3辺固定	-169.26	-114.86	258.71	349.06
		底版	4辺固定	-269.67	-185.20	409.14	632.62

表 4-5(7) 発生断面力(接続桝⑦)

入力地震動	解析			回 回 / 〕 (19 曲げモー	ーメント	せん	断力
八刀地反動	ケース	部位	固定条件	(kN	• m)	(k	(N)
				短辺Lx	長辺Ly	短辺Lx	長辺Ly
		頂版	4辺固定	-81.09	-81.09	315.04	315.04
		側壁(東面)	4辺固定	-45.47	-40.34	171.11	176.78
S s - D 1	ケース①	側壁 (西面)	-	-	-	-	-
SS DI	17 × 1	側壁 (南面)	-	-	-	-	-
		側壁(北面)	3辺固定	-36.34	-41.87	105.18	155.11
		底版	4辺固定	-83.88	-83.88	325.88	325.88
		頂版	4辺固定	-79.63	-79.63	309.38	309.38
		側壁 (東面)	4辺固定	-44.19	-39.21	166.31	171.83
	5 7 1	側壁 (西面)	-	-	-	-	-
S s - D 2	ケース①	側壁 (南面)	-	-	-	-	-
		側壁(北面)	3辺固定	-35.32	-40.70	102.23	150.77
		底版	4辺固定	-82.37	-82.37	320.03	320.03
		頂版	4辺固定	-77.57	-77.57	301.36	301.36
		側壁 (東面)	4辺固定	-42.52	-37.72	160.00	165.30
a = -		側壁 (西面)		-	-	-	-
S s - D 3	ケース①	側壁 (南面)	-	-	-	-	-
		側壁 (北面)	3辺固定	-33.98	-39.15	98.35	145.04
		底版	4 辺固定	-80.24	-80.24	311.73	311.73
<u> </u>		頂版	4.辺固定	-74.90	-74.90	291.00	291.00
		側壁 (東面)	4 辺固定	-40.42	-35.86	152.10	157.15
		側壁 (西面)	-	-	-	-	-
S s - F 1	ケース①	側壁 (南面)		_	_	_	_
		側壁 (北面)	3 辺固定	-32.30	-37.22	93.50	137.88
		底版	4.辺固定	-77.48	-77.48	301.02	301.02
			4.辺固定	-74.44	-74.44	289.23	289.23
		側壁(東面)	4.辺固定	-40.22	-35.68	151.35	156.37
			4.应直定	-40.22	-35.08	101.00	150.57
S s - F 2	ケース①			_	_	_	_
		側壁(南面)	3辺固定	-32.14			127 10
		側壁(北面)		-	-37.03	93.03	137.19
		底版	4辺固定	-77.01	-77.01	299.19	299.19
		頂版	4辺固定	-77.61	-77.61	301.54	301.54
		側壁(東面)	4辺固定	-42.71	-37.89	160.72	166.05
S s - F 3	ケース①	側壁(西面)	_	-	-	-	-
		側壁(南面)	-	-	-	-	-
		側壁(北面)	3辺固定	-34.13	-39.33	98.79	145.70
		底版	4辺固定	-80.28	-80.28	311.91	311.91
		頂版	4 辺固定	-72.85	-72.85	283.05	283.05
		側壁(東面)	4辺固定	-38.91	-34.52	146.42	151.28
S s - N 1	ケース①	側壁(西面)	_	-	-	-	-
		側壁 (南面)	-	-	-	-	-
		側壁(北面)	3 辺固定	-31.09	-35.83	90.00	132.73
		底版	4 辺固定	-75.36	-75.36	292.79	292.79
		頂版	4 辺固定	-81.07	-81.07	314.98	314.98
		側壁 (東面)	4辺固定	-45.46	-40.33	171.09	176.76
S s - D 1	ケース②	側壁(西面)	-	-	-	-	-
22 11	, , , , , , ,	側壁(南面)	-	-	-	-	-
		側壁(北面)	3 辺固定	-36.33	-41.86	105.17	155.09
		底版	4辺固定	-83.86	-83.86	325.82	325.82
		頂版	4辺固定	-81.12	-81.12	315.17	315.17
		側壁 (東面)	4辺固定	-45.49	-40.36	171.20	176.88
0 51	2 @	側壁 (西面)	-	-	-	-	-
S s - D 1	ケース③	側壁 (南面)	-	-	-	-	-
		側壁 (北面)	3辺固定	-36.36	-41.89	105.24	155.20
		底版	4 辺固定	-83.91	-83.91	326.02	326.02

表 4-5(8) 発生断面力(接続桝⑧)

入力地震動	解析	部位	- 5 (9) 光生. 固定条件	曲げモー	ーメント ・m)	せん (k	
	ケース		固足不日	短辺Lx	EULy	短辺Lx	長辺Ly
		頂版	4 辺固定	-21.06	-21.06	109.10	109.10
		側壁 (東面)		-	-	-	-
		側壁 (西面)	4 辺固定	-13.26	-13.26	68.65	68.65
S s - D 1	ケース①	側壁 (南面)		-	-	-	-
		側壁 (北面)	_	_	_	_	_
		底版	4 辺固定	-21.54	-21.54	111.55	111.55
			4 辺固定	-20.78	-20.78	107.62	107.62
		側壁 (東面)	-	-	-	-	-
		側壁 (西面)	4 辺固定	-12.98	-12.98	67.21	67.21
S s - D 2	ケース①	側壁 (南面)		-	-	-	-
		側壁(北面)	-	_	_	_	-
		底版	4 辺固定	-21.24	-21.24	110.04	110.04
		頂版	4.辺固定	-20.35	-20.35	105.43	105.43
		側壁(東面)	- 4 12 10 JC	-	-	-	-
		側壁(東面)	4 辺固定	-12.60	-12.60	65.27	65.27
S s - D 3	ケース①	側壁(南面)	4.2.回ル	-	-		
		側壁(用面) 側壁(北面)	_	_	_	_	_
		底版	4.辺固定	-20.81	-20.81	107.80	107.80
			4.辺固定	-19.65	-19.65	107.80	107.80
		側壁(東面)	4.2.回足	-19.05	-19.05	-	-
			4.辺固定	-11.96	-11.96	61.95	61.95
S s - F 1	ケース①	側壁(四面) 側壁(南面)	4辺固ル		-11.96		
		侧壁(角面) 侧壁(北面)		_			_
		底版	4辺固定	-20.09	-20.09	104.05	104.05
			4.辺固定	-19.49	-19.49	104.05	104.05
		側壁(東面)	4辺固ル	-19.49	-19.49		
			4.辺固定	-11.87	-11.87	61.45	61.45
S s - F 2	ケース①	側壁 (南面)		-	-	-	-
		側壁 (北面)		_	_	_	_
		底版	4 辺固定	-19.93	-19.93	103.24	103.24
			4.辺固定	-20.13	-20.13	103.24	103.24
		側壁 (東面)	-	-	-	-	-
		側壁 (西面)	4 辺固定	-12.38	-12.38	64.12	64.12
S s - F 3	ケース①	側壁 (南面)	-	-	-	-	-
		側壁(北面)		_	_	_	_
		底版	4 辺固定	-20.58	-20.58	106.61	106.61
			4.辺固定	-18.91	-18.91	97.95	97.95
		側壁(東面)		-	-	-	-
		側壁 (西面)	4 辺固定	-11.32	-11.32	58.63	58.63
S s - N 1	ケース①	側壁 (南面)	- -	-	-	-	-
		側壁(北面)		_	_	_	_
		底版	4 辺固定	-19.34	-19.34	100.16	100.16
		頂版	4.辺固定	-21.08	-21.08	100.10	100.10
		側壁 (東面)		-	-	-	-
		側壁 (東面)	4 辺固定	-13.27	-13.27	68.73	68.73
S s - D 1	ケース②	側壁 (南面)	- 4 2 回 2	-	-	-	-
		側壁(北面)		-	-		-
		底版	4 辺固定	-21.55	-21.55	111.63	111.63
			4.辺固定	-21.06	-21.06	109.09	109.09
		側壁(東面)		-21.00	-21.00	- 109.09	-
		側壁(東面)	4.辺固定	-13.25	-13.25	68.64	68.64
S s - D 1	ケース③	側壁(西面)		-13.20	- 10.20	-	-
				-	-		_
		压加	4 辺固定	-21.53	-21.53	111.54	111.54

表 4-5(9) 発生断面力(接続桝⑨)

		-6(1) 評価			<u> </u>																							
				2	コンクリート	<		鉄筋																				
				四木田	短期許		眍木田	短期許																				
北雷和	解析	立て たち	高口 ムケ	照査用	容応力	照查值	照査用	容応力	照査値																			
地震動	ケース	部位	配筋	応力度	度	σ 。/	応力度	度	σ																			
				$\sigma_{\rm c}$	σ _{ca}	σ _{ca}	σ_s	σ _{sa}	σ _{sa}																			
				(N/mm^2)	(N/mm^2)		(N/mm^2)	(N/mm^2)																				
		頂版		1.0	11.75	0.09	34.9	294	0.12																			
		側壁 (東面)		2.3	11.75	0.20	78.5	294	0.27																			
		側壁 (西面)		2.3	11.75	0.20	78.5	294	0.27																			
S s - D 1	ケース①	側壁 (南面)		1.6	11.75	0.14	54.0	294	0.19																			
		側壁(北面)		0.4	11.75	0.04	15.3	294	0.06																			
		底版		2.6	11.75	0.23	88.0	294	0.30																			
		頂版		1.0	11.75	0.09	34.4	294	0.12																			
		側壁 (東面)		2.3	11.75	0.20	76.7	294	0.12																			
		側壁 (東面)		2.3	11.75	0.20	76.7	294	0.27																			
S s - D 2	ケース①	側壁 (南面)	-																									
				1.6	11.75	0.14	52.8	294	0.18																			
		側壁(北面)		0.4	11.75	0.04	14.9	294	0.06																			
		底版		-		-	-	-	2.5	11.75	0.22	86.6	294	0.30														
		頂版							1	1.0	11.75	0.09	33.5	294	0.12													
		側壁 (東面)		2.2	11.75	0.19	73.9	294	0.26																			
S s - D 3	ケース①	側壁 (西面)		2.2	11.75	0.19	73.9	294	0.26																			
	, . e	側壁 (南面)		1.5	11.75	0.13	50.8	294	0.18																			
		側壁(北面)		0.4	11.75	0.04	14.3	294	0.05																			
		底版]	2.5	11.75	0.22	84.4	294	0.29																			
		頂版		1.0	11.75	0.09	32.7	294	0.12																			
		側壁 (東面)		2.1	11.75	0.18	71.2	294	0.25																			
S s - F 1	ケース①	側壁 (西面)		2.1	11.75	0.18	71.2	294	0.25																			
5 S - F 1	7 - XU	側壁 (南面)		1.4	11.75	0.12	49.0	294	0.17																			
		側壁(北面)		0.4	11.75	0.04	13.8	294	0.05																			
		底版		2.4	11.75	0.21	82.3	294	0.28																			
		頂版									-	1	1.0	11.75	0.09	33.1	294	0.12										
		側壁 (東面)		2.1	11.75	0.18	72.8	294	0.25																			
		側壁 (西面)	D16 @150	-	-	-	-	-	-	-	-	-	2.1	11.75	0.18	72.8	294	0.25										
S s - F 2	ケース①	側壁 (南面)											-										1.5	11.75	0.13	50.1	294	0.18
		側壁(北面)												0.4	11.75	0.04	14.1	294	0.05									
		底版		2.4	11.75	0.21	83.3	294	0.29																			
		頂版		-	1.0	11.75	0.09	33.8	294	0.12																		
		側壁 (東面)		2.2	11.75	0.19	74.6	294	0.26																			
		側壁 (東面)		2.2	11.75	0.19	74.6	294	0.26																			
S s - F 3	ケース①																											
		側壁(南面)		1.5	11.75	0.13	51.3	294	0.18																			
		側壁(北面)		0.4	11.75	0.04	14.5	294	0.05																			
		底版		2.5	11.75	0.22	85.0	294	0.29																			
		頂版		0.9	11.75	0.08	31.9	294	0.11																			
		側壁(東面)		2.0	11.75	0.18	68.7	294	0.24																			
S s - N 1	ケース①	側壁(西面)		2.0	11.75	0.18	68.7	294	0.24																			
		側壁 (南面)		1.4	11.75	0.12	47.2	294	0.17																			
		側壁(北面)		0.4	11.75	0.04	13.3	294	0.05																			
		底版		2.4	11.75	0.21	80.2	294	0.28																			
		頂版		1.0	11.75	0.09	35.0	294	0.12																			
		側壁(東面)		2.3	11.75	0.20	78.7	294	0.27																			
	ケーマの	側壁 (西面)		2.3	11.75	0.20	78.7	294	0.27																			
S s - D 1	ケース②	側壁 (南面)		1.6	11.75	0.14	54.1	294	0.19																			
		側壁(北面)		0.4	11.75	0.04	15.3	294	0.06																			
		底版	-	2.6	11.75	0.23	88.1	294	0.30																			
		頂版		1.0	11.75	0.09	34.9	294	0.12																			
		側壁 (東面)		2.3	11.75	0.20	78.2	294	0.27																			
		側壁 (西面)		2.3	11.75	0.20	78.2	294	0.27																			
S s - D 1	ケース③	側壁 (南面)		-	-		-	-]	1.6	11.75	0.14	53.8	294	0.19													
								11.75			294	0.19																
				0.4		0.04	15.2																					
		底版		2.6	11.75	0.23	87.8	294	0.30																			

表 4-6(1) 評価結果(接続桝①,曲げモーメント照査)

	衣 4	-6(2) 評価	(拔統桝)	9, 四()		-													
				=	コンクリート	F		鉄筋											
					短期許			短期許											
내나 프 프	解析		X 7 ///	照査用	容応力	照查值	照査用	容応力	照査値										
地震動	ケース	部位	配筋	応力度	度	σ 。/	応力度	度	σ s										
				$\sigma_{\rm c}$	σ _{ca}	σ _{ca}	σs	σ _{sa}	σ _{sa}										
				(N/mm^2)	(N/mm^2)	0 u	(N/mm^2)	(N/mm^2)	5 4										
		頂版		3.0	11.75	0.26	100.8	294	0.35										
		側壁 (東面)	1	1.2	11.75	0.11	41.0	294	0.14										
		側壁 (西面)		1. 2	-	0.11			-										
S s - D 1	ケース①	側壁 (南面)	1	1 0	11 75	0.17	66 1	20.4											
			-	1.9	11.75	0.17	66.1	294	0.23										
		<u>側壁(北面)</u>	-	1.9	11.75	0.17	66.1	294	0.23										
		底版	-	3.0	11.75	0.26	102.9	294	0.35										
		頂版	1	2.9	11.75	0.25	99.5	294	0.34										
		側壁 (東面)		1.2	11.75	0.11	40.1	294	0.14										
S s - D 2	ケース①	側壁 (西面)		-	-	-	-	-	-										
SS = DZ	<i>y</i> = x ()	側壁 (南面)		-	1.9	11.75	0.17	64.7	294	0.23									
		側壁(北面)					1.9	11.75	0.17	64.7	294	0.23							
		底版									3.0	11.75	0.26	101.5	294	0.35			
	1	頂版	1	2.8	11.75	0.24	96.9	294	0.33										
		侧壁 (東面)	1	1.1	11.75	0.10	38.6	294	0.14										
		側壁 (東面)	1	-	-	-		-	-										
S s - D 3	ケース①																		
		側壁(南面)		1.8	11.75	0.16	62.3	294	0.22										
		<u>側壁(北面)</u>		1.8	11.75	0.16	62.3	294	0.22										
		底版		2.9	11.75	0.25	98.9	294	0.34										
		頂版		2.8	11.75	0.24	93.9	294	0.32										
		側壁 (東面)	-	1.1	11.75	0.10	36.9	294	0.13										
S s - F 1	ケース①	側壁 (西面)		-	-	-	-	-	-										
5 S - F I	/ - × ()	側壁(南面)		1.8	11.75	0.16	59.6	294	0.21										
		側壁(北面)		1.8	11.75	0.16	59.6	294	0.21										
		底版		2.8	11.75	0.24	95.9	294	0.33										
		頂版		2.8	11.75	0.24	94.4	294	0.33										
		側壁 (東面)	1	1.1	11.75	0.10	37.3	294	0.13										
			側壁(西面) D16 側壁(南面) @150 側壁(北面) 底版 頂版 側壁(東面)	-	-	-	-	-	-	-	-	-							
S s - F 2	ケース①						-	-	-	-	1.8	11.75	0.16	60.2	294	0.21			
											@150	@150	@150	@150	@150	6100	- @150	@150	@150
				1.8	11.75	0.16	60.2	294	0.21										
				-	4	-	_	4	2.8	11.75	0.24	96.3	294	0.33					
					2.9	11.75	0.25	97.1	294	0.34									
					-				1.1	11.75	0.10	38.7	294	0.14					
Ss-F3	ケース①	側壁 (西面)		-	-	-	-	-	-										
53 15		側壁(南面)		1.8	11.75	0.16	62.5	294	0.22										
		側壁(北面)		1.8	11.75	0.16	62.5	294	0.22										
		底版		2.9	11.75	0.25	99.1	294	0.34										
		頂版	1	2.7	11.75	0.23	91.6	294	0.32										
		側壁 (東面)	1	1.0	11.75	0.09	35.6	294	0.13										
		側壁 (西面)	1	-	-	-	-	_	-										
S s - N 1	ケース①	側壁 (南面)	1	1.7	11.75	0.15	57.5	294	0.20										
		側壁(北面)	1	1.7	11.75	0.15	57.5	294	0.20										
		底版	1	2.7		0.13	93.5	294											
			-		11.75				0.32										
		頂版	-	3.0	11.75	0.26	101.0	294	0.35										
		側壁 (東面)	-	1.2	11.75	0.11	41.0	294	0.14										
S s - D 1	ケース②	側壁 (西面)	4	-	-	-	-	-	-										
		側壁 (南面)	1	1.9	11.75	0.17	66.3	294	0.23										
		側壁(北面)]	1.9	11.75	0.17	66.3	294	0.23										
		底版	-	3.0	11.75	0.26	103.0	294	0.36										
		頂版	1	3.0	11.75	0.26	100.7	294	0.35										
		側壁 (東面)	4 F	1.2	11.75	0.11	40.9	294	0.14										
	(11) 辟 (側壁 (西面)	1	-	-	-	-	-	-										
S s - D 1	ケース③	側壁 (南面)	1	1.9	11.75	0.17	66.0	294	0.23										
		側壁(北面)	1																
			-	1.9	11.75 11.75	0.17 0.26	66.0 102.8	294 294	0.23										

表 4-6(2) 評価結果(接続桝②,曲げモーメント照査)

	鉄筋 豆期許 度 <i>σ</i> sa N/mm ²) 294 294 294 294 294 294 294 294 294 294	照査値 σ_s / σ_s a 0.20 0.20 0.22 0.21 0.21 0.22 0.20 0.20
	家 応 力 度 σ s a N/mm ²) 294 294 294 294 294 294 294 294	$\begin{array}{c c} \sigma & s \\ \hline \sigma & s & a \\ \hline 0.20 \\ 0.20 \\ 0.22 \\ 0.21 \\ 0.21 \\ 0.22 \\ 0.20 \\ 0.20 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.20 \\ \hline \end{array}$
	家 応 力 度 σ s a N/mm ²) 294 294 294 294 294 294 294 294	$\begin{array}{c c} \sigma & s \\ \hline \sigma & s & a \\ \hline 0.20 \\ 0.20 \\ 0.22 \\ 0.21 \\ 0.21 \\ 0.22 \\ 0.20 \\ 0.20 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.20 \\ \hline \end{array}$
$u \equiv g m$ $\gamma - \chi$ $u \equiv h \leq h$ $u = h \leq h$ $u = h \leq h \leq h \leq h$ $u = h \leq h \leq h \leq h$ $u = h \leq h \leq h \leq h$ $u = h \leq h \leq h \leq h$ $u = h \leq h \leq h \leq h \leq h$ $u = h \leq h \leq h \leq h \leq h \leq h$ $u = h \leq h$	度 σ s a N/mm²) 294	$\begin{array}{c c} \sigma & s \\ \hline \sigma & s & a \\ \hline 0.20 \\ 0.20 \\ 0.22 \\ 0.21 \\ 0.21 \\ 0.22 \\ 0.20 \\ 0.20 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.20 \\ \hline \end{array}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	σ s a N/mm²) 294	$\begin{array}{c} \sigma_{s a} \\ \hline 0.20 \\ 0.20 \\ 0.22 \\ 0.21 \\ 0.21 \\ 0.22 \\ 0.20 \\ 0.20 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.20 \\ \end{array}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N/mm ²) 294	0.20 0.20 0.22 0.21 0.21 0.22 0.20 0.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	294 294	0.20 0.22 0.21 0.21 0.22 0.20 0.20 0.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294	0.22 0.21 0.21 0.22 0.20 0.20 0.21 0.21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294	0.22 0.21 0.21 0.22 0.20 0.20 0.21 0.21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	294 294 294 294 294 294 294 294 294 294 294 294 294 294	0.21 0.21 0.22 0.20 0.20 0.21 0.21 0.21
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	294 294 294 294 294 294 294 294 294 294 294 294 294 294	0.21 0.22 0.20 0.20 0.21 0.21 0.21 0.20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	294 294 294 294 294 294 294 294 294 294 294 294 294	0.22 0.20 0.20 0.21 0.21 0.21 0.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	294 294 294 294 294 294 294 294 294 294	0.20 0.20 0.21 0.21 0.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	294 294 294 294 294 294 294 294	0.20 0.21 0.21 0.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	294 294 294 294 294 294 294	0.21 0.21 0.20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	294 294 294 294 294	0.21 0.20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	294 294 294	0.20
底版 2.1 11.75 0.18 61.5 1.9 11.75 0.17 56.2 $0 \oplus \mathbb{E}$ (東面) 11.75 0.17 56.2 $0 \oplus \mathbb{E}$ (西面) $0 \oplus \mathbb{E}$ (西面) 0.175 0.18 2.0 11.75 0.18 58.9 2.0 11.75 0.18 57.3	294 294	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	294	
gggggggggggggggggggggggggggggggggggg		0.20
Ss-D3ケース①側壁(西面)2.011.750.1858.9側壁(南面)2.011.750.1857.3	4JH	0.20
Ss-D3 ケース① 側壁(南面) 2.0 11.75 0.18 57.3	294	0.19
	294	0.21
	294	0.20
画量(北面) 1.5 11.75 0.17 50.9 底版 2.1 11.75 0.18 60.2	294	0.20
<u> 直版 </u> 2.1 11.75 0.16 00.2 頂版 1.9 11.75 0.17 54.4	294	0.21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	294 294	0.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	294 294	0.18
$S_{S}-F_{1}$ $(f_{Y}-f_{Y})$	294 294	0.19
	294	0.19
	294	0.19
	294	0.20
側壁(東面) 1.8 11.75 0.16 52.3 (側陸(東西)) 10 11.75 0.17 56.6	294	0.18
Ss-F2 ケース① 側壁(西面) D25 1.9 11.75 0.17 56.6 側壁(南面) 0150 1.9 11.75 0.17 55.1	294	0.20
	294	0.19
	294	0.19
底版 2.0 11.75 0.18 58.4	294	0.20
頂版 1.9 11.75 0.17 55.9	294	0.20
<u> 側壁(東面)</u> 1.8 11.75 0.16 53.9	294	0.19
$S_{\alpha} = F_{\alpha} + F_{\alpha$	294	0.20
	294	0.20
	294	0.20
底版 2.0 11.75 0.18 59.9	294	0.21
	294	0.18
側壁(東面) 1.7 11.75 0.15 49.6 (明瞭(東西)) 1.9 11.75 0.16 52.7	294	0.17
Ss-N1 ケース① 側壁(西面) 1.8 11.75 0.16 53.7	294	0.19
1.8 11.75 0.16 52.2 個壁(南面) 1.8 11.75 0.16 52.2	294	0.18
側壁(北面) 1.8 11.75 0.16 51.9	294	0.18
底版 1.9 11.75 0.17 56.4	294	0.20
	294	0.20
<u> 側壁(東面)</u> 2.0 11.75 0.18 57.3	294	0.20
$S_{\alpha} = [1, 1]$ $F = \overline{Z}(0)$	294	0.22
側壁(角面) 2.1 11.75 0.18 60.3	294	0.21
(11.75 0.18 59.9)	294	0.21
底版 2.1 11.75 0.18 62.4	294	0.22
頂版 2.0 11.75 0.18 58.1	294	0.20
側壁(東面) 1.9 11.75 0.17 57.0	294	0.20
Ss-D1 ケース③ 側壁(西面) 2.1 11.75 0.18 61.6	294	0.21
- 側壁(南面) 2.0 11.75 0.18 60.0	294	0.21
側壁(北面) 2.0 11.75 0.18 59.6	294	0.21
底版 2.1 11.75 0.18 62.2	294	0.22

表 4-6(3) 評価結果(接続桝③,曲げモーメント照査)

	11 7	-6(4) 評価	(JX NL VT C	, щт		卜照 (1)																						
				1	コンクリート			鉄筋																				
				四大田	短期許		四大田	短期許																				
地震動	解析	部位	配筋	照査用	容応力	照查値	照査用 応力度	容応力	照查值																			
地辰勤	ケース	市山立	自己 用力	応力度	度	σ 。/		度	σ s																			
				$\sigma_{\rm c}$	б _{са}	σ _{ca}	σ_{s}	σ _{sa}	б _{sa}																			
				(N/mm^2)	(N/mm^2)		(N/mm^2)	(N/mm^2)																				
		頂版		2.8	11.75	0.24	106.5	294	0.37																			
		側壁 (東面)	1	-	-	-	-	-	-																			
0 0 1		側壁 (西面)		1.6	11.75	0.14	59.5	294	0.21																			
S s - D 1	ケース①	側壁 (南面)	1	-	-	_	-	_	_																			
		側壁(北面)	1	-	-	-	-	-	-																			
		底版		2.9	11.75	0.25	110.3	294	0.38																			
		頂版		2.7	11.75	0.23	104.8	294	0.36																			
		側壁 (東面)		_	_	_	_	_	_																			
		側壁 (西面)		1.5	11.75	0.13	58.0	294	0.20																			
S s - D 2	ケース①	側壁 (南面)		-	-	-	-		-																			
		側壁(北面)	-	-	_	_	_	_	_																			
		底版		-	-	-			-	-	1	2.8	11.75	0.24	108.5	294	0.37											
							2.8	11.75	0.24	108.5	294	0.37																
		側壁(東面)						-	-		- 11.70	0.20	- 102.2		0.35													
		侧壁 (東面) 側壁 (西面)					1.5	- 11.75	0.13	56.0	294	0.20																
S s - D 3	ケース①	側壁 (西面)		1.0	-	0.13		- 294	-																			
				_	-	_	-	_	_																			
		側壁(北面)																										
		底版 頂版	4	2.8	11.75	0.24	105.8	294	0.36																			
			-	2.6	11.75	0.23	98.9	294	0.34																			
		側壁(東面)	D19 @150		-	-	-		-																			
S s - F 1	ケース①	側壁(西面)		1.4	11.75	0.12	53.4	294	0.19																			
		側壁(南面)		-	-	-	-	-	-																			
		側壁(北面)		-	-	-	-	-	-																			
		底版		2.7	11.75	0.23	102.4	294	0.35																			
		頂版		-					-	-	_	_	-	2.6	11.75	0.23	98.6	294	0.34									
		側壁 (東面)		-	-	-	-	-	-																			
S s - F 2	ケース①	側壁 (西面)		-	-	-	-	-	-	-	1.4	11.75	0.12	53.4	294	0.19												
	, 0	側壁 (南面)									@150	@150	@150	@150	@150	@150	@150	@150	@150	@150	@150	@150	-	-	-	-	-	-
		側壁(北面)																				-	-	-	-	-	-	
		底版																				4	2.7	11.75	0.23	102.1	294	0.35
		頂版				2.7	11.75	0.23	101.7	294	0.35																	
		側壁 (東面)		-	-	-	-	-	-																			
S s — F 3	ケース①	側壁 (西面)		1.5	11.75	0.13	55.5	294	0.19																			
0 5 1 0)), (<u>-</u>)	側壁 (南面)]	-	-	-	-	-	-																		
		側壁(北面)		-	-	-	-	-	-																			
		底版		2.8	11.75	0.24	105.2	294	0.36																			
		頂版		2.5	11.75	0.22	96.1	294	0.33																			
		側壁 (東面)		-	-	-	-	-	-																			
S s - N 1	ケース①	側壁 (西面)		1.3	11.75	0.12	51.3	294	0.18																			
0.0 111		側壁 (南面)		-	-	-	-	-	-																			
		側壁(北面)		-	-	-	-	-	-																			
		底版		2.6	11.75	0.23	99.5	294	0.34																			
		頂版		2.8	11.75	0.24	106.6	294	0.37																			
		側壁 (東面)		-	-	-	-	-	-																			
	ケース2	側壁 (西面)]	1.6	11.75	0.14	59.6	294	0.21																			
S s - D 1	7 - AQ	側壁 (南面)]	-	-	-	-	-	-																			
		側壁(北面)]	-	-	-	-	-	-																			
		底版	-	2.9	11.75	0.25	110.4	294	0.38																			
		頂版	1	2.8	11.75	0.24	106.4	294	0.37																			
		側壁 (東面)	1	-	-	-	-	-	-																			
		側壁 (西面)	1	1.6	11.75	0.14	59.4	294	0.21																			
S s - D 1	ケース③	側壁 (南面)	-	-	-	-	-	-	-	-																		
		側壁(北面)	1	_	_	_	_	-	_																			
		底版	1	2.9	11.75	0.25	110.2	294	0.38																			
	1	1/Ex /I/X		4.5	11.10	0.20	110.4	<i>271</i>	0.00																			

表 4-6(4) 評価結果(接続桝④,曲げモーメント照査)

		11	6(5) 評価結果((JX/NL/) (C	э, шт	_ / •																					
					=	コンクリート	\		鉄筋																			
					II77	短期許																						
売 () 売 () 市 () ()	바 좀 죄	解析		TT-T before			照查值			照查值																		
内 内 0	地震動	ケース	部位	四己 所			σς			σς																		
$ S s - D 1 \\ S s - D 1 \\ F - x 0 \\ \hline \begin{tabular}{ c c c c c } \hline c c c c c c c c c c c c c c c c c c $																												
$ S s - D 1 \\ S s - D 1 \\ r - \chi 0 \\ \hline m @ ($\pi @ ($\pi @) \\ m @ ($\pi @ ($\pi @) \\ m & ($\pi @$					(N/mm ²)		·····	(N/mm ²)		. 5 a																		
Ss-D1 ケース① 「蟹菜 (雪面) 「緑菜 (雪面) 「健菜 (雪面) 「健菜 (雪面) 「豊菜 (山面) 「豊菜 (山面) 「豊菜 (山面) 「一」 1.2 11.75 0.11 46.4 294 0.16 Ss-D2 ケース① 「雪菜 (雪菜) 1.2 11.75 0.11 46.4 294 0.26 Ss-D2 ケース① 「雪菜 (雪菜) 11.75 0.11 46.4 294 0.26 「雪菜 1.2 11.75 0.16 72.5 294 0.26 「雪菜 1.1 11.75 0.16 72.5 294 0.26 1.1 11.75 0.10 45.4 294 0.26 1.1 1.1.75 0.10 45.4 294 0.26 1.1 1.1.75 0.16 72.5 294 0.26 1.1 11.75 0.10 45.4 294 0.26 1.1 1.8 11.75 0.16 72.4 0.16 1.2 1.2 1.1 1.1 11.75 0.16 70.6 294 0.24 1.1 1.1			百版		1.8		0.16	73 4		0.25																		
S s - D 1																												
S s - D 1 グース(0) 御壁 (市面) (倒壁 (北面) (一)					-		-																					
内 ● 	S s - D 1	ケース①					_	_	_																			
(1) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																												
$ S s - D 2 \\ S s - D 2 \\ s - x 0 \\ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$																												
S s - D 2 ケーズ() 朝曜(雨) 朝曜(北市) 意版 1.1 1.1,7 0.10 45.4 294 0.16 ····································																												
S s - D 2 ケース() 側壁 (南面) 側壁 (南面) 一度版 -																												
S s - D 2 ケース① 一般で、前の 一般愛(南の) 一般愛(南の) 一.1.1 11.75 0.10 45.4 294 0.26 S s - D 3 チース① 一個愛(南の) 1.9 11.75 0.16 70.6 294 0.26 個愛(南の) 一一 -																												
小田 一田炭 一田炭 一日 一日 一日 一日 一日 一日 第 一田焼 一田焼 一田焼 11 11.75 0.10 45.4 294 0.26 第 一田焼 一田焼 1.8 11.75 0.10 43.7 294 0.25 第 一田焼 一一 一 一 一 一 一 一 一 一 0.24 0.15 1.10 11.75 0.10 43.7 294 0.15 1.1 1.17 1.17 0.16 72.3 294 0.25 1.11 11.75 0.10 43.7 294 0.25 1.1 1.17 <td>$S_s - D_2$</td> <td>ケース①</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	$S_s - D_2$	ケース①																										
s 1.9 1.75 0.17 74.2 294 0.26 $M@$ (π \bar{m}) 0.16 70.6 294 0.25 $M@$ (π \bar{m}) M (π \bar{m})		, U			-	-	_	-		-																		
$ S s - D 3 \\ S s - D 3 \\ S s - D 3 \\ r - x 0 $					1.1	11.75	0.10	45.4	294	0.16																		
S s - D 3 チース① 棚壁 (東面) 側壁 (南面) 側壁 (南面) 側壁 (東面) 1.1 11.76 0.10 43.7 294 0.15 9 一、 - <td></td> <td></td> <td></td> <td>版</td> <td>1.9</td> <td>11.75</td> <td>0.17</td> <td>74.2</td> <td>294</td> <td>0.26</td>				版	1.9	11.75	0.17	74.2	294	0.26																		
S s - D 3 か - ス ① 棚壁 (西面) 剛壁 (東面) 一 - - - - - - 個壁 (東面) 個壁 (東面) 個ा 1.17 1.175 0.10 43.4 294 0.15 S s - F 3 					1.8	11.75	0.16	70.6	294	0.25																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																												
$ S s - F 1 \\ S s - F 1 \\ F - \chi 0 \\ \hline \left(\frac{40 \pm (1 + 1)}{10 \pm (1 + 1)} \right) \\ \left(\frac{40 \pm (1 + 1)}{10 \pm (1 + 1)$	S D ?	ケーマの			-	-	-	-	-	-																		
s s - F 1 $\bar{\mu}$ $$	38-D3	7 - XU	側壁 (南面)		-	-	-	-	-	-																		
$ S \ s - F \ 1 \\ S \ s - F \ 1 \\ F - \chi \ 1 \\ F - \chi \ 2 \\ F - \chi \$			側壁(北面)		1.1	11.75	0.10	43.7	294	0.15																		
$ S \ s - F \ 1 \\ S \ s - F \ 1 \\ F - \chi \ 1 \\ F - \chi \ 2 \\ F - \chi \$			底版		1.8	11.75	0.16	72.3	294	0.25																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			頂版		1.7	11.75	0.15	68.4	294	0.24																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			側壁 (東面)	-	1.0	11.75	0.09	41.7	294	0.15																		
matrix matri			側壁(西面)			-	-	-	-	-	-																	
<	S s - F 1	ケース①	側壁 (南面)		-	-	-	-	_	_																		
$ S s - F 2 \\ S s - F 2 \\ F - \mathcal{A} () \\ $					1.0	11.75	0.09	41.7	294	0.15																		
$ S s - F 2 \\ S s - F 2 \\ s s - F 2 \\ (\pi - \pi)) = (\pi - \pi) + (\pi - $																												
$ S s - F 2 \\ S s - F 2 \\ r - x 0 1 \\ \hline \left(\frac{M@}{m@} (nam) \\ M@ (nam) \\ ma ($																												
Ss-F2				-																								
S s - F 2					-																							
$ S s - P 3 \begin{split} \\ \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	S s - F 2	ケース①				-				-	-	-	-	-	-	-	-	-										
S s - F 3 $\bar{\mu} \oplus \bar{\mu} \oplus \bar{\mu}$ ($\bar{\mu} \oplus \bar{\mu} \oplus \bar{\mu} \oplus \bar{\mu}$) ($\bar{\mu} \oplus \bar{\mu} \bar{\mu} \oplus \bar{\mu} \bar{\mu} \oplus \bar{\mu} \bar{\mu} \bar{\mu} \oplus \bar{\mu} \bar{\mu} \bar{\mu} \bar{\mu} \bar{\mu} \bar{\mu} \bar{\mu} \bar{\mu}$																			6300	6300	6300	6000						
$ S s - F 3 \\ S s - F 3 \\ F - x 0 \\ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$																												
S s - F 3 = f - x 0 = f - y - x 0 = f - y - y - y - y - y 0 = f - y - y - y - y - y - y = f - y - y - y - y - y - y - y = f - y - y - y - y - y - y - y = f - y - y - y - y - y - y - y - y = f - y - y - y - y - y - y - y - y - y -																												
S s - F 3 = f																												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																												
S s - N 1 = f	$S_s - F_3$	ケース①																										
S s - N 1 $\bar{E}\bar{K}$ 1.811.750.1671.92940.25 $g \ \bar{E} (\bar{\mu} \bar{m}) \ $ $(g \ \bar{E} (\bar{\mu} \bar{m}))$ $(g \ \bar{E} (\bar{\mu} \bar{m}))$ $(g \ \bar{E} (\bar{m} \bar{m}))$ <																												
S S - N 1 = f(-x) =						1																						
$ S s - N 1 \\ F - A (1) = \begin{pmatrix} \# @ (\pi @ m) \\ \# (\pi @ m)$																												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.7	11.75	0.15	66.6	294	0.23																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.0	11.75	0.09	40.2	294	0.14																		
S = D = 1 $f(x) = (x) = (x)$	S.e N 1	ケーフの			-	-	-	-	-	-																		
$ S s - D 1 = \begin{cases} K \\ f = K \\ f$	32-11		側壁 (南面)		_	-	-	_	-	-																		
$ S s - D 1 = \begin{cases} K \\ f = K \\ f$			側壁 (北面)		1.0	11.75	0.09	40.2	294	0.14																		
$ S s - D 1 = rac{5}{5} r - x = 0 \\ frac{0}{5} r - x = 0 \\ frac{0}{$]	1.7	11.75	0.15	68.2	294	0.24																		
$ S s - D 1 = r - x^{(2)} = \begin{bmatrix} \frac{10}{9} \\ $					1.8	11.75	0.16	73.5	294	0.25																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1					294																			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,		1				-																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S s - D 1	ケース(2)		1	-	-	-	-	-																			
底版 1.9 11.75 0.17 75.3 294 0.26 1.8 11.75 0.16 73.4 294 0.25 (側壁(東面)) (側壁(西面)) 11.75 0.11 46.3 294 0.16 (月壁(南面)) - - - - - - (月壁(北面)) (北面) 11.75 0.11 46.3 294 0.16																												
$ S s - D 1 \begin{cases} \hline \Pi b \\ \hline U @ @ (\pi a a) \\ \hline U & U & U & U & U & U & U & U & U & U$																												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				┥┝																								
S s - D 1 $f = f = -$ f = -																												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[
側壁(北面) 1.2 11.75 0.11 46.3 294 0.16	Ss-D1 ケ	ケース③					_																					
医叔二二 1.9 11.75 0.17 75.2 294 0.26																												
			低欣		1.9	11.75	0.17	(5.2	294	0.26																		

表 4-6(5) 評価結果(接続桝⑤,曲げモーメント照査)

			Ш 柏 木 (按 航		ンクリート			鉄筋																			
				照查用	短期許容	照査	照查用応	短期許	照查																		
地震動	解析	部位	配筋	^照 宜用 応力度	^{起 期 計 谷} 応 力 度	値	照 宜 用 心 力 度	容応力	信																		
地反動	ケース	스마이	日山方刀	心力皮 σ _c	心力皮 の _{ca}	σ	σ _s	度	σ																		
				(N/mm^2)	(N/mm^2)	σ _{ca}	(N/mm^2)	σ_{sa} (N/mm ²)	σ _{sa}																		
		頂版		3.2	13.25	0.25	113.1	294	0.39																		
		側壁 (東面)		1.8	13.25	0.14	77.6	294	0.27																		
	_	側壁 (西面)		2.3	13.25	0.18	100.2	294	0.35																		
S s - D 1	ケース①	側壁 (南面)		_	_	-	-	-	-																		
		側壁(北面)		_	-	-	-	-	-																		
		底版		3.3	13.25	0.25	115.2	294	0.40																		
		頂版		3.2	13.25	0.25	111.7	294	0.38																		
		側壁 (東面)		1.8	13.25	0.14	76.2	294	0.26																		
S s - D 2	ケース①	側壁 (西面)		2.3	13.25	0.18	98.4	294	0.34																		
03 02	, ,, <u>(</u>	側壁 (南面)		-	-	-	-	-	-																		
		側壁(北面)		-	-	-	-	-	-																		
		底版	-	-	-	-	-	-	_	3.2	13.25	0.25	113.8	294	0.39												
		頂版 (東西)		3.1	13.25	0.24	109.2	294	0.38																		
		側壁(東面) 側壁(西面)		1.7	13.25	0.13	73.8	294	0.26																		
S s - D 3	ケース①	側壁(西面)側壁(南面)	•	2.2	13.25	0.17	95.3	294	0.33																		
		侧壁 (角面) 側壁 (北面)	•	_	_	_	_	_	_																		
		底版		3.1	13.25	0.24	111.3	294	0.38																		
		頂版		3.0	13.25	0.21	105.5	294	0.36																		
		側壁 (東面)	(頂版)	1.6	13.25	0.13	70.1	294	0.24																		
		側壁 (西面)	外	2.1	13.25	0.16	90.5	294	0.31																		
S s - F 1	Ss-F1 ケース①	側壁 (南面)	D19@200×300	-	_	-	-	-	-																		
		側壁(北面)	内	-	-	-	-	-	-																		
		底版	D22@200×300	3.0	13.25	0.23	107.5	294	0.37																		
		頂版		3.0	13.25	0.23	105.1	294	0.36																		
		側壁 (東面)	(側壁)外	1.6	13.25	0.13	69.9	294	0.24																		
S s - F 2	ケース①	側壁 (西面)	D16@200×300	2.1	13.25	0.16	90.2	294	0.31																		
0.5 1 2	, ,, <u>(</u>	側壁 (南面)	内	-	-	-	-	-	-																		
		側壁(北面)	D16@200×300	-	-	-	-	-	-																		
		底版	(底版)	(底版) 外	(底版) 外	(底版) 外	(底版) 外	(底版) 外	(底版) 外	(底版) 外	-	-	-	-	-	-	-		-			3.0	13.25	0.23	107.1	294	0.37
		頂版 (東索)									3.1	13.25	0.24	108.3	294	0.37											
		側壁(東面)側壁(西面)									1.7 2.2	13.25 13.25	0.13	72.8 93.9	294 294	0.25											
S s - F 3	ケース①	側壁 (南面)	D19@200×300	- <u>-</u>	-	-	-	-	-																		
		側壁(北面)	内 D22@200×300	_	_	_	_	_	_																		
		底版	D77@700 V 900	3.1	13.25	0.24	110.3	294	0.38																		
		頂版	1	2.9	13.25	0.22	102.0	294	0.35																		
		側壁 (東面)	1	1.6	13.25	0.13	66.8	294	0.23																		
S c - N 1	ケース①	側壁 (西面)]	2.0	13.25	0.16	86.2	294	0.30																		
S s - N 1	->U	側壁 (南面)		-	-	-	-	-	-																		
		側壁(北面)		-	-	-	-	-	-																		
		底版		2.9	13.25	0.22	104.0	294	0.36																		
		頂版	ļ	3.2	13.25	0.25	113.2	294	0.39																		
		側壁(東面)		1.8	13.25	0.14	77.8	294	0.27																		
S s - D 1	ケース②	側壁(西面)		2.4	13.25	0.19	100.4	294	0.35																		
		側壁(南面)	4	-	-	-	-	-	-																		
		側壁(北面) 底版	•		- 13.25	- 0.25	- 115.3	- 294	-																		
		底	1	3.3 3.2	13.25 13.25	0.25 0.25	115.3 113.0	294 294	0.40																		
		側壁(東面)	1	1.8	13.25	0.23	77.6	294	0.39																		
		側壁 (西面)	1	2.3	13.25	0.14	100.1	294	0.27																		
S s - D 1	ケース③	側壁 (南面)	1	-	-	-	-	-	-																		
		側壁 (北面)	1	-	-	-	-	-	-																		
		底版	1	3.3	13.25	0.25	115.1	294	0.40																		
·	1	/~~~ / 1/~	1					L	· ·																		

表 4-6(6) 評価結果(接続桝⑥,曲げモーメント照査)

	1	4-6(7) 評			, 四()、	- / •																									
				Ξ	コンクリート	\		鉄筋																							
				照査用	短期許		照査用	短期許																							
地震動	解析	部位	配筋	応力度	容応力	照查值		容応力	照查值																						
地展勤	ケース	- <u>11</u> (11	自己历历		度	σ 。/	応力度	度	σ s /																						
				$\sigma_{\rm c}$ (N/mm^2)	σ _{са}	σ _{ca}	σ_{s}	σ _{sa}	σ _{sa}																						
				(N/mm^2)	(N/mm^2)		(N/mm^2)	(N/mm^2)																							
		頂版		2.1	13.25	0.16	76.6	294	0.27																						
		側壁 (東面)		6.7	13.25	0.51	249.4	294	0.85																						
		側壁 (西面)		4.4	13.25	0.34	162.5	294	0.56																						
S s - D 1	ケース①	側壁 (南面)		1.4	13.25	0.11	50.4	294	0.18																						
		側壁(北面)	-	1.4	13.25	0.11	52.2	294	0.18																						
		底版		2.2	13.25	0.17	83.3	294	0.29																						
		頂版		2.0	13.25	0.16	73.0	294	0.25																						
		側壁 (東面)	-	6.2	13.25	0.47	230.3	294	0.79																						
		側壁 (西面)		4.0	13.25	0.31	150.0	294	0. 52																						
S s - D 2	ケース①	側壁 (南面)	-																												
			-	1.3	13.25	0.10	46.5	294	0.16																						
		側壁(北面)		1.3	13.25	0.10	48.2	294	0.17																						
		底版	-	2.1	13.25	0.16	79.4	294	0.28																						
		頂版		2.0	13.25	0.16	73.0	294	0.25																						
		側壁 (東面)		6.2	13.25	0.47	230.7	294	0.79																						
S s - D 3	ケース①	側壁 (西面)		4.0	13.25	0.31	150.3	294	0.52																						
55 20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	側壁 (南面)		1.3	13.25	0.10	46.6	294	0.16																						
		側壁(北面)		1.3	13.25	0.10	48.3	294	0.17																						
		底版		2.1	13.25	0.16	79.4	294	0.28																						
		頂版		1.9	13.25	0.15	70.5	294	0.24																						
		側壁 (東面)		5.9	13.25	0.45	219.8	294	0.75																						
0 51	F 1 ケース① 側壁(西面	側壁 (西面)		3.9	13.25	0.30	143.2	294	0.49																						
S s - F 1	$\tau - \chi_{(I)}$	側壁 (南面)	外 D32@200 内 D22@200	1.2	13.25	0.10	44.4	294	0.16																						
		側壁(北面)		1.2	13.25	0.10	46.0	294	0.16																						
		底版		2.1	13.25	0.16	76.7	294	0.27																						
		頂版								-	-				-		1	-		1.9	13.25	0.15	70.5	294	0.24						
		側壁 (東面)		5.9	13.25	0.45	219.2	294	0.75																						
		側壁 (西面)		D32@200 内	D32@200 内	D32@200 内	D32@200 内	D32@200 内	D32@200 内	D32@200 内	D32@200 内	D32@200 内	3.8	13.25	0.29	142.8	294	0.49													
S s - F 2	ケース①	側壁 (南面)											内	内	内	内	内							-	-	1.2	13.25	0.10	44.3	294	0.16
		側壁(北面)																1.2	13.25	0.10	45.8	294	0.16								
		底版													2.1	13.25	0.16	76.7	294	0.27											
		頂版					1.9	13.25	0.15	72.4	294	0.21																			
		側壁(東面)		6.1	13.25		228.1	294	0. 23																						
			-			0.47																									
S s - F 3	ケース①	側壁(西面)	-	4.0	13.25	0.31	148.6	294	0.51																						
		側壁(南面)		1.2	13.25	0.10	46.1	294	0.16																						
		側壁(北面)		1.3	13.25	0.10	47.7	294	0.17																						
		底版	-	2.1	13.25	0.16	78.8	294	0.27																						
		頂版		1.8	13.25	0.14	65.5	294	0.23																						
		側壁 (東面)		5.3	13.25	0.40	197.5	294	0.68																						
S s - N 1	ケース①	側壁 (西面)		3.5	13.25	0.27	128.7	294	0.44																						
	,	側壁 (南面)		1.1	13.25	0.09	39.9	294	0.14																						
		側壁(北面)		1.1	13.25	0.09	41.3	294	0.15																						
		底版		1.9	13.25	0.15	71.3	294	0.25																						
		頂版		2.0	13.25	0.16	76.0	294	0.26																						
		側壁 (東面)		6.6	13.25	0.50	246.7	294	0.84																						
0 51	L 70	側壁 (西面)]	4.3	13.25	0.33	160.7	294	0.55																						
S s - D 1	ケース②	側壁 (南面)	1	1.3	13.25	0.10	49.9	294	0.17																						
		側壁(北面)	1	1.4	13.25	0.11	51.6	294	0.18																						
		底版	-	2.2	13.25	0.17	82.8	294	0.29																						
		頂版		2.1	13.25	0.16	76.8	294	0.27																						
		側壁 (東面)	1	6.8	13.25	0.52	251.0	294	0.86																						
		側壁 (西面)		4.4	13.25	0.34	163.5	294	0.56																						
S s - D 1	ケース③	側壁 (南面)				-	1.4	13.25	0.11	50.7	294	0.18																			
דת פר		側壁(用面)				13.25	0.11	52.5	294	0.18																					
				1.4		1																									
		底版		2.3	13.25	0.18	83.6	294	0.29																						

表 4-6(7) 評価結果(接続桝⑦,曲げモーメント照査)

	<u>Д</u> 1	— 6 (8) 詳1曲 新	□ 〒朱(′ 依 統				<u></u> /	Arthe Arthe																			
				7	ンクリート			鉄筋																			
	御石七日			照査用	短期許	照査	照查用	短期許	照査																		
地震動	解析 ケース	部位	配筋	応力度	容応力 度	値	応力度	容応力 度	値																		
				σ _c	反 の _{ca}	σ 。/	σs	σ _{sa}	σ s /																		
				(N/mm^2)	(N/mm^2)	σ _{ca}	(N/mm^2)	(N/mm^2)	σ _{sa}																		
		頂版		2.5	13.25	0.19	84.2	294	0.29																		
		側壁 (東面)		2.2	13.25	0.17	115.9	294	0.40																		
		側壁 (西面)		-	-	-	-	-	-																		
S s - D 1	ケース①	側壁 (南面)		-	-	-	-	-	-																		
		側壁(北面)		2.0	13.25	0.16	106.7	294	0.37																		
		底版		2.6	13.25	0.20	87.1	294	0.30																		
		頂版		2.5	13.25	0.19	82.7	294	0.29																		
		側壁 (東面)		2.2	13.25	0.17	112.6	294	0.39																		
S s - D 2	ケース①	側壁 (西面)		-	-	-	-	-	-																		
55 D2		側壁 (南面)		-	-	-	-	-	-																		
		側壁(北面)		2.0	13.25	0.16	103.7	294	0.36																		
		底版		2.6	13.25	0.20	85.5	294	0.30																		
		頂版		2.4	13.25	0.19	80.5	294	0.28																		
		側壁(東面)		2.1	13.25	0.16	108.4	294	0.37																		
S s - D 3	ケース①	側壁(西面)		-	-	-	-	-	-																		
		側壁(南面)		-	-	-	-	-	-																		
		<u>側壁(北面)</u>	{	1.9	13.25	0.15	99.8	294	0.34																		
		底版 頂版		2.5 2.3	13.25	0.19	83.3 77.8	294 294	0.29																		
				2.3	13.25 13.25	0.18	103.0	294	0.27																		
		側壁(東面)		-	- 15.25	0.16	- 103.0	- 294	-																		
S s - F 1	ケース①	側壁 (南面)		_	-	-	-	_	_																		
		側壁(串面)		1.8	13.25	0.14	94.9	294	0.33																		
		底版		2.4	13.25	0.14	80.5	294	0.33																		
		頂版	(頂版) D25@200	2.3	13.25	0.13	77.3	294	0.20																		
		側壁(東面)	D25@200	2.0	13.25	0.16	102.5	294	0.35																		
		側壁 (西面)	(側壁)	-	-	-	-	-	-																		
S s - F 2	ケース①	側壁 (南面)	(周壁) D16@200 (底版)	D16@200	-	-	-	-	-	-																	
		側壁(北面)										-		-	-						-	1.8	13.25	0.14	94.4	294	0.33
		底版																	2.4	13.25	0.19	80.0	294	0.28			
		頂版	D25@200	2.4	13.25	0.19	80.6	294	0.28																		
		側壁 (東面)		2.1	13.25	0.16	108.8	294	0.38																		
	1	側壁 (西面)		-	-	-	-	-	-																		
S s - F 3	ケース①	側壁 (南面)		-	-	-	-	-	-																		
		側壁(北面)		1.9	13.25	0.15	100.2	294	0.35																		
		底版	ļ	2.5	13.25	0.19	83.4	294	0.29																		
		頂版		2.3	13.25	0.18	75.7	294	0.26																		
		側壁 (東面)		1.9	13.25	0.15	99.2	294	0.34																		
S s - N 1	ケース①	側壁 (西面)		-	-	-	-	-	-																		
		側壁(南面)		-	-	-	-	-	-																		
		側壁(北面)		1.7	13.25	0.13	91.3	294	0.32																		
		底版		2.3	13.25	0.18	78.3	294	0.27																		
		頂版 (東三)	{	2.5	13.25	0.19	84.2	294	0.29																		
		側壁(東面)		2.2	13.25	0.17	115.9	294	0.40																		
S s - D 1	ケース②	側壁(西面)	1	_	-	-	-	-	-																		
		 側壁(南面) 側壁(北面) 	1	2.0	13.25		106.7	294	0.37																		
			•	2.0	13.25	0.16	87.1	294	0.37																		
			1	2.6	13.25	0.20	84.2	294 294	0.30																		
		側壁(東面)	1	2.3	13.25	0.19	115.9	294	0.29																		
		側壁(東面)	1	<i>4.4</i>	15.20	-	-	- 294	-																		
S s - D 1	ケース③	側壁 (南面)	1	_	-	-	-	-	-																		
		側壁(帛面)	- F	2.0	13.25	0.16	106.8	294	0.37																		
		底版	1	2.6	13.25	0.10	87.1	294	0.30																		
	1	PEN TIX	1	2.0	10.20	0.20	01.1	434	0.00																		

表 4-6(8) 評価結果(接続桝⑧,曲げモーメント照査)

増加 資加 一次 第 1 1 1 1 1 1 0 0 2 0 0 0 0 2 0 <th></th> <th>12 9</th> <th>-6(9) 評価</th> <th>小口 /丶</th> <th>(JX NL VT C</th> <th>9, щт</th> <th>モーメン</th> <th>「原耳)</th> <th></th> <th></th>		12 9	-6(9) 評価	小口 /丶	(JX NL VT C	9, щт	モーメン	「原耳)																		
東梁朝 (中二)第文川 (中二)第文川 (中二)第文川 (中二)第文川 (中二)第文川 (中二)第文川 (中二)第文川 (中二)第文川 (中二)第次川 (中二)第二川 (中二					=	コンクリート	<u></u>		鉄筋																	
潮震動 神子不 中一元 第位 第位 第方面 第位 第方面 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>短期許</td><td></td><td></td><td>短期許</td><td></td></t<>						短期許			短期許																	
加速 (第4) アース 西口 田口 田口 ビノ加 ビ ビノ加 ビノ加 ビノ加 ビノ加 ビノ加 ビノ加 ビ ビノ加 ビノ加 ビノ加 ビー	山西利	解析	÷n /			容応力	照查值		容応力	照查值																
内 内 (0, 0) 0, (0, 0) 0, 0, 0, 0) 0, S s - D 1 - <td< td=""><td>地震動</td><td>ケース</td><td>部位</td><td>四C 所</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	地震動	ケース	部位	四C 所																						
S s - D 1 アース① 原版 勿壁 (質面) 勿壁 (質面) 勿壁 (百面) 勿壁 (百面) 勿壁 (百面) 勿理 (百面) 1.8 1.6 0.11 60.0 29.4 0.21 S s - D 2 アース① 一種電 (百面) 勿壁 (百面) 一 -		-																								
$ S s - D 1 \\ r - \chi 0 \\ m @ ($ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $					(N/mm^2)		~ ca	(N/mm^2)		~ 5 a																
S s - D 1 アース① 何壁 (有面) 何壁 (有面) 個壁 (有面) 個壁 (有面) 何壁 (九面) - - - - - - - S s - D 2 アース① 何慶 (有面) 何慶 (有面) 何慶 (有面) 1.1 16.5 0.07 37.7 294 0.21 S s - D 2 アース① 何慶 (有面) 何慶 (有面) 1.1 16.5 0.11 61.3 294 0.21 M 2 「百面 - - - - - - 例 2 (百面) 何慶 (有面) 1.1 16.5 0.11 60.5 294 0.21 1.1 16.5 0.11 50.5 294 0.20 1.1 16.5 0.11 50.5 294 0.21 1.6 1.7 16.5 0.11 55.9 294 0.20 1.1 16.5 0.11 55.9 294 0.20 1.6 1.6 1.6 0.10 55.9 294 0.20 1.7 16.5 0.11 55.9 294 0.20 <td></td> <td></td> <td>百版</td> <td></td> <td>1.8</td> <td></td> <td>0 11</td> <td>60.0</td> <td></td> <td>0.21</td>			百版		1.8		0 11	60.0		0.21																
S s - D 1 アース① 例理 (南面) 例理 (南面) 健康 1.1 16.5 0.07 37.7 294 0.13 例理 (南面) 例理 (京面) 近版							-																			
S s - D 1 グース① 何望(南面) 値模(北面) 直版 -					1 1		0.07																			
中央 (個型・(加)) (個型・(石))) (個型・(石)) (個型・(石)) (個型・(石))) (個型・(石)) (個型・(石)) (個型・(石))) (個型・(石)) (個型・(石))) (個型・(石))) (四1.11.6.50.1160.52.940.21S s - F 1 (個型・(石))) (個型・(石))) (個型・(石))) (個型・(石))) (個型・(石))) (個型・(石))) (四1.116.50.1150.52.940.21S s - F 2 (一 (1.616.50.1055.92.940.211 (1.616.50.1055.92.940.211.116.50.1055.92.940.211.116.50.1055.52.940.121.116.50.1055.52.940.201.116.50.1156.72.940.201.116.50.1156.72.940.201.116.50.0733.82.940.201.116.50.1156.72.940.201.116.50.1156.72.940.201.116.50.1156.72.940.201.116.50.1156.72.94 <t< td=""><td>S s - D 1</td><td>ケース①</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	S s - D 1	ケース①																								
1.8 16.5 0.11 61.3 294 0.21 $35 s - D2$ $\gamma - \chi$ $\frac{360}{102}$ 1.7 16.5 0.11 61.3 294 0.21 $35 s - D3$ $\gamma - \chi$ $\frac{360}{102}$ (1.7) 16.5 0.07 36.9 294 0.21 $35 s - D3$ $\gamma - \chi$ $\frac{360}{102}$ (1.7) 16.5 0.01 57.9 294 0.21 $35 s - D3$ $\gamma - \chi$ $\frac{360}{102}$ (1.7) 16.5 0.11 57.9 294 0.20 1.7 16.5 0.11 57.9 294 0.20 -1 -1 -1 -1 -1 -1 1.7 16.5 0.11 59.2 294 0.20 1.7 16.5 0.11 59.2 294 0.20 $5s s - F3$ $\gamma - \chi$ $\frac{10}{102}$ 1.7 16.5 0.11 57.2 294 0.20																										
$ \begin{array}{c} 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $																										
S s - D 2 伊里 (前面) 伊里 (前面) 伊里 (前面) 伊里 (前面) 印里 (前面) 印里 (前面) 印里 (前面) 印里 (前面) 印里 (前面) 印里 (前面) 印里 (前面) 印里 (前面) 1.1 16.5 0.01 36.9 294 0.13 S s - D 3						16.5	0.11	61.3		0.21																
S s - D 2 チース①								59.1																		
S s - D 2 グース(1) 個盤(前面) 個 個 (前面) 個 個 (前面) 個 (前面) (1.6) 16.5) 0.11 55.0 294 0.12 5 .0 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0					-	-	-	-	-	-																
内壁(雨) 一酸液(雨) 一酸液(雨) 一酸液(雨) 一酸液(雨) 一方(1) -		5.70	側壁 (西面)		1.1	16.5	0.07	36.9	294	0.13																
s s - D 3 $ F - \chi 0 $	5 s - D 2	7 - XU	側壁(南面)		-	-	-	-	-	-																
s s - D 3 $ F - \chi 0 $			側壁(北面)	F	-	-	-	-	-	-																
$ \begin{array}{c} \mathrm{S}\ \mathrm{s} - \mathrm{D}\ 3 \\ \mathrm{S}\ \mathrm{s} - \mathrm{D}\ 3 \\ \mathrm{s}\ \mathrm{s} - \mathrm{P}\ 1 \\ \mathrm{r} - \mathrm{c}\ 1 \\ \mathrm{r} - \mathrm{c}\ \\ \mathrm{m}\ \mathrm{e}\ \mathrm{e}\ \mathrm{m}\ \mathrm{m}\ \mathrm{m}\ \mathrm{m}\ \mathrm{e}\ \mathrm{m}\ \mathrm$					1.8	16.5	0.11	60.5	294	0.21																
S s - D 3舟 - 0예壁 (南面) (예壁 (南面) (예壁 (南面)) (예壁 (南面)) (예璧 (南面)) (예璧 (南面)))5 s - D 15 s - D 15 s - D 1<																										
S s - D 3 アース① 9 (雪面) (예壁 (南面) (예壁 (南面)) (예壁 (南面)) (예璧 (南a)) (예璧 (nam)) (예璧 (nam)) (예ঊ (nam))) (ηঊ (nam)) (mঊ (nam))) (ηঊ (nam)) (mঊ (nam))) (ηঊ (nam)) (mঊ (nam))) (nam))) (nam))																										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																										
開催 開催 一一一一一一一一一一一一一一一一一一一一 一一一一一一一一一一一 一一一一一一 一一一一一 一一一一 一一一 一一一 一一 一一 1 1 <	S s - D 3	ケース①																								
() ()																										
$ S \ s - F \ 1 \\ S \ s - F \ 1 \\ F - \chi \ 0 \\ \left(\begin{array}{c} \frac{\pi}{9} \frac{\pi}{9} \\ \frac{\pi}{9} \frac{\pi}{9} \\ \frac{\pi}$				-																						
S s - F 1// ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					1.7	16.5	0.11	59.2	294	0.21																
$ \begin{array}{c} \mathrm{S}\ \mathrm{s}-\mathrm{F}\ 1 \\ \mathrm{S}\ \mathrm{s}-\mathrm{F}\ 1 \\ } \\ \mathrm{F}-\mathrm{A}\ (1) \\ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$			頂版		1.6	16.5	0.10	55.9	294	0.20																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			側壁(東面)	- - - -		-	-	-	-	-	-															
matrix matri			側壁 (西面)		1.0	16.5	0.07	34.0	294	0.12																
(朝璧 (北面)) (一一) (一一) (一) (一) (一) (-) <	Ss-FI	ゲース①	側壁 (南面)		-	_	_	-	_	_																
S $r \to \infty$ \bar{n} <td rowspan="2"></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>-</td>					-	-	-	_	-	-																
$ S s - F 2 \\ S s - F 2 \\ F - A (1) $					1 7	16 5	0 11	57.2	294	0.20																
Ss-F2 ケース① 側壁(東面) 側壁(南面) 一壁(北面) 個壁(市面) 一度版 - - - - - - Ss-F3 チース①																										
$ \begin{array}{c} \mathrm{S}\mathrm{s}\mathrm{s}\mathrm{r}\mathrm{F}2 \\ \mathrm{S}\mathrm{s}\mathrm{r}\mathrm{F}2 \\ \mathrm{s}\mathrm{s}\mathrm{r}\mathrm{F}2 \\ \mathrm{s}\mathrm{s}\mathrm{r}\mathrm{F}2 \\ \mathrm{s}\mathrm{s}\mathrm{s}\mathrm{r}\mathrm{F}2 \\ \mathrm{s}\mathrm{s}\mathrm{s}\mathrm{s}\mathrm{r}\mathrm{s}\mathrm{s}\mathrm{s}\mathrm{s}\mathrm{s}\mathrm{s}\mathrm{s}s$																										
S s - F 2				-																						
S s - F 3 = f	Ss-F2	ケース①			_	-	-	-	-	-																
S s - F 3 \bar{E} $\mu - \pi \cdot 1$ \bar{E} \bar{I}											@300	@300	@300	@300	@300	@300	@300	@300	6300	6300						
S s - F 3 = f - x 0 = f - y - y 0 = f - y - y - y - y 0 = f - y - y - y - y - y - y - y - y - y -																					_	_	_	4	4	_
S s - F 3 = f						16.5	0.11	56.7	294	0.20																
$ \begin{array}{c} \mathrm{S}\ \mathrm{s}-\mathrm{F}\ 3 \\ \mathrm{S}\ \mathrm{s}-\mathrm{F}\ 3 \\ \mathrm{S}\ \mathrm{s}-\mathrm{F}\ 3 \\ \mathrm{S}\ \mathrm{s}-\mathrm{F}\ 3 \\ \mathrm{I}\ 0 \\ \left[\frac{\mathrm{II}\ \mathrm{II}\ \mathrm{III}\ \mathrm{II}\ \mathrm{II}\$			21761		1.7	16.5	0.11	57.3	294	0.20																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			側壁 (東面)		-		-					-	-	-	-	-	-									
$ S s - D 1 \ \ \ \ \ \ \ \ \ \ \ \ \$	0	4 7 0	側壁 (西面)								1.0	16.5	0.07	35.2	294	0.12										
$ S = N 1 = \frac{0}{2} \left(\frac{1}{2} \frac{1}{2$	SS - F3	7 - XU	側壁 (南面)		-	-	-	-	-	-																
S s - N 1 $\bar{E}\bar{E}\bar{E}$ 1.716.50.1158.62940.20 $(\bar{I})\bar{E}\bar{E}$ $(\bar{I})\bar{E}\bar{E}$ $(\bar{I})\bar{E}\bar{E}$ 0.1053.82940.19 $(\bar{I})\bar{E}\bar{E}$ $(\bar{I})\bar{E}\bar{E}$ $(\bar{I})\bar{E}\bar{E}$ 0.0632.22940.11 $(\bar{I})\bar{E}\bar{E}\bar{E}\bar{E}\bar{E}\bar{E}\bar{E}\bar{E}\bar{E}\bar{E}$				1	-	-	-	-	-	-																
S s - N 1 = r - x 0 = r - r - r - r - r - r - r - r - r - r				1	1.7	16.5	0.11	58.6	294	0.20																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1																								
S s - N 1 = r + r + r + r + r + r + r + r + r + r																										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																										
$ S s - D 1 = \begin{cases} \hline \ \underline{w} (1, \underline{u} \underline{u}) \\ \underline$	S s - N 1	ケース①																								
S s - D 1 $E K horizonE K horizon$																										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.11																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-	-	-	-	-	-																
$S = D 1 = \frac{\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.70	側壁 (西面)		1.1	16.5	0.07	37.8	294	0.13																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SS-DI	7-20	側壁 (南面)		-	-	-	-	-	-																
底版 1.8 16.5 0.11 61.3 294 0.21 1.8 16.5 0.11 59.9 294 0.21 (個壁(東面)) (個壁(西面)) - - - - - (個壁(南面)) (側壁(北面)) - - - - - (1.1 16.5 0.07 37.7 294 0.13				1	-	-	-	-	-	-																
$ S s - D 1 \begin{cases} fight \\ fight \\$				1	1.8				294																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1																								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																										
Ss-D1 ケース③ 側壁(南面) - - - - - - 側壁(北面) - - - - - - -																										
(m)	S s - D 1	ケース③																								
	5 s - D 1																									
底版 1.8 16.5 0.11 61.3 294 0.21																										
			底版		1.8	16.5	0.11	61.3	294	0.21																

表 4-6(9) 評価結果(接続桝⑨,曲げモーメント照査)

地震動	解析ケース	部位	せん断補強筋	照査用せん 断力V (kN)	短期許容 せん断力 V a (kN)	照査値 V/V a
		頂版		75.02	248.4	0.31
		侧壁(東面)		135.97	248.4	0.55
		側壁 (西面)		135.97	248.4	0.55
S s - D 1	ケース①	側壁 (南面)	-	99.51	248.4	0.33
		側壁(北面)	-	69.29	248.4	0.41
		底版		162.07	248.4	0.20
				73.88	248.4	0.30
		侧壁(東面)	-	132.84	248.4	0.54
			-	132.84	248.4	0.54
S s - D 2	ケース①	側壁(南面)		97.22	248.4	0.40
			-	67.69	248.4	0.28
		底版	-	159.59	248.4	0.65
			-	71.98	248.4	0.29
		侧壁(東面)	-	127.92	248.4	0.52
		側壁 (西面)	-	127.92	248.4	0.52
S s - D 3	ケース①	側壁(南面)		93.62	248.4	0.32
		側壁(北面)		65.18	248.4	0.30
		底版	-	155.49	248.4	0.63
			-	70.20	248.4	0.03
		侧壁(東面)	-	123.34	248.4	0.29
		側壁 (西面)	-	123.34	248.4	0.50
S s - F 1	ケース①	側壁 (南面)	-	90.26	248.4	0.30
		側壁(北面)	-	62.85	248.4	0.31
		底版	-	151.64	248.4	0. 20
			-	71.03	248.4	0.02
		侧壁(東面)	-	126.01	248.4	0. 51
	ケース①	側壁(西面)	D13@150	126.01	248.4	0.51
S s - F 2		ケース①	側壁(南面)	(千鳥)	92.22	248.4
		側壁(北面)	(1,00)	64.20	248.4	0.26
		底版	-	153.45	248.4	0. 20
			-	72.50	248.4	0.30
		侧壁(東面)	-	129.21	248.4	0.53
		側壁(西面)	-	129.21	248.4	0.53
S s - F 3	ケース①	側壁(南面)		94.56	248.4	0.39
		側壁(北面)		65.84	248.4	0.27
		底版		156.62	248.4	0.64
		頂版		68.42	248.4	0.28
		側壁 (東面)		118.92	248.4	0.48
		側壁 (西面)		118.92	248.4	0.48
S s - N 1	ケース①	側壁(南面)		87.03	248.4	0.36
		側壁(北面)	-	60.59	248.4	0.25
		底版		147.80	248.4	0.60
		頂版	-	75.12	248.4	0.31
		側壁 (東面)		136.24	248.4	0.55
		側壁(西面)		136.24	248.4	0.55
S s - D 1	ケース②	側壁(南面)		99.70	248.4	0.41
		側壁(北面)	1	69.42	248.4	0. 28
		底版	1	162.28	248.4	0.20
			1	74.85	248.4	0.31
		侧壁(東面)	1	135.49	248.4	0.51
		側壁 (西面)	1	135.49	248.4	0.55
S s - D 1	ケース③	側壁(南面)	1	99.16	248.4	0.35
		側壁(北面)	1	69.04	248.4	0.40
	1	四 王 (16 四 /	1	00.04	410.4	0.20

表 4-7(1) 評価結果(接続桝①, せん断照査)

地震動	解析ケース	部位	せん断補強筋	照査用せん 断力V (kN)	短期許容 せん断力 V _a	照査値 V/V a
		тя Ш.		101 55	(kN)	0.74
		頂版	-	181.77	248.4	0.74
		側壁(東面)	-	82.72	248.4	0.34
S s - D 1	ケース①	側壁(西面)	-	-	-	-
		側壁 (南面)	-	104.88	248.4	0.43
		側壁(北面)	-	104.88	248.4	0.43
		底版	-	185.50	248.4	0.75
		頂版	-	179.27	248.4	0.73
		側壁 (東面)	-	80.97	248.4	0.33
Ss-D2	ケース①	側壁 (西面)	-	_	_	-
		側壁 (南面)	-	102.66	248.4	0.42
		側壁(北面)	-	102.66	248.4	0.42
		底版	-	182.95	248.4	0.74
		頂版	-	174.65	248.4	0.71
		側壁 (東面)	-	77.97	248.4	0.32
S s - D 3	ケース①	側壁 (西面)	-	-	-	-
0.0 0.0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	側壁 (南面)		98.86	248.4	0.40
		側壁(北面)	_	98.86	248.4	0.40
		底版		178.24	248.4	0.72
		頂版		169.35	248.4	0.69
		側壁 (東面)		74.52	248.4	0.30
S s - F 1	ケース①	側壁 (西面)		-	-	-
5 S - F 1	~~~(I)	側壁 (南面)		94.48	248.4	0.39
		側壁(北面)		94.48	248.4	0.39
		底版		172.82	248.4	0.70
		頂版		170.10	248.4	0.69
		側壁 (東面)	-	75.26	248.4	0.31
	2 ケース①	側壁 (西面)	D13@150	-	-	-
S s - F 2		7-XU	側壁 (南面)	(千鳥)	95.42	248.4
		側壁(北面)	-	95.42	248.4	0.39
		底版	-	173.59	248.4	0.70
		頂版		175.05	248.4	0.71
		側壁 (東面)		78.22	248.4	0.32
		側壁 (西面)		-	_	-
S s - F 3	ケース①	側壁 (南面)		99.17	248.4	0.40
		側壁(北面)	1	99.17	248.4	0.40
		底版	1	178.65	248.4	0.72
		頂版	1	165.19	248.4	0.67
		側壁 (東面)	1	71.94	248.4	0.29
		側壁 (西面)		_	_	_
S s - N 1	ケース①	側壁 (南面)	1	91.21	248.4	0.37
		側壁(北面)	-	91.21	248.4	0.37
		底版	1	168.59	248.4	0.68
		頂版	1	181.98	248.4	0.74
		側壁 (東面)		82.87	248.4	0.34
		側壁 (西面)	1	-	-	-
S s - D 1	ケース2	側壁 (南面)	1	105.07	248.4	0.43
		側壁 (北面)	1	105.07	248.4	0.43
		底版	1	185.72	248.4	0.75
			-	181.51	248.4	0.74
		側壁 (東面)	1	82.55	248.4	0.34
		侧壁 (页面)	-	-		-
S s - D 1	ケース③	側壁 (南面)	-	104.66	248.4	0.43
			-			
		側壁(北面) 底版	-	104.66	248.4	0.43
	1	底版		185.24	248.4	0.75

表 4-7(2) 評価結果(接続桝②, せん断照査)

地震動	解析ケース	部位	せん断補強筋	照査用せん 断力V	短期許容 せん断力 V	照査値 V/V a
				(kN)	V a (kN)	
		頂版		286.79	602.9	0.48
		側壁 (東面)	-	235.93	602.9	0.40
		側壁 (西面)	-	240.20	602.9	0.40
S s - D 1	ケース①	側壁 (南面)	-	223.12	602.9	0.38
		側壁(北面)		230.57	602.9	0.39
		底版		307.15	602.9	0.51
		頂版		282.98	602.9	0.47
		側壁 (東面)		231.22	602.9	0.39
	5 7 1	側壁 (西面)		235.41	602.9	0.40
S s - D 2	ケース①	側壁 (南面)	-	218.66	602.9	0.37
		側壁(北面)		225.96	602.9	0.38
		底版		303.07	602.9	0.51
		頂版		277.37	602.9	0.47
		側壁 (東面)		224.84	602.9	0.38
S s - D 3	ケース①	側壁 (西面)		228.90	602.9	0.38
0.9 0.0		側壁 (南面)		212.63	602.9	0.36
		側壁(北面)		219.74	602.9	0.37
		底版		297.07	602.9	0.50
		頂版	1	268.53	602.9	0.45
		側壁 (東面)	_	214.64	602.9	0.36
S s - F 1	ケース①	側壁 (西面)	_	218.50	602.9	0.37
0 5 1 1		側壁 (南面)	-	203.00	602.9	0.34
		側壁(北面)	-	209.78	602.9	0.35
		底版	-	287.59	602.9	0.48
		頂版	-	268.78	602.9	0.45
		側壁 (東面)	-	216.15	602.9	0.36
S s - F 2	2 ケース①	側壁 (西面)	D16@150	220.00	602.9	0.37
		側壁 (南面)	(千鳥)	204.44	602.9	0.34
		側壁(北面)	-	211.28	602.9	0.36
		底版	-	287.86	602.9	0.48
		頂版 (東西)	-	275.72	602.9	0.46
		 側壁(東面) 側壁(西面) 	-	222.59	602.9	0.37
S s - F 3	ケース①	側壁(西面)	-	226.62	602.9 602.9	0.38
			-	210.51 217.54		0.35
			-	295.29	602.9 602.9	0.37
			-	259.84	602.9	0.49
		側壁(東面)	1	204.95	602.9	0.34
			-	204.93	602.9	0.35
S s - N 1	ケース①	側壁 (南面)	1	193.85	602.9	0.33
		側壁(北面)	-	200.33	602.9	0.34
		底版	-	278.29	602.9	0.47
		頂版	1	287.43	602.9	0.48
		側壁 (東面)	1	236.72	602.9	0.40
0 51	2	側壁 (西面)		241.00	602.9	0.40
S s - D 1	ケース②	側壁 (南面)		223.86	602.9	0.38
		側壁(北面)	1	231.34	602.9	0.39
		底版		307.83	602.9	0.52
		頂版		286.29	602.9	0.48
		側壁 (東面)		235.31	602.9	0.40
S s - D 1	ケース③	側壁 (西面)		239.57	602.9	0.40
2 2 - D I		側壁 (南面)		222.53	602.9	0.37
		側壁(北面)		229.97	602.9	0.39
		底版		306.62	602.9	0.51

表 4-7(3) 評価結果(接続桝③, せん断照査)

地震動	解析ケース	部位	せん断補強筋	照査用せん 断力V (kN)	短期許容 せん断力 V _a (kN)	照査値 V/V a
S s - D 1	ケース①	頂版 側壁(東面) 側壁(西面) 側壁(南面)	-	303.96 - 169.93 -	602.9 - 602.9 -	0.51 - 0.29 -
		側壁(北面) 底版 頂版	-	- 314.72 299.18	- 602.9 602.9	- 0.53 0.50
S s - D 2	ケース①	 側壁(東面) 側壁(西面) 側壁(南面) 側壁(北面) 		 165.76 	- 602.9 - -	- 0.28 - -
		底版 頂版 側壁(東面) 側壁(西面)	-	309.77 291.66 - 159.88	602.9 602.9 - 602.9	0.52 0.49 - 0.27
S s - D 3	ケース①	側壁(南面) 側壁(北面) 底版 頂版		- - 301.99 282.24	- - 602.9 602.9	- - 0.51 0.47
S s - F 1	ケース①	側壁(東面) 側壁(西面) 側壁(南面) 側壁(北面)	D16@150 (千鳥)		- 602.9 - -	0.26
S s - F 2	ケース①	底版 頂版 側壁(東面) 側壁(西面) 側壁(南面)		292. 23 281. 31 - 152. 43 -	602.9 602.9 - 602.9 -	0.49 0.47 - 0.26 -
		側壁(北面) 底版 頂版 側壁(東面)		- 291.26 290.12	- 602.9 602.9	- 0. 49 0. 49 -
S s — F 3	ケース①	側壁(西面) 側壁(南面) 側壁(木面) 側壁(北面) 底版	-	158.65 - - 300.39	602.9 - - 602.9	0. 27 - - 0. 50
S s - N 1	ケース①	頂版	- - - -	274.29 - 146.61 -	602.9 - 602.9 - 602.9 -	0.30 0.46 - 0.25 -
	4 7 0	底版 頂版 側壁(東面) 側壁(西面)		284.00 304.31 - 170.23	602.9 602.9 - 602.9	0.48 0.51 - 0.29
S s - D 1	ケース②	側壁(南面) 側壁(北面) 底版 頂版		- - 315.08 303.75	- - 602.9 602.9	- - 0.53 0.51
S s - D 1	ケース③	側壁(東面) 側壁(西面) 側壁(南面) 側壁(北面)	- - -	- 169.73 -		0.29
		底版		314.50	602.9	0.53

表 4-7(4) 評価結果(接続桝④, せん断照査)

地震動	解析ケース	部位	せん断補強筋	照査用せん 断力V (kN)	短期許容 せん断力 V _a (kN)	照査値 V/V a
		頂版		101.20	251.4	0.41
		側壁 (東面)		63.90	251.4	0.26
S s - D 1	ケース①	側壁 (西面)		-	-	-
53 D1		側壁 (南面)	-	_	-	-
		側壁(北面)	-	63.90	251.4	0.26
	-	底版	-	103.67	251.4	0.42
		頂版	-	99.87	251.4	0.40
		側壁(東面)	-	62.60	251.4	0.25
S s - D 2	ケース①		-	_		_
		側壁(北面)	-	62.60	251.4	0.25
		底版	-	102.31	251.4	0.41
		頂版	1	97.26	251.4	0.39
		側壁 (東面)	-	60.27	251.4	0.24
		側壁 (西面)		-	_	_
S s - D 3	ケース①	側壁 (南面)		_	_	_
		側壁(北面)		60.27	251.4	0.24
		底版		99.63	251.4	0.40
		頂版		94.22	251.4	0.38
		側壁 (東面)		57.53	251.4	0.23
S s - F 1	ケース①	側壁 (西面)	-	_	_	-
		側壁 (南面)	-	_	-	-
		<u>側壁(北面)</u>	-	57.53	251.4	0.23
		底版	-	96.52	251.4	0.39
		 	-	94.28	251.4	0.38
	ケース①	創壁(東面)	-	57.84	251.4	0.24
S s - F 2		ケース①	側壁 (南面)	D16@300		
		側壁 (北面)	1	57.84	251.4	0.24
		底版	-	96.59	251.4	0.39
		頂版	-	96.79	251.4	0.39
		側壁 (東面)		59.77	251.4	0.24
S s — F 3	ケース①	側壁 (西面)		-	-	-
38-13	- X ()	側壁 (南面)		_	_	-
		側壁(北面)		59.77	251.4	0.24
		底版	-	99.15	251.4	0.40
		頂版	4	91.76	251.4	0.37
		創壁(東面)	4	55.45	251.4	0.23
S s - N 1	ケース①		4		-	-
		側壁(北面)	-	55.45	251.4	0.23
		底版	-	94.00	251.4	0.38
	1	頂版	1	101.31	251.4	0.41
		側壁 (東面)	1	64.01	251.4	0.26
	5	側壁 (西面)	1	-	_	-
S s - D 1	ケース②	側壁 (南面)]	-	-	_
		側壁(北面)]	64.01	251.4	0.26
		底版		103.79	251.4	0.42
		頂版	1	101.11	251.4	0.41
		側壁 (東面)	4	63.81	251.4	0.26
S s - D 1	ケース③	側壁(西面)	4	_	_	_
		側壁(南面)	4	-	-	-
		侧壁(北面)	4	63.81	251.4	0.26
		底版		103.58	251.4	0.42

表 4-7(5) 評価結果(接続桝⑤, せん断照査)

地震動	解析ケース	部位	せん断補強筋	照査用せん 断力V	短期許容 せん断力 V _a	照查値 V/V a
				(kN)	(kN)	
		頂版		196.60	347.8	0.57
		側壁 (東面)	_	84.19	129.1	0.66
S s - D 1	ケース①	側壁 (西面)	-	123.82	129.1	0.96
55 11		側壁(南面) 側壁(北面)	-	-	-	
			-	_	-	-
		底版	-	200.31	347.8	0.58
		頂版	-	194.22	347.8	0.56
		側壁(東面)	-	82.66	129.1	0.65
S s - D 2	ケース①	側壁(西面)	-	121.56	129.1	0.95
		側壁(南面)	-	_	_	
		側壁(北面)	-			
		底版	-	197.88	347.8	0.57
		頂版 (東五)	-	189.93	347.8	0.55
			-	80.04	129.1 129.1	0.63
S s - D 3	ケース①		-	117.71	129.1	0.92
		<u></u>	-		_	
		底版	-	193.51	347.8	0.56
			-	193.51	347.8	0.58
			-	76.05	129.1	0.59
		創壁(東面)	-	111.85	129.1	0.87
S s - F 1	ケース①	側壁 (南面)	-	-	-	-
		側壁 (北面)		_	_	
		底版	(頂版)	186.96	347.8	0.54
		頂版	D19@200×300 (側壁) D13@200×300	182.75	347.8	0.53
		側壁 (東面)		75.81	129.1	0.59
		側壁 (西面)		111.50	129.1	0.87
S s - F 2	ケース①	側壁 (南面)		-	-	-
		側壁(北面)	(千鳥)	-	-	-
		底版	(皮匠)	186.19	347.8	0.54
-		頂版	(底版) D19@200×300	188.31	347.8	0.55
		側壁 (東面)	D198200 × 300	78.92	129.1	0.62
S s – F 3	ケース①	側壁 (西面)		116.07	129.1	0.90
5 S - F 3	/ - X ()	側壁 (南面)		-	-	-
		側壁(北面)		-	-	-
		底版		191.86	347.8	0.56
		頂版		177.41	347.8	0.52
		側壁 (東面)	4	72.39	129.1	0.57
S s - N 1	ケース①	側壁 (西面)	-	106.46	129.1	0.83
55 111		側壁 (南面)	-	-	-	-
		側壁(北面)	-	_	_	-
		底版	-	180.75	347.8	0.52
		頂版	-	196.85	347.8	0.57
		側壁(東面)	-	84.36	129.1	0.66
S s - D 1	ケース②	側壁(西面)	-	124.06	129.1	0.97
		側壁(南面)	4	-	-	-
		<u>側壁(北面)</u>	-	-		
		<u>底版</u> 頂版	-	200.56 196.51	347.8	0.58
			-		347.8	
			-	84.14	129.1	0.66
S s - D 1	ケース③		4	123.74	129.1	0.96
			-	_	_	
		<u> </u>	-	200.22	347.8	0.58
		此瓜		200.22	041.0	0.00

表 4-7(6) 評価結果(接続桝⑥, せん断照査)

				1			
				照査用せん	短期許容	照査値	
地震動	解析ケース	部位	せん断補強筋	断力V	せん断力	V / V a	
				(kN)	V a	, u	
		and then			(kN)		
		頂版	_	429.04	1086.2	0.40	
		側壁(東面)		1014.51	1086.2	0.94	
S s - D 1	ケース①	側壁 (西面)		808.13	1086.2	0.75	
03 D1		側壁 (南面)		372.11	1086.2	0.35	
		側壁(北面)		346.87	1086.2	0.32	
		底版		630.29	1086.2	0.59	
		頂版		408.83	1086.2	0.38	
		側壁 (東面)		936.55	1086.2	0.87	
	4 7 0	側壁 (西面)		745.89	1086.2	0.69	
S s - D 2	ケース①	側壁 (南面)		343.45	1086.2	0.32	
		側壁(北面)		320.21	1086.2	0.30	
		底版		600.60	1086.2	0.56	
		頂版	-	408.91	1086.2	0.38	
		側壁 (東面)	-	938.44	1086.2	0.87	
		側壁(西面)	-	747.42	1086.2	0.69	
S s - D 3	ケース①	側壁 (南面)		344.16	1086.2	0.32	
		側壁(北面)	-	320.86	1086.2	0.32	
		底版	-			0.56	
			-	600.72	1086.2		
			-	395.03	1086.2	0.37	
		<u> </u>	-	893.99	1086.2	0.83	
S s - F 1	ケース①	側壁(西面)	4	712.09	1086.2	0.66	
		側壁 (南面)	_	327.89	1086.2	0.31	
		側壁 (北面)	_	305.66	1086.2	0.29	
		底版		580.33	1086.2	0.54	
		頂版		394.94	1086.2	0.37	
		側壁 (東面)		891.37	1086.2	0.83	
S s - F 2	-F2 ケース①	側壁 (西面)	D19@200×400	709.96	1086.2	0.66	
3 S - F 2	7 - XU	側壁 (南面)	D19@200 × 400	326.91	1086.2	0.31	
			側壁(北面)		304.77	1086.2	0.29
		底版		580.20	1086.2	0.54	
		頂版		405.56	1086.2	0.38	
		側壁 (東面)		927.56	1086.2	0.86	
		側壁 (西面)		738.77	1086.2	0.69	
S s - F 3	ケース①	側壁 (南面)		340.17	1086.2	0.32	
		側壁(北面)	-	317.14	1086.2	0.30	
		底版	-	595.80	1086.2	0.55	
		頂版	-	367.26	1086.2	0.34	
		侧壁(東面)	-	803.18	1086.2	0.74	
		側壁 (西面)	-	639.85		0.74	
S s - N 1	ケース①	側壁(西面)	-		1086.2		
			-	294.62	1086.2	0.28	
		<u>側壁(北面)</u>	-	274.61	1086.2	0.26	
		底版	-	539.53	1086.2	0.50	
		頂版	-	426.12	1086.2	0.40	
		側壁 (東面)	4	1003.53	1086.2	0.93	
S s - D 1	ケース②	<u> </u>	4	799.36	1086.2	0.74	
		側壁 (南面)	4	368.07	1086.2	0.34	
		側壁(北面)	1	343.11	1086.2	0.32	
		底版	1	626.00	1086.2	0.58	
		頂版		430.62	1086.2	0.40	
		側壁 (東面)		1020.91	1086.2	0.94	
	4 7 1	側壁 (西面)]	813.24	1086.2	0.75	
S s - D 1	ケース③	側壁 (南面)]	374.46	1086.2	0.35	
	1		1				
		側壁(北面)		349.06	1086.2	0.33	

表 4-7(7) 評価結果(接続桝⑦, せん断照査)

地震動	解析ケース	部位	せん断補強筋	照査用せん 断力V (kN)	短期許容 せん断力 V a (kN)	照査値 V/V a
S s – D 1	ケース①	項版側壁(東面)側壁(西面)側壁(南面)側壁(北面)側壁(北面)		315.04 176.78 - 155.11	671.1 398.2 - - 398.2	0.47 0.45 - 0.39
S s – D 2	ケース①	底版 頂版 側壁(東面) 側壁(西面) 側壁(南面) 側壁(中面)		325.88 309.38 171.83 - 150.77	671.1 671.1 398.2 - - 398.2	0.49 0.47 0.44 - - 0.38
S s – D 3	ケース①	底版 頂版 側壁(東面) 側壁(西面) 側壁(南面) 側壁(北面)		$ \begin{array}{r} 320.03 \\ 301.36 \\ \hline 165.30 \\ \hline - \\ \hline - \\ 145.04 \\ 211.72 \\ \end{array} $	671.1 671.1 398.2 - - 398.2	$\begin{array}{c} 0.48 \\ 0.45 \\ 0.42 \\ - \\ - \\ 0.37 \\ 0.47 \end{array}$
S s - F 1	ケース①	底版 頂版 側壁(東面) 側壁(西面) 側壁(南面) 側壁(北面) 底版	(頂版)	311.73 291.00 157.15 - 137.88 301.02	671.1 671.1 398.2 - - 398.2 671.1	$ \begin{array}{r} 0.47\\ 0.44\\ 0.40\\ -\\ -\\ 0.35\\ 0.45\\ \end{array} $
S s - F 2	ケース①	頂版 00壁(東面) 00壁(西面) 00壁(南面) 00壁(北面) 00壁(北面) 底版	(貝版) D16@200 (側壁) D16@200 (千鳥)	289.23 156.37 - 137.19 299.19	671.1 671.1 398.2 - - 398.2 671.1	$\begin{array}{r} 0.10 \\ 0.44 \\ 0.40 \\ - \\ - \\ 0.35 \\ 0.45 \end{array}$
S s - F 3	ケース①	頂版 順壁(東面) 側壁(西面) 側壁(南面) 側壁(北面) 底版	(底版) D16@200	$ \begin{array}{r} 301.54 \\ 166.05 \\ - \\ - \\ 145.70 \\ 311.91 \end{array} $	671.1 398.2 - - 398.2 671.1	$\begin{array}{c} 0.45\\ 0.45\\ \hline 0.42\\ \hline -\\ \hline 0.37\\ 0.47\\ \end{array}$
S s - N 1	ケース①	頂版 側壁(東面) 側壁(西面) 側壁(南面) 側壁(北面) 底版	-	283.05 151.28 - 132.73 292.79	671.1 398.2 - - 398.2 671.1	0.43 0.38 - - 0.34 0.44
S s - D 1	ケース②	頂版 側壁(東面) 側壁(西面) 側壁(南面) 側壁(北面) 底版		314.98 176.76 - 155.09 325.82	671.1 398.2 - - 398.2 671.1	$ \begin{array}{r} 0.47 \\ - \\ 0.39 \\ 0.49 \end{array} $
S s - D 1	ケース③	頂版 側壁(東面) 側壁(西面) 側壁(南面) 側壁(北面) 底版		315.17 176.88 - 155.20 326.02	671.1 398.2 - - 398.2 671.1	$ \begin{array}{r} 0.47 \\ - \\ 0.39 \\ 0.49 \end{array} $

表 4-7(8) 評価結果(接続桝⑧, せん断照査)

地震動	解析ケース	部位	せん断補強筋	照査用せん 断力 V (kN)	短期許容 せん断力 Va	照査値 V/V a
				(IIII)	(kN)	
		頂版	-	109.10	351.8	0.32
		側壁 (東面)	-	-	_	-
S s - D 1	ケース①	側壁 (西面)	-	68.65	351.8	0.20
55 51	, , , , , , , , , , , , , , , , , , ,	側壁 (南面)	-	-	-	-
		側壁(北面)	-	-	-	-
		底版	-	111.55	351.8	0.32
		頂版	-	107.62	351.8	0.31
		側壁(東面)	-	-	-	_
S s - D 2	ケース①	側壁 (西面)	-	67.21	351.8	0.20
		側壁 (南面)	-	-	-	_
		側壁(北面)	-	-	-	-
		底版	-	110.04	351.8	0.32
		頂版	_	105.43	351.8	0.30
		側壁 (東面)	_	-	-	-
S s - D 3	ケース①	側壁 (西面)		65.27	351.8	0.19
00 00		側壁 (南面)		_	-	-
		側壁(北面)		_	-	-
		底版		107.80	351.8	0.31
		頂版		101.76	351.8	0.29
		側壁 (東面)		-	-	-
S s - F 1	ケース①	側壁 (西面)		61.95	351.8	0.18
5 s - F I	7 - XU	側壁 (南面)		-	-	-
		側壁(北面)		-	-	-
		底版		104.05	351.8	0.30
		頂版	D19@300	100.97	351.8	0.29
		側壁 (東面)		-	-	-
		側壁 (西面)		61.45	351.8	0.18
S s - F 2	ケース①	側壁 (南面)		-	-	-
		側壁(北面)	-	-	-	-
		底版		103.24	351.8	0.30
		頂版		104.26	351.8	0.30
		側壁 (東面)		-	_	-
		側壁 (西面)		64.12	351.8	0.19
S s - F 3	ケース①	側壁 (南面)		-	_	_
		側壁(北面)		-	_	-
		底版		106.61	351.8	0.31
		頂版		97.95	351.8	0.28
		側壁 (東面)	1	-	-	_
		側壁 (西面)	1	58.63	351.8	0.17
S s - N 1	ケース①	側壁 (南面)	1	-	-	-
		側壁(北面)	-	-	-	-
		底版	-	100.16	351.8	0.29
		頂版	1	109.18	351.8	0.32
		側壁 (東面)	-	-	-	-
		側壁 (西面)	-	68.73	351.8	0.20
S s - D 1	ケース②	側壁 (南面)		-	-	-
		側壁(北面)	1	_	-	-
		底版	1	111.63	351.8	0.32
	1	頂版	1	109.09	351.8	0.32
		侧壁(東面)	1	-	-	-
		側壁 (西面)	-	68.64	351.8	0.20
S s - D 1	ケース③	側壁(南面)	1	-	-	-
		側壁(角面) 側壁(北面)	-			
		<u></u>	-			0.32
	1	瓜瓜		111.54	351.8	0.32

表 4-7(9) 評価結果(接続桝⑨, せん断照査)

4.2 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能評価結果を表4-8に示す。 接続桝の基礎地盤に生じる最大接地圧が極限支持力以下であることを確認した。

	<i>朱</i> 万 十二	最大接地圧	許容限界	照査値
地震動	解析 ケース	R _a	R $_{\rm u~a}$	R a∕R u a
	1) - 1	(N/mm^2)	(N/mm^2)	
S s - D 1	ケース①	0.8 (0.73)		0.06
S s - D 2	ケース①	0.8 (0.72)		0.06
S s - D 3	ケース①	0.7		0.06
S s - F 1	ケース①	0.7		0.06
S s - F 2	ケース①	0.7	13.7	0.06
S s - F 3	ケース①	0.8 (0.71)		0.06
S s - N 1	ケース①	0.7		0.06
S s - D 1	ケース2	0.8 (0.74)		0.06
S s - D 1	ケース③	0.8 (0.73)		0.06

表 4-8(1) 地盤の支持性能評価結果(接続桝①)

	<i>朱</i> 尹 十二	最大接地圧	許容限界	照査値
地震動	解析 ケース	R _a	R $_{u a}$	R a∕R u a
	<i>// - /</i>	(N/mm^2)	(N/mm^2)	
S s - D 1	ケース①	0.8 (0.769)		0.06
S s - D 2	ケース①	0.8 (0.76)		0.06
S s - D 3	ケース①	0.8 (0.74)		0.06
S s - F 1	ケース①	0.8 (0.72)		0.06
S s - F 2	ケース①	0.8 (0.72)	13.7	0.06
S s - F 3	ケース①	0.8 (0.74)		0.06
S s - N 1	ケース①	0.7		0.06
S s - D 1	ケース②	0.8 (0.770)		0.06
S s - D 1	ケース③	0.8 (0.768)		0.06

表 4-8(2) 地盤の支持性能評価結果(接続桝②)

X = 0(3) 地盖9 关闭住能前面相不(该就付0)						
	解析	最大接地圧	許容限界	照查值		
地震動	ケース	R _a	R $_{\rm u~a}$	R a∕R u a		
	/ - ^	(N/mm^2)	(N/mm^2)			
S s - D 1	ケース①	0.8 (0.793)		0.06		
S s - D 2	ケース①	0.8 (0.79)		0.06		
S s - D 3	ケース①	0.8 (0.77)		0.06		
S s - F 1	ケース①	0.8 (0.75)		0.06		
S s - F 2	ケース①	0.8 (0.75)	13.7	0.06		
S s - F 3	ケース①	0.8 (0.77)		0.06		
S s - N 1	ケース①	0.8 (0.72)		0.06		
S s - D 1	ケース②	0.8 (0.795)		0.06		
S s - D 1	ケース③	0.8 (0.792)		0.06		
	, <u> </u>	, , , , , , , , , , , , , , , , , , , ,				

表 4-8(3) 地盤の支持性能評価結果(接続桝③)

表 4-8(4) 地盤の支持性能評価結果(接続桝④)

	解析	最大接地圧	許容限界	照查值
地震動	ケース	R _a R _{ua}	R u a	R a / R u a
	1	(N/mm^2)	(N/mm^2)	
S s - D 1	ケース①	0.9 (0.812)		0.07
S s - D 2	ケース①	0.8		0.06
S s - D 3	ケース①	0.8		0.06
S s - F 1	ケース①	0.8		0.06
S s - F 2	ケース①	0.8	13.7	0.06
S s - F 3	ケース①	0.8		0.06
S s - N 1	ケース①	0.8		0.06
S s - D 1	ケース②	0.9 (0.813)		0.07
S s - D 1	ケース③	0.9 (0.812)		0.07

及4 0(0) 地盤の文竹住船計画相未(接続件®)				
御 北子	最大接地圧	許容限界	照查値	
	R _a	R $_{\rm u~a}$	R a∕R u a	
1-1	(N/mm^2)	(N/mm^2)		
ケース①	0.8 (0.7991)		0.06	
ケース①	0.8 (0.79)		0.06	
ケース①	0.8 (0.77)	13. 7	0.06	
ケース①	0.8 (0.75)		0.06	
ケース①	0.8 (0.75)		0.06	
ケース①	0.8 (0.77)		0.06	
ケース①	0.8 (0.73)		0.06	
ケース②	0.8 (0.8000)		0.06	
ケース③	0.8 (0.799)		0.06	
	ケース① ケース① ケース① ケース① ケース① ケース① ケース①	解析 ケースR a (N/mm²)ケース① $0.8 (0.7991)$ ケース① $0.8 (0.799)$ ケース① $0.8 (0.77)$ ケース① $0.8 (0.75)$ ケース① $0.8 (0.75)$ ケース① $0.8 (0.75)$ ケース① $0.8 (0.75)$ ケース① $0.8 (0.77)$ ケース① $0.8 (0.73)$ ケース② $0.8 (0.8000)$	解析 ケース R_a (N/mm²) R_{ua} (N/mm²)ケース①0.8 (0.7991)ケース①0.8 (0.7991)ケース①0.8 (0.77)ケース①0.8 (0.77)ケース①0.8 (0.75)ケース①0.8 (0.75)ケース①0.8 (0.75)ケース①0.8 (0.73)ケース②0.8 (0.8000)	

表 4-8(5) 地盤の支持性能評価結果(接続桝⑤)

表 4-8(6) 地盤の支持性能評価結果(接続桝⑥)

地震動	解析	最大接地圧	大接地圧 許容限界 照查値	照查值
	ケース	R _a	R u a	R a / R u a
	<i>// - /</i>	(N/mm^2)	(N/mm^2)	
S s - D 1	ケース①	0.9 (0.829)		0.50
S s - D 2	ケース①	0.9 (0.82)		0.50
S s - D 3	ケース①	0.9 (0.81)		0.50
S s - F 1	ケース①	0.8		0.45
S s - F 2	ケース①	0.8	1.8	0.45
S s - F 3	ケース①	0.8		0.45
S s - N 1	ケース①	0.8		0.45
S s - D 1	ケース②	0.9 (0.830)		0.50
S s - D 1	ケース③	0.9 (0.829)		0.50

及4 5(1) 地盤の文内 E 肥 計 Ш 柏木 (接 杭 村 ①)				
地震動	解析 ケース	最大接地圧	許容限界	照查值
		R _a	R $_{\rm u~a}$	R _a /R _{ua}
		(N/mm^2)	(N/mm^2)	照査値 R _a /R _{ua} 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09
S s - D 1	ケース①	1.1 (1.034)		0.10
S s - D 2	ケース①	1.0		0.09
S s - D 3	ケース①	1.0	-	0.09
S s - F 1	ケース①	1.0		0.09
S s - F 2	ケース①	1.0	11.4	0.09
S s - F 3	ケース①	1.0		0.09
S s - N 1	ケース①	0.9		0.08
S s - D 1	ケース②	1.1 (1.03)		0.10
S s - D 1	ケース③	1.1 (1.038)		0.10

表 4-8(7) 地盤の支持性能評価結果(接続桝⑦)

表 4-8(8) 地盤の支持性能評価結果(接続桝⑧)

地震動	解析	最大接地圧	許容限界	照查值
	ケース	R a	R u a	R a / R u a
	1-X	(N/mm^2)	(N/mm^2)	
S s - D 1	ケース①	0.9 (0.8403)		0.08
S s - D 2	ケース①	0.9 (0.83)		0.08
S s - D 3	ケース①	0.9 (0.81)		0.08
S s - F 1	ケース①	0.8		0.08
S s - F 2	ケース①	0.8	11.4	0.08
S s - F 3	ケース①	0.9 (0.81)		0.08
S s - N 1	ケース①	0.8		0.08
S s - D 1	ケース②	0.9 (0.8401)		0.08
S s - D 1	ケース③	0.9 (0.8406)		0.08

X = 0(0) 地盘0 X H L 能 前 Ш 相 术 (按 规 / ↑ ④ /				
地震動	解析	最大接地圧	許容限界	照查值
	ケース	R _a	R $_{\rm u~a}$	R a / R u a
	1	(N/mm^2)	(N/mm^2)	
S s - D 1	ケース①	0.9 (0.859)		0.50
S s - D 2	ケース①	0.9 (0.85)		0.50
S s - D 3	ケース①	0.9 (0.83)		0.50
S s - F 1	ケース①	0.9 (0.81)		0.50
S s - F 2	ケース①	0.8	1.8	0.45
S s - F 3	ケース①	0.9 (0.83)		0.50
S s - N 1	ケース①	0.8		0.45
S s - D 1	ケース②	0.9 (0.860)		0.50
S s - D 1	ケース③	0.9 (0.859)		0.50

表 4-8(9) 地盤の支持性能評価結果(接続桝⑨)

(参考資料) 既設揚水井戸の取り扱いについて

1. はじめに

設計用地下水位を設定する際に実施している三次元浸透流解析において, ヒューム 管は, 信頼性(耐久性, 耐震性, 保守管理性)を満たす範囲を抽出した上で, 実用発 電用原子炉及びその附属施設の技術基準に関する規則第14条(技術基準規則第14 条)の要求に対して機能保持できる範囲を管路として, それ以外の箇所については透 水層として考慮している。

透水層として考慮している既設ドレーンの経路上には複数個所揚水井戸が設置され ており,解析条件との整合性の観点から,それら揚水井戸により通水経路へ影響が及 ぶことのないよう,対処する必要がある。

本書では、各揚水井戸の耐震性確保の方針について整理する。

2. 既設揚水井戸の配置

地下水低下設備の配置概要を図1に示す。図1の通り,既設揚水井戸は海水ポンプ 室の東側(海側)に1箇所(①),西側に2個所(②,③),第3号機エリアに1箇所 (④)設置されている。

- 3. 対応方針
- (1) 既設揚水井戸①

同揚水井戸の南北には透水層として考慮するドレーンが設置されており, 通水経路としての機能を確保するため, 耐震性を確保する必要がある。

そのため、図2のとおり集水ピットに南北から接続されるものと同等品のドレーン

(ヒューム管)にて管路間を接続する。新たに設置する集水ピット内のドレーンは,他 個所と同様にコンクリートにて支持することとし,周囲は砕石で覆い,その上部は流動 化処理土等にて埋戻すこととする(既設のヒューム管と同等の設置環境とする)。

なお,新たに設置するドレーンについては,同仕様のドレーンを対象により厳しい位 置で耐震評価を実施しており,健全性を確認している(本資料参照)。

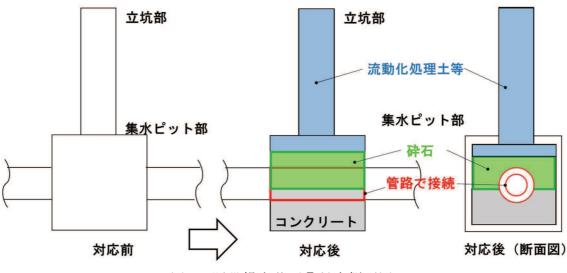


図 2 既設揚水井戸①対応概要図

(2) 既設揚水井戸②・③

同揚水井戸は経路の末端であるため、集水ピット自体が不要となるが、透水層として 考慮するドレーンに接続しているため、通水経路にが及ばないよう、耐震性確保が必要 となる。

そのため、図3のとおり集水ピット内部をコンクリートにて閉塞する。また、集水ピット上部の立坑については、原子炉補機冷却海水配管ダクトと一体となった耐震補強を 行うことにより、耐震性を確保する方針とする。(詳細は「VI-2-2-12-1 原子炉機器冷 却海水配管ダクト(水平部)の耐震性についての計算書」に記載。)

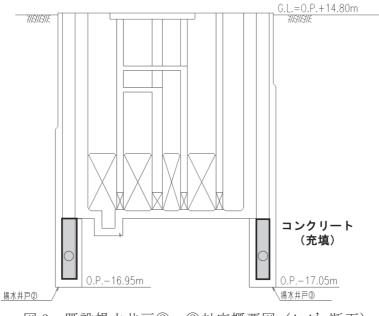


図 3 既設揚水井戸② · ③対応概要図 (A-A'断面)

(3) 既設揚水井戸④

同揚水井戸のピット部は,透水層として考慮している。ピット部は耐震性を有することを確認しているため(詳細は「VI-2-13-2 地下水位低下設備接続桝の耐震性についての計算書」に記載)地震時においても通水機能を保持できるが,シャフト損壊等に起因するピット部への土砂流入より通水機能を損失する可能性が否定できないことから,ピット内部に耐震性を有する鋼製部材を設置し,所定の透水性を確保する方針とする(図4参照)。

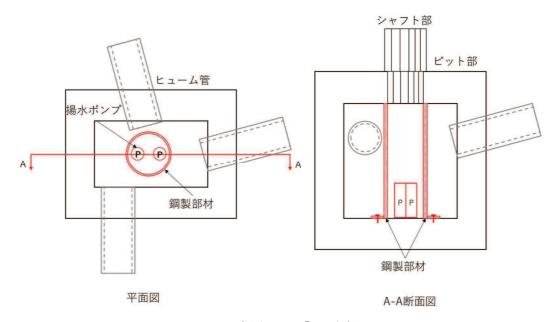


図 4 既設揚水井戸④対応概要図

第3章 地下水位低下設備揚水井戸の耐震性に係る補足説明

1.	概	要
2.	基	本方針 ····· 2
2	2.1	位置
4	2.2	構造概要 ····· 3
4	2.3	評価方針 ····· 11
4	2.4	適用基準 · · · · · · · · · · · · · · · · · · ·
3	耐震	§評価 ······ 16
4	3.1	評価対象断面 ······ 16
4	3.2	解析方法
4	3.3	荷重及び荷重の組合せ ・・・・・・ 41
4	3.4	荷重
4	3.5	荷重の組合せ
4	3.6	入力地震動 · · · · · · · · · · · · · · · · · · ·
4	3.7	解析モデル及び諸元 ・・・・・・ 101
4	3.8	許容限界 ······ 114
4	3.9	評価方法 ······ 117
4.	耐	震評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	4.1	地震応答解析結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	4.2	照查結果一覧 ······ 446

- 別紙1 揚水井戸蓋の耐震性について
- 別紙2 揚水井戸蓋の強度計算について
- 別紙3 敷地側集水ピットの耐震性に関する補足説明
- 参考資料1 揚水井戸の浮上り評価結果について
- 参考資料2 各揚水井戸の評価対象断面の代表性について
- 参考資料3 揚水井戸集水ピット部おける配筋の施工実現性について
- 参考資料4 機器・配管系の耐震評価に適用する影響検討ケース

目次

1. 概要

本資料は,添付書類「VI-2-1-9 機能維持の基本方針」で設定している構造強度及び機能維持の設計方針に基づき,地下水位低下設備のうち揚水井戸について,地震時に構造強度を有していることを確認するものである。

揚水井戸に要求される機能の維持を確認するに当たっては,地震応答解析に基づく構造部材の 健全性評価及び基礎地盤の支持性能評価により行う。

2. 基本方針

2.1 位置

地下水位低下設備のうち揚水井戸の設置位置を図 2-1 に示す。

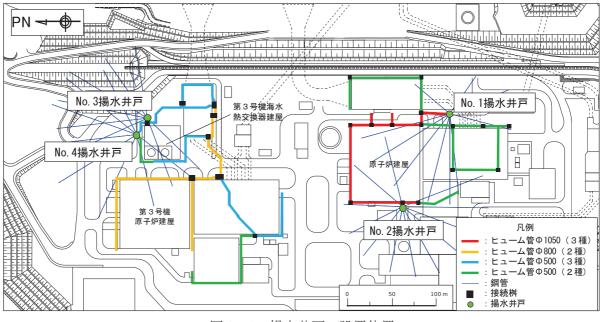


図 2-1 揚水井戸の設置位置

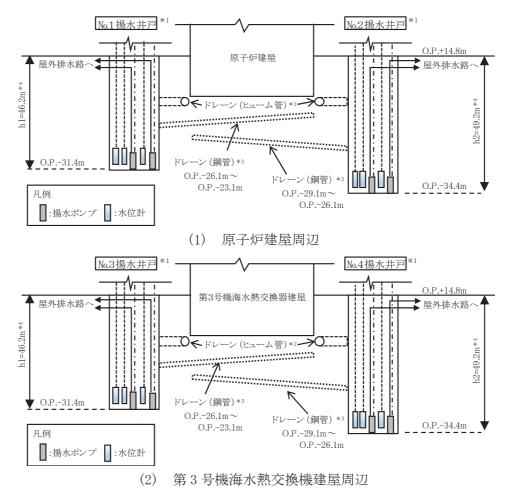
2.2 構造概要

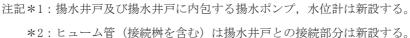
揚水井戸は基準地震動Ssに対し揚水ポンプ・配管等の機能維持を図るため,支持・閉塞防止機能が要求される。

揚水井戸は地下水を集水する鋼管と接続し, 揚水ポンプと配管により地上に排水するため, 鋼管が配置される岩盤から盛土がある地表面まで設置する。

地震時における安全性を確保する観点から盛土部は変位追従性を有する鋼製の排水シャフト とした。岩盤部は揚水ポンプ等の重量物を支持し,確実に岩盤にその力を伝達することを踏ま え,鉄筋コンクリート造の集水ピットとした。

揚水井戸の断面は、ドレーンを放射状に配置し、大深度掘削時の支保工設置等の施工性も考 え円筒形状とした。また、揚水ポンプ等の設備配置、保守管理並びに運用管理も踏まえて必要 内空を 4m とした(揚水ポンプ等の設備配置,運用管理等に係る詳細は「VI-2-1-1-別添 1 地 下水位低下設備の設計方針」に示す)。


集水ピットと排水シャフトとの接合部は、上下構造を確実に結合するため、鋼製材料である アンカーボルト及びベースプレートにより構成した。


地下水位低下設備の構成概要を図 2-2 に示す。また、構造概要を図 2-3 に、接合部詳細図 を図 2-4 に、排水シャフト開口部詳細図を図 2-5 示す。

構造寸法等を定め揚水井戸の高さを岩盤内に設置する鋼管の深度に応じh 1 = 46.2m, h 2 = 49.2mの2種類とし、原子炉建屋周辺と第3号機海水熱交換器建屋周辺それぞれに設置した。

排水シャフトには、建屋周りに設置されたドレーンを接続するため開口が設けられるが、開 口部には「鋼橋構造詳細の手引き(日本橋梁建設協会)」を参考に補強板を設置することで、 開口部が構造上の弱部とならないよう配慮した。

なお, 揚水井戸と同様に支持・閉塞防止機能が要求される, 揚水井戸上部に設置される揚水 井戸蓋は「別紙1 揚水井戸蓋の耐震性について」に構造の概要および耐震性について示す。

*3:鋼管は揚水井戸を起点として放射状に新設する。

*4:h1及びh2は,GLより集水ピット底面までの高さを表す。

図 2-2 地下水位低下設備の構成概要

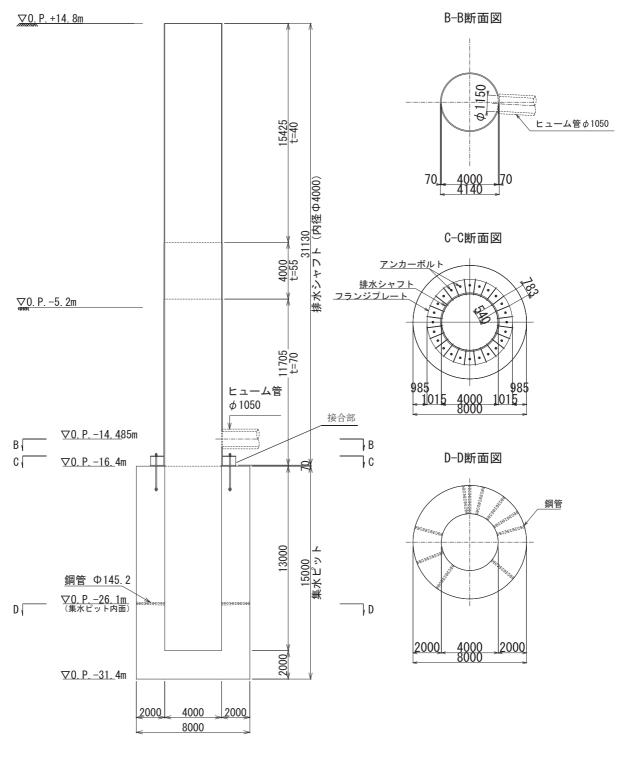
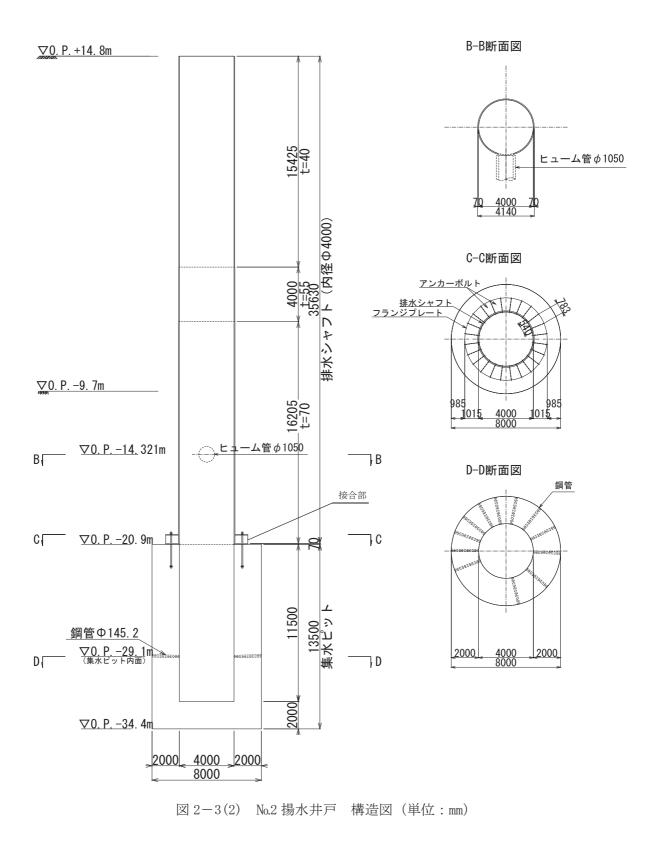



図 2-3(1) No.1 揚水井戸 構造図(単位:mm)

3-6

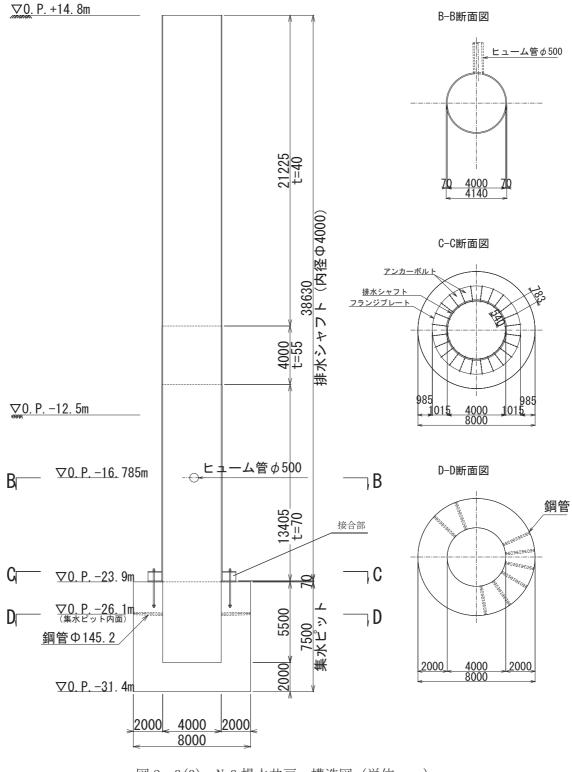


図 2-3(3) No.3 揚水井戸 構造図(単位:mm)

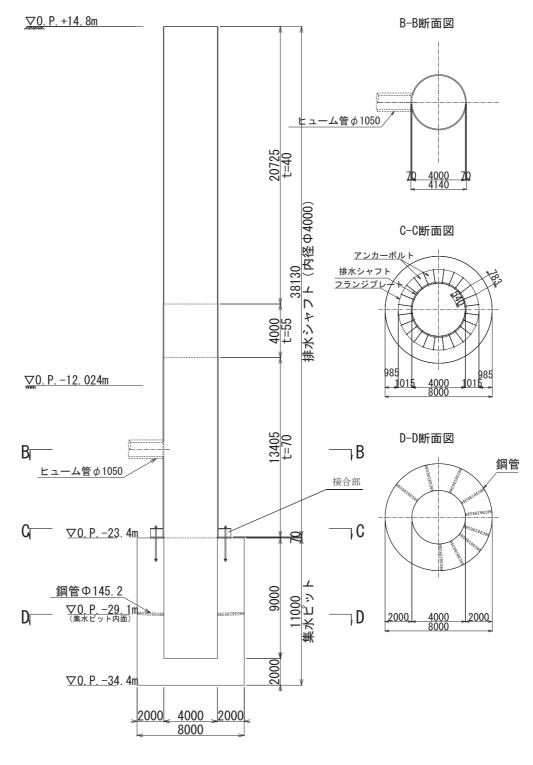
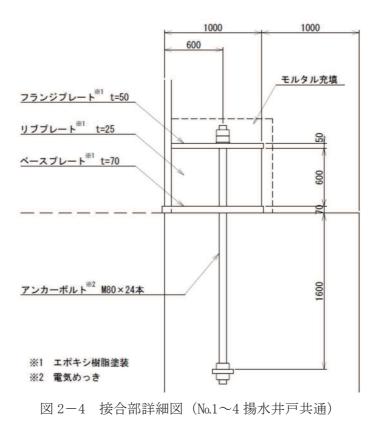
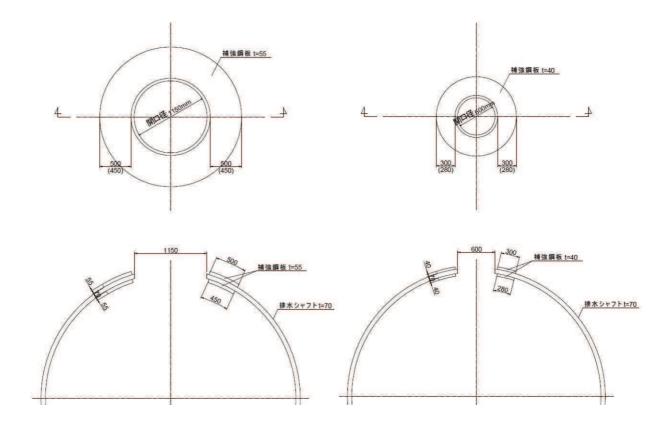
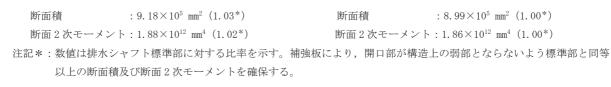





図 2-3(4) No.4 揚水井戸 構造図 (単位:mm)

No.1, No.2, No.4 揚水井戸

No.3 揚水井戸

図 2-5 排水シャフト開口部 詳細図

2.3 評価方針

地下水位低下設備の機能は,施設の設計の前提が確保されるよう,地下水位を一定の範囲に 保持することであり,揚水井戸は繰り返しの地震に対しても,揚水井戸に内包される,排水機 能を担う揚水ポンプ,配管及び監視・制御機能を担う水位計の機能を維持するため,支持・閉 塞防止機能を保持する必要がある。なお,揚水井戸を含む地下水位低下設備はCクラスに分類 されるが,その機能を維持するため,基準地震動Ssに対して耐震性を確保する設計としてい る。

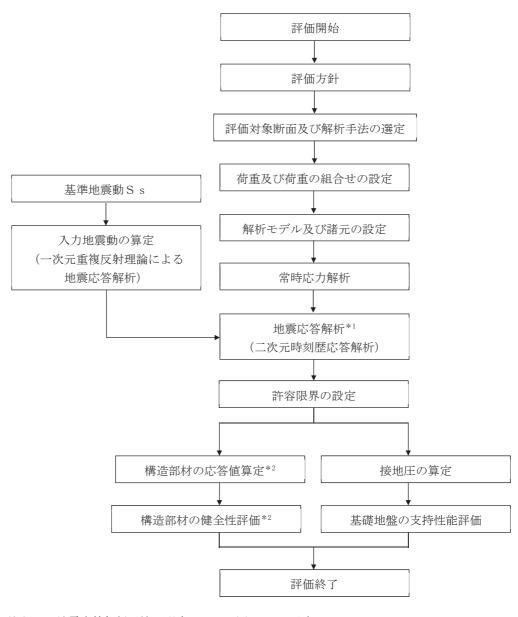
以上から,揚水井戸の支持・閉塞防止機能を維持するため,部材の構造強度を確保し,基礎 地盤の支持性能を確保する方針とした。なお,揚水井戸は地盤中の地下水をドレーン・接続桝 により集水し,揚水ポンプ・配管により排水するため,水密性の観点からの要求はない。

揚水井戸の耐震評価は地震応答解析に基づき実施し,表 2-1 に示すとおり,構造部材の健 全性評価及び基礎地盤の支持性能評価を行う。

構造部材の健全性評価については,添付書類「VI-2-1-9 機能維持の基本方針」に基づき, 発生する応力が許容限界以下であることを確認する。

基礎地盤の支持性能評価においては、添付書類「VI-2-1-9 機能維持の基本方針」に基づき、 発生する応力(接地圧)が許容限界以下であることを確認する。

構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで,構造強度を有するこ とを確認する。


なお、揚水井戸は排水シャフトの一部及び集水ピット全体が岩盤内に設置されており、液状 化の影響が及ばない。さらに、集水ピットには上載土(盛土及びセメント改良土)の重量が常 時作用しているため、浮き上がりは生じることはないと考えられる。しかし、確認のため概略 検討を行った結果を参考資料1に示す。

揚水井戸の耐震評価フローを図 2-6 に、詳細耐震評価フローを図 2-7 に示す。

衣 2-1 饧小升户の計価項目								
評価方針	評価項目	部位	評価方法	許容限界				
		排水シャフト	発生する応力(曲げ軸力, せん断力)が許容限界以下 であることを確認	短期許容応力度				
構造強度を有する	構造部材の 健全性	集水ピット	発生する応力(曲げ軸力, せん断力)が許容限界以下 であることを確認	短期許容応力度				
を有りること		接合部	発生する応力(引張力,曲 げ軸力,せん断力)が許容 限界以下であることを確認	短期許容応力度				
	基礎地盤の 支持性能	基礎地盤	発生する応力(接地圧)が 許容限界以下であることを 確認	極限支持力*				

表 2-1 揚水井戸の評価項目

注記*:妥当な安全余裕を考慮する。

注記*1 地震応答解析手法の選定フローは図 3-4 に示す *2 詳細フローを図 2-7 に示す

図 2-6 揚水井戸の耐震評価フロー

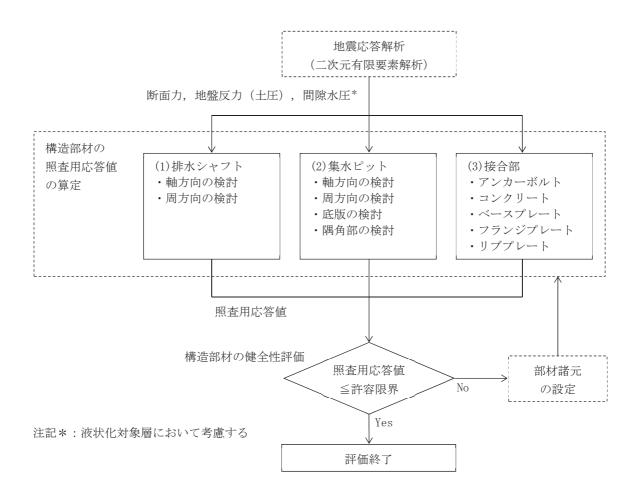


図 2-7 揚水井戸の詳細耐震評価フロー

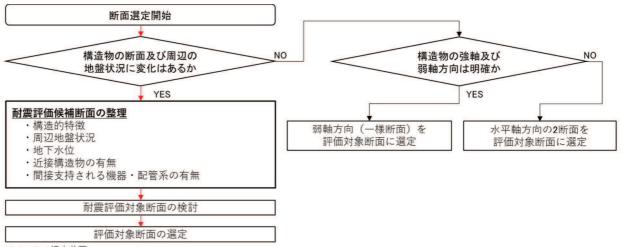
2.4 適用基準

適用する規格,基準類を以下に示す。項目ごとに適用する規格,基準類を整理したものを表 2-2に示す。

- ・土木学会 2002 年 コンクリート標準示方書[構造性能照査編] (以下「コンクリート標準示方書」という。)
- ・日本道路協会 平成14年3月 道路橋示方書・同解説 Ⅰ共通編・Ⅳ下部構造編
- ・日本道路協会 平成14年3月 道路橋示方書・同解説 V耐震設計編
- ・日本建築学会 2005 年 鋼構造設計規準-許容応力度設計法-
- ・原子力発電所耐震設計技術指針(JEAG4601-1987)
- ・原子力発電所耐震設計技術指針(JEAG4601-1991 追補版)
- ・土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル
- ・土木学会 2015 年 トンネル・ライブラリー第 27 号 シールド工事用立坑の設計
- ・日本建築学会 2010 年 各種合成構造設計指針・同解説
- ・日本建築学会 1991 年 鉄筋コンクリート構造計算規準・同解説
- ・日本産業規格(JIS)

衣 2-2 週用する規格, 基準類							
I	項目 	適用する規格,基準類	備考				
使用材料及び材	集水ピット	土木学会 2002 年 コンクリート標					
料定数		準示方書[構造性能照査編]					
	排水シャフト	日本道路協会 平成 14 年 3 月 道路					
		橋示方書・同解説 I 共通編・IV下					
		部構造編	—				
		日本道路協会 平成 14 年 3 月 道路					
		橋示方書・同解説 V 耐震設計編					
	接合部	日本建築学会 2005 年 鋼構造設計					
		規準-許容応力度設計法-	—				
許容限界	集水ピット	土木学会 2002 年 コンクリート標	部材に生じる応力				
		準示方書[構造性能照査編]	が短期許容応力度				
			を超えないことを				
			確認				
	排水シャフト	日本道路協会 平成 14 年 3 月 道路	部材に生じる応力				
		橋示方書・同解説 I 共通編・IV下	が短期許容応力度				
		部構造編	を超えないことを				
		日本道路協会 平成 14 年 3 月 道路	確認				
		橋示方書·同解説 V耐震設計編					
	接合部	日本建築学会 2005 年 鋼構造設計	部材に生じる応力				
		規準-許容応力度設計法-	が短期許容応力度				
			を超えないことを				
			確認				
地震応答解析		原子力発電所耐震設計技術指針	二次元非線形解析				
		(JEAG4601-1987)					
		原子力発電所耐震設計技術指針					
		(JEAG4601-1991 追補					
		版)					

表 2-2 適用する規格,基準類


3 耐震評価

3.1 評価対象断面

揚水井戸の地震時挙動は、構造物の規模や周辺の地盤ならびに地下水位の状況などの影響を 受けることから、特徴の異なる No. 1~4 揚水井戸それぞれを評価対象とする。

揚水井戸は岩盤・盛土内に設置されており,特に排水シャフト周辺の盛土の変形の影響を受ける構造であることを踏まえ,周辺構造物による変形抑制が小さく,より盛土の広がりがある 断面 (NS 方向: No. 1, 2, 3 揚水井戸, EW 方向 No. 4 揚水井戸)とする。評価対象断面の詳細 は,「参考資料1 各揚水井戸の評価対象断面の代表性について」に示す。

耐震評価の断面選定フローを図3-1に,評価対象断面及びその位置を図3-2,図3-3に示す。

No.1~No.4揚水井戸

図 3-1 耐震評価の断面選定フロー

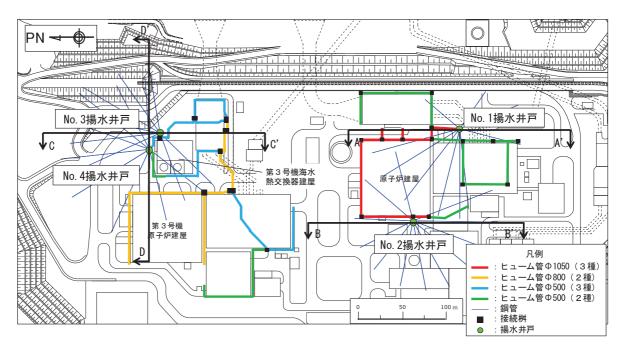


図 3-2 揚水井戸 評価対象揚水井戸 断面位置図

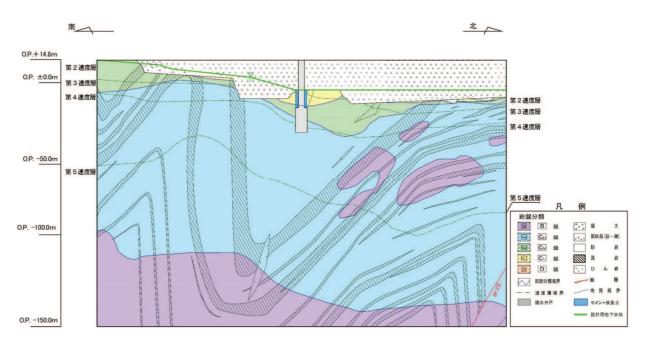


図 3-3(1) No.1 揚水井戸 評価対象断面図 (A'-A 断面)

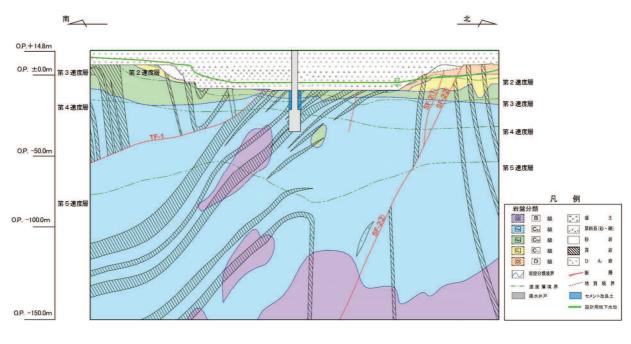


図 3-3(2) No.2 揚水井戸 評価対象断面図 (B'-B 断面)

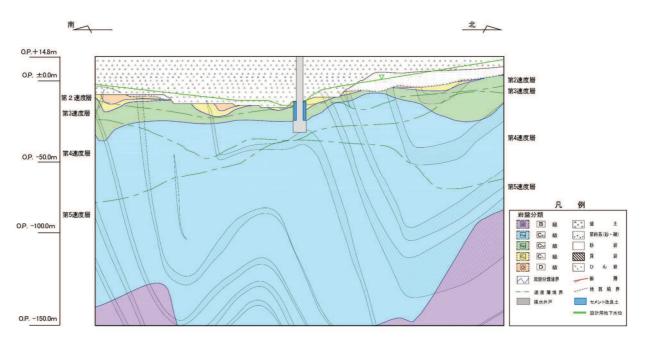


図 3-3(3) №3 揚水井戸 評価対象断面図 (C'-C 断面)

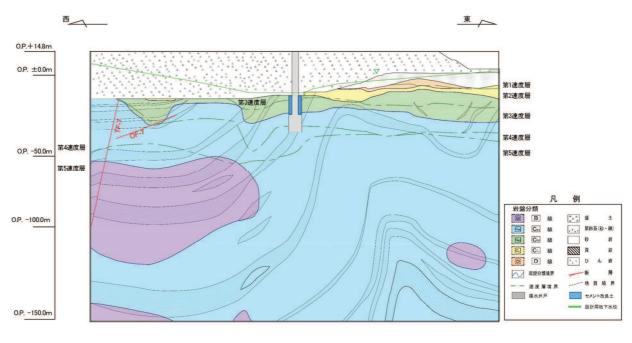


図 3-3(4) No.4 揚水井戸 評価対象断面図 (D'-D 断面)

3.2 解析方法

地震応答解析は、添付書類「VI-2-1-6 地震応答解析の基本方針」のうち、「2.3 屋外重 要土木構造物」に示す解析方法及び解析モデルを踏まえて設定する。

地震応答解析は、盛土及び岩盤等の周辺地盤と構造物の相互作用を考慮できる二次元動的有 限要素法により、基準地震動Ssに基づき設定した水平地震動と鉛直地震動の同時加振による 逐次時間積分の時刻歴応答解析を行う。

地震応答解析手法については,解析手法の選定フロー(図 3-4)に基づき選定した。揚水 井戸の耐震評価は、施設周辺に液状化対象層が広く分布することを踏まえ,全応力解析及び有 効応力解析による評価を実施することにより,液状化特性が構造物に及ばす影響について網羅 的に評価を行った。

有効応力解析には,解折コード「FLIP Ver.7.3.0_2」を使用し,全応力解析には解析コード 「SLAP ver6.64, 6.65」を使用する。解析コードの検証及び妥当性確認の概要については,添 付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

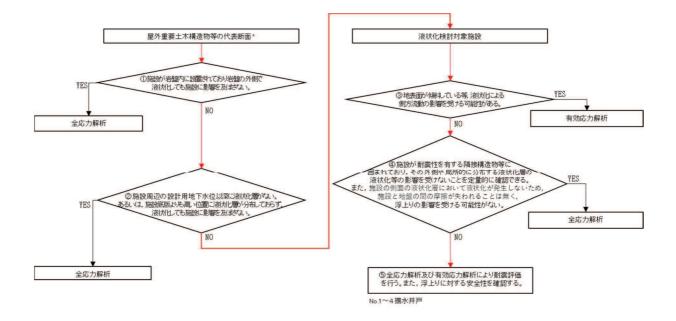


図 3-4 解析手法の選定フロー

3.2.1 地震応答解析手法

地震応答解析手法における構造・地盤モデルの選定フローを図 3-5 に示す。

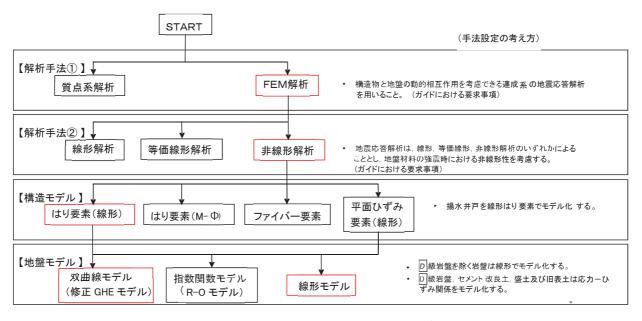


図 3-5 地震応答解析手法における構造・地盤モデルの選定フロー

3.2.2 構造部材

構造物は線形はり要素にてモデル化し,水平方向には,構造物の幅に応じた仮想剛梁を 設置する。

3.2.3 地盤物性及び材料物性のばらつき

揚水井戸の地震時の応答は、周辺地盤との相互作用によることから、地盤物性のばらつきの影響を評価する。地盤物性のばらつきについては、揚水井戸周辺の地盤状況に応じ表 3-1 のとおり考慮する。

なお,地盤の物性のばらつきについては,地中構造物であり,地盤との相互作用により 各部材が厳しくなるため,地盤のせん断弾性係数をのばらつきを考慮することとする。

		地盤物性		
解析ケース	材料物性 (コンクリート) (E ₀ :ヤング係数)	旧表土, 盛土, D 級岩盤,	C_L 級岩盤, C_M 級岩盤,	
所作がリクース		セメント改良土	C _H 級岩盤, B級岩盤	
		(G ₀ :初期せん断弾性係数)	(G _d :動せん断弾性係数)	
ケース①	設計基準強度	平均値	平均値	
(基本ケース)		平均恒	平均恒	
ケース②	設計基準強度	平均值+1σ	平均值+1σ	
ケース③	設計基準強度	平均值-1σ	平均值-1σ	

表 3-1 解析ケース

3.2.4 減衰定数

構造部材の減衰定数は、「補足 610-20 屋外重要土木構造物の耐震安全性評価について」に従い、粘性減衰及び履歴減衰で考慮する。

粘性減衰は、固有値解析にて求められる固有周期と各材料の減衰比に基づき、質量マト リックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル 全体に与える。

[C] = α [M] + β [K]
 [C] :減衰係数マトリックス, [M] :質量マトリックス,
 [K] :剛性マトリックス
 α, β:係数

有効応力解析では剛性比例型減衰($\alpha = 0$, $\beta = 0.002$)を設定し、全応力解析では質量 比例型減衰と剛性比例型減衰の組み合わせによる減衰を設定する。全応力解析における Rayleigh 減衰の設定フローを図 3-6 に示す。

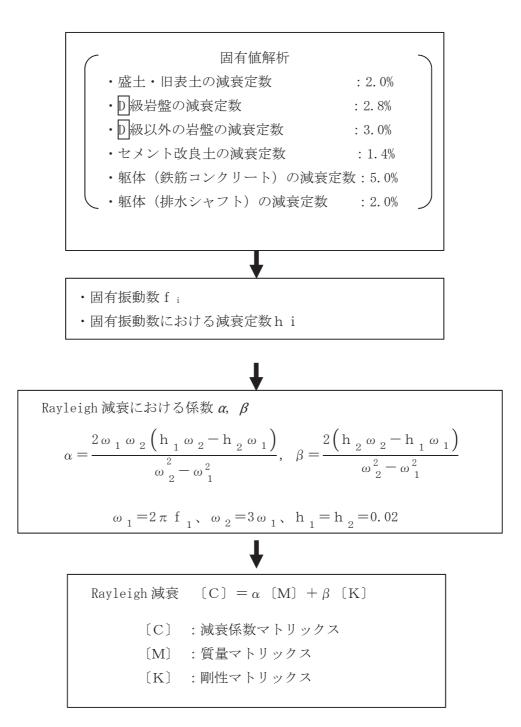


図 3-6 全応力解析における Rayleigh 減衰の設定フロー

Rayleigh 減衰における係数 α , β の設定にあたっては、地盤の低次のモードが特に支 配的となる地中埋設構造物のような地盤及び構造物連成系に対して、その特定のモードの 影響が大きいことを考慮し、かつ振動モードの全体系に占める割合の観点から刺激係数に 着目し、1 次及び 2 次モードの固有振動数に基づき定めることとする。2 次モードの固有 円振動数 (ω_2) は、水平成層地盤の 2 次固有振動数が 1 次固有振動数の 3 倍であること から、1 次モードの固有円振動数 (ω_1) の 3 倍とする。

固有値解析結果の一覧を表 3-2 に,固有値解析におけるモード図を図 3-7 に,固有値 解析結果に基づき設定した Rayleigh 減衰を図 3-8 に係数 α, β を表 3-3 に示す。

	固有振動数 有効質量比(比(%)	刺激係数		備考		
	(Hz)	Тх	Ту	βх	βу			
1	1.321	5	0	75.19	-6.26	1次として採用		
2	1.605	6	0	-29.80	-7.10	—		
3	1.873	8	0	-39.45	6.39	—		
4	1.973	9	0	30.87	5.31	—		
5	2.127	9	0	12.15	-5.57	—		
6	2.265	9	0	-14.56	-3.88	—		
7	2.471	9	0	-22.21	2.81	—		
8	2.545	9	0	4.57	3.19	—		
9	2.762	9	0	-0.58	2.26	_		
10	2.887	10	0	-32.39	2.08	_		

表 3-2(1) 固有值解析結果(No.1 揚水井戸)

表 3-2(2) 固有值解析結果(No.2 揚水井戸)

	固有振動数	有効質量	比(%)	刺激	係数	備考
	(Hz)	Тх	Ту	β x	βу	加有
1	1.557	8	0	89.27	-0.08	1次として採用
2	1.725	8	0	13.39	-0.59	_
3	2.008	8	0	22.01	-0.53	—
4	2.198	8	0	-12.64	0.19	_
5	2.312	9	0	-34.75	1.05	_
6	2.416	9	0	-6.74	-0.30	_
7	2.546	10	0	24.78	-2.00	_
8	2.633	10	0	-2.34	0.94	—
9	2.781	11	0	-29.62	1.82	_
10	2.854	12	0	30.62	0.67	_

	固有振動数 有効質量.		比(%) 刺激係数		係数	備考		
	(Hz)	Тх	Ту	<i>β</i> x	βу			
1	1.300	7	0	85.72	4.10	1次として採用		
2	1.515	8	0	-25.73	6.06	—		
3	1.721	9	0	39.34	5.18	—		
4	1.885	10	0	-24.38	5.02	—		
5	2.027	10	0	-19.97	-6.47	—		
6	2.129	11	0	23.70	-3.86	—		
7	2.277	11	0	24.56	4.03	—		
8	2.374	12	0	21.56	-3.59	—		
9	2.555	12	0	-11.84	-1.36	_		
10	2.657	12	0	-3.58	3.74	_		

表 3-2(3) 固有值解析結果(No.3 揚水井戸)

表 3-2(4) 固有值解析結果(No.4 揚水井戸)

	固有振動数	有効質量	比 (%)	刺激	係数	
	(Hz)	Тх	Ту	βх	βу	備考
1	1.205	6	0	79.85	8.10	1次として採用
2	1.442	10	0	65.78	-9.70	—
3	1.495	10	0	-15.19	-0.51	—
4	1.663	11	0	-18.57	-10.17	—
5	1.788	11	0	6.67	-5.38	_
6	1.937	11	0	0.86	-8.10	_
7	2.060	11	0	-2.90	-1.09	_
8	2.202	11	0	-0.62	-6.48	_
9	2.331	11	0	1.24	1.94	_
10	2.471	11	0	-11.98	4.53	_

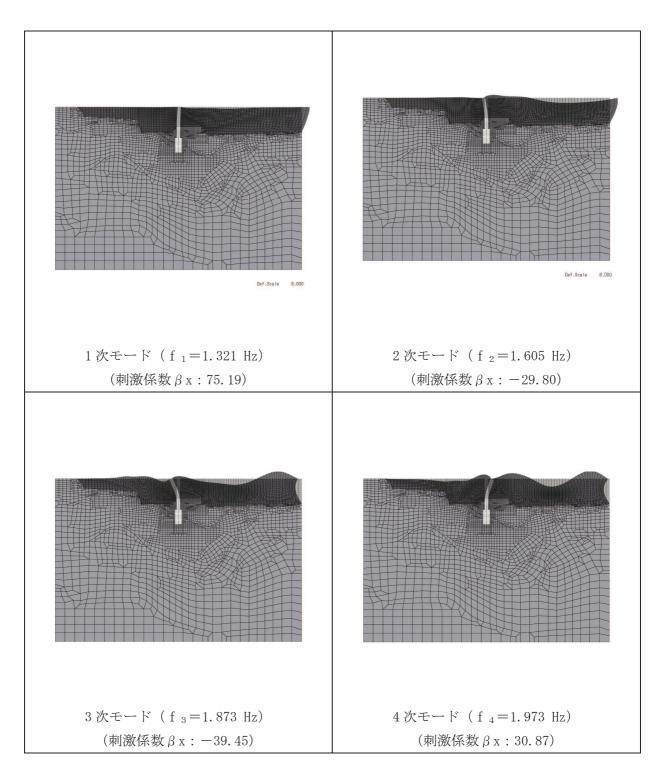


図 3-7(1) 固有值解析結果(1/3) (No.1 揚水井戸)

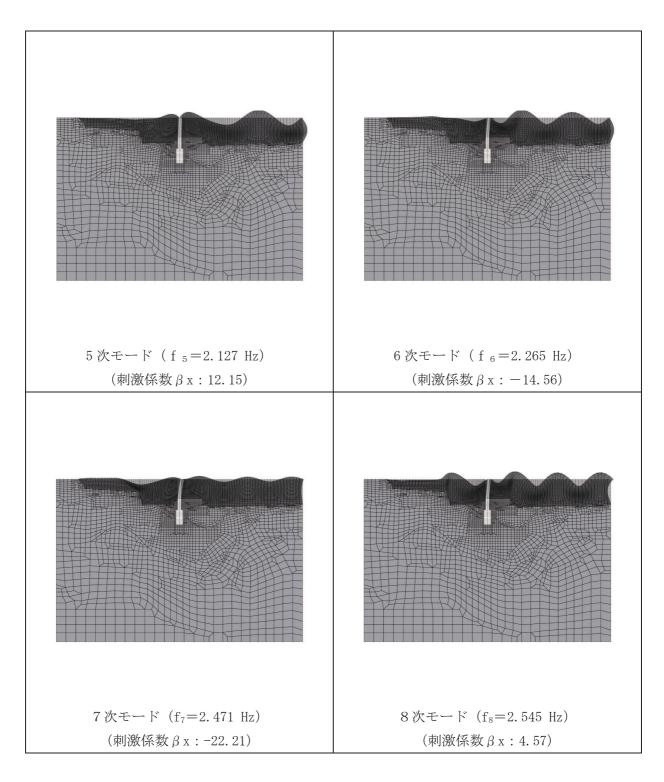


図 3-7(2) 固有値解析結果(2/3) (No.1 揚水井戸)

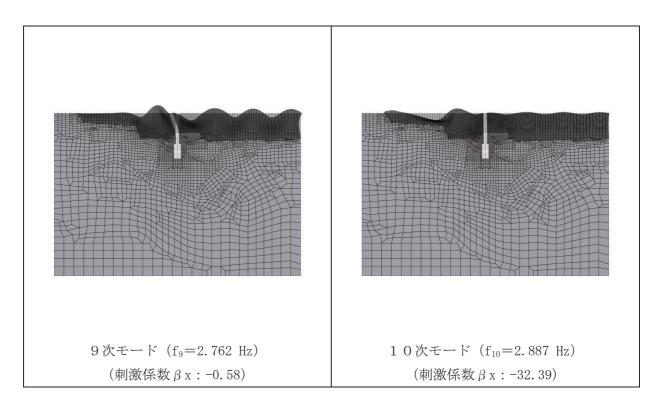
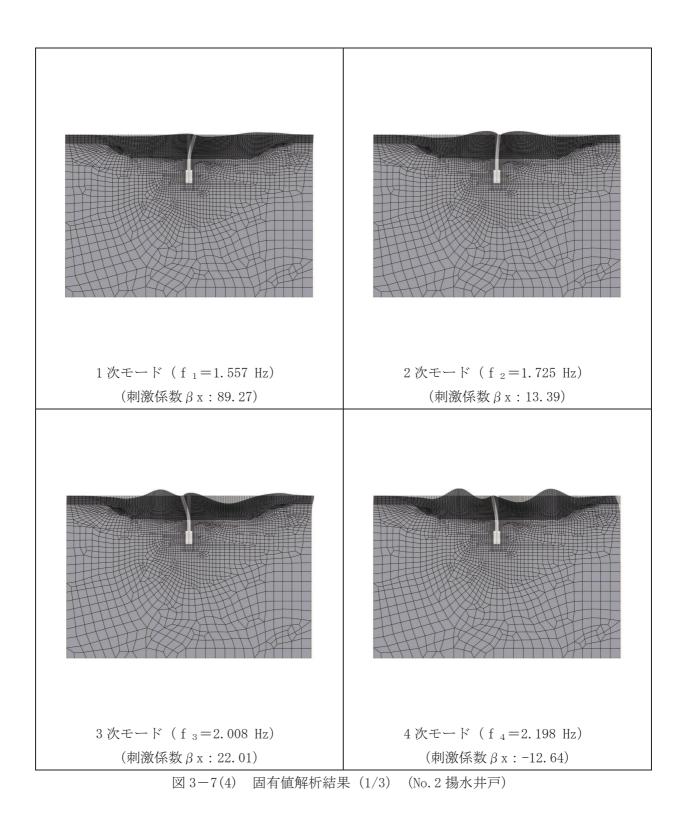



図 3-7(3) 固有値解析結果(3/3) (No.1 揚水井戸)

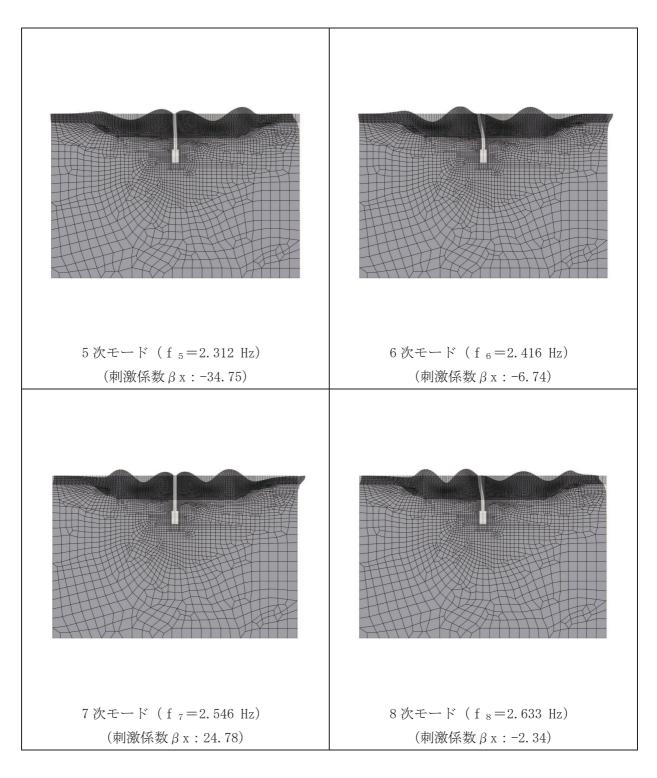
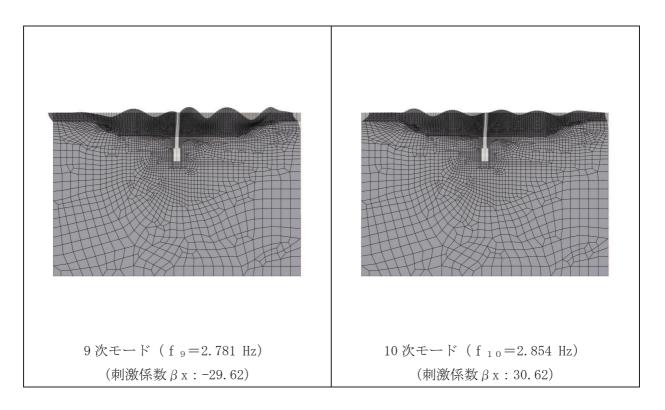
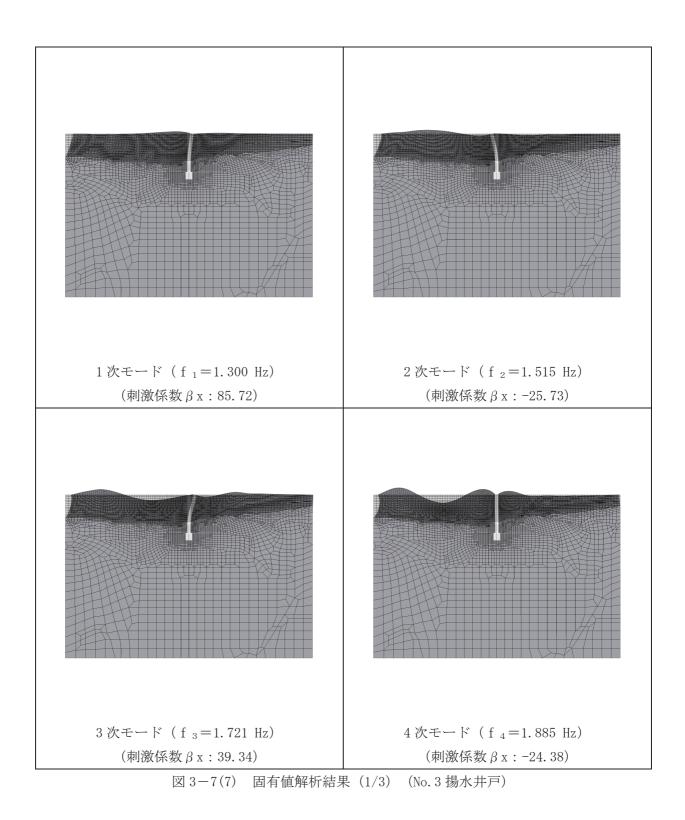
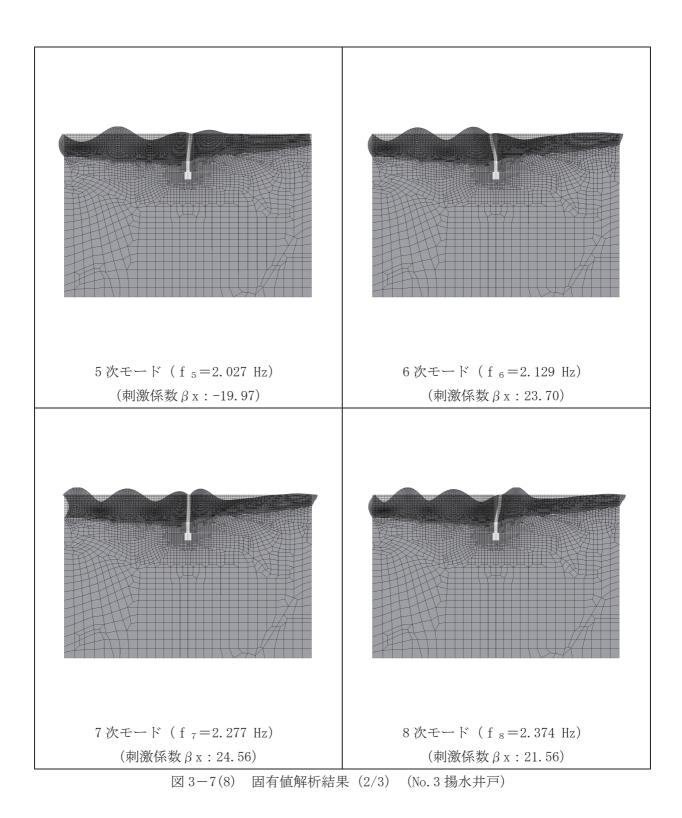
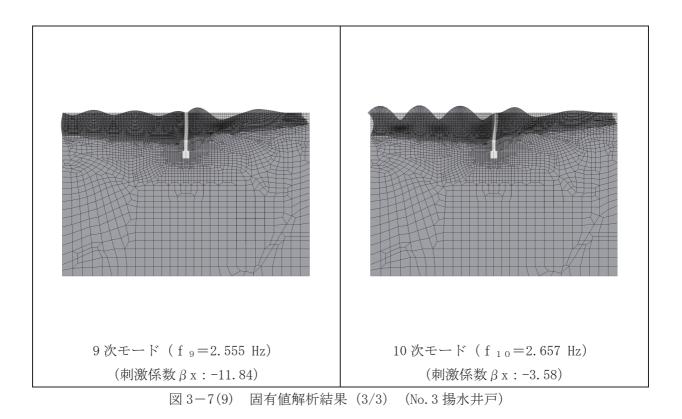
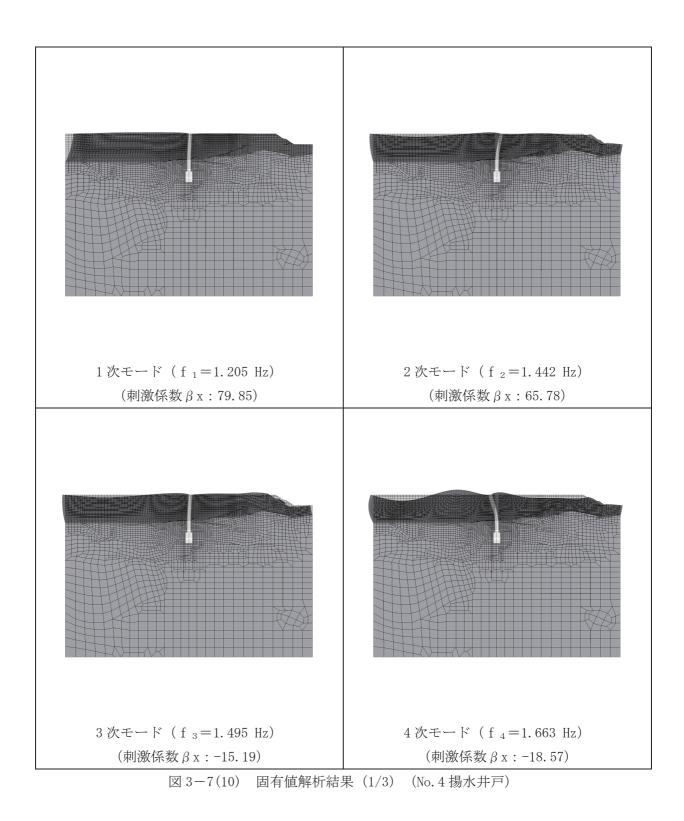
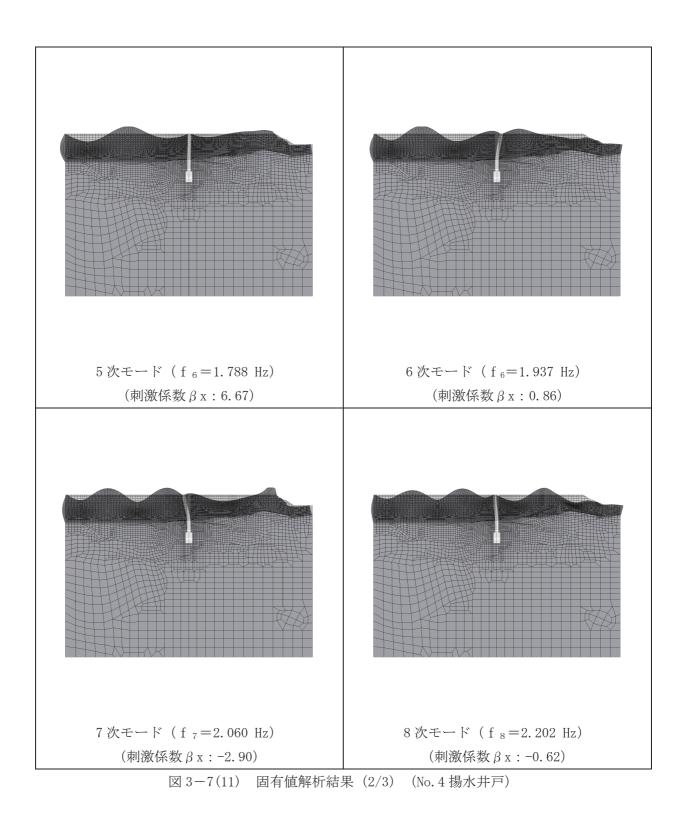
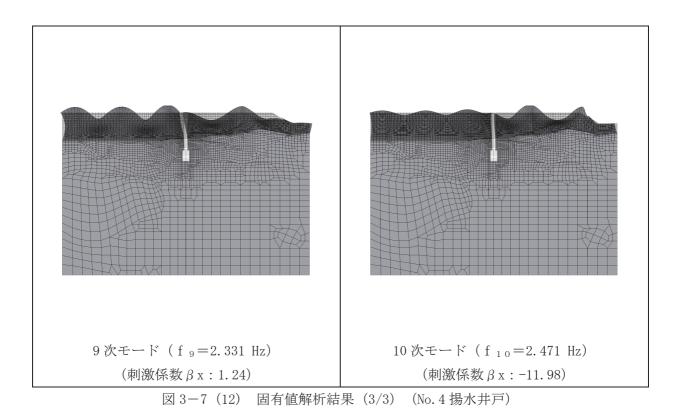


図 3-7(5) 固有値解析結果(2/3)(No.2 揚水井戸)


図 3-7(6) 固有値解析結果(3/3) (No.2 揚水井戸)



評価対象断面	α	β
No.1 揚水井戸	2. 490×10^{-1}	1.205×10^{-3}
No.2 揚水井戸	2.934×10^{-1}	1.022×10^{-3}
No.3 揚水井戸	2. 450×10^{-1}	1.224×10^{-3}
No.4 揚水井戸	2. 271×10^{-1}	1.321×10^{-3}

表 3-3 Rayleigh 減衰における係数 α , β の設定結果

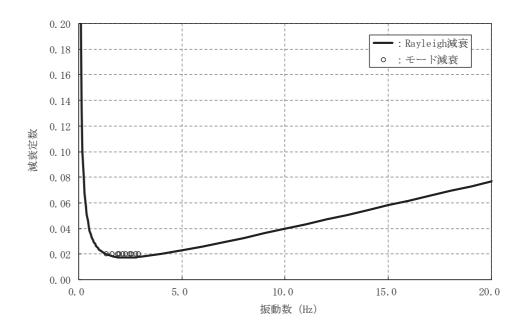
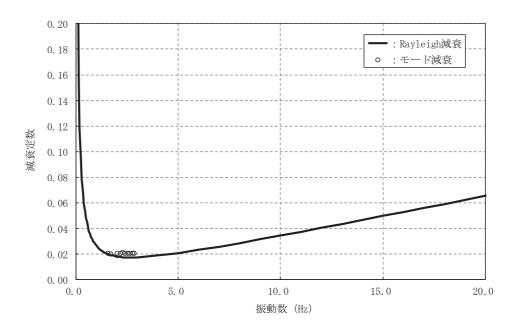




図 3-8(1) 設定した Rayleigh 減衰(No.1 揚水井戸)

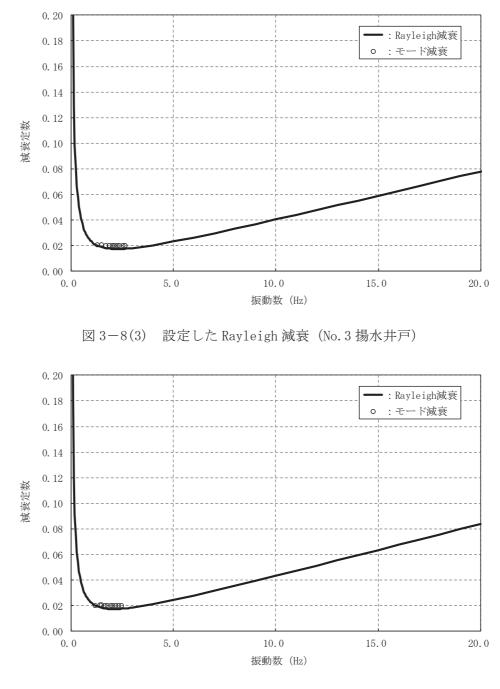


図 3-8(4) 設定した Rayleigh 減衰(No.4 揚水井戸)

3.2.5 解析ケースの選定

耐震評価においては、すべての基準地震動Ssに対し、全応力解析・有効応力解析により、ケース①(基本ケース)を実施する。解析ケース①において、各照査値が最も厳しい 地震動を用い、ばらつきを考慮した解析ケース②,③を実施する。耐震評価における解析 ケースを表 3-4 に示す。

衣3-4 脳長許価にわける胜例クース						
		ケース①	ケース②	ケース③		
解析ケース			基本ケース	地盤物性のばら	地盤物性のばら	
				つき(+1σ)を	つき(−1σ)を	
				考慮した解析ケ	考慮した解析ケ	
				ース	ース	
地盤物性			平均值	平均值+1σ	平均值-1σ	
	S s - D 1	++*	0	基準地震動 S s	(7 波)及び水平動	
	3 S - D I	-+*	0	の位相反転を表	考慮した地震動(7	
		++*	0	波)を加えた全	14 波を用いて実施	
	S s – D 2	-+*	0	するケース①	(基本ケース)の結	
	S s - D 3	++*	0	果から、排水シ	/ャフト,集水ピッ	
柮		-+*	0	,	「基礎地盤の支持力	
地震動(位相)		++*	0		照査値が0.5以上と	
(位	S s - F 1	-+*	0)うち,部位ごとの ―― &くなる地震動を用 ――	
租	相 Ss-F2	++*	0	照直値が取り崩 いてケース②,		
		-+*	0		●こく加力し。 Fの照査値がいずれ	
	S s - F 3	++*	0	も 0.5 未満の場	合は,最も厳しい照	
		-+*	0	査値についてク	ース②, ③を実施	
		++*	0	する。		
	S s - N 1	-+*	0			

表 3-4 耐震評価における解析ケース

注記*:地震動の位相について(++)の左側は水平動,右側は鉛直動を表し,「-」 は位相を反転させたケースを示す。

- 3.3 荷重及び荷重の組合せ 荷重及び荷重の組合せは、添付書類「VI-2-1-9 機能維持の基本方針」に基づき設定する。

 - 3.3.1 耐震評価上考慮する状態 揚水井戸の地震応答解折において、地震以外に考慮する状態を以下に示す。
 - (1) 運転時の状態
 発電用原子炉が運転状態にあり、通常の条件下におかれている状態。ただし、運転時の
 異常な過渡変化時の影響を受けないことから考慮しない。
 - (2) 設計基準事故時の状態設計基準事故時の影響を受けないことから考慮しない。
 - (3) 設計用自然条件 積雪の影響を考慮する。埋設構造物であるため風の影響は考慮しない。
 - (4) 重大事故等時の状態重大事故等時の状態の影響を受けないことから考慮しない。
- 3.4 荷重

揚水井戸の地震応答解折において,考慮する荷重を以下に示す。

- (1) 固定荷重(G)固定荷重として, 躯体自重, 揚水井戸蓋*, 機器・配管荷重を考慮する。
- (2) 積載荷重(P)
 積載荷重として積雪荷重を含めて地表面に4.9kN/m²を考慮する。
- (3) 積雪荷重(Ps)

積雪荷重については,発電所の最寄りの気象官署である石巻特別地域気象観測所で観測 された月最深積雪の最大値である 43cm に平均的な積雪荷重を与えるための係数 0.35 を考 慮した値を設定する。また,建築基準法施行令第 86 条第 2 項により,積雪量 1cm ごとに 20N/m²の積雪荷重が作用することを考慮する。

- (4) 地震荷重(Ss)地震力は,基準地震動Ssによる荷重を考慮する。
- 注記*: 揚水井戸蓋は揚水井戸の地震応答解析結果を用いて耐震計算を実施している(詳細は「別 紙1 揚水井戸蓋の耐震性について」参照)。また, 揚水井戸蓋のスキンプレートの厚さ は竜巻に関する強度計算を実施し設定している(詳細は「別紙2 揚水井戸蓋の強度計算 について」参照)。

3.5 荷重の組合せ

荷重の組合せを表 3-5 に示す。揚水井戸の荷重概要図を図 3-9 に示す。

外力の状態	荷重の組合せ
地震時 (Ss)	G + P + S s

G:固定荷重

P:積載荷重(積雪荷重Psを含めて4.9kN/m²を地表面に考慮)

Ss:地震荷重

種別		荷重		算定方法	
永久	常時	躯体自重	0	・設計図書に基づいて、対象構造物の体積に材料	
荷重	荷重考慮			の密度を乗じて設定する。	
	荷重	機器・配管	0	・機器・配管系の重さに基づいて設定する。	
		自重			
		土被り荷重	0	・常時応力解析により設定する。	
		上載荷重	0	・地表面に考慮する。	
	静止土圧		0	・常時応力解析により設定する。	
	外水圧		0	・地下水位に応じた静水圧として考慮する。	
				・地下水の密度を考慮する。	
	内水圧		_	・土圧・外水圧をキャンセルする方向に作用する	
				ため考慮しない。	
	積雪荷重		0	・地表面に考慮する。	
変動荷重 風荷重以外		風荷重以外	—	・変動荷重は作用しない。	
		風荷重	_	・埋設構造物であることから考慮しない。	
偶発荷重		水平地震動	0	・基準地震動Ssによる水平・鉛直同時加振を考	
		鉛直地震動		慮する。	
		動水圧	0	・地下水位及び地震動に応じた動水圧を考慮す	
				る。	

表 3-5(2) 荷重の組合せ

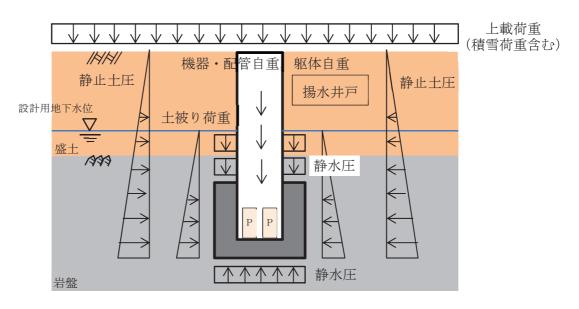


図 3-9 揚水井戸の荷重概要図

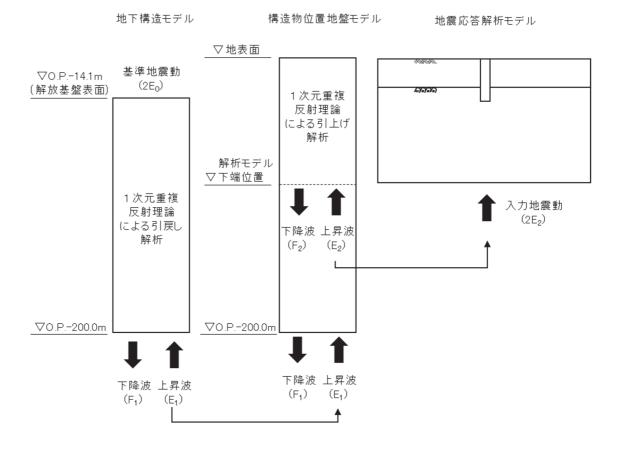
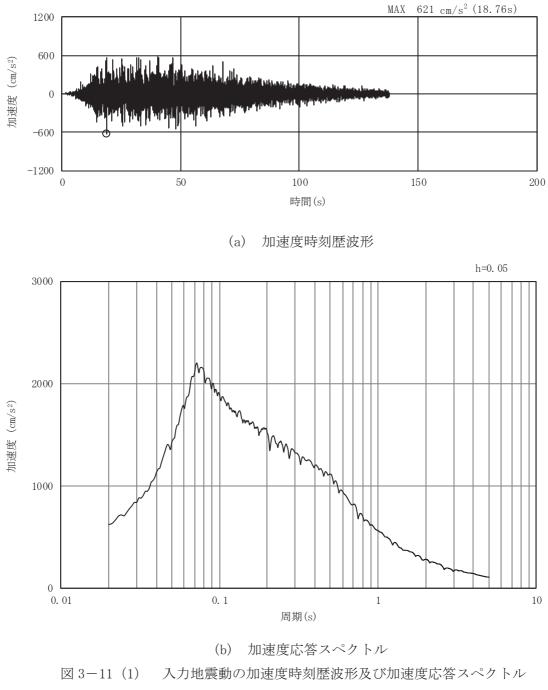
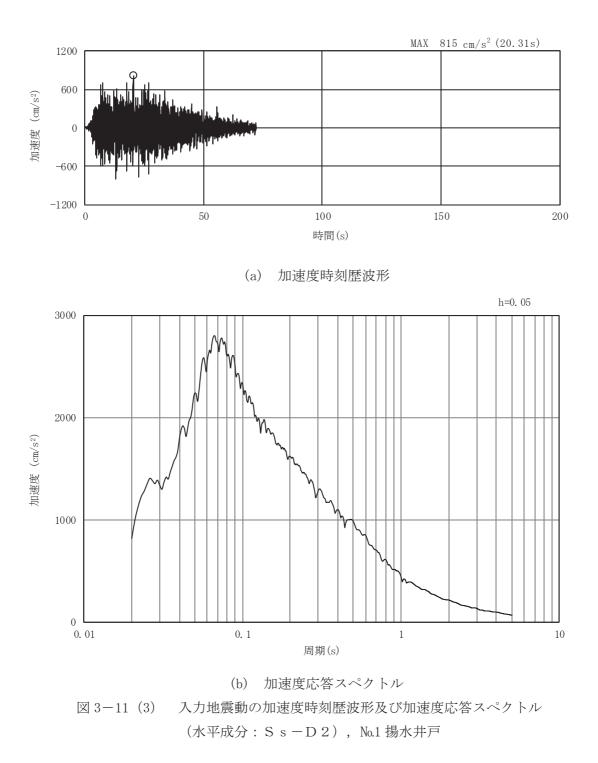
3.6 入力地震動

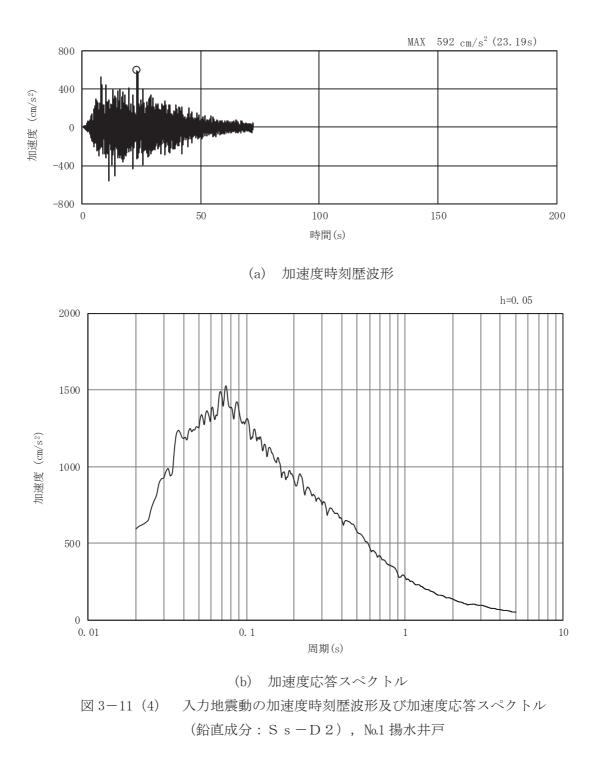
入力地震動は、添付書類「VI-2-1-6 地震応答解析の基本方針」のうち「2.3 屋外重要土 木構造物」に示す入力地震動の設定方針を踏まえて設定する。

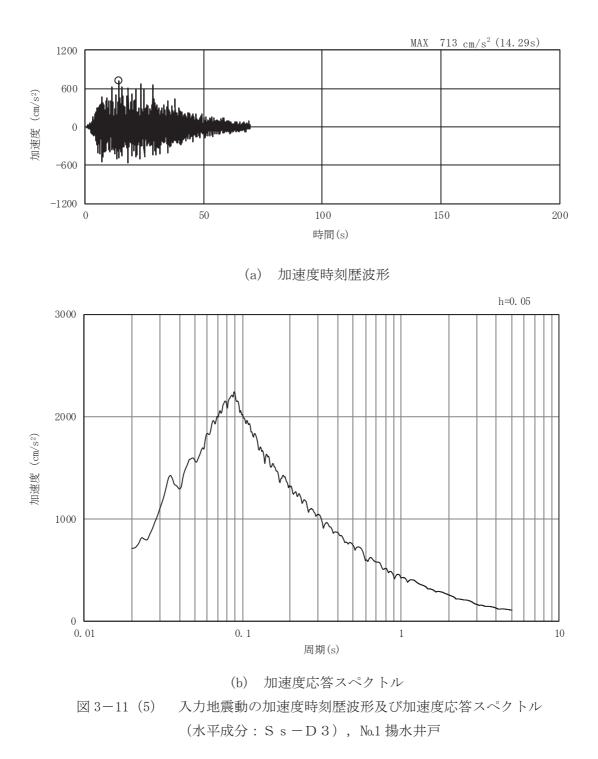
地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを一次元重 複反射理論により地震応答解析モデル底面位置で評価したものを用いる。なお,入力地震動の 設定に用いる地下構造モデルは,添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」のう ち「6.1 入力地震動の設定に用いる地下構造モデル」とする。

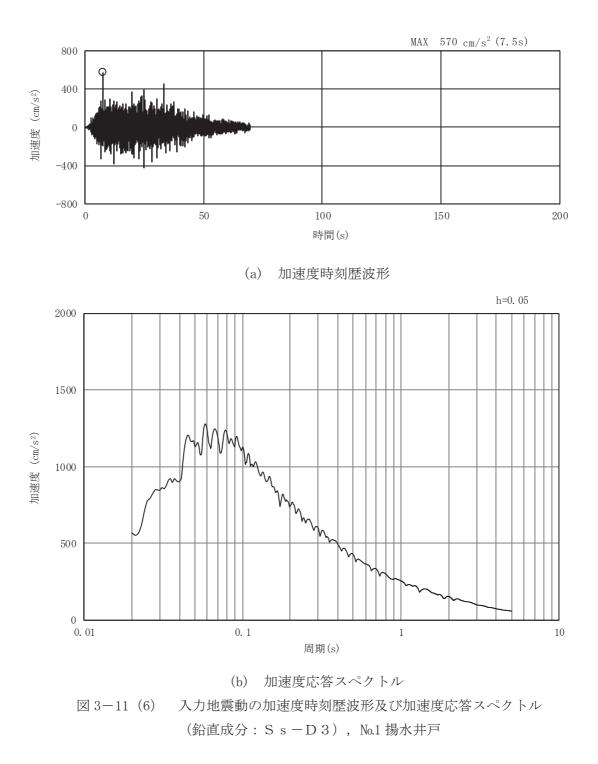
入力地震動算定の概念図を図 3-10 に示す。入力地震動の加速度時刻歴波形及び加速度応答 スペクトルを図 3-11 に示す。

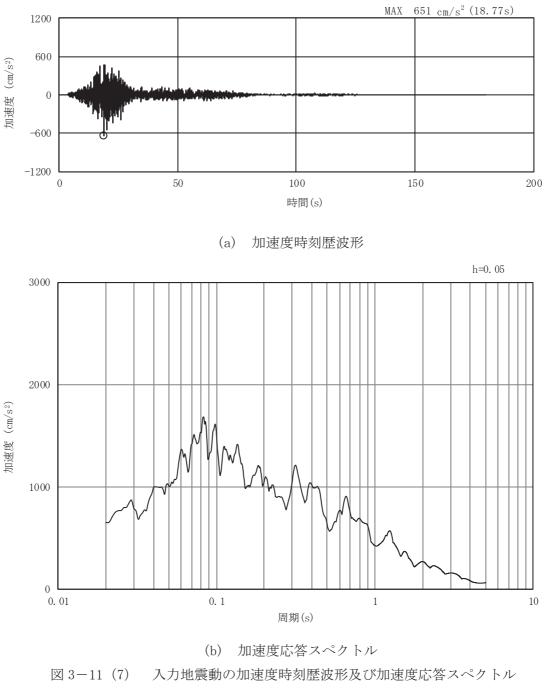
入力地震動の算定には,解折コード「SHAKE Ver1.6」を使用する。解折コードの検証及び妥 当性確認の概要については,添付書類「VI-5 計算機プログラム(解析コード)の概要」に示 す。

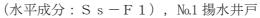




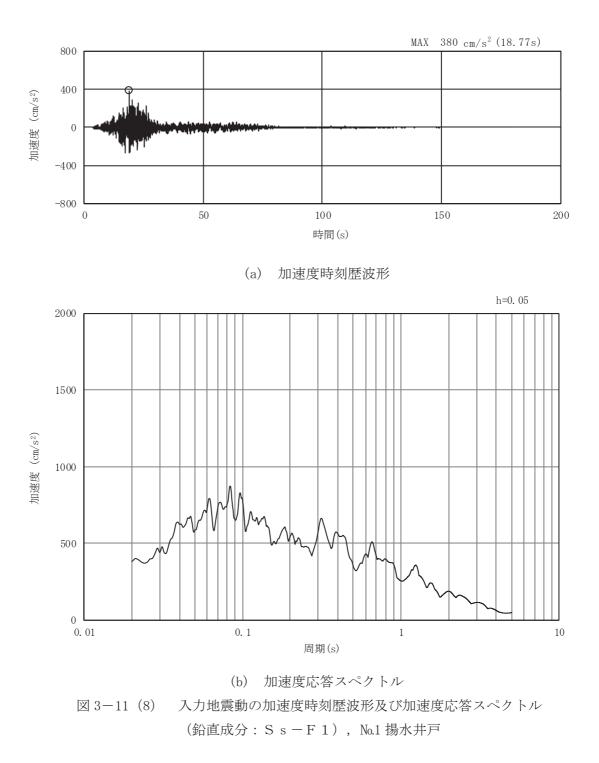

図 3-10 入力地震動算定の概念図

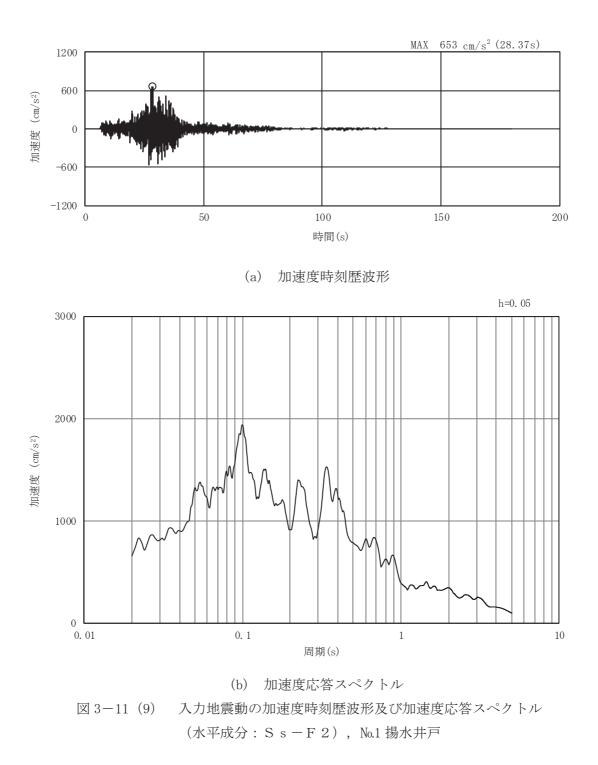


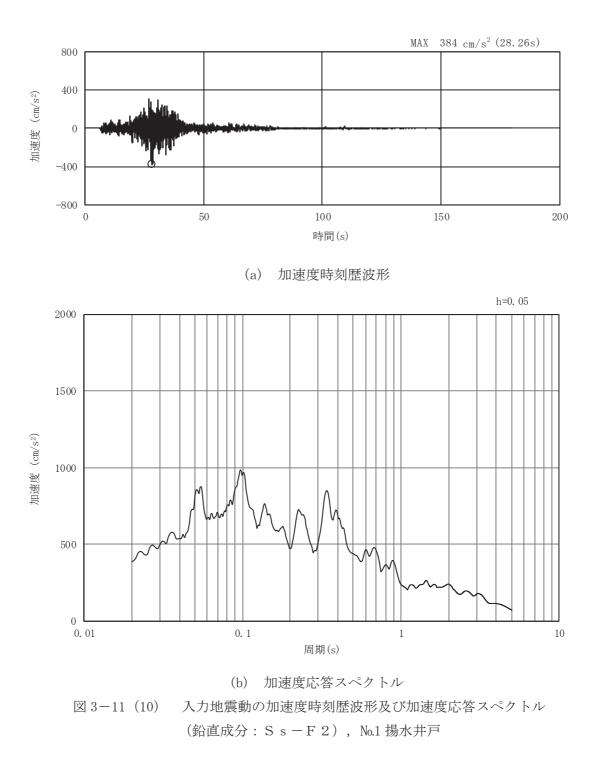

(水平成分: S s - D 1), No.1 揚水井戸

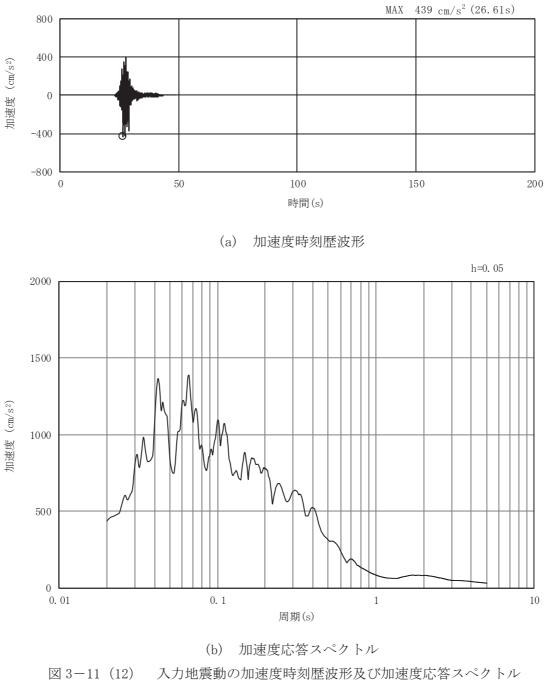


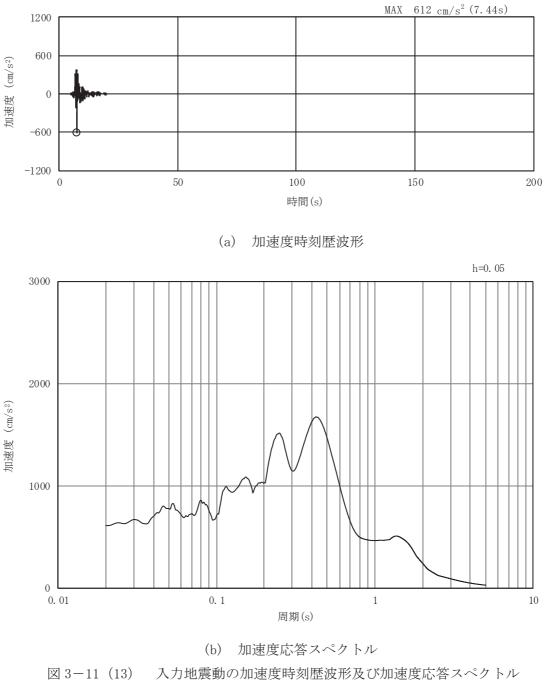


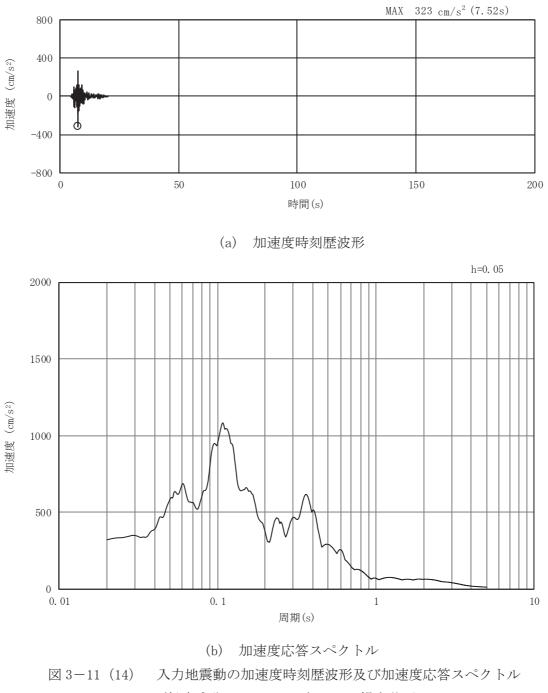


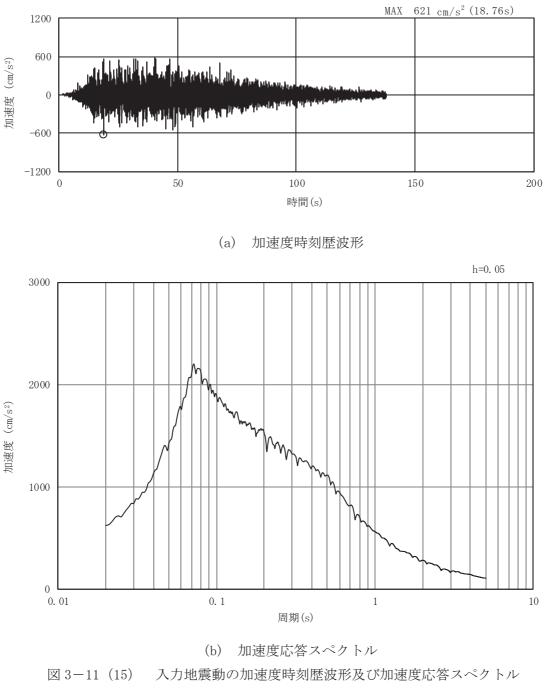









(水平成分: S s - F 3), No.1 揚水井戸


(鉛直成分: S s - F 3), No.1 揚水井戸

(水平成分: S s - N 1), No.1 揚水井戸

(水平成分:Ss-D1), №2 揚水井戸