| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料 \(~\left(\begin{array}{c|c|}\hline 資料番号 \& 02 －補－E－18－0510＿改 1 \\

\hline 提出年月日 \& 2021 年 11 月 24 日 \\
\hline\end{array}\right.\)

補足－510 設計及び工事に係る品質マネジメントシステムに関する説明書 に係る補足説明資料

工事計画添付書類に係る補足説明資料
添付書類の記載内容を補足するための資料を以下に示す。

工認添付	補足説明資料
$\mathrm{VI}-1-10-2$ 本設工認に係る設計の実績，工事及び検査の計画原子炉本体	補足－510－1 基本設計方針から設工認添付説明書及び様式 -1 への展開表（原子炉本体）
本設工認に係る設計の実績，工事及び検査の計画核燃料物質の取扱施設及び貯蔵施設	補足－510－2 基本設計方針から設工認添付説明書及び様式 -1 への展開表（核燃料物質の取扱施設及び貯蔵施設）
VI－1－10－4 本設工認に係る設計の実績，工事及び検査の計画原子炉冷却系統施設	補足－510－3 基本設計方針から設工認添付説明書及び様式 -1 への展開表（原子炉冷却系統施設）
VI－1－10－5 本設工認に係る設計の実績，工事及び検査の計画計測制御系統施設	補足－510－4 基本設計方針から設工認添付説明書及び様式 -1 への展開表（計測制御系統施設）
$\mathrm{VI}-1-10-6$ 本設工認に係る設計の実績，工事及び検査の計画放射性廃棄物の廃棄施設	補足－510－5 基本設計方針から設工認添付説明書及び様式 -1 への展開表（放射性廃棄物の廃棄施設）
VI-1-10-7 本設工認に係る設計の実績，工事及び検査の計画放射線管理施設	補足－510－6 基本設計方針から設工認添付説明書及び様式 -1 への展開表（放射線管理施設）
本設工認に係る設計の実績，工事及び検査の計画原子炉格納施設	補足－510－7 基本設計方針から設工認添付説明書及び様式 -1 への展開表（原子炉格納施設）
本設工認に係る設計の実績，工事及び検査の計画非常用電源設備	補足－510－8 基本設計方針から設工認添付説明書及び様式 -1 への展開表（非常用電源設備）
$\mathrm{VI}-1-10-10$ 本設工認に係る設計の実績，工事及び検査の計画常用電源設備	補足－510－9 基本設計方針から設工認添付説明書及び様式 -1 への展開表（常用電源設備）
VI-1-10-11 本設工認に係る設計の実績，工事及び検査の計画補助ボイラー	補足－510－10 基本設計方針から設工認添付説明書及び様式 -1 への展開表（補助ボイラー）
VI－1－10－12 本設工認に係る設計の実績，工事及び検査の計画火災防護設備	補足－510－11 基本設計方針から設工認添付説明書及び様式 -1 への展開表（火災防護設備）

（次頁へ続く）
（前頁からの続き）

工認	補足
VI－1－10－13 本設工認に係る設計の実績，工事及び検査の計画浸水防護施設	補足－510－12 基本設計方針から設工認添付説明書及び様式 -1 への展開表（浸水防護施設）
VI－1－10－14 本設工認に係る設計の実績，工事及び検査の計画補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）	補足－510－13 基本設計方針から設工認添付説明書及び様式 -1 への展開表（補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除 ＜。））
VI-1-10-15 本設工認に係る設計の実績，工事及び検査の計画非常用取水設備	補足－510－14 基本設計方針から設工認添付説明書及び様式 -1 への展開表（非常用取水設備）
VI－1－10－16 本設工認に係る設計の実績，工事及び検査の計画緊急時対策所	補足－510－15 基本設計方針から設工認添付説明書及び様式 -1 への展開表（緊急時対策所）

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－510－1 基本設計方針から設工認添付書類及び様式—1～の展開表 （原子炉本体）

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【原子炉本体】

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	$\begin{gathered} \text { (用語の定義のみ) } \end{gathered}$
第1章 共通項目 原子炉本体の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対する要求（4．5 安全弁等， 4.6 逆止め弁， 4.7 内燃機関の設計条件， 4.8電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 原子炉本体の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．5 安全弁等， 5.6 逆止め弁， 5.7 内燃機関及 びガスタービンの設計条件，5．8 電気設備の設計条件 を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
第2章 個別項目 1．炉心等 燃料体（燃料要素及びその他の部品を含む。）は，設置（変更）許可を受けた仕様となる構造及び設計とす る。【23条1】	第2章 個別項目 1．炉心等変更なし	－	（変更なし）
燃料体，減速材及び反射材並びに炬心支持構造物の材料は，通常運転時における原子炉運転状態に対応し た圧力，温度条件，燃料使用期間中の燃焼度，中性子照射量及び水質の組み合わせのらち想定される最も厳 しい条件において，耐放射線性，寸法安定性，耐熱性，核性質及び強度のうち必要な物理的性質並びに，耐食性，水素吸収特性及び化学的安定性のうち必要な化学的性質を保持し得る材料を使用する。【23条2】		－	（変更なし）
燃料体は炬心支持構造物で支持され，その荷重は原子炉圧力容器に伝えられる設計とする。【23条7】		－	（変更なし）
燃料体は，通常運転時及び運転時の異常な過渡変化時における発電用原子炉内の圧力，自重，附加荷重，核分裂生成物の蓄積による燃料被覆管の内圧上昇，熱応力等の荷重に耐える設計とする。また，輸送中又は取扱中において，著しい変形を生じない設計とする。【23条4】		－	（変更なし）
灲心支持構造物は，最高使用圧力，自重，附加荷重及び地震力に加え，熱応力の荷重に耐える設計とする。 【23条5】		－	（変更なし）
灲心は，通常運転時又は運転時の異常な過渡変化時 に発電用原子炉の運転に支障が生ずる場合において，原子炉泠却系統，原子炉停止系統，反応度制御系統，計測制御系統及び安全保護装置の機能と併せて機能す ることにより燃料要素の許容損傷限界を超えない設計 とする。【23条6】		－	（変更なし）
炉心部は燃料体，制御棒及び炉心支持構造物からな		－	－

基本設計方針		設計結果の記載箇所	様式－1 へ 反 映結果
変更前	変更後		
り，上下端が半球状の円筒形鋼製圧力容器に収容され る。原子炉圧力容器の外側には，遮蔽壁を設置する。 【23条8】			（変更なし）
燃料体（燃料要素を除く。），減速材及び反射材並び に炉心支持構造物は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，発電用原子炉 を安全に停止し，かつ，停止後に炉心の泠却機能を維持できる設計とする。【23条3】		－	（変更なし）
なお，熱遮蔽材は設けない設計とする。【24条1】		－	（変更なし）
2．原子炉圧力容器 2.1 原子炉圧力容器本体 原子炉圧力容器の原子灲冷却材圧力バウンダリに係 る基本設計方針については，原子炉冷却系統施設の基本設計方針「第2章 個別項目 3．2 原子炉冷却材圧 カバウンダリ」に基づく設計とする。【27条1～10】	2．原子炉圧力容器変更なし	－	（変更なし）
原子炉圧力容器は，円筒形の胴部に半球形の下鏡を付した鋼製容器に，半球形の鋼製上部ふたをボルト締 めする構造であり，再循環水出口ノズル，再循環水入 ロノズル，主蒸気出ロノズル，給水ノズル等を取り付 ける設計とする。【23条10】		－	（変更なし）
原子炉圧力容器内の原子炉冷却材の流路は，原子炉再循環ポンプにより，再循環水入口ノズルから原子炉圧力容器内に導かれ，ジェットポンプによりチャンネ ルボックスが形成した原子炉冷却材の流路を炉心の下方から上方向に流れ，主蒸気出ロノズルから出る設計 とする。【23条9】		－	（変更なし）
原子炉圧力容器の支持方法は，原子炉圧力容器支持 スカートで下端を固定し，原子炉圧力容器スタビライ ザによって水平方向に支持する設計とする。【23条11】		－	（変更なし）
原子炉圧力容器は最低使用温度を $10^{\circ} \mathrm{C}$ に設定し，関連温度（初期）を $-35^{\circ} \mathrm{C}$ 以下に設定することで，脆性破壊が生じない設計とする。【17条8】		－	（変更なし）
中性子照射脆化の影響を受ける原子炉圧力容器にあ っては，日本電気協会「原子力発電所用機器に対する破壊靭性の確認試験方法」（J E A C 4 2 0 6 ）に基づ き，適切な破壊じん性を有する設計とする。【14条19】		VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書 2．基本方針 4．脆性破壊防止に対する設計 5．評価対象と評価方法 7．最低使用温度に基づく評価 8．関連温度に基づく評価 9．上部棚吸収エネルギーの評価	（基本設計方針に変更はないが，本設工認で必要な設計） 2．原子炉本体の設計
チャンネルボックスは，制御棒をガイドし，燃料集合体を保護する設計とする。【23条12】		－	（変更なし）
2.2 監視試験片 1メガ電子ボルト以上の中性子の照射を受ける原子炉圧力容器は，当該容器が想定される運転状態におい		－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
て脆性破壊を引き起こさないようにするために，施設時に適用された告示「発電用原子力設備に関する構造等の技術基準（昭和55年通商産業省告示第501号）」を満足し，機械的強度及び破壊じん性の変化を確認でき る個数の監視試験片を原子炉圧力容器内部に挿入する ことにより，照射の影響を確認できる設計とする。【22条1】			
監視試験片は，適用可能な日本電気協会「原子炉構造材の監視試験方法」（J E A C 4 2 0 1）により，取 り出し及び監視試験を実施する。【22条2】		－	（変更なし）
3．流体振動等による損傷の防止 燃料体，炉心支持構造物及び原子炉圧力容器は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動 により生じる流体振動又は温度差のある流体の混合そ の他の原子炉冷却材の挙動により生じる温度変動によ り損傷を受けない設計とする。【19条1】	3．流体振動等による損傷の防止変更なし	－	（変更なし）
4．主要対象設備 原子炉本体の対象となる主要な設備について，「表1原子炉本体の主要設備リスト」に示す。	4．主要対象設備 原子炉本体の対象となる主要な設備について，「表1原子炉本体の主要設備リスト」に示す。	－	(「主要設備リスト」による)

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－510－2 基本設計方針から設工認添付書類及び様式—1～の展開表 （核燃料物質の取扱施設及び貯蔵施設）

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【核燃料物質の取扱施設及び貯蔵施設】

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	(用語の定義のみ)
第1章 共通項目 核燃料物質の取扱施設及び貯蔵施設の共通項目であ る「1．地盤等，2．自然現象，3．火災，4．設備 に対する要求（4．5 安全并等，4．6 逆止め弁，4．7 内燃機関の設計条件， 4.8 電気設備の設計条件を除 く。），5．その他」の基本設計方針については，原子炉泠却采統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 核燃料物質の取扱施設及び貯蔵施設の共通項目であ る「1．地盤等， 2 ．自然現象， 3 ．火災，4．溢水等， 5．設備に対する要求（5．5 安全弁等，5．6逆止め弁，5．7 内燃機関及びガスタービンの設計条件， 5.8電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
第2章 個別項目 1．燃料取扱設備 1.1 燃料取扱設備の基本方針 燃料体等の取扱設備は，燃料交換機（第1，2号機共用（以下同じ。）），原子炉建屋クレーン（第1，2号機共用（以下同じ。））及び燃料チャンネル着脱機（第1，2号機共用（以下同じ。））で構成し，新燃料を原子炉建屋原子炉棟に搬入してから原子炉建屋原子炉棟外一搬出するまで，燃料体等を安全に取り扱うことができる設計とする。	第2章 個別項目 1．燃料取扱設備 1．1 燃料取扱設備の基本方針 燃料体等の取扱設備は，燃料交換機（第1，2号機共用 （以下同じ。）），原子炉建屋クレーン（第1，2号機共用 （以下同じ。））及び燃料チャンネル着脱機（第1，2号機共用（以下同じ。））で構成し，新燃料を原子炉建屋原子炉棟に搬入してから原子炉建屋原子炉棟外へ搬出する まで，燃料体等を安全に取り扱うことができる設計と する。【26条1】	－	（変更なし）
新燃料は，原子炉建屋原子炉棟内に設ける新燃料貯蔵庫から原子炉建屋クレーン及び燃料チャンネル着脱機を介して使用済燃料プール（第1，2号機共用（以下同じ。））に移し，燃料交換機により炉心に挿入できる設計とする。	新燃料は，原子炉建屋原子炉棟内に設ける新燃料貯蔵庫から原子炉建屋クレーン及び燃料チャンネル着脱機を介して使用済燃料プール（設計基蕉対象施設とし ての第1，2号機共用（以下同じ。））に移し，燃料交換機により灲心に挿入できる設計とする。【26条2】	－	（記載追加のみ，変更なし）
また，燃料の取替えは，原子炉上部の原子炉ウェル に水を張り，水中で燃料交換機を用いて行うことがで きる設計とする。	また，燃料の取替えは，原子炉上部の原子炉ウェルに水を張り，水中で燃料交換機を用いて行うことができ る設計とする。【26条3】	－	（変更なし）
使用済燃料は，遮蔽に必要な水深を確保した状態で，燃料交換機により水中移送し，原子炉建屋原子炉棟内 の使用済燃料プールの使用済燃料貯蔵ラック（第1，2号機共用（以下同じ。））に貯蔵できる設計とする。	使用済燃料は，遮蔽に必要な水深を確保した状態で，燃料交換機により水中移送し，原子炉建屋原子炉棟内 の使用済燃料プールの使用済燃料貯蔵ラック（設計基蕉対象施設としてのみ第1，2号機共用（以下同じ。））に貯蔵できる設計とする。【26条4】	－	（記載追加のみ，変更なし）
使用済燃料の発電所外への搬出には，使用済燃料輸送容器を使用する。 また，使用済燃料輸送容器に収納された使用済燃料 を発電所外へ搬出する場合には，キャスクピット（第 1，2号機共用）で使用済燃料輸送容器に収納し，キヤ スク洗浄ピット（第 1 ， 2 号機共用）で使用済燃料輸送容器の除染を行い発電所外へ搬出する。	使用済燃料の発電所外への搬出には，使用済燃料輸送容器を使用する。 また，使用済燃料輸送容器に収納された使用済燃料 を発電所外へ搬出する場合には，キャスクピット（第1， 2号機共用）で使用済燃料輸送容器に収納し，キャスク洗浄ピット（第1， 2 号機共用）で使用済燃料輸送容器の除染を行い発電所外い搬出する。【26条5】	－	（変更なし）
燃料交換機及び燃料チャンネル着脱機は，燃料体等	燃料交換機及び燃料チャンネル着脱機は，燃料体等	－	－

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
を一体ずつ取り扱う構造とすることにより，臨界を防止する設計とし，燃料体等の検査等を行う際に水面に近づいた状態であっても，燃料体等からの放射線の遮蔽に必要な水深を確保できる設計とする。	を一体ずつ取り扱う構造とすることにより，臨界を防止する設計とし，燃料体等の検査等を行ら際に水面に近づいた状態であっても，燃料体等からの放射線の遮蔽に必要な水深を確保できる設計とする。【26条6】		（変更なし）
原子炉建屋クレーンは，未臨界性を確保した容器に収納して吊り上げる場合を除き，燃料体等を取り扱う場合は，一体ずつ取り扱う構造とし，臨界を防止する設計とする。	原子炉建屋クレーンは，未臨界性を確保した容器に収納して吊り上げる場合を除き，燃料体等を取り扱う場合は，一体ずつ取り扱ら構造とし，臨界を防止する設計とする。【26条7】	－	（変更なし）
燃料交換機は，燃料体等の炉心から使用済燃料プー ルへの移送操作，使用済燃料プールから炉心への移送操作又は使用済燃料輸送容器への収納操作等をすべて水中で行うことで，崩壞熱により燃料体等が溶融せず，燃料体等からの放射線に対して，適切な遮蔽能力を有 する設計とする。	燃料交換機は，燃料体等の炉心から使用済燃料プー ルへの移送操作，使用済燃料プールから炉心への移送操作又は使用済燃料輸送容器への収納操作等をすべて水中で行うことで，崩壊熱により燃料体等が溶融せず，燃料体等からの放射線に対して，適切な遮蔽能力を有 する設計とする。【26条8】	－	（変更なし）
燃料チャンネル着脱機は，燃料体等の検査等のため の昇降操作等をすべて水中で行うことで，崩壊熱によ り燃料体等が溶融せず，燃料体等からの放射線に対し て，適切な遮蔽能力を有する設計とする。	燃料チャンネル着脱機は，燃料体等の検査等のため の昇降操作等をすべて水中で行うことで，崩壊熱によ り燃料体等が溶融せず，燃料体等からの放射線に対し て，適切な遮蔽能力を有する設計とする。【26条9】	－	（変更なし）
原子炉建屋クレーンは，フック部の外れ止めを有し，使用済燃料輸送容器等を取り扱う主巻フックは，定格荷重を保持でき，必要な安全率を有するワイヤロープ を二重化することにより，燃料体等の重量物取り扱い中に落下を防止できる設計とする。	原子炉建屋クレーンは，フック部の外れ止めを有し，使用済燃料輸送容器等を取り扱う主巻フックは，定格荷重を保持でき，必要な安全率を有するワイヤロープ を二重化することにより，燃料体等の重量物取り扱い中に落下を防止できる設計とする。また，想定される使用済燃料プール内への落下物によって使用済燃料プー ル内の燃料体等が破損しないことを計算により確認す る。【26条12】	VI－1－3－3 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済燃料貯蔵槽の機能喪失の防止に関する説明書 5．使用済燃料プール内への落下物による使用済燃料プ ール内の燃料体等への影響評価	3．重量物の落下防止設計
なお，ワイヤロープ及びフックは，それぞれ「クレ ーン構造規格」，「クレーン等安全規則」の規定を満た す安全率を有する設計とする。	なお，ワイヤロープ及びフックは，それぞれ「クレー ン構造規格」，「クレーン等安全規則」の規定を満たす安全率を有する設計とする。【26条12】	－	（変更なし）
燃料交換機の燃料つかみ具は，昇降を安全かつ確実 に行うため，定格荷重を保持でき，必要な安全率を有 するワイヤロープの二重化，フック部の外れ止めを有 し，グラップルヘッドには機械的インターロックを設 ける設計とする。	燃料交換機の燃料つかみ具は，昇降を安全かつ確実 に行うため，定格荷重を保持でき，必要な安全率を有す るワイヤロープの二重化，フック部の外れ止めを有し， グラップルヘッドには機械的インターロックを設ける設計とする。【26条10】	－	（変更なし）
燃料チャンネル着脱機は，下限リミットスイッチに よるインターロック及び燃料体等を上部で保持する固定具により燃料体等の使用済燃料プール床面への落下 を防止できる設計とする。	燃料チャンネル着脱機は，下限リミットスイッチに よるインターロック及び燃料体等を上部で保持する固定具により燃料体等の使用済燃料プール床面への落下 を防止できる設計とする。【26条14】	－	（変更なし）
燃料交換機は，燃料体等の取り扱い中に過荷重とな った場合に上昇を阻止するインターロックを設けると ともに荷重監視を行うことにより，過荷重による燃料体等の落下を防止できる設計とする。	燃料交換機は，燃料体等の取り扱い中に過荷重とな った場合に上昇を阻止するインターロックを設けると ともに荷重監視を行うことにより，過荷重による燃料体等の落下を防止できる設計とする。【26条11】	－	（変更なし）
燃料交換機は，地震時にも転倒することがないよう に，走行レール及び横行レール頭部を抱き込む構造を した転倒防止装置を設ける。	燃料交換機は，地震時にも転倒することがないよう に，走行レール及び横行レール頭部を抱き込む構造を した転倒防止装置を設ける。【26条15】	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
原子炉建屋クレーンは，地震時にも転倒することが ないように走行方向及び横行方向に対して，クレーン本体等の浮上り量を考慮し，脱線防止ラグを設けるこ とで，クレーン本体等の車輪がレール上から落下しな い設計とする。	原子炉建屋クレーンは，地震時にも転倒することが ないように走行方向及び横行方向に対して，クレーン本体等の浮上り量を考慮し，脱線防止ラグを設けるこ とで，クレーン本体等の車輪がレール上から落下しな い設計とする。【26条16】	－	（変更なし）
また，原子炉建屋クレーンは，使用済燃料輸送容器等の重量物を吊った状態では，使用済燃料貯蔵ラック上を走行できないようにインターロックを設ける設計 とする。	また，原子炬建屋クレーンは，使用済燃料輸送容器等 の重量物を吊った状態では，使用済燃料貯蔵ラック上 を走行できないようにインターロックを設ける設計と する。【26条13】	－	（変更なし）
使用済燃料を収納する使用済燃料輸送容器（第1号機設備，第1，2，3号機共用）は，取り扱い中における衝撃，熱，その他の容器に加わる負荷に耐え，容易かつ安全に取り扱うことができる設計とする。また，運搬中に予想される温度及び内圧の変化，振動等により， き裂，破損等が生じない設計とする。 さらに，理論的若しくは適切な試験等により所定の機能を満足できる設計とする。	使用済燃料を収納する使用済燃料輸送容器（第1号機設備，第1，2，3号機共用）は，取り扱い中における衝撃，熱，その他の容器に加わる負荷に耐え，容易かつ安全に取り扱うことができる設計とする。また，運搬中に予想される温度及び内圧の変化，振動等により，き裂，破損等が生じない設計とする。 さらに，理論的若しくは適切な試験等により所定の機能を満足できる設計とする。【26条17】	－	（変更なし）
使用済燃料輸送容器（第 1 号機設備，第 $1,2,3$ 号機共用）は，内部に使用済燃料が収納された場合に，放射線障害を防止するため，その容器表面の線量当量率 が $2 \mathrm{mSv} / \mathrm{h}$ 以下及び容器表面から1m離れた位置における線量当量率が $100 \mu \mathrm{~Sv} / \mathrm{h}$ 以下となるよう，収納される使用済燃料の放射能強度を考慮して十分な遮蔽を行うこ とができる設計とする。	使用済燃料輸送容器（第 1 号機設備，第 1,2 ， 3 号機共用）は，内部に使用済燃料が収納された場合に，放射線障害を防止するため，その容器表面の線量当量率が $2 \mathrm{mSv} / \mathrm{h}$ 以下及び容器表面から 1 m 離れた位置における線量当量率が $100 \mu \mathrm{~Sv} / \mathrm{h}$ 以下となるよう，収納される使用済燃料の放射能強度を考慮して十分な遮蔽を行うこと ができる設計とする。【26条18】	－	（変更なし）
燃料交換機の燃料つかみ具は空気作動式とし，燃料体等をつかんだ状態で圧縮空気が喪失した場合にも， つかんだ状態を保持し，燃料体等が外れない設計とす る。	燃料交換機の燃料つかみ具は空気作動式とし，燃料体等をつかんだ状態で圧縮空気が喪失した場合にも， つかんだ状態を保持し，燃料体等が外れない設計とす る。【26条19】	－	（変更なし）
燃料交換機，原子炉建屋クレーン及び燃料チャンネ ル着脱機は，動力電源喪失時に電磁ブレーキによる保持機能により，燃料体等の落下を防止できる設計とす る。	燃料交換機，原子炉建屋クレーン及び燃料チャンネ ル着脱機は，動力電源喪失時に電磁ブレーキによる保持機能により，燃料体等の落下を防止できる設計とす る。【26条20】	－	（変更なし）
1．2 設備の共用 燃料交換機及び原子炉建屋クレーンは，第1号機と共用するが，第1号機の使用済燃料，輸送容器等の吊り荷重を考慮した設計とすることで，共用により安全性を損なわない設計とする。	1.2 設備の共用 燃料交換機及び原子炬建屋クレーンは，第1号機と共用するが，第1号機の使用済燃料，輸送容器等の吊り荷重を考慮した設計とすることで，共用により安全性を損なわない設計とする。【15条12】	－	（変更なし）
2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 燃料体等を貯蔵する設備として，新燃料貯蔵庫及び使用済燃料プールを設ける設計とする。	2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 燃料体等を貯蔵する設備として，新燃料貯蔵庫及び使用済燃料プールを設ける設計とする。【26条21】	－	（変更なし）
新燃料貯蔵庫は，通常時の燃料取替を考慮し，適切 な貯蔵能力を有し，全炉心燃料の約 40% を収納できる設計とする。	新燃料貯蔵庫は，通常時の燃料取替を考慮し，適切な貯蔵能力を有し，全灲心燃料の約 40% を収納できる設計とする。【26条28】	－	（変更なし）
使用済燃料プールは，第2号機の全炉心燃料の約	使用斎燃料プールは，第2号機の全炉心燃料の約	－	－

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
400% 相当分貯蔵が可能であり，さらに，放射化された機器等の貯蔵及び取り扱いができるスペースを確保し た設計とする。なお，通常運転中，全炉心の燃料体等 を貯蔵できる容量を確保できる設計とする。	400% 相当分貯蔵が可能であり，さらに，放射化された機器等の貯蔵及び取り扱いができるスペースを確保し た設計とする。なお，通常運転中，全炉心の燃料体等を貯蔵できる容量を確保できる設計とする。【26条29】		（変更なし）
燃料体等の貯蔵設備は，燃料取扱者以外の者がみだ りに立ち入らないよう，フェンス等により立ち入りを制限できる設計とする。	燃料体等の貯蔵設備は，燃料取扱者以外の者がみだ りに立ち入らないよう，フェンス等により立ち入りを制限できる設計とする。【26条49】	－	（変更なし）
新燃料貯蔵庫は，原子炉建屋原子炉棟内の独立した区画に設け，新燃料を新燃料貯蔵ラックで貯蔵できる設計とする。新燃料貯蔵庫は，鉄筋コンクリート構造 とし，想定されるいかなる状態においても新燃料が臨界に達することのない設計とする。新燃料は，堅固な構造のラックに垂直に入れ，乾燥状態で保管し，新燃料貯蔵庫には水が充満するのを防止するための排水口 を設ける設計とする。	新燃料貯蔵庫は，原子炉建屋原子炉棟内の独立した区画に設け，新燃料を新燃料貯蔵ラックで貯蔵できる設計とする。新燃料貯蔵庫は，鉄筋コンクリート構造と し，想定されるいかなる状態においても新燃料が臨界 に達することのない設計とする。新燃料は，堅固な構造 のラックに垂直に入れ，乾燥状態で保管し，新燃料貯蔵庫には水が充満するのを防止するための排水口を設け る設計とする。【26条22】	－	（変更なし）
新燃料貯蔵庫に設置する新燃料貯蔵ラックは，貯蔵燃料の臨界を防止するために必要な燃料間距離を保持 し，たとえ新燃料を貯蔵容量最大で貯蔵した状態で，万一新燃料貯蔵庫が水で満たされるという厳しい状態 を仮定しても，実効増倍率を 0.95 以下に保つ設計とす る。	新燃料貯蔵庫に設置する新燃料貯蔵ラックは，貯蔵燃料の臨界を防止するために必要な燃料間距離を保持 し，たとえ新燃料を貯蔵容量最大で貯蔵した状態で，万一新燃料貯蔵庫が水で満たされるといら厳しい状態を仮定しても，実効増倍率を0．95以下に保つ設計とする。【26条23】	－	（変更なし）
使用済燃料プールは，原子炉建屋原子炉棟内に設け，燃料体等を水中の使用済燃料貯蔵ラックに垂直に一体 ずつ入れて貯蔵する。使用済燃料貯蔵ラックは，中性子吸収材であるほう素を添加したステンレス鋼を使用 するとともに適切な燃料間距離をとることにより，燃料体等を貯蔵容量最大で貯蔵し，かつ使用済燃料プー ル水温及び使用済燃料貯蔵ラック内燃料貯蔵位置等に ついて，想定されるいかなる場合でも実効増倍率を 0.95 以下に保ち，貯蔵燃料の臨界を防止できる設計と する。	使用済燃料プールは，原子炉建屋原子炉棟内に設け，燃料体等を水中の使用済燃料貯蔵ラックに垂直に一体 ずつ入れて貯蔵する。使用済燃料貯蔵ラックは，中性子吸収材であるほう素を添加したステンレス鋼を使用す るとともに適切な燃料間距離をとることにより，燃料体等を貯蔵容量最大で貯蔵し，かつ使用済燃料プール水温及び使用済燃料貯蔵ラック内燃料貯蔵位置等につ いて，想定されるいかなる場合でも実効増倍率を 0.95以下に保ち，貯蔵燃料の臨界を防止できる設計とする。【26条24】	－	（変更なし）
使用済燃料プールは，鉄筋コンクリート造，ステン レス鋼内張りの水槽であり，使用済燃料プールからの放射性物質を含む水があふれ，又は漏れない構造とす る。	使用済燃料プールは，鉄筋コンクリート造，ステンレ ス鋼内張りの水槽であり，使用済燃料プールからの放射性物質を含む水があふれ，又は漏れない構造とする。【26条31】	－	（変更なし）
使用済燃料プール内の壁面及び底部は，コンクリー ト壁による遮蔽を施すとともに，燃料体等の上部には十分な遮蔽効果を有する水深を確保することにより，燃料体等からの放射線に対して適切な遮蔽能力を有 し，放射線業務従事者の被ばくを低減する設計とする。	使用済燃料プール内の壁面及び底部は，コンクリー ト壁による遮蔽を施すとともに，燃料体等の上部には十分な遮蔽効果を有する水深を確保することにより，燃料体等からの放射線に対して適切な遮蔽能力を有 し，放射線業務従事者の被ばくを低減する設計とする。【26条33】	－	（変更なし）
万一，使用済燃料プールからの水の漏えいが発生し， かつ，使用済燃料プール水の補給に復水貯蔵タンク水 が使用できない場合には，残留熱除去系を用いてサプ レッションチェンバのプール水を補給できる設計とす	万一，使用済燃料プールからの水の漏えいが発生し， かつ，使用済燃料プール水の補給に復水貯蔵タンク水 が使用できない場合には，残留熱除去系を用いてサプ レッションチェンバのプール水を補給できる設計とす	－	（変更なし）

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
る。	る。【26条34】		
使用済燃料プールは，内面をステンレス鋼内張りに施設することにより，燃料体等の取扱中に想定される燃料体等の落下により機能を失うような損傷が生じな い設計とする。	使用済燃料プールは，内面をステンレス鋼内張りに施設することにより，燃料体等の取扱中に想定される燃料体等の落下及び重量物の落下により機能を失うよ らな損傷が生じない設計とする。【26条36】	VI－1－3－3 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済燃料貯蔵槽の機能喪失の防止に関する説明書 3．燃料取扱設備における燃料集合体の落下防止対策	3．重量物の落下防止設計
燃料体等の落下に関しては，模擬燃料体の気中落下試験（以下「落下試験」という。）での最大減肉量を考慮しても使用斎燃料プールの機能が損なわれない厚さ以上のステンレス鋼内張りを施設する設計とする。	然料体等の落下に関しては，模擬燃料体の気中落下詞験（以下「落下試験」という。）での最大減肉量を考慮しても使用㵒然料プールの機能が損なわれない厚さ以上のステンレス鋼内張りを施設する設計とする。な お，使用済燃料輸送容器に使用済燃料を収納する場合 などは，落下試験での落下高さを超えるため，水の浮力 を考慮することにより落下試験時の落下エネルギを下回ることを碓認する。【26条37】	VI－1－3－3 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済燃料貯蔵槽の機能喪失の防止に関する説明書 別紙1 燃料集合体落下時の使用済燃料プールライニング の健全性について	3．重量物の落下下防止設計
	重量物の落下に関しては，使用済燃料プール周辺の状況，現場における作業実績，図面等にて確認すること により，落下時のエネルギを評価し，落下試験時の燃料体等の落下エネルギ以上となる設備等に対しては，以下のとおり適切な落下防止対策を施し，使用済燃料プ ールの機能を維持する設計とする。【26条38】	VI－1－3－3 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済燃料貯蔵槽の機能喪失の防止に関する説明書 4．使用済燃料プール周辺設備等の重量物の落下防止対策	3．重量物の落下防止設計
	使用斎然料プールからの離隔を碓保できる重量物に ついては，使用済然料プールい落下するおそれがない よう，転倒等を仮定しても使用済然料プールに届かな い距離に設置する。また，転倒防止のため床面や壁面一固定する設計とする。【26条39】	運用に関する記載であり，保安規定にて対応	－
	原子炉建屋クレーンは，使用済燃料貯蔵ラック上を使用済燃料輸送容器等重量物を吊った状態で走行及び横行できないように可動範囲を制限するインターロッ クを設ける設計とする。【26条40】	VI－1－3－3 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済燃料販蔵槽の機能啔失の防止に関する説明書 3．燃料取扱設備における燃料集合体の落下防止対策	3．重量物の落下防止設計
	原子炬建屋原子炬棟の屋根を支持する屋根トラス は，基準地震動S s に対する発生応力が終局耐力を超 えず，使用済燃料プール内纪落下しない設計とする。ま た，屋根については鋼鈑（デッキプレート）の上记鉄筋 コンクリート造の床を設けた構造とし，地震による剥落のない構造とする。また，燃料取替床の床面より上部 を構成する壁は，鉄筋コンクリート造の耐震壁であり，燃料取替床の床面より下部の耐震壁と合わせて基準地震動 S s に対して使用斎然料プール内に落下しない設計とする。【26条41】	$\mathrm{VI}-1-3-3$ 然料体等又は重量物の落下による使用済然料貯蔵槽内の燃料体等の破損の防止及び使用済然料貯蔵槽の機能噩失の防止汇関する説明書 4．使用済然料プール周辺設備等の重量物の落下防止対策	3．重量物の落下防止設計
	燃料交換機及び原子炬建屋クレーンは，基準地震動 S s による地震荷重に対し，燃料交換機本体及び原子炬建屋クレーン本体の健全性評価及び転倒落下防止評価を行い，使用济燃料プールいの落下物とならない設計とする。【26条42】	$\mathrm{VI}-1-3-3$ 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済然料貯蔵槽の機能霛失の防止に関する説明書 4．使用济然料プール周边設備等の重量物の落下防止対策 4.3 落下防止対策つ設計	1．共通的に適用される設計 3．重量物の落下防止設計 VI－1－10－4 「原子炉冷却系統施設」の様式－1 4．地震による損傷防止に関する設計 4.9 波及的影響を及ぼすおそれのある施設の耐震評価

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
		VI－2－11－2－8 原子炉建屋クレーンの耐震性に関する計算書 VI－2－11－2－9 燃料交換機の耐震性についての計算書	
	燃料交換機本体及び原子炉建屋クレーン本体の健全性評価においては，想定される使用条件において評価 が保守的になるよう吊荷の条件を考慮し，地震時の各部発生応力が許容応力以下となる設計とする。【26条 43】	VI－1－3－3 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済燃料貯蔵槽の機能喪失の防止に関する説明書 3．燃料取扱設備における燃料集合体の落下防止対策 VI－2－11－2－8 原子炉建屋クレーンの耐震性に関する計算書 VI－2－11－2－9 燃料交換機の耐震性についての計算書	1．共通的に適用される設計 3．重量物の落下防止設計 VI－1－10－4 「原子炉泠却采統施設」の様式－1 4．地震による損傷防止比関する設計 4.9 波及的影響を及ぼすおそれのある施設の耐震評価
	燃料交換機の転倒落下防止評価においては，走行し ール及び横行レール頭部を抱き込む構造をした燃料交換機の脱線防止装置について，想定される使用条件に おいて評価が保守的になるよう吊荷の条件を考慮し，地震時の各部発生応力が許容応力以下となる設計とす る。【26条44】	VI－1－3－3 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済然料貯蔵槽の機能霛失の防止汇関する説明書 4．使用済然料プール周辺設備等の重量物の落下防止対策 VI－2－11－2－9 然料交换機の而震性についての計算書	1．共通的に適用される設計 3．重量物の落下防止設計 VI－1－10－4 「原子炉冷却系統施設」の様式－1 4．地震による損傷防止に関する設計 4.9 波及的影響を及ぼすおそれのある施設の而震評価
	然料交換機の走行レール及び横行レールの健全性評価においては，想定される使用条件において，地震時の発生応力が許容応力以下となる設計とする。【26条45】	VI－1－3－3 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済然料貯蔵槽の機能鋉失の防止に関する説明書 4．使用済燃料プール周辺設借等の重量物の落下防止対策 VI－2－11－2－9 然料交换機の而振性についての計算書	1．共通的に適用される設計 3．重量物の落下防止設計 VI－1－10－4 「原子炉泠却采統施設」の様式－1 4．地震による損傷防止汇関する設計 4.9 波及的影響を及ぼすおそれのある施設の而振評価
	原子炬建屋クレーンの転倒落下防止評価において は，走行方向及び横行方向に浮上り代を設けた横造を した原子炉建屋クレーンの脱線防止ラグについて，想定される使用条件において評価が保守的となるよう吊荷の条件を考慮し，地震時の各部発生応力が許容応力以下となる設計とする。【26条46】	VI－1－3－3 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済燃料貯蔵槽の機能喪失の防止に関する説明書 4．使用済燃料プール周辺設備等の重量物の落下防止対策 VI－2－11－2－8 原子炉建屋クレーンの耐震性に関する計算書	1．共通的に適用される設計 3．重量物の落下防止設計 VI－1－10－4 「原子炉冷却采統施設」の様式－1 4．地震による損傷防止江関する設計 4.9 波及的影響を及ぼすおそれのある施設の耐震評価
	使用済然料プールからの離隔を確保できないその他 の重量物については，基準地震動S sを考慮しても，地震時の各部発生応力が許容応力以下となる設計とする ことで，使用済燃料プールへの落下物とならない設計 とする。【26条50】	VI－1－3－3 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済燃料貯蔵槽の機能喪失の防止に関する説明書 4．使用済燃料プール周辺設備等の重量物の落下防止対策	3．重量物の落下防止設計
使用済然料は，使用斎燃料貯蔵ラックに販蔵するが，使用済燃料貯蔵ラックに収納できないような破損然料体が生じた場合は，使用斎燃料プール水の放射能污染拡大を防でため，使用済然料プール内の制御棒•破損燃料貯蔵ラックに収納できる設計とする。	使用済燃料は，使用済燃料貯蔵ラックに貯蔵するが，使用済燃料貯蔵ラックに収納できないような破損燃料体が生じた場合は，使用済燃料プール水の放射能污染拉大を防ぐため，使用済燃料プール内の制御棒•破損燃料貯蔵ラックに収納できる設計とする。【26条30】	$-$	(変更なし)

基本設計方針		設計結果の記載綯所	様式一1への反映結果
変更前	変更後		
	地震時における使用済燃料プールの健全性確保のた め，使用済燃料プールに設置されている制御棒貯蔵ハ ンガに使用済制御棒を貯蔵する場合は，制御棒貯蔵ハ ンガは6本掛け9列のらち4本6列の使用に制限する運用 とするとともに，その旨を保安規定に定めて管理する。【26条51】	```要目表 VI-1-1-4-2 設備別記載事項の設定根拠汇関する説明書 (核然料物質の取扱施設及び貯蔵施設) <下線部> 運用に関する記載であり,保安規定にて対応```	6．制御棒貯蔵ハンガの容量変更に関する設計 ＜下線部＞
使用斎燃料を貯蔵する乾式キヤスクは保有しない。	使用済燃料を貯蔵する乾式キヤスク（兼用キャスク を点きの）は保有しない。【4条10】【5条65】【6条47】【7条30】【26条48】	－	(記載追加のみ, 変更なし)
2.2 設備の共用 使用済燃料プール及び使用済燃料貯蔵ラックは，第 1 号機と共用することで，第 1 号機の使用済然料を第 2 号機の使用済燃料プールに貯蔵することが可能な設計と している。設備容量の筺囲内で運用することにより，燃料プール浍却浄化系の浍却能力が不足しないように することで，共用により安全性を損なわない設計とす る。	2.2 設備の共用 使用済然料プール及び使用斎然料貯蔵ラックは，第1号機と共用することで，第 1 号機の使用済燃料を第 2 号機の使用済燃料プールに貯蔵することが可能な設計と している。設備容量の筺囲内で運用することにより，燃料プール泠却浄化系の椧却能力が不足しないようにす ることで，共用により安全性を損なわない設計とする。【15条11】	－	(変更なし)
3．計測装置等 使用済燃料プールの水温を計測する装置として燃料貯蔵プール水温度及び燃料プール椧却浄化系ポンプス口温度を設け，計測結果を中央制御室に表示できる設計とする。また，燃料貯蔵プール水温度及び燃料プー ル泠却浄化系ポンプ入口温度は計測結果を記録できる設計とする。	3．計測装置等 使用済燃料プールの水温を計測する装置として燃料貯蔵プール水温度，燃料プール泠却浄化系ポンプ入口温度及び使用済燃料プール水位／温度（ガイドパルス式）を設け，計測結果を中央制御室に表示できる設計と する。また，燃料貯蔵プール水温度，燃料プール冷却浄化系ポンプ入口温度及び使用済燃料プール水位／温度 （ガイドパルス式）は計測結果を記録し，及び保存する ことができる設計とする。【34条32】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－1 使用済燃料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．使用済燃料貯蔵槽の温度及び水位等を監視する装置 の構成 3.2 使用済燃料盱蔵槽の温度及び水位を監視する装置の計測結果の記録及び保存 3．2．1 計測結果の指示又は表示 3．2．2 設計基準対象施設に関する計測結果の記録及び保存 使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置 の検出器の取付箇所を明示した図面 3.1 使用済然料貯蔵設備	4．使用济燃料プール監視の設計
		要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－1 使用斎燃料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書	4．使用斎然料プール監視の設計

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	け，計測結果を中央制御室に表示できる設計とする。ま た，使用済燃料プール水位／温度（ガイドパルス式）は計測結果を記録し，及び保存することができる設計と する。【34条33】	3．使用済燃料貯蔵槽の温度及び水位等を監視する装置 の構成 3.2 使用済燃料貯蔵槽の温度及び水位を監視する装置の計測結果の記録及び保存 3．2．1 計測結果の指示又は表示 3．2．2 設計基準対象施設に関する計測結果の記録及び保存 使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置 の検出器の取付箇所を明示した図面 3.1 使用済燃料貯蔵設備 $<$ 下線部 $>$ 運用に関する記載であり，保安規定にて対応	＜下緌部＞
	燃料的蔵プール水温度，燃料プール椧却浄化系ポン プ入口温度，燃料㟉蔵プール水位，燃料プールライナド レン漏えい及び使用済燃料プール水位／温度（ガイドパ ルス式）は，外部電源が使用できない場合においても非常用所内電源系からの電源供給により，使用済燃料プ ールの水温及び水位を計測することができる設計とす る。【34条34】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び盱蔵施設） VI－1－3－1 使用済然料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．使用済燃料貯蔵槽の温度及び水位等を監視する装置 の構成 3.3 使用済燃料貯蔵槽の温度及び水位等を監視する装置 の電源構成	4．使用斎然料プール監視の設計
使用済然料プールの水温の著しい上昇又は使用済然料プールの水位の著しい低下の場合に，これらを確実 に検出して自動的に中央制御室に警報（使用斎然料プ ール水温高又は使用斎燃料プール水位低）を発信する装置を設けるととも红，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計とする。	使用济燃料プールの水温の著しい上昇又は使用済燃料プールの水位の著しい低下の場合に，これらを確実 に検出して自動的に中央制御室に警報（使用済燃料プ ール水温高又は使用済燃料プール水位低）を発信する装置を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計とする。【47条4】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核料料物質の取扱施設及び貯蔵施設） VI－1－3－1 使用済燃料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びに計測範囲及ひ警報動作範囲に関する説明書 4．使用済燃料貯蔵槽の温度及び水位を監視する装置の計測範囲及ひ警報動作範囲	（基本設計方針に変更はないが，設工認で必要な設計） 4．使用済然料プール監視の設計
	重大事故等時に使用斎然料プールの監視設備とし て，使用済燃料プール水位／温度（ヒートサーモ式），使用斎燃料プール水位／温度（ガイドパルス式）を設け，想定される重大事故等により変動する可能性のある範囲にわたり測定可能な設計とする。また，計測結果は中央制御室に表示し，記録及び保存できる設計とする。 ［69条51】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－1 使用済然料販蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びに計測範囲及ひ警報動作範囲に関する説明書 3．使用済燃料貯蔵槽の温度及び水位等を監視する装置	4．使用斎然料プール監視O設計

基本設計方針		設計結果の記載箘所	様式－1への反映結果
変更前	変更後		
		の構成 3.1 使用済燃料販蔵槽の温度及び水位等を計測する装置 3.2 使用済然料盱蔵槽の温度及び水位を監視する装置の計測結果の記録及び保存 3．2．1 計測結果の指示又は表示 3．2．3 重大事故等対処設備に関する計測結果の記録及び保存 4．使用済燃料貯蔵槽の温度及び水位を監視する装置の計測範囲及び警報動作範囲 使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置 の検出器の取付箇所を明示した図面 3.1 使用済然料貯蔵設備	
	使用済然料プール監視カメラ（個数1）は，想定され る重大事故等時において使用斎然料プールの状態を監視できる設計とする。 また，使用済然料プール監視カメラは，カメラと一体 の泠却装置により洽却することで，耐噮境性向上を図 る設計とする。【69条52】	VI－1－3－1 使用済燃料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に開する説明書並びに計測範囲及ひ警報動作範囲に関する説明書 3．使用済然料野蔵槽の温度及び水位等を監視する装置 の構成 3.1 使用済燃料賏蔵槽温度及び水位等を計測する装置	4．使用斎燃料プール監視の設計
	使用済燃料プール水位／温度（ヒートサーモ式）は，所内常設著電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能であり，使用済然料プール水位／温度（ガイドパルス式）及び使用斎然料プール監視カメラは，常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計と する。【69条53】	VI－1－3－1 使用済燃料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びて計測範囲及ひ警報動作範囲に関する説明書 3．使用済燃料野蔵槽の温度及び水位等を監視する装置 の構成 3.1 使用斎燃料眝蔵槽の温度及び水位等を計測する装置 3.3 使用済粐料賏蔵槽つ温度及び水位等を監視する装置 の電源構成	4．使用斎燃料プール監視の設計
	重大事故等が発生し，当該重大事故等に対処するた めに監視することが必要なパラメータとして，使用済燃料プールの監視に必要なパラメータを計測する装置 を設ける設計とする。【73条2】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－1 使用済燃料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する使用済㬗料貯蔵槽温度及び水位等の計測 2．2．2 重大事故等の対処に必要なパラメータの計測又は推定 使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置 の検出器の取付箇所を明示した図面 3.1 使用済然料貯蔵設備	4．使用济燃料プール監視O設計
	重大事故等が発生し，計測機器（非常用のものを含	要目表	4．使用洨燃料プール監視の設計

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
	む。）の故障により，当該重大事故等に対処するために監視することが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定する ために必要なパラメータを計測する設備を設置する設計とする。【73条1】 重大事故等に対処するために監視することが必要な パラメータは，炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設 の状態を把握するためのパラメータとし，計測する装置は「表1 核燃料物質の取扱施設及び貯蔵施設の主要設備リスト」の「使用済然料貯蔵槽の温度，水位及び漏 えいを監視する装置」に示す重大事故等対処設備の他，使用済燃料プール監視カメラ（個数1）とする。【73条3】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－1 使用済燃料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する使用済然料貯蔵槽温度及び水位等の計測 2．2．2 重大事故等の対処に必要なパラメータの計測又は推定 3．使用済燃料貯蔵槽の温度及び水位等を監視する装置 の構成 3.1 使用済燃料貯蔵槽の温度及び水位等を計測する装置使用済燃料貯蔵槽の温度，水位及び屚えいを監視する装置 の検出器の取付箇所を明示した図面 3.1 使用済然料貯蔵設備	
	炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握 するためのパラメータを計測する装置は，設計基準事故等に想定される変動範囲の最大値を考慮し，適切に対応するための計測範囲を有する設計とするととも に，重大事故等が発生し，当該重大事故等に対处するた めに監視することが必要なパラメータの計測が困難と なった場合に，代替パラメータにより推定ができる設計とする。【73条8】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－1 使用済然料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．使用済燃料貯蔵槽の温度及び水位等を監視する装置 の構成 3.1 使用済燃料販蔵槽の温度及び水位等を計測する装置 4．使用済燃料貯蔵槽の温度及び水位を監視する装置の計測範囲及び警報動作範囲	4．使用斎然料プール監視O設計
	また，重大事故等時に設計基準を超える状態におけ る発電用原子炉施設の状態を把握するための能力（計測可能範囲）を明確にするとともに，パラメータの計測 が困難となった場合の代替パラメータによる推定等，複数のパラメータの中から碓からしさを考慮した優先順位を保安規定に定めて管理する。【73条7】【73条9】	運用に関する記載であり，保安規定にて対応。	\square^{-}
	使用済燃料プールの監視で想定される重大事故等の対応に必要となるパラメータは，計測又は監視できる設計とする。また，計測結果は中央制御室に指示又は表示し，記録できる設計とする。【73条12】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－1 使用済燃料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びに計測範	4．使用斎燃料プール監視の設計

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
		囲及ひ撆報動作範囲に関する説明書 3．使用斎燃料賏蔵槽の温度及び水位等を監視する装置 の構成 3.1 使用済燃料貯蔵槽の温度及び水位等を計測する装置 3.2 使用済料料貯蔵槽の温度及び水位を監視する装置の計測結果の記録及び保存 3．2．1 計測結果の指示又は表示 3．2．3 重大事故等対処設備に関する計測結果の記録及び保存	
	重大事故等の対応に必要となるパラメータは，安全 パラメータ表示システム（SPDS）のらちSPDS伝送装置に て電磁的に記録，保存し，電源霛失により保存した記録 が失われないとともに帳票が出力できる設計とする。 また，記録は必要な容量を保存できる設計とする。【73条131	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核然料物質の取扱施設及び貯蔵施設） VI－1－3－1 使用済燃料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．使用済燃料貯蔵槽の温度及び水位等を監視する装置 の構成 3.1 使用済燃料販蔵槽の温度及び水位等を計測する装置 3.2 使用済然料貯蔵槽の温度及び水位を監視する装置の計測結果の記録及び保存 3．2．1 計測結果の指示又は表示 3．2．3 重大事故等対処設備に関する計測結果の記録及び保存	4．使用济燃料プール監視の設計
	炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握 するためのパラメータを計測する装置の電源は，非常用交流電源設備又は非常用直流電源設備の喪失等によ り計器電源が震失した場合において，代替電源設備と して常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用できる設計とす る。【73条10】	VI－1－3－1 使用済然料貯蔵槽の淐度，水位及び漏えいを監視する装置の構成に関する説明書並びに計測範困及び警報動作蛖囲に開する説明書 3．使用済燃料野蔵槽の温度及び水位等を監視する装置 の構成 3.3 使用済粐料賏蔵槽つ温度及び水位等を監視する装置 の電源構成	4．使用济燃料プール監視の設計
	また，代替電源設備が䨤失し計測に必要な計器電源 が衰失した場合，特に重要なパラメータとして，炉心損傷防止対策及び格納容器破損防止対策等を成功させる ために必要な発電用原子炉施設の状態を把握するため のパラメータを計測する装置については，温度及び水位に係るものについて，乾電池を電源とした可搬型計測器（原子炉圧力容器及び原子炉格納容器内の温度，圧力，水位，流量（注水量）の計測用として測定時の故障 を想定した予備1個を含む1セット26個（予備26個（緊急時対策建屋に保管）））（計測制御系統施設のらち「2．4電源喪失時の計測」の設備を核燃料物質の取扱施設及	VI－1－3－1 使用済燃料貯蔵槽の温度，水位及び屚えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．使用済燃料野蔵槽の温度及び水位等を監視する装置 の構成 3.1 使用斎燃料貯蔵槽の温度及び水位等を計測する装置 4．使用済然料時蔵槽の温度及び水位を監視する装置の計測笔囲及及警報動作筙囲	4．使用斎燃料プール監視の設計

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	び貯蔵施設のらち「3．計測装置等」の設備として兼用）により計測できる設計とし，これらを保管する設計 とする。 なお，可搬型計測器による計測においては，計測対象の設定を行う際の考え方として，同一の物理量について，複数のパラメータがある場合は，いずれか 1 つの適切な パラメータを選定し計測又は監視するものとする。【 73条11】	$<$ 下線部＞ 運用に関する記載であり，保安規定にて対応	＜下線部＞
4．使用済燃料貯蔵槽冷却浄化設備 4.1 燃料プール泠却浄化系 使用済燃料プールは，燃料プール冷却浄化系ポンプ （第1，2号機共用（以下同じ。）），燃料プール冷却浄化系熱交換器（第1，2号機共用（以下同じ。）），燃料プー ル泠却浄化系ろ過脱塩器（第1，2号機共用（以下同じ。））等で構成する燃料プール冷却浄化系を設け，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に おいて，使用済燃料からの崩壊熱を除去するとともに，使用済燃料プール水を浄化できる設計とする。 また，補給水ラインを設け，使用済燃料プール水の補給が可能な設計とする。	4．使用済燃料貯蔵槽冷却浄化設備 4．1 燃料プール泠却浄化系 使用済燃料プールは，燃料プール泠却浄化系ポンプ （設計基準対象施設としてのみ第 1,2 号機共用（以下同 じ。）），燃料プール泠却浄化系熱交換器（設計基準対象施設としてのみ第1，2号機共用（以下同じ。）），燃料プ ール泠却浄化系ろ過脱塩器（第1，2号機共用（以下同 じ。））等で構成する燃料プール冷却浄化系を設け，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，使用済燃料からの崩壊熱を除去するとと もに，使用済燃料プール水を浄化できる設計とする。 また，補給水ラインを設け，使用済燃料プール水の補給が可能な設計とする。【26条25】	要目表 核燃料物質の取扱施設及び貯蔵施設に係る系統図 3．2．1 燃料プール冷却浄化系	（基本設計方針に変更はないが，設工認で必要な設計） 2．核燃料物質の取扱施設及び盱蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2.3 機能を兼用する機器を含む核燃料物質の取扱施設及 び貯蔵施設の系統図に関する取りまとめ 5．使用済燃料貯蔵槽冷却浄化設備の設計 5.1 燃料プール冷却浄化系の設計
さらに，全灲心燃料を使用済燃料プールに取り出し た場合や燃料プール泠却浄化系での使用済燃料プール の冷却ができない場合は，残留熱除去系を用いて使用済燃料からの崩壊熱を除去できる設計とする。	さらに，全炉心燃料を使用済燃料プールに取り出し た場合や燃料プール冷却浄化系での使用済燃料プール の泠却ができない場合は，残留熱除去系を用いて使用済燃料からの崩壊熱を除去できる設計とする。【26条 26】	－	（変更なし）
燃料プール泠却浄化系熱交換器で除去した熱は，原子炉補機泠却水系（原子炉補機泠却海水系を含む。）を経て，最終ヒートシンクである海へ輸送できる設計と する。	燃料プール泠却浄化系熱交換器で除去した熱は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）を経て，最終ヒートシンクである海へ輸送できる設計と する。【26条27】	－	（変更なし）
	使用済燃料プールから発生する水蒸気による悪影響 を防止するための重大事故等対処設備として，燃料プ ール泠却浄化系を設ける設計とする。【69条54】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） 核燃料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 3．2．1 燃料プール冷却浄化系 核燃料物質の取扱施設及び盱蔵施設に係る系統図 3．2．1 燃料プール冷却浄化系 構造図 3．2．1 燃料プール冷却浄化系	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.1 燃料プール冷却浄化系の設計
	燃料プール泠却浄化系は，使用済燃料プールの水を	要目表	5．使用済燃料貯蔵槽冷却浄化設備の設計

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	燃料プール泠却浄化系ポンプにより燃料プール冷却浄化系熱交換器等を経由して循擐させることで，使用済燃料プールを椧却できる設計とする。【69条55】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核然料物質の取扱施設及び貯蔵施設） 核然料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 3．2．1 燃料プール泠却浄化系 核燃料物質の取扱施設及び貯蔵施設に係る系統図 3．2．1 燃料プール冷却浄化系 構造図 3．2．1 燃料プール冷却浄化系	5.1 燃料プール浍却浄化系の設計
	燃料プール冷却浄化系は，非常用交流電源設備及び原子炬補機冷却水系（原子炬補機冷却海水系を含む。） が機能喪失した場合でも，常設代替交流電源設備及び原子炉補機代替泠却水系を用いて，使用済燃料プール を除熱できる設計とする。【69条56】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－4 使用済燃料貯蔵槽の冷却能力に関する説明書 3．評価	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.1 燃料プール冷却浄化系の設計
	燃料プール泠却浄化系で使用する原子炻補機代替椧却水系は，原子炬補機代替冷却水系熱交換器ユニット を原子炉補機冷却水系に接続し，大容量送水ポンプ（夕 イプI）により原子炉補機代替冷却水系熱交換器ユニ トに海水を送水することで，燃料プール泠却浄化系熱交換器で除去した熱を最終的な熱の逃がし場である海へ輸送できる設計とする。【69条57】		5．使用済燃料貯蔵槽冷却浄化設備の設計 5.1 燃料プール泠却浄化系の設計 VI－1－10－4 「原子炉冷却系統施設」の様式－1 18．原子炉冷却系統施設の兼用に関する設計 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に 関する設計
	燃料プール泠却浄化系の流路として，設計基準対象施設である使用済然料プール，使用済然料貯蔵ラック及び制御棒•破損燃料貯蔵ラックを重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【69条62】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核然料物質の取扱施設及び貯蔵施設）	5．使用済然料貯蔵槽冷却浄化設備の設計 5.1 燃料プール泠却浄化系の設計
	4.2 燃料プール代替注水系 使用斎燃料プールの泠却機能又は注水機能が霛失 し，又は使用済燃料プールからの水の漏えいその他の要因により当該使用斎燃料プールの水位が低下した場合において使用済燃料プール内の燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するために必要な重大事故等対処設備として，燃料プール代替注水系を設 ける設計とする。【69条1】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－2 燃料取扱設備，新燃料貯蔵設備及び使用済燃料貯蔵設備の核燃料物質が臨界に達しないことに関する説明書 3．使用済然料プール水漏えい時の未臨界性評価 VI－1－3－4 使用済燃料貯蔵槽の泠却能力に関する説明書 3．評価 VI－1－3－5 使用済燃料貯蔵槽の水深の遮蔽能力に関する	5．使用済燃料貯蔵慒冷却浄化設備の設計 5.2 燃料プール代替注水系の設計

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
		説明書 3．使用済燃料プールにおける水遮蔽の評価	
		VI－1－3－5 使用済燃料貯蔵槽の水深の遮蔽能力に関する説明書 2．基本方針 3．使用済燃料プールにおける水遮蔽の評価 5．遮蔽計算 6．サイフォンブレーク孔のの詳細設計方針	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計
	サイフォンブレーク孔は，耐震性も含めて機器，弁類等の故障及び誤操作等によりその機能を霛失すること のない設計とする。【69条4】	$\mathrm{VI}-1-3-5$ 使用済燃料販蔵槽の水深の遮蔽能力に関する説明書 6．サイフォンブレーク孔の詳細設計方針	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計
	4．2．1 燃料プール代替注水系（常設配管）による使用済燃料プールへの注水 残留熱除去系（燃料プール水の冷却）及び燃料プール泠却浄化系の有する使用済燃料プールの泠却機能喪失若しくは残留熱除去系ポンプによる使用済燃料プール への補給機能が喪失し，又は使用済燃料プールに接続 する配管の破損等により使用済燃料プール水の小規模 な漏えいにより使用済燃料プールの水位が低下した場合に，使用済燃料プール内の燃料体等を泠却し，放射線 を遮蔽し，及び臨界を防止するための重大事故等対処設備として，燃料プール代替注水系（常設配管）を設け る設計とする。【69条5】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核然料物質の取扱施設及び貯蔵施設） VI－1－3－4 使用済燃料貯蔵槽の冷却能力に関する説明書 2．基本方針 3．評価 核燃料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 3．2．2 燃料プール代替注水系 核粠料物質の取扱施設及び貯蔵施設に係る系統図 3．2．2 燃料プール代替注水系 構造図 3．2．2 燃料プール代替注水系	2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2.3 機能を兼用する機器を含む核燃料物質の取扱施設及 び盱蔵施設の系統図に関する取りまとめ 5．使用済燃料販蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計
	燃料プール代替注水系（常設配管）は，大容量送水ポ ンプ（タイプI）により，代替淡水源の水を燃料プール代替注水系配管等を経由して使用斎燃料プールへ注水 することで，使用済燃料プールの水位を維持できる設計とする。【69条6】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核然料物質の取扱施設及び貯蔵施設） VI－1－3－4 使用済燃料貯蔵槽の冷却能力に関する説明書 3．評価 核燃料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 3．2．2 燃料プール代替注水系 核燃料物質の取扱施設及び貯蔵施設に係る系統図 3．2．2 燃料プール代替注水奚	5．使用済然料貯蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計

基本設計方針		設計結果の記載笽所	様式－1への反映結果
変更前	変更後		
		構造図 3．2．2 燃料プール代替注水系	
	燃料プール代替注水系（常設配管）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要とな る水の供給設備である大容量送水ポンプ（タイプI）に より海を利用できる設計とする。【69条8】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計
	また，使用済然料プールは，使用済燃料貯蔵ラックの形状を維持した状態において，燃料プール代替注水系 （常設配管）による给却及び水位碓保により使用済燃料プールの機能を維持し，実効増倍率が最も高くなる冠水状態においても実効增倍率は不碓定性を含めて 0．95以下で臨界を防止できる設計とする。【69条7］	VI－1－3－2 燃料取扱設備，新燃料販蔵設備及び使用済然料貯蔵設備の核燃料物質が臨界に達しないことに関する説明書 3．使用済燃料プール水漏えい時の未臨界性評価	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計
	大容量送水ポンプ（タイプI）は，空冷式のディーゼ ルエンジンにより駆動できる設計とする。【69条9】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核然料物質の取扱施設及び貯蔵施設） 構造図 3．2．2 燃料プール代替注水系	2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	大容量送水ポンプ（タイプI）は，想定される重大事故等時において，使用済燃料プール内の燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するために必要 な注水流量を有する設計とする。【69条10】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） 構造図 3．2．2 燃料プール代替注水系	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計
	燃料プール代替注水系（常設配管）に使用するホース の敷設等は，ホース延長回収車（台数 4 （予備1））によ り行ら設計とする。【69条12】	$\mathrm{VI}-1-1-4$－別添 2 設定根拠に関する説明書（別添）	2．核然料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	なお，ホース延長回収車は，核燃料物質の取扱施設及 び貯蔵施設のらち「4．3 然料プールスプレイ系」，「4．4放射性物質抁散抑制系」，原子炉冷却采統施設のうち 「4．2 原子炉格納容器フィルタベント系」，「5．6 低圧代替注水系」，「5．10．2 代替水源移送系」，「7．3 原子炉補機代替冷却水系」，原子炉格納施設のらち「3．2．2原子炉格納容器下部注水系」，「3．2．3 原子炉格納容器代替スプレイ椧却系」，「3．2．6 低圧代替注水系」， 「3．3．4 放射性物質拡散抑制系」，「3．3．5 放射性物質昖散抑制系（航空機燃料火災への泡消火）」，「3．3．7原子炉格納容器フィルタベント系」，「3．5．1 原子炉格納容器フィルタベント系」の設備と兼用する設計とす る。【69条13】	VI－1－1－4－別添 2 設定根拠に関する説明書（別添）	2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための采統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
	燃料プール代替注水系（常設配管）の流路として，設計基準対象施設である使用済燃料プール，使用済燃料貯蔵ラック及び制御棒•破損燃料貯蔵ラックを重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行ら。 ［69条14】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計
	4． 2.2 燃料プール代替注水系（可搬型）による使用済燃料プールへの注水 残留熱除去系（然料プール水の洽却）及び燃料プール泠却浄化系の有する使用済燃料プールの泠却機能喪失若しくは残留熱除去系ポンプによる使用済燃料プール への補給機能が震失し，又は使用済燃料プールに接続 する配管の破損等により使用済燃料プール水の小規模 な漏えいにより使用済燃料プールの水位が低下した場合に，使用济然料プール内のの燃料体等を浍却し，放射線 を遮蔽し，及び臨界を防止するための重大事故等対処設備として，然料プール代替注水系（可搬型）を設ける設計とする。【69条16】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－4 使用済燃料販蔵槽の冷却能力に関する説明書 3．評価 核燃料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 3．2．2 燃料プール代替注水系 核燃料物質の取扱施設及び貯蔵施設に係る系統図 3．2．2 燃料プール代替注水系 構造図 3．2．2 燃料プール代替注水系	2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備こ係る設計 2.3 機能を兼用する機器を含む核燃料物質の取扱施設及 び貯蔵施設の系統図に関する取りまとめ 5．使用済然料販蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計
	燃料プール代替注水系（可搬型）は，大容量送水ポン プ（タイプI）により代替淡水源の水をホース等を経由 して使用済然料プールへ注水することにより，使用済燃料プールの水位を維持できる設計とする。【69条17】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－4 使用済燃料貯蔵槽の冷却能力に関する説明書 3．評価 核然料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 3．2．2 燃料プール代替注水系 核燃料物質の取扱施設及び貯蔵施設に係る系統図 3．2．2 燃料プール代替注水系 構造図 3．2．2 燃料プール代替注水系	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計
	燃料プール代替注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）によ り海を利用できる設計とする。【69条19】	$\mathrm{VI}-1-1-4-2$ 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計
	また，使用斎然料プールは，使用斎然料貯蔵ラックの	$\mathrm{VI}-1-3-2$ 燃料取报設備，新然料賏蔵設備及び使用消然料	5．使用斎然料規蔵㯾冷却浄化設備の設計

基本設計方針		設計結果の記載箇所	様式一1 への反映結果
変更前	変更後		
	形状を維持した状態において，燃料プール代替注水系 （可搬型）による洽却及び水位碓保により使用済燃料 プールの機能を維持し，実効増倍率が最も高くなる冠水状態においても実効増倍率は不碓定性を含めて0．95以下で臨界を防止できる設計とする。【69条18】	貯蔵設備の核燃料物質が臨界に達しないことに関する説明書 2．基本方針 3．使用済然料プール水漏えい時の未臨界性評価	5.2 燃料プール代替注水系の設計
	大容量送水ポンプ（タイプI）は，空泠式のディーゼ ルエンジンにより駆動できる設計とする。【69条20】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核然料物質の取扱施設及び貯蔵施設） 構造図 3．2．2 燃料プール代替注水系	2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	大容量送水ポンプ（タイプ I ）は，想定される重大事故等時において，使用済燃料プール内の燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するために必要 な注水流量を有する設計とする。【69条21】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核然料物質の取扱施設及び貯蔵施設）	5．使用済然料貯蔵槽冷却诤化設備O設計 5.2 燃料プール代替注水系の設計
	燃料プール代替注水系（可搬型）に使用するホースの敷設等は，ホース延長回収車（台数 4 （予備 1 ））により行ら設計とする。【69条23】	VI－1－1－4－別添 2 設定根扰に開する説明書（別添）	2．核然料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	なお，ホース延長回収車は，核燃料物質の取扱施設及 び貯蔵施設のらち「4．3 燃料プールスプレイ系」，「4．4放射性物質拡散抑制系」，原子炉冷却系統施設のらち 「4．2 原子炉格納容器フィルタベント系」，「5．6 低圧代替注水系」，「5．10．2 代替水源移送系」，「7．3 原子炉補機代替冷却水系」，原子炉格納施設のらち「3．2．2原子炉格納容器下部注水系」，「3．2．3 原子炉格納容器代替スプレイ泠却系」，「3．2．6 低圧代替注水系」， 「3．3．4 放射性物質拡散抑制系」，「3．3．5 放射性物質拡散抑制系（航空機燃料火災への泡消火）」，「3．3．7原子炉格納容器フィルタベント系」，「3．5．1 原子炉格納容器フィルタベント系」の設備と兼用する設計とす る。【69条24】	VI－1－1－4－別添 2 設定根扰に関する説明書（別添）	2．核然料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備こ係る設計
	燃料プール代替注水系（可搬型）の流路として，設計基準対象施設である使用済燃料プール，使用済燃料貯蔵ラック及び制御棒•破損燃料貯藏ラックを重大事故等対処設備として使用することから，流路に係る機能 について重大事故等対処設備としての設計を行う。【69条251	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.2 燃料プール代替注水系の設計
	4．3燃料プールスプレイ系使用济燃料プールからの大量の水の漏えいその他の要因により使用済燃料プールの水位が異常に低下した場合において，使用済燃料プール内の燃料体等の著しい損傷の進行を緩和し，及び臨界を防止するために必要	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－2 燃料取扱設備，新燃料貯蔵設備及び使用済然料貯蔵設備の核燃料物質が臨界に達しないことに	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.3 燃料プールスプレイ系の設計

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
	な重大事故等対処設備として燃料プールスプレイ系を設ける設計とする。【69条2】	関する説明書 3．使用済燃料プール水漏えい時の未臨界性評価 VI－1－3－4 使用済然料貯蔵槽の泠却能力に関する説明書 3．評価 VI－1－3－5 使用済燃料貯蔵槽の水深の遮蔽能力に関する説明書 3．使用済然料プールにおける水遮蔽の評価	
	4．3．1 燃料プールスプレイ系（常設配管）による使用済然料プールへのスプレィ 使用済然料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷を緩和するとともに，燃料損傷時には使用済燃料プール内の燃料体等の上部全面にスプレイすること によりできる限り環境への放射性物質の放出を低減す るための重大事故等対処設備として，燃料プールスプ レイ系（常設配管）を設ける設計とする。【69条27】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－4 使用済燃料貯蔵槽の泠却能力に関する説明書 3．評価 核燃料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 3．2．3 燃料プールスプレイ系 核燃料物質の取扱施設及び盱蔵施設に係る系統図 3．2．3 燃料プールスプレイ系 構造図 3．2．3 燃料プールスプレイ系	5．使用済然料貯蔵槽冷却浄化設備の設計 5.3 燃料プールスプレイ系の設計
	燃料プールスプレイ系（常設配管）は，大容量送水ポ ンプ（タイプI）により，代替淡水源の水を燃料プール スプレイ采配管等を経由してスプレイノズルから使用済燃料プール内の燃料体等に直接スプレイすること で，燃料損傷を緩和するとともに，環境への放射性物質 の放出をできる限り低減できるよう，使用済燃料プー ル内燃料体等の上部全面に向けてスプレイレ，使用済燃料プール内燃料体等からの崩壊熱による蒸散量を上回る量をスプレイできる設計とする。【69条28】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－4 使用済燃料貯蔵槽の冷却能力に関する説明書 3．評価 核燃料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 3．2．3 燃料プールスプレイ系 核燃料物質の取扱施設及び貯蔵施設に係る系統図 3．2．3 燃料プールスプレイ系 構造図 3．2．3 燃料プールスプレイ系	5．使用済然料貯蔵槽冷却浄化設備の設計 5.3 燃料プールスプレイ系の設計
	使用済然料プールは，燃料プールスプレイ系（常設配管）にて，使用済燃料貯蔵ラック及び燃料体等を洽却 し，臨界にならないように配慮したラック形状及び燃料配置において，いかなる一様な水密度であっても実	VI－1－3－2 燃料取扱設備，新然料貯蔵設備及び使用済燃料貯蔵設備の核燃料物質が臨界に達しないことに関する説明書 3．使用済燃料プール水漏えい時の未臨界性評価	5．使用消然料館蔵慒冷却浄化設備の設計 5.2 燃料プール代替注水系の設計 5.3 燃料プールスプレイ系の設計

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
	効増倍率は不確定性を含めて 0.95 以下で臨界を防止で きる設計とする。【69条29】	VI－1－3－4 使用済然料貯蔵槽の泠却能力に関する説明書 3．評価	
	燃料プールスプレイ系（常設配管）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要とな る水の供給設備である大容量送水ポンプ（タイプI）に より海を利用できる設計とする。【69条30】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.3 燃料プールスプレイ系の設計
	大容量送水ポンプ（タイプ I）は，空泠式のディーゼ ルエンジンにより駆動できる設計とする。【69条31】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） 構造図 3．2．2 燃料プール代替注水	2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含き設借に係る設計
	燃料プールスプレイ系（常設配管）に使用するホース の敷設等は，ホース延長回収車（台数 4 （予備1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2燃料プー ル代替注水系」の設備を核燃料物質の取扱施設及び貯蔵揓設のらち「4．3 燃料プールスプレイ系」の設備と して兼用）により行う設計とする。【69条33】	$\mathrm{VI}-1-1-4$－別添 2 設定根扰に関する説明書（別添）	2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	燃料プールスプレイ系（常設配管）の流路として，設計基準対象施設である使用済燃料プール，使用済燃料貯蔵ラック及び制御棒•破損燃料貯蔵ラックを重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【69条34】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.3 燃料プールスプレイ系の設計
	4．3．2 燃料プールスプレイ系（可搬型）による使用済燃料プールーのスプレィ 使用済然料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷を緩和するとともに，燃料損傷時には使用斎燃料プール内の燃料体等の上部全面にスプレイすること によりできる限り環境への放射性物質の放出を低減す るための重大事故等対処設備として，然料プールスプ レイ系（可搬型）を設ける設計とする。【69条36】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－4 使用済燃料貯蔵慒の泠却能力に関する説明書 3．評価 核燃料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 3．2．3 燃料プールスプレイ系 核燃料物質の取扱施設及び貯蔵施設に係る系統図 3．2．3 燃料プールスプレイ系 構造図 3．2．3 燃料プールスプレイ系	5．使用済然料貯蔵槽冷却浄化設備の設計 5.3 燃料プールスプレイ系の設計
	燃料プールスプレイ系（可搬型）は，大容量送水ポン プ（タイプI）により，代替淡水源の水をホース等を経	要目表	5．使用消燃料貯蔵槽泠却浄化設備の設計 5.3 燃料プールスプレイ系の設計

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
	由してスプレイノズルから使用済燃料プール内の燃料体等に直接スプレイすることで，燃料損傷を緩和する とともに，環境への放射性物質の放出をできる限り低減できるよう使用済燃料プール内燃料体等の上部全面 に向けてスプレイし，使用済然料プール内然料体等か らの崩壊熱による蒸散量を上回る量をスプレイできる設計とする。【69条37】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－3－4 使用済燃料貯蔵槽の泠却能力に関する説明書 3．評価 核燃料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 3．2．3 燃料プールスプレイ系 核燃料物質の取扱施設及び盱蔵施設に係る系統図 3．2．3 燃料プールスプレイ系 構造図 3．2．3 燃料プールスプレイ系	
	使用済然料プールは，燃料プールスプレイ系（可搬型）にて，使用済燃料貯蔵ラック及び燃料体等を洽却 し，臨界にならないように配慮したラック形状及び燃料配置において，いかなる一様な水密度であっても実効増倍率は不碓定性を含めて 0.95 以下で臨界を防止で きる設計とする。【69条38】	 3．評価 VI－1－3－2 燃料取扱設備，新然料賏蔵設備及び使用済燃料貯蔵設備の核燃料物質が臨界に達しないことに関する説明書 3．使用済然料プール水漏えい時の未缶界性評価	5．使用済然料貯蔵槽洽却浄化設備の設計 5.2 燃料プール代替注水系の設計 5.3 燃料プールスプレイ系の設計
	燃料プールスプレイ系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）によ り海を利用できる設計とする。【69条39】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	5．使用済然料貯蔵槽冷却浄化設備の設計 5.3 燃料プールスプレイ系の設計
	大容量送水ポンプ（タイプI）は，空冷式のディーゼ ルエンジンにより駆動できる設計とする。【69条40】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） 構造図 3．2．2 燃料プール代替注水	2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	燃料プールスプレイ系（可搬型）に使用するホースの敷設等は，ホース延長回収車（台数 4 （予備1）（核燃料物質の取扱施設及び盱蔵施設のらち「4．2燃料プール代替注水系」の設備を核燃料物質の取报施設及び貯蔵施設のらち「4．3 燃料プールスプレイ系」の設備とし て兼用）により行ら設計とする。【69条42】	$\mathrm{VI}-1-1-4$－別添 2 設定根拠に関する説明書（別添）	2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備こ係る設計
	然料プールスプレイ系（可搬型）の流路として，設計基準対象施設である使用済燃料プール，使用済燃料貯蔵ラック及び制御棒•破損燃料貯藏ラックを重大事故等対処設備として使用することから，流路に係る機能 について重大事故等対処設備としての設計を行ら。【69条431	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び盱蔵施設）	5．使用済燃料貯蔵槽冷却浄化設備の設計 5.3 燃料プールスプレイ系の設計

基本設計方針		設計結果の記載匴所	様式一1への反映結果
変更前	変更後		
	海洋への放射性物質の拡散を抑制するための重大事故等対処設備として，海洋への拡散抑制設備（シルトフ ェンス）は，シルトフェンス（原子炉格納施設のらち「3．3．4 放射性物質拡散抑制系」の設備を核燃料物質 の取扱施設及び貯蔵施設のらち「4．4 放射性物質拡散抑制系」の設備として兼用）で構成する。シルトフェン スは，污染水が発電所から海洋に流出する4箇所（南側排水路排水桝，タービン補機放水ピット，北側排水路排水桝及び取水口）に設置できる設計とする。【70条7】	$\mathrm{VI}-1-1-4$－別添 2 設定根扰に関する説明書（別添） VI－1－8－1 原子炉格納施設の設計条件に開する説明書 3．2．8 原子炉格納容器外面への放水設備等	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	シルトフェンスは，海洋への放射性物質の拡散を抑制するため，設置場所に応じた高さ及び幅を有する設計とする。必要数は，各設置場所に必要な幅に対してシ ルトフェンスを二重に設置することとし，南側排水路排水栁に1本1組（高さ約5m，幅約5m）として計2本，夕 して計 2 本，北側排水路排水桝にて1本1組（高さ約 6 m ，幅約11m）として計 2 本及び取水口に 3 本 1 組（1本あたり高 さ約12m，幅約20m）として計6本の合計12本使用する設計とする。また，予備については，破損時のバックアッ プとして，各設置場所に対して1組の合計6本を保管す る。【70条8】	VI－1－1－4－別添2設定根拠に関する説明書（別添） $\mathrm{VI}-1-8-1$ 原子炇格納施設の設計条件に関する説明書 3．2．8 原子炉格納容器外面への放水設備等	VI－1－10－8 「原子炬格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設備に係る設計
4.2 使用济燃料プールの水質維持 使用済燃料プールは，使用済燃料からの崩壊熱を燃料プール泠却浄化系熱交換器で除去して使用済燃料プ一ル水を泠却するとともに，燃料体の被覆が著しく腐食するおそれがないよう，燃料プール浍却浄化系ろ過脱塩器で使用済燃料プール水をろ過脱塩して，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピット水の純度，透明度を維持できる設計とする。	4.5 使用斎燃料プールの水質維持 使用济燃料プールは，使用済燃料からの崩塓熱を燃料プール浍却浄化系熱交換器で除去して使用済燃料プ ール水を洽却するとともに，燃料体の被覆が著しく腐食するおそれがないよう，燃料プール泠却浄化系ろ過脱塩器で使用済燃料プール水をろ過脱塩して，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器 ピット水の純度，透明度を維持できる設計とする。【26条35	－	(変更なし)
4.3 使用済燃料プール接続配管 使用済燃料プール水の漏えいを防止するため，使用済燃料プールには排水口を設けない設計とし，使用済燃料プールに接続された配管には逆止弁を設け，配管 が破損しても，サイフォン効果により，使用済燃料プ ール水が継続的に流出しない設計とする。	4.6 使用済燃料プール接続配管 使用済燃料プール水の漏えいを防止するため，使用済燃料プールには排水口を設けない設計とし，使用済燃料プールに接続された配管には逆止弁を設け，配管 が破損しても，サイフォン効果により，使用済燃料プー ル水が継続的に流出しない設計とする。【26条32】	－	(変更なし)
	4.7 重大事故等の収束に必要となる水源代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽 （No．2）を設ける設計とする。【71条2】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	2．核然料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	また，淡水が枯渴した場合に，海を水源として利用で きる設計とする。【71条3】	$\mathrm{VI}-1-1-4-3$ 設備別記載事項の設定根拠に関する説明書 （原子炉冷却采統施設）	VI－1－10－4 「原子炬洽却系統施設」の様式一1 18．原子炉冷却采統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認

基本設計方針		設計結果の記載箘所	様式－1～の反映結果
変更前	変更後		
			18.2 機能を兼用する機器を含を設備に係る設計
	代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽 （No．2）は，想定される重大事故等時において，使用済燃料プールの泠却又は注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である燃料プー ル代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料プールスプレイ系（常設配管）及び燃料プ ールスプレイ系（可搬型）の水源として使用できる設計 とする。【71条9】	$\mathrm{VI}-1-1-4-2$ 設備別記載事項の設定根拠に関する説明書 （核撚料物質の取扱施設及び貯蔵施設）	2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための采統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備こ係る設計
	海は，想定される重大事故等時において，淡水が枯渴 した場合に，使用斎然料プールの冷却又は注水に使用 する設計基漼事故対処設備が機能喪失した場合の代替手段である燃料プール代替注水系（常設配管），燃料プ一ル代替注水系（可搬型），燃料プールスプレイ系（常設配管）及び然料プールスプレイ系（可搬型）の水源と して，さらに，放水設備（大気への拡散抑制設備）の水源として利用できる設計とする。【71条10】	$\mathrm{VI}-1-1-4-2$ 設供別記載事項の設定根拠に関する説明書 （校然料物質の取扱施設及び貯藏施設） $\mathrm{VI}-1-1-4-3$ 設供別記載事項の設定根拠化関する説明書 （原子炉泠却采統施設）	2．核然料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－4 「原子炉冷却系統施設」の様式－1 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計
4.4 設備の共用 燃料プール泠却浄化系設備及び燃料プール泠却浄化系燃料プール注入逆止弁（G41－F019）（第1，2号機共用）は，第1号機と共用することで，第 1 号機の使用済燃料を第 2 号機の使用済燃料プールに貯蔵することが可能な設計としている。設備容量の範囲内で運用する ことにより，燃料プール泠却浄化系の泠却能力が不足 しないようにすることで，共用により安全性を損なわ ない設計とする。	4.8 設備の共用 燃料プール泠却浄化系設備及び燃料プール泠却浄化系燃料プール注入逆止弁（G41－F019）（設計基雉対象施設としてのぬ第 1 ， 2 号機共用）は，第 1 号機と共用する ことで，第 1 号機の使用済燃料を第 2 号機の使用済燃料 プールに貯蔵することが可能な設計としている。設備容量の範囲内で運用することにより，燃料プール泠却浄化系の泠却能力が不足しないようにすることで，共用により安全性を損なわない設計とする。【15条11】	－	（記載追加のみ，変更なし）
5．主要対象設備 核燃料物質の取扱施設及び貯蔵施設の対象となる主要な設備について，「表1 核然料物質の取扱施設及び貯蔵施設の主要設備リスト」に示す。	5．主要対象設備 核燃料物質の取扱施設及び貯蔵施設の対象となる主要な設備について，「表1 核然料物質の取扱施設及び貯蔵施設の主要設備リスト」に示す。 本施設の設備として兼用する場合に主要設備リスト に記載されない設備については，「表2 核燃料物質の取扱施設及び貯蔵施設の兼用設備リスト」に示す。	－	（「主要設備リスト」による）

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－510－3 基本設計方針から設工認添付書類及び様式－ 1 への展開表 （原子炉冷却系統施設）

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【原子炉冷却系統施設（蒸気タービンを除く。）】

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	(用語の定義のみ)
第1章 共通項目 1．地盤等	第1章 共通項目 1．地盤等 1.1 地盤 設計基準対象施設のうち，地震の発生によって生じ るおそれがあるその安全機能の喪失に起因する放射線 による公衆への影響の程度が特に大きい施設（以下「耐震重要施設」という。）の建物•構築物，津波防護機能 を有する施設（以下「津波防護施設」という。），浸水防止機能を有する設備（以下「浸水防止設備」という。）及び敷地における津波監視機能を有する設備（以下「津波監視設備」という。）並びに浸水防止設備又は津波監視設備が設置された建物•構築物について，若しくは，重大事故等対処施設のうち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）については，自重や運転時の荷重等に加え，そ の供用中に大きな影響を及ぼすおそれがある地震動 （設置（変更）許可を受けた基準地震動S s（以下「基準地震動S s 」という。））による地震力が作用した場合においても，接地圧に対する十分な支持力を有する地盤に設置する。 また，上記に加え，基準地震動 S s による地震力が作用することによって弱面上のずれが発生しない地盤 として，設置（変更）許可を受けた地盤に設置する。 【4条1】【49条1】	VI－2－1－1 耐震設計の基本方針 VI－2－1－3 地盤の支持性能に係る基本方針 2．基本方針 4．極限支持力	適合性碓認対象設備に対する要求事項の明確化
	設置（変更）許可を受けた地盤のらち改良地盤につ いては，設置（変更）許可後の施工を含むことを踏ま え，所定の物性値が確保されていることを施工時の品質管理で確認する。【4条1】【49条1】	－	（設計対象外）
	ここで，建物•構築物とは，建物，構築物及び土木構造物（屋外重要土木構造物及びその他の土木構造物） の総称とする。 また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系及び設備の間接支持機能又は非常時にお ける海水の通水機能を求められる土木構造物をいう。 【4条2】	VI－2－1－1 耐震設計の基本方針 VI－2－1－3 地盤の支持性能に係る基本方針 2．基本方針 4．極限支持力	適合性確認対象設備に対する要求事項の明確化
	設計基準対象施設のらち，耐震重要施設以外の建物•構築物については，自重や運転時の荷重等に加え，地震により発生するおそれがある安全機能の喪失（地震	VI－2－1－3 地盤の支持性能に係る基本方針 2．基本方針 4．極限支持力	2．設計基準対象施設及び重大事故等対処施設の地盤の設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	に伴って発生するおそれがある津波及び周辺斜面の崩壊等による安全機能の喪失を含む。）及びそれに続く放射線による公衆への影響を防止する観点から，各施設 の安全機能が喪失した場合の影響の相対的な程度（以下「耐震重要度」という。）に応じた，Sクラス，Bク ラス又はCクラスの分類（以下「耐震重要度分類」と いう。）の各クラスに応じて算定する地震力が作用した場合，若しくは，重大事故等対処施設のうち，常設耐震重要重大事故防止設備以外の常設重大事故防止設備 が設置される重大事故等対処施設については，自重や運転時の荷重等に加え，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類の各クラスに応じて算定する地震力が作用した場合においても，接地圧に対する十分な支持力を有する地盤に設置する。【4条3】【49条2】		
	設計基漼対象施設のうち，耐震重要施設，若しくは，重大事故等対処施設のうち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設は，地震発生に伴ら地款変動によって生 じる支持地盤の傾斜及び撓み並びに地震発生に伴ら建物•構築物間の不等沈下，液状化及び摇すり込み沈下等の周辺地艦の変状により，その安全機能，若しくは，重大事故纪至るおそれがある事故（運転時の異常な過渡変化及ひ設計基準事故を除く。）又は重大事故（以下 「重大事故等」という。）に対处するために必要な機能 が損なわれるおそれがない地盤として，設置（変更）許可を受けた地盤に設置する。【4条4】【49条3】	VI－2－1－3 地盤の支持性能に係る基本方針 2．基本方針 4．極限支持力	2．設計基準対象施設及び重大事故等対処施設の地盤の設計
	設計基準対象施設のうち，耐震重要施設，若しくは，重大事故等対処施設のらち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設は，将来活動する可能性のある断層等の露頭がない地盤として，設置（変更）許可を受けた地盤氾設置する。【4条5】【49条4】	VI－2－1－3 地盤の支持性能に係る基本方針 2．基本方針 4．極限支持力	2．設計基準対象施設及び重大事故等対処施設の地盤の設計
	設計基準対象施設のうち，Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）の地盤，若しくは，重大事故等対处施設のうち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設 の建物•構築物の地盤の接地圧に対する支持力の許容限界について，自重や運転時の荷重等と基準地震動S sによる地震力との組合せにより算定される接地圧 が，安全上適切と認められる規格，基鹪等による地媻 の極限文持力度て対して妥当な余裕を有することを確	VI－2－1－3 地盤の支持性能に係る基本方針 2．基本方針 4．極限支持力 VI－2－2 耐震設計上重要な設備を設置する施設の耐震性に ついての計算書 VI－2－9 原子炉格納施設の耐震性についての計算書 VI－2－10 その他発電用原子炉の附属施設の耐震性につい ての計算書	2．設計基準対象施設及び重大事故等対処施設の地盤の設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	認する。【4条6】【49条5】		
	また，上記の設計基準対象施設にあっては，自重や運転時の荷重等と設置（変更）許可を受けた弾性設計用地震動 S d（以下「弾性設計用地震動 S d 」という。） による地震力又は静的地震力との組合せにより算定さ れる接地圧について，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とす る。【4条7】	－	(用語の定義のみ)
	屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置された建物•構築物の地盤においては，自重 や運転時の荷重等と基準地震動 S s による地震力との組合せにより算定される接地圧が，安全上適切と認め られる規格，基準等による地盤の極限支持力度に対し て妥当な余裕を有することを確認する。【4条8】	VI－2－1－3 地盤の支持性能に係る基本方針 2．基本方針 4．極限支持力 VI－2－2 而震設計上重要な設備を設置する施設の耐震性に ついての計算書 VI－2－10 その他発電用原子炉の附属施設の耐震性につい ての計算書	2．設計基準対象施設及び重大事故等対処施設の地盤の設計
	設計基準対象施設のうち，Bクラス及びCクラスの施設の地盤，若しくは，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類 がBクラス又はCクラスのもの）が設置される重大事故等対処施設の建物•構築物及び機器•配管系の地盤に おいては，自重や運転時の荷重等と，静的地震力及び動的地震力（Bクラスの共振影響検討に係るもの又はB クラスの施設の機能を代替する常設重大事故防止設備 の共振影響検討に係るもの）との組合せにより算定さ れる接地圧に対して，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とす る。【4条9】【49条6】	VI－2－1－3 地盤の支持性能に係る基本方針 2．基本方針 4．極限支持力 VI－2－2 而震設計上重要な設備を設置する施設の而震性に ついての計算書 VI－2－10 その他発電用原子炉の附属施設の耐震性につい ての計算書 VI－2－11 波及的影響を及ぼすおそれのある施設の耐震性 についての計算書 VI－2－13 地下水位低下設備の耐震性についての計算書	2．設計基準対象施設及び重大事故等対処施設の地盤の設計
1.1 急傾斜地の崩壊の防止 「急傾斜地の崩壊による災害の防止に関する法律」 に基づき指定された急傾斜地崩壊危険区域でない地域 に設備を施設する。	1.2 急傾斜地の崩壊の防止 「急傾斜地の崩壊による災害の防止に関する法律」 に基づき指定された急傾斜地崩壊危険区域でない地域 に設備を施設する。【10条1】	－	3．急傾斜地の崩壊の防止に関する設計
2．自然現象 2．1 地震による損傷の防止 2．1．1 耐震設計 （1）耐震設計の基本方針 耐震設計は，以下の項目に従って行う。	2．自然現象 2．1 地震による損傷の防止 2．1．1 耐震設計 （1）耐震設計の基本方針 耐震設計は，以下の項目に従って行う。【5条1】	－	（冒頭宣言）
a．設計基準対象施設のうち，耐震重要施設は，その供用中に当該耐震重要施設に大きな影響を及ぼすおそ れがある地震（設置（変更）許可を受けた基準地震動 （以下「基準地震動」という。））による加速度によっ て作用する地震力に対して，その安全機能が損なわれ るおそれがない設計とする。	a．設計基準対象施設のうち，耐震重要施設は，その供用中に当該耐震重要施設に大きな影響を及ぼすおそ れがある地震（基準地震動 S s ）による加速度によっ て作用する地震力に対して，その安全機能が損なわれ るおそれがない設計とする。【5条1】	VI－1－2－1 原子炉本体の基礎に関する説明書 5．評価結果 5.1 設計基準対象施設としての評価結果 VI－2－1－1 而震設計の基本方針 2．而震設計の基本方針 2.1 基本方針	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針 4.4 而震設計を行う設備の抽出 4.5 耐震設計方針の明確化 4.6 而震設計上重要な設備を設置する施設の而震設計 4.8 申請設備の耐震設計 4.10 水平2方向及び鉛直方向地震力の組合せに関する影響平価

基本設計方針		設計結果の記載䉒所	様式－1への反映結果
変更前	変更後		
		VI－2－1－4 而震重要度分類及び重大事故等対処施設の施設区分の基本方針 2．設計基準対象施設の耐震重要度分類 2.1 而震設計上の重要度分類 2.2 発電用原子炉施設の区分 VI－2－1－11 機器•配管の而震支持設計方針 2．機器の支持構造物 2.1 基本原則 2.2 支持構造物の設計 VI－2－2 耐震設計上重要な設備を設置する施設の耐震性に ついての計算書 VI－2－3 原子炉本体の耐震性についての計算書 VI－2－4 核燃料物質の取扱施設及び貯蔵施設の耐震性につ いての計算書 VI－2－5 原子炉冷却系統施設の耐震性についての計算書 VI－2－6 計測制御系統施設の耐震性についての計算書 VI－2－7 放射性廃亲物の廃棄施設の耐震性についての計算書 VI－2－8 放射線管理施設の耐震性についての計算書 VI－2－9 原子炉格納施設の耐震性についての計算書 VI－2－10 その他発電用原子炉の附属施設の耐震性につい ての計算書 VI－2－11 波及的影響を及ぼすおそれのある施設の耐震性 についての計算書 VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関 する影響評価結果 3．各施設における水平2方向及び鋁直方向地震力の組合 せに対する影響評価結果	$\mathrm{VI}-1-10-2$ 「原子炉本体」の様式－1 4．原子炉本体の基磫に関する設計
	重大事故等対処施設のうち，常設而震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抆張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拉張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）は，基準地震動 $\mathrm{S} s$ による地震力に対して，重大事故等に対处するた めに必要な機能が損なわれるおそれがないように設計 する。【50条2】【50条6】	VI－1－2－1 原子炉本体の基礎に関する説明書 5．評価結果 5.2 重大事故等対処設備としての評価結果 VI－2－1－1 而震設計の基本方針 2．耐震設計の基本方針 2.1 基本方針 VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針 4．重大事故等対処施設の施設区分 4.1 而震設計上の設備の分類 4.2 重大事故等対处施設の区分	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針 4.4 耐震設計を行う設備の抽出 4.5 耐震設計方針の明確化 4.6 而震設計上重要な設備を設置する施設の而震設計 4.8 申請設備の而震設計 4.10 水平2方向及び鉛直方向地震力の組合せに関する影響評価 VI－1－10－2 「原子炉本体」の様式－1 4．原子炉本体の基礎に関する設計

基本設計方針		設計結果の記載綯所	様式 -1 への反映結果
変更前	変更後		
		VI－2－1－11 機器•配管の而震支持設計方針 2．機器の支持構造物 2.1 基本原則 2.2 支持構造物の設計 VI－2－2 耐震設計上重要な設備を設置する施設の耐震性に ついての計算書 VI－2－3 原子炉本体の而震性についての計算書 VI－2－4 核燃料物質の取扱施設及び貯蔵施設の而震性につ いての計算書 VI－2－5 原子炉冷却系統施設の而震性についての計算書 VI－2－6 計測制御系統施設の耐震性についての計算書 VI－2－7 放射性廃裹物の廃棄施設の耐震性についての計算書 VI－2－8 放射線管理施設の而震性についての計算書 VI－2－9 原子炉格納施設の耐震性についての計算書 VI－2－10 その他発電用原子炉の附属施設の耐震性につい ての計算書 VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関す る影響評価結果 3．各施設における水平 2 方向及び鉛直方向地震力の組合 せに対する影響評価結果	
b．設計基準対象施設は，地震により発生するおそれ がある安全機能の䨖失（地震に伴って発生するおそれ がある津波及び周辺斜面の崩壊等による安全機能の啔失を含む。）及びそれに続く放射線による公衆への影響 を防止する観点から，各施設の安全機能が喪失した場合の影響の相対的な程度（以下「耐震重要度」といら。） に応じて，Sクラス，Bクラス又はCクラスに分類（以下「耐震重要度分類」という。）し，それぞれに応じた地震力に十分耐えられる設計とする。	b．設計基淮対象施設は，耐震重要度に応じて，Sクラ ス，Bクラス又はCクラスに分類し，それぞれに応じた地震力に十分耐えられる設計とする。【 5 条 2 】	VI－1－2－1 原子灲本体の基礎に関する説明書 5．評価結果 5.1 設計基準対象施設としての評価結果 VI－2－1－1 而震設計の基本方針 2．而震設計の基本方針 2.1 基本方針 VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針 2．設計基準対象施設の而震重要度分類 2． 1 而震設計上の重要度分類 2.2 発電用原子炉施設の区分 VI－2－1－11 機器•配管の耐震支持設計方針 2．機器の支持構造物 2.1 基本原則 2.2 支持構造物の設計 VI－2－2 而震設計上重要な設備を設置する施設の而震性に ついての計算書 VI－2－3 原子炉本体の耐震性についての計算書	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針 4.4 耐震設計を行ら設備の抽出 4.5 而震設計方針の明確化 4.6 而震設計上重要な設備を設置する施設の耐震設計 4.8 申請設備の耐震設計 4． 10 水平 2 方向及び鉛直方向地震力の組合せに関する影響科価 VI－1－10－2 「原子炉本体」の様式－1 4．原子炉本体の基礎に関する設計

基本設計方針		設計結果の記載笽所	様式－1～の反映結果
変更前	変更後		
		VI－2－4 核燃料物質の取扱施設及び貯蔵施設の而震性につ いての計算書 VI－2－5 原子炉冷却采統施設の耐震性についての計算書 VI－2－6 計測制御系統施設の而震性についての計算書 VI－2－7 放射性廃栾物の廃乗施設の而震性についての計算書 VI－2－8 放射線管理施設の而震性についての計算書 VI－2－9 原子炉格納施設の耐震性についての計算書 VI－2－10 その他発電用原子炉の附属施設の耐震性につい ての計算書 VI－2－11 波及的影響を及ぼすおうそれある施設の耐震性 についての計算書 VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関 する影響評価結果 3．各施設における水平 2 方向及び鉛直方向地震力の組合 せに対する影響評価結果 $\mathrm{VI}-2$－別添 2 溢水防護に係る施設の耐震性に関する説明書	
	重大事故等対处施設については，施設の各設備が有 する重大事故等に対処するために必要な機能及ひ設置状態を踏まえて，常設而震重要重大事故防止設備が設置される重大事故等対処施設，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。），常設重大事故緩和設備が設置される重大事故等対処施設，常設重大事故防止設備（設計基準按張）が設置される重大事故等対処施設（特定重大事故等対处施設を除く。以下同じ。），常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設 （特定重大事故等対処施設を除く。以下同じ。）及び可搬型重大事故等対処設借汇分類する。【50条1】	－	（用語の定義のみ）
	重大事故等対処施設のらち，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設は，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用 される地震力に十分に耐えることができる設計とす る。【50条4】 常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設と常設重大事故緩和設備又は常設重大事故緩和設備（設計基漼扰張）が設置される重大事故等対処施設の両方に属する重大事故等対処施設については，基漼地震動S s によ る地震力を適用するものとする。【50条5】	VI－2－1－1 耐震設計の基本方針 2．耐震設計の基本方針 2.1 基本方針 VI－2－1－4 而震重要度分類及び重大事故等対処施設の施設 区分の基本方針 4．重大事故等対処施設の施設区分 4.1 耐震設計上の設備の分類 4.2 重大事故等対処施設の区分 VI－2－1－11 機器•配管の而震支持設計方針 2．機器の支持構造物 2.1 基本原則 2.2 支持構造物の設計	4．地震による損傷防止に関する設計 耐震設計の基本方針 而震設計を行う設備の抽出 而震設計方針の明確化 而震設計上重要な設備を設置する施設の耐震設計 申請設備の耐震設計 4.10 水平2方向及び鉛直方向地震力の組合せに関する影響評価

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
		VI－2－4 核然料物質の取扱施設及び貯蔵施設の耐震性につ いての計算書 VI－2－5 原子炉冷却系統施設の耐震性についての計算書 VI－2－6 計測制御系統施設の耐震性についての計算書 VI－2－8 放射線管理施設の而震性についての計算書 VI－2－10 その他発電用原子炉の附属施設の耐震性につい ての計算書 VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関 する影響評価結果 3．各施設における水平2方向及び鉛直方向地震力の組合 せに対する影響評価結果	
	重大事故等対处施設のうち，常設重大事故防止設備 （設計基準拡張）（当該設備が属する耐震重要度分類が Bクラス又はCクラスのもの）か設置される重大事故等対処施設は，当該設備が属する耐震重要度分類のクラ スに適用される地震力に十分に耐えることができる設計とする。【50条8】 常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの） か設置される重大事故等対処施設と常設重大事故緩和設備又は常設重大事故緩和設備（設計基準抁張）が設置される重大事故等対処施設の両方に属する重大事故等対処施設については，基準地震動 S s による地震力 を適用するものとする。【50条9】	VI－2－1－1 耐震設計の基本方針 2．而震設計の基本方針 2.1 基本方針 VI－2－1－4 而震重要度分類及び重大事故等対処施設の施設区分の基本方針 4．重大事故等対処施設の施設区分 4.1 而震設計上の設備の分類 4.2 重大事故等対処施設の区分 VI－2－1－11 機器•配管の耐震支持設計方針 2．機器の支持構造物 2.1 基本原則 2.2 支持構造物の設計 VI－2－5 原子炉冷却采統施設の耐震性についての計算書 VI－2－6 計測制御采統施設の耐震性についての計算書 VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関す る影響平価結果 3．各施設における水平2方向及び鉛直方向地震力の組合 せに対する影響評価結果	4．地震による損傷防止に関する設計 耐震設計の基本方針 而震設計を行う設備の抽出 而震設計方針の明確化 而震設計上重要な設備を設置する施設の耐震設計 申請設備の而震設計 4． 10 水平2方向及び鉛直方向地震力の組合せに関する影響評価
	なお，特定重大事故等対処施設に該当する施設は本申請の対象外である。【50条10】	－	（用語の定義のみ）
c．建物•構築物とは，建物，構築物及び土木構造物 （屋外重要土木構造物及びその他の土木構造物）の総称とする。 また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系の間接支持機能又は非常時における海水 の通水機能を求められる土木構造物をいう。【5 条2－1】		\square^{-}	（記儎削除のみ，変更なし）
d．Sクラスの施設は，基準地震動による地震力に対し てその安全機能が保持できる設計とする。	c．Sクラスの施設（e．に記載のもののらち，津波防護施設，浸水防止設備及び津波監視設備を除く。）は，基	VI－1－2－1 原子炉本体の基礎に関する説明書 5．評価結果	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）に対して十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有す る設計とする。 機器•配管系については，その施設に要求される機能を保持する設計とし，塑性ひずみが生じる場合であ っても，その量が小さなしベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能 に影響を及ぼさない，また，動的機器等については，基準地震動による応答に対してその設備に要求される機能を保持する設計とする。	準地震動 S s による地震力に対してその安全機能が保持できる設計とする。 建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）に対して十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有す る設計とする。 機器•配管系については，その施設に要求される機能を保持する設計とし，塑性ひずみが生じる場合であ っても，その量が小さなレベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能 に影響を及ぼさない，また，動的機器等については，基準地震動S s による応答に対してその設備に要求さ れる機能を保持する設計とする。なお，動的機能が要求される機器については，当該機器の構造，動作原理等を考慮した評価を行い，既往の研究等で機能維持の確認がなされた機能碓認済加速度等を超えていないこ とを確認する。【5条3】	5.1 設計基準対象施設としての評価結果 VI－2－1－1 耐震設計の基本方針 2．耐震設計の基本方針 2.1 基本方針 4．設計用地震力 4.1 地震力の算定法 5．機能維持の基本方針 5.1 構造強度 5.2 機能維持 VI－2－2 耐震設計上重要な設備を設置する施設の耐震性に ついての計算書 VI－2－3 原子炉本体の耐震性についての計算書 VI－2－4 核燃料物質の取扱施設及び貯蔵施設の耐震性につ いての計算書 VI－2－5 原子炉冷却系統施設の耐震性についての計算書 VI－2－6 計測制御施設の而震性についての計算書 VI－2－7 放射性廃棄物の廃棄施設の耐震性についての計算書 VI－2－8 放射線管理施設の耐震性についての計算書 VI－2－9 原子炉格納施設の耐震性についての計算書 VI－2－10 その他発電用原子炉の附属施設の耐震性につい ての計算書 VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関す る影響評価結果 3．各施設における水平 2 方向及び鉛直方向地震力の組合 せに対する影響評価結果	4.6 而震設計上重要な設備を設置する施設の而震設計 4.8 申請設備の耐震設計 4.10 水平 2 方向及び鉛直方向地震力の組合せに関する影響評価 VI－1－10－2 「原子炉本体」の様式－1 4．原子炉本体の基礎に関する設計
また，設置（変更）許可を受けた弾性設計用地震動 （以下「弾性設計用地震動」という。）による地震力又 は静的地震力のいずれか大きい方の地震力に対してお おむかね弾性状態にとどまる範囲で耐えられる設計とす る。	また，弾性設計用地震動S dによる地震力又は静的地震力のいずれか大きい方の地震力に対しておおむまね弾性状態にとどまる範囲で耐えられる設計とする。 建物•構築物については，発生する応力に対して， 「建築基準法」等の安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 機器•配管系については，応答が全体的におおむなね弾性状態にとどまる設計とする。【5条3】	VI－2－1－1 耐震設計の基本方針 2．而震設計の基本方針 2.1 基本方針 4．設計用地震力 4.1 地震力の算定法 5．機能維持の基本方針 5.1 構造強度 VI－2－2 而震設計上重要な設備を設置する施設の耐震性に ついての計算書 VI－2－3 原子炉本体の耐震性についての計算書 VI－2－4 核然料物質の取扱施設及び貯蔵施設の耐震性につ いての計算書 VI－2－5 原子炉冷却系統施設の耐震性についての計算書 VI－2－6 計測制御施設の而震性についての計算書 VI－2－7 放射性廃棄物の廃裹施設の耐震性についての計算 書	4．地震による損傷防止に関する設計 4.1 侕震設計の基本方針 4.6 耐震設計上重要な設備を設置する施設の而振設計 4.8 申請設備つ而震設計 4． 10 水平2方向及び鉛直方向地震力の組合せに関する影響評価

基本設計方針		設計結果の記載笽所	様式－1への反映結果
変更前	変更後		
		VI－2－8 放射線管理施設の而震性についての計算書 VI－2－9 原子炉格納施設の而震性についての計算書 VI－2－10 その他発電用原子炉の附属施設の而震性につい ての計算書	
	常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設は，基準地震動S s による地震力に対 して，重大事故等に対処するために必要な機能が損な われるおそれがないように設計する。【50条2】【50条6】 建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）について十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有す る設計とする。機器•配管系については，その施設に要求される機能を保持する設計とし，塑性ひずみが生 じる場合であっても，その量が小さなレベルにとどま って破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさない，また，動的機器等 については，基準地震動S s による応答に対して，そ の設備に要求される機能を保持する設計とする。なおっ動的機能が要求される機器については，当該機器の構造，動作原理等を考慮した評価を行い，既往の研究等 で機能維持の確認がなされた機能確認済加速度等を超 えていないことを確認する。【50条3】【50条7】	VI－1－2－1 原子炉本体の基礎に関する説明書 5．評価結果 5.2 重大事故等対処設備としての評価結果 VI－2－1－1 耐震設計の基本方針 2．耐震設計の基本方針 2.1 基本方針 4．設計用地震力 4.1 地震力の算定法 5．機能維持の基本方針 5.1 構造強度 5.2 機能維持 VI－2－2 而震設計上重要な設備を設置する施設の耐震性に ついての計算書 VI－2－3 原子炉本体の耐震性についての計算書 VI－2－4 核燃料物質の取扱施設及び貯蔵施設の而震性につ いての計算書 VI－2－5 原子炉冷却采統施設の耐震性についての計算書 VI－2－6 計測制御施設の而震性についての計算書 VI－2－7 放射性廃亲物の廃鰈施設の耐震性についての計算書 VI－2－8 放射線管理施設の耐震性についての計算書 VI－2－9 原子炉格納施設の耐震性についての計算書 VI－2－10 その他発電用原子炉の附属施設の耐震性につい ての計算書 VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関す る影響評価結果 3．各施設における水平2方向及び鉛直方向地震力の組合 せに対する影響評価結果	4．地震による損罂防止に関する設計 4.1 耐震設計の基本方針 4.6 耐震設計上重要な設備を設置する施設の耐震設計 4.8 申請設備 耐震設計 4． 10 水平2方向及び鉛直方向地震力の組合せに関する影響部価 VI－1－10－2 「原子炉本体」の様式－1 4．原子炉本体の基硙に関する設計
e．Sクラスの施設について，静的地震力は，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用す るものとする。	d．Sクラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）につい て，静的地震力は，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。 また，基準地震動 S s 及び弾性設計用地震動 S d に よる地震力は，水平 2 方向及び鉛直方向について適切に組み合わせて算定するものとする。【5 条4】 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設	VI－2－1－1 耐震設計の基本方針 2．耐震設計の基本方針 2.1 基本方針 4．設計用地震力 4.1 地震力の算定法 VI－2－2 而震設計上重要な設備を設置する施設の耐震性に ついての計算書 VI－2－3 原子炉本体の耐震性についての計算書 VI－2－4 核燃料物質の取扱施設及び貯蔵施設の而震性につ	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針 4.2 基漼地震動 S s，弾性設計用地震動 Sd の概要 4.6 而震設計上重要な設備を設置する施設の而震設計 4.8 申諳設備の而震設計 4． 10 水平2方向及ひ鉛直方向地震力の組合せ江関する影響評価

基本設計方針		設計結果の記載䇫所	様式－1
変更前	変更後		
	重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，基準地震動 S s 及び弾性設計用地震動S dによる地震力は水平2方向及び鉛直方向について適切に組み合わせて算定するものとす る。【50条11】	いての計算書 $\mathrm{VI}-2-5$ 原子炉冷却系統施設の而震性についての計算書 VI－2－6 計測制御施設の耐震性についての計算書 $\mathrm{VI}-2-7$ 放射性廃亊物の廃秉施設の耐震性についての計算書 VI－2－8 放射線管理施設の耐震性についての計算書 VI－2－9 原子炉格納施設の耐震性についての計算書 VI－2－10 その他発電用原子炬の附属施設の耐震性につい ての訃算書 $\mathrm{VI}-2-12-1 \quad$ 水平2方向及び鉛直方向地震力の組合せに関 する影響評価結果 3．各施設における水平 2 方向及び鉛直方向地震力の組合 せに対する影響䛠価結果	
f．屋外重要土木構造物は，基準地震動による地震力 に対して，構造物全体として変形能力（終局耐力時の変形）について十分な余裕を有するとともに，それぞ れの施設及び設備に要求される機能が保持できる設計 とする。	e．屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置された建物•構築物は，基準地震動 S s に よる地震力に対して，構造物全体として変形能力（終局耐力時の変形）について十分な余裕を有するととも に，それぞれの施設及び設備に要求される機能が保持 できる設計とする。【5条5】【50条13】 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物は，基準地震動 S s によ る地震力に対して，重大事故等に対処するために必要 な機能が損なわれるおそれがない設計とする。【50条 12】	VI－2－1－1 耐震設計の基本方針 2．耐震設計の基本方針 2.1 基本方針 4．設計用地震力 4.1 地震力の算定法 5．機能維持の基本方針 5.1 構造強度 VI－2－2 耐震設計上重要な設備を設置する施設の耐震性に ついての計算書 VI－2－10 その他発電用原子炉の附属施設の耐震性につい ての計算書 VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関 する影響評価結果 3．各施設における水平2方向及び鉛直方向地震力の組合 せに対する影響評価結果	4．地震による損傷防止に関する設計 4.1 胹震設計の基本方針 4.6 耐震設計上重要な設備を設置する施設の而震設計 4.8 申請設借 $)$ 耐震設計 4.10 水平2方向及び鉿直方向地震力の組合せに関する影響部価
g．Bクラスの施設は，静的地震力に対しておおむねね弾性状態にとどまる範囲で耐えられる設計とする。 また，共振のおそれのある施設については，その影響についての検討を行う。その場合，検討に用いる地震動は，弾性設計用地震動に2分の1を乗じたものとす る。 Cクラスの施設は，静的地震力に対しておおむねね弾性状態にとどまる範囲で耐えられる設計とする。	f．Bクラスの施設は，静的地震力に対しておおむねね弾性状態にとどまる範囲で耐えられる設計とする。 また，共振のおそれのある施設については，その影響についての検討を行ら。その場合，検討に用いる地震動は，弾性設計用地震動S d に2分の1を乗じたもの とする。なお，当該地震動による地震力は，水平2方向及び鉛直方向について適切に組み合わせて算定するも のとする。【5条6】 Cクラスの施設は，静的地震力に対しておおむまる弾性状態にとどまる範囲で耐えられる設計とする。【5条7】常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設は，上記に示す，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用される地震力に	VI－2－1－1 耐震設計の基本方針 2．耐震設計の基本方針 2.1 基本方針 4．設計用地震力 4.1 地震力の算定法 5．機能維持の基本方針 5.1 構造強度	4．地震による損䶌防止に関する設計 4.1 而震設計の基本方針

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	対して，おおむきね弾性状態にとどまる範囲で耐えられ る設計とする。【50条14】 常設重大事故防止設備（設計基準扩張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの） が設置される重大事故等対処施設は，上記に示す，当該設備が属する耐震重要度分類のクラスに適用される地震力に対して，おおむねる弾性状態にとどまる範囲で耐えられる設計とする。【50条15】		
	g．耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抎張）（当該設備が属する耐震重要度分類がSク ラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設が，それ以外の発電所内にある施設（資機材等含む。）の波及的影響に よって，その安全機能及び重大事故等に対処するため に必要な機能を損なわない設計とする。【5 条8】【50条 16】	$\mathrm{VI}-2-1-1$ 耐震設計の基本方針 3．耐震重要度分類及び重大事故等対処施設の施設区分 3.3 波及的影響に対する考慮 VI－2－11 波及的影響を及ぼすおそれのある施設の而震性 についての計算書	4．地震による損傷乃止に関する設計 4.1 而震設計の基本方針 4.9 波及的影響を及ぼすおそれのある施設の而振評価 4． 10 水平2方向及び鋁直方向地震力の組合せ汇関する影響郎価
	h．可搬型重大事故等対処設備については，地震によ る周辺斜面の崩壊等の影響を受けないように「5．1．5環境条件等」に基づく設計とする。【50条17】	－	$\stackrel{-}{-}\left(\begin{array}{l} \text { (豆宣言 } \end{array}\right)$
	i．緊急時対策所の而震設計の基本方針については， $「(6)$ 緊急時対策所」に示す。【50条18】	－	(冒頭宣言)
	j．耐震重要施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，そ の安全機能が損なわれないよう，適切な対策を講ずる設計とする。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基漼抎張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準抁張）が設置される重大事故等対処施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，重大事故等に対処するために必要な機能が損なわれるおそ れがないよう，適切な対策を講ずる設計とする。【 5 条 9］【50条19】	VI－2－1－1 而震設計の基本方針 2．耐震設計の基本方針 2.1 基本方針 VI－2－1－3 地盤の支持性能に係る基本方針 2．基本方針	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針 4.3 地盤の支持性能に係る基本方針
（2）耐震重要度分類 a．耐震重要度分類 設計基準対象施設の耐震重要度を以下のとおり分類 する。 （a）Sクラスの施設 地震により発生するおそれがある事象に対して，原子炉を停止し，炉心を泠却するために必要な機能を持 つ施設，自ら放射性物質を内蔵している施設，当該施設に直接関係しておりその機能喪失により放射性物質	（2）耐震重要度分類及び重大事故等対処施設の設備 の分類 a．耐震重要度分類 設計基準対象施設の耐震重要度を以下のとおり分類 する。 （a）Sクラスの施設 地震により発生するおそれがある事象に対して，原子炉を停止し，炉心を泠却するために必要な機能を持 つ施設，自ら放射性物質を内蔵している施設，当該施設に直接関係しておりその機能喪失により放射性物質	－	（用語の定義のみ）

基本設計方針		設計結果の記載綯所	様式－1～の反映結果
変更前	変更後		
を外部に抁散する可能性のある施設，これらの施設の機能喪失により事故に至った場合の影響を緩和し，放射線による公衆への影響を軽減するため汇必要な機能 を持つ施設及びこれらの重要な安全機能を支援するた めに必要となる施設，並びに地震汇伴って発生するお それがある津波による安全機能の喪失を防止するため に必要となる施設であって，その影響が大きいもので あり，次の施設を含む。 －原子炉冷却材圧力バウンダリを構成する機器•配管系 - 使用済然料を貯蔵するための施設 - 原子炉の緊急停止のために急激氾負の反応度を付加 するための施設，及び原子炉の停止状態を維持する ための施設 －原子炬停止後，炬心から崩槸熱を除去するための施設 －原子炉冷却材圧カバウンダリ破損事故後，炉心から崩壊熱を除去するための施設 －原子炉冷却材圧力バウンダリ破損事故の際に，圧力障壁となり放射性物質の放散を直接防ぐための施設 －放射性物質の放出を伴うような事故の際に，その外部放散を抑制するための施設であり，上記の「放射性物質の放散を直接防ぐための施設」以外の施設	を外部に拡散する可能性のある施設，これらの施設の機能喪失により事故に至った場合の影響を緩和し，放射線による公衆への影響を軽減するために必要な機能 を持つ施設及びこれらの重要な安全機能を支援するた めに必要となる施設，並びに地震に伴って発生するお それがある津波による安全機能の喪失を防止するため に必要となる施設であって，その影響が大きいもので あり，次の施設を含む。 －原子炉泠却材圧力バウンダリを構成する機器•配管系 - 使用済燃料を貯蔵するための施設 - 原子炉の緊急停止のために急激に負の反応度を付加 するための施設，及び原子炉の停止状態を維持する ための施設 －原子炉停止後，炉心から崩壊熱を除去するための施設 －原子炉冷却材圧力バウンダリ破損事故後，炉心から崩壊熱を除去するための施設 －原子炬冷却材圧力バウンダリ破損事故の際に，圧力障壁となり放射性物質の放散を直接防ぐための施設 －放射性物質の放出を伴うような事故の際に，その外部放散を抑制するための施設であり，上記の「放射性物質の放散を直接防ぐための施設」以外の施設 －津波防護施設及び浸水防止設備 －津波監視設備 【5条10】		
（b）Bクラスの施設 安全機能を有する施設のらち，機能霛失した場合の影響がSクラス施設と比心小さい施設であり，次の施設 を含む。 －原子炉冷却材圧力バウンダリに直接接続されてい て，一次泠却材を内蔵しているか又は内蔵し得る施設 －放射性廃槀物を内蔵している施設（ただし，内藏量 が少ない又は貯蔵方式により，その破損により公衆 に与える放射線の影響が「実用発電用原子炉の設置，運転等に関する規則（昭和53年通商産業省令第77号）」第 2 条第 2 項第 6 号に規定する「周辺監視区域」外における年間の線量限度に比べ十分小さいものは除く。） －放射性廃黄物以外の放射性物質に関連した施設で， その破損により，公衆及び従事者に過大な放射線被 ばくを与える可能性のある施設 - 使用済燃料を椧却するための施設 - 放射性物質の放出を伴うような場合に，その外部放	（b）Bクラスの施設 安全機能を有する施設のらち，機能喪失した場合の影響がSクラス施設と比べ小さい施設であり，次の施設 を含む。 －原子炉冷却材圧力バウンダリに直接接続されてい て，一次冷却材を内蔵しているか又は内蔵し得る施設 －放射性廃棄物を内蔵している施設（ただし，内蔵量 が少ない又は貯蔵方式により，その破損により公衆 に与える放射線の影響が「実用発電用原子炉の設置，運転等に関する規則（昭和53年通商産業省令第77号）」第 2 条第 2 項第 6 号に規定する「周辺監視区域」外における年間の線量限度に比べ十分小さいものは除く。） －放射性廃重物以外の放射性物質に関連した施設で， その破損により，公衆及び従事者に過大な放射線被 ばくを与える可能性のある施設 - 使用済燃料を泠却するための施設 - 放射性物質の放出を伴うような場合に，その外部放	－	（用語の定義のみ）

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
散を抑制するための施設で，Sクラスに属さない施設	散を抑制するための施設で，Sクラスに属さない施設【5条11】		
（c）Cクラスの施設 Sクラスに属する施設及びBクラスに属する施設以外 の一般産業施設又は公共施設と同等の安全性が要求さ れる施設である。 上記に基づく耐震重要度分類を第2．1．1表に示す。 なお，同表には当該施設を支持する構造物の支持機能が維持されることを確認する地震動及び波及的影響 を考慮すべき施設に適用する地震動についても併記す る。	（c）Cクラスの施設 Sクラスに属する施設及びBクラスに属する施設以外 の一般産業施設又は公共施設と同等の安全性が要求さ れる施設である。 上記に基づく耐震重要度分類を第2．1．1表に示す。 なお，同表には当該施設を支持する構造物の支持機能が維持されることを確認する地震動及び波及的影響 を考慮すべき施設に適用する地震動についても併記す る。【5条12】	－	(用語の定義のみ)
	b．重大事故等対処施設の設備分類 重大事故等対処設備について，施設の各設備が有す る重大事故等に対処するために必要な機能及び設置状態を踏まえて，以下の設備分類に応じて設計する。 （a）常設重大事故防止設備 重大事故等対処設備のうち，重大事故に至るおそれ がある事故が発生した場合であって，設計基準事故対処設備の安全機能又は使用済燃料プールの冷却機能若 しくは注水機能が喪失した場合において，その喪失し た機能（重大事故に至るおそれがある事故に対処する ために必要な機能に限る。）を代替することにより重大事故の発生を防止する機能を有する設備であって常設 のもの イ．常設耐震重要重大事故防止設備 常設重大事故防止設備であって，耐震重要施設に属 する設計基準事故対処設備が有する機能を代替するも の ロ．常設耐震重要重大事故防止設備以外の常設重大事故防止設備 常設重大事故防止設備であって，イ．以外のもの 【50条20】	－	(用語の定義のみ)
	（b）常設重大事故緩和設備 重大事故等対処設備のうち，重大事故が発生した場合において，当該重大事故の拡大を防止し，又はその影響を緩和するための機能を有する設備であって常設 のもの【50条21】	－	(用語の定義のみ)
	（c）常設重大事故防止設備（設計基準拡張）設計基準対象施設のうち，重大事故等時に機能を期待する設備であって，重大事故の発生を防止する機能 を有する（a）以外の常設のもの【50条22】	－	(用語の定義のみ)
	（d）常設重大事故緩和設備（設計基準拡張） 設計基準対象施設のうち，重大事故等時に機能を期待する設備であって，重大事故の拡大を防止し，又は その影響を緩和するための機能を有する（b）以外の常	－	$\begin{gathered} \text { (用語の定義のみ) } \end{gathered}$

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	設のもの【50条23】		
	（e）可搬型重大事故等対処設備重大事故等対処設備であって可搬型のもの 重大事故等対処設備のうち，耐震評価を行う主要設備の設備分類について，第2．1．2表に示す。【50条24】	－	（用語の定義のみ）
（3）地震力の算定方法 耐震設計に用いる地震力の算定は以下の方法によ る。 a．静的地震力 設計基準対象施設に適用する静的地震力は，Sクラス の施設，Bクラス及びCクラスの施設に適用することと し，それぞれ耐震重要度分類に応じて次の地震層せん断力係数 C i 及び震度に基づき算定する。	（3）地震力の算定方法 耐震設計に用いる地震力の算定は以下の方法によ る。 a．静的地震力 設計基準対象施設に適用する静的地震力は，Sクラス の施設（津波防護施設，浸水防止設備及び津波監視設備を除く。），Bクラス及びCクラスの施設に適用するこ ととし，それぞれ耐震重要度分類に応じて次の地震層 せん断力係数 C i 及び震度に基づき算定する。【5条13】 重大事故等対処施設については，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置され る重大事故等対処施設に，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用される静的地震力を，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBク ラス又はCクラスのもの）が設置される重大事故等対処施設に，当該設備が属する耐震重要度分類のクラスに適用される静的地震力を，それぞれ適用する。【50条25】	VI－2－1－1 耐震設計の基本方針 2．耐震設計の基本方針 2.1 基本方針	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針
（a）建物•構築物 水平地震力は，地震層せん断力係数 C i に，次に示 す施設の耐震重要度分類に応じた係数を乗じ，更に当該層以上の重量を乗じて算定するものとする。 $\begin{array}{ll} \text { Sクラス } & 3.0 \\ \text { Bクラス } & 1.5 \\ \text { Cクラス } & 1.0 \end{array}$ ここで，地震層せん断力係数C i は，標準せん断力係数Coを 0.2 以上とし，建物•構築物の振動特性，地盤の種類等を考慮して求められる値とする。 また，必要保有水平耐力の算定においては，地震層 せん断力係数Ciに乗じる施設の耐震重要度分類に応 じた係数は，Sクラス，Bクラス及びCクラスともに1．0 とし，その際に用いる標準せん断力係数Coは1．0以上 とする。 Sクラスの施設については，水平地震力と鉛直地震力 が同時に不利な方向の組合せで作用するものとする。鉛直地震力は，震度 0.3 以上を基準とし，建物•構築物 の振動特性，地盤の種類等を考慮し，高さ方向に一定 として求めた鉛直震度より算定するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認められる規格及び基準を参考に，Cクラスに適用され	（a）建物•構築物 水平地震力は，地震層せん断力係数 C i に，次に示 す施設の耐震重要度分類に応じた係数を乗じ，更に当該層以上の重量を乗じて算定するものとする。 $\begin{array}{ll} \text { Sクラス } & 3.0 \\ \text { Bクラス } & 1.5 \\ \text { Cクラス } & 1.0 \end{array}$ ここで，地震層せん断力係数 C i は，標準せん断力係数Coを 0.2 以上とし，建物•構築物の振動特性，地盤の種類等を考慮して求められる値とする。 また，必要保有水平耐力の算定においては，地震層 せん断力係数 C i に乗じる施設の耐震重要度分類に応 じた係数は，Sクラス，Bクラス及びCクラスともに 1.0 とし，その際に用いる標準せん断力係数Coは1．0以上 とする。 Sクラスの施設については，水平地震力と鉛直地震力 が同時に不利な方向の組合せで作用するものとする。鉛直地震力は，震度 0.3 以上を基準とし，建物•構築物 の振動特性，地盤の種類等を考慮し，高さ方向に一定 として求めた鉛直震度より算定するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認められる規格及び基準を参考に，Cクラスに適用され	VI－2－1－1 耐震設計の基本方針 4．設計用地震力 4.1 地震力の算定法	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
る静的地震力を適用する。	る静的地震力を適用する。【5条14】		
（b）機器•配管系 静的地震力は，上記（a）に示す地震層せん断力係数C i に施設の耐震重要度分類に応じた係数を乗じたもの を水平震度として，当該水平震度及び上記（a）の鉛直震度をそれぞれ 20% 増しとした震度より求めるものとす る。 Sクラスの施設については，水平地震力と鉛直地震力 は同時に不利な方向の組合せで作用するものとする。 ただし，鉛直震度は高さ方向に一定とする。	（b）機器•配管系 静的地震力は，上記（a）に示す地震層せん断力係数C i に施設の耐震重要度分類に応じた係数を乗じたもの を水平震度として，当該水平震度及び上記（a）の鉛直震度をそれぞれ 20% 増しとした震度より求めるものとす る。 Sクラスの施設については，水平地震力と鉛直地震力 は同時に不利な方向の組合せで作用するものとする。 ただし，鉛直震度は高さ方向に一定とする。 上記（a）及び（b）の標準せん断力俰数Co 等の割増し係数の適用については，耐震性向上の観点から，一般産業施設，公共施設等の耐震基準との関係を考慮して設定する。【5条15】	VI－2－1－1 而震設計の基本方針 4．設計用地震力 4.1 地震力の算定法	4．地震による損鹪防止に関する設計 4.1 耐震設計の基本方針
b．動的地震力 設計基準対象施設については，動的地震力は，Sクラ スの施設，屋外重要土木構造物及びBクラスの施設のら ち共振のおそれのあるものに適用する。 Sクラスの施設については，基準地震動及び弾性設計用地震動から定める入力地震動を適用する。 Bクラスの施設のらち共振のおそれのあるものにつ いては，弾性設計用地震動から定める入力地震動の振幅を2分の1にしたものによる地震力を適用する。 屋外重要土木構造物については，基準地震動による地震力を適用する。	b．動的地震力 設計基準対象施設については，動的地震力は，Sクラ スの施設，屋外重要土木構造物及びBクラスの施設のう ち共振のおそれのあるものに適用する。 Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）については，基準地震動 S s 及び弾性設計用地震動 Sd から定める入力地震動を適用す る。 Bクラスの施設のらち共振のおそれのあるものにつ いては，弾性設計用地震動S d から定める入力地震動 の振幅を2分の1にしたものによる地震力を適用する。 屋外重要土木構造物，津波防謢施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物については，基準地震動 S s による地震力 を適用する。【5条16】	$\mathrm{VI}-2-1-1$ 耐震設計の基本方針 4．設計用地震力 4.1 地震力の算定法	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針
	重大事故等対処施設のらち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準㹡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準抁張）が設置される重大事故等対処施設について は，基準地震動S s による地震力を適用する。［50条26】 常設而震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設のらち，Bク ラスの施設の機能を代替する共振のおそれのある施設，常設重大事故防止設備（設計基漼抎張）が設置さ れる重大事故等対処施設のらち，当該設備が属する耐震重要度分類がBクラスで共振のおうそれのある施設に ついては，共振のおそれのあるBクラスの施設に適用す る地震力を適用する。【50条27】 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抁張）（当該設	VI－2－1－1 耐震設計の基本方針 4．設計用地震力 4.1 地震力の算定法	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針

基本設計方針		設計結果の記載綯所	様式一1への反映結果
変更前	変更後		
	備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拉張）が設置される重大事故等対処施設の土木構造物については，基準地震動 S s による地震力を適用する。 重大事故等対処施設のらち，設計基準対象施設の既往評価を適用できる基本構造と異なる施設について は，適用する地震力に対して，要求される機能及び構造健全性が維持されることを確認するため，当該施設 の構造を適切にモデル化した上で地震応答解析，加振詞験等を実施する。【50条28】		
	動的解析においては，地盤の諸定数も含めて材料の ばらつきによる変動幅を適切に考慮する。 動的地震力は水平 2 方向及び鉛直方向について適切 に組み合わせて算定する。動的地震力の水平 2 方向及び鉛直方向の組合せについては，水平 1 方向及び鉛直方向地震力を組み合わせた既往の耐震計算への影響の可能性がある施設•設備を抽出し，3次元応答性状の可能性 も考慮したらえで既往の方法を用いた耐震性に及ぼす影響を評価する。【5条17］	VI－2－1－1 而震設計の基本方針 4．設計用地震力 4.1 地震力の算定法	
（a）入力地震動 原子炉格納施設設置位置周辺は，地質調查の結果に よれば，約 $1.4 \mathrm{~km} / \mathrm{s}$ のS波速度を持つ堅硬な岩盤が十分 な広がりをもつて存在することが確認されており，建物•構築物はこの堅硬な岩艦に支持させる。 敷地周辺には中生界ジュラ系の砂岩，頁岩等が広く分布し，原子炉建屋の設置しベルにもこの岩盤が分布 していることから，解放基艦表面は，この岩盤が分布 する原子炬建屋の設置位置0．P．－ 14.1 m 沉設定する。 建物•構築物の地震応答解析における入力地震動は，解放基盤表面で定義される基準地震動及び弹性設計用地震動を基に，対象建物•構築物の地盤の非楾形特性等の条件を適切に考慮した上で，必要に応じ2次元FEM解析，1次元波動論又は1次元地盤応答解析により，地震応答解析モデルの入力位置で評価した入力地震動を設定する。地盤条件を考慮する場合には，地震動評価 で考慮した敷地全体の地下構造との関係や対象建物•構築物位置と炉心位置での地質•速度構造の違いにも留意するとともに，地盤の非線形応答に関する動的変形特性を考慮する。また，必要に応じ敷地纪おける観測記録による検証や最新の科学的•技術的知見を踏ま え，地質•速度構造等の地盤条件を設定する。 また，設計基準対象施設における耐震Bクラスの建物•構築物のらち共振のおそれがあり，動的解析が必要なものに対しては，弾性設計用地震動に2分の1を乗	（a）入力地震動 原子炉格納施設設置位置周辺は，地質調查の結果に よれば，約1．4km／sのS波速度を持つ堅硬な岩盤が十分 な広がりをもって存在することが碓認されており，建物•構築物はこの堅硬な岩盤に支持させる。 敷地周辺には中生界ジュラ系の砂岩，頁岩等が広く分布し，原子炉建屋の設置しベルにもこの岩盤が分布 していることから，解放基艦表面は，この岩盤が分布 する原子炉建屋の設置位置0．P．－14．1mに設定する。 建物•構築物の地震応答解析における入力地震動は，解放基盤表面で定義される基準地震動 S s 及び弾性設計用地震動 Sd を基に，対象建物•構築物の地盤の非線形特性等の条件を適切に考慮した上で，必要に応じ 2次元FEN解析，1次元波動論又は1次元地盤応答解析に より，地震応答解析モデルの入力位置で評価した入力地震動を設定する。地盤条件を考慮する場合には，地震動評価で考慮した敷地全体の地下構造との関係や対象建物•構築物位置と炻心位置での地質•速度構造の違いにも留意するとともに，地盤の非線形応答に関す る動的変形特性を考慮する。また，必要に応じ敷地に おける観測記録による検証や最新の科学的•技術的知見を踏まえ，地質•速度椪造等の地盤条件を設定する。 また，設計基準対象施設における耐震Bクラスの建物•構築物及び重大事故等対処施設における耐震Bクラ スの施設の機能を代替する常設重大事故防止設備又は当該設備が属する耐震重要度分類がBクラスの常設重	VI－2－1－6 地震応答解析の基本方針 2．地震応答解析の方針 2.1 建物•構築物	4．地震による損䶌防止に関する設計 4.5 耐震設計方針の明確化

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
じたものを用いる。	大事故防止設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物のらち共振のおそれがあ り，動的解析が必要なものに対しては，弾性設計用地震動S dに2分の1を乗じたものを用いる。【5 条18】【50条29】		
（b）地震応答解析 イ．動的解析法 （イ）建物•構築物 動的解析による地震力の算定に当たっては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，建物•構築物に応じた適切な解析条件を設定する。動的解析は，時刻歴応答解析法又は線形解析に適用可能な周波数応答解析法によ る。 建物•構築物の動的解析に当たつては，建物•構築物の剛性はそれらの形状，構造特性等を十分考慮して評価し，集中質点系等に置換した解析モデルを設定す る。 動的解析には，建物•構築物と地盤との相互作用を考慮するものとし，解析モデルの地盤のばね定数は，基礎版の平面形状，基礎側面と地盤の接触状況，地盤 の剛性等を考慮して定める。設計用地盤定数は，原則 として，弾性波試験によるものを用いる。	（b）地震応答解析 个．動的解析法 （イ）建物•構築物 動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，建物•構築物に応じた適切な解析条件を設定する。動的解析は，時刻歴応答解析法又は線形解析に適用可能な周波数応答解析法によ る。 建物•構築物の動的解析に当たつては，建物•構築物の剛性はそれらの形状，構造特性等を十分考慮して評価し，集中質点系等に置換した解析モデルを設定す る。 動的解析には，建物•構築物と地盤との相互作用を考慮するものとし，解析モデルの地盤のばね定数は，基礎版の平面形状，基礎側面と地盤の接触状況，地盤 の剛性等を考慮して定める。設計用地盤定数は，原則 として，弾性波試験によるものを用いる。【5条19】	VI－2－1－6 地震応答解析の基本方針 2．地震応答解析の方針 2.1 建物•構築物	4．地震による損傷防止に開する設計 4.5 耐震設計方針の明碓化
	地盤－建物•構築物連成系の減衰定数は，振動工ネ ルギの地下逸散及び地震応答における各部のひずみレ ベルを考慮して定める。 基準地震動 s s 及び弾性設計用地震動 Sd 亿対する応答解析において，主要構造要素がある程度以上弹性範囲を超える場合には，実験等の結果に基づき，該当 する建物部分の構造特性に応じて，その弹塑性挙動を適切に模篧した復元力特性を考慮した応答解析を行 う。 また， S クラスの施設を支持する建物•構築物及び常設而震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準払張）（当該設備が属 する耐震重要度分頻がSクラスのもの）又は常設重大事故緩和設備（設計基準抗張）が設置される重大事故等対処施設を支持する建物•構築物の支持機能を検討す るための動的解析において，施設を支持する建物•構築物の主要糗造要素がある程度以上弾性範囲を超える場合には，その弾塑性挙動を適切に模擬した復元力特性を考慮した応答解析を行う。 応答解析に用いる材料定数については，地盤の諸定数も含めて材料のばらつきによる変動幅を適切に考慮 する。なお，平成23年（2011年）東北地方太平洋沖地	VI－2－1－6 地震応答解析の基本方針 2．地震応答解析の方針 2.1 建物•構築物 2.3 屋外重要土木構造物 3．設計用減衰定数	4．地震による損傷防止に開する設計 4.5 而震設計方針の明碓化

基本設計方針		設計結果の記載䀋所	様式－1への反映結果
変更前	変更後		
	震等の地震やコンクリートの乾燥收縮によるひび割れて 等に伴ら初期剛性の低下については，権測記録や試験 データなどから適切に応答解析モデルー反映し，保守性を碓認した上で適用する。屋外重要土木構造物につ いては，平成23年（2011年）東北地方太平洋沖地震等 の地震に起因する構造上問題となるひび割れから認めら れないこと及び地中構造物である屋外重要土木構造物 に対する支配的な地震時荷重である土压は，ひび割れ等に起因する初期剛性低下を考慮しない方が保守的な評価となる。したがって，屋外重要土木構造物につい ては，初期剛性低下を考慮しないが，必要に応じて機器•配管系の設計用地震力に及ぼす影響を検討する。 さらに，材料のばらつきによる変動が建物•構築物の振動性状や応答性状に及ぼす影響として考慮すべき要因を選定した上で，選定された要因を考慮した動的解析により設計用地震力を設定する。【5 条20】【50条30】		
	建物•構築物の動的解析にて，地震時の地盤の有効応力の変化に応じた影響を考慮する場合は，有効応力解析を実施する。有効応力解析に用いる液状化強度特性は，敷地の原地盤における代表性及び絧羅性を踏ま えた上で実施した液状化強度試験結果に基づき，保守性を考慮して設定する。【5条21】	VI－2－1－6 地震応答解析の基本方針 2．地震応答解析の方針 2.1 建物•構築物 2.3 屋外重要士木構造物	4．地震による損篤防止に関する設計 4.5 而震設計方針の明碓化
	原子炉建屋については，3次元FEM解析等から，建物•構築物の3次元応答性状及びそれによる機器•配管系へ の影響を評価する。 動的解析に用いる解析モデルは，地震観測網により得られた観測記録により振動性状の把握を行い，解析 モデルの妥当性の碓認を行ら。 屋外重要土木構造物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備 （設計基準拡張）（当該設備が属する耐震重要度分類が Sクラスのもの）又は常設重大事故緩和設備（設計基準抁張）が設置される重大事故等対処施設の土木構造物 の動的解析は，構造物と地艦の相互作用を考慮できる連成系の地震応答解析手法とし，地盤及び構造物の地震時における非線形挙動の有無や程度に応じて，線形，等価線形又は非線形解析のいずれかにて行う。 地震力については，水平2方向及び鉛直方向について適切に組み合わせて算定する。【5 条22】【50条31】	VI－2－1－6 地震応答解析の基本方針 2．地震応答解析の方針 2.1 建物•構築物 2.3 屋外重要士木構造物	4．地震による損傷防止に関する設計 4.5 耐震設計方針の明確化 4． 10 水平2方向及び鉛直方向地震力の組合せに関する影響評価
（口）機器•配管系 動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，解析条件として考慮すべ き減衰定数，剛性等の各種物性値は，適切な規格及び基準又は試験等の結果に基づき設定する。なお，原子	（ロ）機器•配管系 動的解析による地震力の算定に当たっては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，解析条件として考慮すべ き減衰定数，剛性等の各種物性値は，適切な規格及び基準又は試験等の結果に基づき設定する。ここで，原	VI－2－1－6 地震応答解析の基本方針 2．地震応答解所の方針 2.2 機器•配管系	4．地震による損傷防止に関する設計 4.5 耐震設計方針の明碓化 4． 10 水平2方向及び鉛直方向地震力の組合せに関する影響評価

| | |
| :--- | :--- | :--- | :--- | :--- | :--- |

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	また，地盤と屋外重要土木構造物の連成系地震応答解析モデルの減衰定数については，地中構造物として の特徴，同モデルの振動特性を考慮して適切に設定す る。【5条24】【50条32】		
（4）荷重の組合せと許容限界 耐震設計における荷重の組合せと許容限界は以下に よる。 a．耐震設計上考慮する状態地震以外に設計上考慮する状態を以下に示す。 （a）建物•構築物 設計基準対象施設については以下のイ．～ハ。の状態 を考慮する。 イ．運転時の状態 発電用原子炉施設が運転状態にあり，通常の自然条件下におかれている状態。 ただし，運転状態には通常運転時，運転時の異常な過渡変化時を含むものとする。 口．設計基準事故時の状態 発電用原子炉施設が設計基準事故時にある状態。 八．設計用自然条件 設計上基本的に考慮しなければならない自然条件 （風，積雪）。	（4）荷重の組合せと許容限界 耐震設計における荷重の組合せと許容限界は以下に よる。 a．耐震設計上考慮する状態 地震以外に設計上考慮する状態を以下に示す。 （a）建物•構築物 設計基準対象施設については以下のイ。～ハ。の状態，重大事故等対処施設については以下のイ．～ニ．の状態を考慮する。 イ．運転時の状態 発電用原子炉施設が運転状態にあり，通常の自然条件下におかれている状態。 ただし，運転状態には通常運転時，運転時の異常な過渡変化時を含むものとする。 口．設計基準事故時の状態 発電用原子炉施設が設計基準事故時にある状態。 八。設計用自然条件 設計上基本的に考慮しなければならない自然条件 （風，積雪）。【5 条25】【50条33】 二．重大事故等時の状態 発電用原子炉施設が，重大事故に至るおそれがある事故又は重大事故時の状態で，重大事故等対処施設の機能を必要とする状態。【50条34】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （1）耐震設計上考慮する状態	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針
（b）機器•配管系 設計基準対象施設については以下のイ，～ニ．の状態 を考慮する。 イ．通常運転時の状態 発電用原子炉の起動，停止，出力運転，高温待機，燃料取替等が計画的又は頻繁に行われた場合であって運転条件が所定の制限値以内にある運転状態。 ロ．運転時の異常な過渡変化時の状態 通常運転時に予想される機械又は器具の単一の故障若しくはその誤作動又は運転員の単一の誤操作及びこ れらと類似の頻度で発生すると予想される外乱によっ て発生する異常な状態であって，当該状態が継続した場合には炉心又は原子炉冷却材圧力バウンダリの著し い損傷が生じるおそれがあるものとして安全設計上想定すべき事象が発生した状態。 八。設計基準事故時の状態 発生頻度が運転時の異常な過渡変化より低い異常な	（b）機器•配管系 設計基準対象施設については以下のイ．～ニ．の状態，重大事故等対処施設については以下のイ．～ホ．の状態を考慮する。 イ．通常運転時の状態 発電用原子炉の起動，停止，出力運転，高温待機，燃料取替等が計画的又は頻繁に行われた場合であって運転条件が所定の制限値以内にある運転状態。 ロ．運転時の異常な過渡変化時の状態 通常運転時に予想される機械又は器具の単一の故障若しくはその誤作動又は運転員の単一の誤操作及びこ れらと類似の頻度で発生すると予想される外乱によっ て発生する異常な状態であって，当該状態が継続した場合には炉心又は原子炉冷却材圧力バウンダリの著し い損傷が生じるおそれがあるものとして安全設計上想定すべき事象が発生した状態。 ハ。設計基準事故時の状態 発生頻度が運転時の異常な過渡変化より低い異常な	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （1）耐震設計上考慮する状態	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
状態であって，当該状態が発生した場合には発電用原子炉施設から多量の放射性物質が放出するおそれがあ るものとして安全設計上想定すべき事象が発生した状態。 二．設計用自然条件 設計上基本的に考慮しなければならない自然条件 （風，積雪）。	状態であって，当該状態が発生した場合には発電用原子炉施設から多量の放射性物質が放出するおそれがあ るものとして安全設計上想定すべき事象が発生した状態。 二．設計用自然条件 設計上基本的に考慮しなければならない自然条件 （風，積雪）。【5条26】【50条35】 ホ。 重大事故時の状態 発電用原子炉施設が，重大事故に至るおそれがある事故又は重大事故時の状態で，重大事故等対処施設の機能を必要とする状態。【50条36】		
b．荷重の種類 （a）建物•構築物 設計基準対象施設については以下のイ。～ニ，の荷重 とする。 イ．発電用原子炉のおかれている状態にかかわらず常時作用している荷重，すなわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重 ロ．運転時の状態で施設に作用する荷重 ハ．設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 ただし，運転時の状態及び設計基準事故時の状態で の荷重には，機器•配管系から作用する荷重が含まれ るものとし，地震力には，地震時土圧，機器•配管系 からの反力，スロッシング等による荷重が含まれるも のとする。	b．荷重の種類 （a）建物•構築物 設計基準対象施設については以下のイ．～ニ．の荷重，重大事故等対処施設については以下のイ．～ホ，の荷重とする。 イ．発電用原子炉のおかれている状態にかかわらず常時作用している荷重，すなわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重 口．運転時の状態で施設に作用する荷重 ハ。設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重【5条27】【50条37】 ホ。 重大事故等時の状態で施設に作用する荷重【50条 38】 ただし，運転時の状態，設計基準事故時の状態及び重大事故等時の状態での荷重には，機器•配管系から作用する荷重が含まれるものとし，地震力には，地震時土圧，機器•配管系からの反力，スロッシング等に よる荷重が含まれるものとする。【5条28】【50条39】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （2）荷重の種類	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針
（b）機器•配管系 設計基準対象施設については，以下のイ．～ニ．の荷重とする。 イ．通常運転時の状態で施設に作用する荷重 ロ．運転時の異常な過渡変化時の状態で施設に作用 する荷重 八．設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重	（b）機器•配管系 設計基準対象施設については，以下のイ．～ニ．の荷重，重大事故等対処施設については以下のイ．～ホ，の荷重とする。 イ．通常運転時の状態で施設に作用する荷重 ロ．運転時の異常な過渡変化時の状態で施設に作用 する荷重 八。設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重【5条29】【50条40】 ホ，重大事故等時の状態で施設に作用する荷重【50条 41】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （2）荷重の種類	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針
c．荷重の組合せ 地震と組み合わせる荷重については，以下のとおり設定する。	c．荷重の組合せ 地震と組み合わせる荷重については，「2．3 外部か らの衝撃による損傷の防止」で設定している風及び積雪による荷重を考慮し，以下のとおり設定する。【5 条 30】【50条42】	VI－2－1－1 而震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損傷方止に関する設計 4． 1 而震設計の基本方針

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
（a）建物•構築物 イ．Sクラスの建物•構築物については，常時作用し ている荷重及び運転時（通常運転時又は運転時の異常 な過渡変化時）の状態で施設に作用する荷重と地震力 とを組み合わせる。 ロ．Sクラスの建物•構築物については，常時作用し ている荷重及び設計基準事故時の状態で施設に作用す る荷重のらち長時間その作用が続く荷重と弾性設計用地震動による地震力又は静的地震力とを組み合わせ る。	（a）建物•構築物（（c）に記載のものを除く。） 1．Sクラスの建物•構築物及び常設而震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡掁）が設置される重大事故等対処施設の建物•構筑物については，常時作用している荷重及び運転時 （通常運転時又は運転時の異常な過渡変化時）の状態 で施設に作用する荷重と地震力とを組み合わせる。【5条31】【50条43】 ロ．Sクラスの建物•構築物については，常時作用し ている荷重及ひ設計基準事故時の状態で施設に作用す る荷重のらち長時間その作用が続く荷重と弾性設計用地震動S dによる地震力又は静的地震力とを組み合わ せる。＊1，＊2 ［5条32】	VI－2－1－1 而震設計の基本方針 5．機能維持の基本方針 5.1 構造强度 （3）荷重の組合せ	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針
	八。 常設而震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基漼拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準抁張）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重，設計基準事故時の状態及び重大事故等時の状態で施設に作用する荷重のらち，地震によっ て引き起こされるおそれがある事象によって作用する荷重と地震力とを組み合わせる。重大事故等による荷重は設計基準対象施設の耐震設計の考え方及び碓率論的な考察を踏まえ，地震によって引き起こされるおそ れがない事象による荷重として扱う。【50条44】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損䶌防止汇関する設計 4.1 而震設計の基本方針
	二．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重，設計基準事故時の状態及び重大事故等時の状態で施設に作用する荷重のらち，地震によっ て引き起こされるおそれがない事象による荷重は，そ の事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力（基準地震動 S s又は弹性設計用地震動S dによる地震力）と組み合わ せる。この組合せについては，事故事象の発生確率，継続時間及び地震動の年超過碓率の積等を考慮し，工学的，総合的に勘案の上設定する。なお，継続時間に ついては対策の成立性も考慮した上で設定する。 以上を踏まえ，原子炉格納容器バウンダリを構成す る施設（原子炉格納容器内の圧力，温度の条件を用い	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損篥防止に関する設計 4.1 而震設計の基本方針

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	て評価を行らその他の施設を含を。）については，いつ たん事故が発生した場合，長時間繗続する事象による荷重と弹性設計用地震動S d による地震力とを組み合 わせ，その状態から更に長期的に繙続する事象による荷重と基準地震動S s による地震力を組み合わせる。 なお，格納容器破損モードの評価シナリオのうち，原子炉圧力容器が破損する評価シナリオについては，重大事故等対処設備による原子炉注水は実施しない想定 として評価しており，本来は機能を期待できる高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ）又は低圧代替注水系（常設）（直流駆動低圧注水系ポン プ）による原子炉注水により炻心損傷の回避が可能で あることから荷重条件として考慮しない。 また，その他の施設については，いつたん事故が発生した場合，長時間継続する事象による荷重と基準地震動S s による地震力とを組み合わせる。【50条45】		
八．Bクラス及びCクラスの建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用 する荷重と動的地震力又は静的地震力とを組み合わせ る。		VI－2－1－1 而震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損馥防止汇関する設計 4.1 耐震設計の基本方針
	＊1：Sクラスの建物•構築物の設計基準事故の状態で施設に作用する荷重については，（b）機器•配管系の考 え方に沿った下記の 2 つの考え方に基づき検討した結果として後者を踏まえ，施設に作用する荷重のらち長時間その作用が続く荷重と弾性設計用地震動Sdによ る地震力又は静的地震力とを組み合わせることとして いる。この考え方は，JEAG4601における建物•構築物の荷重の組合せの記載とも整合している。 常時作用している荷重及び設計基準事故時の状態の らち地震によって引き起こされるおそれのある事象 によって施設に作用する荷重は，その事故事象の継続時間との関係を踏まえ，適切な地震力と組み合わ せて考慮する。 －常時作用している荷重及び設計基準事故時の状態の らち地震によって引き起こされるおそれのない事象 であっても，いったん事故が発生した場合，長時間継続する事象による荷重は，その事故事象の発生確率，継続時間及び地震動の超過確率の関係を踏まえ，適切な地震力と組み合わせる。 ＊2：原子炉格納容器バウンダリを構成する施設につい ては，異常時圧力の最大値と弾性設計用地震動S dに	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損篤防止に関する設計 4.1 耐震設計の基本方針

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	よる地震力とを組み合わせる。【5条34】		
（b）機器•配管系 イ．Sクラスの機器•配管系については，通常運転時 の状態で施設に作用する荷重と地震力とを組み合わせ る。 ロ．Sクラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のう ち地震によって引き起こされるおそれのある事象によ つて施設に作用する荷重と地震力とを組み合わせる。	（b）機器•配管系（（c）に記載のものを除く。） イ．Sクラスの機器•配管系及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，通常運転時の状態で施設に作用す る荷重と地震力とを組み合わせる。【5条35】【50条47】 ロ。Sクラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のう ち地震によって引き起こされるおそれのある事象によ つて施設に作用する荷重と地震力とを組み合わせる。【5条36】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針
	八．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，運転時 の異常な過渡変化時の状態，設計基準事故時の状態及 び重大事故等時の状態で作用する荷重のらち，地震に よって引き起こされるおそれがある事象によって作用 する荷重と地震力とを組み合わせる。重大事故等によ る荷重は設計基準対象施設の耐震設計の考え方及び確率論的な考察を踏まえ，地震によって引き起こされる おそれがない事象による荷重として扱う。【50条48】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針
ハ。Sクラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のう ち地震によって引き起こされるおそれのない事象であ っても，いったん事故が発生した場合，長時間継続す る事象による荷重は，その事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力と組み合わせる。	ニ．Sクラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のう ち地震によって引き起こされるおそれのない事象であ っても，いったん事故が発生した場合，長時間継続す る事象による荷重は，その事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力と組み合わせる。＊3【5条37】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	（基本設計方針に変更はないが，設工認で必要な設計） 4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針
	ホ。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，運転時 の異常な過渡変化時の状態，設計基準事故時の状態及 び重大事故等時の状態で施設に作用する荷重のらち地震によって引き起こされるおそれがない事象による荷重は，その事故事象の発生確率，継続時間及び地震動 の年超過確率の関係を踏まえ，適切な地震力（基準地震動 S s 又は弾性設計用地震動 S d による地震力）と組 み合わせる。この組合せについては，事故事象の発生	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	確率，継続時間及び地震動の年超過確率の積等を考慮 し，工学的，総合的に勘案の上設定する。なお，継続時間については対策の成立性も考慮した上で設定す る。 以上を踏まえ，重大事故等時の状態で作用する荷重 と地震力（基準地震動 S s 又は弾性設計用地震動 Sd による地震力）との組合せについては，以下を基本設計とする。 原子炉冷却材圧力バウンダリを構成する設備につい ては，いったん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動S d による地震力 とを組み合わせ，その状態から更に長期的に継続する事象による荷重と基準地震動 S s による地震力とを組 み合わせる。 原子炉格納容器バウンダリを構成する設備（原子炉格納容器内の圧力，温度の条件を用いて評価を行うそ の他の施設を含む。）については，いったん事故が発生 した場合，長時間継続する事象による荷重と弾性設計用地震動Sdによる地震力とを組み合わせ，その状態 から更に長期的に継続する事象による荷重と基準地震動 S s による地震力とを組み合わせる。 なお，格納容器破損モードの評価シナリオのらち，原子灲圧力容器が破損する評価シナリオについては，重大事故等対処設備による原子炬注水は実施しない想定として評価しており，本来は機能を期待できる高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ）又は低圧代替注水系（常設）（直流駆動低圧注水系ポン プ）による原子炉注水により炉心損傷の回避が可能で あることから荷重条件として考慮しない。 その他の施設については，いったん事故が発生した場合，長時間継続する事象による荷重と基準地震動S sによる地震力とを組み合わせる。【50条49】		
二．Bクラス及びCクラスの機器•配管系については，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用する荷重と，動的地震力又は静的地震力とを組み合わせる。	へ．Bクラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準抆張）（当該設備 が属する耐震重要度分類がBクラス又はCクラスのも の）が設置される重大事故等対处施設の機器•配管系 については，通常運転時の状態で施設に作用する荷重及び連転時の異常な過渡変化時の状態で施設に作用す る荷重と，動的地震力又は静的地震力とを組み合わせ る。【5条38】【50条50】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損㑱防止に関する設計 4.1 而震設計の基本方針
	ト．炬心内の燃料被覆管の放射性物質の閉じ込めの機能の確認においては，通常運転時の状態で燃料被覆管に作用する荷重及び運転時の異常な過渡変化時の状態のらち地震によって引き起こされるおそれのある事	VI－2－1－1 而震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損傷方止に関する設計 4.1 耐震設計の基本方針

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	象によって燃料被覆管に作用する荷重と地震力とを組 み合わせる。【5条39】		
	＊3：原子炉格納容器バウンダリを構成する設備につい ては，異常時圧力最大値と弾性設計用地震動 S dによ る地震力とを組み合わせる。【5 条76】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損傷方止に関する設計 4.1 而震設計の基本方針
	（c）津波防護施設，浸水防止設備及び津波監視設備並 びに浸水防止設備が設置された建物•構築物 イ．津波防護施設及び浸水防止設備が設置された建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用する荷重と基準地震動S s に よる地震力とを組み合わせる。 口。 浸水防止設備及び津波監視設備については，常時作用している荷重及び運転時の状態で施設に作用する荷重と基準地震動 S s による地震力とを組み合わせ る。 なお，上記（c）イ．，ロ．については，地震と津波が同時に作用する可能性について検討し，必要に応じて基準地震動S s による地震力と津波による荷重の組合せ を考慮する。また，津波以外による荷重については， 「b．荷重の種類」に準じるものとする。【5条40】	VI－2－1－1 而震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損傷方止に関する設計 4.1 耐震設計の基本方針
	（d）荷重の組合せ上の留意事項 動的地震力については，水平2方向と鉛直方向の地震力とを適切に組み合わせ算定するものとする。【5 条41】【50条51】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （3）荷重の組合せ	4．地震による損傷方止に関する設計 4.1 耐震設計の基本方針
d．許容限界 各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は次のとおりとし，安全上適切と認め られる規格及び基準，試験等で妥当性が確認されてい る値を用いる。	d．許容限界 各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は次のとおりとし，安全上適切と認め られる規格及び基準，試験等で妥当性が確認されてい る値を用いる。【5条42】【50条52】	VI－2－1－1 而震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損傷方止に関する設計 4.1 耐震設計の基本方針
（a）建物•構築物 イ．Sクラスの建物•構築物 （イ）弾性設計用地震動による地震力又は静的地震力 との組合せに対する許容限界 「建築基準法」等の安全上適切と認められる規格及 び基準による許容応力度を許容限界とする。	（a）建物•構築物（（c）に記載のものを除く。） イ．Sクラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物（へ，に記載のものを除く。） （イ）弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界 「建築基準法」等の安全上適切と認められる規格及 び基準による許容応力度を許容限界とする。 ただし，冷却材喪失事故時に作用する荷重との組合 せ（原子炉格納容器バウンダリを構成する設備におけ る長期的荷重との組合せを除く。）に対しては，下記 イ．（ロ）に示す許容限界を適用する。	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
（ロ）基準地震動による地震力との組合せに対する許容限界 構造物全体としての変形能力（終局耐力時の変形） について十分な余裕を有し，建物•構築物の終局耐力 に対し妥当な安全余裕を持たせることとする（評価項目はせん断ひずみ，応力等）。 なお，終局耐力は，建物•構築物に対する荷重又は応力を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，既往の実験式等に基づき適切に定めるものとする。	（ロ）基準地震動 S s による地震力との組合せに対す る許容限界 構造物全体としての変形能力（終局耐力時の変形）に ついて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとする（評価項目 はせん断ひずみ，応力等）。 なお，終局耐力は，建物•構築物に対する荷重又は応力を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性 の低下の要因として考えられる平成23年（2011年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等が鉄筋コンクリート造耐震壁の変形能力及び終局耐力に影響を与えないことを確認して いることから，既往の実験式等に基づき適切に定める ものとする。【5条43】【50条53】		
ロ．Bクラス及びCクラスの建物•構築物（へ，及びト。 に記載のものを除く。） 上記イ．（イ）による許容応力度を許容限界とする。	ロ．Bクラス及びCクラスの建物•構築物（へ，及びト。 に記載のものを除く。）並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの）が設置される重大事故等対処施設の建物•構築物（ト，に記載のものを除く。） 上記イ．（イ）による許容応力度を許容限界とする。【5条44】50条54】	VI－2－1－1 而震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界 5.2 機能維持	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針
八．耐震重要度分類の異なる施設を支持する建物•構築物（へ．及びト，に記載のものを除く。） 上記イ。（ロ）を適用するほか，耐震重要度分類の異な る施設がそれを支持する建物•構築物の変形等に対し て，その支持機能を損なわないものとする。 当該施設を支持する建物•構築物の支持機能が維持 されることを確認する際の地震動は，支持される施設 に適用される地震動とする。	八。 耐震重要度分類の異なる施設又は設備分類の異 なる重大事故等対処施設を支持する建物•構築物（ $へ$ 。及びト，に記載のものを除く。） 上記イ。（ロ）を適用するほか，耐震重要度分類の異な る施設又は設備分類の異なる重大事故等対処施設がそ れを支持する建物•構築物の変形等に対して，その支持機能を損なわないものとする。 当該施設を支持する建物•構築物の支持機能が維持 されることを確認する際の地震動は，支持される施設 に適用される地震動とする。【5 条45】【50条55】	VI－2－1－1 而震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針
二．建物•構築物の保有水平耐力（へ．及びト．に記載 のものを除く。） 建物•構築物については，当該建物•構築物の保有水平耐力が必要保有水平耐力に対して耐震重要度分類 に応じた安全余裕を有しているものとする。	ニ．建物•構築物の保有水平耐力（へ．及びト．に記載 のものを除く。） 建物•構築物については，当該建物•構築物の保有水平耐力が必要保有水平耐力に対して耐震重要度分類又は重大事故等対処施設が代替する機能を有する設計基準事故対処設備が属する耐震重要度分類に応じた安全余裕を有しているものとする。 ここでは，常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，上記における重大事故等対処施設 が代替する機能を有する設計基準事故対処設備が属す	VI－2－1－1 而震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	る耐震重要度分類をSクラスとする。【5条46】 【50条56】		
木。 気密性，止水性，遮蔽性，通水機能，貯水機能を考慮する施設 構造強度の確保に加えて気密性，止水性，遮蔽性，通水機能，貯水機能が必要な建物•構築物については， その機能を維持できる許容限界を適切に設定するもの とする。	木。 気密性，止水性，遮蔽性，通水機能，貯水機能を考慮する施設 構造強度の確保に加えて気密性，止水性，遮蔽性，通水機能，貯水機能が必要な建物•構築物については， その機能を維持できる許容限界を適切に設定するもの とする。【5条47】【50条57】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界 5.2 機能維持 （3）気密性の維持 （4）止水性の維持 （5）遮蔽性の維持 （7）通水機能及び貯水機能の維持	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針
へ．屋外重要土木構造物 （イ）静的地震力との組合せに対する許容限界 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 （口）基準地震動による地震力との組合せに対する許容限界 構造部材の曲げについては限界層間変形角，許容応力度等，構造部材のせん断についてはせん断耐力，許容応力度を許容限界とする。 なお，限界層間変形角，限界ひずみ，降伏曲げモー メント及びせん断耐力，限界せん断ひずみの許容限界 に対しては妥当な安全余裕を持たせることとし，それ ぞれの安全余裕については，各施設の機能要求等を踏 まえ設定する。	へ。 屋外重要土木構造物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物 （イ）静的地震力との組合せに対する許容限界 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 （ロ）基準地震動 S s による地震力との組合せに対す る許容限界 構造部材の曲げについては限界層間変形角，限界ひ ずみ，降伏曲げモーメント又は許容応力度，構造部材 のせん断についてはせん断耐力，許容応力度又は限界 せん断ひずみを許容限界とする。 なお，限界層間変形角，限界ひずみ，降伏曲げモー メント及びせん断耐力，限界せん断ひずみの許容限界 に対しては妥当な安全余裕を持たせることとし，それ ぞれの安全余裕については，各施設の機能要求等を踏 まえ設定する。【5条48】【50条58】	VI－2－1－1 而震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損傷防止に関する設計 4． 1 耐震設計の基本方針
ト，その他の土木構造物 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。	ト。その他の土木構造物及び常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの）が設置される重大事故等対処施設の土木構造物 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。【5条49】【50条59】	VI－2－1－1 而震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損傷方止に関する設計 4.1 而震設計の基本方針
（b）機器•配管系 イ．Sクラスの機器•配管系 （イ）弾性設計用地震動による地震力又は静的地震力 との組合せに対する許容限界 応答が全体的におおむね弾性状態にとどまるものと する（評価項目は応力等）。	（b）機器•配管系（（c）に記載のものを除く。） イ．Sクラスの機器•配管系 （イ）弾性設計用地震動 $\mathrm{S} d$ による地震力又は静的地震力との組合せに対する許容限界 応答が全体的におおむね弾性状態にとどまるものと する（評価項目は応力等）。 ただし，冷却材喪失事故時に作用する荷重との組合 せ（原子炉格納容器バウンダリ及び非常用炉心椧却設	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界 5.2 機能維持 （1）動的機能維持 （2）電気的機能維持	4．地震による損傷防止に関する設計 4.1 而震設計の基本方針

基本設計方針		設計結果の記載箇所	様式 $-1 へ$ の反映結果
変更前	変更後		
（ロ）基準地震動による地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても，その量が小さ なレベルにとどまって破断延性限界に十分な余裕を有 し，その施設に要求される機能に影響を及ぼさないよ らに応力，荷重等を制限する値を許容限界とする。 また，地震時又は地震後に動的機能又は電気的機能 が要求される機器については，基準地震動による応答 に対して，実証試験等により確認されている機能確認済加速度等を許容限界とする。	備等における長期的荷重との組合せを除く。）に対して は，下記イ。（ロ）に示す許容限界を適用する。 （ロ）基準地震動 S s による地震力との組合せに対す る許容限界 塑性ひずみが生じる場合であっても，その量が小さ なレベルにとどまって破断延性限界に十分な余裕を有 し，その施設に要求される機能に影響を及ぼさないよ らに応力，荷重等を制限する値を許容限界とする。 また，地震時又は地震後に動的機能又は電気的機能 が要求される機器については，基準地震動S s による応答に対して，実証試験等により確認されている機能確認済加速度等を許容限界とする。【5条50】		
	口。常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系 イ．（ロ）に示す許容限界を適用する。 ただし，原子炉格納容器バウンダリを構成する設備及び非常用炉心泠却設備等の弹性設計用地震動Sdと設計基準事故時の状態における長期的荷重との組合せ に対する許容限界は，イ．（イ）に示す許容限界を適用す る。【50条60】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損傷防止に関する設計 4.1 耐震設計の基本方針
ロ．Bクラス及びCクラスの機器•配管系 応答が全体的におおむねね弾性状態にとどまることと する（評価項目は応力等）。	ハ．Bクラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備 が属する耐震重要度分類Bクラス又はCクラスのもの） が設置される重大事故等対処施設の機器•配管系 応答が全体的におおむねね弾性状態にとどまることと する（評価項目は応力等）。【5条51】【50条61】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損傷方止に関する設計 4.1 耐震設計の基本方針
ハ．チャンネルボックス チャンネルボックスは，地震時に作用する荷重に対 して，燃料集合体の原子炉冷却材流路を維持できるこ と及び過大な変形や破損を生ずることにより制御棒の挿入が阻害されないものとする。	ニ．チャンネルボックス チャンネルボックスは，地震時に作用する荷重に対 して，燃料集合体の原子炉泠却材流路を維持できるこ と及び過大な変形や破損を生ずることにより制御棒の挿入が阻害されないものとする。【5 条52】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損傷防止に関する設計 4． 1 耐震設計の基本方針
	ホ，燃料被覆管 灲心内の燃料被覆管の放射性物質の閉じ込めの機能 についての許容限界は，以下のとおりとする。 （イ）弾性設計用地震動 Sd による地震力又は静的地震力との組合せに対する許容限界 応答が全体的におおむね弾性状態にとどまることと する。 （ロ）基準地震動 S s による地震力との組合せに対す る許容限界 塑性ひずみが生じる場合であっても，その量が小さな	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損傷方止に関する設計 4.1 耐震設計の基本方針

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	レベルにとどまって破断延性限界に十分な余裕を有 し，放射性物質の閉じ込めの機能に影響を及ぼさない こととする。【5条53】		
二．主蒸気逃がし安全弁排気管及び主蒸気系（主蒸気第二隔蝺升から主蒸気止め弁まで） 主蒸気逃がし安全弁排気管は基準地震動に対して，主蒸気系（主蒸気第二隔霍升から主蒸気止め升まで） は弾性設計用地震動に対してイ。（ロ）に示す許容限界 を適用する。	へ。 主蒸気逃がし安全升排気管及び主蒸気系（主蒸気第二隔離升から主蒸気止め弁まで） 主蒸気逃がし安全弁排気管は基準地震動 S s に対し て，主蒸気系（主蒸気第二隔離弁から主蒸気止め弁ま で）は弾性設計用地震動Sdに対してイ。（ロ）に示す許容限界を適用する。【5 条54】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損傷防止に関する設計 4． 1 耐震設計の基本方針
	（c）津波防護施設，浸水防止設備及び津波監視設備並 びに浸水防止設備が設置された建物•構築物 津波防護施設及び浸水防止設備が設置された建物•構築物については，当該施設及び建物•構築物が構造物全体としての変形能力（終局耐力時の変形）及び安定性について十分な余裕を有するとともに，その施設 に要求される機能（津波防護機能及び浸水防止機能） が保持できるものとする（評価項目はせん断ひずみ，応力等）。 浸水防止設備及び津波監視設備については，その設備に要求される機能（浸水防止機能及び津波監視機能） が保持できるものとする。【5条55】	VI－2－1－1 耐震設計の基本方針 5．機能維持の基本方針 5.1 構造強度 （4）許容限界	4．地震による損馥防止に開する設計 4． 1 耐震設計の基本方針
	（5）設計における留意事項 a．波及的影響 耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラ スのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（以下「上位ク ラス施設」という。）は，下位クラス施設の波及的影響によって，その安全機能及び重大事故等に対処する ために必要な機能を損なわない設計とする。 波及的影響については，耐震重要施設の設計に用い る地震動又は地震力を適用して評価を行う。なお，地震動又は地震力の選定に当たつては，施設の配置状況，使用時間等を踏まえて適切に設定する。また，波及的影響においては水平2方向及び鉛直方向の地震力 が同時に作用する場合に影響を及ぼす可能性のある施設，設備を選定し評価する。 波及的影響の評価に当たつては，敷地全体を俯㒈し た調査•検討等を行う。 ここで，下位クラス施設とは，上位クラス施設以外 の発電所内にある施設（資機材等含む。）をいう。 波及的影響を防止するよう現場を維持するため，機器設置時の配慮事項等を保安規定に定めて管理する。耐震重要施設に対する波及的影響については，以下	VI－2－1－1 耐震設計の基本方針 3.3 波及的影響に対する考慮 VI－2－1－5 波及的影響に係る基本方針 5.3 設計用地震動又は地震力 6．工事段階における下位クラス施設の調査•検討 VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関す る影響評価方針 4．各施設における水平2方向及び鉛直方向地震力の組合 せに対する影響評価方針 〈下線部〉 運用に関する記載であり，保安規定にて対応	4．地震による損傷防止に関する設計 4.4 耐震設計を行ら設備の抽出 4.5 而震設計方針の明確化 〈下線部〉

基本設計方針		設計結果の記載䈏所		様式一1への反映結果
変更前	変更後			
	に示す（a）～（d）の4つの事項から検討を行ら。 なお，原子力発電所の地震被害情報等から新たに検討すべき事項が抽出された場合には，これを追加す る。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準㹡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基漼払張）が設置される重大事故等対処施設に対する波及的影響については，以下㲸示す（a）～（d）の4つの事項について「耐震重要施設」を「常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡掁） （当該設備が属する耐震重要度分類がSクラスのも の）又は常設重大事故緩和設備（設計基漼拡掁）が設置される重大事故等対処施設」に，「安全機能」を 「重大事故等に対処するために必要な機能」に読み替 えて適用する。【5 条56】【50条62】【50条63】			
	（a）設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位による影響 イ．不等沈下 耐震重要施設の設計に用いる地震動又は地震力に対 して，不等沈下による耐震重要施設の安全機能への影響。 口．相対変位 耐震重要施設の設計に用いる地震動又は地震力に対 して，下位クラス施設と耐震重要施設の相対変位によ る耐震重要施設の安全機能への影響。【5条57】 （b）耐震重要施設と下位クラス施設との接続部にお ける相互影響 耐震重要施設の設計に用いる地震動又は地震力に対 して，耐震重要施設に接続する下位クラス施設の損傷 による耐震重要施設の安全機能への影響。【5 条58】 （c）建屋内における下位クラス施設の損傷，転倒，落下等による耐震重要施設への影響 耐震重要施設の設計に用いる地震動又は地震力に対 して，建屋内の下位クラス施設の損傷，転倒，落下等 による耐震重要施設の安全機能への影響。【5 条59】 （d）建屋外における下位クラス施設の損傷，転倒，落下等による耐震重要施設への影響 耐震重要施設の設計に用いる地震動又は地震力に対 して，建屋外の下位クラス施設の損傷，転倒，落下等 による耐震重要施設の安全機能への影響。【5 条60】		－	（用語の定義のみ）
	b．主要施設への地下水の影響 防潮堤下部の改良地盤及び置換コンクリートにより山から海に向から地下水の流れが遮断され，敷地内の	$\begin{aligned} & \mathrm{VI}-2-1-1 \\ & \mathrm{VI}-2-1-3 \end{aligned}$	而震設計の基本方針 地縏の支持性能に係る基本方針	4．地震による損傷防止に関する設計 4.4 而震設計を行ら設備の抽出 4.5 耐震設計方針の明碓化

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	地下水位が地表面付近まで上昇するおそれがあること を踏まえ，原子炉建屋，制御建屋及び第3号機海水熱交换器建屋に作用する揚圧力の低減及び周辺の土木構造物等に生じる液状化影響の低減を目的とし，地下水位 を一定の範囲江保持するために，原子炬建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアに地下水位低下設備を各エリア2系統設置する。 耐震評価において，地下水位の影響を受ける施設及 びアクセスルートについて，地下水位低下設備の効果 が及ぶ範囲（0．P．＋14．8盤）においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮す る。なお，地下水位低下設備の効果が及ばない筙囲に おいては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮す る。【5条61】【50条64】	VI－2－1－4 而震重要度分類及び重大事故等対処施設の施設区分の基本方針 VI－2－1－5 波及的影響に係る基本方針 VI－2－2－2 原子炉建屋の耐震性についての計算書 VI－2－11 波及的影響を及ばすおそれのある施設の耐震性 についての計算書 VI－2－1－1－別添1 地下水位低下設備の設計方針	19．地下水位低下設備の設計
	地下水位低下設備は，ドレーン，接続桝，揚水井戸，蓋，揚水ポンプ，配管，水位計，制御盤，電源（非常用 ディーゼル発電機），電源盤及び電路により系統を構成 する。【5条66】【50条72】	$\mathrm{VI}-2-1-1$－別添 1 地下水位低下設備の設計方針	4．地震による損傷防止に関する設計 4.4 耐震設計を行ら設備の抽出 4.5 而震設計方針の明確化 19．地下水位低下設備の設計
	地下水位低下設備は，ドレーン及び接絸桝により揚水井戸に地下水を集水し，揚水ポンプ（容量 $375 \mathrm{~m}^{3} / \mathrm{h} /$個，掦程 52 m ，原動機出力 $110 \mathrm{~kW} /$ 個）により，掦水ポン プに接続された配管を通して地下水を屋外排水路へ排水する。 掦水ポンプは，地下水の最大流入量を排水可能な容量を有する設計とし，設備の信頼性向上のため 100% 容量のポンプを1系統当たり2個（計8個）設置し，集水し た地下水を排水できる設計とする。 配管上端部には仮設ホース等を接続するための接続口を設置し，屋外排水路の排水異常により地表面での滞水が碓認された場合に，揚水ポンプにより没み上げ た地下水を仮設ホース等を通じて排水可能なものとす る。【5条67】50条73】	VI－2－1－1－別添1 地下水位低下設備の設計方針	4．地震による損鹪防止に関する設計 4． 4 而震設計を行ら設借の抽出 4.5 而震設計方針の明碓化 19．地下水位低下設備の設計
	地下水位低下設備は，1系統当たり3個（計12個）設置した水位計からの水位信号を用いて， 2 out of 3論理により揚水ポンプの自動起動及び自動停止を行らこ とで，揚水井戸の水位を自動で制御できる設計とする。 また，各系統の水位を，原子炉建屋及び中央制御室 に設置した制御盤から監視可能な設計とする。 水位や設備の異常時には，これらを碓実に倹出して自動的に中央制御室に警報（水位低又は高，水位高高，電源衰失，揚水ポンプ故障）を発信する装置を設ける とともに，表示ランプの点灯，ブザー鳴動により連転員に通報できる設計とする。 \qquad	VI－2－1－1－別添1 地下水位低下設備の設計方針	4．地震による損瞀防止に関する設計 4.4 而震設計を行ら設借の抽出 4.5 耐震設計方針の明碓化 19．地下水位低下設備の設計

基本設計方針		設計結果の記載箇所		様式 -1 への反映結果
変更前	変更後			
	及び中央制御室に1面ずつ設置し，原子炬建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリアのそれ ぞれ1系統の設備ごとに，監視•制御可能な設計とする。【5条68】【50条74】			
	地下水位低下設備は，電源盤（容量296kVA），及び電路を設置し，非常用交流電源設備である非常用ディー ゼル発電機から設備に必要な電力を供給できる設計と する。また，全交流動力電源表失となった場合は常設代替交流電源設備であるガスタービン発電機から設備 に必要な電力を供給できる設計とする。 電源盤は，2系統の独立した設備を1系䖻当たり1面ず つ設置し，原子炉建屋•制御建屋エリア及び第3号機海水熱交器建屋エリアのそれぞれ 1 系統の設備ごとに電力を供給できる設計とする。【5 条69】【50条75】	VI－2－1－1－別添 1	地下水位低下設備の設計方針	4．地震による損馥防止汇関する設計 4.4 侕震設計を行ら設備の抽出 4.5 而震設計方針の明碓化 19．地下水位低下設備の設計
	揚水ポンプ，配管及び水位計は揚水井戸内に設置し，揚水井戸により支持するとともに，揚水井戸上部に蒠 を設置することで，外部事象の影響を受けない設計と する。【5条70】【50条76】 地下水位低下設備は，地震時及び地震後を含む，原子力発電所の供用期間の全ての状態（通常運転時（起動時，停止時含む），運転時の異常な過渡変化時，設計基準事故時及び重大事故等時）において機能維持を可能とするため，基準地震動S s による地震力に対して機能維持する設計とする。 また，「実用発電用原子炬及びその附属施設の位置，構造及ひ設備の基準に関する規則」第十二条第2項に基 づき，地下水位低下設備を設置する原子炬建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアの各 エリアで，多重性及び独立性を備える設計とするとと もに，外部事象等による機能喪失要因に対し機能維持 する設計とする。 さらに，プラント供用期間中において発生を想定す る大規模損壊時の対応も考慮する。【5条62】【50条65】	VI－2－1－1－別添1	地下水位低下設備の設計方針	4．地震による損䍇防止に関する設計 4.4 侕震設計を行ら設備の抽出 4.5 而震設計方針の明碓化 19．地下水位低下設備の設計
	地下水位低下設備の機能㖉失が発生した場合を想定 し，復旧措置に必要な資機材として，原子炉建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリアに おける全ての地下水位低下設備の機能霛失を考慮し，予備品及び可搬ポンプ（個数 3 ，容量 $114 \mathrm{~m}^{3} \mathrm{~h} /$／個（計 $\left.342 \mathrm{~m}^{3} / \mathrm{h}\right)$ ）を搭載した可搬ポンプユニット（個数2）を配備する。【5条71】【50条77】	VI－2－1－1－別添1	地下水位低下設備の設計方針	4．地震による損傷防止に関する設計 4.4 耐震設計を行ら設備の抽出 4.5 而震設計方針の明碓化 19．地下水位低下設備の設計
	予備品は，復旧措置にあたり機器の交換が必要な場合江備え，各エリアを1系䖻復旧できる数量を配備す る。【5条72】【50条78】	VI－2－1－1－別添1	地下水位低下設備の設計方針	4．地震による損傷防止に関する設計 4． 4 耐震設計を行ら設備の抽出 4.5 而震設計方針の明碓化 19．地下水位低下設備の設計
	可搬ポンプニニットは，各エリアの排水機能の維持	VI－2－1－1－別添1	地下水位低下設備の設計方針	4．地震による損殤ら止に關する設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	（6）緊急時対策所 緊急時対策所については，基準地震動S s による地震力に対して，重大事故等に対処するために必要な機能が損なわれるおそれがない設計とする。【50条67】 緊急時対策所を設置する緊急時対策建屋について は，耐震構造とし，基準地震動 S s による地震力に対 して，遮蔽性能を確保する。また，緊急時対策所の居住性を確保するため，基準地震動S s による地震力に対して，緊急時対策所の換気設備の性能とあいまって十分な気密性を確保する。【50条68】 さらに，施設全体の更なる安全性を確保するため，基準地震動S s による地震力との組合せに対して，短期許容応力度以内に収める設計とする。【50条69】 なお，地震力の算定方法及び荷重の組合せと許容限界については，「2．1．1（3）地震力の算定方法」及び 「2．1．1（4）荷重の組合せと許容限界」に示す建物•構築物及び機器•配管系のものを適用する。【50条70】	VI－2－2 而震設計上重要な設備を設置する施設の而震性に ついての計算書 VI－2－10 その他発電用原子炉の附属施設の耐震性につい ての計算書	4．地震による損傷防止に関する設計 4.6 耐震設計上重要な設備を設置する施設の而震設計 4． 10 水平2方向及び鉛直方向地震力の組合せに関する影響評価
	2．1．2 地震による周辺斜面の崩壊に対する設計方針耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラ スのもの）又は常設重大事故緩和設備（設計基準抎張） が設置される重大事故等対処施設については，基準地震動S s による地震力により周辺斜面の崩壊の影響が ないことが碓認された場所に設置する。【5条64】50条 71】	VI－2－1－1 而震設計の基本方針 7．地震による周辺斜面の崩壊に対する設計方針	4．地震による損傷防止に関する設計 4.5 而震設計方針の明確化
	2.2 津波による損傷の防止 原子炉冷却系統施設の津波による損傷の防止の基本設計方針については，浸水防護施設の基本設計方針に基づく設計とする。【7条1】	「浸水防護施設」の設工認添付説明書	5．津波による損傷防止設計 VI－1－10－13 「浸水防護施設」の様式－1
2.2 外部からの衝撃による損傷の防止 設計基準対象施設は，外部からの衝撃のらち自然現象による損傷の防止において，発電所敷地で想定され る風（台風），凍結，積雪，落雷及び高潮の自然現象（地震及び津波を除く。）又はその組合せに遭遇した場合に おいて，自然現象そのものがもたらす環境条件及びそ の結果として施設で生じ得る環境条件において，その安全性を損ならおそれがある場合は，防護措置，基礎地盤の改良その他，供用中における運転管理等の運用上の適切な措置を講じる。	2.3 外部からの衝撃による損傷の防止 設計基準対象施設は，外部からの衝撃のうち自然現象による損傷の防止において，発電所敷地で想定され る風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮の自然現象（地震及び津波を除く。）又は地震及び津波を含む自然現象 の組合せに遭遇した場合において，自然現象そのもの がもたらす環境条件及びその結果として施設で生じ得 る環境条件において，その安全性を損ならおそれがあ る場合は，防護措置，基礎地盤の改良その他，供用中 における運転管理等の運用上の適切な措置を講じる。【7条1】	－	（冒頭宣言）
	地震及び津波を含む自然現象の組合せについて，火	－	－

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	山については積雪と風（台風），基準地震動S s につい ては積雪，基準津波については弾性設計用地震動 S d と積雪の荷重を，施設の形状及び配置に応じて考慮す る。 地震，津波と風（台風）の組合せについても，風荷重の影響が大きいと考えられるような構造や形状の施設については，組合せを考慮する。 組み合わせる積雪深の大きさは，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測された月最深積雪の最大値である 43 cm とし，風速の大きさは「建築基準法」を準用して基準風速 $30 \mathrm{~m} / \mathrm{s}$ とする。 組み合わせる積雪深は，地震及び津波と組み合わせ る場合は，「建築基準法」に定められた平均的な積雪荷重を与えるための係数 0.35 を考慮する。【7条2】		（冒頭宣言）
設計基準対象施設は，外部からの衝撃のらち人為に よる損傷の防止において，発電所敷地又はその周辺に おいて想定される電磁的障害により発電用原子炉施設 の安全性を損なわせる原因となるおそれがある事象で あって人為によるもの（故意によるものを除く。）（以下「人為事象」という。）に対してその安全性が損なわ れないよう，防護措置又は対象とする発生源から一定 の距離を置くことによる適切な措置を講じる。	設計基準対象施設は，外部からの衝撃のらち人為に よる損傷の防止において，発電所敷地又はその周辺に おいて想定される爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突及び電磁的障害 により発電用原子炬施設の安全性を損なわせる原因と なるおそれがある事象であって人為によるもの（故意 によるものを除く。）（以下「人為事象」という。）に対 してその安全性が損なわれないよう，防護措置又は対象とする発生源から一定の距離を置くことによる適切 な措置を講じる。【7条3】	－	（冒頭宣言）
想定される人為事象のうち，飛来物（航空機落下） については，防護設計の要否を判断する基準を超えな いことを評価して設置（変更）許可を受けている。工事計画認可申請時に，設置（変更）許可申請時から，防護設計の要否を判断する基準を超えるような航空路 の変更がないことを確認していることから，設計基準対象施設に対して防護措置その他適切な措置を講じる必要はない。	想定される人為事象のらち，飛来物（航空機落下） については，防護設計の要否を判断する基準を超えな いことを評価して設置（変更）許可を受けている。工事計画認可申請時に，設置（変更）許可申請時から，防護設計の要否を判断する基準を超えるような航空路 の変更がないことを確認していることから，設計基準対象施設に対して防護措置その他適切な措置を講じる必要はない。【7条3】	－	（変更なし）
	なお，定期的に航空路の変更状況を確認し，防護措置の要否を判断することを保安規定に定めて管理す る。【7条4】	運用に関する記載であり，保安規定にて対応	－
	航空機落下及び爆発以外に起因する飛来物について は，発電所周辺の社会環境からみて，発生源が設計基準対象施設から一定の距離が確保されており，設計基準対象施設が安全性を損ならおそれがないため，防護措置その他の適切な措置を講じる必要はない。【7条5】	－	（記載追加のみ，変更なし）
	また，想定される自然現象（地震及び津波を除く。）及び人為事象に対する防護措置には，設計基準対象施設が安全性を損なわないために必要な設計基準対象施設以外の施設又は設備等（重大事故等対処設備を含 む。）への措置を含める。【7条5】	－	（冒頭宣言）

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
	重大事故等対処設備は，外部からの衝撃による損傷 の防止において，想定される自然現象（地震及び津波 を除く。）及び人為事象に対して，「5．1．2 多栐性，位置的分散等」及び「5．1．5 環境条件等」の基本設計方針に基づき，必要な機能が損なわれることがないよう，防護措置その他の適切な措置を講じる。【7条6】	－	$\begin{gathered} - \\ (\text { 冒頭宣言) } \end{gathered}$
	設計基準対象施設又は重大事故等対处設備に対して講じる防護措置として設置する施設は，その設置状況並びに防護する施設の耐震重要度分類及び重大事故等対処施設の設備分類に応じた地震力に対し構造強度を碓保し，外部からの衝撃を考慮した設計とする。【7条 71	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 2．基本方針 2.1 自然現象 2.2 人為事象	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
	2．3．1 外部からの衝撃より防護すべき施設 設計基準対象施設が外部からの衝撃によりその安全性を損ならことがないよう，外部からの衝撃より防護 すべき施設は，設計基準対象施設のらち，「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規定されているクラス1，クラス2及び安全評価上その機能に期待するクラス3に属する構築物，系統及 び機器（以下「外部事象防護対象施設」という。）とす る。また，外部事象防護対象施設の防護設計について は，外部からの衝撃により外部事象防護対象施設に波及的影響を及ぼすおそれのある外部事象防護対象施設以外の施設についても考慮する。さらに，重大事故等対処設備についても，重大事故防止設備が，設計基準事故対処設備並びに使用済燃料貯蔵槽（使用済燃料プ ール）の椧却設備及び注水設備（以下「設計基準事故対処設備等」という。）の安全機能と同時に必要な機能 が損なわれることがないよう，外部からの衝撃より防護すべき施設に含める。上記以外の設計基準対象施設 については，機能を維持すること若しくは損傷を考慮 して代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応を行うこと又はそ れらを適切に組み合わせることにより，その安全性を損なわない設計とする。【7条8】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 2．基本方針 2.3 外部からの衝撃により防護すべき施設 VI－1－1－2－1－2 防護对象施設の範囲 2．安全施設の範囲 2.3 外部からの衝撃より防護すべき施設の範囲	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.2 外部事象防護対象施設の範囲
2．2．1 設計基準事故時に生じる荷重との組合せ 科学的技術的知見を踏まえ，安全機能を有する構築物，系統及び機器のらち，特に自然現象（地震及び津波を除く。）の影響を受けやすく，かつ，代替手段によ ってその機能の維持が困難であるか，又はその修復が著しく困難な構築物，系統及び機器は，想定される自然現象（地震及び津波を除く。）により作用する衝撃は設計基準事故時に生じる荷重と重なり合わない設計と する。	2．3．2 設計基準事故時及び重大事故等時に生じる荷 重との組合せ 科学的技術的知見を踏まえ，外部事象防護対象施設及び重大事故等対処設備のうち，特に自然現象（地震及び津波を除く。）の影響を受けやすく，かつ，代替手段によってその機能の維持が困難であるか，又はその修復が著しく困難な構築物，系統及び機器は，建屋内 に設置すること，又は可搬型重大事故等対処設備によ るバックアップが可能となるように位置的分散を考慮 して可搬型重大事故等対処設備を複数保管すること等	－	$\begin{gathered} - \\ (\text { (目頭宣言 }) \end{gathered}$

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	により，当該施設に大きな影響を及ぼすおそれがある と想定される自然現象（地震及び津波を除く。）により作用する衝撃が設計基準事故時及び重大事故等時に生 じる荷重と重なり合わない設計とする。【7条9】		
	具体的には，建屋内に設置される外部事象防護対象施設及び重大事故等対処設備については，建屋によっ て自然現象（地震及び津波を除く。）の影響を防止する ことにより，設計基準事故又は重大事故等が発生した場合でも，自然現象（地震及び津波を除く。）による影響を受けない設計とする。【7条10】 屋外に設置されている外部事象防護対象施設につい ては，設計基準事故が発生した場合でも，機器の運転圧力や温度等が変わらないため，設計基準事故時荷重 が発生するものではなく，自然現象（地震及び津波を除く。）による衝撃と重なることはない。 屋外に設置される重大事故等対処設備について，竜巻に対しては位置的分散を考慮した配置とするなど，重大事故等が発生した場合でも，重大事故等時の荷重 と自然現象（地震及び津波を除く。）による衝撃を同時 に考慮する必要のない設計とする。 したがって，自然現象（地震及び津波を除く。）によ る衝撃と設計基準事故又は重大事故等時の荷重は重な ることのない設計とする。【7条11】	－	（冒頭宣言）
2．2．2 設計方針 自然現象（地震及び津波を除く。）及び人為事象に係 る設計方針に基づき設計する。	2．3．3 設計方針 外部事象防護対象施設及び重大事故等対処設備は，以下の自然現象（地震及び津波を除く。）及び人為事象 に係る設計方針に基づき設計する。 自然現象（地震及び津波を除く。）のうち森林火災，人為事象のらち爆発，近隣工場等の火災，危険物を搭載した車両及び有毒ガスの設計方針については「c．外部火災」の設計方針に基づき設計する。 なお，危険物を搭載した車両については，近隣工場等の火災及び有毒ガスの中で取り扱う。【7条12】	－	（冒頭宣言）
（1）自然現象	（1）自然現象 a．竜巻 外部事象防護対象施設は，竜巻防護に係る設計時に，設置（変更）許可を受けた最大風速 $100 \mathrm{~m} / \mathrm{s}$ の竜巻（以下「設計竜巻」という。）が発生した場合について竜巻 より防護すべき施設に作用する荷重を設定し，外部事象防護対象施設が安全機能を損なわないよう，それぞ れの施設の設置状況等を考慮して影響評価を実施し，外部事象防護対象施設が安全機能を損なうおそれがあ る場合は，影響に応じた防護措置その他の適切な措置 を講じる設計とする。【7条31】	－	（冒頭宣言）
	また，重大事故等対処設備は，建屋内への設置又は	－	－

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
	を保安規定に定めて管理する。【7条36】		
	（b）竜巻に対する影響評価及び竜巻防護対策屋外の外部事象防護対象施設は，安全機能を損なわ ないよう，設計荷重に対して外部事象防護対象施設の構造強度評価を実施し，要求される機能を維持する設計とすることを基本とする。【7条37】	VI－1－1－2－3－3 竜巻防護に関する施設の設計方針 3．要求機能及び性能目標 3.1 外部事象防護対象施設 （1）屋外の外部事象防護対象施設 VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書	6．自然現象等への配慮に関する設計 6.3 竜巻 12．材料及び構造汇係る設計 12.2 竜巻への配慮が必要な施設の強度評価
	屋内の外部事象防護対象施設については，設計荷重 に対して安全機能を損なわないよう，外部事象防護対象施設を内包する施設により防護する設計とすること を基本とし，外気と繋がっている屋内の外部事象防護対象施設及び建屋等による飛来物の防謢が期待できな い屋内の外部事象防護対象施設は，加わる打それがあ る設計荷重に対して外部事象防謢対象施設の構造強度評価を実施し，安全機能を損なわないよう，要求され る機能を維持する設計とすることを基本とする。【7 条 371	VI－1－1－2－3－3 竜巻防護に関する施設の設計方針 2．設計の基本方針 3．要求機能及び性能目標 3.1 外部事象防護対象施設 （1）屋外の外部事象防護対象施設 （h）原子炉建屋 3.4 竜巻より防護すべき施設を内包する施設 VI－3－別添1童巻への配慮が必要な施設の強度に関する説 明書	6．自然現象等への配慮に関する設計 6.3 竜巻 12．材料及び構造江係る設計 12.2 竜巻への配慮が必要な施設の強度評価
	外部事象防護対象施設の安全機能を損ならおそれが ある場合には，防謢措置その他の適切な措置を講じる設計とする。【7条37】	－	(冒一頭宣言)
	屋外の重大事故等対処設備は，竜巻による風圧力に よる荷重に対し，設計基漼事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を考慮した配置とすることにより，重大事故等に対処する ために必要な機能を有効に発揮する設計とする。 また，屋外の重大事故等対処設備は，その保管場所及び設置場所を考慮し，外部事象防護対象施設及び防護対策施設に衝突し，外部事象防護対象施設の機能に影響を及ばす可能性がある場合には，浮き上がり若し くは横滑りを拘束することにより，飛来物とならない設計とする。ただし，浮き上がり又は横滑りを拘束す る車両の重大事故等対処設備のらち，地震時の移動等 を考慮して地震後の機能を維持する設備は，重大事故等に対処するために必要な機能を損なわないよう，余長を有する固縛で拘束する。【7条38】	VI－1－1－2－3－3 竜巻防護に関する施設の設計方針 4．機能設計 4.2 重大事故等対処設備 （1）重大事故等対処設備の設計方針 VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書	6．自然現象等への配慮に関する設計 6.3 竜巻 12．材料及ひ構造に係る設計 12.2 竜巻への配慮が必要な施設の強度評価
	屋内の重大事故等対処設備は，竜巻による風圧力に よる荷重に対し，設計基準事故対処設備等の安全機能 と同時に重大事故等に対処するために必要な機能を損 なわないように，重大事故等対処設備を内包する施設 により防護する設計とすることを基本とする。【7条38】	VI－1－1－2－3－1 竜巻への配慮に関する基本方針 2．竜巻防護に関する基本方針 2.1 基本方針 2．1．3 竜巻の影響を考慮する施設の竜巻防護設計方針 （1）設計方針	6．自然現象等への配慮に関する設計 6.3 竜巻
	防護措置として設置する防護対策施設としては，竜巻防護ネット（ネット（金網部）（硬鋼線材：線径 $\phi 4 \mathrm{~mm}$ ，網目寸法 50 mm 及び 40 mm ），防謢板（炭素鋼：板厚 8 mm 以上）及び支持部材により構成する。）及び竜巻防護龬板	VI－1－1－2－3－3 竜巻防護に関する施設の設計方針 4．機能設計 4.3 防護対策施設 （1）海水ポンプ室竜巻防護対策施設（竜巻防護ネット）の	4．地震による損倁防止に関する設計 6．自然現象等への配慮に関する設計 6.3 音巻

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
	（防護鋼板（炭素鋼：板厚 8 mm 以上）及び架構により構成する。）を設置し，内包する外部事象防護対象施設の機能を損なわないよう，外部事象防護対象施設の機能喪失に至る可能性のある飛来物が外部事象防護対象施設に衝突することを防止する設計とする。【7条39】		12．材料及び構造に係る設計 12.2 竜巻への配慮が必要な施設の強度評価
	防護対策施設は，地震時において外部事象防護対象施設に波及的影響を及ぼさない設計とする。【7条39】	VI－1－1－2－3－3 竜巻防護に関する施設の設計方針 4．機能設計 4.3 防護対策施設 （1）海水ポンプ室竜巻防護对策施設（竜巻防護ネット）の設計方針 （2）原子炬補機室換気空調系開口部方護対策施設（竜巻防護鋼板）の設計方針 VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書 VI－2－11－2－2 竜巻防護ネットの耐震性についての計算書	4．地震による損罂防止に関する設計 4.9 波及的影響を及ぼすおそれのある施設の而震評価 6．自然現象等への配慮に関する設計 6.3 音巻 12．材料及び講造改係る設計 12.2 竜巻への配慮が必要な施設の強度評価
	外部事象防護対象施設及び重大事故等対処設備を内包する施設については，設計荷重に対する構造強度評価を実施し，内包する外部事象防護対象施設及び重大事故等対処設備の機能を損なわないよう，飛来物が内包する外部事象防謢対象施設及び重大事故等対処設備 に衝突することを防止可能な設計とすることを基本と する。【7条40】	VI－1－1－2－3－3 竜巻防護に関する施設の設計方針 2．設計の基本方針 3．要求機能及び性能目標 3.1 外部事象防護対象施設 （1）屋外の外部事象防護対象施設 （h）原子炉建屋 3.4 竜巻より防護すべき施設を内包する施設 VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書	6．自然現象等への配慮に関する設計 6.3 竜巻 12．材料及び構造に係る設計 12.2 音巻への配慮が必要な施設の強度評価
	飛来物が内包する外部事象防護対象施設及び重大事故等対处設備に衝突し，その機能を損ならおそれがあ る場合には，防護措置との他の適切な措置を講じる設計とする。【7条40】	－	（冒頭宣言）
	また，外部事象防護対象施設及び重大事故等対処設備は，設計荷重により，機械的及び機能的な波及的影響により機能を損なわない設計とする。【7条41】	－	（冒頭宣言）
	外部事象防護対象施設に対して，重大事故等対処設備を含めて機械的な影響を及ぼす可能性がある施設 は，設計荷重に対し，当該施設の倒壊，損壊等により外部事象防護対象施設に損傷を与えない設計とする。 ［7条41］	$\mathrm{VI}-1-1-2-3-3$ 竜巻防謢に関する施設の設計方針 4．機能設計 4.5 外部事象防護対象施設等に波及的影響を及ぼす可能性がある施設 （1）機械的影響を与方る可能性がある施設 VI－3－別添1竜巻への配慮が必要な施設の強度に関する説明書	6．自然現象等への配慮に関する設計 6.3 竜巻 12．材料及ひ構造に係る設計 12.2 竜巻への配慮が必要な施設の強度評価

基本設計方針		設計結果の記載䈏所	様式一1～の反映結果
変更前	変更後		
	当該施設が機能喪失に陥った場合に外部事象防護対象施設も機能喪失させる機能的影響を及ぼす可能性が ある施設は，設計荷重に対し，必要な機能を維持する設計とすることを基本とする。【7条41】	VI－1－1－2－3－3 竜巻防護に関する施設の設計方針 4．機能設計 4.5 外部事象防護対象施設等に波及的影響を及ぼす可能性がある施設 （2）機能的影響を与える可能性がある施設 VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書	6．自然現象等への配慮に関する設計 6.3 竜巻 12．材料及び構造に係る設計 12.2 竜巻への配慮が必要な施設の強度評価
	海水ポンプ室門型クレーンは，竜巻の襲来が予測さ れる場合には，クレーン作業を中止し，外部事象防護対象施設に影響を及ぼさない停留位置へ固定を行ら運用等を保安規定に定めて管理する。【7条41】	運用に関する記載であり，保安規定にて対応	\square^{-}
	竜巻随伴事象を考慮する施設は，過去の竜巻被害の状況及び発電所における施設の配置から竜巻の随伴事象として想定される火災，溢水及び外部電源衰失によ る影響を考慮し，竜巻の随伴事象に対する影響評価を実施し，外部事象防護対象施設及び重大事故等対処設備に竜巻による随伴事象の影響を及ぼさない設計とす る。竜巻随伴による火災に対しては，火災による損傷 の防止における想定に包絡される設計とする。また，竜巻随伴による溢水に対しては，溢水による損傷の防止における溢水量の想定に包絡される設計とする。さ らに，竜巻随伴による外部電源衰失に対しては，非常用ディーゼル発電機による電源供給が可能な設計とす る。【7条42】	VI－1－1－2－3－3 竜巻防護に関する施設の設計方針 4.6 竜巻随伴事象を考慮する施設 （1）屋外の危険物貯蔵施設等（火災）の設計方針 （2）原子炉補機冷却海水ポンプ及び高圧炬心スプレイ補機冷却海水ポンプ（火災）の設計方針 （3）屋外タンク等（泬水）の設計方針 （4）送電線等（外部電源喪失）の設計方針	6．自然現象等への配慮に関する設計 6.3 竜巻
	b．火山 外部事象防護対象施設は，発電所の運用期間中におう いて発電所の安全性に影響を及ぼし得る火山事象とし て設置（変更）許可を受けた降下火砕物の特性を設定 し，その降下火砕物が発生した場合においても，外部事象防護対象施設が安全機能を損ならおそれがない設計とする。【7条43】 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置することにより，設計基準事故対処設備等の安全機能と同時にその機能 を損なわない設計とする。【7条44】	$\mathrm{VI}-1-1-2-4-1$ 火山いの配慮に関する基本方針 2．火山防護し関する基本方針 2.1 基本方針	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.4 火山の影響
	なお，定期的に新知見の碓認を行い，新知見が得ら れた場合に評価することを保安規定に定めて管理す る。【7条44】	運用に関する記載であり，保安規定にて対応	－
	（a）防護設計における降下火砕物の特性の設定設計に用いる降下火砕物は，設置（変更）許可を受 けた層厚 15 cm ，粒径 2 mm 以下，密度 $0.7 \mathrm{~g} / \mathrm{cm}^{3}$（乾燥状態） $\sim 1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿㵎状態）と設定する。【7条45】	－	（用語の定義のみ）
	（b）降下砤物に対する防護対策	－	－

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
	降下火砕物の影響を考慮する施設は，降下火砕物に よる「直接的影響」及び「間接的影響」に対して，以下の適切な防護措置を講じることで安全機能を損なう おそれがない設計とする。【7条46】		（顫宣言）
	イ．直接的影響に対する設計方針 （イ）構造物への荷重 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のらち，屋外䎲設置 している施設及び外部事象防護対象施設を内包する施設について，降下火砤物が堆積しやすい構造を有する場合には荷重による影響を考慮する。【7条47】	VI－1－1－2－4 火山への配慮に関する説明書 2．火山防護に関する基本方針 2.1 基本方針 2．1．3 降下火砕物の影響に対する設計方針 （1）設計方針 a．構造物への荷重に対する設計方針 （2）荷重の組合せ及び許容限界 a．荷重の種類 b．荷重の組合せ VI－3－別添 2 火山への配慮が必要な施設の強度に関する説明書	6．自然現象等への配慮に関する設計 6.4 火山の影響 12．材料及び構造汇係る設計 12.3 火山への配慮が必要な施設の強度評価
	これらの施設については，降下火砤物を除去するこ とにより，降下火砕物による荷重並びに火山と組み合 わせる積雪及び風（台風）の荷重を短期的な荷重とし て考慮し，機能を損ならおそれがないよう構造健全性 を維持する設計とする。【7条47】	VI－1－1－2－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する説明書 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の配慮 （6）積雪 VI－1－1－2－4－1 火山への配慮に関する基本方針 2．火山防護に関する基本方針 2.1 基本方針 2．1．3 降下火砕物の影響に対する設計方針 （1）設計方針 a．構造物への荷重に対する設計方針 （2）荷重の組合せ及び許容限界 VI－1－1－2－4－3 降下火䂨物の影響を考慮する施設の設計方針 3．施設分類 3.1 降下火砕物の影響を考慮する施設と影響因子との関連 4．要求機能及び性能目標 4.1 構造物への荷重を考慮する施設 （3）性能目標 a．設備 （a）原子炉補機泠却海水ポンプ （b）高圧灲心スプレイ補機冷却海水ポンプ （c）高圧炉心スプレイ補機冷却海水系ストレーナ （d）復水貯蔵タンク （e）非常用ディーゼル発電設備（高圧炬心スプレイ系ディ ーゼル発電設備を含む。）排気消音器及び排気管	6．自然現象等への配慮に関する設計 6．4 火山の影響 12．材料及び構造に係る設計 12.3 火山への配慮が必要な施設の強度評価

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		b．建屋等 （a）原子炉建屋 （b）タービン建屋 （c）制御建屋 （d）軽油タンク室 （e）軽油タンク室（H） VI－3－別添2 火山への配慮が必要な施設の強度に関する説明書	
	なお，降下火砗物が長期的に堆積しないよう当該施設に堆積する降下火砤物を適宜除去することを保安規定に定めて管理する。【7条48】	運用に関する記載であり，保安規定にて対応	\square
	屋内の重大事故等対処設備については，降下火砕物 による短期的な荷重により機能を損なわないように，降下火砕物による組合せを考慮した荷重に対し安全裕度を有する建屋内に設置する設計とする。【7条49】	VI－1－1－2－1 発電用原子炬施設に対する自然現象等による損傷の防止に関する説明書 2．基本方針 2.1 自然現象	6．自然現象等への配慮に関する設計 6.4 火山の影響
	屋外の重大事故等対処設備については，降下火确物 による荷重により機能を損なわないように，降下火础物を適宜除去することにより，設計基準事故対処設備等の安全機能と同時に重大事故等対処設備の重大事故等に対処するために必要な機能が損なわれるおそれが ない設計とする。【7条49】	VI－1－1－2－1 発電用原子炬施設に対する自然現象等による損傷の防止に関する説明書 2．基本方針 2.1 自然現象 VI－1－1－2－4－3 降下火确物の影響を考慮する施設の設計方針 3．施設分類 3.1 降下火砕物の影響を考慮する施設と影響因子との関連	6．自然現象等への配慮に関する設計 6.4 火山の影響
	なぁ，降下火哗物により必要な機能を損なられそれ がないよう屋外の重大事故等対処設備に堆積する降下火硨物を適宜除去することを保安規定に定めて管理す る。【7条49】	運用に関する記載であり，保安規定にて対応	\square^{-}
	（口）閉塞 i 。 水循環系の閉塞 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のらち，降下火砕物 を含む海水の流路となる施設については，降下火砕物 に対し，機能を損なうおそれがないよう，降下火砕物 の粒径に対し十分な流路幅を設けることにより，水循環系の狭险部が閉塞しない設計とする。【7条50】	VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針 5．機能設計 5.2 水循環系の閉塞を考慮する施設 （1）施設 a．原子炉補機冷却海水ポンプの設計方針 b．原子炬補機冷却海水系ストレーナの設計方針 c．高圧炉心スプレイ補機泠却海水ポンプの設計方針 d．高圧炉心スプレイ補機冷却海水系ストレーナの設計方針 e．海水系下流設備（原子炉補機冷却海水系熱交換器，高圧炉心スプレイ補機冷却海水系熱交換器）の設計方針 f．海水取水設備（除塵装置）の設計方針	6．自然現象等への配慮に開する設計 6． 4 火山の影響
	ii．換気系，電気系及び計測制御系に対する機械的影響（閉塞）	VI－1－1－2－4－3 降下火碑物の影響を考慮する施設の設計方針	6．自然現象等への配慮に関する設計 6.4 火山の影響

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，非常用ディ ーゼル発電機（高圧灲心スプレイ系ディーゼル発電機 を含む。）は，吸気口上流側の外気取入口にルーバを設置し，下側から吸い込む構造とすることにより，降下火砕物が流路に侵入しにくい設計とする。排気筒及び非常用ガス処理系（屋外配管）は，排気筒の排気によ り降下火砕物を侵入し難くすることで排気流路が閉塞 しない設計とする。【7条51】	5．機能設計 5.3 換気系，電気系及ひ計測制御系における閉塞を考慮す る施設 （1）施設 c．非常用ディーゼル発電機（高圧炬心スプレイ系ディー せルノ発電機を含む。）の設計方針 e．非常用力スス处理系（屋外配管）の設計方針 f．排気筒の設計方針	
	また，外気を取り入れる非常用換気空調系（外気取入口）及び非常用ディーゼル発電機（高圧炬心スプレ イ系ディーゼル発電機を含む。）の空気の流路にそれぞ れバグフィルタを設置することにより，フィルタメッ シュより大きな降下火砤物が内部に侵入しにくい設計 とし，更に降下火砗物がフィルタに付着した場合でも取替え又は清掃が可能な構造とすることで，降下火砕物により閉塞しない設計とする。【7条51】	VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針 5．機能設計 5.3 換気系，電気奚及び計測制御采における閉塞を考慮す る施設 （1）施設 c．非常用ディーゼル発電機（高圧炬心スプレイ系ディー ゼル発電機を含む。）の設計方針 d．非常用換気空調系（外気取入口）の設計方針	6．自然現象等への配慮汇関する設計 6.4 火山の影響
	非常用ディーゼル機関及び高圧炬心スプレイ系ディ一ゼル機関は，フィルタを通過した小さな粒径の降下火硨物が侵入した場合でも，降下火砤物により閉塞し ない設計とする。【7条51】	VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針 5．機能設計 5.3 換気系，電気奚及び計測制御系における閉塞を考慮す る施設 （1）施設 c．非常用ディーゼル発電機（高圧炉心スプレイ系ディー ゼル発電機を含む。）の設計方針	6．自然現象等への配慮に関する設計 6.4 火山の影響
	非常用換気空調系（外気取入口）以外の降下火砤物 を含む空気の流路となる換気系，電気系及び計測制御系の施設についても，降下火砤物に対し，機能を損な らおそれがないよう，降下火砗物が侵入しにくい構造，又は降下火研物が侵入した場合でも，降下火砕物によ り流路が閉塞しない設計とする。【7条51】	VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針 5．機能設計 5.3 換気系，電気系及び計測制御系における閉塞を考慮す る施設 （1）施設 a．原子炉補機泠却海水ポンプの設計方針 b．高圧炬心スプレイ補機泠却海水ポンプの設計方針 c．非常用ディーゼル発電機（高圧炉心スプレイ系ディー ゼル発電機を含む。）の設計方針 e．非常用ガス処理系（屋外配管）の設計方針 f．排気筒の設計方針	6．自然現象等への配慮に関する設計 6.4 火山の影響
	なお，降下火砤物により閉塞しないよう外気取入ダ ンパの閉止，換気空調系の停止又は事故時運転モード －切替えることを保安規定に定めて管理する。【7条51】	運用に関する記載であり，保安規定にて対応	$-$
	（ハ）摩耗 i．水循環系の内部における摩耗 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，降下火研物	VI－1－1－2－4－3 降下火砗物の影響を考慮する施設の設計力針 5．機能設計 5.4 水循擐系，換気系，電気采及ひ計測制御采における摩	6．自然現象等への配慮に関する設計 6.4 火山の影響

基本設計方針		設計結果の記載綯所	様式－1への反映結果
変更前	変更後		
	を含む海水の流路となる施設の内部における摩耗につ いては，主要な降下火确物は砂と同等又は砂より硬度 が低くもろいことから，摩耗による影響は小さい。ま た当該施設については，定期的な内部点検及び日常保守管理により，状況に応じて補修が可能であり，摩耗 により外部事象防護対象施設の安全機能を損なわない設計とする。【7条52】	耗を考慮する施設 （1）施設 a．原子炉補機冷却海水ポンプの設計方針 b．原子炉補機冷却海水系ストレーナの設計方針 c．高圧炬心スプレイ補機泠却海水ポンプの設計方針 d．高圧炬心スプレイ補機冷却海水系ストレーナの設計方針 e．海水系下流設備（原子炬補機洽却海水系熱交換器，高圧炉心スプレイ補機冷却海水系熱交換器）の設計方針 g．海水取水設備（除塵装置）の設計方針	
	ii．換気系，電気系及び計測制御系に対する機械的影響（摩耗） 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，降下火䂨物 を含む空気を取り込みかつ摺動部を有する換気系，電気系及び計測制御系の施設については，降下火䂽物に対し，機能を損ならおそれがないよう，降下火砤物が侵入しにくい構造とすること又は摩耗しにくい材料を使用することにより，摩耗しにくい設計とする。【7条 53］	VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針 5．機能設計 5.4 水循環系，換気系，電気系及び計測制御系における摩耗を考慮する施設 （1）施設 a．原子炉補機冷却海水ポンプの設計方針 b．原子炉補機冷却海水系ストレーナの設計方針 f．非常用ディーゼル発電機（高圧炉心スプレイ系ディー ゼル発電機を含む。）の設計方針	6．自然現象等への配慮に関する設計 6.4 火山の影響
	なぁ，摩耗が進展しないようバグフィルタの取替え又は清掃すること等を保安規定に定めて管理する。【7条531	運用に関する記載であり，保安規定にて対応	－
	（二）腐食 i．構造物の化学的影響（腐食） 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，屋外に設置 している施設及び外部事象防護対象施設を内包する施設については，降下火砕物に対し，機能を損なうおそ れがないよう，耐食性のある材料の使用又は塗装を実施することにより，降下火砕物による短期的な腐食が発生しない設計とする。【7条54】	VI－1－1－2－4－3 降下火砤物の影響を考慮する施設の設計方針 5．機能設計 5.5 構造物，水循環系，換気系，電気系及び計測制御系に おける腐食を考慮する施設 （1）施設 a．原子炉補機冷却海水ポンプの設計方針 c．高圧梕ふスプレイ補機冷却海水ポンプの設計方針 d．高圧炬心スプレイ補機冷却海水系ストレーナの設計方針 1．復水貯蔵タンクの設計方針 m．軽油タンク室の設計方針 n．軽油タンク室（H）の設計方針 o．非常用ディーゼル発電設備（高圧灲心スプレイ系ディ ーゼル発電設備を含む。）排気消音器及び排気管の設計方針 q．原子炉建屋の設計方針 r．タービン建屋の設計方針 s．制御建屋の設計方針	6．自然現象等への配慮に閉する設計 6.4 火山の影響
	なぁ，長期的な腐食の影響については，日常保守管理等により，状涀に応じて補修が可能な設計とする。 ［7条54】	運用に関する記載であり，保安規定にて対応	－

基本設計方針		設計結果の記載笽所	様式－1への反映結果
変更前	変更後		
	屋内の重大事故等対処設備については，降下火砕物 による短期的な腐食により機能を損なわないように，耐食性のある塗装を実施した建屋内に設置する設計と する。【7条55】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 2．基本方針 2.1 自然現象	6．自然現象等への配慮に関する設計 6.4 火山の影響
	屋外の重大事故等対処設備については，降下火䂵物 を適宜除去することにより，降下火吪物による腐食に対して，設計基準事故対处設備等の安全機能と同時に重大事故等対処設備の重大事故等に対処するために必要な機能が損なわれるおそれがない設計とする。【7条 55】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 2．基本方針 2.1 自然現象 VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針 3．施設分類 3.1 降下火砕物の影響を考慮する施設と影響因子との関連	6．自然現象等への配慮に関する設計 6.4 火山の影響
	なお，降下火确物により腐食の影響が生じないよう，屋外の重大事故等対処設借に堆積する降下火砗物を適宜除去することを保安規定に定めて管理する。【7条55】	運用に関する記載であり，保安規定にて対応	－
	ii．水循擐系の化学的影響（腐食） 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のらち，降下火砕物 を含む海水の流路となる施設については，降下火砕物 に対し，機能を損ならおそれがないよう，耐食性のあ る材料の使用又は塗装等を実施することにより，降下火㸴物による短期的な腐食が発生しない設計とする。【7条56】	VI－1－1－2－4－3 降下火砤物の影響を考慮する施設の設計方針 5．機能設計 5.5 構造物，水循環系，換気系，電気系及び計測制御系に おける腐食を考慮する施設 （1）施設 a．原子炉補機冷却海水ポンプの設計方針 b．原子炬補機冷却海水系ストレーナの設計方針 c．高圧炬心スプレイ補幾泠却海水ポンプの設計方針 d．高圧灲心スプレイ補機冷却海水系ストレーナの設計方針 e．海水系下流設備（原子炉補幾泠却海水系熱交換器，高圧灲心スプレイ補機泠却海水系熱交換器）の設計方針 p．海水取水設備（除塵装置）の設計方針	6．自然現象等への配慮に閉する設計 6.4 火山の影響
	なお，長期的な腐食の影響については，日常保守管理等により，状況に応じて補修が可能な設計とする。 ［7条56】	運用に関する記載であり，保安規定にて対応	－
	iii．換気系，電気系及び計測制御系に対する化学的影響（腐食） 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，降下火哗物 を含む空気の流路となる換気系，電気系及び計測制御系の施設については，降下火砕物に対し，機能を損な らおそれがないよう，耐食性のある材料の使用又は塗装を実施することにより，降下火砕物による短期的な腐食が発生しない設計とする。【7条57】	VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針 5．機能設計 5.5 構造物，水循環系，換気系，電気系及び計測制御系に おける腐食を考慮する施設 （1）施設 a．原子炉補機冷却海水ポンプの設計方針 c．高圧炬心スプレイ補機泠却海水ポンプの設計方針 f．非常用ディーゼル発電機（高圧炉心スプレイ系ディー ゼル発電機を含む。）の設計方針 g．非常用換気空調系（外気取入口）の設計方針	6．自然現象等への配慮に閉する設計 6.4 火山の影響

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
		h．非常用ガス処理系（屋外配管）の設計方針 i．排気筒の設計方針	
	なお，長期的な腐食の影響については，日常保守管理等により，状況に応じて補修が可能な設計とする。 【7条57】	運用に関する記載であり，保安規定にて対応	－
	（木）発電所周辺の大気汚染 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のらち，中央制御室換気空調系については，降下火砕物に対し，機能を損 ならおそれがないよう，バグフィルタを設置すること により，降下火砕物が中央制御室に侵入しにくい設計 とする。【7条58】	VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針 5．機能設計 5.6 発電所周辺の大気汚染を考慮する施設 （1）施設 a．非常用換気空調系（中央制御室換気空調系）の設計方針	6．自然現象等への配慮に関する設計 6.4 火山の影響
	また，中央制御室換気空調系については，外気取入 ダンパの閉止及び事故時運転モードとすることによ り，中央制御室内への降下火砕物の侵入を防止する。 さらに外気取入遮断時において，酸素濃度及び二酸化炭素濃度の影響評価を実施し，室内の居住性を確保す る設計とする。【7条58】	運用に関する記載であり，保安規定にて対応	－
	なお，降下火砕物による中央制御室の大気污染を防止するよう事故時運転モードへの切替え等を保安規定 に定めて管理する。【7条58】	運用に関する記載であり，保安規定にて対応	－
	（へ）絶縁低下 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のらち，空気を取り込む機構を有する電気系及び計測制御系の盤について は，降下火砕物に対し，機能を損ならおそれがないよ う，計測制御用電源設備（無停電電源装置）及び非常用所内電気設備（所内低圧系統）の設置場所の非常用換気空調系にバグフィルタを設置することにより，降下火砕物が侵入しにくい設計とする。【7条59】	VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針 5．機能設計 5.7 絶縁低下を考慮する施設 （1）施設 a．計測制御用電源設備（無停電電源装置）の設計方 針 b．非常用所内電気設備（所内低圧系統）の設計方針	6．自然現象等への配慮に関する設計 6.4 火山の影響
	なお，降下火砕物による電気系及び計測制御系の盤 の絶縁低下を防止するようバグフィルタの取替え又は清掃することを保安規定に定めて管理する。【7条59】	運用に関する記載であり，保安規定にて対応	－
	口．間接的影響に対する設計方針 降下火砕物による間接的影響である長期（7日間）の外部電源喪失及び発電所外での交通の途絶によるアク セス制限事象に対し，原子炉及び使用済燃料プールの安全性を損なわないようにするために，7日間の電源供給が継続できるよう，非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）の燃料を貯蔵するための軽油タンク及び燃料を移送するための燃料移送ポンプ等を降下火砕物の影響を受けないよう設置する設計とする。【7条60】	VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針 5．機能設計 5.8 間接的影響を考慮する施設 （1）施設 a．非常用ディーゼル発電機（高圧炉心スプレイ系ディー ゼル発電機を含む。）の設計方針 b．軽油タンクの設計方針 c．非常用ディーゼル発電設備（高圧灲心スプレイ系ディ ーゼル発電設備を含む。）燃料移送ポンプの設計方針	6．自然現象等への配慮に関する設計 6.4 火山の影響
	c．外部火災想定される外部火災において，火災源を発電所敷地	－	（冒頭宣言）

基本設計方針		設計結果の記載笽所	様式－1～の反映結果
変更前	変更後		
	内及び數地外记設定し外部事象防護対象施設に係る温度や距離を算出し，それらによる影響評価を行い，最 も厳しい火災が発生した場合においても安全機能を損 なわない設計とする。【7条61】		
	外部事象防護対象施設は，防火帯の設置，讎隔距離 の碓保，建屋による防護によって，安全機能を損なわ ない設計とする。【7条62】	VI－1－1－2－5－1 外部火災への配慮に関する基本方針 2．外部火災防謢に関する基本方針 2.1 基本方針	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災
	重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，防火帯により防護することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計と する。【7条63】	VI－1－1－2－5－1 外部火災への配慮に関する基本方針 2．外部火災防謢に関する基本方針 2.1 基本方針	6．自然現象等への配慮に開する設計 6.1 自然現象等への配慮汇関する基本方針 6.5 外部火災
	外部火災の影響については，定期的な評価の実施を保安規定に定めて管理する。【7条64】	運用に関する記載であり，保安規定にて対応	－
	（a）防火帯幅の設定に対する設計方針自然現象として想定される森林火災については森林火災シミュレーション解析コードを用いて求めた最大火線強度（ $4,428 \mathrm{~kW} / \mathrm{m}$ ）から設定し，設置（変更）許可 を受けた防火帯（約20m）を敷地内に設ける設計とする。 ［7条65】	VI－1－1－2－5－1 外部火災 $へ$ の配慮に関する基本方針 2．外部火火災防謢に関する基本方針 2.1 基本方針	6．自然現象等への配慮に閉する設計 6.1 自然現象等への配慮に閉する基本方針 6.5 外部火災
	また，防火帯は延䡇防止効果を損なわない設計とし，防火帯に可燃物を含む機器等を設置する場合は必要最小限とする。【7条66】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－5－1 外部火災への配慮に関する基本方針 2．外部火災防護に関する基本方針 2.1 基本方針	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮汇関する基本方針 6.5 外部火災
	（b）発電所敷地内の火災•爆発源に対する設計方針火災•爆発源として，森林火災，発電所敷地内に設置する屋外の危険物タンク，危険物實蔵所，常時危険物を貯蔵する一般取扱所及び危険物を内包する貯蔵設備以外の設備（以下「危険物貯蔵施設等」という。）の火災•爆発，航空機渼落による火災及び敷地内の危険物貯蔵施設等の火災と航空機鋰落による火災が同時に発生した場合の重畳火災を想定し，火災源からの外部事象防護対象施設への熱影響を評価する。【7条67】 なお，発電所敷地内には屋外で爆発する可能性のあ る設備を設置していないことからガス爆発によって評価対象施設の安全機能が損なわれることはない。【7条 681 外部事象防護対象施設の評価条件を以下のように設定し，評価する。評価結果より火災源ごとに輻射強度，燃㳣䋛続時間等を求め，外部事象防護対象施設を内包 する建屋（垂直外壁面及び天井スラブから選定した，火災の輻射に対して最も厳しい笝所）の表面温度が許	－	$\begin{gathered} - \\ \text { (冒頭宣言) } \end{gathered}$

基本設計方針		設計結果の記載䈏所	様式－1～の反映結果
変更前	変更後		
	容温度（ $200^{\circ} \mathrm{C}$ ）となる危険距睢及び屋外の外部事象防護対象施設の温度が許容温度（排気筒の表面温度 $325^{\circ} \mathrm{C}$並びに復水貯蔵タンクの貯留水を使用する補給水系の系統最高使用温度 $66^{\circ} \mathrm{C}$ 並びに原子炬補機泠却海水ポン プの冷却空気温度を上部軸受の機能維持に必要な $40^{\circ} \mathrm{C}$及び下部軸受の機能維持に必要な $55^{\circ} \mathrm{C}$ 並びに高圧炻心 スプレイ補機洽却海水ポンプの洽却空気温度を上部軸受及び下部軸受の機能維持に必要な温度である $55^{\circ} \mathrm{C}$ ） となる危険距離を算出し，その危険距離を上回る離隔距離を碓保する設計，又は建屋表面温度及び屋外の外部事象防護対象施設の温度を算出し，その温度が許容温度を満足する設計とする。【7条69】		
	－森林火災については，発電所周辺の植生を確認し，作成した植生データ等を基に求めた防火帯の外縁 （火災側）における火炎輻射発散度（建屋及び復水貯蔵タンク評価においては $477 \mathrm{~kW} / \mathrm{m}^{2}$ ，排気筒評価に おいては $367 \mathrm{~kW} / \mathrm{m}^{2}$ ，その他評価においては $408 \mathrm{~kW} / \mathrm{m}^{2}$ ） を用いて危険距離を求め評価する。【7条70】	VI－1－1－2－5－6 外部火災防護における評価条件及ひ評価結果 2．評価条件及び評価結果 2.1 発電所敷地内の火災源に対する評価条件及ひ評価結果 2．1．1 森林火災 （1）危険距離の評価条件及ひ評価結果 b．外部火災の影響を考慮する施設の評価条件及び評価結果 （a）建屋の評価条件及ひ評価結果 （b）復水貯蔵タンクの評価条件及ひ評価結果 （c）排気筒の評価条件及び評価結果 （d）原子炉補機冷却海水ポンプの評価条件及ひ評価結果 （e）高圧炝心スプレイ補機冷却海水ポンプの評価条件及 び評価結果	6．自然現象等への配慮に関する設計 6.1 自然現象等 $へ$ の配慮に関する基本方針 6.5 外部火災
	－発電所數地内に設置する危険物貯蔵施設等の火災については，貯蔵量等を勘案して火災源ごとに建屋表面温度及び屋外の外部事象防護対象施設の温度 を求め，評価する。【7条71】	VI－1－1－2－5－6 外部火災防護における評価条件及び評価結果 2．1．2 発電所敷地内に設置する危険物貯蔵施設等の火災 2．1．2．1 火災源に対する評価 （1）評価条件及ひ評価結果 a．1号機轾油貯蔵タンク火災 （a）原子炉建屋の評価条件及び評価結果 （b）制御建屋の評価条件及ひ評価結果 （c）タービン建屋の評価条件及び評価結果 （d）復水貯蔵タンクの評価条件及び評価結果 （e）排気筒の評価条件及び評価結果 （f）原子炉補機泠却海水ポンプの評価条件及ひ評価結果 （g）高圧炬心スプレイ補機冷却海水ポンプの評価条件及 ひ評価結果 b．3号機軽油タンクの火災 （a）原子炉建屋の評価条件及び評価結果 （b）制御建屋の評価条件及び評価結果 （c）タービン建屋の評価条件及び評価結果	6．自然現象等への配慮に開する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災

基本設計方針		設計結果の記載簂所	様式 -1 への反映結果
変更前	変更後		
		（d）復水貯蔵タンクの評価条件及び評価結果 （e）排気筒の評価条件及ひ評価結果 （f）原子炉補機冷却海水ポンプの評価条件及ひ語平価結果 （g）高圧炉心スプレイ補機冷却海水ポンプの評価条件及 ひ評価結果 c．大容量電源装置の火災 （a）原子炬建屋の評価条件及ひ評価結果 （b）制御建屋の評価条件及び評価結果 （c）タービン建屋の評価条件及び評価結果 （d）復水貯蔵タンクの評価条件及ひ評価結果 （e）排気筒の評価条件及び評価結果 （f）原子炉補機泠却海水ポンプの評価条件及び評価結果 （g）高圧炉心スプレイ補機洽却海水ポンプの評価条件及 び評価結果 d． 2 号機起動変圧器の火災 （a）制御建屋の評価条件及び評価結果 e． 2 号機所内変圧器の火災 （a）タービン建屋の評価条件及び評価結果 f． 2 号機補助ボイラ—用変圧器の火災 （a）制御建屋の評価条件及ひ評価結果 g．PLR－VVVF 変圧器の火災 （a）原子炉建屋の評価条件及び評価結果 h． 3 号機主変圧器の火災 （a）原子炬建屋の評価条件及ひ評価結果 （b）制御建屋の評価条件及び評価結果 （c）復水貯蔵タンクの評価条件及び評価結果 （d）排気筒の評価条件及び評価結果 i． 3 号機起動変圧器の火災 （a）排気筒の評価条件及ひ評価結果 j． 3 号機历磁電源変圧器の火㷋 （a）原子炉建屋の評価条件及び評価結果 （b）復水貯蔵タンクの評価条件及び評価結果	
	また，然料補充用のタンクローリ火災が発生した場合の影響については，燃料補充時は監視人が立会を実施することを保安規定に定めて管理し，万一の火炏発生時は速やか沉消火活動が可能とすることにより，外部事象防護対象施設に影響がない設計とする。【7条71】	運用に関する記載であり，保安規定にて対応	$)^{-}$
	－航空機筌落による火災については，「実用発電用原子炉施設への航空機落下確率の評価基漼について」（平成 $21 \cdot 06 \cdot 25$ 原院第 1 号（平成 21 年 6 月 30 日原子力安全•保安院一部改正））により整落確率が10－7（回炉•年）となる面積及び離隔距離を算出し，外部事象防護対象施設への影響が最も厳しくなる地点で火災が起こることを想定し，建屋表面温度及び屋外の外部事象防護対象施設の温度を求め，評価する。【7	VI－1－1－2－5－6 外部火災防謢における評価条件及び評価結果 2．1．3 航空機隊落による火災 2．1．3．1 原子炉施設に対する評価 （1）標的面積と離隔距離の評価条件及び評価結果 （2）評価条件及び評価結果 a．原子炉建屋 b．復水貯蔵タンク	6．自然現象等への配慮汭関する設計 6.1 自然現象等 $へ$ の配慮に閉する基本方針 6.5 外部火災

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	条72】	c．排気筒 d．原子师補機泠却海水ポンプ e．高圧炬心スプレイ補機洽却海水ポンプ	
	－敷地内の危険物貯蔵施設等の火災と航空機墜落火災 の重畳については，各々の火災の評価条件により算出した輻射強度，燃焼継続時間等により，外部事象防護対象施設の受熱面に対し，最も厳しい条件とな る火災源と外部事象防護対象施設を選定し，建屋表面温度及び屋外の外部事象防護対象施設の温度を求 め評価する。【7条73】	VI－1－1－2－5－6 外部火災防護における評価条件及ひ評価結果 2．1．4 敷地内の危険物貯蔵施設等の火災と航空機墜落に よる重畳火災 （1）評価条件 （2）評価結果	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災
	（c）発電所數地外の火災•爆発源に対する設計方針発電所敷地外での火災•爆発源に対して，必要な催隔距離を確保することで，外部事象防護対象施設の安全機能を損なわない設計とする。【7条74】	\square^{-}	$\left.\stackrel{-}{\left(⿱_{1}\right.} \stackrel{\text { 頭宣言 }}{ }\right)$
	－発電所敷地外 10 km 以内の範囲において，火災により発電用原子炉施設に影響を及ぼすような石油コンビ ナート施設は存在しないため，火災による発電用原子炉施設への影響については考慮しない。【7条75】	VI－1－1－2－5－6 外部火災防護における評価条件及ひ評価結果 2.2 発電所敷地外の火災に対する評価条件及び評価結果 2．2．1 石油コンビナート等の火災	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災
	－発電所敷地外半径 10 km 以内の産業施設，燃料輸送車両及び漂流船舶の火災については，外部事象防護対象施設を内包する建屋（垂直外壁面及び天井スラブ から選定した，火災の輻射に対して最も厳しい箇所） の表面温度が許容温度となる危険距離及び屋外の外部事象防護対象施設の温度が許容温度となる危険距離を算出し，その危険距離を上回る離隔距離を碓保 する設計とする。 なお，漂流船舶の火災については，発電所敷地外半径 10 km を主要航路とする船舶が存在しないことか ら，発電所内の港湾施設に入港する船舶の中で燃料 の積載量が最大である船舶の火災を想定する。【7条 76】	VI－1－1－2－5－6 外部火災防護における評価条件及び評価結果 2.2 発電所敷地外の火災に対する評価条件及び評価結果 2．2．2 発電所敷地外の危険物貯蔵施設等の影響こついて 2．2．2．1 火災源に対する評価条件及び評価結果 （1）建屋 （2）復水貯蔵タンク （3）排気筒 （4）原子炬補機泠却海水ポンプ （5）高圧炉心スプレイ補機冷却海水ポンプ 2．2．3 発電所敷地外の高圧ガス貯蔵施設の影響について 2．2．3．1 火災源に対する評価条件及び評価結果 2．2．4 燃料輸送車両の火災 2．2．4．1 火災源に対する評価 （1）評価条件及び評価結果 a．建屋 （2）復水貯蔵タンク （3）排気筒 （4）原子炉補機冷却海水ポンプ （5）高圧炉心スプレイ補機冷却海水ポンプ 2．2．5 漂流船舶の火災 2．2．5．1 火災源に対する評価 （1）重油運搬船火災に関する温度の評価条件及び評価結果 a．建屋 b．復水貯蔵タンク c．排気筒	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		d．原子灲補機冷却海水ポンプ e．高圧炬心スプレイ補機冷却海水ポンプ	
	－発電所敷地外半径 10 km 以内の産業施設，燃料輸送車両及び漂流船舶の爆発については，ガス爆発の爆風圧が 0.01 MPa となる危険限界距離を算出し，その危険限界距離を上回る離隔距離を確保する設計とする。 また，ガス爆発による容器破損時に破片の最大飛散距離を算出し，最大飛散距離を上回る離隔距離を確保する設計とする。【7条77】	VI－1－1－2－5－6 外部火災防護における評価条件及び評価結果 2.2 発電所敷地外の火災に対する評価条件及び評価結果 2．2．3 発電所敷地外の高圧ガス貯蔵施設の影響について 2．2．3．2 爆発源に対する評価条件及び評価結果 2．2．3．3 ガスボンべ破裂時における破片の最大飛散距離 の評価 2．2．4 燃料輸送車両の火災 2．2．4．2 爆発源に対する評価 2．2．4．2．1 燃料輸送車両による爆発源に対する評価条件及び評価結果 2．2．4．2．2 高圧ガス輸送車両破裂時における破片の最大飛散距離の評価 2．2．5 漂流船舶の火災	6． 自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災
	なお，漂流船舶の爆発については，爆発のおそれが ある船舶が発電所敷地外半径 10 km 以内を航行していな いため，船舶の爆発による発電用原子炉施設への影響 については考慮しない。【7条78】	VI－1－1－2－5－1 外部火災への配慮に関する基本方針 2．外部火災防護に関する基本方針 2.1 基本方針 2．1．2 外部火災より防護すべき施設の設計方針	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災
	（d）二次的影響（ばい煙）に対する設計方針 屋外に開口しており空気の流路となる設備及び換気空調系統に対し，ばい煙の侵入を防止するため，適切 な防護対策を講じることで外部事象防護対象施設の安全機能を損なわない設計とする。【7条79】	VI－1－1－2－5－7 二次的影響（ばい煙）及び有毒ガスに対す る設計 2．二次的影響（ばい煙）及び有毒がスに対する設計 2.1 二次的影響（ばい煙）に対する設計 （1）外気を取り込む空調系統（換気空調系で給気されるエ リアの設置機器を含む）	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災
	イ．換気空調系 外部火災によるばい煙が発生した場合には，侵入を防止するためフィルタを設置する設計とする。【7条80】	VI－1－1－2－5－7 二次的影響（ばい煙）及び有毒ガスに対す る設計 2．二次的影響（ばい煙）及び有毒がスに対する設計 2.1 二次的影響（ばい煙）に対する設計 （1）外気を取り込む空調系統（換気空調系で給気されるエ リアの設置機器を含む）	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災
	なお，室内に滞在する人員の環境劣化を防止するた めに，ばい煙の侵入を防止するよう外気取入ダンパの閉止及び事故時運転モードへの切替えによる外気の遮断を保安規定に定めて管理する。【7条80】	運用に関する記載であり，保安規定にて対応	－
	口。 安全保護装置 外部事象防護対象施設のうち空調系統にて空調管理 されており間接的に外気と接する安全保護装置盤につ いては，フィルタを設置することによりばい煙が侵入 しにくい設計とする。【7条81】	VI－1－1－2－5－7 二次的影響（ばい煙）及び有毒ガスに対す る設計 2．二次的影響（ばい煙）及び有毒がスに対する設計 2.1 二次的影響（ばい煙）に対する設計 （1）外気を取り込む空調系統（換気空調系で給気されるエ リアの設置機器を含む）	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災
	八．非常用ディーゼル発電機（高圧炉心スプレイ系デ ィーゼル発電機を含む。） 非常用ディーゼル発電機（高圧灲心スプレイ系ディ	VI－1－1－2－5－7 二次的影響（ばい煙）及び有毒ガスに対す る設計 2．二次的影響（ばい煙）及び有毒がスに対する設計	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	ーゼル発電機を含む。）については，フィルタを設置す ることによりばい煙が侵入しにくい設計とする。【7条 81】	2.1 二次的影響（ばい煙）に対する設計 （2）外気を設備内に取り込む機器	
	また，ばい煙が侵入したとしてもばい煙が流路に溜 まりにくい構造とし，ばい煙により閉塞しない設計と する。【7条81】	VI－1－1－2－5－7 二次的影響（ばい煙）及び有毒ガスに対す る設計 2．二次的影響（ばい煙）及び有毒がスに対する設計 2.1 二次的影響（ばい煙）に対する設計 （2）外気を設備内に取り込む機器	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6．5外部火災
	二．原子炬補機冷却海水ポンプ及び高圧灲心スプレ イ補機冷却海水ポンプ 原子炉補機冷却海水ポンプ用電動機及び高圧炉心ス プレイ補機冷却海水ポンプ用電動機については，モー夕部を全閉構造とすることにより，ばい煙により閉塞 しない設計とする。【7条82】	VI－1－1－2－5－7 二次的影響（ばい煙）及び有毒ガスに対す る設計 2．二次的影響（ばい煙）及び有毒がスに対する設計 2.1 二次的影響（ばい煙）に対する設計 （3）外気を取り込む屋外設置機器	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6．5 外部火災
	原子炉補機冷却海水ポンプ用電動機の空気冷却部 は，ばい煙が侵入した場合においてもばい煙が流路に溜まりにくい構造とし，ばい煙により閉塞しない設計 とする。【7条83】	VI－1－1－2－5－7 二次的影響（ばい煙）及び有毒がスに対す る設計 2．二次的影響（ばい煙）及び有毒がスに対する設計 2.1 二次的影響（ばい煙）に対する設計 （3）外気を取り込む屋外設置機器	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6.5 外部火災
	（e）有毒ガスに対する設計方針 外部火災起因を含む有毒ガスが発生した場合には，中央制御室内に滞在する人員の環境劣化を防止するた めに設置した外気取入ダンパを閉止し，中央制御室内 の空気を事故時運転モードへ切替えの実施及び必要に応じ中央制御室以外の空調ファンを停止することによ り，有毒ガスの侵入を防止する設計とする。【7条84】	VI－1－1－2－5－7 二次的影響（ばい煙）及び有毒ガスに対す る設計 2．二次的影響（ばい煙）及び有毒がスに対する設計 2.2 有毒ガスに対する設計	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6．5 外部火災
	なお，外気取入ダンパの閉止及び事故時運転モード へ切替えによる外気の遮断及び空調ファンの停止によ る外気流入の抑制を保安規定に定めて管理する。【7条 84】	運用に関する記載であり，保安規定にて対応	－
	主要道路，鉄道線路，一般航路及び石油コンビナー ト施設は離隔距離を確保することで事故等による火災 に伴う発電所への有毒がスの影響がない設計とする。 【7条84】	VI－1－1－2－5－7 二次的影響（ばい煙）及び有毒ガスに対す る設計 2．二次的影響（ばい煙）及び有毒がスに対する設計 2.2 有毒ガスに対する設計	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針 6．5外部火災
a．風（台風） 安全機能を有する構築物，系統及び機器は，風荷重 を「建築基準法」に基づき設定し，安全機能を有する構築物，系統及び機器及びそれらの施設を内包する建屋の構造健全性を確保することで，その安全性を損な らおそれがない設計とする。	d．風（台風） 外部事象防護対象施設は，風荷重を「建築基準法」 に基づき設定し，外部事象防護対象施設及び外部事象防護対象施設を内包する建屋の構造健全性を確保する ことで，外部事象防護対象施設の安全機能を損なわな い設計とする。【7条13】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （2）風（台風）	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
	重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計と	VI－1－1－2－1－1 発電用原子炬施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	する。【7条14】	（2）風（台風）	
b．凍結 安全機能を有する構築物，系統及び機器は，凍結に対して，最低気温を考慮し，建屋内への設置又は屋外機器で凍結のおそれのあるものは凍結防止対策を行う設計とする。	e．凍結 外部事象防護対象施設は，設計基準温度による凍結 に対して，屋内施設については換気空調系により環境温度を維持し，屋外施設については保温等の凍結防止対策を必要に応じて行うことにより，安全機能を損な わない設計とする。【7条15】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （4）凍結	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
	重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計と する。【7条15】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （4）凍結	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
c．降水 安全機能を有する構造物，系統及び機器は，降水に よる浸水に対して，観測記録を上回る排水能力を有す る構内排水路を設けて海域へ排水を行ら設計とする。	f．降水 外部事象防護対象施設は，降水による浸水に対して，設計基準降水量を上回る排水能力を有する構内排水路 による海域への排水及び建屋止水処置を行ら設計とす る。【7条16】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （5）降水	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
降水による荷重に対して，排水口及び構内排水路に よる海域への排水により，安全機能を有する構築物，系統及び機器は及びそれらの施設を内包する建屋の構造健全性を確保することで，その安全性を損なうおそ れがない設計とする。	降水による荷重に対して，排水口及び構内排水路に よる海域への排水により，外部事象防護対象施設及び外部事象防護対象施設を内包する建屋の構造健全性を確保することで，外部事象防護対象施設の安全機能を損なわない設計とする。【7条16】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （5）降水	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
	重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計と する。【7条17】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （5）降水	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
d．積雪 安全機能を有する構造物，系統及び機器は，積雪荷重を発電所の最寄りの気象官署である石巻特別地域気象観測所の観測記録により設定し，安全機能を有する構造物，系統及び機器及びそれらの施設を内包する建屋の構造健全性を確保することで，その安全機能を損 なわない設計とする。	g．積雪 外部事象防護対象施設は，発電所の最寄りの気象官署である石巻特別地域気象観測所の観測記録に基づき設定した設計基準積雪量による積雪荷重に対して，機械的強度を有すること，また，閉塞に対して，非常用換気空調系の給排気口を設計基準積雪量より高所に設置することにより，安全機能を損なわない設計とする。 【7条18】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （6）積雪	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
	重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮すること，及び除雪の実施により，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計とする。【7条19】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （6）積雪	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	なお，除雪を適宜実施することを保安規定に定めて管理する。【7条20】	運用に関する記載であり，保安規定にて対応	－
e．落雷 安全機能を有する構造物，系統及び機器は，発電所 の雷害防止対策として，「建築基準法」に基づき原子炉建屋等への避雷針の設置を行うとともに，雷サージに対して，接地網の敷設による接地抵抗の低減等及び安全保護装置への雷サージ侵入の抑制を図る回路設計を行ら設計とする。	h．落雷 外部事象防護対象施設は，発電所の雷害防止対策と して，原子炉建屋等への避雷針の設置を行うとともに，設計基準電流値による雷サージに対して，接地網の敷設による接地抵抗の低減等及び安全保護装置への雷サ ージ侵入の抑制を図る回路設計を行うことにより，安全機能を損なわない設計とする。【7条21】	VI－1－1－2－1－1 発電用原子炬施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （7）落雷	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
	重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，必要に応じ避雷設備又は接地設備により防護することに より，設計基準事故対処設備等の安全機能と同時にそ の機能を損なわない設計とする。【7条22】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （7）落雷	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
f．生物学的事象 安全機能を有する構造物，系統及び機器は，生物学的事象に対して，海生生物であるクラゲ等の発生を考慮して除塵装置及び海水ストレーナを設置し，必要に応じて塵芥を除去する設計とする。また，小動物の侵入に対して，屋内施設は建屋止水処置により，屋外施設は，端子箱貫通部の閉止処置を行ら設計とする。	i．生物学的事象 外部事象防護対象施設は，生物学的事象に対して，海生生物であるクラゲ等の発生を考慮して除塵装置及 び海水ストレーナを設置し，必要に応じて塵芥を除去 する設計とする。また，小動物の侵入に対して，屋内施設は建屋止水処置等により，屋外施設は，端子箱貫通部の閉止処置を行うことにより，安全機能を損なわ ない設計とする。【7条23】	VI－1－1－2－1－1 発電用原子炬施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （9）生物学的事象	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
	重大事故等対処設備は，生物学的事象に対して，小動物の侵入を防止し，海生生物に対して，侵入を防止 する又は予備を有することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計 とする。【7条24】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （9）生物学的事象	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
g．高潮 安全機能を有する構築物，系統及び機器は，高潮の影響を受けない敷地高さ（ $0 . \mathrm{P} .+3.5 \mathrm{~m}$ ）以上に設置する ことにより，高潮により影響を受けることがない設計 とする。	j．高潮 外部事象防護対象施設及び重大事故等対処設備（非常用取水設備を除く。）は，高潮の影響を受けない敷地高さ（ $0 . \mathrm{P} .+3.5 \mathrm{~m}$ ）以上に設置することにより，高潮に より影響を受けることがない設計とする。【7条25】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.1 自然現象 3．1．1 自然現象に対する具体的な設計上の考慮 （11）高潮	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
（2）人為事象	（2）人為事象 a．船舶の衝突 外部事象防護対象施設は，航路からの離隔距離を確保すること，小型船舶が発電所近傍で漂流した場合で も，防波堤等に衝突して止まること及び吞み口が広く，取水性を損なわないことから，船舶の衝突により安全機能を損なわない設計とする。【7条26】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.2 人為事象 3．2．1 人為事象に対する具体的な設計上の配慮 （4）船舶の衝突	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
	重大事故等対処設備は，航路からの離隔距離を確保 すること，小型船舶が発電所近傍で漂流した場合でも，防波堤等に衝突して止まること及び設計基準事故対処	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	設備等と位置的分散を図り設置することにより，船舶 の衝突により取水性を損なわない設計とする。【7条27】	3.2 人為事象 3．2．1 人為事象に対する具体的な設計上の配慮 （4）船舶の衝突	
a．電磁的障害 安全機能を有する構造物，系統及び機器は，電磁波 の侵入を防止する設計とする。	b．電磁的障害 外部事象防護対象施設及び重大事故等対処設備のう ち電磁波に対する考慮が必要な機器は，電磁波により その機能を損なうことがないよう，ラインフィルタや絶縁回路の設置，又は鋼製筐体や金属シールド付ケー ブルの適用等により，電磁波の侵入を防止する設計と する。【7条28】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.2 人為事象 3．2．1 人為事象に対する具体的な設計上の配慮 （5）電磁的障害	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
	c．航空機の墜落 重大事故等対処設備は，建屋内に設置するか，又は屋外において設計基準事故対処設備等と位置的分散を図り設置する。【7条29】	VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等によ る損傷の防止に関する基本方針 3．外部からの衝撃への配慮 3.2 人為事象 3．2．1 人為事象に対する具体的な設計上の配慮 （6）航空機の墜落	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針
3．火災 3.1 火災による損傷の防止 原子炉冷却系統施設の火災による損傷の防止の基本設計方針については，火災防護設備の基本設計方針に基づく設計とする。	3．火災 3.1 火災による損傷の防止 原子炉冷却系統施設の火災による損傷の防止の基本設計方針については，火災防護設備の基本設計方針に基づく設計とする。	「火災防護設備」の設工認添付説明書	9．火災による損傷の防止 VI－1－10－12 「火災防護設備」の様式－1
－	4．溢水等 4.1 溢水等による損傷の防止 原子炉冷却系統の溢水等による損傷の防止の基本設計方針については，浸水防護施設の基本設計方針に基 づく設計とする。	「浸水防護施設」の設工認添付説明書	10．溢水による損傷防止の設計 VI－1－10－13 「浸水防護施設」の様式－1
4．設備に対する要求 4.1 安全設備及び設計基準対象施設 4．1．1 通常運転時の一般要求 （1）設計基準対象施設の機能 設計基準対象施設は，通常運転時において発電用原子炉の反応度を安全かつ安定的に制御でき，かつ，運転時の異常な過渡変化時においても発電用原子炉固有 の出力抑制特性を有するとともに，発電用原子炉の反応度を制御することにより，核分裂の連鎖反応を制御 できる能力を有する設計とする。	5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．1 通常運転時の一般要求 （1）設計基準対象施設の機能 設計基準対象施設は，通常運転時において発電用原子炉の反応度を安全かつ安定的に制御でき，かつ，運転時の異常な過渡変化時においても発電用原子炉固有 の出力抑制特性を有するとともに，発電用原子炉の反応度を制御することにより，核分裂の連鎖反応を制御 できる能力を有する設計とする。【15条1】	－	（変更なし）
（2）通常運転時に漏えいを許容する場合の措置 設計基準対象施設は，通常運転時において，放射性物質を含む液体を内包する容器，配管，ポンプ，弁そ の他の設備から放射性物質を含む液体があふれ出た場合においては，系統外に漏えいさせることなく，各建屋等に設けられた機器ドレン，床ドレン等のサンプ又 はタンクに収集し，液体廃肓物処理設備に送水する設計とする。	（2）通常運転時に漏えいを許容する場合の措置 設計基準対象施設は，通常運転時において，放射性物質を含む液体を内包する容器，配管，ポンプ，弁そ の他の設備から放射性物質を含む液体があふれ出た場合においては，系統外に漏えいさせることなく，各建屋等に設けられた機器ドレン，床ドレン等のサンプ又 はタンクに収集し，液体廃重物処理設備に送水する設計とする。【15条4】	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
4．1．2 多様性，位置的分散等 （1）多重性又は多様性及び独立性 設置許可基準規則第 12 条第 2 項に規定される「安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するもの」は，当該系統を構成する機器 に「（2）単一故障」にて記載する単一故障が発生した場合であって，外部電源が利用できない場合において も，その系統の安全機能を達成できるよう，十分高い信頼性を確保し，かつ維持し得る設計とし，原則，多重性又は多様性及び独立性を備える設計とする。	5．1．2 多様性，位置的分散等 （1）多重性又は多様性及び独立性 設置許可基準規則第 12 条第 2 項に規定される「安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するもの」は，当該系統を構成する機器 に「（2）単一故障」にて記載する単一故障が発生した場合であって，外部電源が利用できない場合において も，その系統の安全機能を達成できるよう，十分高い信頼性を碓保し，かつ維持し得る設計とし，原則，多重性又は多様性及び独立性を備える設計とする。【14条 1】	－	（冒頭宣言）
	重大事故等対処設備は，共通要因として，環境条件，自然現象，発電所敷地又はその周辺において想定され る発電用原子炉施設の安全性を損なわせる原因となる おそれがある事象であって人為によるもの（以下「人為事象」という。），溢水，火災及びサポート系の故障 を考慮する。 発電所敷地で想定される自然現象として，地震，津波，風（台風），竜巻，涷結，降水，積雪，落雷，火山 の影響，生物学的事象，森林火災及び高潮を選定する。 ［54条1］ 自然現象の組合せについては，地震，津波，風（台風），積雪及び火山の影響を考慮する。【54条2】 人為事象として，飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突，電磁的障害及び故意による大型航空機の衝笑その他のテロリズムを選定する。【54条3】 故意による大型航空機の衝突その他のテロリズムに ついては，可搬型重大事故等対処設備による対策を講 じることとする。【54条4】 原子炬建屋，制御建屋，緊急用電気品建屋及び緊急時対策建屋（以下「建屋等」という。）については，地震，津波，火災及び外部からの衝撃による損傷を防止 できる設計とする。【54条5】 重大事故緩和設備についても，共通要因の特性を踏 まえ，可能な限り多様性を碓保し，位置的分散を図る ことを考慮する。【54条6】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	a．常設重大事故等対処設備 常設重大事故防止設備は，設計基準事故対処設備並 びに使用済燃料貯蔵槽（使用済燃料プール）の椧却設備及び注水設備（以下「設計基準事故対処設備等」と いう。）の安全機能と共通要因によって同時にその機能 が損なわれるおそれがないよう，共通要因の特性を踏 まえ，可能な限り多㥞性，独立性，位置的分散を考慮 して適切な措置を講じる設計とする。ただし，常設重	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及ひ独立性並びに位置的分散	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1～の反映結果	
変更前	変更後			
	環境条件に対しては，想定される重大事故等が発生 した場合における温度，放射線，荷重及びその他の使用条件において，常設重大事故防止設備がその機能を確実に発揮できる設計とする。重大事故等時の環境条件における健全性については「5．1．5 環境条件等」に基づく設計とする。風（台風），凍結，降水，積雪及び電磁的障害に対して常設重大事故防止設備は，環境条件にて考慮し機能が損なわれない設計とする。［54条8］	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散		健全性に係る設計
	常設重大事故防止設備は，「1．地盤等」に基づく地盤に設置するとともに，地震，津波及び火災に対して，「2．1 地震による損傷の防止」，「2．2 津波による損傷の防止」及び「3．1 火災による損傷の防止」に基つ く設計とする。【54条9】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散		健全性に化係る設計
	溢水に対しては，可能な限り多様性を有し，位置的分散を図ることで，想定する溢水水位に対して同時に機能を損ならことのない設計とする。【54条10】	VI－1－1－6 安全設備及び重大事故等対处設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多㨾性及ひ独立性並びて位置的分散		健全性に係る設計
	地震，津波，溢水及び火災に対して常設重大事故防止設備は，設計基準事故対処設備等と同時に機能を損 ならおそれがないように，可能な限り設計基準事故対処設備等と位置的分散を図る。【54条11】 風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災，爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突及び電磁的障害に対して，常設重大事故防止設備は，外部からの衝撃による損傷の防止が図られた建屋等内 に設置するか，又は設計基準事故対処設備等と同時に機能が損なわれないように，設計基準事故対処設備等 と位置的分散を図り，屋外に設置する。【54条12】 落雷に対して常設代替交流電源設備は，避雷設備等 により防護する設計とする。【54条13】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多樣性及ひ独立性並びに位置的分散		健全性に係る設計
	生物学的事象のらちネズミ等の小動物に対して屋外 の常設重大事故防止設備は，侵入防止対策により重大事故等に対処するために必要な機能が損なわれるおそ れのない設計とする。生物学的事象のうちクラゲ等の海生生物からの影響を受けるおそれのある常設重大事故防止設備は，侵入防止対策により重大事故等に対処	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散		健全性汇係る設計

基本設計方針		設計結果の記載笽所	様式 -1 への反映結果
変更前	変更後		
	するための必要な機能が損なわれるおそれのない設計		
	高潮に対して常設重大事故防止設備（非常用取水設備を除く。）は，高潮の影響を受けない敷地高さに設置 する。【54条15】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多樣性及ひ独立性並びに位置的分散	11．健全性に係る設計
	飛来物（航空機落下）に対して常設重大事故防止設備は，設計基準事故対処設備等と同時にその機能が損 なわれないように，設計基準事故対処設備等と位置的分散を図り設置する。【54条16】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及ひ独立性並びに位置的分散	11．健全性に係る設計
	常設重大事故緩和設備についても，共通要因の特性 を踏まえ，可能な限り上記を考慮して多樣性，位置的分散を図る設計とする。【54条17】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下沉おける健全性に関する説明書 2．基本方針 2.1 多重性又は多㨾性及ひ独立性並びて位置的分散	11．健全性に係る設計
	サポート系の故障に対しては，系統义は機器に供給 される電力，空気，油及び洽却水を考慮し，常設重大事故防止設備は設計基準事故対処設備等と異なる駆動源，泠却源を用いる設計，又は駆動源，泠却源が同じ場合は別の手段が可能な設計とする。また，常設重大事故防止設備は設計基準事故対処設備等と可能な限り異なる水源をもつ設計とする。【54条18】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	b．可搬型重大事故等対処設備 可搬型重大事故防止設備は，設計基準事故対処設備等又は常設重大事故防止設備と共通要因によって同時 にその機能が損なわれるおそれがないよう，共通要因 の特性を踏まえ，可能な限り多様性，独立性，位置的分散を考慮して適切な措置を講じる設計とする。【54条 19】 また，可搬型重大事故等対処設備は，地震，津波， その他の自然現象又は故意による大型航空機の衝突そ の他のテロリズム，設計基準事故対処設備等及び重大事故等対処設備の配置その他の条件を考慮した上で常設重大事故等対処設備と異なる保管場所に保管する設計とする。【54条20】 環境条件に対しては，想定される重大事故等が発生 した場合における温度，放射線，荷重及びその他の使用条件において，可搬型重大事故等対処設備がその機能を確実に発揮できる設計とする。重大事故等時の環境条件における健全性については「5．1．5 環境条件等」に基づく設計とする。 可搬型重大事故等対処設備は，風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件にて考慮し機能が損なわれない設計とする。【54条21】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散 2.3 環境条件等 VI－2－別添3 可搬型重大事故等対処設備等の耐震性に関す る説明書	4．地震による損傷防止に関する設計 4.11 耐震設計の基本方針を準用して行う耐震評価 11．健全性に係る設計
	地震に対して，屋内の可搬型重大事故等対処設備は，「1．地盤等」に基づく地盤に設置された建屋等内に	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	4．地震による損傷防止に関する設計 4.11 耐震設計の基本方針を準用して行う耐震評価

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
	保管する。屋外の可搬型重大事故等対处設備は，転倒 しないことを確認する，又は必要により固縛等の処置 をするとともに，地震により生ずる敷地下斜面のすへ り，液状化又は摇すり达みによる不等沈下，傾斜及び浮き上がり，地盤文持力の不足，地中埋設構造物の損壊等の影響により必要な機能を震失しない位置に保管 する設計とする。【54条22】	2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散 2.3 環境条件等 VI－2－別添3 可搬型重大事故等対処設備等の耐震性に関す る説明書	11．健全性に係る設計
	地震及び津波に対して可搬型重大事故等対処設備 は，「2．1 地震による損傷の防止」及び「2．2 津波に よる損傷の防止」にて考慮された設計とする。［54条231 火災に対して可搬型重大事故等対処設備は，「3．1火災による損傷の防止」に基づく火災防護を行う。【54条24】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2．1 多重性又は多㥞性及ひ独立性並びに位置的分散 2.3 環境条件等 VI－2－別添3 可搬型重大事故等対処設備等の耐震性に関す る説明書	4．地震による損働方止に関する設計 4． 11 而震設計の基本方針を準用して行ら而震效価 11．健全性に係る設計
	重大事故等対処設備に期待する機能については，溢水影響を受けて設計基準事故対処設備等と同時に機能 を損ならおそれがないよう，被水及び蒸気影響に対し ては可能な限り設計基準事故対処設備等と位置的分散 を図り，没水の影響に対しては溢水水位を考慮した位置に設置又は保管する。【54条25】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多栐性及ひ独立性並びに位置的分散 2.3 環境条件等 VI－2－別添3 可搬型重大事故等対処設備等の耐震性に関す る説明書	4．地震による損傷防止に関する設計 4． 11 耐震設計の基本方針を淮用して行ら耐震衦価 11．健全性に係る設計
	地震，津波，溢水及び火災に対して可䈲型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に機能を損ならおそれかなないよ うに，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，複数箇所に分散して保管する設計とする。【54条26】 風（台風），竜巻，涷結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災，爆発，近隣工場等の火災，危険物を搭載した車両，有毒がス，船舶の衝突及び電磁的障害に対して，可搬型重大事故等対処設備 は，外部からの衝撃による損傷の防止が図られた建屋等内汇保管するか，又は設計基準事故対処設備等及び常設重大事故等対処設備と同時に必要な機能を損なら おそれがないように，設計基準事故対処設備等の配置 も含めて常設重大事故等対処設備と位置的分散を図 り，防火帯の内側の複数箇所に分散して保管する設計 とする。【54条27】 クラゲ等の海生生物の影響を受けるおそれのある屋外の可搬型重大事故等対処設備は，予備を有する設計 とする。【54条28】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多㥞性及ひ独立性並びに位置的分散 2.3 環境条件等 VI－2－別添3 可搬型重大事故等対処設備等の耐震性に関す る説明書	4．地震による損傷防止に関する設計 4． 11 耐震設計の基本方針を準用して行う耐震評価 11．健全性に係る設計
	高潮に対して可㧴型重大事故等対処設備は，高潮の影響を受けない敷地高さに保管する設計とする。154条	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下に抽ちる健全性に関する説明書	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	29】	2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散 2.3 環境条件等	
	飛来物（航空機落下）及び故意による大型航空機の衝突その他のテロリズムに対して，屋内の可搬型重大事故等対処設備は，可能な限り設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り複数箇所に分散して保管する設計とする。【54条30】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散 2.3 環境条件等	11．健全性に係る設計
	屋外に保管する可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備が設置されている建屋等から 100 m 以上の離隔距離を確保す るとともに，当該可搬型重大事故等対処設備がその機能を代替する屋外の設計基準事故対処設備等及び常設重大事故等対処設備から 100 m 以上の離隔距離を確保し た上で，複数箇所に分散して保管する設計とする。【54条31】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散 2.3 環境条件等	11．健全性に係る設計
	サポート系の故障に対しては，系統又は機器に供給 される電力，空気，油及び泠却水を考慮し，可搬型重大事故防止設備は，設計基準事故対処設備等又は常設重大事故防止設備と異なる駆動源，冷却源を用いる設計とするか，駆動源，泠却源が同じ場合は別の手段が可能な設計とする。また，水源についても可能な限り，異なる水源を用いる設計とする。【54条32】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	c．可搬型重大事故等対処設備と常設重大事故等対処設備の接続口 原子炉建屋の外から水又は電力を供給する可搬型重大事故等対処設備と常設設備との接続口は，共通要因 によって接続することができなくなることを防止する ため，それぞれ互いに異なる複数の場所に設置する設計とする。【54条33】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	環境条件に対しては，想定される重大事故等が発生 した場合における温度，放射線，荷重及びその他の使用条件において，その機能を確実に発揮できる設計と するとともに，接続口は，建屋の異なる面の隣接しな い位置又は建屋内及び建屋面の適切に離隔した位置に複数箇所設置する。重大事故等時の環境条件における健全性については，「5．1．5 環境条件等」に基づく設計とする。風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件にて考慮し，機能が損なわれ ない設計とする。【54条34】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多樣性及び独立性並びに位置的分散	11．健全性に係る設計
	地震に対して接続口は，「1．地盤等」に基づく地盤上の建屋内又は建屋面に複数箇所設置する。【54条35】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	地震，津波及び火災に対して接続口は，「2．1 地震 による損傷の防止」，「2．2 津波による損傷の防止」及 び「3．1 火災による損傷の防止」に基づく設計とする。【54条36】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	溢水に対して接続口は，想定される溢水水位に対し て機能を喪失しない位置に設置する。【54条37】 地震，津波，溢水及び火災に対しては，接続口は，建屋内及び建屋面の適切に離隔した隣接しない位置に複数箇所設置する。【54条38】 風（台風），竜巻，落雷，火山の影響，生物学的事象，森林火災，飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突及び故意による大型航空機の衝突その他のテロリズム に対して，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔した位置に複数箇所設置する。【54条39】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	生物学的事象のらちネズミ等の小動物に対して，屋外に設置する場合は，開口部の閉止により重大事故等 に対処するために必要な機能が損なわれるおそれのな い設計とする。【54条40】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	高潮に対して接続口は，高潮の影響を受けない敷地高さに設置する。【54条41】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	また，一つの接続口で複数の機能を兼用して使用す る場合には，それぞれの機能に必要な容量が確保でき る接続口を設ける設計とする。同時に使用する可能性 がある場合は，合計の容量を確保し，状況に応じて， それぞれの系統に必要な容量を同時に供給できる設計 とする。【54条42】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2．1 多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
（2）単一故障 安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するものは，当該系統を構成す る機器に短期間では動的機器の単一故障，長期間では動的機器の単一故障若しくは想定される静的機器の単一故障のいずれかが生じた場合であって，外部電源が利用できない場合においても，その系統の安全機能を達成できる設計とする。	（2）単一故障 安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するものは，当該系統を構成す る機器に短期間では動的機器の単一故障，長期間では動的機器の単一故障若しくは想定される静的機器の単一故障のいずれかが生じた場合であって，外部電源が利用できない場合においても，その系統の安全機能を達成できる設計とする。【14条2】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散	（基本設計方針に変更はないが，設工認で必要な設計） 11．健全性に係る設計
	短期間と長期間の境界は 24 時間とする。【14条3】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多樣性及び独立性並びに位置的分散	11．健全性に係る設計
	ただし，非常用ガス処理系の配管の一部及び非常用 ガス処理系フィルタ装置，中央制御室換気空調系のダ クトの一部及び中央制御室再循環フィルタ装置並びに	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	残留熱除去系（格納容器スプレイ泠却モード）のドラ イウェルスプレイ管及びサプレッションチェンバスプ レイ管については，設計基準事故が発生した場合に長期間にわたつて機能が要求される静的機器であるが，単一設計とするため，個別に設計を行う。【14条4】	2.1 多重性又は多様性及び独立性並びに位置的分散	
4．1．3 悪影響防止等 （1）飛来物による損傷の防止 設計基準対象施設に属する設備は，蒸気タービン，発電機及び内部発生エネルギの高い流体を内蔵する弁 の破損及び配管の破断，高速回転機器の破損に伴う飛散物により安全性を損なわない設計とする。	5．1．3 悪影響防止等 （1）飛来物による損傷の防止 設計基準対象施設に属する設備は，蒸気タービン，発電機及び内部発生エネルギの高い流体を内蔵する弁 の破損及び配管の破断，高速回転機器の破損に伴う飛散物により安全性を損なわない設計とする。【15条5】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.2 悪影響方止等	（基本設計方針に変更はないが，設工認で必要な設計） 11．健全性に係る設計
発電用原子炉施設の安全性を損なわないよう蒸気夕 ービン及び発電機は，破損防止対策等を行うとともに，原子力委員会原子炉安全審査会「タービンミサイル評価について」により，タービンミサイル発生時の対象物を破損する確率が10－7回／炉•年以下となることを確認する。	発電用原子炉施設の安全性を損なわないよう蒸気夕 ービン及び発電機は，破損防止対策等を行うとともに，原子力委員会原子炉安全審査会「タービンミサイル評価について」により，タービンミサイル発生時の対象物を破損する確率が10－7回／炉•年以下となることを確認する。【15条6】	－	（変更なし）
高温高圧の配管については，材料選定，強度設計に十分な考慮を払う。さらに，安全性を高めるために，原子炉格納容器内で想定される配管破断が生じた場合，破断口からの原子炉冷却材流出によるジェット噴流による力に耐える設計とする。また，ジェット反力 によるホイッピングで原子炉格納容器が損傷しないよ ら配置上の考慮を払うとともに，レストレイント等の配管ホイッピング防止対策を設ける設計とする。	高温高圧の配管については，材料選定，強度設計に十分な考慮を払う。さらに，安全性を高めるために，原子炬格納容器内で想定される配管破断が生じた場合，破断口からの原子炉冷却材流出によるジェット噴流による力に耐える設計とする。また，ジェット反力 によるホイッピングで原子炉格納容器が損傷しないよ ら配置上の考慮を払うとともに，レストレイント等の配管ホイッピング防止対策を設ける設計とする。【15条 7】	VI－1－1－9 発電用原子炉施設の蒸気タービン，ポンプ等の損壊に伴う飛散物による損傷防護に関する説明書 3．評価 3.1 内部発生エネルギーの高い流体を内蔵する配管の破損による飛散物 3．1．3 評価結果	11．健全性に係る設計
また，その他の高速回転機器が損壊し，飛散物とな らないように保護装置を設けること等によりオーバー スピードとならない設計とする。 損傷防止措置を行ら場合，想定される飛散物の発生箇所と防護対象機器の距離を十分にとる設計とし，又 は飛散物の飛散方向を考慮し，配置上の配慮又は多重性を考慮した設計とする。	また，その他の高速回転機器が損壊し，飛散物とな らないように保護装置を設けること等によりオーバー スピードとならない設計とする。【15条8】 損傷防止措置を行ら場合，想定される飛散物の発生箇所と防護対象機器の距離を十分にとる設計とし，又 は飛散物の飛散方向を考慮し，配置上の配慮又は多重性を考慮した設計とする。【15条9】	VI－1－1－9 発電用原子炉施設の蒸気タービン，ポンプ等の損壊に伴う飛散物による損傷防護に関する説明書 1．概要 2．基本方針 3．評価 3.2 高速回転機器の損壊による飛散物 3．2．3 評価結果	11．健全性に係る設計
（2）共用	（2）共用 重要安全施設は，発電用原子炉施設間で原則共用し ないものとするが，安全性が向上する場合は，共用す ることを考慮する。 なお，発電用原子炉施設間で共用する重要安全施設 はないことから，共用することを考慮する必要はない。 【15条10】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.2 悪影響方止等	11．健全性に係る設計
安全施設を発電用原子炉施設間で共用する場合に は，発電用原子炉施設の安全性を損なわない設計とす る。	安全施設（重要安全施設を除く。）を共用する場合に は，発電用原子炬施設の安全性を損なわない設計とす る。【15条10】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.2 悪影響方止等	11．健全性に係る設計
	常設重大事故等対処設備の各機器については，2以上	VI－1－1－6 安全設備及び重大事故等対処設備が使用される	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		3．1．3 評価結果 3.2 高速回転機器の損壊による飛散物 3．2．3 評価結果	
	5．1．4 容量等 （1）常設重大事故等対処設備 常設重大事故等対処設備は，想定される重大事故等 の収束において，想定する事象及びその事象の進展等 を考慮し，重大事故等時に必要な目的を果たすために，事故対応手段としての系統設計を行う。重大事故等の収束は，これらの系統の組合せにより達成する。【54条 50】	VI－1－1－4 設備別記載事項の設定根拠に関する説明書	各施設の様式 -1 各施設の常設重大事故等対処設備に係る設備仕様に係る設計による。
	「容量等」とは，ポンプ流量，タンク容量，伝熱容量，弁吹出量，発電機容量，蓄電池容量，計装設備の計測範囲，作動信号の設定値等とする。【54条51】	VI－1－1－4 設備別記載事項の設定根拠に関する説明書	各施設の様式 -1 各施設の常設重大事故等対処設備に係る設備仕様に係る設計による。
	常設重大事故等対処設備のらち設計基準対象施設の系統及び機器を使用するものについては，設計基準対象施設の容量等の仕様が，系統の目的に応じて必要と なる容量等に対して十分であることを確認した上で，設計基準対象施設の容量等の仕様と同仕様の設計とす る。【54条52】 常設重大事故等対処設備のらち設計基準対象施設の系統及び機器を使用するもので，重大事故等時に設計基準対象施設の容量等を補う必要があるものについて は，その後の事故対応手段と合わせて，系統の目的に応じて必要となる容量等を有する設計とする。【54条 53】 常設重大事故等対処設備のらち重大事故等への対処 を本来の目的として設置する系統及び機器を使用する ものについては，系統の目的に応じて必要な容量等を有する設計とする。【54条54】	VI－1－1－4 設備別記載事項の設定根拠に関する説明書	各施設の様式 -1 各施設の常設重大事故等対処設備に係る設備仕様に係る設計による。
	（2）可搬型重大事故等対処設備 可搬型重大事故等対処設備は，想定される重大事故等の収束において，想定する事象及びその事象の進展 を考慮し，事故対応手段としての系統設計を行う。重大事故等の収束は，これらの系統の組合せにより達成 する。【54条55】	VI－1－1－4 設備別記載事項の設定根拠に関する説明書	各施設の様式 -1 各施設の可搬型重大事故等対処設備に係る設備仕様に係る設計による。
	「容量等」とは，ポンプ流量，タンク容量，伝熱容量，発電機容量，蓄電池容量，ボンベ容量，計測器の計測範囲等とする。【54条56】	VI－1－1－4 設備別記載事項の設定根拠に関する説明書	各施設の様式 -1 各施設の可搬型重大事故等対処設備に係る設備仕様に係る設計による。
	可搬型重大事故等対処設備は，系統の目的に応じて必要な容量等を有する設計とするとともに，設備の機能，信頼度等を考慮し，予備を含めた保有数を確保す ることにより，必要な容量等に加え，十分に余裕のあ る容量等を有する設計とする。【54条57】	VI－1－1－4 設備別記載事項の設定根拠に関する説明書	各施設の様式 -1 各施設の可搬型重大事故等対処設備に係る設備仕様に係る設計による。
	可搬型重大事故等対処設備のうち複数の機能を兼用	VI－1－1－4 設備別記載事項の設定根拠に関する説明書	各施設の様式 -1

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	することで，設置の効率化，被ばくの低減が図れるも のは，同時に要求される可能性がある複数の機能に必要な容量等を合わせた容量等とし，兼用できる設計と する。【54条58】		各施設の可搬型重大事故等対処設備に係る設備仕様に係る設計による。
	可搬型重大事故等対処設備のうち，原子炉建屋の外 から水又は電力を供給する注水設備及び電源設備は，必要となる容量等を有する設備を1基当たり2セットに加え，故障時のバックアップ及び保守点検による待機除外時のバックアップとして，発電所全体で予備を確保する。【54条59】	VI－1－1－4 設備別記載事項の設定根拠に関する説明書	各施設の様式 -1 各施設の可搬型重大事故等対処設備に係る設備仕様に係る設計による。
	また，可搬型重大事故等対処設備のらち，負荷に直接接続する高圧窒素ガスボンベ，主蒸気逃がし安全弁用可搬型蓄電池等は，必要となる容量等を有する設備 を1基当たり1セットに加え，故障時のバックアップ及 び保守点検による待機除外時のバックアップとして，発電所全体で予備を確保する。【54条60】	VI－1－1－4 設備別記載事項の設定根拠に関する説明書	各施設の様式 -1 各施設の可搬型重大事故等対処設備に係る設備仕様に係る設計による。
	上記以外の可搬型重大事故等対処設備は，必要とな る容量等を有する設備を 1 基当たり 1 セットに加え，設備の信頼度等を考慮し，予備を確保する。【54条61】	VI－1－1－4 設備別記載事項の設定根拠に関する説明書	各施設の様式 -1 各施設の可搬型重大事故等対処設備に係る設備仕様に係る設計による。
4．1．4 環境条件等 安全施設の設計条件については，材料疲労，劣化等 に対しても十分な余裕を持って機能維持が可能となる よう，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に想定される圧力，温度，湿度，放射線，荷重，屋外の天候による影響（凍結及び降水），海水を通水する系統への影響，電磁的障害，周辺機器等から の悪影響及び冷却材の性状を考慮し，十分安全側の条件を与えることにより，これらの条件下においても期待されている安全機能を発揮できる設計とする。	5．1．5 環境条件等 安全施設の設計条件については，材料疲労，劣化等 に対しても十分な余裕を持って機能維持が可能となる よう，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に想定される圧力，温度，湿度，放射線，荷重，屋外の天候による影響（凍結及び降水），海水を通水する系統への影響，電磁的障害，周辺機器等から の悪影響及び伶却材の性状を考慮し，十分安全側の条件を与えることにより，これらの条件下においても期待されている安全機能を発揮できる設計とする。【14条 12】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	（基本設計方針に変更はないが，設工認で必要な設計） 11．健全性に係る設計
	重大事故等対処設備は，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件において，その機能が有効に発揮できるよう， その設置場所（使用場所）又は保管場所に応じた耐環境性を有する設計とするとともに，操作が可能な設計 とする。【54条62】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
	重大事故等時の環境条件については，重大事故等時 における温度（環境温度及び使用温度），放射線及び荷重に加えて，その他の使用条件として環境圧力，湿度 による影響，屋外の天候による影響（凍結及び降水），重大事故等時に海水を通水する系統への影響，自然現象による影響，人為事象の影響，周辺機器等からの悪影響及び泠却材の性状（原子炉冷却材中の破損物等の異物を含む。）の影響を考慮する。 荷重としては，重大事故等が発生した場合における	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	機械的荷重に加えて，環境圧力，温度及び自然現象に よる荷重を考慮する。 自然現象について，重大事故等時に重大事故等対処設備に影響を与えるおそれがある事象として，地震，風（台風），凍結，降水及び積雪を選定する。これらの事象のらち，凍結及び降水については，屋外の天候に よる影響として考慮する。【54条63】 自然現象による荷重の組合せについては，地震，風 （台風）及び積雪の影響を考慮する。【54条64】		
	これらの環境条件のらち，重大事故等時における環境温度，環境圧力，湿度による影響，屋外の天候によ る影響（凁結及び降水），重大事故等時の放射線による影響及び荷重に対しては，重大事故等対処設備を設置 （使用）又は保管する場所に応じて，「（1）環境圧力，環境温度及び湿度による影響，放射線による影響，屋外の天候による影響（涑結及び降水）並びに荷重」に示すように設備分類ごとに必要な機能を有効に発揮で きる設計とする。【54条65】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
（1）環境圧力，環境温度及び湿度による影響，放射線 による影響，屋外の天候による影響（凍結及び降水）並びに荷重 安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時における環境圧力，環境温度及 び湿度による影響，放射線による影響，屋外の天候に よる影響（凍結及び降水）並びに荷重を考慮しても，安全機能を発揮できる設計とする。	（1）環境圧力，環境温度及び湿度による影響，放射線 による影響，屋外の天候による影響（凍結及び降水）並びに荷重 安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時における環境圧力，環境温度及 び湿度による影響，放射線による影響，屋外の天候に よる影響（湅結及び降水）並びに荷重を考慮しても，安全機能を発揮できる設計とする。【14条13】	－	(変更なし)
	原子炉格納容器内の重大事故等対処設備は，想定さ れる重大事故等時における原子炉格納容器内の環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損なわない設計とする。操作は中央制御室から可能な設計とする。【54条66】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対处設備が使用される条件の下沉おける健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
	原子炬建屋原子炉棟内の重大事故等対处設備は，想定される重大事故等時における環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損なわない設計とするとともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固䋘の措置をとる。操作は，中央制御室，異なる区画若しくは離れた場所又は設置場所で可能な設計と する。【54条67】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
	原子炬建屋付属棟内，制御建屋内（中央制御室を含 む。），緊急用電気品建屋（地下階）内及び緊急時対策建屋内の重大事故等対処設備は，重大事故等時におけ るそれぞれの場所の環境条件を考慮した設計とする。 また，地震による荷重を考慮して，機能を損なわない設計とするとともに，可搬型重大事故等対処設備は，	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対处設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は，中央制御室，異なる区画若しく は離れた場所又は設置場所で可能な設計とする。【54条 68】		
	インターフェイスシステムLOCA時，使用済燃料プー ルにおける重大事故に至るおそれのある事故又は主蒸気管破断事故起因の重大事故等時に使用する設備につ いては，これらの環境条件を考慮した設計とするか， これらの環境影響を受けない区画等に設置する。 特に，使用済燃料プール監視カメラは，使用済燃料 プールに係る重大事故等時に使用するため，その環境影響を考慮して，カメラと一体の泠却装置により泠却 することで耐環境性向上を図る設計とする。【54条69】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
	屋外及び緊急用電気品建屋（地上階）の重大事故等対処設備は，重大事故等時における屋外の環境条件を考慮した設計とする。操作は，中央制御室，離れた場所又は設置場所で可能な設計とする。【54条70】 また，地震，風（台風）及び積雪の影響による荷重 を考慮し，機能を損なわない設計とするとともに，可搬型重大事故等対処設備については，必要により当該設備の落下防止，転倒防止，固縛等の措置をとる。【54条71】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
	積雪の影響については，必要により除雪の措置を講 じることを保安規定に定めて管理する。【54条72】	運用に関する記載であり，保安規定にて対応	－
	屋外の重大事故等対処設備は，重大事故等時におい て，万が一，使用中に機能を喪失した場合であっても，可搬型重大事故等対処設備によるバックアップが可能 となるよう，位置的分散を考慮して可搬型重大事故等対処設備を複数保管する設計とする。【54条73】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
原子炬格納容器内の安全施設は，設計基準事故等時 に想定される圧力，温度等に対して，格納容器スプレ イ水による影響を考慮しても，その機能を発揮できる設計とする。	原子炉格納容器内の安全施設及び重大事故等対処設備は，設計基準事故等及び重大事故等時に想定される圧力，温度等に対して，格納容器スプレイ水による影響を考慮しても，その機能を発揮できる設計とする。 【14条25】【54条74】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
安全施設において，主たる流路の機能を維持できる よう，主たる流路に影響を与える範囲について，主た る流路と同一又は同等の規格で設計する。	安全施設及び重大事故等対処設備において，主たる流路の機能を維持できるよう，主たる流路に影響を与 える範囲について，主たる流路と同一又は同等の規格 で設計する。【14条26】【54条75】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
（2）海水を通水する系統への影響 海水を通水する系統への影響に対しては，常時海水 を通水する，海に設置する又は海で使用する安全施設 は，耐腐食性材料を使用する。常時海水を通水するコ ンクリート構造物については，腐食を考慮した設計と する。	（2）海水を通水する系統への影響 海水を通水する系統への影響に対しては，常時海水 を通水する，海に設置する又は海で使用する安全施設及び重大事故等対処設備は耐腐食性材料を使用する設計とする。常時海水を通水するコンクリート構造物に ついては，腐食を考慮した設計とする。 また，使用時に海水を通水する重大事故等対処設備	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	は，海水の影響を考慮した設計とする。【14条14】【54条76】		
	原則，淡水を通水するが，海水も通水する可能性の ある重大事故等対処設備は，可能な限り淡水を優先し，海水通水を短期間とすることで，設備への海水の影響 を考慮する。また，海から直接取水する際の異物の流入防止を考慮した設計とする。【54条77】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
（3）電磁的障害 電磁的障害に対しては，安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故が発生し た場合においても，電磁波によりその機能が損なわれ ない設計とする。	（3）電磁的障害 電磁的障害に対しては，安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故が発生し た場合においても，電磁波によりその機能が損なわれ ない設計とする。【14条15】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	（基本設計方針に変更はないが，設工認で必要な設計） 11．健全性に係る設計
	人為事象のうち重大事故等対処設備に影響を与える おそれがある事象として選定する電磁的障害に対して は，重大事故等対処設備は，重大事故等時においても電磁波により機能を損なわない設計とする。【54条78】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
（4）周辺機器等からの悪影響 安全施設は，地震，火災，溢水及びその他の自然現象並びに人為事象による他設備からの悪影響により，発電用原子炉施設としての安全機能が損なわれないよ ら措置を講じた設計とする。	（4）周辺機器等からの悪影響 安全施設は，地震，火災，溢水及びその他の自然現象並びに人為事象による他設備からの悪影響により，発電用原子炉施設としての安全機能が損なわれないよ ら措置を講じた設計とする。【14条16】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	（基本設計方針に変更はないが，設工認で必要な設計） 11．健全性に係る設計
	重大事故等対処設備は，事故対応のために配置•配備している自主対策設備を含む周辺機器等からの悪影響により機能を損なわない設計とする。周辺機器等か らの悪影響としては，地震，火災及び溢水による波及的影響を考慮する。【54条79】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
	溢水に対しては，重大事故等対処設備は，想定され る溢水により機能を損なわないように，重大事故等対処設備の設置区画の止水対策等を実施する。【54条81】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
	地震による荷重を含む耐震設計については，「2．1地震による損傷の防止」に，火災防護については，「3．1火災による損傷の防止」に基づく設計とし，それらの事象による波及的影響により重大事故等に対処するた めに必要な機能を損なわない設計とする。【54条82】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
（5）設置場所における放射線の影響 安全施設の設置場所は，通常運転時，運転時の異常 な過渡変化時及び設計基準事故が発生した場合におい ても操作及び復旧作業に支障がないように，遮蔽の設置や線源からの離隔により放射線量が高くなるおそれ の少ない場所を選定した上で，設置場所から操作可能，放射線の影響を受けない異なる区画若しくは離れた場所から遠隔で操作可能，又は中央制御室遮蔽区域内で ある中央制御室から操作可能な設計とする。	（5）設置場所における放射線の影響 安全施設の設置場所は，通常運転時，運転時の異常 な過渡変化時及び設計基準事故が発生した場合におい ても操作及び復旧作業に支障がないように，遮蔽の設置や線源からの離隔により放射線量が高くなるおそれ の少ない場所を選定した上で，設置場所から操作可能，放射線の影響を受けない異なる区画若しくは離れた場所から遠隔で操作可能，又は中央制御室遮蔽区域内で ある中央制御室から操作可能な設計とする。【14条17】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	（基本設計方針に変更はないが，設工認で必要な設計） 11．健全性に係る設計
	重大事故等対処設備は，想定される重大事故等が発	VI－1－1－6 安全設備及び重大事故等対処設備が使用される	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	生した場合においても操作及び復旧作業に支障がない ように，放射線量の高くなるおそれの少ない設置場所 の選定，当該設備の設置場所への遮蔽の設置等により当該設備の設置場所で操作可能な設計，放射線の影響 を受けない異なる区画若しくは讐れた場所から遠隔で操作可能な設計，又は中央制御室遮蔽区域内である中央制御室から操作可能な設計とする。【54条84】	条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	
	可搬型重大事故等対処設備は，想定される重大事故等が発生した場合においても設置及び常設設備との接続に支障がないように，放射線量の高くなるおそれの少ない設置場所の選定，当該設備の設置場所への遮蔽 の設置等により，当該設備の設置及び常設設備との接続が可能な設計とする。【54条85】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
（6）冷却材の性状 原子炉冷却材を内包する安全施設は，水質管理基準 を定めて水質を管理することにより異物の発生を防止 する設計とする。	（6）冷却材の性状 原子炉冷却材を内包する安全施設は，水質管理基準 を定めて水質を管理することにより異物の発生を防止 する設計とする。【14条18】【54条86】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等 VI－1－4－3 非常用炉心泠却設備その他原子炉注水設備のポ ンプの有効吸込水頭に関する説明書 2．基本方針 $\mathrm{VI}-1-8-4$ 圧力低減設備その他の安全設備のポンプの有効吸込み水頭に関する説明書 2．基本方針	（基本設計方針に変更はないが，設工認で必要な設計） 11．健全性に係る設計 18．原子炉冷却系統施設の兼用に関する設計 18.2 機能を兼用する機器を含む設備に係る設計 18．2．2 各機器固有の設計 VI－1－10－8 「原子炉格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計
安全施設は，系統外部から異物が流入する可能性の ある系統に対しては，ストレーナ等を設置することに より，その機能を有効に発揮できる設計とする。	安全施設及び重大事故等対処設備は，系統外部から異物が流入する可能性のある系統汅対しては，ストレ一ナ等を設置することにより，その機能を有効に発揮 できる設計とする。【14条18】【54条86】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対处設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等 VI－1－4－3 非常用炉心洽却設備その他原子炉注水設備のポ ンプの有効吸込水頭に関する説明書 2．基本方針 VI－1－8－4 圧力低減設備その他の安全設備のポンプの有効吸込み水頭に関する説明書 2．基本方針	11．健全性に係る設計 18．原子炉冷却奚統施設の兼用に関する設計 18.2 機能を兼用する機器を含む設備に係る設計 18．2．2 各機器固有の設計 VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計
4．1．5 操作性及び試験•検查性	5．1．6 操作性及び試験•検査性 （1）操作性の確保 重大事故等対処設備は，手順書の整備，訓練•教育 により，想定される重大事故等が発生した場合におい ても，確実に操作でき，設置変更許可申請書「十 発電用原子炉の炉心の著しい損傷その他の事故が発生し た場合における当該事故に対処するために必要な施設及び体制の整備に関する事項」ハ で考慮した要員数と	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び傌験•検查牲	11．健全性に係る設計

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
	想定時間内で，アクセスルートの碓保を含め重大事故等に対処できる設計とする。これらの運用に係る体制，管理等については，保安規定に定めて管理する。【54条 90］	〈下線部〉 運用に関する記載であり，保安規定にて対応	＜下線部〉
	重大事故等対処設備は，想定される重大事故等が発生した場合においても操作を碓実なものとするため，重大事故等時の環境条件を考慮し，操作が可能な設計 とする。【54条91】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検査牲	11．健全性に係る設計
	重大事故等対処設備は，操作する全ての設備に対し，十分な操作空間を碓保するとともに，確実な操作がで きるよう，必要に応じて操作足場を設置する。また，防護具，可搬型照明等は重大事故等時に迅速に使用で きる場所に配備する。【54条92】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検査牲	11．健全性に係る設計
	現場操作において工具を必要とする場合は，一般的 に用いられる工具又は専用の工具を用いて，確実に作業ができる設計とする。工具は，作業場所の近傍又は アクセスルートの近傍に保管できる設計とする。可搬型重大事故等対処設備は，運般，設置が確実に行える ように，人力又は車両等による運般，移動ができると ともに，必要により設置場所にてアウトリガの張り出輸留めによる固定等が可能な設計とする。［54条93］	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検查牲	11．健全性に係る設計
	現場の操作スイッチは運転員等の操作性を考慮した設計とする。また，電源操作が必要な設借は，感電防止のため露出した充電部への近接防止を考慮した設計 とする。【54条94】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検査牲	11．健全性に係る設計
	現場において人力で操作を行ら弁は，手動操作が可能な設計とする。 現場での接続操作は，ボルト・ネジ接続，フランジ接続又はより簡便な接続方式等，使用する設備に応じ て接続方式を統一することにより，確実に接続が可能 な設計とする。 また，重大事故等に対処するために迅速な操作を必要とする機器は，必要な時間内に操作できるように中央制御室での操作が可能な設計とする。制御盤の操作器は運転員の操作性を考慮した設計とする。【54条95】 想定される重大事故等において操作する重大事故等対処設備のらち動的機器については，その作動状態の確認が可能な設計とする。【54条96】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検查牲	11．健全性に係る設計
	重大事故等対処設備のうち，本来の用途以外の用途 として重大事故等に対処するために使用する設備は，通常時に使用する系䖻から速やかに切替操作が可能な ように，系統に必要な弁等を設ける設計とする。【54条 971	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検查牲	11．健全性に係る設計
	可搬型重大事故等対処設備を常設設備と接続するも のについては，容易かつ確実に接続できるように，ヶ	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	11．健全性に係る設計

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
	ーブルはボルト・ネジ接続又はより簡便な接続方式等 を用い，配管は配管径や内部流体の圧力によって，大口径配管又は高圧環境においてはフランジを用い，小口径配管かつ低圧環境においてはより簡便な接続方式等を用いる設計とする。高圧窒素ガスボンベ，空気ボ ンベ，タンクローリ等については，各々専用の接続方式を用いる。また，同一ポンプを接続する配管は口径 を統一することにより，複数の系統での接続方式の統一も考慮する。【54条98】	2．基本方針 2.4 操作性及び試験•検查牲	
	想定される重大事故等が発生した場合において，可搬型重大事故等対処設備を移動•運搬し，又は他の設備の被害状況を把握するため，発電所内の道路及び通路が碓保できるよう，以下の設計とする。【54条99】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検查牲	11．健全性に係る設計
	屋外及び屋内において，アクセスルートは，自然現象，人為事象，溢水及び火災を想定しても，運搬，移動に支障をきたすことのないよう，迂回路も考慮して複数のアクセスルートを確保する設計とする。【54条 100】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検査牲	11．健全性に係る設計
	屋外及び屋内アクセスルートに影響を与えるおそれ がある自然事象として，地震，津波，風（台風），竜巻，涑結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮を選定する。【54条101】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検査牲	11．健全性に係る設計
	屋外及び屋内アクセスルートに対する人為事象につ いては，屋外アクセスルートに影響を与えるおそれが ある事象として選定する飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突，電磁的障害及び故意による大型航空機の衝突その他のテロリズム㲸対して，迂回路も考慮した複数のアクセスルートを碓保する設計とする。 船舶の衝突に対しては，カーテンウォールにより船舶の侵入が阻害されることからアクセスルートへの影響はない。 電磁的障害に対しては，道路面が直接影響を受ける ことはないことからアクセスルートへの影響はない。【54条102】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検查牲	11．健全性に係る設計
	屋外アクセスルートに対する地震による影響（周辺構造物等の損壞，周辺斜面の崩壊及び數地下斜面のす べり），その他自然現象による影響（風（台風）及び竜巻による飛来物，積雪並びに火山の影響）を想定し，複数のアクセスルートの中から状況を確認し，早期に復旧可能なアクセスルートを碓保するため，障害物を除去可能なブルドーザ（台数1（予備1））及びバックホ ウ（台数1（予備1））を保管，使用する。【54条103】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及ひ試験•検査牲	11．健全性に係る設計
	また，地震による屋外タンクからの溢水及び降水に対しては，道路上への自然流下も考慮した上で，通行		11．健全性に係る設計

基本設計方針		設計結果の記載䈏所	様式－1～の反映結果
変更前	変更後		
	への影響を受けない箇所にアクセスルートを碓保する設計とする。【54条104】	2．基本方針 2.4 操作性及び試験•検查牲	
	津波の影響については，基準津波に対し余裕を考慮 した高さの防潮堤及び防潮壁で防護することにより，複数のアクセスルートを碓保する設計とする。【54条 105】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及ひ試験•検查牲	11．健全性に係る設計
	また，高潮に対しては，通行への影響を受けない敷地高さにアクセスルートを碓保する設計とする。！54条 106】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及ひ試験•検査牲	11．健全性に係る設計
	森林火炎については，通行への影響を受けない距睢 にアクセスルートを碓保する設計とする。【54条107】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対处設備が使用される条件の下沉おける健全性に関する説明書 2．基本方針 2.4 操作性及ひ䛠験•検查牲	11．健全性に係る設計
	屋外アクセスルートは，人為事象のうち飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載し た車両及び有毒ガスに対しては，迁回路も考慮した複数のアクセスルートを確保する設計とする。落雷に対 しては，道路面が直接影響を受けることはないため， さらに生物学的事象に対しては，容易に排除可能なた め，アクセスルートへの影響はない。【54条108】 屋外アクセスルートは，地震の影響による周辺斜面 の崩壊及び敷地下斜面のすべりで崩壊土砂が広範囲に到達することを想定した上で，可搬型重大事故等対処設備の運搬に必要な幅員を確保することにより通行性 を確保できる設計とする。また，不等沈下等に伴ら段差の発生が想定される箇所においては，段差緩和対策 の実施，迂回又は砕石による段差箇所の仮復旧により対処する設計とする。【54条109】 屋外アクセスルートは，自然現象のらち，凍結及び積雪に対して，道路については融雪剤を配備し，車両 については常時スタッドレスタイヤを装着することに より，並びに急勾配の箇所のすべり止め材配備及びす べり止め舗装を施すことにより通行性を確保できる設計とする。【54条110】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検查牲	11．健全性に係る設計
	屋内アクセスルートは，自然現象として選定する津波，風（台風），竜巻，涑結，降水，積雪，落雷，火山 の影響，生物学的事象，森林火災及び高潮による影響 に対して，外部からの衝撃による損傷の防止が図られ た建屋内经碓保する設計とする。【54条111】 屋内アクセスルートは，人為事象として選定する飛来物（航空機落下），爆発，近隣工場等の火災，危険物 を搭載した車両，有毒ガス及び船舶の衝突に対して，外部からの衝撃による損傷の防止が図られた建屋内に確保する設計とする。【54条112】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及ひ試験•検査牲	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	屋内アクセスルートの設定に当たっては，油内包機器による地震随伴火災の影響や，水又は蒸気内包機器 による地震随伴溢水の影響を考慮するとともに，迂回路を含む複数のルート選定が可能な配置設計とする。 【54条113】		
（1）試験•検査性 設計基準対象施設は，健全性及び能力を確認するた め，発電用原子炉の運転中又は停止中に必要な箇所の保守点検（試験及び検查を含む。）が可能な構造とし， そのために必要な配置，空間等を備えた設計とする。	（2）試験•検査性 設計基準対象施設は，健全性及び能力を確認するた め，発電用原子炉の運転中又は停止中に必要な箇所の保守点検（試験及び検査を含む。）が可能な構造とし， そのために必要な配置，空間等を備えた設計とする。【15条2】	－－	（変更なし）
	重大事故等対処設備は，健全性及び能力を確認する ため，発電用原子炉の運転中又は停止中に必要な箇所 の保守点検，試験又は検査を実施できるよう，機能•性能の確認，漏えいの有無の確認，分解点検等ができ る構造とし，そのために必要な配置，空間等を備えた設計とする。また，接近性を考慮して必要な空間等を備え，構造上接近又は検査が困難である箇所を極力少 なくする。【54条114】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検査牲	11．健全性に係る設計
設計基準対象施設は，使用前事業者検査及び定期事業者検査の法定検査に加え，保全プログラムに基づく点検が実施可能な設計とする。	設計基準対象施設及び重大事故等対処設備は，使用前事業者検查及び定期事業者検査の法定検査に加え，保全プログラムに基づく点検が実施可能な設計とす る。【15条3】【54条115】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検査牲	11．健全性に係る設計
	重大事故等対処設備は，原則系統試験及び漏えいの有無の確認が可能な設計とする。系統試験については， テストラインなどの設備を設置又は必要に応じて準備 することで試験可能な設計とする。また，悪影響防止 の観点から他と区分する必要があるもの又は単体で機能•性能を確認するものは，他の系統と独立して機能•性能確認が可能な設計とする。【54条116】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検査牲	11．健全性に係る設計
	発電用原子炉の運転中に待機状態にある重大事故等対処設備は，発電用原子炉の運転に大きな影響を及ぼ す場合を除き，運転中に定期的な試験又は検査が実施可能な設計とする。また，多様性又は多重性を備えた系統及び機器にあっては，各々が独立して試験又は検査ができる設計とする。【54条117】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検査牲	11．健全性に係る設計
	代替電源設備は，電気系統の重要な部分として，適切な定期試験及び検査が可能な設計とする。【54条118】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検査牲	11．健全性に係る設計
	構造•強度の確認又は内部構成部品の確認が必要な設備は，原則として分解•開放（非破壊検査を含む。） が可能な設計とし，機能•性能確認，各部の経年劣化対策及び日常点検を考慮することにより，分解•開放 が不要なものについては外観の確認が可能な設計とす	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.4 操作性及び試験•検査牲	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	る。【54条119】		
4． 2 材料及び構造等 設計基準対象施設（圧縮機，補助ボイラー，蒸気夕 ービン（発電用のものに限る。），発電機，変圧器及び遮断器を除く。）に属する容器，管，ポンプ若しくは弁若しくはこれらの支持構造物又は炉心支持構造物の材料及び構造は，施設時において，各機器等のクラス区分に応じて以下のとおりとし，その際，日本機械学会「発電用原子力設備規格 設計•建設規格」（J S ME設計•建設規格）等に従い設計する。	5.2 材料及び構造等 設計基準対象施設（圧縮機，補助ボイラー，蒸気夕 ービン（発電用のものに限る。），発電機，変圧器及び遮断器を除く。）並びに重大事故等対処設備に属する容器，管，ポンプ若しくは弁若しくはこれらの支持構造物又は灲心支持構造物の材料及び構造は，施設時にお いて，各機器等のクラス区分に応じて以下のとおりと し，その際，日本機械学会「発電用原子力設備規格 設計•建設規格」（J S ME 設計•建設規格）等に従い設計する。【17条1】【55条1】 ただし，重大事故等クラス2機器及び重大事故等クラ ス2支持構造物の材料及び構造であって，以下によらな い場合は，当該機器及び支持構造物が，その設計上要求される強度を確保できるよう J SME 設計•建設規格を参考に同等以上の性能を有することを確認す る。【55条2】	－	（冒頭宣言）
	また，重大事故等クラス3機器であって，完成品は，以下によらず，「消防法」に基づく技術上の規格等一般産業品の規格及び基準に適合していることを確認し，使用環境及び使用条件に対して，要求される強度を確保できる設計とする。【55条3】	核燃料物質の取扱施設及び貯蔵施設 要目表 原子炉冷却系統施設 要目表 計測制御系統施設 要目表 放射線管理施設 要目表 原子炉格納施設 要目表 非常用電源設備 要目表 補機駆動用燃料設備 要目表 VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関 する説明書 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書 VI－3－3－4 計測制御系統施設の強度に関する説明書 VI－3－3－5 放射線管理施設の強度に関する説明書 VI－3－3－6 原子炉格納施設の強度に関する説明書 VI－3－3－7－1 非常用電源設備の強度に関する説明書 VI－3－3－7－3 補機駆動用燃料設備の強度に関する説明書	12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価
	重大事故等クラス2容器及び重大事故等クラス2管の らち主要な耐圧部の溶接部の耐圧試験は，母材と同等 の方法，同じ試験圧力にて実施する。【55条4】	－	（検査•施設管理に関する事項であり，設計対象外）
なお，各機器等のクラス区分の適用については，別紙「主要設備リスト」による。	なお，各機器等のクラス区分の適用については，別紙「主要設備リスト」による。【17条2】【55条5】	－	(「主要設備リスト」による)
4．2．1 材料について （1）機械的強度及び化学的成分 a．クラス 1 機器，クラス 1 支持構造物及び炉心支持構造物は，その使用される圧力，温度，水質，放射線，荷重その他の使用条件に対して適切な機械的強度及び化学的成分（使用中の応力その他の使用条件に対する適切な耐食性を含む。）を有する材料を使用する。	5．2．1 材料について （1）機械的強度及び化学的成分 a．クラス1機器，クラス1支持構造物及び炬心支持構造物は，その使用される圧力，温度，水質，放射線，荷重その他の使用条件に対して適切な機械的強度及び化学的成分（使用中の応力その他の使用条件に対する適切な耐食性を含む。）を有する材料を使用する。【17	原子炉冷却系統施設 要目表 VI－1－1－5 クラス1機器及び炬心支持構造物の応力腐食割 れ対策に関する説明書 5．応力腐食割れ発生の抑制策について 5．2 RCPB拡大範囲における応力腐食割れ発生の抑制策に ついて	（基本設計方針に変更はないが，設工認で必要な設計） 12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
	条31	VI－3－3－3 原子炬泠却系統施設の強度に関する説明書	
b．クラス2機器，クラス2支持構造物，クラス3機器及 びクラス4管は，その使用される圧力，温度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。	b．クラス 2 機器，クラス 2 支持構造物，クラス 3 機器， クラス4管，重大事故等クラス2機器及び重大事故等ク ラス2支持構造物は，その使用される圧力，温度，荷重 その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。【17条4】55条6】	原子炬本体 要目表核燃料物質の取扱施設及び貯蔵施設 要目表原子炉冷却系統施設 要目表計測制御采統施設 要目表放射線管理施設 要目表原子炉格納施設 要目表非常用電源設備 要目表火災防護設備 要目表 VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関 する説明書 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書 VI－3－3－4 計測制御系統施設の強度に関する説明書 VI－3－3－5 放射線管理施設の強度に関する説明書 VI－3－3－6 原子炉格納施設の強度に関する説明書 VI－3－3－7－1 非常用電源設備の強度に関する説明書 VI－3－3－7－2 火災防護設備の強度に関する説明書	12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価
c．原子炉格納容器又は原子炉格納容器支持構造物 は，その使用される圧力，温度，湿度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。	c．原子炉格納容器又は原子炉格納容器支持構造物 は，その使用される圧力，温度，湿度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。【17条5】	原子炉格納施設 要目表 VI－3－3－6 原子炉格納施設の強度に関する説明書	（基本設計方釠変更はないが，設工認で必要な設計） 12．材料及び冓造に係る設計 12.1 クラス機器及び支持構造物の強度評価
d．高圧炬心スプレイ系ストレーナ，低圧炉心スプレ イ系ストレーナ及び残留熱除去系ストレーナは，その使用される圧力，温度，荷重その他の使用条件に対し て適切な機械的強度及び化学的成分を有する材料を使用する。	d．高圧炉ふスプレイ系ストレーナ，低圧炉心スプレ イ系ストレーナ及び残留熱除去系ストレーナは，その使用される圧力，温度，荷重その他の使用条件に対し て適切な機械的強度及び化学的成分を有する材料を使用する。【17条6】	\square^{-}	(変更なし)
	e．重大事故等クラス3機器は，その使用される圧力，温度，荷重その他の使用条件に対して日本産業規格等 に適合した適切な機械的強度及び化学的成分を有する材料を使用する。【55条7】	計測制御系統施設 要目表放射線管理施設 要目表原子炉格納施設 要目表 VI－3－3－4 計測制御系統施設の強度に関する説明書 VI－3－3－5 放射線管理施設の強度に関する説明書 VI－3－3－6 原子炉格納施設の強度に関する説明書	12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価
（2）破壊じん性 a．クラス1容器は，当該容器が使用される圧力，温度，放射線，荷重その他の使用条件に対して適切な破壊じ ん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により碓認する。	（2）破壊じん性 a．クラス1容器は，当該容器が使用される圧力，温度，放射線，荷重その他の使用条件に対して適切な破壊じ ん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。【17条 7】	－	(変更なし)
原子炬圧力容器については，原子炬圧力容器の脆性破壊を防止するため，中性子照射脆化の影響を考慮し た最低試験温度を碓認し，適切な破㙹じん性を維持で	原子炬圧力容器については，原子炬圧力容器の脆性破㙹を防止するため，中性子照射脆化の影響を考慮し た最低試験温度を碓認し，適切な破壊じん性を維持で	運用に関する記載であり，保安規定にて対応	－

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
きるよう，原子炉冷却材温度及び圧力の制限範囲を設定することを保安規定に定めて管理する。	きるよう，原子炉冷却材温度及び圧力の制限範囲を設 定することを保安規定に定めて管理する。【14条20】		
b．クラス1機器（クラス1容器を除く。），クラス1支持構造物（クラス1管及びクラス1并を支持するものを除 く。），クラス2機器，クラス3機器（工学的安全施設に属するものに限る。），原子炉格納容器，原子炉格納容器支持構造物及び炉心支持構造物は，その最低使用温度に対して適切な破壊じん性を有する材料を使用す る。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。	b．クラス1機器（クラス1容器を除く。），クラス1支持構造物（クラス1管及びクラス1并を支持するものを除 く。），クラス2機器，クラス3機器（工学的安全施設に属するものに限る。），原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物及び重大事故等クラス 2 機器は，その最低使用温度に対して適切な破壊じん性 を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。【17条9】55条8】	核燃料物質の取扱施設及び貯蔵施設 要目表 原子炉冷却系統施設 要目表 計測制御系統施設 要目表 放射線管理施設 要目表 原子炉格納施設 要目表 非常用電源設備 要目表 VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関 する説明書 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書 VI－3－3－4 計測制御系統施設の強度に関する説明書 VI－3－3－5 放射線管理施設の強度に関する説明書 VI－3－3－6 原子炉格納施設の強度に関する説明書 VI－3－3－7－1 非常用電源設備の強度に関する説明書	12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価
	重大事故等クラス2機器のらち，原子炉圧力容器につ いては，重大事故等時における温度，放射線，荷重を の他の使用条件に対して損傷するおそれがない設計と する。【55条9】	原子炉本体 要目表 VI－1－2－2 原子炬圧力容器の脆性破壊防止に関する説明書 2．基本方針 4．脆性破壊防止に対する設計 5．評価対象と評価方法 7．最低使用温度に基づく評価 8．関連温度に基づく評価 9．上部棚吸収エネルギーの評価 VI－3－3－1 原子炬本体の強度に関する説明書	12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価 $\mathrm{VI}-1-10-2$ 「原子炉本体」の様式－1 2．原子炬本体の設計
c．高圧炬心スプレイ系ストレーナ，低圧炬心スプレ イ系ストレーナ及び残留熱除去系ストレーナは，その最低使用温度に対して適切な破壊じん性を有する材料 を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。	c．高圧炬心スプレイ系ストレーナ，低圧炉心スプレ イ系ストレーナ及び残留熱除去系ストレーナは，その最低使用温度に対して適切な破壊じん性を有する材料 を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により碓認する。【17条10】	－	(変更なし)
（3）非破壊試験 クラス1機器，クラス1支持構造物（棒及びボルトに限る。），クラス2機器（鋳造品に限る。）及び炬心支持構造物に使用する材料は，非破壊試験により有害な欠陥がないことを確認する。	（3）非破壊試験 クラス1機器，クラス1支持構造物（棒及びボルトに限る。），クラス2機器（鋳造品に限る。），炉心支持構造物及び重大事故等クラス2機器（鋳造品に限る。）に使用する材料は，非破壊試験により有害な欠陥がないこ とを確認する。【17条11】【55条10】	核燃料物質の取扱施設及び貯蔵施設 要目表 原子炉冷却采統施設 要目表 原子炉格納施設 要目表 VI－1－1－5 クラス1機器及び炉心支持構造物の応力腐食割 れ対策に関する説明書 5．応力腐食割れ発生の抑制策について 5.2 RCPB拡大範囲における応力腐食割れて発生の抑制策に ついて VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関 する説明書 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書	12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
		VI－3－3－6 原子炉格納施設の強度に関する説明書	
4．2．2 構造及び強度について （1）延性破断の防止 a．クラス1機器，クラス2機器，クラス3機器，原子炉格納容器及び炉心支持構造物は，最高使用圧力，最高使用温度及び機械的荷重が負荷されている状態（以下 「設計上定める条件」という。）において，全体的な変形を弾性域に抑える設計とする。	5．2．2 構造及び強度について （1）延性破断の防止 a．クラス 1 機器，クラス 2 機器，クラス 3 機器，原子炉格納容器，炉心支持構造物，重大事故等クラス2機器及 び重大事故等クラス3機器は，最高使用圧力，最高使用温度及び機械的荷重が負荷されている状態（以下「設計上定める条件」という。）において，全体的な変形を弾性域に抑える設計とする。【17条12】【55条11】	原子炉本体 要目表 核燃料物質の取扱施設及び貯蔵施設 要目表 原子炉冷却系統施設 要目表 計測制御系統施設 要目表 放射線管理施設 要目表 原子炉格納施設 要目表 非常用電源設備 要目表 火災防護設備 要目表 VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関 する説明書 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書 VI－3－3－4 計測制御系統施設の強度に関する説明書 VI－3－3－5 放射線管理施設の強度に関する説明書 VI－3－3－6 原子炉格納施設の強度に関する説明書 VI－3－3－7－1 非常用電源設備の強度に関する説明書 VI－3－3－7－2 火災防護設備の強度に関する説明書	12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価
b．クラス1支持構造物及び原子炬格納容器支持構造物は，運転状態 I 及び運転状態IIにおいて，全体的な変形を弾性域に抑える設計とする。	b．クラス1支持構造物及び原子炉格納容器支持構造物は，運転状態 I 及び運転状態IIにおいて，全体的な変形を弾性域に抑える設計とする。【17条13】	原子炉冷却系統施設 要目表 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書	（基本設計方針に変更はないが，設工認で必要な設計） 12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価
c．クラス1支持構造物であって，クラス1容器に溶接 により取り付けられ，その損壊により，クラス 1 容器 の損壊を生じさせるおそれがあるものは，b．にかかわ らず，設計上定める条件において，全体的な変形を弾性域に抑える設計とする。	c．クラス1支持構造物であって，クラス1容器に溶接 により取り付けられ，その損壊により，クラス1容器の損壊を生じさせるおそれがあるものは，b．にかかわら ず，設計上定める条件において，全体的な変形を弾性域に抑える設計とする。【17条14】	－	（変更なし）
d．クラス1容器（オメガシールその他のシールを除 く。），クラス 1 管，クラス 1 弁，クラス1支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物にあっては，運転状態IIIにおいて，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上の不連続部については，補強等により局部的な塑性変形に止まるよう設計する。	d．クラス1容器（オメガシールその他のシールを除 く。），クラス1管，クラス1弁，クラス1支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物にあっては，運転状態IIにおいて，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上の不連続部については，補強等により局部的な塑性変形に止まるよう設計する。【17条15】	原子炉冷却系統施設 要目表 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書	（基本設計方針に変更はないが，設工認で必要な設計） 12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価
e．クラス1容器（オメガシールその他のシールを除 く。），クラス1管，クラス 1 支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態IVにおいて，延性破断に至る塑性変形 が生じない設計とする。	e．クラス1容器（オメガシールその他のシールを除 く。），クラス1管，クラス 1 支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態IVにおいて，延性破断に至る塑性変形 が生じない設計とする。【17条16】	原子炉冷却系統施設 要目表 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書	（基本設計方針に変更はないが，設工認で必要な設計） 12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価
f．クラス4管は，設計上定める条件において，延性破断に至る塑性変形を生じない設計とする。	f．クラス4管は，設計上定める条件において，延性破断に至る塑性変形を生じない設計とする。【17条17】	－	（変更なし）
g．クラス1容器（ボルトその他の固定用金具，オメガ シールその他のシールを除く。），クラス1支持構造物	g．クラス1容器（ボルトその他の固定用金具，オメガ シールその他のシールを除く。），クラス1支持構造物	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
（クラス1容器に溶接により取り付けられ，その損壊に より，クラス1容器の損壊を生じさせるおそれがあるも のに限る。）及び原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。）は，試験状態にお いて，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上の不連続部については，補強等 により局部的な塑性変形に止まるよう設計する。	（クラス1容器に溶接により取り付けられ，その損壊に より，クラス1容器の損壊を生じさせるおそれがあるも のに限る。）及び原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。）は，試験状態にお いて，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上の不連続部については，補強等 により局部的な塑性変形に止まるよう設計する。【17条 18】		
h．高圧炉心スプレイ系ストレーナ，低圧炉心スプレ イ系ストレーナ及び残留熱除去系ストレーナは，運転状態 I，運転状態II及び運転状態IV（異物付着による差圧を考慮）において，全体的な変形を弾性域に抑え る設計とする。	h．高圧炉心スプレイ系ストレーナ，低圧灲心スプレ イ系ストレーナ及び残留熱除去系ストレーナは，運転状態 I，運転状態II及び運転状態IV（異物付着による差圧を考慮）において，全体的な変形を弾性域に抑え る設計とする。【17条19】	－	（変更なし）
i．クラス 2 支持構造物であって，クラス 2 機器に溶接 により取り付けられ，その損壊によりクラス2機器に損壊を生じさせるおそれがあるものには，運転状態I及 び運転状態IIにおいて，延性破断が生じない設計とす る。	i．クラス2支持構造物であって，クラス2機器に溶接 により取り付けられ，その損壊によりクラス2機器に損壊を生じさせるおそれがあるものには，運転状態I及 び運転状態IIにおいて，延性破断が生じない設計とす る。【17条20】	原子炉冷却系統施設 要目表 計測制御系統施設 要目表 原子炬格納施設 要目表 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書 VI－3－3－4 計測制御系統施設の強度に関する説明書 VI－3－3－6 原子炉格納施設の強度に関する説明書	（基本設計方針に変更はないが，設工認で必要な設計） 12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価
	j．重大事故等クラス2支持構造物であって，重大事故等クラス2機器に溶接により取り付けられ，その損壊に より重大事故等クラス2機器に損壊を生じさせるおそ れがあるものは，設計上定める条件において，延性破断が生じない設計とする。【55条12】	原子炉本体 要目表 核燃料物質の取扱施設及び貯蔵施設 要目表 原子炉冷却系統施設 要目表 計測制御系統施設 要目表 放射線管理施設 要目表 原子炬格納施設 要目表 非常用電源設備 要目表 VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関 する説明書 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書 VI－3－3－4 計測制御系統施設の強度に関する説明書 VI－3－3－5 放射線管理施設の強度に関する説明書 VI－3－3－6 原子炉格納施設の強度に関する説明書 VI－3－3－7－1 非常用電源設備の強度に関する説明書	12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価
（2）進行性変形による破壊の防止 クラス1容器（ボルトその他の固定用金具を除く。）， クラス1管，クラス1弁（并箱に限る。），クラス1支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I 及び運転状態 II において，進行性変形が生じない設計とする。	（2）進行性変形による破壊の防止 クラス1容器（ボルトその他の固定用金具を除く。）， クラス1管，クラス1弁（弁箱に限る。），クラス1支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I及び運転状態II において，進行性変形が生じない設計とする。【17条21】	原子炉冷却系統施設 要目表 VI－3－3－3 原子炉冷却采統施設の強度に関する説明書	（基本設計方針に変更はないが，設工認で必要な設計） 12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価
（3）疲労破壊の防止 a．クラス1容器，クラス1管，クラス1弁（弁箱に限	（3）疲労破壊の防止 a．クラス1容器，クラス1管，クラス1弁（弁箱に限	原子炉冷却系統施設 要目表計測制御系統施設 要目表	（基本設計方針に変更はないが，設工認で必要な設計） 12．材料及び構造に係る設計

基本設計方針		設計結果の記載笽所	様式 -1 への反映結果
変更前	変更後		
る。），クラス1支持構造物，クラス2管（伸縮継手を除 く。），原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態 I 及び運転状態 II において，疲労破壊が生じない設計とする。	る。），クラス1支持構造物，クラス2管（伸縮継手を除 く。），原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態 I 及び運転状態 II において，疲労破壊が生じない設計とする。【17条22】	原子炉格納施設 要目表 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書 VI－3－3－4 計測制御系統施設の強度に関する説明書 VI－3－3－6 原子炉格納施設の強度に関する説明書	12.1 クラス機器及び支持構造物の強度評価
b．クラス2機器，クラス3機器及び原子炉格納容器の伸縮継手は，設計上定める条件で応力が繰り返し加わ る場合において，疲労破壊が生じない設計とする。	b．クラス2機器，クラス3機器，原子炉格納容器，重大事故等クラス2機器の伸縮継手及び重大事故等クラ ス2管（伸縮継手を除く。）は，設計上定める条件で応力が繰り返し加わる場合において，疲労破壊が生じな い設計とする。【17条23】【55条13】	原子炉冷却系統施設 要目表計測制御系統施設 要目表放射線管理施設 要目表原子炉格納施設 要目表火災防護設備 要目表 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書 VI－3－3－4 計測制御采統施設の強度に関する説明書 VI－3－3－5 放射線管理施設の強度に関する説明書 VI－3－3－6 原子炉格納施設の強度に関する説明書 VI－3－3－7－2 火災防護設備の強度に関する説明書	12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価
（4）座屈による破壊の防止 a．クラス1容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限る。），クラス1支持構造物，原子炉格納容器支持構造物及び炉心支持構造物は，運転状態 I，運転状態II，運転状態III及び運転状態IVに おいて，座屈が生じない設計とする。	（4）座屈による破壊の防止 a．クラス1容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限る。），クラス1支持構造物，原子炉格納容器支持構造物及び炬心支持構造物は，運転状態 I，運転状態II，運転状態III及び運転状態IVに おいて，座屈が生じない設計とする。【17条24】	原子炉冷却系統施設 要目表 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書	（基本設計方釓変更はないが，設工認で必要な設計） 12．材料及び媾造に係る設計 12．1 クラス機器及び支持構造物の強度評価
b．クラス1容器（胴，鏡板及び）外側から圧力を受ける円筒形又は管状のものに限る。）及びクラス1支持構造物（クラス1容器に溶接により取り付けられ，その損壊 により，クラス1容器の損壊を生じさせるおそれがある ものに限る。）は，試験状態において，座屈が生じない設計とする。	b．クラス1容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限る。）及びクラス1支持構造物（クラス1容器に溶接により取り付けられ，その損壊 により，クラス1容器の損壊を生じさせるおそれがある ものに限る。）は，試験状態において，座屈が生じない設計とする。【17条25】	－	(変更なし)
c．クラス1管，クラス2容器，クラス2管及びクラス3機器は，設計上定める条件において，座屈が生じない設計とする。	c．クラス1管，クラス2容器，クラス2管，クラス3機器，重大事故等クラス2容器，重大事故等クラス2管及 び重大事故等クラス2支持構造物（重大事故等クラス2機器に溶接により取り付けられ，その損壊により重大事故等クラス2機器に損壊を生じさせるおそれがある ものに限る。）は，設計上定める条件において，座屈が生じない設計とする。【17条26】【55条14】	原子炉本体 要目表核燃料物質の取扱施設及び貯蔵施設 要目表原子炉冷却系統施設 要目表計測制御系統施設 要目表放射線管理施設 要目表原子炉格納施設 要目表非常用電源設備 要目表火災防護設備 要目表 VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関 する説明書 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書 VI－3－3－4 計測制御系統施設の強度に関する説明書 VI－3－3－5 放射線管理施設の強度に関する説明書 VI－3－3－6 原子炉格納施設の強度に関する説明書 VI－3－3－7－1 非常用電源設備の強度に関する説明書	12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
		VI－3－3－7－2 火災防護設備の強度に関する説明書	
d．原子炉格納容器は，設計上定める条件並びに運転状態III及び運転状態IVにおいて，座屈が生じない設計 とする。	d．原子炉格納容器は，設計上定める条件並びに運転状態III及び運転状態IVにおいて，座屈が生じない設計 とする。【17条27】	原子炉格納施設 要目表 VI－3－3－6 原子炉格納施設の強度に関する説明書	（基本設計方針に変更はないが，設工認で必要な設計） 12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価
e．クラス2支持構造物であって，クラス2機器に溶接 により取り付けられ，その損壊によりクラス2機器に損壊を生じさせるおそれがあるものには，運転状態 I 及 び運転状態IIにおいて，座屈が生じないよう設計する。	e．クラス2支持構造物であって，クラス2機器に溶接 により取り付けられ，その損壊によりクラス2機器に損壊を生じさせるおそれがあるものには，運転状態 I 及 び運転状態IIにおいて，座屈が生じないよう設計する。【17条28】	原子炉冷却系統施設 要目表計測制御系統施設 要目表原子炉格納施設 要目表 VI－3－3－3 原子炉冷却系統施設の強度に関する説明書 VI－3－3－4 計測制御系統施設の強度に関する説明書 VI－3－3－6 原子炉格納施設の強度に関する説明書	（基本設計方針に変更はないが，設工認で必要な設計） 12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価
4．2．3 主要な耐圧部の溶接部（溶接金属部及び熱影響部をいう。）について クラス1容器，クラス1管，クラス2容器，クラス2管， クラス 3 容器，クラス 3 管，クラス 4 管及び原子炉格納容器のらち主要な耐圧部の溶接部は，次のとおりとし，使用前事業者検査により適用基準及び適用規格に適合 していることを確認する。 - 不連続で特異な形状でない設計とする。 - 溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他の欠陥がないことを非破壊試験により確認する。 - 適切な強度を有する設計とする。 - 適切な溶接施工法，溶接設備及び技能を有する溶接士であることを機械試験その他の評価方法によ りあらかじめ確認する。	5．2．3 主要な耐圧部の溶接部（溶接金属部及び熱影響部をいう。）について クラス1容器，クラス1管，クラス2容器，クラス2管， クラス 3 容器，クラス 3 管，クラス 4 管，原子炉格納容器，重大事故等クラス2容器及び重大事故等クラス2管のう ち主要な耐圧部の溶接部は，次のとおりとし，使用前事業者検査により適用基準及び適用規格に適合してい ることを確認する。 - 不連続で特異な形状でない設計とする。 - 溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の碓保に有害な溶込み不良その他の欠陥がないことを非破壊試験により確認する。 - 適切な強度を有する設計とする。 - 適切な溶接施工法，溶接設備及び技能を有する溶接士であることを機械試験その他の評価方法によ りあらかじめ確認する。 【17条29】【55条15】	（l）	（検査に関する事項であり，設計対象外）
4.3 使用中の亀裂等による破壊の防止 クラス1機器，クラス1支持構造物，クラス 2 機器，ク ラス 2 支持構造物，クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物及び炉心支持構造物は，使用される環境条件を踏まえ応力腐食割れに対 して残留応力が影響する場合，有意な残留応力が発生 すると予想される部位の応力緩和を行う。 使用中のクラス1機器，クラス1支持構造物，クラス 2 機器，クラス 2 支持構造物，クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物及び炉心支持構造物は，亀裂その他の欠陥により破壊が引き起 こされないよう，保安規定に基づき「実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂そ の他の欠陥の解釈」等に従って検査及び維持管理を行 う。	5.3 使用中の亀裂等による破壊の防止 クラス1機器，クラス1支持構造物，クラス 2 機器，ク ラス2支持構造物，クラス3機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物，重大事故等クラス2機器及び重大事故等クラス2支持構造物は，使用される環境条件を踏まえ応力腐食割れに対して残留応力が影響する場合，有意な残留応力が発生すると予想される部位の応力緩和を行う。【18条1】 【56条1】 使用中のクラス1機器，クラス1支持構造物，クラス 2 機器，クラス 2 支持構造物，クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物，重大事故等クラス2機器及び重大事故等クラ ス2支持構造物は，亀裂その他の欠陥により破壊が引き起こされないよう，保安規定に基づき「実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂 その他の欠陥の解釈」等に従って検査及び維持管理を	－	（検査•施設管理に関する事項であり，設計対象外）

基本設計方針		設計結果の記載簂所	様式－1への反映結果
変更前	変更後		
使用中のクラス1機器の耐圧部分は，貫通する亀裂そ の他の欠陥が発生しないよう，保安規定に基づき「実用発電用原子炬及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈」等に従って検查及び維持管理を行う。	行ら。【18条2】【56条2】 使用中のクラス1機器の耐圧部分は，貫通する亀裂を の他の欠宿が発生しないよう，保安規定に基づき「実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈」等に従って検查及び維持管理を行ら。【18条3】		
4．4 耐圧試験等 （1）クラス1機器，クラス2機器，クラス3機器，クラ ス4管及び原子炉格納容器は，施設時に，次に定めると ころによる圧力で耐圧試験を行ったとき，これに耐え， かつ，著しい漏えいがないことを確認する。ただし，気圧により試験を行う場合であって，当該圧力に耐え ることが確認された場合は，当該圧力を最高使用圧力 （原子炉格納容器にあっては，最高使用圧力の0．9倍） までに減じて著しい漏えいがないことを確認する。 なお，耐圧試験は，日本機械学会「発電用原子力設備規格 設計•建設規格」等に従って実施する。 a．内圧を受ける機器に係る耐圧試験の圧力は，機器 の最高使用圧力を超え，かつ，機器に生ずる全体的な変形が弾性域の範囲内となる圧力とする。ただし，ク ラス1機器，クラス2管又はクラス3管であって原子炉圧力容器と一体で耐圧試験を行う場合の圧力は，燃料体 の装荷までの間に試験を行った後においては，通常運転時の圧力を超える圧力とする。 b．内部が大気圧未満になることにより，大気圧によ る外圧を受ける機器の耐圧試験の圧力は，大気圧と内圧との最大の差を上回る圧力とする。この場合におい て，耐圧試験の圧力は機器の内面から加えることがで きる。 （2）使用中のクラス1機器，クラス2機器，クラス 3 機	5.4 耐圧試験等 （1）クラス1機器，クラス2機器，クラス3機器，クラ ス4管及び原子炉格納容器は，施設時に，次に定めると ころによる圧力で耐圧試験を行ったとき，これに耐え， かつ，著しい漏えいがないことを確認する。ただし，気圧により試験を行ら場合であって，当該圧力に耐え ることが確認された場合は，当該圧力を最高使用圧力 （原子炉格納容器にあっては，最高使用圧力の0．9倍） までに減じて著しい漏えいがないことを確認する。 なお，耐圧試験は，日本機械学会「発電用原子力設備規格 設計•建設規格」等に従って実施する。【21条 1】 a．内圧を受ける機器に係る耐圧試験の圧力は，機器 の最高使用圧力を超え，かつ，機器に生ずる全体的な変形が弾性域の範囲内となる圧力とする。ただし，ク ラス1機器，クラス2管又はクラス3管であって原子炉圧力容器と一体で耐圧試験を行ら場合の圧力は，燃料体 の装荷までの間に試験を行った後においては，通常運転時の圧力を超える圧力とする。【21条2】 b．内部が大気圧未満になることにより，大気圧によ る外圧を受ける機器の耐圧試験の圧力は，大気圧と内圧との最大の差を上回る圧力とする。この場合におい て，耐圧試験の圧力は機器の内面から加えることがで きる。【21条3】 （2）重大事故等クラス2機器及び重大事故等クラス3機器に属する機器は，施設時に，当該機器の使用時に おける圧力で耐圧試験を行ったとき，これに耐え，か つ，著しい漏えいがないことを確認する。 なお，耐圧試験は，日本機械学会「発電用原子力設備規格 設計•建設規格」等に従って実施する。 ただし，使用時における圧力で耐圧試験を行うこと が困難な場合は，運転性能試験結果を用いた評価等に より確認する。【58条1】 重大事故等クラス3機器であって，「消防法」に基づ く技術上の規格等を満たす一般産業品の完成品は，上記によらず，運転性能試験や目視等による有害な欠陥 がないことの碓認とすることもできるものとする。【58条2】 （3）使用中のクラス1機器，クラス2機器，クラス3機	－	（検查汇関する事項であり，設計対象外）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
器及びクラス4管は，通常運転時における圧力で漏えい試験を行ったとき，著しい漏えいがないことを確認す る。 なお，漏えい試験は，日本機械学会「発電用原子力設備規格 維持規格（J SME S NA1）」等に従 つて実施する。 （3）原子炉格納容器は，最高使用圧力の 0.9 倍に等し い気圧で気密試験を行ったとき，著しい漏えいがない ことを碓認する。 なお，漏えい率試験は，日本電気協会「原子炉格納容器の漏えい率試験規程（J E A C 4 2 0 3 ）」 等に従 つて行う。 ただし，原子炉格納容器隔離弁の単一故障の考慮に ついては，判定基準に適切な余裕係数を見込むか，内側隔離弁を開とし外側隔離弁を閉として試験を実施す る。	器及びクラス4管は，通常運転時における圧力で，使用中の重大事故等クラス2機器及び重大事故等クラス3機器に属する機器は，当該機器の使用時における圧力で漏えい試験を行ったとき，著しい漏えいがないことを確認する。【21条4】【58条3】 なお，漏えい試験は，日本機械学会「発電用原子力設備規格 維持規格（J SME S NA1）」等に従 って実施する。【21条5】【58条4】 ただし，重大事故等クラス2機器及び重大事故等クラ ス3機器に属する機器は使用時における圧力で試験を行うことが困難な場合は，運転性能試験結果を用いた評価等により確認する。【58条5】 重大事故等クラス3機器であって，「消防法」に基づ く技術上の規格等を満たす一般産業品の完成品は，上記によらず，運転性能試験や目視等による有害な欠陥 がないことの確認とすることもできるものとする。【58条6】 （4）原子炉格納容器は，最高使用圧力の 0.9 倍に等し い気圧で気密試験を行ったとき，著しい漏えいがない ことを確認する。 なお，漏えい率試験は，日本電気協会「原子炉格納容器の漏えい率試験規程（J E A C 4 2 0 3 ）」 等に従 つて行う。 ただし，原子灲格納容器隔離弁の単一故障の考慮に ついては，判定基準に適切な余裕係数を見込むか，内側隔離弁を開とし外側隔離弁を閉として試験を実施す る。【21条6】		
4.5 安全弁等 蒸気タービン，発電機，変圧器及び遮断器を除く設計基準対象施設に設置する安全弁，逃がし弁，破壊板及び真空破壊弁は，日本機械学会「設計•建設規格」 （J S M E S N C 1）及び日本機械学会「発電用原子力設備規格 設計•建設規格（J S ME S NC 1－2001）及び（J SME S NC 1－2005）【事例規格】過圧防護に関する規定（NC－C C－0 0 1）」 に適合するよう，以下のとおり設計する。 なお，安全弁，逃がし弁，破壊板及び真空破壊弁に ついては，施設時に適用した告示（通商産業省「発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号）」）の規定に適合する設計とす る。	5.5 安全并等 蒸気タービン，発電機，変圧器及び遮断器を除く設計基準対象施設及び重大事故等対処施設に設置する安全弁，逃がし弁，破壊板及び真空破壊弁は，日本機械学会「設計•建設規格」（J S M E S N C 1）及び日本機械学会「発電用原子力設備規格 設計•建設規格 （J SME S NC 1－2001）及び（J SME S N C 1 －2005）【事例規格】過圧防護に関する規定（N C－C C－O O 1）」に適合するよう，以下のとおり設計する。 なお，安全弁，逃がし弁，破壊板及び真空破壊弁に ついては，施設時に適用した告示（通商産業省「発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号）」）の規定に適合する設計とす る。【20条1】【57条1】	－	（冒頭宣言）
安全弁及び逃がし弁（以下「4．5 安全弁等」におい て「安全弁等」という。）は，確実に作動する構造を有 する設計とする。	安全弁及び逃がし弁（以下「5．5 安全弁等」におい て「安全弁等」という。）は，確実に作動する構造を有 する設計とする。【20条2】【57条2】	原子炉冷却系統施設 要目表計測制御系統施設 要目表原子炉格納施設 要目表	15．安全弁等の設計

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
安全弁等の弁軸は，弁座面からの漏えいを適切に防止できる構造とする。 安全弁等又は真空破壊弁の材料は，容器及び管の重要度に応じて適切な材料を使用する。 設計基準対象施設に係る安全弁又は逃がし弁（以下「4．5 安全弁等」において「安全弁」という。）のう ち，補助作動装置付きの安全弁にあっては，当該補助作動装置が故障しても系統の圧力をその最高使用圧力 の1．1倍以下に保持するのに必要な吹出し容量が得ら れる構造とする。	安全弁等の弁軸は，弁座面からの漏えいを適切に防止できる構造とする。【20条3】【57条3】 安全弁等又は真空破壊弁の材料は，容器及び管の重要度に応じて適切な材料を使用する。【20条4】【57条4】 設計基準対象施設及び重大事故等対処施設に係る安全弁又は逃がし弁（以下「5．5 安全弁等」において「安全弁」という。）のらち，補助作動装置付きの安全弁に あっては，当該補助作動装置が故障しても系統の圧力 をその最高使用圧力の 1.1 倍以下に保持するのに必要 な吹出し容量が得られる構造とする。【20条5】【57条5】	非常用電源設備 要目表 構造図 4．2．1 主蒸気系 4．3．1 残留熱除去系 4．4．1 高圧炉心スプレイ系 4．4．2 低圧梕スプレイ系 4．4．4 原子炉隔離侍冷却系 4．4． 5 低圧代替注水系 5．3．1 ほら酸水注入系 5．6．1 高圧窒素ガス供給系 5．6．2 代替高圧窒素ガス供給系 8．3．2．4 代替循環冷却系 8．3．3．2 可燃性ガス濃度制御系 8．3．3．7 原子炉格納容器フィルタベント系 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧灲心スプレイ系ディーゼル発電設備	
設計基準対象施設のうち減圧弁を有する管にあっ て，その低圧側の設備が高圧側の圧力に耐えられる設計となっていないもののうちクラス1管以外のものに ついては，減圧弁の低圧側の系統の健全性を維持する ために必要な容量を持つ安全弁等を 1 個以上，減圧弁 に接近して設置し，高圧側の圧力による損傷を防止す る設計とする。	設計基準対象施設及び重大事故等対処施設のうち減圧弁を有する管にあって，その低圧側の設備が高圧側 の圧力に耐えられる設計となっていないもののうちク ラス1管以外のものについては，減圧弁の低圧側の系統 の健全性を維持するために必要な容量を持つ安全弁等 を1個以上，減圧弁に接近して設置し，高圧側の圧力に よる損傷を防止する設計とする。【20条8】【57条8】	計測制御系統施設 要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） 計測制御系統施設に係る機器の配置を明示した図面 5．6．1 高圧窒素ガス供給系 5．6．2 代替高圧窒素ガス供給系 計測制御系統施設に係る系統図 5．6．1 高圧窒素ガス供給系 5．6．2 代替高圧窒素ガス供給系	15．安全弁等の設計
なお，容量は当該安全弁等の吹出し圧力と設置個数 を適切に組み合わせることにより，系統の圧力をその最高使用圧力の 1.1 倍以下に保持するのに必要な容量 を算定する。	なお，容量は当該安全弁等の吹出し圧力と設置個数 を適切に組み合わせることにより，系統の圧力をその最高使用圧力の 1.1 倍以下に保持するのに必要な容量 を算定する。【20条8】【57条8】	計測制御系統施設 要目表 VI－4－1 安全弁及び逃がし弁の吹出量計算書 4．計測制御系統施設の安全弁等の容量計算結果 4.3 吹出量の計算（P54－F065A，B） 4．3．5 評価結果 4.4 吹出量の計算（P54－F1005A，B） 4．4．5 評価結果	15．安全弁等の設計
また，安全弁は，吹出し圧力を下回った後に，速や かに吹き止まる構造とする。	また，安全弁は，吹出し圧力を下回った後に，速や かに吹き止まる構造とする。【20条8】【57条8】	計測制御系統施設 要目表	15．安全弁等の設計
なお，クラス1管には減圧弁を設置しない設計とす る。	なお，クラス1管には減圧弁を設置しない設計とす る。【20条8】【57条8】	－－	（変更なし）
原子炉圧力容器，補助ボイラー及び原子炉格納容器 を除く設計基準対象施設に属する容器又は管であっ て，内部に過圧が生ずるおそれがあるものにあっては，過圧防止に必要な容量を持つ安全弁等を 1 個以上設置	原子炉圧力容器，補助ボイラー及び原子炉格納容器 を除く設計基準対象施設及び重大事故等対処施設に属 する容器又は管であって，内部に過圧が生ずるおそれ があるものにあっては，過圧防止に必要な容量を持つ	原子炉冷却系統施設 要目表計測制御系統施設 要目表原子炉格納施設 要目表非常用電源設備 要目表	15．安全弁等の設計

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
し，内部の過圧による損傷を防止する設計とする。	安全弁等を1個以上設置し，内部の過圧による損傷を防止する設計とする。【20条9】【57条9】	原子炉冷却施設に係る機器の配置を明示した図面 4．2．1 主蒸気系 4．3．1 残留熱除去系 4．3．2 原子炉格納容器フィルタベント系 4．4．1 高圧炬心スプレイ系 4．4．2 低圧炉心スプレイ系 4．4．4 原子炉隔睢時冷却系 4．4．5 低圧代替注水系 4．4．6 代替循環冷却系 4．4．7 ほう酸水注入系 4．4．8 残留熱除去系 原子炉冷却系統施設に係る系統図 4．2．1 主蒸気系 4．3．1 残留熱除去系 4．3．2 原子炉格納容器フィルタベント系 4．4．1 高圧炉心スプレイ系 4．4．2 低圧炉心スプレイ系 4．4．4 原子炉隔離時冷却系 4．4． 5 低圧代替注水系 4．4．6 代替循環冷却系 4．4．7 ほう酸水注入系 4．4．8 残留熱除去系 計測制御系統施設に係る機器の配置を明示した図面 5．3．1 ほう酸水注入系 5．6．1 高圧窒素ガス供給系 5．6．2 代替高圧窒素ガス供給系 計測制御系統施設に係る系統図 5．3．1 ほう酸水注入系 5．6．1 高圧窒素ガス供給系 5．6．2 代替高圧窒素ガス供給系 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．2 原子炉格納容器下注水系 8．3．2．4 代替循環冷却系 8．3．2．7 ほう酸水注入系 8．3．2．8 残留熱除去系（格納容器スプレイ泠却モード） 8．3．2．9 残留熱除去系（サプレッションプール水冷却モー ド） 8．3．3．2 可燃性ガス濃度制御系 8．3．3．7 原子炬格納容器フィルタベント系	

基本設計方針		設計結果の記載笽所	様式一1への反映結果
変更前	変更後		
		原子炉格納施設に係る系統図 8．3．2．2 原子炉格納容器下注水系 8．3．2．4 代替循環冷却系 8．3．2．7 ほう酸水注入系 8．3．2．8 残留熱除去系（格納容器スプレイ冷却モード） 8．3．2．9 残留熱除去系（サプレッションプール水冷却モー ド） 8．3．3．2 可燃性ガス濃度制御系 8．3．3．7 原子炉格納容器フィルタベント系 非常用電源設備に係る機器の配置を明示した図面 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧灲心スプレイ系ディーゼル発電設備 非常用電源設備に係る系統図 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧灲心スプレイ系ディーゼル発電設備	
なお，容量は当該安全弁等の吹出し圧力と設置個数 を適切に組み合わせることにより，系統の圧力をその最高使用圧力の 1.1 倍以下に保持するのに必要な容量 を算定する。	なお，容量は当該安全弁等の吹出し圧力と設置個数 を適切に組み合わせることにより，系統の圧力をその最高使用圧力の1．1倍以下に保持するのに必要な容量 を算定する。【20条9】【57条9】	原子炉冷却系統施設 要目表計測制御采統施設 要目表原子炉格納施設 要目表非常用電源設備 要目表 VI－4－1 安全弁及び逃がし弁の吹出量計算書 3．原子炉冷却系統施設の安全弁等の容量計算結果 3.1 吹出量の計算（E11－F048A，B） 3.2 吹出量の計算（E11－F048C） 3.3 吹出量の計算（E11－F050A，B） 3.4 吹出量の計算（E11－F054A，B） 3.5 吹出量の計算（E22－F023） 3.6 吹出量の計算（E21－F017） 3.7 吹出量の計算（E51－F059） 3.8 吹出量の計算（E71－F010） 4．計測制御系統施設の安全并等の容量計算結果 4.1 吹出量の計算（C41－F003A，B） 4.2 吹出量の計算（C41－F022） 4.3 吹出量の計算（P54－F065A，B） 4.4 吹出量の計算（P54－F1005A，B） 5．原子炉格納施設の安全弁等の容量計算結果 5.1 吹出量の計算（E11－F084） 5.2 吹出量の計算（E11－F085） 5.3 吹出量の計算（T49－F007A，B） 5.4 吹出量の計算（T63－F006）	15．安全升等O設計
また，安全弁は吹出し圧力を下回った後に，速やか に吹き止まる構造とする。 安全弁等の入口側に破壊板を設ける場合は，当該容	また，安全弁は吹出し圧力を下回った後に，速やか に吹き止まる構造とする。【20条9】 【57条9】 安全弁等の入口側比破壊板を設ける場合は，当該容	原子炉冷却系統施設 要目表計測制御系統施設 要目表原子炉格納施設 要目表	15．安全并等の設計

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
器の最高使用圧力以下で破壞し，破壊板の破壊により安全弁等の機能を損なわないよう設計する。	器の最高使用圧力以下で破壊し，破㙹板の破壊により安全弁等の機能を損なわないよう設計する。【20条10】【57条10】	非常用電源設備 要目表	
設計基準対象施設に属する容器又は管に設置する安全弁等の出口側には，破壊板を設置しない設計とする。	設計基準対象施設及び重大事故等対処施設に属する容器又は管に設置する安全并等の出口側には，破壊板 を設置しない設計とする。【20条11】【57条11】	－	（記載追加のみ，変更なし）
設計基準対象施設に属する容器として，液体炭酸が ス等の安全茾等の作動を不能にするおそれのある物質 を内包する容器にあっては，容器の過圧防止に必要な容量を持つ破壊板を 1 個以上設置し，内部の過圧によ る損傷を防止する設計とする。なおっ，容量は吹出し圧力と設置個数を適切に組み合わせることにより，容器 の圧力をその最高使用圧力の 1.1 倍以下哚持するの に必要な容量を算定する。 なお，容器と破壊板との間に連絡管は設置しない設計とする。 設計基準対象施設に属する容器又は管に設置する安全弁等又は破壊板の入口側又は出口側に止め弁を設置 する場合は，発電用原子炉の起動時及び連転中に止め弁が全開している事が碓認できる設計とする。 内部が大気压未満となることにより外面に設計上定 める圧力を超える圧力を受けるおそれがある設計基準対象施設に属する容器又は管については，適切な箇所 に過圧防止に必要な容量以上となる真空破壊弁を 1 個以上設置し，負圧による容器又は管の損傷を防止する設計とする。 設計基準対象施設のらち，流体に放射性物質を含む系統に設置する安全并等，破壊板又は真空破壊卉は，放出される流体を，放射性廃亲物を一時的に販蔵する タンクを介して廃重物処理施設に導き，安全に处理す ることができる設計とする。	設計基準対象施設及び重大事故等対処設備に属する容器として，液体炭酸ガス等の安全卉等の作動を不能 にするおそれのある物質を内包する容器にあっては，容器の過圧防止に必要な容量を持つ破壊板を 1 個以上設置し，内部の過圧による損傷を防止する設計とする。 なお，容量は吹出し圧力と設置個数を適切に組み合わ せることにより，容器の圧力をその最高使用圧力の1．1倍以下に保持するのに必要な容量を算定する。 なお，容器と破壊板との間に連絡管は設置しない設計とする。【20条12】【57条12】 設計基準対象施設及び重大事故等対处施設に属する容器又は管に設置する安全弁等又は破壊板の入口側又 は出口側に止め弁を設置する場合は，発電用原子炉の起動時及び連転中に止め弁が全開している事が碓認で きる設計とする。【20条13】【57条13】 内部が大気圧未满となることにより外面に設計上定 める圧力を超える圧力を受けるおそれがある設計基準対象施設及び重大事故等対処施設に属する容器又は管 については，適切な箇所に過圧防止に必要な容量以上 となる真空破壊弁を1個以上設置し，負圧による容器又 は管の損傷を防止する設計とする。【20条15】【57条15】 設計基漼対象施設及び重大事故等対处施設のらち，流体に放射性物質を含む系統に設置する安全弁等，破壊板又は真空破㙹弁は，放出される流体を，放射性廃乗物を一時的に貯蔵するタンクを介して廃軍物处理施設に導き，安全に处理することができる設計とする。【20条16】【57条16】	原子炉冷却系統施設 要目表計測制御系統施設 要目表原子炉格納施設 要目表非常用電源設備 要目表 原子炉冷却施設に係る機器の配置を明示した図面 4．2．1 主蒸気系 4．3．1 残留熱除去系 4．3．2 原子炉格納容器フィルタベント系 4．4．1 高圧炬心スプレイ系 4．4．2 低圧炉心スプレイ系 4．4．4 原子炉隔離侍冷却系 4． 4.5 低圧代替注水系 4．4．6 代替循環冷却系 4．4．7 ほう酸水注入系 4．4．8 残留熱除去系 原子炉冷却系統施設に係る系統図 4.2 .1 主蒸気系 4．3．1 残留熱除去系 4．3．2 原子炉格納容器フィルタベント系 4．4．1 高圧炬心スプレイ系 4．4．2 低圧烼心スプレイ系 4．4．4 原子炉隔離侍冷却系 4． 4.5 低圧代替注水系 4．4．6 代替循環冷却系 4．4．7 ほう酸水注人系 4．4．8 残留熱除去系 計測制御系統施設に係る機器の配置を明示した図面 5．3．1 ほう酸水注入系 5．6．1 高圧窒素ガス供給系 5．6．2 代替高圧窒素がス供給系 計測制御系統施設に係る系統図 5．3．1 ほら酸水注入系 5．6．1 高圧窒素ガス供給系 5．6．2 代替高圧窒素がス供給系	15．安全升等の設計

基本設計方針		設計結果の記載笽所	様式－1への反映結果
変更前	変更後		
		原子炉格納施設に係る機器の配置を明示した図面 8．3．2．2 原子炉格納容器下注水系 8．3．2．4 代替循環冷却系 8．3．2．7 ほう酸水注入系 8．3．2．8 残留熱除去系（格納容器スプレイ泠却モード） 8．3．2．9 残留熱除去系（サプレッションプール水泠却モー ド） 8．3．3．2 可燃性ガス濃度制御系 8．3．3．7 原子炉格納容器フィルタベント系 原子炉格納施設に係る系統図 8．3．2．2 原子炉格納容器下注水系 8．3．2．4 代替循環泠却系 8．3．2．7 ほら酸水注入系 8．3．2．8 残留熱除去系（格納容器スプレイ冷却モード） 8．3．2．9 残留熱除去系（サプレッションプール水泠却モー ド） 8．3．3．2 可燃性ガス濃度制御系 8．3．3．7 原子炉格納容器フィルタベント系 非常用電源設備に係る機器の配置を明示した図面 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炬心スプレイ系ディーゼル発電設備 非常用電源設備に係る系統図 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炬心スプレイ系ディーゼル発電設備	
4.6 逆止め弁 放射性物質を含む原子炉冷却材を内包する容器若し くは管又は放射性廃重物処理設備（排気筒並びに廃裹物貯蔵設備及び換気設備を除く。）い放射性物質を含ま ない流体を導く管には，逆止め弁を設ける設計とし，放射性物質を含む流体が放射性物質を含まない流体側逆流することによる污染拡大を防止する。 ただし，上記において，放射性物質を含む流体と放射性物質を含まない流体を導く管が直接接続されてい ない場合又は十分な圧力差を有している場合は，逆流 するおそれがないため，逆止め弁の設置を不要とする。	5.6 逆止め弁 放射性物質を含む原子炉冷却材を内包する容器若し くは管又は放射性廃重物処理設備（排気筒並びに廃裹物貯蔵設備及び換気設備を除く。）い放射性物質を含ま ない流体を導く管には，逆止め弁を設ける設計とし，放射性物質を含む流体が放射性物質を含まない流体側 －逆流することによる污染拡大を防止する。 ただし，上記において，放射性物質を含む流体と放射性物質を含まない流体を導く管が直接接続されてい ない場合又は十分な圧力差を有している場合は，逆流 するおそれがないため，逆止め弁の設置を不要とする。 ［30条1］	-	（変更なし）
4.7 内燃機関の設計条件 4．7．1 設計基準対象施設 設計基準対象施設に施設する内燃機関（以下「内燃機関」という。）は，非常調速装置が作動したときに達 する回転速度に対して構造上十分な機械的強度を有す る設計とする。	5.7 内燃幾関及びガスタービンの設計条件 5．7．1 設計基準対象施設及び重大事故等対処施設設計基準対象施設及び重大事故等対処施設に施設す る内燃機関（以下「内燃機関」という。）及び重大事故等対处施設に施設するガスタービン（以下「カカスター ビン」という。）は，非常調速装置が作動したときに達	非常用電源設備 要目表 VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.1 常設の非常用発電装置の出力に関する設計方針 2．1．1 ガスタービン	12．材料及び構造に係る設計 12.5 発電用火力設備の技術基淮による強度評価 16．内燃機関及びガスタービンの設計

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
	する回転速度に対して構造上十分な機械的強度を有す る設計とする。【48条11】【78条1】【78条10】	（1）ガスタービン等の構造 2．1．2 内燃機関 （1）内燃機関等の構造等 VI－3－別添 4 発電用火力設備の技術基準による強度に関す る説明書 第三部 発電用火力設備の技術基準による強度評価書 2．その他発電用原子炉の附属施設（非常用電源設備）の ガスタービン及び内㜣機関の強度評価書	
	ガスタービンは，ガスの温度が著しく上昇した場合 に燃料の流入を自動的に遮断する装置が動作したとき に達するガス温度に対して構造上十分な熱的強度を有 する設計とする。【78条2】	VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.1 常設の非常用発電装置の出力に関する設計方針 2．1．1 ガスタービン （1）ガスタービン等の構造 VI－3－別添4 発電用火力設備の技術基準による強度に関す る説明書 第三部 発電用火力設備の技術基準による強度評価書 2．その他発電用原子炉の附属施設（非常用電源設備）の ガスタービン及び内燃機関の強度評価書	12．材料及び構造しく係る設計 12.5 発電用火力設備の技術基淮による強度評価 16．内燃機関及びガスタービンの設計
内燃機関の軸受は運転中の荷重を安定に支持できる ものであって，かつ，異常な摩耗，変形及び過熱が生 じない設計とする。	内燃幾関及びガスタービンの軸受は運転中の荷重を安定に支持できるものであって，かつ，異常な摩耗，変形及び過熱が生じない設計とする。【48条12】 188 条 3】【78条11】	$\mathrm{VI}-1-9-1-1$ 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.1 常設の非常用発電装置の出力に関する設計方針 2．1．1 ガスタービン （1）ガスタービン等の構造 2．1．2 内燃機関 （1）内燃機関等の構造等	12．材料及び構造に係る設計 12.5 発電用火力設備の技術基準による強度評価 16．内燃幾関及びガスタービンの設計
	ガスタービンの危険速度は，調速装置により調整可能な最小の回転速度から非常調速装置が作動したとき に達する回転速度までの間に発生しないように設計す る。【78条4】	非常用電源設備 要目表	16．内燃幾関及びガスタービンの設計
内燃機関の耐圧部の構造は，最高使用圧力又は最高使用温度において発生する耐圧部分に生じる応力は当該部分に使用する材料の許容応力以下となる設計とす る。	内燃機関及びガスタービンの耐圧部の構造は，最高使用圧力又は最高使用温度において発生する耐圧部分 に生じる応力は当該部分に使用する材料の許容応力以下となる設計とする。【48条13】【78条5】【78条12】	非常用電源設備 要目表 VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.1 常設の非常用発電装置の出力に関する設計方針 2．1．1 ガスタービン （1）ガスタービン等の構造 2．1．2 内燃機関 （1）内燃機関等の構造等 VI－3－別添 4 発電用火力設備の技術基淮による強度に関す る説明書 第三部 発電用火力設備の技術基準による強度評価書 2．その他発電用原子炉の附属施設（非常用電源設備）の	16．内燃機関及びガスタービンの設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		ガスタービン及び内燃機関の強度評価書	
内燃機関を屋内その他酸素欠乏の発生のおそれのあ る場所に設置するときは，給排気部を設ける設計とす る。	内燃機関を屋内その他酸素欠乏の発生のおそれのあ る場所に設置するときは，給排気部を設ける設計とす る。【48条14】【78条13】	－	（変更なし）
内燃機関は，その回転速度及び出力が負荷の変動に より持続的に動揺することを防止する調速装置を設け るとともに，運転中に生じた過速度その他の異常によ る設備の破損を防止するため，その異常が発生した場合に内燃機関を安全に停止させる非常調速装置その他 の非常停止装置を設置する設計とする。	内燃機関及びガスタービンは，その回転速度及び出力が負荷の変動により持続的に動摇することを防止す る調速装置を設けるとともに，運転中に生じた過速度 その他の異常による設備の破損を防止するため，その異常が発生した場合に内燃機関及びガスタービンを安全に停止させる非常調速装置その他の非常停止装置を設置する設計とする。【48条15】【78条6】【78条14】	非常用電源設備 要目表 VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.1 常設の非常用発電装置の出力に関する設計方針 2．1．1 ガスタービン （2）調速装置 （3）非常停止装置 2．1．2 内燃機関 （2）調速装置 （3）非常停止装置	16．内燃機関及びガスタービンの設計
内燃機関及びその附属設備であって過圧が生じるお それのあるものには，適切な過圧防止装置を設ける設計とする。	内燃機関及びその附属設備であって過圧が生じるお それのあるものには，適切な過圧防止装置を設ける設計とする。【48条16】【78条15】	非常用電源設備 要目表 VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.1 常設の非常用発電装置の出力に関する設計方針 2．1．2 内燃機関 （4）過圧防止措置	16．内燃機関及びガスタービンの設計
内燃機関には，設備の損傷を防止するために，回転速度，潤滑油圧力及び潤滑油温度等の運転状態を計測 する装置を設ける設計とする。	内燃機関及びガスタービンには，設備の損傷を防止 するために，回転速度，潤滑油圧力及び潤滑油温度等 の運転状態を計測する装置を設ける設計とする。【48条 17】【78条8】【78条16】	VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.1 常設の非常用発電装置の出力に関する設計方針 2．1．1 ガスタービン （4）計測装置 2．1．2 内燃機関 （5）計測装置	16．内燃機関及びガスタービンの設計
内燃機関の附属設備に属する容器及び管は発電用原子炉施設として，「実用発電用原子炉及びその附属施設 の技術基準に関する規則」の材料及び構造，安全弁等，耐圧試験等の規定を満たす設計とする。	内燃機関及びガスタービンの附属設備に属する容器及び管は発電用原子炉施設として，「実用発電用原子炉及びその附属施設の技術基準に関する規則」の材料及 び構造，安全弁等，耐圧試験等の規定を満たす設計と する。【48条18】【78条9】【78条17】	非常用電源設備 要目表 補器駆動用燃料設備 要目表 VI－3－別添 4 発電用火力設備の技術基準による強度に関す る説明書 第三部 発電用火力設備の技術基淮による強度評価書 2．その他発電用原子炉の附属施設（非常用電源設備） のガスタービン及び内燃機関の強度評価書 3．その他発電用原子炉の附属施設（補機駆動用燃料設備） の管の強度評価書	12．材料及び構造に係る設計 12.5 発電用火力設備の技術基淮による強度評価 16．内燃機関及びガスタービンの設計
	5．7．2 可搬型重大事故等対処設備 可搬型の非常用発電装置の内燃機関は，流入する燃料を自動的に調整する調速装置及び軸受が異常な摩耗，変形及び過熱が生じないよう藺滑油装置を設ける設計とする。【78条18】	VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.2 可搬型の非常用発電装置の出力に関する設計方針 2．2．1 可搬型の非常用発電装置 （1）原動機	16．内燃機関及びガスタービンの設計
	可搬型の非常用発電装置の内燃機関は，回転速度，	VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書	16．内燃機関及びガスタービンの設計

基本設計方針		設計結果の記載笽所	様式－1への反映結果
変更前	変更後		
	潤滑油圧力及び潤滑油温度等の運転状態を計測する装置を設ける設計とする。【78条18】	2．基本方針 2.2 可搬型の非常用発電装置の出力に関する設計方針 2．2．1 可搬型の非常用発電装置 （3）計測装置	
	可搬型の非常用発電装置の内燃機関は，回転速度が著しく上昇した場合及び冷却水温度が著しく上昇した場合等に自動的红停止する設計とする。【78条18】	VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.2 可搬型の非常用発電装置の出力に関する設計方針 2．2．1 可搬型の非常用発電装置 （4）保護装置	16．内燃機関及びガスタービンの設計
	可搬型の非常用発電装置の強度については，完成品 として一般産業品規格で規定される温度試験等を実施 し，定格負荷状態において十分な強度を有する設計と する。【78条18】	VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.2 可搬型の非常用発電装置の出力に関する設計方針 VI－3－別添5 非常用発電装置（可搬型）の強度に関する説明書 4．強度評価結果 4．1 J EM－1398又はJEM－1435に規定され る温度試験による評価結果	12．材料及ひひ構造にく係る設計 12.6 非常用発電装置（可搬型）の強度評価 16．内燃機関及びガスタービンの設計
4.8 電気設備の設計条件 4．8．1 設計基準対象施設 設計基準対象施設に施設する電気設備（以下「電気設備」という。）は，感電又は火災のおそれがないよう に接地し，充電部分に容易に接触できない設計とする。	5.8 電気設備の設計条件 5．8．1 設計基準対象施設及び重大事故等対処施設 設計基準対象施設及び重大事故等対处施設に施設す る電気設備（以下「電気設備」という。）は，感電又は火災のおそれがないように接地し，充電部分に容易に接触できない設計とする。【48条19】【78条19】	VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.1 常設の非常用発電装置の出力に関する設計方針 2．1．3 発電機 （1）感電，火災等の防止 2．1．4 遮断器 （1）感電，火災等の防止 2． 1.5 その他の電気設備 （1）感電，火災等の防止 VI－1－9－2－1 常用電源設備の健全性に関する説明書 2．基本方針 2.4 電気設備の異常の予防等に関する設計事項	17．電気設備つ設計
電気設備は，電路を絶縁し，電線等が接続部分にお いて電気抵抗を増加させないように端子台等により接続するほかっ，期待される使用状態において断楾のおそ れがない設計とする。	電気設備は，電路を絶縁し，電線等が接続部分におう いて電気抵抗を増加させないように端子台等により接続するほか，期待される使用状態において断線のおそ れがない設計とする。【48条20】【78条20】	－	（変更なし）
電気設備における電路に施設する電気機械器具は，期待される使用状態において発生する熱に耐えるもの とし，高圧又は特別高圧の電気機械器具については，可燃性の物と隔離する設計とする。	電気設備における電路に施設する電気機械器具は，期待される使用状態において発生する熱に洧えるもの とし，高圧又は特別高圧の電気機械器具については，可燃性の物と隔離する設計とする。【48条21】【78条21】	－	(変更なし)
電気設備は，電流が安全かつ確実に大地に通じるこ とができるよう，適切な箇所に接地を施す設計とする。	電気設備は，電流が安全かつ確実に大地に通じるこ とができるよう，適切な箇所に接地を施す設計とする。【48条22】【78条22】	－	(変更なし)
電気設備における高圧の電路と低圧の電路とを結合 する変圧器には，適切な箇所に接地を施し，変圧器に より特別高圧の電路に結合される高圧の電路には，避	電気設備における高圧の電路と低圧の電路とを結合 する変圧器には，適切な箇所に接地を施し，変圧器に より特別高圧の電路に結合される高圧の電路には，避	－	(変更なし)

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
雷器を施設する設計とする。	雷器を施設する設計とする。【48条23】 ${ }^{\text {a }}$ \88条23】		
電気設備は，電路の必要な箇所に過電流遮断器又は地絡遮断器を施設する設計とする。	電気設備は，電路の必要な箇所に過電流遮断器又は地絡遮断器を施設する設計とする。【48条24】【78条24】	－	（変更なし）
電気設備は，他の電気設備その他の物件の機能に電気的又は磁気的な障害を与えない設計とする。	電気設備は，他の電気設備その他の物件の機能に電気的又は磁気的な障害を与えない設計とする。【48条 25】【78条25】	－	（変更なし）
電気設備のうち高圧又は特別高圧の電気機械器具及 び母線等は，取扱者以外の者が容易に立ち入るおそれ がないよう発電所にフェンス等を設ける設計とする。	電気設備のらち高圧又は特別高圧の電気機械器具及 び母線等は，取扱者以外の者が容易に立ち入るおそれ がないよう発電所にフェンス等を設ける設計とする。 【48条26】【78条26】	－	（変更なし）
電気設備における架空電線は，接触又は誘導作用に よる感電のおそれがなく，かつ，交通に支障を及ぼす おそれがない高さに施設する設計とする。	電気設備における架空電線は，接触又は誘導作用に よる感電のおそれがなく，かつ，交通に支障を及ぼす おそれがない高さに施設する設計とする。【48条27】	－	（変更なし）
電気設備における電力保安通信線は，他の電線等を損傷するおそれがなく，かつ，接触又は断線によって生じる混触による感電又は火災のおそれがない設計と する。	電気設備における電力保安通信線は，他の電線等を損傷するおそれがなく，かつ，接触又は断線によって生じる混触による感電又は火災のおそれがない設計と する。【48条28】	－	（変更なし）
電気設備のうちガス絶縁機器は，最高使用圧力に耐 え，かつ，漏えいがなく，異常な圧力を検知するとと もに，使用する絶縁ガスは可燃性，腐食性及び有毒性 のない設計とする。	電気設備のらちガス絶縁機器は，最高使用圧力に耐 え，かつ，漏えいがなく，異常な圧力を検知するとと もに，使用する絶縁ガスは可燃性，腐食性及び有毒性 のない設計とする。【48条29】	－	（変更なし）
電気設備のらち開閉器又は断路器に使用する圧縮空気装置は，最高使用圧力に耐え，かつ，漏えいがなく，異常な圧力を検知するとともに，圧力が上昇した場合 に最高使用圧力に到達する前に圧力を低下させ，空気 タンクの圧力が低下した場合に圧力を自動的に回復で きる機能を有し，空気タンクは耐食性を有する設計と する。【48条39】	電気設備のらち開閉器又は断路器に使用する圧縮空気装置は，最高使用圧力に耐え，かつ，漏えいがなく，異常な圧力を検知するとともに，圧力が上昇した場合 に最高使用圧力に到達する前に圧力を低下させ，空気 タンクの圧力が低下した場合に圧力を自動的に回復で きる機能を有し，空気タンクは耐食性を有する設計と する。【48条39】	－	（変更なし）
電気設備のらち水素冷却式発電機は，水素の漏えい又は空気の混入のおそれがなく，水素が大気圧で爆発 する場合に生じる圧力に耐える強度を有し，異常を早期に検知し警報する機能を有する設計とする。	電気設備のらち水素冷却式発電機は，水素の漏えい又は空気の混入のおそれがなく，水素が大気圧で爆発 する場合に生じる圧力に耐える強度を有し，異常を早期に検知し警報する機能を有する設計とする。【48条 30】	－	（変更なし）
電気設備のらち水素冷却式発電機は，軸封部から漏 えいした水素を外部に放出でき，発電機内への水素の導入及び発電機内からの水素の外部への放出が安全に できる設計とする。	電気設備のらち水素冷却式発電機は，軸封部から漏 えいした水素を外部に放出でき，発電機内への水素の導入及び発電機内からの水素の外部への放出が安全に できる設計とする。【48条31】	－	（変更なし）
電気設備のらち発電機又は特別高圧の変圧器には，異常が生じた場合に自動的にこれを電路から遮断する装置を施設する設計とする。	電気設備のらち発電機又は特別高圧の変圧器には，異常が生じた場合に自動的にこれを電路から遮断する装置を施設する設計とする。【48条32】	－	（変更なし）
電気設備のらち発電機及び変圧器等は，短絡電流に より生じる機械的衝撃に耐え，発電機の回転する部分 については非常調速装置及びその他の非常停止装置が動作して達する速度に対し耐える設計とする。	電気設備のらち発電機及び変圧器等は，短絡電流に より生じる機械的衝撃に耐え，発電機の回転する部分 については非常調速装置及びその他の非常停止装置が動作して達する速度に対し耐える設計とする。【48条 33】【78条27】	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
また，蒸気タービンに接続する発電機は，軸受又は軸に発生しらる最大の振動に対して構造上十分な機械的強度を有した設計とする。	また，蒸気タービンに接続する発電機は，軸受又は軸に発生しうる最大の振動に対して構造上十分な機械的強度を有した設計とする。【48条34】	－	（変更なし）
電気設備においては，運転に必要な知識及び技能を有する者が発電所構内に常時駐在し，異常を早期に発見できる設計とする。	電気設備においては，運転に必要な知識及び技能を有する者が発電所構内に常時駐在し，異常を早期に発見できる設計とする。【48条35】【78条28】	－	（変更なし）
電気設備において，発電所の架空電線引込口及び引出口又はこれに近接する箇所には，避雷器を施設する設計とする。	電気設備において，発電所の架空電線引込口及び引出口又はこれに近接する箇所には，避雷器を施設する設計とする。【48条36】	－	（変更なし）
電気設備における電力保安通信線は，機械的衝撃又 は火災等により通信の機能を損なうおそれがない設計 とする。	電気設備における電力保安通信線は，機械的衝撃又 は火災等により通信の機能を損ならおそれがない設計 とする。【48条37】	－	（変更なし）
電気設備において，電力保安通信設備に使用する無線通信用アンテナを施設する支持物の材料及び構造 は，風圧荷重を考慮し，倒壊により通信の機能を損な らおそれがない設計とする。	電気設備において，電力保安通信設備に使用する無線通信用アンテナを施設する支持物の材料及び構造 は，風圧荷重を考慮し，倒壊により通信の機能を損な らおそれがない設計とする。【48条38】	－	（変更なし）
	5．8．2 可搬型重大事故等対処設備 可搬型の非常用発電装置の発電機は，電気的•機械的に十分な性能を持つ絶縁巻線を使用し，耐熱性及び耐湿性を考慮した絶縁処理を施す設計とする。【78条 29］	VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.2 可搬型の非常用発電装置の出力に関する設計方針 2．2．1 可搬型の非常用発電装置 （2）発電機	17．電気設備の設計
	可搬型の非常用発電装置の発電機は，電源電圧の著 しく低下した場合及び過電流が発生した場合等に自動的に停止する設計とする。【78条29】	VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.2 可搬型の非常用発電装置の出力に関する設計方針 2．2．1 可搬型の非常用発電装置 （4）保護装置	17．電気設備の設計
	可搬型の非常用発電装置の発電機は，定格出力のも とで1時間運転し，安定した運転が維持されることを確認した設備とする。【78条29】	VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.2 可搬型の非常用発電装置の出力に関する設計方針 2．2．1 可搬型の非常用発電装置 （5）運転性能	17．電気設備の設計
5．その他 5.1 立ち入りの防止 発電所には，人がみだりに管理区域内に立ち入らな いように壁，柵，塀等の人の侵入を防止するための設備を設け，かつ，管理区域である旨を表示する設計と する。 保全区域と管理区域以外の場所との境界には，他の場所と区別するため，壁，柵，塀等の保全区域を明ら かにするための設備を設ける設計，又は保全区域であ る旨を表示する設計とする。 発電所には，業務上立ち入る者以外の者がみだりに周辺監視区域内に立ち入ることを制限するため，柵，塀等の人の侵入を防止するための設備を設ける設計，又は周辺監視区域である旨を表示する設計とする（た	6．その他 6.1 立ち入りの防止 発電所には，人がみだりに管理区域内に立ち入らな いように壁，柵，塀等の人の侵入を防止するための設備を設け，かつ，管理区域である旨を表示する設計と する。【8条1】 保全区域と管理区域以外の場所との境界には，他の場所と区別するため，壁，柵，塀等の保全区域を明ら かにするための設備を設ける設計，又は保全区域であ る旨を表示する設計とする。【8条2】 発電所には，業務上立ち入る者以外の者がみだりに周辺監視区域内に立ち入ることを制限するため，柵，塀等の人の侵入を防止するための設備を設ける設計，又は周辺監視区域である旨を表示する設計とする（た	運用に関する記載であり，保安規定にて対応	（基本設計方針に変更はないが，設工認で必要な設計） 7．立ち入りの防止に係る設計

基本設計方針		設計結果の記載䈏所	様式一1への反映結果
変更前	変更後		
だし，当該区域に人が立ち入るおそれがないことが明 らかな場合は除く。）。 管理区域，保全区域及び周辺監視区域における立ち入りの防止については，保安規定に基づき，その措置 を実施する。	だし，当該区域に人が立ち入るおそれがないことが明 らかな場合は除く。）。【8条3】 管理区域，保全区域及び周辺監視区域における立ち入りの防止については，保安規定に基づき，その措置 を実施する。【8条4】		
5.2 発電用原子炉施設への人の不法な侵入等の防止発電用原子炉施設への人の不法な侵入を防止するた めの区域を設定し，その区域を人の容易な侵入を防止 できる柵，鉄筋コンクリート造の壁等の障壁によって区画して，巡視，監視等を行うことにより，侵入防止及び出入管理を行うことができる設計とする。 また，探知施設を設け，警報，映像等を集中監視す るとともに，核物質防護措置に係る関係機関等との通信連絡を行らことができる設計とする。 さらに，防護された区域内においても，施錠管理に より，発電用原子炉施設及び特定核燃料物質の防護の ために必要な設備又は装置の操作に係る情報システム への不法な接近を防止する設計とする。 これらの対策については，核物質防護規定に定めて管理する。	6.2 発電用原子炉施設への人の不法な侵入等の防止発電用原子炉施設への人の不法な侵入を防止するた めの区域を設定し，その区域を人の容易な侵入を防止 できる柵，鉄筋コンクリート造の壁等の障壁によって区画して，巡視，監視等を行らことにより，侵入防止及び出入管理を行らことができる設計とする。【9条1】 また，探知施設を設け，警報，映像等を集中監視す るとともに，核物質防護措置に係る関俰機関等との通信連絡を行らことができる設計とする。 さらに，防護された区域内においても，施錠管理に より，発電用原子炉施設及び特定核燃料物質の防護の ために必要な設備又は装置の操作に係る情報システム の不法な接近を防止する設計とする。【9条2】発電用原子炉施設に不正に爆発性又は易燃性を有す る物件その他人に危害を与え，又は他の物件を損傷す るおそれがある物件の持込み（郵便物等による発電所外からの爆破物及び有害物質の持込みを含む。）を防止 するため，持込み点検を行らことができる設計とする。 ［9条3］ 不正アクセス行為（サイバーテロを含む。）を防止す るため，発電用原子炉施設及び特定核燃料物質の防護 のために必要な設備又は装置の操作に係る情報システ ムが，電気通信回線を通じた不正アクセス行為（サイ バーテロを含む。）を受けることがないように，当該情報システムに対する外部からのアクセスを遮断する設計とする。【9条4】 これらの対策については，核物質防護規定に定めて管理する。【9条5】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 VI－1－1－6－別添3 発電用原子炉施設への人の不法な侵入等 の防止について 運用に関する記載であり，核物質防護規定にて対応	8．不法な侵入等の防止設計
5.3 安全避難通路等 発電用原子炉施設には，その位置を明確かつ恒久的 に表示することにより容易に識別できる安全避難通路 （「第2号機設備」，「第1号機設備，第1，2，3号機共用」及び「第1号機設備，第1，2号機共用」）及び照明用の電源が喪失した場合においても機能を損なわない据難用照明として，非常用ディーゼル発電機又は灯具に内蔵した蓄電池により電力を供給できる非常灯（「第2号機設備」，「第1号機設備，第1，2，3号機共用」及び「第 1 号機設備，第1，2号機共用」）及び誘導灯（「第2号機設備」「第1号機設備，第1，2，3号機共用」及び「第1号機設備，第 1,2 号機共用」）を設置し，安全に避難で	6.3 安全避難通路等 発電用原子炉施設には，その位置を明確かつ恒久的 に表示することにより容易に識別できる安全避難通路 （「第2号機設備」，「第 1 号機設備，第1，2，3号機共用」及び「第 1 号機設備，第 1,2 号機共用」）及び照明用の電源が喪失した場合においても機能を損なわない避難用照明として，非常用ディーゼル発電機又は灯具に内蔵した蓄電池により電力を供給できる非常灯（「第2号機設備」，「第1号機設備，第1，2，3号機共用」及び「第 1 号機設備，第 1 ， 2 号機共用」）及び誘導灯（「第 2 号機設備」，「第1号機設備，第1，2，3号機共用」及び「第1号機設備，第1，2号機共用」）を設置し，安全に避難で	VI－1－1－11 安全避難通路に関する説明書 2．基本方針 3．施設の詳細設計方針 VI－1－1－12 非常用照明に関する説明書 2．基本方針 2.1 避難用照明 3．施設の詳細設計方針 3.1 避難用照明 安全避難通路を明示した図面 1.7 安全避難通路を明示した図面	13．安全避難通路等に係る設計 14．非常用照明に係る設計

基本設計方針		設計結果の記載笽所	様式－1～の反映結果
変更前	変更後		
きる設計とする。	きる設計とする。【13条1】		
	設計基準事故が発生した場合に用いる作業用照明と して，非常用照明，直流照明兼非常用照明及び直流照明を設置する設計とする。【13条2】 非常用照明は非常用高圧母線又は非常用低圧母線，直流照明兼非常用照明は非常用低圧母線及び125V蓄電池，並びに直流照明は $125 V$ 蓄電池に接続し，非常用デ ィーゼル発電機からも電力を供給できる設計とする。【13条3】 直流照明兼非常用照明及び直流照明は，全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまで の間，点灯可能な設計とする。【13条4】 設計基準事故が発生した場合に用いる可搬型の作業用照明として，内蔵電池を備える可搬型照明（懐中電灯，ランタンタイプLEDライト及びヘッドライト（ヘル メット装着用））を配備する設計とする。【13条6】可搬型照明（ヘッドライト（ヘルメット装着用））は全交流動力電源喪失時における緊急時対策所内の可搬型照明保管場所への移動時の照度を確保するために，発電所対策本部要員及び重大事故等対応要員が持参 し，作業開始前に準備可能なように事務建屋に配備す る設計とする。【13条7】 可搬型照明（ランタンタイプLEDライト及びヘッドラ イト（ヘルメット装着用））は全交流動力電源震失時に おける緊急時対策所内の照度を確保するために，事故対応時に発電所対策本部要員及び重大事故等対応要員 が滞在する緊急時対策所に配備する設計とする。【13条 8】 上記以外の設計基準事故に対応するための操作が必要な場所には，作業用照明を設置することにより作業 が可能であるが，万一，作業用照明設置箇所以外での対応が必要になった場合には，初動操作に対応する運転員が常時滞在している中央制御室に配備する可搬型照明（懐中電灯，ランタンタイプLEDライト及びへッ ドライト（ヘルメット装着用））を使用する設計とす る。【13条5】	VI－1－1－12 非常用照明に関する説明書 2．基本方針 2． 2 設計基準事故が発生した場合に用いる作業用照明 3．施設の詳細設計方針 3.2 設計基準事故が発生した場合に用いる作業用照明 非常用照明の取付箇所を明示した図面 1.8 非常用照明の取付箇所を明示した図面	14．非常用照明に係る設計 VI－1－10－5 「計測制御系統施設」の様式－1 9．中央制御室の機能の設計
5.4 放射性物質による活染の防止 放射性物質により汚染されるおそれがあって，人が頻繁に出入りする管理区域内の床面，人が触れるおそ れがある高さまでの壁面，手摺，梯子の表面は，平滑 にし，放射性物質による汚染を除去し易い設計とする。 人が触れるおそれがある物の放射性物質による汚染 を除去する除染設備を施設し，放射性物質を除去でき	6．4 放射性物質による污染の防止 放射性物質により污染されるおそれがあって，人が頻繁に出入りする管理区域内の床面，人が触れる打そ れがある高さまでの壁面，手摺，梯子の表面は，平滑 にし，放射性物質による污染を除去し易い設計とする。 ［41条1］ 人が触れるおそれがある物の放射性物質による污染 を除去する除染設備を施設し，放射性物質を除去でき	－	(変更なし)

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
る設計とする。除染設備の排水は，床ドレン・化学廃液系で処理する設計とする。	る設計とする。除染設備の排水は，床ドレン・化学廃液系で処理する設計とする。【41条2】		
第2章 個別項目 1．原子炉冷却材 原子炉冷却材は，通常運転時における圧力，温度及 び放射線によって起こる最も厳しい条件において，核的性質として核反応断面積が核反応維持のために適切 であり，熱水力的性質として泠却能力が適切であるこ とを保持し，かつ，燃料体及び構造材の健全性を妨げ ることのない性質であり，通常運転時において放射線 に対して化学的に安定であることを保持する設計とす る。【25条1】	第2章 個別項目 1．原子炉冷却材変更なし	－	（変更なし）
2．原子炉冷却材再循環設備 2． 1 原子炉再循環系 原子炉再循環系は，原子炉再循環ポンプ及び原子炉圧力容器内に設けられたジェットポンプにより，原子炉冷却材を原子炉圧力容器内に循環させて，炉心から熱除去を行う。【33条2】	2．原子炉冷却材再循環設備変更なし	－	（変更なし）
原子炉再循環ポンプの1台が急速停止又は電源喪失 の場合でも，燃料棒が十分な熱的余裕を有し，かつ， タービン・トリップ又は負荷遮断直後の原子炉出力を抑制できるように，原子炉再循環系は適切な慣性を有 する設計とする。【33条9】		－	（変更なし）
3．原子炉冷却材の循環設備 3.1 主蒸気系，復水給水系等 炉心で発生した蒸気は，原子炉圧力容器内の気水分離器及び蒸気乾燥器を経た後，主蒸気管で蒸気タービ こに導く設計とする。 なお，主蒸気管には，主蒸気逃がし安全弁及び主蒸気隔離弁を取り付ける設計とする。	3．原子炉冷却材の循環設備 3.1 主蒸気系，復水給水系等 炬心で発生した蒸気は，原子炉圧力容器内の気水分離器及び蒸気乾燥器を経た後，主蒸気管で蒸気タービ ンに導く設計とする。 なお，主蒸気管には，主蒸気逃がし安全弁及び主蒸気隔離弁を取り付ける設計とする。【33条3】	要目表 原子炉冷却系統施設に係る機器の配置を明示した図面 4．2．1 主蒸気系 原子炉冷却采統施設に係る系統図 4．2．1 主蒸気系	（基本設計方針に変更はないが，設工認で必要な設計） 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18．2．2 各機器固有の設計 18.3 機能を兼用する機器を含む原子炉冷却系統施設の系統図に関する取りまとめ
蒸気タービンを出た蒸気は復水器で復水する。復水 は，復水ポンプ，復水浄化系及び給水加熱器を通り，給水ポンプにより発電用原子炉に戻す設計とする。主蒸気管には，タービンバイパス系を設け，蒸気を復水器へバイパスできる設計とする。	蒸気タービンを出た蒸気は復水器で復水する。復水 は，復水ポンプ，復水浄化系及び給水加熱器を通り，給水ポンプにより発電用原子炉に戻す設計とする。主蒸気管には，タービンバイパス系を設け，蒸気を復水器へバイパスできる設計とする。【33条5】	要目表 原子炉冷却系統施設に係る機器の配置を明示した図面 4．2．1 主蒸気系 原子炉冷却系統施設に係る系統図 4．2．1 主蒸気系	（基本設計方針に変更はないが，設工認で必要な設計） 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18．2．2 各機器固有の設計 18.3 機能を兼用する機器を含を原子炉冷却系統施設の系統図に関する取りまとめ
復水給水系には復水中の核分裂生成物及び腐食生成物を除去するために復水浄化系を設け，高純度の給水	復水給水系には復水中の核分裂生成物及び腐食生成物を除去するために復水浄化系を設け，高純度の給水	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
を発電用原子炉へ供給できる設計とする。また，4段の低圧給水加熱器及び2段の高圧給水加熱器を設け，発電用原子炉への適切な給水温度を確保できる設計とす る。 タービンバイパス系は，原子炉起動時，停止時，通常運転時及び過渡状態において，原子炉蒸気を直接復水器に導き，原子炬定格蒸気流量の約 25% を処理でき る設計とする。	を発電用原子炉へ供給できる設計とする。また，4段の低圧給水加熱器及び2段の高圧給水加熱器を設け，発電用原子炉への適切な給水温度を確保できる設計とす る。【33条6】 タービンバイパス系は，原子炉起動時，停止時，通常運転時及び過渡状態において，原子炉蒸気を直接復水器に導き，原子炬定格蒸気流量の約 25% を処理でき る設計とする。【33条7】		
3.2 原子炉冷却材圧力バウンダリ 原子炉泠却材圧力バウンダリを構成する機器は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に生ずる衝撃，炝心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成する機器に加わる負荷に耐える設計とする。	3.2 原子炉冷却材圧力バウンダリ 原子炉冷却材圧力バウンダリを構成する機器は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に生ずる衝撃，炉心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成する機器に加わる負荷に耐える設計とする。【27条1】	－	（変更なし）
設計における衝撃荷重として，冷却材喪失事故に伴 らジェット反力等，安全弁等の開放に伴う荷重を考慮 するとともに，反応度が炉心に投入されることにより原子炬冷却系の圧力が増加することに伴ら荷重の増加 （浸水燃料の破損に加えて，ペレット／被覆管機械的相互作用を原因とする破損による衝撃圧力等に伴ら荷重 の増加を含む。）を考慮した設計とする。	設計における衝撃荷重として，泠却材䨤失事故に伴 らジェット反力等，安全弁等の開放に伴ら荷重を考慮 するとともに，反応度が师心に投入されることにより原子炉冷却系の圧力が増加することに伴ら荷重の増加 （浸水燃料の破損に加えて，ペレット／被覆管機械的相互作用を原因とする破損による衝撃圧力等に伴ら荷重 の増加を含む。）を考慮した設計とする。【27条2】	－	（変更なし）
原子炉泠却材圧力バウンダリは，次の範囲の機器及 び配管とする。	原子炉冷却材圧力バウンダリは，次の範囲の機器及 び配管とする。【27条3】	－	（冒頭宣言）
（1）原子炉圧力容器及びその付属物（本体に直接付け られるもの及び制御棒駆動機構ハウジング等） （2）原子炉冷却系を構成する機器及び配管（主蒸気管及び給水管のらち発電用原子炉側からみて第二隔離弁を含むまでの範囲） （3）接続配管 （一）通常時開及び設計基準事故時閉となる弁を有す るものは，発電用原子炉側からみて，第二隔離弁 を含むまでの範囲とする。 （二）通常時閉及び設計基準事故時閉となる弁を有す るものは，発電用原子炉側からみて，第一隔離弁 を含むまでの範囲とする。 （三）通常時閉及び泠却材喪失時開となる弁を有する非常用炉心冷却系等も（一）に準ずる。 （四）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及 び遠隔操作閉止弁をいう。	（1）原子炉圧力容器及びその付属物（本体に直接付け られるもの及び制御棒駆動機構ハウジング等）【 27条4】 （2）原子炉冷却系を構成する機器及び配管（主蒸気管及び給水管のらち発電用原子炉側からみて第二隔離弁を含むまでの範囲）【27条5】 （3）接続配管 （一）通常時開及び設計基準事故時閉となる弁を有す るものは，発電用原子炉側からみて，第二隔離弁 を含むまでの範囲とする。 （二）通常時又は設計基準事故時に開となるおそれが ある通常時閉及び設計基準事故時閉となる弁を有 するものは，発電用原子炉側からみて，第二隔離弁を含むまでの範囲とする。 （三）通常時閉及び設計基準事故時閉となる弁を有す るもののらち，（二）以外のものは，発電用原子炉側からみて，第一隔離弁を含むまでの範囲とする。 （四）通常時閉及び泠却材喪失時開となる弁を有する非常用炉心冷却系等も（一）に準ずる。 （五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及 び遠隔操作閉止弁をいう。	－	（用語の定義のみ）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
なお，通常時閉，設計基準事故時閉となる手動弁の らち個別に施錠管理を行う弁は，開となるおそれがな く，上記（二）に該当する。	なお，通常時閉，設計基準事故時閉となる手動弁の うち個別に施錠管理を行う弁は，開となるおそれがな く，上記（三）に該当する。【27条6】		
また，原子炉冷却材圧力バウンダリは，以下に述べ る事項を十分満足するように設計，材料選定を行う。	また，原子炉冷却材圧力バウンダリは，以下に述べ る事項を十分満足するように設計，材料選定を行う。 【27条7】	－	（冒頭宣言）
通常運転時において出力運転中，原子炉圧力制御系 により原子炉圧力を一定に保持する設計とする。原子炉起動，停止時の加熱•泠却率を一定の値以下に抑え る等の配慮をする。	通常運転時において出力運転中，原子炉圧力制御系 により原子炉圧力を一定に保持する設計とする。原子炉起動，停止時の加熱•泠却率を一定の値以下に抑え る等の配慮をする。【27条8】	－	（変更なし）
タービン・トリップ，主蒸気隔離弁閉鎖等の運転時 の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等の原子炉スクラム信号を発する安全保護装置を設けること，また主蒸気逃がし安全弁を設 けること等により，原子炉冷却材圧力バウンダリ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力の1．1倍の圧力（9．48MPa）を超えない設計とする。	タービン・トリップ，主蒸気隔離弁閉鎖等の運転時 の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等の原子炉スクラム信号を発する安全保護装置を設けること，また主蒸気逃がし安全弁を設 けること等により，原子炉冷却材圧力バウンダリ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力の 1.1 倍の圧力（ 9.48 MPa ）を超えない設計とする。 【27条8】	－	（変更なし）
設計基準事故時のうち原子炬冷却材圧力バウンダリ の健全性が問題となる可能性がある制御棒落下事象に ついては，「原子炉周期（ペリオド）短」「中性子束高」等の原子炉スクラム信号を発する安全保護装置を設 け，制御棒落下速度リミッタ，制御棒価値ミニマイザ などの対策と相まって，設計基準事故時の燃料の二酸化ウランの最大エンタルピを抑え，原子炉冷却材圧力 バウンダリの健全性を確保できる設計とする。	設計基準事故時のうち原子炉冷却材圧力バウンダリ の健全性が問題となる可能性がある制御棒落下事象に ついては，「原子炉周期（ペリオド）短」，「中性子束高」等の原子炉スクラム信号を発する安全保護装置を設 け，制御棒落下速度リミッタ，制御棒価値ミニマイザ などの対策と相まって，設計基準事故時の燃料の二酸化ウランの最大エンタルピを抑え，原子炉冷却材圧力 バウンダリの健全性を確保できる設計とする。【27条9】	－	（変更なし）
原子炉泠却材圧力バウンダリを構成する配管及び機器の材料は，耐食性を考慮して選定する。	原子炉冷却材圧力バウンダリを構成する配管及び機器の材料は，耐食性を考慮して選定する。【27条10】	－	（変更なし）
3.3 原子炬冷却材圧力バウンダリの隔離装置等原子炉冷却材圧力バウンダリには，原子炉冷却材圧 カバウンダリに接続する配管等が破損することによっ て，原子炉冷却材の流出を制限するために配管系の通常運転時の状態及び使用目的を考慮し，適切に隔離弁 を設ける設計とする。	3.3 原子炉冷却材圧力バウンダリの隔離装置等 原子炉冷却材圧力バウンダリには，原子炉冷却材圧 カバウンダリに接続する配管等が破損することによっ て，原子炉冷却材の流出を制限するために配管系の通常運転時の状態及び使用目的を考慮し，適切に隔離弁 を設ける設計とする。【28条1】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－5 クラス 1 機器及び炉心支持構造物の応力腐食割 れ対策に関する説明書 原子炉冷却系統施設に係る機器の配置を明示した図面 4．3．1 残留熱除去系 原子炉冷却系統施設に係る系統図 4．3．1 残留熱除去系	（基本設計方針に変更はないが，設工認で必要な設計） 21．残留熱除去系に関する設計
なお，原子炉冷却材圧力バウンダリの隔離弁の対象 は，以下のとおりとする。	なお，原子炉冷却材圧力バウンダリの隔離弁の対象 は，以下のとおりとする。	－	（用語の定義のみ）
（一）通常時開及び設計基準事故時閉となる弁を有す るものは，発電用原子炉側からみて，第一隔離弁	（一）通常時開及び設計基準事故時閉となる弁を有す るものは，発電用原子炉側からみて，第一隔離弁	－	（用語の定義のみ）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
及び第二隔離弁を対象とする。 （二）通常時閉及び設計基準事故時閉となる弁を有す るものは，発電用原子炉側からみて，第一隔離弁 を対象とする。 （三）通常時閉及び冷却材喪失時開となる弁を有する非常用炉心冷却系等も，発電用原子炉側からみて第一隔離弁及び第二隔離弁を対象とする。 （四）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及 び遠隔操作閉止弁をいう。 なお，通常時閉，設計基準事故時閉となる手動弁の らち個別に施錠管理を行う弁は，開となるおそれがな く，上記（二）に該当することから，発電用原子炬側か らみて第一隔離弁を対象とする。	及び第二隔離弁を対象とする。 （二）通常時開又は設計基準事故時に開となるおそれ がある通常時閉及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第一隔離弁及び第二隔離弁を対象とする。 （三）通常時閉及び設計基準事故時閉となる弁を有す るもののうち，（二）以外のものは，発電用原子炉側からみて，第一隔離弁を対象とする。 （四）通常時閉及び泠却材喪失時開となる弁を有する非常用炉心泠却系等も，発電用原子炉側からみて第一隔離弁及び第二隔離弁を対象とする。 （五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止升及 び遠隔操作閉止弁をいう。 なお，通常時閉，設計基準事故時閉となる手動弁の らち個別に施錠管理を行う弁は，開となるおそれがな く，上記（三）に該当することから，発電用原子炉側か らみて第一隔離弁を対象とする。【28条2】		
3.4 主蒸気逃がし安全弁の機能 3．4．1 系統構成 主蒸気逃がし安全弁は，バネ式安全弁に，外部から強制的に開閉を行らアクチュエータを取付けたもの で，排気はサプレッションチェンバのプール水面下に導き，原子炉冷却系の過度の圧力上昇を防止できる設計とする。	3.4 主蒸気逃がし安全弁の機能 3．4．1 系統構成 主蒸気逃がし安全弁は，バネ式安全弁に，外部から強制的に開閉を行うアクチュエータを取付けたもの で，排気はサプレッションチェンバのプール水面下に導き，原子炉冷却系の過度の圧力上昇を防止できる設計とする。【33条4】	－	（冒頭宣言）
自動減圧系は，中小破断の泠却材喪失事故時に原子炉蒸気をサプレッションチェンバのプール水中へ逃が し，原子炉圧力を速やかに低下させて，残留熱除去系 （低圧注水モード）又は低圧炉心スプレイ系による注水を可能とし，炉心泠却を行うことができる設計とす る。	自動減圧系は，中小破断の泠却材喪失事故時に原子炉蒸気をサプレッションチェンバのプール水中へ逃が し，原子炉圧力を速やかに低下させて，残留熱除去系 （低圧注水モード）又は低圧炉心スプレイ系による注水を可能とし，炉心冷却を行らことができる設計とす る。【32条8】	－	(変更なし)
	原子炉冷却材圧力バウンダリが高圧の状態であっ て，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炉心の著しい損傷及 び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダリを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全弁を設ける設計と する。【61条1】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	主蒸気逃がし安全弁の自動減圧機能が喪失した場合 の重大事故等対処設備として，主蒸気逃がし安全弁は，中央制御室からの遠隔手動操作により，主蒸気逃がし安全弁逃がし弁機能用アキュムレータ又は主蒸気逃が し安全弁自動減圧機能用アキュムレータに蓄圧された窒素をアクチュエータのピストンに供給することで作動し，蒸気を排気管によりサプレッションチェンバの	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉冷却系統施設の兼用に関する設計 18．1設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	プール水面下に導き凝縮させることで，原子炉冷却材圧力バウンダリを減圧できる設計とする。【61条5】		
	原子炉冷却材圧力バウンダリを減圧するための設備 のうち，灲心損傷時に原子炉冷却材圧力バウンダリが高圧状態である場合において，高圧溶融物放出及び格納容器雰囲気直接加熱による原子炉格納容器の破損を防止するための重大事故等対処設備として，主蒸気逃 がし安全弁は，中央制御室からの遠隔手動操作により，主蒸気逃がし安全弁逃がし弁機能用アキュムレータ又 は主蒸気逃がし安全弁自動減圧機能用アキュムレータ に蓄圧された窒素をアクチュエータのピストンに供給 することで作動し，蒸気を排気管によりサプレッショ ンチェンバのプール水面下に導き凝縮させることで，原子炉冷却材圧力バウンダリを減圧できる設計とす る。【61条19】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	3．4．2 環境条件等 主蒸気逃がし安全弁は，想定される重大事故等時に確実に作動するように，原子炉格納容器内に設置し，制御用空気が喪失した場合に使用する高圧窒素ガス供給系（非常用）及び代替高圧窒素ガス供給系の高圧窒素ガスボンべの容量の設定も含めて，想定される重大事故等時における環境条件を考慮した設計とする。操作は，中央制御室で可能な設計とする。【61条24】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.3 環境条件等	11．健全性に係る設計
3．4．2 主蒸気逃がし安全弁の容量 主蒸気逃がし安全弁は，ベローズと補助背圧平衡ピ ストンを備えたバネ式の平衡形安全弁に，外部から強制的に開閉を行うアクチュエータを取付けたもので，蒸気圧力がスプリングの設定圧力に達すると自動開放 するほか，外部信号によってアクチュエータのピスト ンに窒素圧力を供給して弁を強制的に開放することが できるものを使用し，サプレッションチェンバからの背圧変動が主蒸気逃がし安全弁の設定圧力に影響を与 えない設計とする。	3．4．3 主蒸気逃がし安全弁の容量 主蒸気逃がし安全弁は，ベローズと補助背圧平衡ピ ストンを備えたバネ式の平衡形安全弁に，外部から強制的に開閉を行らアクチュエータを取付けたもので，蒸気圧力がスプリングの設定圧力に達すると自動開放 するほか，外部信号によってアクチュエータのピスト ンに窒素圧力を供給して弁を強制的に開放することが できるものを使用し，サプレッションチェンバからの背圧変動が主蒸気逃がし安全弁の設定圧力に影響を与 えない設計とする。【20条6】【57条6】	－	（変更なし）
なお，主蒸気逃がし安全弁は，11個設置する設計と する。	なお，主蒸気逃がし安全弁は，11個設置する設計と する。【20条6】【57条6】	－	（変更なし）
主蒸気逃がし安全弁の排気は，排気管によりサプレ ッションチェンバのプール水面下に導き凝縮する設計 とする。	主蒸気逃がし安全弁の排気は，排気管によりサプレ ッションチェンバのプール水面下に導き凝縮する設計 とする。【20条6】【57条6】	－	（変更なし）
主蒸気逃がし安全弁の容量は，原子炉冷却材圧力バ ウンダリの過度の圧力上昇を抑えるため，吹出し圧力 と設置個数とを適切に組み合わせることにより，原子炉圧力容器の過圧防止に必要な容量以上を有する設計 とする。 なお，容量は運転時の異常な過度変化時に，原子炉冷却材圧力バウンダリの圧力を最高使用圧力の 1.1 倍	主蒸気逃がし安全弁の容量は，原子炉冷却材圧力バ ウンダリの過度の圧力上昇を抑えるため，吹出し圧力 と設置個数とを適切に組み合わせることにより，原子炉圧力容器の過圧防止に必要な容量以上を有する設計 とする。 なお，容量は運転時の異常な過度変化時に，原子炉冷却材圧力バウンダリの圧力を最高使用圧力の 1.1 倍	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－4－1 安全弁及び逃がし弁の吹出量計算書	15．安全弁等の設計 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18．2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計

基本設計方針		設計結果の記載綯所	様式 -1 への反映結果
変更前	変更後		
以下に保持するのに必要な容量を算定する。	以下に保持するのに必要な容量を算定する。【20条7】 ［57条7］		
	3．4．4 代替自動減圧回路（代替自動減圧機能） 原子炉椧却材圧カバウンダリが高圧の状態であっ て，設計基淮事故対処設備が有する発電用原子炉の減王機能が喪失した場合においても炬心の著しい損傷及 び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダリを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全弁を作動させる代替自動減圧回路（代替自動減㢄機能）を設ける設計と する。【61条1】	VI－1－5－2 工学的安全施設等の起動（作動）信号の設定値 の根拠に関する説明書 2．基本方針 2.2 原子炉冷却材圧力バウンダリを減圧するための設備 3．施設の詳細設計方針 3.1 その他の工学的安全施設 4．工学的安全施設等の起動（作動）信号の設定值根拠 4.4 代替自動減圧回路（代替自動減圧機能） VI－1－5－3 発電用原子炉の運転を管理するための制御装置 に係る制御方法に関する説明書 3．中央制御室に係る制御方法 3.4 発電用原子炉の制御設備の構成等 3．4．3 安全保護系（原子炉保護系及び工学的安全施設作動回路）及びその他の工学的安全施設等の作動設備	VI－1－10－5 「計測制御系統施設」の様式－1 6．工学的安全施設等の設計
	主蒸気逃がし安全弁の自動減圧機能が喪失した場合 の重大事故等対処設備として，主蒸気逃がし安全弁は，代替自動減圧回路（代替自動減圧機能）からの信号に より，主蒸気逃がし安全弁自動減圧機能用アキュムレ一タに蓄圧された䇪素をアクチュエータのピストンに供給することで作動し，蒸気を排気管によりサプレッ ションチェンバのプール水面下に導き凝縮させること で，原子炉冷却材圧カバウンダリを減圧できる設計と する。【61条2】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却系統施設に係る機器の配置を明示した図面 4．2．1 主蒸気系 原子炉冷却系統施設に係る系統図 4．2．1 主蒸気系	18．原子炬冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炬冷却系統施設の系統図に関する取りまとめ
	3． 4.5 主蒸気逃がし安全弁の機能回復 原子炉冷却材圧力バウンダリを減圧するための設備 のうち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，主蒸気逃がし安全弁の作動に必要な窒素がスが喪失した場合においても，高圧窒素 ガス供給系（非常用）及び代替高圧窒素ガス供給系を使用できる設計とする。【61条10】	要目表 $\mathrm{VI}-1-1-4-3$ 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） 計測制御系統施設に係る機器の配置を明示した図面 5． 6.1 高圧窒素ガス供給系 5．6．2 代替高圧窒素ガス供給系	VI－1－10－5 「計測制御嶪統施設」の様式－1 8．原子炬冷却材圧カバウンダリを減圧するための設備の設計
	原子炬泠却材圧カバウンダリを減圧するための設備 のらち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，可搬型代替直流電源設備及び主蒸気逃がし安全弁用可搬型蓄電池を使用できる設計 とする。【61条7】	単線結線図 1．4 単線結線図	VI－1－10－9 「非常用電源設備」の様式 -1 2．非常用電源設備の設計 2.2 電力貯蔵装置 2．2．4 主蒸気逃がし安全弁用可搬型蓄電池
	原子炬椧却材圧カバウンダリを減圧するための設備 のうち，主蒸気逃がし安全弁の機能回復のための重大	単線結線図 1.4 単線結線図	VI－1－10－9 「非常用電源設備」の様式－1 2．非常用電源設備の設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	事故等対処設備として，可搬型代替直流電源設備は，主蒸気逃がし安全弁の作動に必要な常設直流電源系統 が喪失した場合においても， 125 V 直流電源切替盤を切 り替えることにより，主蒸気逃がし安全弁（11個）の作動に必要な電源を供給できる設計とする。【61条8】		2.2 電力貯蔵装置 2．2．4 主蒸気逃がし安全弁用可搬型蓄電池
	原子炉冷却材圧力バウンダリを減圧するための設備 のうち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，主蒸気逃がし安全弁用可搬型蓄電池は，主蒸気逃がし安全弁の作動に必要な常設直流電源系統が喪失した場合においても，主蒸気逃がし安全弁の作動回路に接続することにより，主蒸気逃が し安全弁（2個）を一定期間にわたり連続して開状態を保持できる設計とする。【61条9】	単線結線図 1．4 単線結線図	VI－1－10－9 「非常用電源設備」の様式－1 2．非常用電源設備の設計 2.2 電力貯蔵装置 2．2．4 主蒸気逃がし安全弁用可搬型蓄電池
	全交流動力電源又は常設直流電源が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁は，可搬型代替直流電源設備により作動に必要な直流電源 が供給されることにより機能を復旧し，原子炉冷却材圧力バウンダリを減圧できる設計とする。【61条17】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	11．健全性に係る設計
	全交流動力電源又は常設直流電源が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全并は，常設代替交流電源設備又は可搬型代替交流電源設備に より所内常設蓄電式直流電源設備を受電し，作動に必要な直流電源が供給されることにより機能を復旧し，原子炉冷却材圧力バウンダリを減圧できる設計とす る。【61条18】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	11．健全性に係る設計
	3．4．6 原子灲冷却材の漏えい量抑制 インターフェイスシステムLOCA発生時の重大事故等対処設備として，主蒸気逃がし安全弁は，中央制御室 からの手動操作によって作動させ，原子炉冷却材圧力 バウンダリを減圧させることで原子炉冷却材の漏えい を抑制できる設計とする。【61条20】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却系統施設に係る機器の配置を明示した図面 4．2．1 主蒸気系 原子炉冷却系統施設に係る系統図 4．2．1 主蒸気系	20．インターフェイスシステムLOCA発生時に用いる設備 に係わる設計
4．残留熱除去設備 4． 1 残留熱除去系 4．1． 1 低圧注水モード 残留熱除去系（低圧注水モード）は，大破断の泠却材喪失事故時には低圧炉心スプレイ系及び高圧炉心ス プレイ系と連携して，中小破断の泠却材喪失事故時に は高圧灲心スプレイ系あるいは自動減圧系と連携して炉心を泠却する機能を有し，非常用交流電源設備に結 ばれた電動機駆動ポンプにより，サプレッションチェ ンバのプール水を直接炉心シュラウド内に注水する設計とする。	4．残留熱除去設備 4.1 残留熱除去系 4．1．1 低圧注水モード 残留熱除去系（低圧注水モード）は，大破断の泠却材喪失事故時には低圧炉心スプレイ系及び高圧炉心ス プレイ系と連携して，中小破断の泠却材喪失事故時に は高圧灲心スプレイ系あるいは自動減圧系と連携して炉心を冷却する機能を有し，非常用交流電源設備に結 ばれた電動機駆動ポンプにより，サプレッションチェ ンバのプール水を直接炉心シュラウド内に注水する設計とする。【32条7】	要目表 原子炉冷却系統施設に係る機器の配置を明示した図面 4．3．1 残留熱除去系 原子炉冷却系統施設に係る系統図 4．3．1 残留熱除去系	（基本設計方針に変更はないが，設工認で必要な設計） 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炉冷却系統施設の系統図に関する取りまとめ
4．1．2 原子炉停止時冷却モード	4．1．2 原子炉停止時冷却モード	要目表	（基本設計方針に変更はないが，設工認で必要な設計）

基本設計方針		設計結果の記載第所	様式－1への反映結果
変更前	変更後		
（1）系統構成 発電用原子炬を停止した場合において，燃料要素の許容損傷限界及び原子炉椧却材圧力バウンダリの健全性 を維持するために必要なパラメータが設計値を超えな いようにするため，原子炉圧力容器内において発生し た残留熱を除去することができる設備として残留熱除去系を設ける設計とする。	（1）系統構成 発電用原子炉を停止した場合において，燃料要素の許容損傷限界及び原子炉冷却材圧力バウンダリの健全性を維持するために必要なパラメータが設計値を超え ないようにするため，原子炉圧力容器内において発生 した残留熱を除去することができる設備として残留熱除去系を設ける設計とする。【33条15】	原子炉冷却系統施設に係る機器の配置を明示した図面 4．3．1 残留熱除去系 原子炉冷却系統施設に係る系統図 4．3．1 残留熱除去系 構造図 4．3．1 残留熱除去系	18．原子炬泠却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含を原子炉冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炬泠却系統施設の系統図に関する取りまとめ
残留熱除去系の浍却速度は，原子炉泠却材圧力バウ ンダリの加熱•椧却速度の制限値（ $55^{\circ} \mathrm{C} / \mathrm{h}$ ）を超えな いように制限できる設計とする。	残留熱除去系の泠却速度は，原子炬泠却材圧力バウ ンダリの加熱•椧却速度の制限値（ $55^{\circ} \mathrm{C} / \mathrm{h}$ ）を超えな いように制限できる設計とする。【33条15】	$-$	(変更なし)
	原子炬冷却材圧カバウンダリ低圧時に発電用原子炉 を掵却するための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（原子炉停止時冷却モード）が使用できる場合は，重大事故等対処設備（設計基漼抎張）として使用でき る設計とする。【62条3】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉泠却系統施設）	18．原子炬椧却系統施設の兼用に関する設計 18.1 設備に係る設計のための采統の明碓化及び兼用する機能の碓認 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕樣等に関する設計
	最終ヒートシンクへ熱を輸送するための設備とし て，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（原子炬停止時冷却モー ド）が使用できる場合は重大事故等対処設備（設計基準扩張）として使用できる設計とする。【63条2】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	発電用原子炬停止中において全交流動力電源喪失又 は原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）機能表失によるサポート系の故障により，残留熱除去系（原子炉停止時冷却モード）が起動できない場合の重大事故等対处設備として，常設代替交流電源設備を使用し，残留熱除去系（原子炬停止時冷却モード） を復旧できる設計とする。残留熱除去系（原子炬停止時冷却モード）は，常設代替交流電源設備からの給電 により機能を復旧し，原子炉冷却材を原子炉圧力容器 から残留熱除去系ポンプ及び残留熱除去系熱交換器を経由して原子炉圧力容器に戻すことにより炉心を椧却 できる設計とする。本系䖻に使用する泠却水は，原子炉補機冷却水系（原子煽補機冷却海水系を含む。）又は原子炉補機代替冷却水采から供給できる設計とする。【62条50】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多栐性及ひ独立性並で位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉泠却系統施設 （2）多重性又は多様性及ひ独立性並びし位置的分散	11．健全性に係る設計
	残留熱除去系（原子炬停止時椧却モード）の流路と して，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対处設備として使用することから，流路に係る機能 について重大事故等対処設備としての設計を行う。【62条58】【63条4】	$\mathrm{VI}-1-1-4-1$ 設備別記載事項の設定根拠化関する説明書 （原子炉本体） $\mathrm{VI}-1-1-4-3$ 設備別記載事項の設定根拠化関する説明書 （原子炉泠却采統施設）	12．材料及び媾造に係る設計 12.1 クラス機器及び支持構造物の強度評伍 12.7 烼心支持構造物の強度評価 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための采統の明碓化及び兼用する

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
		VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－別添6 炬心支持構造物の強度に関する説明書 VI－3－別添7 原子炉圧力容器内部構造物の強度に関する説明書	機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 VI－1－10－2 「原子炉本体」の様式 -1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備に係る設計
	（2）多様性，位置的分散等 残留熱除去系（原子炉停止時冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時にお いても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多樣性及 び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備 の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。【62条59】【63条45】	－	(用語の定義のみ)
4．1．3 格納容器スプレイ冷却モード （1）系統構成 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に生ずる原子炉格納容器内の圧力及び温度の上昇により原子炉格納容器の安全性を損なうことを防止するため，原子炉格納容器内において発生した熱を除去する設備として，残留熱除去系（格納容器スプレ イ冷却モード）を設ける設計とする。	4．1．3 格納容器スプレイ冷却モード （1）系統構成 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に生ずる原子炉格納容器内の圧力及び温度の上昇により原子炉格納容器の安全性を損ならことを防止するため，原子炉格納容器内において発生した熱を除去する設備として，残留熱除去系（格納容器スプレ イ冷却モード）を設ける設計とする。【44条26】	－	（変更なし）
残留熱除去系（格納容器スプレイ冷却モード）は，冷却材喪失事故時に，サプレッションチェンバのプー ル水をドライウェル内及びサプレッションチェンバ内 にスプレイすることにより，環境に放出される放射性物質の濃度を減少させる設計とする。	残留熱除去系（格納容器スプレイ冷却モード）は，冷却材喪失事故時に，サプレッションチェンバのプー ル水をドライウェル内及びサプレッションチェンバ内 にスプレイすることにより，環境に放出される放射性物質の濃度を減少させる設計とする。【44条24】	－	（変更なし）
残留熱除去系（格納容器スプレイ冷却モード）は，原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定した場合でも，放出されるエネルギによる設計基準事故時の原子炉格納容器内圧力，温度が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炉格納容器の内圧を速やかに下げて低く維持することに より，放射性物質の外部への漏えいを少なくする設計 とする。	残留熱除去系（格納容器スプレイ冷却モード）は，原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定した場合でも，放出されるエネルギによる設計基準事故時の原子炉格納容器内圧力，温度が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炉格納容器の内圧を速やかに下げて低く維持することに より，放射性物質の外部への漏えいを少なくする設計 とする。【44条27】	－	（変更なし）
残留熱除去設備のうち，サプレッションチェンバの プール水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並 びに原子炉冷却材中の異物の影響について「非常用炉	残留熱除去設備のらち，サプレッションチェンバの プール水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並 びに原子炉冷却材中の異物の影響について「非常用炉	－	（変更なし）

基本設計方針		設計結果の記載箇所		様式－1～の反映結果
変更前	変更後			
心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5号（平成20年2月27日原子力安全•保安院制定））によ るろ過装置の性能評価により，設計基準事故時に想定 される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。	心泠却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5号（平成20年2月27日原子力安全•保安院制定））によ るろ過装置の性能評価により，設計基準事故時に想定 される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。【44条28】			
残留熱除去系（格納容器スプレイ冷却モード）の仕様は，設置（変更）許可を受けた設計基準事故の評価 の条件を満足する設計とする。	残留熱除去系（格納容器スプレイ冷却モード）の仕様は，設置（変更）許可を受けた設計基準事故の評価 の条件を満足する設計とする。【44条29】		－	（変更なし）
残留熱除去系（格納容器スプレイ冷却モード）は， テストラインを構成することにより，発電用原子炉の運転中に試験ができる設計とする。また，設計基準事故時に動作する弁については，残留熱除去系ポンプが停止中に開閉試験ができる設計とする。	残留熱除去系（格納容器スプレイ冷却モード）は， テストラインを構成することにより，発電用原子炉の運転中に試験ができる設計とする。また，設計基準事故時に動作する弁については，残留熱除去系ポンプが停止中に開閉試験ができる設計とする。【44条31】		－	（変更なし）
	最終ヒートシンクへ熱を輸送するための設備とし て，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（格納容器スプレイ泠却 モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。【63条2】	$\mathrm{VI}-1-1-4-3$	設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	残留熱除去系（格納容器スプレイ冷却モード）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【63条55】	VI-1-1-4- VI-1-1-4-?	設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設）	18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 VI－1－10－8 「原子炉格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	（2）多様性，位置的分散等 残留熱除去系（格納容器スプレイ泠却モード）は，設計基準事故対処設備であるとともに，重大事故等時 においても使用するため，重大事故等対処設備として の基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」 に示す設計方針は適用しない。【63条45】		－	(用語の定義のみ)
4．1．4 サプレッションプール水冷却モード （1）系統構成	4．1．4 サプレッションプール水泠却モード （1）系統構成		－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
残留熱除去系（サプレッションプール水泠却モード） は，サプレッションチェンバのプール水温度を所定の温度以下に泠却できる設計とする。	残留熱除去系（サプレッションプール水泠却モード） は，サプレッションチェンバのプール水温度を所定の温度以下に泠却できる設計とする。【33条16】		
	最終ヒートシンクへ熱を輸送するための設備とし て，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（サプレッションプール水泠却モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。【63条2】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	残留熱除去系（サプレッションプール水泠却モード） の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【63条56】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炬格納施設）	18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 VI－1－10－8 「原子炉格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	（2）多様性，位置的分散等 残留熱除去系（サプレッションプール水冷却モード） は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備と しての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象 の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。【63条45】	－	(用語の定義のみ)
4．1．5 燃料プール冷却 残留熱除去系は，使用済燃料からの崩壊熱を除去で きる設計とする。残留熱除去系熱交換器で除去した熱 は，原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）を経て，最終ヒートシンクである海へ輸送できる設計とする。	4．1．5 燃料プール冷却 残留熱除去系は，使用済燃料からの崩壊熱を除去で きる設計とする。残留熱除去系熱交換器で除去した熱 は，原子炉補機冷却水系（原子炬補機冷却海水系を含 む。）を経て，最終ヒートシンクである海へ輸送でき る設計とする。【26条26】【26条27】	－	（変更なし）
	4． 2 原子炉格納容器フィルタベント系 4．2．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合において炉心の著し い損傷及び原子炉格納容器の破損（炉心の著しい損傷 が発生する前に生ずるものに限る。）を防止するため，最終ヒートシンクへ熱を輸送するために必要な重大事	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
	故等対処設備として，原子炉格納容器フィルタベント系を設ける設計とする。【63条1】	3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 1．概要 1．1 設置目的 2．系統設計 2.1 設計方針	2．2．2 各機器固有の設計
	残留熱除去系の故障等により最終ヒートシンクへ熱 を輸送する機能が喪失した場合に，炉心の著しい損傷及び原子炬格納容器の破損を防止するための重大事故等対处設備として，原子炉格納容器フィルタベント系 は，フィルタ装置（フィルタ容器，スクラバ溶液，金属繊維フィルタ，放射性よう素フィルタ），フィルタ装置出口側ラプチャディスク，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雾囲気ガスを原子炉格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$（ 1 Pdにおい て）することで，排気中に含まれる放射性物質の環境 への放出量を低減しつつ，原子炉格納容器内に蓄積し た熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。【63条5】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉冷却系統施設に係る系統図 4．3．2 原子炉格納容器フィルタベント系 構造図 3．2．2 燃料プール代替注水系 8.1 原子炉格納容器 8．3．3．7 原子炉格納容器フィルタベント系 8．3．4．1 原子炉格納容器調気系 8．3．5．1 原子炉格納容器フィルタベント系	VI－1－10－3 「核然料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－8 「原子炬格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2．2．2 各機器固有の設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	原子炬格納容器フィルタバント系を使用した場合に放出される放射性物質の放出量に対して，設置（変更）許可において敷地境界での線量評価を行い，実効線量 が 5 mSv 以下であることを碓認しており，原子炉格納容器フィルタベント系はこの評価条件を满足する設計と する。【63条6】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2．2．2 各機器固有の設計
	フィルタ装置は3台を並列に設置し，排気中に含まれ	$\mathrm{VI-1-1-4-7}$	$\mathrm{VI}-1-10-8$ 「原子炉格納施設」の様式－1

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	る粒子状放射性物質，ガス状の無機よう素及び有機よ ら素を除去できる設計とする。また，無機よう素をス クラバ溶液中に捕集•保持するためにアルカリ性の状態（待機状態においてpH13以上）に維持する設計とす る。【63条7】	（原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2．2．2 各機器固有の設計
	原子炬格納容器フィルタバント系は，サプレッショ ンチェンバ及びドライウェルと接続し，いずれからも排気できる設計とする。サプレッションチェンバ側か らの排気ではサプレッションチェンバの水面からの高 さを碓保し，ドライウェル側からの排気では，ドライ ウェル床面からの高さを碓保するととも纪有効燃料棒頂部よりも高い位置に接続䉕所を設けることで長期的 にも溶融炬心及び水没の悪影響を受けない設計とす る。【63条8】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉冷却系統施設に係る系統図 4．3．2 原子炉格納容器フィルタベント系	VI－1－10－8 「原子炬格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2．2．2 各機器固有の設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	原子炬格納容器フィルタバント系は，排気中に含ま れる可燃性がスによる爆発を防ぐため，可搬型窒素が ス供給系により，系統内を不活性ガス（絰素）で置換 した状態で待機させ，原子炉格納容器ベント開始後に おいても不活性ガス（窒素）で置換できる設計とする とともに，系統内に可燃性ガスが蓄積する可能性のあ る箇所にはバイパスラインを設け，可燃性がスを連続 して排出できる設計とすることで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。【63条9】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタバント系の設計 2．系統設計 2.1 設計方針 原子炉冷却系統施設に係る系統図 4．3．2 原子炉格納容器フィルタベント系	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2．2．2 各機器固有の設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	可搬型窒素がス供給系は，可燃性ガスによる爆発及 び原子炉格納容器の負圧破損を防止するために，可搬型空素ガス供給装置を用いて原子炉格納容器内に不活性ガス（窒素）の供給が可能な設計とする。【63条12】	$\mathrm{VI}-1-1-4-7$ 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための采統の明碓化及び兼用する機能の碓認

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
		3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 2．基本方針 2.1 原子炉格納容器の破損を防止するための水素濃度低減設備 2．1．2 可搬型窒素ガス供給装置 4．原子灲格納施設の水素濃度低減設備の詳細設計 4.1 原子炉格納容器の破損を防止するための水素濃度低減設備 4．1．2 可搬型空素ガス供給装置	2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2．2．2 各機器固有の設計 3．原子师格納施設の設計 3.4 原子炬格納容器の破損を防止するための水素濃度低減設備の設計 3．4． 1 可搬型窒素がス供給系の設計
	可搬型窒素ガス供給装置は，車両内纪搭載された可搬型窒素ガス供給装置発電設備により給電できる設計 とする。【63条57】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 2．基本方針 2.1 原子炉格納容器の破損を防止するための水素濃度低減設備 2．1．2 可搬型窒素ガス供給装置 4．原子炉格納施設の水素濃度低減設備の詳細設計 4.1 原子炉格納容器の破損を防止するための水素濃度低減設備 4．1．2 可搬型窒素ガス供給装置	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．1 可搬型窒素ガス供給系の設計
	原子炬格納容器フィルタベント系は，他の発電用原子炉施設とは共用しない設計とする。また，原子炉格納容器フィルタベント系と他の系統•機器を隔催する弁は，直列で2個設置（ベント用非常用ガス处理系側隔離弁（T48－F020）と格納容器排気非常用がス処理系側止め弁（T48－F045）（原子炉格納施設のうち「3．6．1 原	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ

基本設計方針		設計結果の記載笽所	様式－1への反映結果
変更前	変更後		
	子炉格納容器フィルタベント系」の設備を原子灲冷却系統施設のらち「4．2 原子炉格納容器フィルタベント系」の設備として兼用），ベント用換気空調系側隔離弁 （T48－F021）と格納容器排気換気空調系側止め升（T48 －F046）（原子炉格納施設のうち「3．5．1 原子炬格納容器フィルタベント系」の設備を原子炉冷却系統施設 のうち「4．2 原子炉格納容器フィルタベント系」の設備として兼用），原子炉格納容器耐圧強化ベント用連絡配管隔離弁（T48－F043）（原子炉格納施設のうち「3．5．1原子炉格納容器フィルタベント系」の設備を原子炉冷却系統施設のらち「4．2 原子炉格納容器フィルタベン ト系」の設備として兼用）と原子炉格納容器耐圧強化 卜用連絡配管止め弁（T48－F044）（原子炉格納施設のらち「3．5．1 原子炉格納容器フィルタベント系」 の設備を原子炉冷却系統施設のうち「4．2 原子炉格納容器フィルタベント系」の設備として兼用））し，原子炉格納容器フィルタベント系と他の系統•機器を確実 に隔離することで悪影響を及ぼさない設計とする。【63条10】	VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉冷却系統施設に係る機器の配置を明示した図面 4．3．2 原子炉格納容器フィルタベント系 原子炉冷却系統施設に係る系統図 4．3．2 原子炉格納容器フィルタベント系	
	原子炬格納容器フィルタベント系の使用に際して は，原子炉格納容器が負圧とならないよう，原子炉格納容器代替スプレイ椧却系等による原子炉格納容器内 へのスプレイを停止する運用を保安規定に定めて管理 する。原子炉格納容器フィルタベント系の使用後に再度，原子炉格納容器内にスプレイする場合においても，原子炉格納容器内圧力が規定の圧力まで減圧した場合 には，原子炉格納容器内へのスプレイを停止する運用 を保安規定に定めて管理する。【63条11】	運用に関する記載であり，保安規定にて対応	－
	原子炬格納容器フィルタバント系使用時の排出経路 に設置される隔離弁は，遠隔手動弁操作設備（個数 4 ） （原子炉格納施設のらち「3．5．1 原子炉格納容器フィ ルタベント系」の設備を原子炉冷却系統施設のうち「4．2 原子炉格納容器フィルタベント系」の設備とし て兼用）によって人力により容易かつ確実に操作が可能な設計とする。【63条15】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉冷却系統施設に係る系統図 4．3．2 原子炉格納容器フィルタベント系	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2．2．2 各機器固有の設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	排出経路に設置される隔離弁の電動弁については，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又 は可搬型代替直流電源設備からの給電により，中央制御室から操作が可能な設計とする。【63条17】	VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	VI－1－10－8 「原子炬格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	系統内に設けるフィルタ装置出口側ラプチャディス クは，原子炉格納容器フィルタベント系の使用の妨げ にならないよう，原子炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計とする。【 63 条 18】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子灲格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 構造図 8．3．5．1 原子炉格納容器フィルタベント系	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2．2．2 各機器固有の設計
	原子炬格納容器フィルタベント系は，代替淡水源か ら，大容量送水ポンプ（タイプI）によりフィルタ装置にスクラバ溶液を補給できる設計とする。【63条20】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－8－1 原子炬格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉冷却系統施設に係る系統図 4．3．2 原子炉格納容器フィルタベント系 構造図 8．3．5．1 原子炉格納容器フィルタベント系	VI－1－10－3 「核然料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び盱蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備こ係る設計 VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕様等に関す る設計 2．2．2 各機器固有の設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	原子炬格納容器フィルタベント系使用時の排出経路 に設置される隔離并に設ける遠隔手動弁操作設備の操作場所は，原子炬建屋付属棟内とし，サプレッション チェンバベント用出口隔離弁（T48－F022）の操作を行 ら原子炉建屋地下1階及びドライウェルベント用出口隔離亣（T48－F019）の操作を行う原子炉建屋地上1階に遮蔽体（遠隔手動弁操作設備遮蔽（原子炉格納施設の らち「3．5．1 原子炉格納容器フィルタベント系」の設	$\mathrm{VI}-1-8-1$－別添 2 原子非格納容器フィルタバント系の設計別紙5 原子炉格納容器フィルタベント系隔蜼弁の人力操作について	VI－1－10－8 「原子炬格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計

基本設計方針		設計結果の記載䈏所	様式一1への反映結果
変更前	変更後		
	備を原子炉冷却系統施設のらち「4．2 原子炉格納容器 フィルタバント系」の設備として兼用）（以下同じ。）） を設置し，放射線防護を考慮した設計とする。遠隔手動升操作設備遮蔽は，炬心の著しい損傷時においても，原子炬格納容器フィルタベント系の隔離亣操作ができ るよう，どちらの遮蔽体においても鉛厚さ 2 mm の遮蔽厚 さを有する設計とする。【63条16】		
	原子炬格納容器フィルタベント系に使用するホース の敷設等は，ホース延長回収車（台数 4 （予備1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2燃料プ一ル代替注水系」の設備を原子炉冷却系統施設のらち「4．2 原子炉格納容器フィルタダント系」の設備とし て兼用）により行ら設計とする。【63条22】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－1－4－別添 2 設定根拠化関する説明書（別添）	VI－1－10－3 「核然料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	原子炉格納容器フィルタベント系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能につ いて重大事故等対処設備としての設計を行ら。【63条 23］	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炉格納施設に係る系統図 8．3．5．1 原子炬格納容器フィルタベント系 構造図 8． 1 原子炉格納容器	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炬格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	4．2．2 多重性又は多様性及び独立性，位置的分散原子炉格納容器フィルタベント系は，残留熱除去系 （格納容器スプレイ椧却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によ って同時に機能を損なわないよう，ポンプ及び熱交換器を使用せずに最終的な熱の逃がし場である大気へ熱 を輸送できる設計とすることで，残留熱除去系及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して，多様性を有する設計とする。【63条46】	VI－1－1－6 安全設借及び重大事故等対処設備が使用される条件の下沉おける健全性に関する説明書 2．基本方針 2． 1 多重性又は多栐性及ひ独立性並び位置的分散 3．系統施設びとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多栐性及ひ独立性並びに位置的分散	11．健全性に係る設計
	原子炉格納容器フィルタベント系は，排出経路に設置される隔離并の電動弁を常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備か らの給電による遠隔操作を可能とすること又は遠隔手動升操作設備を用いた人力による遠隔操作を可能とす ることで，非常用交流電源設備からの給電により駆動 する残留熱除去系（格納容器スプレイ伶却モード）及 び原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）に対して，多栐性を有する設計とする。【63条47］	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散 VI－1－8－1－別添2 原子炬格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	11．健全性に係る設計 VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計
	原子炉格納容器フィルタベント系のフィルタ装置及	要目表	VI－1－10－8 「原子炬格納旅設」の様式 -1

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
	びフィルタ装置出口側ラプチャディスクは，原子炬建屋原子炉棟内记設置し，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び残留熱除去系熱交換器，原子炉建屋付属棟内の原子炬補機冷却水ポンブ及び原子炉補幾椧却水系熱交換器並びに屋外の海水ポンプ室の原子炉補機冷却海水ポンプと異なる区画に設置することで，残留熱除去系及び原子炬補機冷却水系（原子炬補機冷却海水系を含む。）と共通要因によって同時に機能を損 なわないよう位置的分散を図った設計とする。【63条 49］	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炉格納施設に係る系統図 8．3．5．1 原子炉格納容器フィルタベント系 構造図 8.1 原子炉格納容器	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含を設借に係る設計 2．2．1 兼用を含む原子炻格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	原子炉格納容器フィルタベント系は，除熱手段の多様性及び機器の位置的分散によって，残留熱除去系及 び原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）に対して独立性を有する設計とする。【63条50】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散	11．健全性に係る設計
	4．3 耐圧強化ベント系 4．3．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合において炉心の著し い損傷及び原子炉格納容器の破損（炉心の著しい損傷 が発生する前に生ずるものに限る。）を防止するため，最終ヒートシンクい熱を輸送するために必要な重大事故等対処設備として，耐圧強化ベント系を設ける設計 とする。【63条1】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能 原子炉冷却系統施設に係る機器の配置を明示した図面 4．3．3 耐圧強化ベント系 原子炉冷却系統施設に係る系統図 4．3．3 耐圧強化ベント系 原子炉冷却系統施設に係る主配管の配置を明示した図面 4．3．3 耐圧強化ベント系	18．原子炉泠却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 22．耐圧強化ベント系に関する設計 VI－1－10－8 「原子炬格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認
	残留熱除去系の故障等により最終ヒートシンクへ熱 を輸送する機能が喪失した場合に，灯心の著しい損傷及び原子炉格納容器の破損を防止するための重大事故等対処設備として，耐圧強化ベント系は，原子炬格納容器内雾囲気ガスを原子炉格納容器調気系等を経由し て，排気筒を通して原子炉建屋外に放出（系統設計流量10．0kg／s（1Pdにおいて））することで，原子炬格納容器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。【63条26】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 2．基本方針 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の碓認

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	最終ヒートシンクへ熱を輸送するための設備として使用する場合の耐圧強化ベント系は，炬心損傷前化使用するため，排気中に含まれる放射性物質及び可燃性 ガスは微量である。【63条27】	－	（用語の定義のみ）
	耐圧強化ベント系は，使用する際に弁により他の系統•機器と隔離することにより，覀影響を及ぼさない設計とする。【63条28】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 2．基本方針 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認
	耐圧強化ベント系は，想定される重大事故等時にお いて，原子炬格納容器が負圧とならない設計とする。耐圧強化ベント系の使用に際しては，原子炉格納容器代替スプレイ洽却系等による原子炉格納容器内へのス プレイを停止する運用を保安規定に定めて管理する。耐圧強化ベント系の使用後に再度，原子炉格納容器内 にスプレイをする場合においても，原子炉格納容器内圧力が規定の圧力まで減圧した場合には，原子炬格納容器内へのスプレイを停止する運用を保安規定に定め て管理する。【63条29】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 2．基本方針 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 $<$ 下線部 $>$
	耐圧強化ベント系使用時の排出経路に設置される隔離弁のらち電動弁（直流）（ドライウェルベント用出口隔離亣（T48－F019）及びサプレッションチェンバベン ト用出口隔離亣（T48－F022））は所内常設蓄電式直流電源設備，常設代替直流電源設備又は可般型代替直流電源設備からの給電による操作が可能な設計とする。【63条30】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認
	また，排出経路に設置される隔離弁のらち電動弁（交流）（原子炬格納容器耐圧強化ベント用連絡配管隔離弁 （T48－F043）（原子炉格納施設のらち「3．5．1 原子炬格納容器フィルタベント系」の設備を原子炉冷却系統施設のらち 14.3 耐圧強化ベント系」の設備として兼用）及び原子炋格納容器耐圧強化ベント用連絡配管止 め弁（T48－F044）（原子炉格納施設のちち「3．5．1 原子炉格納容器フィルタベント系」の設備を原子炉冷却系統施設のらち「4．3 耐圧強化ベント系」の設備とし て兼用）に については常設代替交流電源設備又は可搬型代替交流電源設備からの給電による操作が可能な設計 とする。【63条30】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炬格納容器の熱の輸送機能	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用汇関する設計 2.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	電動弁（直流）については，遠隔手動弁操作設備（個数2）（原子炉格納施設のうち「3．5．1 原子炉格納容器 フィルタベント系」の設備を原子炉冷却系統施設のう ち「4．3 耐圧強化ベント系」の設備として兼用）によ って人力による操作が可能な設計とし，隔離弁の操作 における駆動源の多様性を有する設計とする。【63条 31】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炬冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散 VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能	11．健全性に係る設計 VI－1－10－8 「原子炉格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認
	耐压強化ベント系はサプレッションチェンバ及びド ライウェルと接続し，いずれからも排気できる設計と する。サプレッションチェンバ側からの排気ではサプ レッションチェンバの水面からの高さを碓保し，ドラ イウェル側からの排気では，ドライウェルの床面から の高さを碓保するとともに有効燃料棒頂部よりも高い位置に接続䈯所を設けることで長期的にも溶融炬心及 び水没の悪影響を受けない設計とする。【63条32】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認
	耐圧強化ベント系を使用した場合に放出される放射性物質の放出量に対して，設置（変更）許可において敷地境界での線量評価を行い，実効線量が5mSv以下で あることを確認しており，耐圧強化ベント系はこの評価条件を満足する設計とする。【63条33】	$\mathrm{VI}-1-8-1$ 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等时になりする設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認
	耐圧強化ベント系の流路として，設計基準対象施設 である排気筒及び原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【63条34】	VI－1－1－4－5 設備別記載事項の設定根拠に関する説明書 （放射性廃棄物の廃妻施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 2．基本方針	VI－1－10－6 「放射性廃安物の廃安施設」の様式 -1 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3．放射性廃宩物の廃革施設の兼用に関する設計 3.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－8 「原子灲格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕様等に関す る設計
	4．3．2 多重性又は多様性及び独立性，位置的分散耐圧強化ベント系は，残留熱除去系（格納容器スプ レイ冷却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能 を損なわないよう，ポンプ及び熱交換器を使用せずに最終的な熱の逃がし場である大気へ熱を輸送できる設	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設	11．健全性に係る設計

基本設計方針		設計結果の記載綯所	様式－1への反映結果
変更前	変更後		
	計とすることで，残留熱除去系及び原子炉補機泠却水系（原子炉補機冷却海水系を含む。）に対して，多様性 を有する設計とする。【63条46】	（2）多重性又は多栐性及て独立性並びして位置的分散	
	耐圧強化ベント系の排出経路に設置される隔離弁の うち電動弁（直流）は，所内常設蓄電式直流電源設備，常設代替直流電源設備若しくは可搬型代替直流電源設備からの給電による遠隔操作を可能とすること又は遠隔手動升操作設備を用いた人力による遠隔操作が可能 な設計とし，排出経路に設置される隔離升のらち電動弁（交流）は常設代替交流電源設備若しくは可搬型代替交流電源設備からの給電による遠隔操作を可能とす ること又は操作ハンドルを用いた人力による操作が可能な設計とすることで，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレイ椧却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して，多様性を有する設計とする。【63条48】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対处設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多樣性及ひ独立性並で位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却采統揓設 （2）多重性又は多㥞性及ひ独立性並びした位置的分散	11．健全性に係る設計
	耐圧強化ベント系は，原子炉建屋原子炬棟内に設置 し，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び残留熱除去系熱交換器，原子炉建屋付属棟内の原子炉補機冷却水ポンプ及び原子炉補機冷却水系熱交換器並 びに屋外の海水ポンプ室の原子炉補機冷却海水ポンプ と異なる区画に設置することで，残留熱除去系及び原子炉補機泠却水系（原子炉補機泠却海水系を含む。）と共通要因によって同時に機能を損なわないよう位置的分散を図った設計とする。【63条49】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散	11．健全性に係る設計
	耐圧強化ベント系は，除熱手段の多様性及び機器の位置的分散によって，残留熱除去系及び原子炬補機冷却水系（原子炉補機洽却海水系を含む。）に対して独立性を有する設計とする。【63条50】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2．1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多樣性及ひ独立性並びに位置的分散	11．健全性に係る設計
	4.4 重大事故等の収束に必要となる水源 設計基準事故の収束に必要な水源とは別に，重大事故等の収束に必要となる十分な量の水を有する水源を碓保することに加えて，発電用原子炉施設には，設計基準事故対処設備及び重大事故等対処設備に対して重大事故等の収束に必要となる十分な水の量を供給する ために必要な重大事故等対処設備として，サプレッシ ヨンチェンバを重大事故等の収束に必要となる水源と して設ける設計とする。【71条1】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設）	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	また，これら重大事故等の収束に必要となる水源と は別に，代替淡水源として淡水貯水槽（No．1）及び淡水眝水槽（No．2）を設ける設計とする。【71条2】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	VI－1－10－3 「核然料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
			計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認
	サプレッションチェンバ（容量 $2800 \mathrm{~m}^{3}$ ，個数 1 ）は，想定される重大事故等時において，重大事故等対処設備（設計基準拡張）である残留熱除去系（格納容器ス プレイ冷却モード）及び残留熱除去系（サプレッショ ンプール水泠却モード）の水源として使用できる設計 とする。【71条7】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設）	VI－1－10－8 「原子炉格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）は，想定される重大事故等時において，原子炉格納容器フィルタベント系への水補給の水源とし て使用できる設計とする。【71条9】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	$\mathrm{VI}-1-10-3$ 「㯖燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び盱蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認
5．非常用灲心泠却設備その他原子灲注水設備 5.1 非常用炉心泠却設備その他原子炉注水設備の機能 非常用炉心冷却設備は，工学的安全施設の一設備で あって，高圧炉心スプレイ系，低圧炉心スプレイ系，残留熱除去系（低圧注水モード）及び自動減圧系から構成する。 これらの各系統は，泠却材喪失事故等が起こったと きに，サプレッションチェンバのプール水又は復水貯蔵タンクの水を原子炉圧力容器内に注水し，又は原子炉蒸気をサプレッションチェンバのプール水中に逃が し原子炉圧力を速やかに低下させるなどにより，炉心 を泠却し，燃料被覆管の温度が燃料材の溶融又は燃料体の著しい破損を生ずる温度を超えて上昇することを防止できる設計とするとともに，燃料の過熱による燃料被覆管の大破損を防ぎ，さらにこれに伴うジルコニ ウムと水との反応を無視しうる程度に抑え，著しく多量の水素を生じない設計とする。	5．非常用炉心泠却設備その他原子炉注水設備 5.1 非常用炉心泠却設備その他原子炉注水設備の機能 非常用炉心冷却設備は，工学的安全施設の一設備で あって，高圧炉心スプレイ系，低圧炉心スプレイ系，残留熱除去系（低圧注水モード）及び自動減圧系から構成する。 これらの各系統は，冷却材喪失事故等が起こったと きに，サプレッションチェンバのプール水又は復水貯蔵タンクの水を原子炉圧力容器内に注水し，又は原子炉蒸気をサプレッションチェンバのプール水中に逃が し原子炉圧力を速やかに低下させるなどにより，炉心 を泠却し，燃料被覆管の温度が燃料材の溶融又は燃料体の著しい破損を生ずる温度を超えて上昇することを防止できる設計とするとともに，燃料の過熱による燃料被覆管の大破損を防ぎ，さらにこれに伴らジルコニ ウムと水との反応を無視しらる程度に抑え，著しく多量の水素を生じない設計とする。【32条1】	－	（冒頭宣言）
非常用炉心冷却設備は，設置（変更）許可を受けた運転時の異常な過渡変化及び設計基準事故の評価条件 を満足する設計とする。	非常用炉心冷却設備は，設置（変更）許可を受けた運転時の異常な過渡変化及び設計基準事故の評価条件 を満足する設計とする。【32条2】	－	（変更なし）
非常用炉心冷却設備又は残留熱除去設備のうち，サ プレッションチェンバのプール水を水源として原子炉圧力容器へ注水するために運転するポンプは，原子炉圧力容器内又は原子炉格納容器内の圧力及び温度並び に，原子炉泠却材中の異物の影響について「非常用炉心泠却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5号（平成20年2月27日原子力安全•保安院制定））によ るろ過装置の性能評価により，設計基準事故時に想定	非常用炉心冷却設備又は残留熱除去設備のらち，サ プレッションチェンバのプール水を水源として原子炉圧力容器へ注水するために運転するポンプは，原子炉圧力容器内又は原子炉格納容器内の圧力及び温度並び に，原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5号（平成20年2月27日原子力安全•保安院制定））によ るろ過装置の性能評価により，設計基準事故時に想定	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。	される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。【32条3】		
	非常用炉心泠却設備その他原子炉注水設備のうち， サプレッションチェンバのプール水を水源として原子炉圧力容器へ注水するために運転するポンプは，原子炉格納容器内の圧力及び温度並びに，原子炉冷却材中 の異物の影響について「非常用炉心泠却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について （内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27日原子力安全•保安院制定））によるろ過装置の性能評価により，重大事故等時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。【54条87】	VI－1－4－3 非常用炉心冷却設備その他原子炉注水設備のポ ンプの有効吸込水頭に関する説明書 2．基本方針 3．評価	18．原子炉冷却系統施設の兼用に関する設計 18.2 機能を兼用する機器を含む設備に係る設計 18．2．2 各機器固有の設計
非常用炉心泠却設備のらち，復水貯蔵タンクを水源 として原子炉圧力容器へ注水するために運転するポン プは，復水貯蔵タンクの圧力及び温度により，想定さ れる最も小さい有効吸込水頭においても，正常に機能 する能力を有する設計とする。	非常用炉心冷却設備のらち，復水貯蔵タンクを水源 として原子炉圧力容器へ注水するために運転するポン プは，復水貯蔵タンクの圧力及び温度により，想定さ れる最も小さい有効吸込水頭においても，正常に機能 する能力を有する設計とする。【32条4】	－	（記載追加のみ，変更なし）
	非常用炉心冷却設備その他原子炉注水設備のうち，復水貯蔵タンク，ほら酸水注入系貯蔵タンク，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海を水源として原子炉圧力容器へ注水するために運転するポンプは，復水貯蔵タンク，ほら酸水注入系貯蔵タンク，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧力及び温度により，想定される最も小さい有効吸込水頭におい ても，正常に機能する能力を有する設計とする。【54条 88】	VI－1－4－3 非常用炉心泠却設備その他原子炉注水設備のポ ンプの有効吸込水頭に関する説明書 2．基本方針 3．評価	18．原子炉冷却系統施設の兼用に関する設計 18.2 機能を兼用する機器を含む設備に係る設計 18．2．2 各機器固有の設計
自動減圧系を除く非常用炉心冷却設備については，作動性を確認するため，発電用原子炉の運転中に，テ ストラインを用いてポンプの作動試験ができる設計と するとともに，弁については単体で開閉試験ができる設計とする。	自動減圧系を除く非常用灲心椧却設備については，作動性を確認するため，発電用原子炉の運転中に，テ ストラインを用いてポンプの作動試験ができる設計と するとともに，弁については単体で開閉試験ができる設計とする。【32条9】	－	（変更なし）
自動減圧系については，発電用原子炉の運転中に主蒸気逃がし安全弁の駆動用窒素供給圧力の確認を行う ことで，非常用炉心泠却設備の能力の維持状況を確認 できる設計とする。なお，発電用原子灲停止中に，主蒸気逃がし安全弁の作動試験ができる設計とする。	自動減圧系については，発電用原子炉の運転中に主蒸気逃がし安全弁の駆動用窒素供給圧力の確認を行う ことで，非常用炉心泠却設備の能力の維持状況を確認 できる設計とする。なお，発電用原子炉停止中に，主蒸気逃がし安全弁の作動試験ができる設計とする。【32条10】	－	（変更なし）
5.2 高圧炉心スプレイ系 5．2．1 系統構成 高圧炉心スプレイ系は，大破断の泠却材喪失事故時 には低圧炉心スプレイ系及び残留熱除去系（低圧注水 モード）と連携し，中小破断の泠却材喪失事故時には単独で炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，復水貯蔵タン	5.2 高圧炉心スプレイ系 5．2．1 系統構成 高圧炉心スプレイ系は，大破断の冷却材喪失事故時 には低圧炉心スプレイ系及び残留熱除去系（低圧注水 モード）と連携し，中小破断の泠却材喪失事故時には単独で炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，復水貯蔵タン	要目表 原子炉冷却系統施設に係る機器の配置を明示した図面 4．4．1 高圧炉心スプレイ系 原子炉冷却系統施設に係る系統図 4．4．1 高圧炬心スプレイ系	（基本設計方針に変更はないが，設工認で必要な設計） 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計

基本設計方針		設計結果の記載簂所	様式一1への反映結果
変更前	変更後		
クの水又はサプレッションチェンバのプール水を炬心上部に取付けられた高圧炉心スプレイスパージャのノ ズルから师心にスプレイする設計とする。	クの水又はサプレッションチェンバのプール水を师心上部に取付けられた高圧炬心スプレイスパージャのノ ズルから炬心にスプレイする設計とする。【32条5】		18.3 機能を兼用する機器を含む原子炬泠却系統施設の系統図に関する取りまとめ
	原子炬冷却材圧カバウンダリ高圧時に発電用原子炬 を椧却するための設備として，想定される重大事故等時において，設計基準事故対処設備である高圧炬心ス プレイ系が使用できる場合は重大事故等対处設備（設計基準拡張）として使用できる設計とする。【60条3】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉泠却系統施設）	18．原子炬冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための采統の明碓化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含も原子炉冷却系統施設の機器の仕樣等に関する設計
	高圧灲心スプレイ系の流路として，設計基準対象施設である原子炉圧力容器，灲心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用 することから，流路に係る機能について重大事故等対処設備としての設計を行う。【60条4】	VI－1－1－4－1 設借別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－3－3－1 原子炉本体の強度に関する説明書 $\mathrm{VI}-3$－別添 6 炬心支持構造物の強度に関する説明書 VI－3－別添 7 原子炉圧力容器内部構造物の強度に関する説明書	12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価 12.7 炬心支持構造物の強度評価 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 VI－1－10－2 「原子炉本体」の様式－1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備こ係る設計
	インターフェイスシステムLOCA発生時の重大事故等対処設備として，高圧炉心スプレイ系注入隔離弁（E22 －F003）は，現場で弁を操作することにより原子炉冷却材の漏えい箇所を隔離できる設計とする。【61条22】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却系統施設に係る機器の配置を明示した図面 4．4．1 高圧炉心スプレイ系 原子炉冷却系統施設に係る系統図 4．4．1 高圧炞心スプレイ系	20．インターフェイスシステムLOCA発生時に用いる設備
	なお，設計基準事故対処設備である高圧炬心スプレ イ系注入隔離亣（E22－F003）を重大事故等対処設備（設計基準拡張）として使用できる設計とする。【61条23】	VI－1－1－4－3 設借別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	20．インターフェイスシステムLOCA発生時に用いる設備
	また，インターフェイスシステムLOCA発生時の重大事故等対処設備として，原子炉建屋ブローアウトパネ ル（設置枚数 1 ，開放差圧 4.4 kPa ）（原子炉格納施設の設備を原子炉冷却系統施設のらち「5．2 高圧炬心スプ レイ系」の設備として兼用）は，高圧の原子炉泠却材 が原子炉建屋原子炉棟内へ漏えいして蒸気となり，原子炉建屋原子炉棟内の圧力が上昇した場合において，外気との差圧により自動的に開放し，原子炉建屋原子炉棟内の圧力及び温度を低下させることができる設計	VI－1－1－6－別添4 ブローアウトパネル関連設備O設計方針	VI－1－10－8 「原子炉格納施設」の様式 -1 4．その他原子炻格納施設に係る設計 4.3 原子炬建屋ブローアウトパネル関連設備の設計

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
	とする。【61条21】		
	5．2．2 多様性，位置的分散等 高圧炉心スプレイ系は，設計基準事故対処設備であ るとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針 を適用する。ただし，多樣性及び独立性並びに位置的分散を考慮す心゙き対象の設計基準事故対処設備はない ことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。【60条14】	－	（用語の定義のみ）
5.3 低圧炉心スプレイ系 5．3．1 系統構成 低圧炉心スプレイ系は，大破断の泠却材喪失事故時 には残留熱除去系（低圧注水モード）及び高圧炉心ス プレイ系と連携して，中小破断の泠却材喪失事故時に は高圧炬心スプレイ系あるいは自動減圧系と連携して炬心を冷却する機能を有し，非常用交流電源設備に結 ばれた電動機駆動ポンプにより，サプレッションチェ ンバのプール水を，炬心上部に取付けられた低圧炬心 スプレイスパージャのノズルから炉心にスプレイする設計とする。	5．3 低圧炉心スプレイ系 5．3．1 系統構成 低圧炬心スプレイ系は，大破断の冷却材喪失事故時 には残留熱除去系（低圧注水モード）及び高圧炉心ス プレイ系と連携して，中小破断の泠却材喪失事故時に は高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を泠却する機能を有し，非常用交流電源設備に結 ばれた電動機駆動ポンプにより，サプレッションチェ ンバのプール水を，炬心上部に取付けられた低圧炬心 スプレイスパージャのノズルから灯心にスプレイする設計とする。【32条6】	要目表 原子炉泠却系統施設に係る機器の配置を明示した図面 4．4．2 低圧炬心スプレイ系 原子炉冷却采統施設に係る采統図 4．4．2 低圧炝心スプレイ系 構造図 4．4．2 低圧炬心スプレイ系	（基本設計方釔変更はないが，設工認で必要な設計） 18．原子炉冷却系統施設の兼用に関する設計 18． 1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含き設備に係る設計 18．2．1 兼用を含む原子炉泠却系統施設の機器の仕様等に関する設計 23．低圧炉心スプレイ系に関する設計
	原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を椧却するための設備として，想定される重大事故等時において，設計基準事故対処設備である低圧炉心ス プレイ系が使用できる場合は，重大事故等対処設備（設計基準抎張）として使用できる設計とする。【62条3】	要目表 $\mathrm{VI}-1-1-4-3$ 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉冷却系統耾設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含を設備こ係る設計 18．2．1 兼用を含も原子炉冷却系統施設の機器の仕㥞等に関する設計 23．低圧炬ふスプレイ系に関する設計
	全交流動力電源震失又は原子炬補機冷却水系（原子炉補機冷却海水系を含む。）機能霛失によるサポート系 の故障により，低圧炉心スプレイ系が起動できない場合の重大事故等対处設備として，常設代替交流電源設備を使用し，低圧炬心スプレイ系を復旧できる設計と する。低圧炉心スプレイ系は，常設代替交流電源設備 からの給電により機能を復旧し，低厌炬心スプレイ系 ポンプによりサプレッションチェンバのプール水を原子炉圧力容器へスプレイすることで师心を椧却できる設計とする。本系統汇使用する椧却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。【 62 条 271	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対处設備が使用される条件の下における健全性に開する説明書 2．基本方針 2.1 多重性又は多栐性及ひ独立性並び位置的分散 3．采統施設びとの設計上の考慮 3.2 原子炉泠却系統施設 （2）多重性又は多樣性及ひ独立性並びに位置的分散	11．健全性に係る設計
	低圧灲ふスプレイ系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用 することから，流路に係る機能について重大事故等対	$\mathrm{VI}-1-1-4-1$ 設備別記載事項の設定根拠比関する説明書 （原子炉本体） $\mathrm{VI}-1-1-4-3$ 設備別記载事項の設定根拠に関する説明書	12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価 12.7 炬心支持構造物の強度評価 18．原子炉冷却系統赮联の兼用に関する設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	処設備としての設計を行ら。【62条35】	（原子炉冷却采統施設） $\mathrm{VI}-3-3-1$ 原子炉本体の強度に関する説明書 $\mathrm{VI}-3-$ 別添 6 炉心支持構造物の強度に関する説明書 $\mathrm{VI}-3-$ 別添 7 原子炉圧力容器内部構造物の強度に関する説 明書	18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18．2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 VI－1－10－2 「原子炉本体」の様式－1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備に二係る設計
	5．3．2 多様性，位置的分散等 低圧炉心スプレイ系は，設計基準事故対処設備であ るとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針 を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はない ことから，重大事故等対処設備の基本方針のらち「5．1．2 多樣性，位置的分散等」に示す設計方針は適用しない。【62条59】	－	（用語の定義のみ）
	5.4 高圧代替注水系 原子炬泠却材圧カバウンダリが高圧の状態であっ て，設計基準事故対処設備が有する発電用原子炬の冷却機能が喪失した場合においても炬心の著しい損傷を防止するために必要な重大事故等対処設備として，高圧代替注水系を設ける設計とする。 また，設計基準事故対処設備である高圧炬心スプレ イ系及び原子炬隔離時冷却系が全交流動力電源及び常設直流電源系統の機能喪失により起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動で きない場合に，高圧代替注水系を現場操作により起動 できる設計とする。【60条1】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） $\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計 18．原子炉泠却系統施設の兼用に閉する設計 18.1 設借に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設借に係る設計 18．2．1 兼用を含を原子炉冷却系統施設の機器の仕様等に関する設計
	高圧炉心スプレイ系及び原子炉隔離時冷却系が機能喪失した場合の重大事故等対処設備として，高圧代替注水系は，蒸気タービン駆動ポンプにより復水貯蔵夕 ンクの水を高圧炉心スプレイ系等を経由して，原子炉圧力容器へ注水することで灲心を泠却できる設計とす る。【60条5】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18．2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に 関する設計
	高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備又は所内常設蓄電式直流電源設備か らの給電が可能な設計とし，所内常設蓄電式直流電源設備が機能震失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計 とし，中央制御室からの操作が可能な設計とする。【 60	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	条61	（2）多重性又は多栐性及ひ独立性並びして位置的分散	
	高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能啔失により中央制御室からの操作ができない場合に おいても，現場での人力による原子炉隔離侍冷却系蒸気供給ライン分離弁（E51－F082）（原子炉冷却采統施設のらち「5．5 原子炉隔㟴時冷却系」の設備を原子炬椧却系統施設のらち「5．4 高圧代替注水系」の設備と して兼用），高圧代替注水系注入弁（E61－F003），高圧代替注水系タービン止め并（E61－F050）及び燃料プー ル補給水系ポンプ吸込弁（P15－F001）の操作により，原子炉冷却材圧カバウンダリの減圧対策及び原子炉冷却材圧カバウンダリ低圧時の椧却対策の準備が整うま での期間にわたり，発電用原子炉の泠却を継続できる設計とする。なお，人力による措置は現場にハンドル を設置することで容易に行える設計とする。【60条7】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） $\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散	11．健全性に係る設計 18．原子炬泠却系統施設の兼用に関する設計 18． 1 設備に係る設計のための系統つ明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含を設借沅係る設計 18．2．1 兼用を含を原子炉冷却系統揓設の機器の仕栐等に関する設計
	高圧代替注水系の流路として，設計基準対象施設で ある原子炉圧力容器，炬心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用する ことから，流路に係る機能について重大事故等対处設備としての設計を行ら。【60条8】	VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－3－3－1 原子炉本体の強度に関する説明書 $\mathrm{VI}-3$－別添 6 烼心支持構造物の強度に関する説明書 VI－3－別添7 原子炉圧力容器内部構造物の強度に関する説明書	12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価 12.7 炉心支持構造物の強度評価 18．原子炉冷却采統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18．2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 VI－1－10－2 「原子炉本体」の様式 -1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備に係る設計
	5.5 原子炉隔離時冷却系 5．5．1 系統構成 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉 を泠却するための設備として，想定される重大事故等時において，設計基準事故対処設備である原子炉隔離時冷却系が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。【60条3】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉泠却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含むな原子师泠却系統施設の機器の仕栐等に関する設計
	原子炉泠却村圧カバウンダリが高圧の状態であっ て，設計基準事故対処設備が有する発電用原子炉の泠却機能が喪失した場合においても炉心の著しい損傷を防止するために必要な重大事故等対処設備として，設計基準事故対处設備である高圧炬心スプレイ系及び原	$\mathrm{VI}-1-1-4-3$ 設備別記載事項の設定根拠に関する説明書 （原子炉冷却采統施設） $\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	```11. 健全性に係る設計 18. 原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する 機能の確認 18.2 機能を兼用する機器を含む設備に係る設計```

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
	子炉隔離時冷却系が全交流動力電源及び常設直流電源系統の機能喪失により起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合に，原子炉隔離時冷却系を現場操作により起動でき る設計とする。【60条1】	2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散	18．2．1 兼用を含む原子炉冷却采統施設の機器の仕様等に関する設計
	原子炬隔離時冷却系は，全交流動力電源及び常設直流電源系統が機能喪失した場合においても，現場で原子炉隔離時冷却系注入弁（E51－F003），原子炉隔離時泠却系タービン入口蒸気ライン第二隔離弁（E51－ F008）（原子灲冷却系統施設のらち「6．1 原子炉隔離時冷却系」の設備を原子炉冷却系統施設のうち「5．5原子炉隔離時冷却系」の設備として兼用），原子炉隔離時冷却系タービン止め弁（E51－F009），原子炉隔離時泠却系泠却水ライン止め弁（E51－F017），原子炉隔離時冷却系蒸気供給ライン分離弁（E51－F082）（原子炉泠却系統施設のらち「5．4 高圧代替注水系」の設備と兼用），原子炉隔離時冷却系真空タンクドレン弁（E51 －F536）及び高圧代替注水系蒸気供給ライン分離弁 （E61－F064）を人力操作することにより起動し，蒸気 タービン駆動ポンプにより復水貯蔵タンクの水を原子炬圧力容器へ注水することで原子炉冷却材圧力バウン ダリの減圧対策及び原子炉冷却材圧力バウンダリ低圧時の泠却対策の準備が整うまでの期間にわたり，発電用原子炉の泠却を継続できる設計とする。なお，人力 による措置は現場にハンドルを設置することで容易に行える設計とする。【60条9】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散	11．健全性に係る設計 18．原子炉冷却采統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	全交流動力電源が露失し，原子炉隔鹪時椧却系の起動又は運転継続に必要な直流電源を所内常設著電式直流電源設備により給電している場合は，所内常設蓄電式直流電源設備の蓄電池が枯渴する前に常設代替交流電源設備，可搬型代替交流電源設備又は可搬型代替直流電源設備により原子炉隔催侍冷却系の運転継続に必要な直流電源を確保する設計とする。【60条11】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	原子炉隔離侍冷却系は，常設代替交流電源設備，可搬型代替交流電源設備又は可搬型代替直流電源設備か らの給電により機能を復旧し，蒸気タービン駆動ポン プにより復水貯蔵タンクの水を原子炉圧力容器へ注水 することで炉心を椧却できる設計とする。【60条11】	VI－1－1－4－3 設借別記載事項の設定根拠に関する説明書 （原子炉泠却系統施設）	18．原子炬冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確忍 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含を原子炉冷却系統施設の機器の仕様等に関する設計
	原子炬隔離時冷却系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用 することから，流路に係る機能について重大事故等対処設備としての設計を行う。【60条10】	VI－1－1－4－1 設借別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－3 設備別記載事項の設定根拠汇関する説明書 （原子炉冷却系統施設）	12．材料及び鞲造に係る設計 12.1 クラス機器及び支持構造物の強度評価 12.7 烼心支持構造物の強度評価 18．原子炉冷却采統施設の兼用に関する設計 18． 1 設備に係る設計のための采統の明碓化及び兼用する機能の碓認

基本設計方針		設計結果の記載綯所	様式一1への反映結果
変更前	変更後		
		VI－3－3－1 原子灲本体の強度に関する説明書 VI－3－別添 6 炬心支持構造物の強度に関する説明書 VI－3－別添7 原子炉圧力容器内部構造物の強度に関する説明書	18.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－2 「原子炉本体」の様式－1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備に係る設計
	5．5．2 多様性，位置的分散等 原子炉隔離時冷却系は，設計基準事故対処設備であ るとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針 を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はない ことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。【60条14】	－	（用語の定義のみ）
	5.6 低圧代替注水系 5．6．1 低圧代替注水系（常設）（復水移送ポンプ）に よる原子炬注水 原子炉冷却材圧カバウンダリが低圧の状態であっ て，設計基準事故対処設備が有する発電用原子炉の泠却機能が喪失した場合においても炉心の著しい損傷及 び原子炉格納容器の破損を防止するため，発電用原子炉を椧却するために必要な重大事故等対処設備とし て，炬心の著しい損傷に至るまでの時間的余裕のない場合に対応するための低圧代替注水系（常設）（復水移送ポンプ）を設ける設計とする。【62条1】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却系統施設に係る機器の配置を明示した図面 4． 4.5 低圧代替注水系	18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含も原子炉洽却系統施設の機器の仕様等に関する設計
	残留熱除去系（低圧注水モード）及び低圧炬心スプ レイ系の機能が䨤失した場合並びに全交流動力電源表失又は原子炉補機泠却水系（原子炉補機洽却海水系を含む。）機能䘫失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系 による発電用原子炉の椧却ができない場合の重大事故等対处設備として，低圧代替注水系（常設）（復水移送 ポンプ）は，復水移送ポンプにより，復水貯蔵タンク の水を残留熱除去系等を経由して原子炉圧力容器へ注水することで师心を椧却できる設計とする。【62条4】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却采統施設に係る采統図 4． 4.5 低圧代替注水系	18．原子炬冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確忍 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含も原子炉冷却采統施設の機器の仕栚等に関する設計 18．3 機能を兼用する機器を含を原子炉泠却系統施設の系統図に関する取りまとめ
	炉心の著しい損傷，溶融が発生した場合において，原子炬圧力容器内に溶融炬心が存在する場合に，溶融炉心を椧却し，原子炉格納容器の破損を防止するため の重大事故等対処設備として，低圧代替注水系（常設） （復水移送ポンプ）は，復水移送ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで原子炬圧力容器内に存在する	要目表 $\mathrm{VI}-1-1-4-3$ 設借別記載事項の設定根拠化関する説明書 （原子炉泠却系統施設） 原子炉冷却系統雄設に係る系統図 4． 4.5 低圧代替注水系	18．原子炉冷却系統施設の兼用に関する設計 18.1 機能単位の系統の明確化 18.2 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計

基本設計方針		設計結果の記載箘所	様式－1への反映結果
変更前	変更後		
	溶融帖心を椧却できる設計とする。【62条36】		18.3 機能を兼用する機器を含む原子炉冷却系統施設の系統図に関する取りまとめ
	発電用原子炬停止中において残留熱除去系（原子炉停止時冷却モード）の機能が喪失した場合及び発電用原子炉停止中において全交流動力電源襄失又は原子炬補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（原子炬停止時冷却モード）が起動できない場合の重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポンプにより，復水販蔵タン クの水を残留熱除去系等を経由して原子炬圧力容器へ注水することで炬心を椧却できる設計とする。【 62 条 481	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却系統施設に係る系統図 4．4．5 低圧代替注水系	18．原子炬冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子栌冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含を原子炉泠却系統施設の系統図に関する取りまとめ
	低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電气設備を経由し た常設代替交流電源設備又は可搬型代替交流電源設備 からの給電が可能な設計とする。【62条5】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対处設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多㥞性及ひ独立性並びし位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却采統揓設 （2）多重性又は多㥞性及ひ独立性並びし位置的分散	11．健全性に係る設計
	また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とす る。【62条5】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2．1 多重性又は多様性及ひ独立性並びに位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散	11．健全性に係る設計
	低圧代替注水系（常設）（復水移送ポンプ）の流路と して，設計基準対象施設である原子炬圧力容器，炬心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能 について重大事故等対処設備としての設㮦を行ら。【62条61	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－3－3－1 原子炉本体の強度に関する説明書 $\mathrm{VI}-3$－別添 6 烼心支持構造物の強度に関する説明書 VI－3－別添7 原子炉圧力容器内部構造物の強度に関する説明書 原子炉冷却系統施設に係る系統図 4．4． 5 低圧代替注水系	12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価 12.7 炬心支持構造物の強度評価 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18．2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炉泠却系統施設の系統図に関する取りまとめ VI－1－10－2 「原子炉本体」の様式－1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備に係る設計

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	5．6．2 低圧代替注水系（常設）（直流駆動低圧注水系 ポンプ）による原子炉注水 原子炉冷却材圧力バウンダリが低圧の状態であっ て，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合においても炉心の著しい損傷及 び原子炉格納容器の破損を防止するため，発電用原子炉を泠却するために必要な重大事故等対処設備とし て，炉心の著しい損傷に至るまでの時間的余裕のない場合に対応するための低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）を設ける設計とする。【62条1】	要目表 原子炉冷却采統施設に係る機器の配置を明示した図面 4．4． 5 低圧代替注水系	18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	残留熱除去系（低圧注水モード）及び低圧炉心スプ レイ系の機能が䨖失した場合並びに全交流動力電源霛失又は原子炉補機冷却水系（原子炉補機洽却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系 による発電用原子炉の泠却ができない場合の重大事故等対処設備として，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，直流駆動低圧注水系ポンプに より，復水貯蔵タンクの水を高圧炉心スプレイ系等を経由して原子炉圧力容器へ注水することで灲心を椧却 できる設計とする。【62条7】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却系統施設に係る系統図 4．4．5 低圧代替注水系	18．原子炉泠却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含を原子炉冷却系統施設の機器つ仕様等に関する設計 18.3 機能を兼用する機器を含む原子炬泠却系統翃設の系統図に関する取りまとめ
	直流駆動低圧注水系ポンプは，常設代替直流電源設備からの給電が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設著電式直流電源設備又は常設代替直流電源設備からの給電が可能な設計 とする。なお，系統構成に必要な電動亣（交流）は，全交流動力電源が機能喪失した場合においても設置場所にて手動操作できる設計とする。【62条8】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及ひ独立性並びに位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ） の流路として，設計基準対象施設である原子炬圧力容器，炬心支持構造物及び原子炬圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対处設備としての設計を行う。【62条9】	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－別添 6 炉心支持構造物の強度に関する説明書 VI－3－別添 7 原子炉圧力容器内部構造物の強度に関する説明書 原子炉冷却系統施設に係る系統図 4． 4.5 低圧代替注水系	12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価 12.7 炬心支持構造物の强度評価 18．原子炉冷却系統施設の兼用に関する設計 18． 1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含を原子炬冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含を原子师泠却系統施設の系統図に関する取りまとめ VI－1－10－2 「原子炬本体」の様式－1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
			3.2 機能を兼用する機器を含を設備こく係る設計
	5．6．3 低圧代替注水系（可搬型）による原子炬注水原子炬冷却材圧カバウンダリが低圧の状態であっ て，設計基準事故対処設備が有する発電用原子炉の泠却機能が喪失した場合においても炬心の著しい損傷及 び原子炬格納容器の破損を防止するため，発電用原子炉を椧却するために必要な重大事故等対処設備とし て，低圧代替注水系（可搬型）を設ける設計とする。【62条1】	要目表 原子炉泠却系統施設に係る機器の配置を明示した図面 4．4．5 低圧代替注水系	18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含を原子炉泠却采統施設の機器の仕様等に関する設計
	残留熱除去系（低圧注水モード）及び低圧炬心スプ レイ系の機能が喪失した場合並びに全交流動力電源霛失又は原子炬補機冷却水系（原子炉補機泠却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系 による発電用原子炉の泠却ができない場合の重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水 を残留熱除去系等を経由して原子炬圧力容器に注水す ることで炬心を泠却できる設計とする。【62条10】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び盱蔵施設） 原子炉冷却系統施設に係る系統図 4． 4.5 低圧代替注水系	18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含も原子炉泠却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炉冷却系統施設の系統団に関する取りまとめ $\mathrm{VI}-1-10-3$ 「核燃料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び賏蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計
	炬心の著しい損傷，溶融が発生した場合において，原子炬圧力容器内に溶融炬心が存在する場合に，溶融炉心を椧却し，原子炉格納容器の破損を防止するため の重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器に注水することで原子炬圧力容器内に存在する溶融灲心を椧却できる設計とする。【62条37】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） 原子炉冷却系統施設こ係る系統図 4．4．5 低圧代替注水系	18．原子炬椧却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含き設備に係る設計 18．2．1 兼用を含も原子炉洽却采統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炉冷却系統施設の系統団に関する取りまとめ VI－1－10－3「核然料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含を設備に係る設計
	発電用原子炬停止中において残留熱除去系（原子炬停止時洽却モード）の機能が喪失した場合及び発電用原子炉停止中において全交流動力電源衰失又は原子炉補機洽却水系（原子炉補機冷却海水系を含む。）機能襄	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	18．原子炬泠却系統施設の兼用に関する設計 18． 1 設備に係る設計のための系統つ明碓化及び兼用する機能の碓認 18.2 機能を兼用する機器を含き設備に係る設計

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	失によるサポート系の故障により，残留熱除去系（原子炉停止時冷却モード）が起動できない場合の重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器に注水 することで炉心を泠却できる設計とする。【62条49】	原子炉冷却系統施設に係る系統図 4．4． 5 低圧代替注水系	18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炉冷却系統施設の系統図に関する取りまとめ VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	低圧代替注水系（可搬型）は，代替淡水源が枯渇し た場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）により海を利用できる設計とする。【62条11】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	低圧代替注水系（可搬型）は，非常用交流電源設備 に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。【62条12】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に開する説明書 2．基本方針 2.1 多重性又は多㨾性及ひ独立性並びこ位置的分散 3．系統施設でとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多栐性及ひ独立性並びに位置的分散	11．健全性に係る設計
	大容量送水ポンプ（タイプI）は，空洽式のディー ゼルエンジンにより駆動できる設計とする。【62条13】	要目表 VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散 構造図 3．2．2 燃料プール代替注水系	11．健全性沉係る設計 18．原子炉泠却系統施設の兼用に閉する設計 18． 1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含むを設借に係る設計 18．2．1 兼用を含むな原子师泠却系統施設の機器の仕栐等に関する設計 $\mathrm{VI}-1-10-3$ 「核燃料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.2 機能を兼用する機器を含む設借に係る設計
	低圧代替注水系（可搬型）に使用するホースの敷設等は，ホース延長回収車（台数4（予備1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2燃料プール代替注水系」の設備を原子炉洽却系統施設のらち「5．6低圧代替注水系」の設備として兼用）により行ら設計 とする。【62条15】	$\mathrm{VI}-1-1-4$－別添2 設定根拠に関する説明書（別添）	VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認

基本設計方針		設計結果の記載簂所	様式 -1 への反映結果
変更前	変更後		
			2.2 機能を兼用する機器を含む設備し係る設計
	低圧代替注水系（可搬型）の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炬圧力容器内部構造物を重大事故等対処設備とし て使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【62条16】	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－別添6 炉心支持構造物の強度に関する説明書 VI－3－別添7 原子炉圧力容器内部構造物の強度に関する説明書 原子炉冷却系統施設に係る系統図 4． 4.5 低圧代替注水系	12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価 12.7 炬心支持構造物の強度評価 18．原子炉冷却采統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炉冷却系統施設の系統図に関する取りまとめ VI－1－10－2 「原子炉本体」の様式－1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－3 「核然料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び盱蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	5． 6.4 多重性又は多様性及び独立性，位置的分散低圧代替注水系（常設）（復水移送ポンプ）は，残留熱除去系（低圧注水モード及び原子炉停止時冷却モー ド）及び低圧炉心スプレイ系と共通要因によって同時 に機能を損なわないよう，復水移送ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備か らの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（低圧注水モード及び原子灲停止時冷却 モード）及び低圧炉心スプレイ系ポンプを用いた低圧炉心スプレイ系に対して多様性を有する設計とする。【62条60】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散	11．健全性に係る設計
	低圧代替注水系（常設）（復水移送ポンプ）の電動弁 （交流）は，ハンドルを設けて手動操作を可能とする ことで，非常用交流電源設備からの給電による違隔操作に対して多様性を有する設計とする。また，低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多栐性及ひ独立性並び位置的分散 3．系統施設でとの設計上の考慮	11．健全性に係る設計

基本設計方針		設計結果の記載綯所	様式 -1 への反映結果
変更前	変更後		
	は，代替所内電気設備を経由して給電する系統におい て，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性 を有する設計とする。【62条61】	3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散	
	低圧代替注水系（常設）（復水移送ポンプ）の電動弁 （直流）は，ハンドルを設けて手動操作を可能とする ことで，所内常設蓄電式直流電源設備からの給電によ る遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（常設）（復水移送ポンプ）の電動弁（直流）は，125V蓄電池から125V直流主母線盤までの系統 において，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路 に対して，独立性を有する設計とする。さらに，常設代替直流電源設備からの給電も可能であり，125V代替蓄電池から 125 V直流主母線盤までの系統において，独立した電路で系統構成することにより，非常用ディー ゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。【62条79】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対处設備が使用される条件の下になける健全性に関する説明書 2．基本方針 2.1 多重性又は多樣性及ひ独立性並で位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉泠却系統施設 （2）多重性又は多㥞性及ひ独立性並びした位置的分散	11．健全性に係る設計
	低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵タンクを水源とすることで，サプレッションチェ ンバを水源とする残留熱除去系（低圧注水モード）及 び低圧炉心スプレイ系に対して異なる水源を有する設計とする。【62条62】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2． 1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散 原子炉冷却系統施設に係る系統図 4．4．5 低圧代替注水系	11．健全性に係る設計 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18． 3 機能を兼用する機器を含を原子炉冷却系統施設の系続図に関する取りまとめ
	復水移送ポンプは，原子炬建屋原子炉棟内の残留熱除去系ポンプ及び低圧炬心スプレイ系ポンプと異なる区画に設置することで，共通要因によって同時に機能 を損なわないよら位置的分散を図る設計とする。【 62 条 631	VI－1－1－6 安全設備及び重大事故等対处設備が使用される条件の下に訳る健全性に関する説明書 2．基本方針 2.1 多重性又は多㨾性及ひ独立性並で位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統揓設 （2）多重性又は多怺性及ひ独立性並びし位置的分散	11．健全性に係る設計
	復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因 によって同時に機能を損なわないよう位置的分散を図 る設計とする。【62条64】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2． 1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多樣性及ひ独立性並びに位置的分散	11．健全性に係る設計
	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ） は，残留熱除去系（低圧注水モード）及び低圧炬心ス プレイ系と共通要因によって同時に機能を損なわない	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対处設備が使用される条件の下におけるる健全性に関する説明書 2．基本方針	11．健全性に係る設計

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
	よう，直流駆動低圧注水系ポンプを常設代替直流電源設備からの給電により駆動することで，非常用交流電源設備からの給電により駆動する残留熱除去系ポンプ を用いた残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系ポンプを用いた低圧炉心スプレイ系に対 して多様性を有する設計とする。【62条65】	2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却采統施設 （2）多重性又は多様性及び独立性並びに位置的分散	
	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ） の電動亣（直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電による遠隔操作に対し て多様性を有する設計とする。また，低圧代替注水系 （常設）（直流駆動低圧注水系ポンプ）の電動升（直流） は，125V蓄電池から125V直流主母線盤までの系統にお いて，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対 して，独立性を有する設計とする。さらに，125V代替蓄電池から125V直流主母線盤までの系統において，独立した電路で系統構成することにより，非常用ディー ゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。【62条66】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散	11．健全性に係る設計
	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ） は，復水貯蔵タンクを水源とすることで，サプレッシ ョンチェンバを水源とする残留熱除去系（低圧注水モ ード）及び低圧炉心スプレイ系に対して異なる水源を有する設計とする。【62条67】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散 原子炉冷却系統施設に係る系統図 4．4．5 低圧代替注水系	11．健全性に係る設計 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための采統の明確化及び兼用する機能の確認 18.3 機能を兼用する機器を含む原子炬泠却系統施設の系統図に関する取りまとめ
	直流駆動低圧注水系ポンプは，原子炉建屋付属棟内 に設置することで，原子炬建屋原子炉棟内の残留熱除去系ポンプ及び低圧炉心スプレイ系ポンプと共通要因 によって同時に機能を損なわないよう位置的分散を図 る設計とする。【62条68】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散	11．健全性に係る設計
	復水貯蔵タンクは，屋外比設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因 によって同時に機能を損なわないよう位置的分散を図 る設計とする。【62条69】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及ひ＂独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散	11．健全性に係る設計
	低圧代替注水系（可搬型）は，残留熟除去系（低圧	VI－1－1－6 安全設備及び重大事故等対処設備が使用される	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
	注水モード及び原子炉停止時冷却モード），低圧炉心ス プレイ系及び低圧代替注水系（常設）と共通要因によ って同時に機能を損なわないよう，大容量送水ポンプ （タイプI）を空冷式のディーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される残留熱除去系（低圧注水モード及び原子炬停止時冷却モ ード），低圧炬ふスプレイ系及び低圧代替注水系（常設） に対して多樣性を有する設計とする。【62条70】	条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散	
	低圧代替注水系（可搬型）の電動弁は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有す る設計とする。【62条71】 また，低圧代替注水系（可搬型）の電動并は，代替所内電気設備を経由して給電する系統において，独立 した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。【62条72】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	低圧代替注水系（可搬型）は，代替淡水源を水源と することで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧灯心スプレィ系並びに復水貯蔵タンクを水源とする低圧代替注水系 （常設）汇対して異なる水源を有する設計とする。【62条731	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	大容量送水ポンプ（タイプI）は，原子炬建屋から離れた屋外に分散して保管することで，原子炉建屋原子炬棟内の残留熱除去系ポンプ，低圧炬心スプレイ系 ポンプ及び復水移送ポンプ並びに原子炬建屋付属棟内 の直流駆動低圧注水系ポンプと共通要因によって同時 に機能を損なわないよう位置的分散を図る設計とす る。【62条74】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散 原子炉冷却系統施設に係る機器の配置を明示した図面 4．4．5 低圧代替注水系	11．健全性に係る設計 18．原子炉冷却采統施設の兼用に関する設計 18． 1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2． 1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。【62条75】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及ひ独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散 原子炉冷却系統施設に係る機器の配置を明示した図面 4． 4.5 低圧代替注水系	11．健全性に係る設計 18．原子炉冷却采統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	低圧代替注水系（常設）（復水移送ポンプ）及び低圧	VI－1－1－6 安全設備及び重大事故等対処設備が使用される	11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
	代替注水系（可搬型）は，残留熱除去系及び低圧炉心 スプレイ系と共通要因によって同時に機能を損なわな いよう，水源から残留熱除去系配管との合流点までの系統について，残留熱除去系に対して独立性を有する設計とする。【62条76】	条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及ひ独立性並びに位置的分散 原子炉冷却系統施設に係る系統図 4．4．5 低圧代替注水系	18．原子炬泠却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統つ明碓化及び兼用する機能の確忍 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含を原子炬冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含を原子炉泠却系統施設の系䋁図に関する取りまとめ
	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ） は，残留熱除去系及び低圧炬心スプレイ系と共通要因 によって同時に機能を損なわないよう，流路を独立す ることで独立性を有する設計とする。【62条77】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2．1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	これらの多様性及び系統の独立性並びに位置的分散 によって，低圧代替注水系（常設）及び低圧代替注水系（可搬型）は，設計基準事故対処設備である残留熱除去系（低圧注水モード及び原子炉停止時冷却モード）及び低圧炬心スプレイ系に対して重大事故等対処設備 としての独立性を有する設計とする。【62条78】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散	11．健全性に係る設計
	5.7 代替循環冷却系 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を泠却するための設備として，炉心の著しい損傷及び溶融が発生した場合において，原子炉圧力容器内に溶融烼心が存在する場合の重大事故等対処設備として代替循環冷却系を設ける設計とする。【62条2】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．4 代替循環冷却系	VI－1－10－8 「原子炬格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	炉心の著しい損傷及び溶融が発生した場合におい て，原子炉圧力容器内に溶融炉心が存在する場合の重大事故等対处設備として代替循噤泠却系は，代替循䁵洽却ポンプにより，残留熱除去系熱交換器にて椧却さ れた，サプレッションチェンバのプール水を残留熱除去系を経由して原子炉圧力容器へ注水することで原子炉圧力容器内に存在する溶融炉心を泠却できる設計と する。 また，本系統に使用する椧却水は，原子炬補機冷却水系（原子炬補機泠却海水系を含む。）又は，原子炉補機代替冷却水系から供給できる設計とする。【62条38】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子灲格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 原子炉格納施設に係る系統図 8．3．2．4 代替循噮冷却系	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2．2．2 各機器固有の設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	代替看環浍却系は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備か らの給電が可能な設計とする。【62条39】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損	VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
		防止機能 3．2．5 重大事故等時における原子炉格納容器下部の溶融炉心冷却機能	
	代替循澴泠却系の流路として，設計基準対象施設で ある残留熱除去系熱交換器，原子炬圧力容器，炬心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能に ついて重大事故等対処設備としての設計を行う。【 62 条 47］	VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－3－3－3 残留熱除去設備の強度計算書 VI－3－別添6 炉心支持構造物の強度に関する説明書 VI－3－別添7 原子炉圧力容器内部構造物の強度に関する説明書	12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価 12.7 炬心支持構造物の強度評価 18．原子炉泠却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含を原子炉冷却系統施設の機器の仕様等に関する設計 VI－1－10－2 「原子炉本体」の様式－1 1．共通的に適用される設計 3．原子炉本体の兼用㲹関する設計 3.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 3.2 機能を兼用する機器を含を設備に係る設計 VI－1－10－8 「原子炬格縼蔎設」の様式－1 2．原子炇格納旅設の兼用に関する設計 2.1 設備に係る設計のための采統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計
	5.8 ほら酸水注入系 原子炉冷却材圧力バウンダリ高圧時に発電用原子灲 を泠却するための設備のうち，事象進展抑制のための設備として，ほら酸水注入系を設ける設計とする。【 60条2】	VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （言浿制御系統施設）	$\mathrm{VI}-1-10-5$ 「計浿制御系統施設」の様式 -1 2．計測制御系統雄設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含き設諎に係る設計
	高圧代替注水系及び原子炬隔離侍冷却系を用いた発電用原子炉への高圧注水により原子炉水位を維持でき ない場合を想定した重大事故等対処設備として，ほう酸水注入采は，ほう酸水注入系ポンプにより，ほう酸水注入采貯蔵タンクのほら酸水を原子炉圧力容器へ注入することで，重大事故等の進展を抑制できる設計と する。【60条12】	VI－1－1－4－4 設借別記載事項の設定根拠に関する説明書 （言測制御系統洈設）	VI－1－10－5 「計測制御系統施設」の様式－1 2．計測制御系統施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	ほう酸水注入系の流路として，設計基準対象施設で ある原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用する ことから，流路に係る機能について重大事故等対处設備としての設計を行ら。【60条13】	 VI－1－1－4－4 設備别記載事項の設定根拠汇関する説明書 （計測制御系統施設）	12．材料及び構造に係ち設計 12.1 クラス機器及び支持構造物の強度評価 12.7 炉心支持構造物の強度評価 $\mathrm{VI}-1-10-5$ 「計測制御系統施設」の栐式－1 2．計測制御系統施設の兼用に開する設計

基本設計方針		設計結果の記載箇所		様式 -1 への反映結果
変更前	変更後			
				機能の確認 3.2 機能を兼用する機器を含む設備に係る設計
	5．9．2 多様性，位置的分散等 残留熱除去系（低圧注水モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基漼事故対処設備はないことから，重大事故等対処設備の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。【62条59】		－	(用語の定義のみ)
	5.10 水源，代替水源移送系 5．10．1 重大事故等の収束に必要となる水源 設計基準事故の収束に必要な水源とは別に，重大事故等の収束に必要となる十分な量の水を有する水源を碓保することに加えて，発電用原子炉施設には，設計基準事故対処設備及び重大事故等対処設備に対して重大事故等の収束に必要となる十分な水の量を供給する ために必要な重大事故等対処設備として，復水貯蔵夕 ンク，サプレッションチェンバ及びほう酸水注入系貯蔵タンクを重大事故等の収束に必要となる水源として設ける設計とする。【71条1】	要目表 VI－1－1－4 VI－1－1－4 VI－1－1－4	設備別記載事項の設定根拠に関する説明書 （原子炉泠却采統施設） 設備別記載事項の設定根拠に関する説明書 （計測制御系統翃設） 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設）	18．原子炬泠却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含を原子炬冷却系統施設の機器の仕様等に 関する設計 18．2．2 各機器固有の設計 $\mathrm{VI}-1-10-5$ 「計測制御系統施設」の様式－1 2．計測制御采統施設の兼用に関する設計 2.2 機能を兼用する機器を含む設借して係る設計 VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用汇関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借して係る設計
	また，これら重大事故等の収束に必要となる水源と は別に，代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽（No．2）を設ける設計とする。【71条2】	VI－1－1－4－	設備別記載事項の設定根拠に関する説明書 （核然料物質の取扱施設及び貯蔵施設）	VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認
	また，淡水が枯渴した場合に，海を水源として利用 できる設計とする。【71条3】	VI－1－1－4－	設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設）	VI－1－10－3 「核然料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認
	復水貯蔵タンクは，想定される重大事故等時におい て，原子炬圧力容器への注水纪使用する設計基準事故対処設備が機能譍失した場合の代替手段である高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ）及び低圧代替注水系（常設）（直流駆動低圧注水系ポン	$\mathrm{VI}-1-1-4$	設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉泠却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含も原子炉冷却采統施設の機器の仕様等に

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
			2.2 機能を兼用する機器を合を設備して係る設計
	重大事故等の収束に必要な水源である復水貯蔵タン クへ淡水を供給するための重大事故等対処設備とし て，大容量送水ポンプ（タイプI）は，代替淡水源で ある淡水貯水槽（No．1）及び淡水貯水槽（No．2）の淡水を補給水系等を経由して復水貯蔵タンク～供給でき る設計とする。【71条13】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却系統施設に係る系統図 4．4． 9 代替水源移送系	24．代替水源移送系汇関する設計
	また，淡水が枯渴した場合に，重大事故等の収束に必要な水源である復水貯蔵タンクへ海水を供給するた めの重大事故等対処設備として，大容量送水ポンプ（タ イプI）は，海水を補給水系等を経由して復水販藏夕 ンクい供給できる設計とする。【71条14】	要目表 $\mathrm{VI}-1-1-4-3$ 設備別記載事項の設定根拠化関する説明書 （原子炉泠却系統施設） 原子炉泠却系統姷設汇係る采統図 4． 4.9 代替水源移送系	24．代替水源移送系に関する設計
	さらに，代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）の淡水が枯渴した場合に，海水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプII）は，海水を淡水貯水槽（No．1）及び淡水貯水槽（No．2）へ供給できる設計とする。【71条15】		VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	大容量送水ポンプ（タイプI）及び大容量送水ポン プ（タイプII）は，空冷式のディーゼルエンジンによ り駆動できる設計とする。【71条16】	核燃料物質の取扱施設及び販蔵施設 要目表原子炉格納施設 要目表	VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－8 「原子炉格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	代替水源及び代替淡水源からの移送ルートを確保す るとともに，可搬型のホース，大容量送水ポンプ（夕 イブI）及び大容量送水ポンプ（タイプII）について は，複数箇所に分散して保管する。【71条5】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び盱蔵施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炉冷却系統施設に係る機器の配置を明示した図面 4． 4.9 代替水源移送系	24．代替水源移送系に関する設計 VI－1－10－3 「核然料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
			2.2 機能を兼用する機器を含む設備に係る設計 2.3 機能を兼用する機器を含む核燃料物質の取扱施設及 び貯蔵施設の系統図に関する取りまとめ VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	水源への水の供給に使用するホースの敷設等は，ホ ース延長回収車（台数4（予備1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉冷却系統施設のらち「5．10．2 代替水源移送系」の設備として兼用）により行ら設計と する。【71条18】	VI－1－1－4－別添2 設定根拠に関する説明書（別添）	VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設備に係る設計
6．原子炉冷却材補給設備 6.1 原子炉隔離時冷却系 原子炉隔離時冷却系は，発電用原子炉停止後，何ら かの原因で給水が停止した場合等に原子炉水位を維持 するため，発電用原子炉で発生する蒸気の一部を用い たタービン駆動のポンプにより，復水貯蔵タンクの水又はサプレッションチェンバのプール水を原子炉圧力容器に注入し，水位を維持できる設計とする。	6．原子炉冷却材補給設備 6.1 原子炉隔離時冷却系 原子炉隔離時冷却系は，発電用原子炉停止後，何ら かの原因で給水が停止した場合等に原子炉水位を維持 するため，発電用原子炉で発生する蒸気の一部を用い たタービン駆動のポンプにより，復水貯蔵タンクの水又はサプレッションチェンバのプール水を原子炉圧力容器に注入し，水位を維持できる設計とする。【33条12】	要目表 原子炉冷却系統施設に係る機器の配置を明示した図面 4．5．1 原子炉隔離時冷却系 原子炉冷却系統施設に係る系統図 4．5．1 原子炉隔離時冷却系	（基本設計方針に変更はないが，設工認で必要な設計） 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18．2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炉冷却系統施設の系統図に関する取りまとめ
また，泠却材喪失事故に至らない原子炉冷却材圧力 バウンダリからの小さな漏えい及び原子炉冷却材圧力 バウンダリに接続する小口径配管の破断又は小さな機器の損傷による原子炉冷却材の漏えいに対し，原子炉冷却材を補給する能力を有する設計とする。	また，冷却材喪失事故に至らない原子炉冷却材圧力 バウンダリからの小さな漏えい及び原子炉冷却材圧力 バウンダリに接続する小口径配管の破断又は小さな機器の損傷による原子炉冷却材の漏えいに対し，原子炉冷却材を補給する能力を有する設計とする。【33条12】	要目表 原子炉冷却系統施設に係る機器の配置を明示した図面 4．5．1 原子炉隔離時冷却系 原子炉冷却系統施設に係る系統図 4．5．1 原子炉隔離時冷却系	（基本設計方針に変更はないが，設工認で必要な設計） 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18．2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炉冷却系統施設の系統図に関する取りまとめ
原子炉隔離時冷却系は，短時間の全交流動力電源喪失時においても，炉心を冷却する機能を有する設計と する。	原子炉隔離時冷却系は，全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの間，炉心を泠却する機能を有する設計とする。【33条17】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含光原子炉冷却系統施設の機器の仕様等に関する設計
6.2 補給水系 通常運転中の原子炉冷却系統への補給水，高圧灲心 スプレイ系及び原子炉隔離時冷却系の原子炉への注入	6.2 補給水系 通常運転中の原子炉冷却系統への補給水，高圧灲心 スプレイ系及び原子炉隔離時冷却系の原子炉への注入	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
水を貯留するため，復水貯蔵タンクを設置する設計と する。	水を貯留するため，復水貯蔵タンクを設置する設計と する。【33条8】		
7．原子炉補機冷却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含 む。） 7．1．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備 である原子炉補機冷却水系（原子炉補機冷却海水系を含む。）は，発電用原子炬停止時に残留熱除去系により除去された原子炉圧力容器内において発生した残留熱及び重要安全施設において発生した熱を，最終的な熱 の逃がし場である海へ輸送が可能な設計とする。 また，津波又は発電所敷地若しくはその周辺におい て想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの に対して安全性を損なわない設計とする。	7．原子灲補機冷却設備 7． 1 原子炉補機冷却水系（原子炉補機冷却海水系を含 む。） 7．1．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備 である原子炉補機冷却水系（原子炉補機冷却海水系を含む。）は，発電用原子炉停止時に残留熱除去系により除去された原子炉圧力容器内において発生した残留熱及び重要安全施設において発生した熱を，常設代替交流電源設備から電気の供給が開始されるまでの間の全交流動力電源喪失時を除いて，最終的な熱の逃がし場 である海へ輸送が可能な設計とする。 また，津波，溢水又は発電所敷地若しくはその周辺 において想定される発電用原子炉施設の安全性を損な わせる原因となるおそれがある事象であって人為によ るものに対して安全性を損なわない設計とする。【33条 18】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却系統施設に係る機器の配置を明示した図面 4．6．1 原子炉補機冷却水系（原子炉補機冷却海水系を含 む。） 原子炉冷却系統施設に係る系統図 4．6．1 原子炉補機冷却水系（原子炉補機泠却海水系を含 む。）	（基本設計方針に変更はないが，設工認で必要な設計） 18．原子灲冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炉泠却系統施設の系統図に関する取りまとめ
原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）及び高圧炬心スプレイ補機冷却水系（高圧炉心ス プレイ補機冷却海水系を含む。）は，非常用炉心泠却系 の区分に対応した3系統構成とすることにより，非常時 に動的機器の単一故障及び外部電源喪失を仮定した場合でも，非常用炉心冷却設備等の機器から発生する熱 を最終的な熱の逃がし場である海へ輸送が可能な設計 とする。	原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心ス プレイ補機冷却海水系を含む。）は，非常用炬心泠却系 の区分に対応した3系統構成とすることにより，非常時 に動的機器の単一故障及び外部電源喪失を仮定した場合でも，非常用炉心泠却設備等の機器から発生する熱 を最終的な熱の逃がし場である海へ輸送が可能な設計 とする。【33条19】	要目表 原子炉冷却系統施設に係る機器の配置を明示した図面 4．6．1 原子炉補機冷却水系（原子炉補機冷却海水系を含 む。） 原子炉冷却采統施設に係る系統図 4．6．1 原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）	（基本設計方針に変更はないが，設工認で必要な設計） 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18．2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含吉原子炉冷却系統施設の系統図に関する取りまとめ
原子炉補機冷却水系（原子炉補機泠却海水系を含 む。）は，淡水ループである原子炬補機冷却水系と，海水系である原子炉補機冷却海水系から構成する設計と する。	原子炉補機冷却水系（原子炉補機泠却海水系を含 む。）は，淡水ループである原子炬補機冷却水系と，海水系である原子炉補機冷却海水系から構成する設計と する。【33条20】	－	（変更なし）
	原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を泠却するための設備，最終ヒートシンクへ熱を輸送 するための設備，原子炉格納容器内の泠却等のための設備，原子灲格納容器の過圧破損を防止するための設備又は原子炉格納容器下部の溶融炉心を泠却するため の設備として，想定される重大事故等時において，設計基準事故対処設備である原子炉補機冷却水系（原子炉補機冷却海水系を含む。）が使用できる場合は，重大事故等対処設備（設計基準拡張）として使用できる設計とする。【62条19】【62条28】【62条40】【62条51】 【63条2】【64条20】【64条32】【65条3】【66条36】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	7．1．2 多様性，位置的分散等原子炉補機冷却水系（原子炉補機冷却海水系を含	－	（用語の定義のみ）

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	む。）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただ し，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。【63条45】		
7．2 高圧炉心スプレイ補機泠却水系（高圧炉心スプレ イ補機泠却海水系を含む。） 7．2．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備 である高圧灲心スプレイ補機冷却水系（高圧灲心スプ レイ補機冷却海水系を含む。）は，重要安全施設におい て発生した熱を，最終的な熱の逃がし場である海へ輸送が可能な設計とする。 また，津波又は発電所敷地若しくはその周辺におい て想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの に対して安全性を損なわない設計とする。	7.2 高圧炉心スプレイ補機冷却水系（高圧炉心スプレ イ補機泠却海水系を含む。） 7．2．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備 である高圧炉心スプレイ補機冷却水系（高圧炉心スプ レイ補機冷却海水系を含む。）は，重要安全施設におい て発生した熱を，常設代替交流電源設備から電気の供給が開始されるまでの間の全交流動力電源喪失時を除 いて，最終的な熱の逃がし場である海へ輸送が可能な設計とする。 また，津波，溢水又は発電所敷地若しくはその周辺 において想定される発電用原子炉施設の安全性を損な わせる原因となるおそれがある事象であって人為によ るものに対して安全性を損なわない設計とする。【33条 18】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却系統施設に係る機器の配置を明示した図面 4．6．2 高圧炉心スプレイ補機泠却水系（高圧炉心スプレイ補機冷却海水系を含む。） 原子炉冷却系統施設に係る系統図 4．6．2 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）	25．高圧炉心スプレイ補機泠却水系（高圧炉心スプレイ補機泠却開始系を含む。）に関する設計
原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）及び高圧炬心スプレイ補機冷却水系（高圧炉心ス プレイ補機冷却海水系を含む。）は，非常用炉心冷却系 の区分に対応した3系統構成とすることにより，非常時 に動的機器の単一故障及び外部電源喪失を仮定した場合でも，非常用炉心冷却設備等の機器から発生する熱 を最終的な熱の逃がし場である海へ輸送が可能な設計 とする。	原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心ス プレイ補機冷却海水系を含む。）は，非常用炉心泠却系 の区分に対応した3系統構成とすることにより，非常時 に動的機器の単一故障及び外部電源喪失を仮定した場合でも，非常用炉心泠却設備等の機器から発生する熱 を最終的な熱の逃がし場である海へ輸送が可能な設計 とする。【33条19】	－	（変更なし）
高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，淡水ループである高圧炉心スプレイ補機冷却水系と，海水系である高圧炉心ス プレイ補機冷却海水系から構成する設計とする。	高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，淡水ループである高圧炉心スプレイ補機冷却水系と，海水系である高圧炉心ス プレイ補機冷却海水系から構成する設計とする。【33条 23】	－	（変更なし）
	最終ヒートシンクへ熱を輸送するための設備とし て，想定される重大事故等時において，設計基準事故対処設備である高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用 できる設計とする。【63条2】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	25．高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機泠却開始系を含む。）に関する設計
	7．2．2 多様性，位置的分散等 高圧炉心スプレイ補機冷却水系（高圧灲心スプレイ補機泠却海水系を含む。）は，設計基準事故対処設備で あるとともに，重大事故等時においても使用するため，	－	（用語の定義のみ）

基本設計方針		設計結果の記載箘所	様式－1～の反映結果
変更前	変更後		
	の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉冷却系䖻施設のらち「7．3 原子炬補機代替冷却水系」の設備として兼用）により行 ら設計とする。【62条24】【62条33】【62条45】【62条56】【63条41】【64条25】【64条37】【65条12】【66条42】【69条601		2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2.3 機能を兼用する機器を含む核燃料物質の取扱施設及 び販蔵施設の系統図に関する取りまとめ
	原子炉補機代替冷却水系の流路として，設計基準対象施設である残留熱除去系熱交換器を重大事故等対処設備として使用することから，流路に係る機能につい て重大事故等対処設備としての設計を行う。【63条42】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	26．原子炉禣機代替冷却水系に闗する設計
	7．3．2 多重性又は多様性及び独立性，位置的分散原子炉補機代替冷却水系は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時 に機能を損なわないよう，原子炬補機代替冷却水系熱交換器ユニット及び大容量送水ポンプ（タイプI）を空冷式のディーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して多㥞性を有する設計とする。また，原子炉補機代替冷却水系は，原子炉格納容器フィルタベント系及び耐圧強化ベント系に対して，除熱手段の多様性を有する設計とする。【63条51】	要目表 $\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散	11．健全性沉係る設計 26．原子炬補機代替冷却水采に関する設計
	原子炉補機代替泠却水系熱交換器ユニット及び大容量送水ポンプ（タイプI）は，原子炉建屋，海水ポン プ室及び排気筒から離れた屋外に分散して保管するこ とで，原子炉建屋内の原子炉補機冷却水ポンプ，原子炬補機冷却水系熱交換器，耐圧強化ベント系及び原子炉格納容器フィルタベント系並びに屋外の原子炉補機冷却海水ポンプと共通要因によって同時に機能を損な わないよう位置的分散を図る設計とする。【63条52】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 原子炉冷却系統施設に係る機器の配置を明示した図面 4．6．3 原子炉補機代替冷却水系 （2）多重性又は多樣性及ひ独立性並びに位置的分散	11．健全性に係る設計 26．原子炉補機代替冷却水系に関する設計
	原子炉補機代替冷却水系熱交換器ユニットの接続口 は，共通要因によって接続できなくなることを防止す るため，位置的分散を図った複数箇所に設置する設計 とする。【63条52】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炬冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散 原子炉冷却系統施設に係る機器の配置を明示した図面 4．6．3 原子炉補幾代替冷却水系	11．健全性に係る設計 26．原子炬補幾代替冷却水系に関する設計
	原子炉補機代替洽却水系は，原子炉補機冷却水系（原子炻補機冷却海水系を含む。）と共通要因によって同時 に機能を損なわないよう，原子炉補機洽却海水采に対	VI－1－1－6 安全設備及び重大事故等対处設備が使用される条件の下における健全性に関する説明書 2．基本方針	11．健全性に係る設計 26．原子炉補機代替冷却水系に関する設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	して独立性を有するとともに，原子炬補機代替冷却水系熱交換器ユニットから原子炉補機冷却水系配管との合流点までの系統について，原子炉補機冷却水系に対 して独立性を有する設計とする。【63条53】	2.1 多重性又は多様性及び独立性並び位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散 原子炉冷却系統施設に係る系統図 4．6．3 原子炉補機代替泠却水系	
	これらの多様性及び系統の独立性並びに位置的分散 によって，原子炉補機代替冷却水系は，設計基準事故対処設備である原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して重大事故等対処設備としての独立性を有する設計とする。【63条54】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.1 多重性又は多様性及び独立性並びに位置的分散 3．系統施設ごとの設計上の考慮 3.2 原子炉冷却系統施設 （2）多重性又は多様性及び独立性並びに位置的分散 原子炉冷却系統施設に係る機器の配置を明示した図面 4．6．3 原子炉補機代替泠却水系	11．健全性に係る設計 26．原子炉補機代替冷却水系に関する設計
	7．4 重大事故等の収束に必要となる水源 海は，想定される重大事故等時において，原子炉補機代替冷却水系の水源として利用できる設計とする。 【71条10】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却系統施設に係る系統図 4． 6.3 原子炉補機代替冷却水系	26．原子炉補機代替冷却水系に関する設計
8．原子炉冷却材浄化設備 8． 1 原子炉冷却材浄化系 原子炉冷却材浄化系は，原子炉冷却材の純度を高く保つために設置するもので，原子炉再循環系配管及び原子炉圧力容器底部から原子炉冷却材を一部取り出 し，原子炉冷却材浄化系ろ過脱塩器によって浄化脱塩 して復水給水系へ戻すことにより，原子炉冷却材中の不純物及び放射性物質の濃度を発電用原子炉施設の運転に支障を及ぼさない値以下に保つことができる設計 とする。【33条14】	8．原子炉泠却材浄化設備変更なし	－	（変更なし）
放射性物質を含む原子炉冷却材を，原子炉起動時，停止時及び高温待機時において，原子炉冷却系統外に排出する場合は，原子炉冷却材浄化系により原子炉冷却材を浄化して，液体廃棄物処理系へ導く設計とする。 【29条1】		－	（変更なし）
9．原子炉格納容器内の原子炉冷却材漏えいを監視す る装置 原子炉冷却材圧力バウンダリからの原子炉冷却材の漏えいに対して，ドライウェル送風機冷却コイルドレ ン流量測定装置，ドライウェル床ドレンサンプ水位測定装置，ドライウェル機器ドレンサンプ水位測定装置	9．原子炉格納容器内の原子炉冷却材漏えいを監視す る装置 変更なし	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
及び格納容器内ダスト放射線濃度測定装置を設ける設計とする。【28条3】			
このうち，漏えい位置を特定できない原子炉格納容器内の漏えいに対しては，ドライウェル床ドレンサン プ水位測定装置により， 1 時間以内に $0.23 \mathrm{~m}^{3} / \mathrm{h}$ の漏えい量を検出する能力を有する設計とするとともに，自動的に中央制御室に警報を発信する設計とする。 また，測定値は，中央制御室に指示する設計とする。【28条3】		VI－1－4－1 原子炉格納容器内の原子炉泠却材の漏えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 3．漏えいを監視する装置の構成 3.1 ドライウェル送風機冷却コイルドレン流量測定装置 3.2 ドライウェル床ドレンサンプ水位測定装置 4．漏えいを監視する装置の計測範囲及び警報動作範囲 4.1 ドライウェル送風機冷却コイルドレン流量測定装置 の計測範囲及び警報動作範囲 4.2 ドライウェル床ドレンサンプ水位測定装置の計測範囲及ひ警報動作範囲	18．原子炉冷却系統施設の兼用に関する設計 18.2 機能を兼用する機器を含む設備に係る設計 18．2．2 各機器固有の設計
ドライウェル床ドレンサンプ水位測定装置は，ドラ イウェル床ドレンサンプに設ける設計とする。【28条5】		－	（変更なし）
原子炉泠却材圧力バウンダリからの原子炉冷却材の漏えいは，ドライウェル床ドレンサンプ水位測定装置 にて検出できる設計とする。【28条6】		－	（変更なし）
ドライウェル床ドレンサンプ水位測定装置が故障し た場合は，これと同等の機能を有するドライウェル送風機冷却コイルドレン流量測定装置及び格納容器内ダ スト放射線濃度測定装置により，漏えい位置を特定で きない原子炉格納容器内の漏えいを検知可能な設計と する。【28条4】		VI－1－4－1 原子炉格納容器内の原子炉泠却材の漏えいを監視する装置の構成に関する説明書並びに計測範囲及ひ警報動作範囲に関する説明書 2．基本方針	18．原子炉冷却系統施設の兼用に関する設計 18.2 機能を兼用する機器を含む設備に係る設計 18．2．2 各機器固有の設計
10．流体振動等による損傷の防止 原子炉冷却系統，原子炉冷却材浄化系及び残留熱除去系（原子炉停止時冷却モード）に係る容器，管，ポ ンプ及び弁は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生じる流体振動又は温度差の ある流体の混合その他の原子炬冷却材の挙動により生 じる温度変動により損傷を受けない設計とする。【19条 2】	10．流体振動等による損傷の防止変更なし	－	（変更なし）
管に設置された円柱状構造物で耐圧機能を有するも のに関する流体振動評価は，日本機械学会「配管内円柱状構造物の流力振動評価指針」（J S M E S 01 2）の規定に基づく手法及び評価フローに従った設計 とする。【19条3】		VI－1－4－2 流体振動又は温度変動による損傷の防止に関す る説明書 2．評価範囲 3．基本方針 4．配管内円柱状構造物の流力振動評価	（基本設計方針に変更はないが，設工認で必要な設計） 21．残留熱除去系に関する設計
温度差のある流体の混合等で生じる温度変動により発生する配管の高サイクル熱疲労による損傷防止は，日本機械学会「配管の高サイクル熱疲労に関する評価指針」（J SME S 017 ）の規定に基づく手法及 び評価フローに従った設計とする。【19条4】		VI－1－4－2 流体振動又は温度変動による損傷の防止に関す る説明書 2．評価範囲 3．基本方針 5．配管の高サイクル熱疲労に関する評価	（基本設計方針に変更はないが，設工認で必要な設計） 21．残留熱除去系に関する設計
11．主要対象設備原子炉冷却系統施設（蒸気タービンを除く。）の対象	11．主要対象設備原子炉冷却系統施設（蒸気タービンを除く。）の対象	－	（「主要設備リスト」及び「兼用設備リスト」による）

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
となる主要な設備について，「表1 原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト」に示す。	となる主要な設備について，「表1 原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト」に示す。 本施設の設備として兼用する場合に主要設備リスト に記載されない設備については，「表2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト」に示す。		

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【原子炉冷却系統施設（蒸気タービン）】

基本設計方針		設計結果の記載箇所	様式 $-1 へ$ の反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	（用語の定義のみ）
第1章 共通項目 蒸気タービンの共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．設備に対する要求（4．6 逆止 め弁，4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針につい ては，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 蒸気タービンの共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．6 逆止め弁，5．7 内燃機関及びガスタービン の設計条件，5．8 電気設備の設計条件を除く。），6． その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計 とする。	－	（変更なし）
第2章 個別項目 1．蒸気タービン 設計基準対象施設に施設する蒸気タービン及び蒸気 タービンの附属設備は，想定される環境条件において，材料に及ぼす化学的及び物理的影響を考慮した設計と する。 また，振動対策，過速度対策等各種の保護装置及び監視制御装置により，中央制御室及び現場において運転状態の監視を行い，発電用原子炉施設の安全性を損 なわないよう，以下の事項を考慮して設計する。【31条 1】	第2章 個別項目 1．蒸気タービン変更なし	－	（冒頭宣言）
1.1 蒸気タービン本体 蒸気タービンの定格出力は，復水器真空度 96.3 kPa ，補給水率 0% において，発電端で 825000 kW となる設計と する。【31条2】		－	（変更なし）
定格熱出力一定運転の実施においても，蒸気タービ ン設備の保安が確保できるように定格熱出力一定運転 を考慮した設計とする。【31条3】		－	（変更なし）
蒸気タービンは，非常調速装置が作動したときに達 する回転速度並びに蒸気タービンの起動時及び停止過程を含む運転中に主要な軸受又は軸に発生しらる最大 の振動に対して構造上十分な機械的強度を有する設計 とする。【31条4】		－	（変更なし）
また，蒸気タービンの軸受は，主油ポンプ，ターニ ング油ポンプ，非常用油ポンプ等の軸受潤滑設備を設置することにより，運転中の荷重を安定に支持でき， かつ，異常な摩耗，変形及び過熱が生じない設計とす る。【31条5】		－	（変更なし）
蒸気タービン及び発電機その他の回転体を同一軸上 に結合したものの危険速度は，速度調定率で定まる回転速度の範囲のうち最小の回転速度から，非常調速装		－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
置が作動したときに達する回転速度までの間に発生し ない設計とする。 また，蒸気タービン起動時の危険速度を通過する際 には速やかに昇速できる設計とする。【31条6】			
蒸気タービン及びその附属設備の耐圧部分の構造 は，最高使用圧力又は最高使用温度において発生する最大の応力が当該部分に使用する材料の許容応力を超 えない設計とする。【31条7】		－	（変更なし）
蒸気タービンには，その回転速度及び出力が負荷の変動の際にも持続的に動揺することを防止する調速装置を設けるとともに，運転中に生じた過回転，発電機 の内部故障，復水器真空低下，スラスト軸受の摩耗に よる設備の破損を防止するため，その異常が発生した場合に蒸気タービンに流入する蒸気を自動的かつ速や かに遮断する非常調速装置及び保安装置を設置する。 また，調速装置は，最大負荷を遮断した場合に達す る回転速度を非常調速装置が作動する回転速度未満に する能力を有する設計とする。 なお，過回転については定格回転速度の1．11倍を超 えない回転数で非常調速装置が作動する設計とする。 【31条8】		－	（変更なし）
蒸気タービン及びその附属設備であって，最高使用圧力を超える過圧が生ずるおそれのあるものにあって は，排気圧力の上昇時に過圧を防止することができる容量を有し，かつ，最高使用圧力以下で動作する大気放出板を設置し，その圧力を逃がすことができる設計 とする。【31条10】		－	（変更なし）
蒸気タービンには，設備の損傷を防止するため，以下の運転状態を計測する監視装置を設け，各部の状態 を監視することができる設計とする。 （1）蒸気タービンの回転速度 （2）主蒸気止め弁の前及び組合せ中間弁の前におけ る蒸気の圧力及び温度 （3）蒸気タービンの排気圧力 （4）蒸気タービンの軸受の入口における潤滑油の圧力 （5）蒸気タービンの軸受の出口における潤滑油の温度又は軸受メタル温度 （6）蒸気加減弁の開度 （7）蒸気タービンの振動の振幅 【31条11】		－	（変更なし）
蒸気タービンは，振動を起こさないように十分配慮 をはらうとともに，万一，振動が発生した場合にも振動監視装置により，警報を発するように設計する。ま た，運転中振動の振幅を自動的に記録できる設計とす		－	（変更なし）

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
る。【31条9】			
蒸気タービン及びその附属設備の構造設計において「発電用火力設備に関する技術基準を定める省令及び その解釈」に規定のないものについては，信頼性が確認され十分な実績のある設計方法，安全率等を用いる ほか，最新知見を反映し，十分な安全性を持たせるこ とにより保安が確保できる設計とする。【31条12】		－	（変更なし）
復水器は，冷却水温度 $15^{\circ} \mathrm{C}$ ，タービン定格出力，大気圧 101 kPa において真空度 96.3 kPa を確保できる設計 とする。【31条13】		－	（変更なし）
1.2 蒸気タービンの附属設備 ポンプを除く蒸気タービンの附属設備に属する容器及び管の耐圧部分に使用する材料は，想定される環境条件において，材料に及ぼす化学的及び物理的影響に対し，安全な化学的成分及び機械的強度を有するもの を使用する。【31条14】		－	（変更なし）
また，蒸気タービンの附属設備のらち，主要な耐圧部の溶接部については，次のとおりとし，使用前事業者検査により適用基準及び適用規格に適合しているこ とを確認する。 （1）不連続で特異な形状でないものであること。 （2）溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他の欠陥がないことを非破壊試験により確認したもので あること。 （3）適切な強度を有するものであること。 （4）機械試験その他の評価方法により適切な溶接施工法，溶接設備及び技能を有する溶接士であること をあらかじめ確認したものにより溶接したもので あること。 【31条15】		－	（変更なし）
なお，主要な耐圧部の溶接部とは，蒸気タービンに係る蒸気だめ又は熱交換器のらち水用の容器又は管で あって，最高使用温度 $100^{\circ} \mathrm{C}$ 未満のものについては，最高使用圧力 1960 kPa ，それ以外の容器については，最高使用圧力 98 kPa ，水用の管以外の管については，最高使用圧力 980 kPa （長手継手の部分にあっては， 490 kPa ）以上の圧力が加えられる部分について溶接を必要とす るものをいう。また，蒸気タービンに係る外径 150 mm 以上の管のうち，耐圧部について溶接を必要とするもの をいう。【31条16】		－	（用語の定義のみ）
蒸気タービンの附属設備の機器仕様は，運転中に想定される最大の圧力•温度，必要な容量等を考慮した設計とする。【31条17】		－	（変更なし）
2．主要対象設備	2．主要対象設備	－	－

基本設計方針		変更前	設計結果の記載箇所

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

$\begin{array}{ll}\text { 補足－510－4 } & \text { 基本設計方針から設工認添付書類及び様式 }-1 \sim \text { の展開表 } \\ & \text {（計測制御系統施設）}\end{array}$

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	$\begin{gathered} \text { (用語の定義のみ) } \end{gathered}$
第1章 共通項目 計測制御系統施設の共通項目である「1．地盤等， 2．自然現象，3．火災，4．設備に対する要求（4．7内燃機関の設計条件，4．8 電気設備の設計条件を除 く。），5．その他」の基本設計方針については，原子炉泠却奚統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 計測制御系統施設の共通項目である「1．地盤等， 2．自然現象， 3 ．火災，4．溢水等，5．設備に対 する要求（5．7 内燃機関及びガスタービンの設計条件， 5.8 電気設備の設計条件を除く。），6．その他」 の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
第2章 個別項目 1．計測制御系統施設 1.1 反応度制御系統及び原子炉停止系統共通 発電用原子炉施設には，制御棒の挿入位置を調節す ることによって反応度を制御する制御棒及び制御棒駆動系と，再循環流量を調整することによって反応度を制御する原子炉再循環流量制御系の独立した原理の異 なる反応度制御系統を施設し，計画的な出力変化に伴 ら反応度変化を燃料要素の許容損傷限界を超えること なく制御できる能力を有する設計とする。	第2章 個別項目 1．計測制御系統施設 1．1 反応度制御系統及び原子炉停止系統共通 発電用原子炉施設には，制御棒の挿入位置を調節す ることによって反応度を制御する制御棒及び制御棒駆動系と，再循環流量を調整することによって反応度を制御する原子炉再循環流量制御系の独立した原理の異 なる反応度制御系統を施設し，計画的な出力変化に伴 ら反応度変化を燃料要素の許容損傷限界を超えること なく制御できる能力を有する設計とする。【36条1】	－	（変更なし）
通常運転時の高温状態において，独立した原子炉停止系統である制御棒及び制御棒駆動系による制御棒の炉心への挿入並びにほう酸水注入系による原子炉冷却材中へのほう酸注入は，それぞれ発電用原子炉を臨界未満にでき，かつ，維持できる設計とする。	通常運転時の高温状態において，独立した原子炉停止系統である制御棒及び制御棒駆動系による制御棒の炉心への挿入並びにほう酸水注入系による原子炉冷却材中へのほう酸注入は，それぞれ発電用原子炉を臨界未満にでき，かつ，維持できる設計とする。【36条3】	－	（変更なし）
運転時の異常な過渡変化時の高温状態においても，制御棒及び制御棒駆動系による制御棒の炉心への挿入 により，燃料要素の許容損傷限界を超えることなく発電用原子炉を臨界未満にでき，かつ，維持できる設計 とする。	運転時の異常な過渡変化時の高温状態においても，制御棒及び制御棒駆動系による制御棒の炉心への挿入 により，燃料要素の許容損傷限界を超えることなく発電用原子炉を臨界未満にでき，かつ，維持できる設計 とする。【36条4】	－	（変更なし）
設置（変更）許可を受けた泠却材喪失その他の設計基準事故時の評価において，制御棒及び制御棒駆動系 は，原子炉スクラム信号によって，水圧制御ユニット （アキュムレータ）の圧力により制御棒を緊急挿入で きる設計とするとともに，制御棒が確実に插入され，炉心を臨界未満にでき，かつ，それを維持できる設計 とする。	設置（変更）許可を受けた泠却材喪失その他の設計基準事故時の評価において，制御棒及び制御棒駆動系 は，原子炉スクラム信号によって，水圧制御ユニット （アキュムレータ）の圧力により制御棒を緊急挿入で きる設計とするとともに，制御棒が確実に挿入され，炉心を臨界未満にでき，かつ，それを維持できる設計 とする。【36条6】	－	（変更なし）
制御棒及びほう酸水は，通常運転時における圧力，温度及び放射線に起因する最も厳しい条件において，必要な耐放射線性，寸法安定性，耐熱性，核性質，耐食性及び化学的安定性を保持する設計とする。	制御棒及びほう酸水は，通常運転時における圧力，温度及び放射線に起因する最も厳しい条件において，必要な耐放射線性，寸法安定性，耐熱性，核性質，耐食性及び化学的安定性を保持する設計とする。【36条 10】	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
1.2 制御棒及び制御棒駆動系 制御棒は，最大の反応度価値を持つ制御棒1本が完全 に灲心の外に引き抜かれていて，その他の制御棒が全挿入の場合，高温状態及び低温状態において常に炉心 を臨界未満にできる設計とする。また，発電用原子炉運転中に，完全に挿入されている制御棒を除く，他の いずれかの制御棒が動作不能となった場合は，動作可能な制御棒のらち最大反応度価値を有する制御棒1本 が完全に灲心の外に引き抜かれた状態でも，他のすべ ての動作可能な制御棒により，高温状態及び低温状態 において炉心を臨界未満に保持できることを評価確認 し，確認できない場合には，発電用原子炉を停止する ように保安規定に定めて管理する。	1.2 制御棒及び制御棒駆動系 制御棒は，最大の反応度価値を持つ制御棒1本が完全 に炉心の外に引き抜かれていて，その他の制御棒が全挿入の場合，高温状態及び低温状態において常に炉心 を臨界未満にできる設計とする。また，発電用原子炉運転中に，完全に挿入されている制御棒を除く，他の いずれかの制御棒が動作不能となった場合は，動作可能な制御棒のらち最大反応度価値を有する制御棒1本 が完全に炉心の外に引き抜かれた状態でも，他のすべ ての動作可能な制御棒により，高温状態及び低温状態 において灲心を臨界未満に保持できることを評価碓認 し，確認できない場合には，発電用原子炉を停止する ように保安規定に定めて管理する。【36条8】	－	（変更なし）
反応度が大きく，かつ急激に投入される事象による影響を小さくするため，制御棒の落下速度を設置（変更）許可を受けた「制御棒落下」の評価で想定した落下速度に制御棒落下速度リミッタにより制限すること で，制御棒引き抜きによる反応度添加率を抑制する。 また，「原子炬起動時における制御棒の異常な引き抜 き」の評価で想定した制御棒引抜速度以下に制限する とともに，零出力ないし低出力においては，運転員の制御棒引抜操作を規制する補助機能として，制御棒価値ミニマイザを設けることで，引き抜く制御棒の最大反応度価値を制限する。さらに中性子束高及び原子炉周期（ペリオド）短による原子炉スクラム信号を設け る設計とする。これらにより，想定される反応度投入事象発生時に燃料の最大エンタルピや発電用原子炉圧力の上昇を低く抑え，原子炉冷却材圧力バウンダリを破損せず，かつ，炉心の泠却機能を損ならような炉心，炉心支持構造物及び原子炉圧力容器内部構造物の破損 を生じさせない設計とする。なお，制御棒引抜手順に ついては，保安規定に定めて管理する。	反応度が大きく，かつ急激に投入される事象による影響を小さくするため，制御棒の落下速度を設置（変更）許可を受けた「制御棒落下」の評価で想定した落下速度に制御棒落下速度リミッタにより制限すること で，制御棒引き抜きによる反応度添加率を抑制する。 また，「原子炉起動時における制御棒の異常な引き抜 き」の評価で想定した制御棒引抜速度以下に制限する とともに，零出力ないし低出力においては，運転員の制御棒引拔操作を規制する補助機能として，制御棒価値ミニマイザを設けることで，引き抜く制御棒の最大反応度価値を制限する。さらに中性子束高及び原子炉周期（ペリオド）短による原子炉スクラム信号を設け る設計とする。これらにより，想定される反応度投入事象発生時に燃料の最大エンタルピや発電用原子炉圧力の上昇を低く抑え，原子炉冷却材圧力バウンダリを破損せず，かつ，炉心の泠却機能を損ならような炉心，炉心支持構造物及び原子炉圧力容器内部構造物の破損 を生じさせない設計とする。なお，制御棒引抜手順に ついては，保安規定に定めて管理する。【36条9】	－	（変更なし）
制御棒及び制御棒駆動系は，通常運転時及び運転時 の異常な過渡変化時における低温状態において，キセ ノン崩壊による反応度添加及び高温状態から低温状態 までの反応度添加を制御し，低温状態で炉心を未臨界 に移行して維持できる設計とする。	制御棒及び制御棒駆動系は，通常運転時及び運転時 の異常な過渡変化時における低温状態において，キセ ノン崩壊による反応度添加及び高温状態から低温状態 までの反応度添加を制御し，低温状態で炉心を未臨界 に移行して維持できる設計とする。【36条5】	－	（変更なし）
制御棒は，十字形に組み合わせたステンレス鋼製の U字形シースの中に中性子吸収材を収めたものであり，各制御棒は4体の燃料体の中央に，灲心全体にわたって一様に配置する設計とする。 制御棒の下端には制御棒落下速度リミッタを設ける とともに，制御棒の駆動は，ピストン上部又は下部に駆動水を供給することにより，原子炉圧力容器底部か ら行ら設計とする。	制御棒は，十字形に組み合わせたステンレス鋼製の U字形シースの中に中性子吸収材を収めたものであり，各制御棒は4体の燃料体の中央に，炉心全体にわたって一様に配置する設計とする。 制御棒の下端には制御棒落下速度リミッタを設ける とともに，制御棒の駆動は，ピストン上部又は下部に駆動水を供給することにより，原子炉圧力容器底部か ら行ら設計とする。	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
通常駆動時は，制御棒駆動水ポンプにより加圧され た駆動水で駆動し，原子炉緊急停止時は，各々の制御棒駆動機構ごとに設ける水圧制御ユニット（アキュム レータ）の高圧窒素により加圧された駆動水を供給す ることで制御棒を駆動する設計とする。	通常駆動時は，制御棒駆動水ポンプにより加圧され た駆動水で駆動し，原子炉緊急停止時は，各々の制御棒駆動機構ごとに設ける水圧制御ユニット（アキュム レータ）の高圧窒素により加圧された駆動水を供給す ることで制御棒を駆動する設計とする。【36条11】		
原子炉冷却材の漏えいが生じた場合，その漏えい量 が 10 mm （ $3 / 8$ インチ）径の配管破断に相当する量以下の場合は制御棒駆動水ポンプで補給できる設計とする。	原子炉冷却材の漏えいが生じた場合，その漏えい量 が 10 mm （ $3 / 8$ インチ）径の配管破断に相当する量以下の場合は制御棒駆動水ポンプで補給できる設計とする。【33条13】	－	（変更なし）
制御棒駆動系は，発電用原子炉の緊急停止時に制御棒の挿入時間が，発電用原子炉の燃料及び原子炉冷却材圧力バウンダリの損傷を防ぐために適切な値となる ような速度で炉心内に挿入できること，並びに通常運転時において制御棒の異常な引き抜きが発生した場合 においても，燃料要素の許容損傷限界を超える駆動速度で引き抜きできない設計とする。	制御棒駆動系は，発電用原子炉の緊急停止時に制御棒の挿入時間が，発電用原子炉の燃料及び原子炉泠却材圧力バウンダリの損傷を防ぐために適切な値となる ような速度で炉心内に挿入できること，並びに通常運転時において制御棒の異常な引き抜きが発生した場合 においても，燃料要素の許容損傷限界を超える駆動速度で引き抜きできない設計とする。【 37 条1】	－	（変更なし）
なお，設置（変更）許可を受けた仕様並びに運転時 の異常な過渡変化及び設計基準事故の評価で設定した制御棒の挿入時間，並びに設置（変更）許可を受けた「原子炉起動時における制御棒の異常な引き抜き」及 び「出力運転中の制御棒の異常な引き抜き」の評価の条件を満足する設計とする。	なお，設置（変更）許可を受けた仕様並びに運転時 の異常な過渡変化及び設計基準事故の評価で設定した制御棒の挿入時間，並びに設置（変更）許可を受けた「原子炉起動時における制御棒の異常な引き抜き」及 び「出力運転中の制御棒の異常な引き抜き」の評価の条件を満足する設計とする。【37条2】	－	（変更なし）
制御棒は，原子炉モードスイッチ「停止」位置にあ る場合，原子灲モードスイッチ「燃料取替」位置にあ る場合で，燃料交換機が原子炉上部にあり，荷重状態 のとき，原子炉モードスイッチ「燃料取替」位置にあ る場合で，引き抜かれている制御棒本数が1本のとき，原子炉モードスイッチ「燃料取替」位置にある場合で， スクラム排出容器水位高によるスクラム信号がバイパ スされているとき，スクラム排出容器水位高による制御棒引抜阻止信号のあるとき，原子炉モードスイッチ 「起動」位置にある場合で，起動領域モニタの指示高，指示低若しくは動作不能及び中間領域において原子炉周期が短のとき，原子炉モードスイッチ「運転」位置 にある場合で，出力領域モニタの指示低又は動作不能 のとき，出力領域モニタの指示高のとき，制御棒価値 ミニマイザによる制御棒引抜阻止信号のあるとき，制御棒引抜監視装置からの制御棒引抜阻止信号のあると きは，引き抜きを阻止できる設計とする。	制御棒は，原子灲モードスイッチ「停止」位置にあ る場合，原子炉モードスイッチ「燃料取替」位置にあ る場合で，燃料交換機が原子炉上部にあり，荷重状態 のとき，原子炉モードスイッチ「燃料取替」位置にあ る場合で，引き抜かれている制御棒本数が1本のとき，原子炉モードスイッチ「燃料取替」位置にある場合で， スクラム排出容器水位高によるスクラム信号がバイパ スされているとき，スクラム排出容器水位高による制御棒引抜阻止信号のあるとき，原子炉モードスイッチ 「起動」位置にある場合で，起動領域モニタの指示高，指示低若しくは動作不能及び中間領域において原子炉周期が短のとき，原子炉モードスイッチ「運転」位置 にある場合で，出力領域モニタの指示低又は動作不能 のとき，出力領域モニタの指示高のとき，制御棒価値 ミニマイザによる制御棒引抜阻止信号のあるとき，制御棒引抜監視装置からの制御棒引抜阻止信号のあると きは，引き抜きを阻止できる設計とする。【37条5】	－	（変更なし）
制御棒駆動機構は，各制御棒に独立して設けられた ラッチ付き水圧ピストン・シリンダ方式のものであり， インデックスチューブと駆動ピストン，コレット集合体等で構成され，制御棒の駆動動力源である制御棒駆動水ポンプによる水圧が喪失した場合においても，ラ ッチ機構により制御棒を現状位置に保持し，発電用原	制御棒駆動機構は，各制御棒に独立して設けられた ラッチ付き水圧ピストン・シリンダ方式のものであり， インデックスチューブと駆動ピストン，コレット集合体等で構成され，制御棒の駆動動力源である制御棒駆動水ポンプによる水圧が喪失した場合においても，ラ ッチ機構により制御棒を現状位置に保持し，発電用原	－	（変更なし）

基本設計方針		設計結果の記載箘所	様式 -1 への反映結果
変更前	変更後		
子炬の反応度を増加させる方向に作動させない設計と する。 また，制御棒駆動機構と制御棒とはカップリングを介して容易に外れない構造とする。	子炉の反応度を増加させる方向に作動させない設計と する。 また，制御棒駆動機構と制御棒とはカップリングを介して容易に外れない構造とする。【37条3】		
制御棒駆動系にあっては，制御棒の插入その他の衝撃により制御棒，燃料体，その他の炉心を構成するも のを損壊しない設計とする。	制御棒駆動系にあっては，制御棒の挿入その他の衝撃により制御棒，燃料体，その他の炉心を構成するも のを損壊しない設計とする。【37条4】	－	（変更なし）
1.3 原子炉再循環流量制御系 再循環流量は，静止型原子炉再循環ポンプ電源装置 により電源周波数を変化させ，原子炉再循環ポンプ速度を調整することにより制御できる設計とする。 また，タービン・トリップ又は発電機負荷遮断直後 の原子炉出力を抑制するため，主蒸気止め弁閉又は蒸気加減弁急速閉の信号により，原子炉再循環ポンプ2台 を同時にトリップする機能を設ける設計とする。	1.3 原子炉再循環流量制御系 再循環流量は，静止型原子炉再循環ポンプ電源装置 により電源周波数を変化させ，原子炉再循環ポンプ速度を調整することにより制御できる設計とする。 また，タービン・トリップ又は発電機負荷遮断直後 の原子炉出力を抑制するため，主蒸気止め弁閉又は蒸気加減弁急速閉の信号により，原子炬再循環ポンプ2台 を同時にトリップする機能を設ける設計とする。【36条 2】	－	（変更なし）
1.4 ほら酸水注入系 ほら酸水注入系は，制御棒挿入による原子炬停止が不能になった場合，手動で中性子を吸収するほう酸水 （五ほら酸ナトリウム）を原子炬内に注入する設備で あり，単独で定格出力運転中の発電用原子炉を高温状態及び低温状態において十分臨界未満に維持できるだ けの反応度効果を持つ設計とする。	1.4 ほう酸水注入系 ほう酸水注入系は，制御棒挿入による原子炬停止が不能になった場合，手動で中性子を吸収するほら酸水 （五ほら酸ナトリウム）を原子炬内に注入する設備で あり，単独で定格出力運転中の発電用原子炉を高温状態及び低温状態において十分臨界未満に維持できるだ けの反応度効果を持つ設計とする。【36条7】	－	(変更なし)
	運転時の異常な過渡変化時において発電用原子灲の運転を緊急汇停止することができない事象が発生する おそれがある場合又は当該事象が発生した場合におい ても炬心の著しい傊傷を防止するため，原子炉泠却材圧カバウンダリ及び原子炉格納容器の健全性を維持す るとともに，発電用原子炉を未臨界に移行するために必要な重大事故等対処設備として，ほう酸水注入系を設ける設計とする。【59条1】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） 原子炉冷却系統施設に係る機器の配置を明示した図面 4．4．7 ほう酸水注入系 計測制御系統施設に係る機器の配置を明示した図面 5．3．1 ほう酸水注入系 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．7 ほう酸水注入系	2．計測制御系統施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 VI－1－10－4 「原子炬泠却采統施設」の様式－1 18．原子炉冷却系統施設の兼用に関する設計 18.2 機能 を兼用する機器を含む設借に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2．2．機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計
	原子炉保護系，制御棒，制御棒駆動機構又は水圧制御ユニットの機能が喪失した場合の重大事故等対処設備として，ほう酸水注入系は，ほう酸水注入系ポンプ により，ほう酸水注入系貯蔵タンクのほう酸水を原子炉圧力容器へ注入することで，発電用原子炉を未臨界 にできる設計とする。【59条5】	要目表 $\mathrm{VI}-1-1-4-1$ 設備別記载事項の設定根拠饥関する説明書 （原子炉本体） $\mathrm{VI}-1-1-4-4$ 設備別記載事項の設定根拠饥関する説明書	2．計浿制御系統雄設の兼用汇関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2.3 機能を兼用する機器を含む計測制御系統施設の系統図に開する取りまとめ

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
		（計測制御系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 計測制御系統施設に係る機器の配置を明示した図面 5．3．1 ほう酸水注入系 計測制御系統施設に係る系統図 5．3．1 ほら酸水注入系 構造図 2．原子炉本体 5．3．1 ほう酸水注入系 8.1 原子炉格納容器	VI－1－10－2 「原子炉本体」の様式－1 3．原子炉本体の兼用に関する設計 3.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－8 「原子炉格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2．2．機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	ほう酸水注入系の流路として，設計基準対象施設で ある原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用する ことから，流路に係る機能について重大事故等対処設備としての設計を行う。【59条6】	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－3－3－1 原子炉本体の強度に関する説明書 $\mathrm{VI}-3$－別添 6 炉心支持構造物の強度に関する説明書 VI－3－別添7 原子炉圧力容器内部構造物の強度に関する計算書 構造図 2．原子炉本体 8.1 原子炉格納容器	VI－1－10－2 「原子炉本体」の様式 -1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－4 「原子炉冷却采統施設」の様式 -1 12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価 12.7 炉心支持構造物の強度評価 VI－1－10－8 「原子炉格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2．2．機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
1.5 原子炬圧力制御系 圧力制御装置は，原子炉圧力を一定に保つように，蒸気加減弁及びタービンバイパス弁の開度を自動制御 する設計とする。 また，原子炬圧力が急上昇するような場合，タービ ンバイパス弁を開き，原子炉圧力の過度の上昇を防止 する設計とする。 圧力制御装置は主蒸気圧力とあらかじめ設定した圧力設定値とを比較し，圧力偏差信号を発信して，蒸気加減并及びタービンバイパス弁の開度を制御すること により，負荷の変動その他の発電用原子炉の運転に伴 ら原子炉圧力容器内の圧力の変動を自動的に調整する設計とする。	1.5 原子炉圧力制御系 圧力制御装置は，原子炉圧力を一定に保つように，蒸気加減弁及びタービンバイパス弁の開度を自動制御 する設計とする。 また，原子炉圧力が急上昇するような場合，タービ ンバイパス弁を開き，原子炉圧力の過度の上昇を防止 する設計とする。 圧力制御装置は主蒸気圧力とあらかじめ設定した圧力設定値とを比較し，圧力偏差信号を発信して，蒸気加減弁及びタービンバイパス弁の開度を制御すること により，負荷の変動その他の発電用原子炉の運転に伴 ら原子炉圧力容器内の圧力の変動を自動的に調整する設計とする。【33条10】	－	(変更なし)

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
1． 6 原子炉給水制御系 原子炉給水制御系は，原子炉水位を一定に保つよう にするため，原子炉給水流量，主蒸気流量及び原子炉水位の信号を取り入れ，タービン駆動原子炉給水ポン プの速度を調整することなどにより原子炉給水流量を自動的に制御できる設計とする。	1.6 原子炉給水制御系 原子炉給水制御系は，原子炉水位を一定に保つよう にするため，原子炉給水流量，主蒸気流量及び原子炉水位の信号を取り入れ，タービン駆動原子炉給水ポン プの速度を調整することなどにより原子炉給水流量を自動的に制御できる設計とする。【33条11】	－	（変更なし）
2．計測装置等 2． 1 計測装置 2．1．1 通常運転時，運転時の異常な過渡変化時におけ る計測 計測制御系統施設は，炉心，原子炉冷却材圧力バウ ンダリ及び原子炉格納容器バウンダリ並びにこれらに関する系統の健全性を確保するために監視することが必要なパラメータを，通常運転時及び運転時の異常な過渡変化時においても想定される範囲内で監視できる設計とする。	2．計測装置等 2.1 計測装置 2．1．1 通常運転時，運転時の異常な過渡変化時及び重 大事故等時における計測 計測制御系統施設は，炉心，原子炉冷却材圧力バウ ンダリ及び原子炬格納容器バウンダリ並びにこれらに関する系統の健全性を確保するために監視することが必要なパラメータを，通常運転時及び運転時の異常な過渡変化時においても想定される範囲内で監視できる設計とする。【34条1】	－	（記載追加のみ，変更なし）
また，設計基準事故が発生した場合の状況把握及び対策を講じるために必要なパラメータは，設計基準事故時に想定される環境下において十分な測定範囲及び期間にわたり監視できるとともに，発電用原子炉の停止及び炉心の泠却に係るものについては，設計基準事故時においても 2 種類以上監視又は推定できる設計と する。	また，設計基準事故が発生した場合の状況把握及び対策を講じるために必要なパラメータは，設計基準事故時に想定される環境下において十分な測定範囲及び期間にわたり監視できるとともに，発電用原子炉の停止及び炉心の冷却に係るものについては，設計基準事故時においても 2 種類以上監視又は推定できる設計と する。【34条2】	－	（変更なし）
灲心における中性子束密度を計測するため，原子炉内に設置した検出器で起動領域，出力領域の 2 つの領域 に分けて中性子束を計測できる設計とする。	灲心における中性子束密度を計測するため，原子炉内に設置した検出器で起動領域，出力領域の 2 つの領域 に分けて中性子束を計測できる設計とする。【34条7】	－	（変更なし）
炉周期は起動領域モニタの計測結果を用いて演算で きる設計とする。	炉周期は起動領域モニタの計測結果を用いて演算で きる設計とする。【34条9】	－	（変更なし）
	重大事故等が発生し，計測機器（非常用のものを含 む。）の故障により，当該重大事故等に対処するために監視することが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定する ために必要なパラメータを計測する設備を設置又は保管する設計とする。【73条1】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及ひ警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する計測 2．2．3 重大事故等の対処に必要なパラメータの計測又は推定 計測制御系統施設 計測装置の検出器の取付箇所を明示し た図面 5.4 計測装置	3．計測装置の設計
	重大事故等が発生し，当該重大事故等に対処するた めに監視することが必要なパラメータとして，原子炉	要目表	3．計測装置の設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	圧力容器内の温度，圧力及び水位，原子炬圧力容器及 び原子炉格納容器への注水量，原子炉格納容器内の温度，圧力，水位，水素濃度及び酸素濃度，原子炉建屋原子炉棟内の水素涱度，未臨界の維持又は監視，最終 ヒートシンクの確保の監視，格納容器バイパスの監視並びに水源の碓保に必要なパラメータを計測する装置 を設ける設計とする。【73条2】	VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する計測 2．2．3 重大事故等の対処に必要なパラメータの計測又は推定 計測制御系統施設 計測装置の検出器の取付箇所を明示し た図面 5.4 計測装置	
	重大事故等に対処するために監視することが必要な パラメータは，炬心損隹防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設 の状態を把握するためのパラメータとし，計測する装置は「表1 計測制御系統施設の主要設備リスト」の「計測装置」に示す重大事故等対処設備の他，原子炉圧力容器温度（個数5，計測範囲 $0 \sim 500^{\circ} \mathrm{C}$ ），フィルタ装置入口圧力（広帯域）（個数 1 ，計測範囲 $-0.1 \sim 1 \mathrm{MPa}$ ）， 7 イルタ装置出口圧力（広帯域）（個数 1 ，計測筐囲 -0.1 $\sim 1 \mathrm{MPa}$ ），フィルタ装置水位（広带域）（個数 3 ，計測範囲 $0 \sim 3650 \mathrm{~mm}$ ），フィルタ装置水温度（個数 3 ，計測範囲 $0 \sim 200^{\circ} \mathrm{C}$ ），フィルタ装置出口水素濃度（個数 2 ，計測範囲 $0 \sim 30 \mathrm{vol} \%$ のものを 1 個，計測範囲 $0 \sim 100 \mathrm{vol} \%$ の ものを 1 個），原子炉補機冷却水系系統流量（個数 2 ，計測範囲 $\left.0 \sim 4000 \mathrm{~m}^{3} / \mathrm{h}\right)$ ，残留熱除去系熱交換器冷却水入口流量（個数 2 ，計測範囲 $0 \sim 1500 \mathrm{~m}^{3} / \mathrm{h}$ ）及び静的触媒式水素再結合装置動作監視装置（個数 8 ，計測範囲 $0 \sim$ $\left.500^{\circ} \mathrm{C}\right)$ とする。【73条3】	要目表 $\mathrm{VI}-1-1-4-4$ 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．計測装置の構成 4．計測装置の計測範囲及び警報動作範囲 計測制御系統施設 計測装置の検出器の取付箇所を明示し た図面 5.4 計測装置	3．計測装置の設計
	発電用原子炉施設の状態を直接監視することはでき ないが，電源設備の受電状態，重大事故等対処設備の運転状態及びその他の設備の運転状態により発電用原子炉施設の状態を補助的汇監視するパラメータを補助 パラメータとし，その補助パラメータのらち重大事故等対处設備を活用する手順等の着手の判断基準として用いる $6-2 \mathrm{~F}-1$ 母線電圧， $6-2 \mathrm{~F}-2$ 母線電圧， $6-2 \mathrm{C母}$ 線電圧， $6-2 \mathrm{D} 母$ 線電圧， $6-2 \mathrm{H}$ 母線電圧， $4-2 \mathrm{C}$ 母線電圧， $4-$ 2 D 母線電圧， $125 V$ 直流主母線 2 A 電圧， 125 V直流主母線 $2 B$ 電圧， 125 V直流主母線 $2 A-1$ 電圧， 125 V直流主母線 $2 B-$ 1電圧，250V直流主母線電圧，HPCS125V直流主母線電圧，高圧窒素ガス供給系ADS入口圧力及び代替高圧窒素ガ ス供給系窒素ガス供給止め弁入口圧力を計測する装置 は，重大事故等対処設備としての設計を行ら。【73条6】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.3 計測制御系統施設	1．共通的に適用される設計 VI－1－10－4 「原子炉冷却系統施設」の様式－1 11．健全性に係る設計

基本設計方針		設計結果の記載䀋所	様式－1～の反映結果
変更前	変更後		
	2．1．2 原子炉格納容器内の水素濃度及び酸素濃度の計測 水素爆発による原子炉格納容器の破損を防止するた めの設備のうち，炉心の著しい損傷が発生した場合に おいて，原子炉格納容器内の水素濃度及び酸素濃度が変動する可能性のある範囲を測定できる設備として，格納容器内水素濃度（D／W），格納容器内水素濃度（S／C），格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度を設ける設計とする。【67条3】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－1－4－別添2 設定根拠に関する説明書（別添） VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する計測 2．2．1 原子炉格納容器内酸素濃度及び水素濃度並びに原子炉格納容器外への排出経路の水素濃度の計測 VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 4．原子炉格納施設の水素濃度低減設備の詳細設計 4.1 原子炉格納容器の破損を防止するための水素濃度低減設備 4．1．4 格納容器内水素濃度（D／W）及び格納容器内水素濃度 （S／C）並びに格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度 計測制御系統施設 計測装置の検出器の取付箇所を明示し た図面 5.4 計測装置	3．計測装置の設計 4．格納容器内雰囲気ガスサンプリング装置に関する設計
	格納容器内水素濃度（D／W）及び格納容器内水素濃度 （S／C）は，原子炉格納容器内の水素濃度が変動する可能性のある範囲の水素濃度を中央制御室より監視でき る設計とする。【67条28】【73条4】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．計測装置の構成 3.1 計測装置の構成 3．1．4 原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素がス濃度を計測する装置 4．計測装置の計測範囲及び警報動作範囲 VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 4．原子炉格納施設の水素濃度低减設備の詳細設計 4.1 原子炉格納容器の破損を防止するための水素濃度低減設備 4．1．4 格納容器内水素濃度（D／W）及び格納容器内水素濃度	3．計測竝置の設計

基本設計方針		設計結果の記載綯所	様式 -1 への反映結果
変更前	変更後		
	にわたり測定できる監視設備として，原子炬建屋内水素濃度を設ける設計とする。【68条1】	VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する計測 2．2．2 静的触媒式水素再結合装置の動作監視及び原子炉建屋内水素濃度の計測 VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 4．原子炉格納施設の水素濃度低減設備の詳細設計 4.2 原子炉建屋等の破損を防止するための水素濃度低減設備 4．2． 2 原子炉建屋内水素濃度 計測制御采統施設 計測装置の検出器の取付箇所を明示し た図面 5.4 計測装置	
	原子炉建屋内水素濃度は，中央制御室において連続監視できる設計とする。【68条6】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．計測装置の構成 3.1 計測装置の構成 3．1．8 原子炉建屋内の水素がス濃度を計測する装置 VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 4．原子炉格納施設の水素濃度低減設備の詳細設計 4.2 原子炉建屋等の破損を防止するための水素濃度低減設備 4．2．2 原子炉建屋内水素濃度 計測制御系統施設 計測装置の計測制御系統図 5.4 計測装置	3．計測㨬置の設計
	原子炬建屋内水素瀑度のらち，原子炬建屋地上3階及 び原子炉建屋地下2階に設置するものについては，常設代替交流電源設備又は可搬型代替交流電源設備からの給電及び所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計とする。【68条7】	$\mathrm{VI}-1-5-1$ 計測装置の構成に関する説明書並びに計測簐囲及び警報動作範囲に関する説明書 3．計測装置の構成 3.1 計測装置の構成 3．1．8 原子炬建屋内の水素がス濃度を計測する装置 $\mathrm{VI}-1-8-2$ 原子炉格納施設の水素浱度低滅性能に関する説明書	3．計測䧇置の設計

基本設計方針		設計結果の記載笽所	様式－1 への反映結果	
変更前	変更後			
		4．原子炉格納施設の水素濃度低減設備の詳細設計 4.3 水素濃度低減設備に係る電源 4．3． 6 原子炉建屋内水素濃度		
	また，原子炉建屋内水素濃度のらち，原子炉建屋地上1階及び原子炬建屋地下1階に設置するものについて は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計とする。【68条8】	VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及ひ警報動作範囲に関する説明書 3．計測装置の構成 3.1 計測装置の構成 3．1．8 原子炉建屋内の水素ガス濃度を計測する装置 VI－1－8－2 原子炬格納施設の水素濃度低減性能に関する説明書 4．原子炉格納施設の水素濃度低減設備の詳細設計 4.3 水素濃度低減設備江係る電源 4．3．6 原子炬建屋内水素濃度	3.	計測装置の設計
	2．1．5 静的触媒式水素再結合装置の作動状態監視炬心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために原子炉建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備とし て，水素濃度制御設備である静的触媒式水素再結合装置動作監視装置を設ける設計とする。【68条1】	VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する計測 2．2．2 静的触媒式水素再結合装置の動作監視及び原子炉建屋内水素濃度の計測 VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 4．原子炉格納施設の水素濃度低減設備の詳細設計 4.2 原子炉建屋等の破損を防止するための水素濃度低減設備 4．2．1 静的触媒式水素再結合装置	3.	計測䧇置の設計
	静的触媒式水素再結合装置動作監視装置（個数8，計測節囲 $0 \sim 500^{\circ} \mathrm{C}$ ，検出器種類 熱電対）は，静的触媒式水素再結合装置の入口側及び出口側の温度により静的触媒式水素再結合装置の作動状態を中央制御室から監視できる設計とし，重大事故等時において測定可能な よう耐環境性を有した熱電対を使用する。【68条4】	VI－1－5－1 計測䧇置の構成に関する説明書並びに計測範囲及ひ澹報動作範囲に関する説明書 3．計測装置の構成 3.1 計測装置の構成 3．1．9 その他重大事故等対処設備の計測装置 4．計測装置の計測範囲及び警報動作範囲 VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 4．原子炉格納施設の水素濃度低減設備の詳細設計 4.2 原子炉建屋等の破損を防止するための水素濃度低減設備 4．2．1 静的触媒式水素再結合装置	3.	計測喪置の設計
	静的触媒式水素再結合装置動作監視装置は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。 ［68条5】	VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．計測装置の構成 3.1 計測装置の構成 3.1 .9 その他重大事故等対処設備の計測装置	3.	計測装置の設計

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
		VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 4．原子炉格納施設の水素濃度低減設備の詳細設計 4.3 水素濃度低減設備に係る電源 4．3．5 静的触媒式水素再結合装置	
2.2 警報装置等 設計基準対象施設は，発電用原子炬施設の機械又は器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼすおそれが発生した場合（中性子束，温度，圧力，流量，水位等のプロセ大変数が異常値になった場合，工学的安全施設が作動 した場合等）に，これらを確実に検出して自動的に警報（原子炉水位低又は高，原子炉圧力高，中性子束高等）を発信する装置を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計と する。	2.2 警報装置等 設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼすおそれが発生した場合（中性子束，温度，圧力，流量，水位等のプロセ ス変数が異常値になった場合，工学的安全施設が作動 した場合等）に，これらを確実に検出して自動的に警報（原子炉水位低又は高，原子炉圧力高，中性子束高等）を発信する装置を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計と する。【47条1】	（1）	（変更なし）
発電用原子炉並びに原子炉冷却系統に係る主要な機械又は器具の動作状態を正確，かつ迅速に把握できる ようポンプの運転停止状態及び弁の開閉状態等を表示灯により監視できる設計とする。	発電用原子炉並びに原子炉冷却系統に係る主要な機械又は器具の動作状態を正確，かつ迅速に把握できる ようポンプの運転停止状態及び弁の開閉状態等を表示灯により監視できる設計とする。【47条5】	－	（変更なし）
2.3 計測結果の表示，記録及び保存 発電用原子炉の停止，炉心の泠却及び放射性物質の閉じ込めの機能の状況を監視するために必要なパラメ ータは，設計基準事故時においても確実に記録できる設計とする。	2.3 計測結果の表示，記録及び保存 発電用原子炉の停止，炉心の泠却及び放射性物質の閉じ込めの機能の状況を監視するために必要なパラメ ータは，設計基準事故時においても確実に記録し，保存できる設計とする。【34条3】	－	（冒頭宣言）
設計基準対象施設として，灯心における中性子束密度を計測するための計測装置，原子炉冷却材の不純物 の濃度を測定するための導電率を計測する装置，原子炉圧力容器の入口及び出口における温度及び流量を計測するための給水温度，主蒸気温度，給水流量及び主蒸気流量を計測する装置，原子炉圧力容器内の水位を計測するための原子炉水位（停止域，燃料域，広帯域及び狭帯域）を計測する装置並びに原子炉格納容器内 の圧力，温度及び可燃性ガス濃度を計測するためのド ライウェル圧力，圧力抑制室圧力，格納容器内温度，格納容器内雾囲気水素濃度及び格納容器内雾囲気酸素濃度を計測する装置を設け，これらの計測装置は計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設計とする。	設計基準対象施設として，炉心における中性子束密度 を計測するための計測装置，原子炉冷却材の不純物の濃度を測定するための導電率を計測する装置，原子炉圧力容器の入口及び出口における温度及び流量を計測 するための給水温度，主蒸気温度，給水流量及び主蒸気流量を計測する装置，原子炉圧力容器内の水位を計測するための原子炉水位（停止域，燃料域，広帯域及 び狭帯域）を計測する装置並びに原子炉格納容器内の圧力，温度及び可燃性ガス濃度を計測するためのドラ イウェル圧力，圧力抑制室圧力，格納容器内温度，格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度を計測する装置を設け，これらの計測装置は計測結果を中央制御室に表示できる設計とする。また，計測結果を記録し，及び保存できる設計とする。【34条8】【34条12】【34条13】34条14】34条15】	$<$ 下線部＞ 運用に関する記載であり，保安規定にて対応	（変更なし） $<$ 下線部 $>$
制御棒の位置を計測する装置並びに原子炉圧力容器 の入口及び出口における圧力を計測するための給水圧力及び主蒸気圧力を計測する装置を設け，これらの計測装置は計測結果を中央制御室に表示できる設計とす	制御棒の位置を計測する装置並びに原子炉圧力容器 の入口及び出口における圧力を計測するための給水圧力及び主蒸気圧力を計測する装置を設け，これらの計測装置は計測結果を中央制御室に表示できる設計とす	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式一1 への反映結果
変更前	変更後		
る。また，記録はプロセス計算機から帳票として出力 できる設計とする。	る。また，記録はプロセス計算機から帪票として出力 し保存できる設計とする。【34条10】【34条13】	＜下線部＞ 運用に関する記載であり，保安規定にて対応	＜下線部＞
原子炬泠却材の不純物の濃度は，試料採取設備によ り断続的に試料を採取し分析を行い，測定結果を記録 する。	原子炬冷却材の不純物の濃度は，試料採取設備によ り断続的に試料を採取し分析を行い，測定結果を記録 し，及び保存する。【34条11】	運用に関する記載であり，保安規定にて対応	－
	炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握 するためのパラメータを計測する装置は，設計基準事故等に想定される変動範囲の最大値を考慮し，適切に対応するための計測範囲を有する設計とするととも に，重大事故等が発生し，当該重大事故等に対処する ために監視することが必要な原子炉圧力容器内の温度，圧力及び水位並びに原子炉圧力容器及び原子炬格納容器への注水量等のパラメータの計測が困難となつ た場合又は計測範囲を超えた場合に，代替パラメータ により推定ができる設計とする。【73条8】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．計測装置の構成 3.1 計測装置の構成 3．1．1 起動領域計測装置（中性子源領域計測装置，中間領域計測装置）及び出力領域計測装置 3．1．2 原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又は流量（代替注水の流量を含む。） を計測する装置 3．1．3 原子炉圧力容器本体内の圧力又は水位を計測する装置 3．1．4 原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素ガス濃度を計測する装置 3．1．5 非常用炉心泠却設備その他原子炉注水設備に係る容器内又は貯蔵槽内の水位を計測する装置 3．1．6 原子炉格納容器本体への椧却材流量を計測する装置 3．1．7 原子炉格納容器本体の水位を計測する装置 3．1．8 原子炉建屋内の水素がス濃度を計測する装置 3．1．9 その他重大事故等対処設備の計測装置 4．計測装置の計測範囲及び警報動作範囲 計測制御系統施設 計測装置の計測制御系統図 5.4 計測装置	3．計測装置の設計
	また，重大事故等時に設計基準を超える状態におけ る発電用原子炉施設の状態を把握するための能力（最高計測可能温度等（設計基準最大值等））を明碓にする とともに，パラメータの計測が困難となった場合又は計測軣囲を超えた場合の代替パラメータによる推定等，複数のパラメータの中から確からしさを考慮した優先順位を保安規定に定めて管理する。【73条7】 73 条 9】	運用に関する記載であり，保安規定にて対応	－
	原子炬格納容器内の温度，圧力，水位，水素浱度等想定される重大事故等の対応に必要となるパラメータ は，計測又は監視及び記録できる設計とする。また，	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書	3．計測韾置の設計

基本設計方針		設計結果の記載箘所	様式－1への反映結果
変更前	変更後		
	計測結果は中央制御室に指示又は表示し，原則，中央制御室で記録できる設計とする。【73条12】	（計測制御系統施設） VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．計測装置の構成 3.1 計測装置の構成 3．1．1 起動領域計測装置（中性子源領域計測装置，中間領域計測装置）及び出力領域計測装置 3．1．2 原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又は流量（代替注水の流量を含む。） を計測する装置 3．1．3 原子炉圧力容器本体内の圧力又は水位を計測する装置 3．1．4 原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素ガス濃度を計測する装置 3．1．5 非常用炉心椧却設備その他原子炉注水設備に係る容器内又は貯蔵槽内の水位を計測する装置 3．1．6 原子炉格納容器本体への冷却材流量を計測する装置 3．1．7 原子炬格納容器本体の水位を計測する装置 3．1．8 原子炉建屋内の水素がス濃度を計測する装置 3．1．9 その他重大事故等対処設備の計測装置 3.2 計測装置の計測結果の表示，記録及び保存 3．2．3 重大事故等対処設備に関する計測結果の記録及び保存 計測制御系統施設 計測装置の計測制御采統図 5.4 計測装置	
	重大事故等の対応に必要となるパラメータは，安全 パラメータ表示システム（SPDS）に電磁的に記録，保存し，電源喪失により保存した記録が失われないとと もに帳票が出力できる設計とする。また，記録は必要 な容量を保存できる設計とする。【73条13】	VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．計測装置の構成 3.1 計測装置の構成 3．1．1 起動領域計測装置（中性子源領域計測装置，中間領域計測装置）及び出力領域計測装置 3．1．2 原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又は流量（代替注水の流量を含 む。）を計測する装置 3．1．3 原子炉圧力容器本体内の圧力又は水位を計測する装置 3．1．4 原子炉格納容器本体内の圧力，温度，酸素がス濃度又は水素がス濃度を計測する装置 3．1．5 非常用炉心浍却設備その他原子炉注水設備に係る容器内又は貯蔵槽内の水位を計測する装置 3．1．6 原子炉格納容器本体への泠却材流量を計測する装置	3．計測韾置の設計

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
		3．1．7 原子炉格納容器本体の水位を計測する装置 3．1．8 原子炉建屋内の水素ガス濃度を計測する装置 3.1 .9 その他重大事故等対処設備の計測装置 3.2 計測装置の計測結果の表示，記録及び保存 3．2．3 重大事故等対処設備に関する計測結果の記録及び保存	
	2.4 電源喪失時の計測 炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握 するためのパラメータを計測する装置の電源は，非常用交流電源設備又は非常用直流電源設備の喪失等によ り計器電源が喪失した場合において，代替電源設備と して常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用できる設計とす る。【73条10】	VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及ひ變報動作範囲に関する説明書 3．計測装置の構成 3.1 計測装置の構成 3．1．4 原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素がス濃度を計測する装置 3．1．8 原子炉建屋内の水素ガス濃度を計測する装置 3．1．9 その他重大事故等対処設備の計測装置	3．計測竝置の設計
	また，代替電源設備が霛失し計測に必要な計器電源 が喪失した場合，特に重要なパラメータとして，炉心損傷防止対策及び格納容器破損防止対策等を成功させ るために必要な発電用原子炉施設の状態を把握するた めのパラメータを計測する装置については，温度，圧力，水位及び流量汇係るものについて，乾電池を電源 とした可搬型計測器（原子炉圧力容器及び原子炉格納容器内の温度，圧力，水位，流量（注水量）の計測用 として測定時の故障を想定した予備1個を含む1セット 26個（予備26個（緊急時対策建屋に保管）））（核燃料物質の取技施設及び貯蔵施設のらち「3．計測装置等」 の設備と兼用）により計測できる設計とし，これらを保管する設計とする。 なおふ，可搬型計測器による計測においては，計測対象の設定を行ら際の考え方として，同一パラメータに チャンネルが複数ある場合は，いずれか 1 つの適切なチ ヤンネルを選定し計測又は監視するものとする。 同一の物理量について，複数のパラメータがある場合は，いずれかつの適切なパラメータを選定し計測又 は監視するものとする。【73条11】	VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 3．計測装置の構成 3.1 計測装置の構成 3．1．9 その他重大事故等対処設備の計測装置	3．計測淕置の設計
3．安全保護装置等 3.1 安全保護装置 3．1．1 安全保護装置の機能及び構成 安全保護装置は，運転時の異常な過渡変化が発生す る場合又は地震の発生により発電用原子炉の運転に支障を生じる場合において，その異常な状態を検知し及 び原子炉保護系その他系統と併せて機能することによ り，燃料要素の許容損傷限界を超えないようにできる ものとするとともに，設計基準事故が発生する場合に	3．安全保護装置等 3.1 安全保護装置 3．1．1 安全保護装置の機能及び構成 安全保護装置は，運転時の異常な過渡変化が発生す る場合又は地震の発生により発電用原子炉の運転に支障を生じる場合において，その異常な状態を検知し及 び原子炉保護系その他系統と併せて機能することによ り，燃料要素の許容損傷限界を超えないようにできる ものとするとともに，設計基準事故が発生する場合に	－	(変更なし)

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
おいて，その異常な状態を検知し，原子炉保護系及び工学的安全施設を自動的に作動させる設計とする。	おいて，その異常な状態を検知し，原子炉保護系及び工学的安全施設を自動的に作動させる設計とする。【35条1】		
運転時の異常な過渡変化及び設計基準事故時に対処 し得る複数の原子炉スクラム信号及びその他の安全保護装置起動信号を設ける設計とする。 なお，安全保護装置は設置（変更）許可を受けた運転時の異常な過渡変化の評価の条件を満足する設計と する。	運転時の異常な過渡変化及び設計基準事故時に対処 し得る複数の原子炉スクラム信号及びその他の安全保護装置起動信号を設ける設計とする。 なお，安全保護装置は設置（変更）許可を受けた運転時の異常な過渡変化の評価の条件を満足する設計と する。【35条2】	－	（変更なし）
安全保護装置を構成する機械若しくは器具又はチャ ンネルは，単一故障が起きた場合又は使用状態からの単一の取り外しを行った場合において，安全保護機能 を失わないよう，多重性を確保する設計とする。	安全保護装置を構成する機械若しくは器具又はチヤ ンネルは，単一故障が起きた場合又は使用状態からの単一の取り外しを行った場合において，安全保護機能 を失わないよう，多重性を確保する設計とする。【35条 3】	－	（変更なし）
安全保護装置を構成するチャンネルは，それぞれ互 いに分離し，それぞれのチャンネル間において安全保護機能を失わないよう物理的，電気的に分離し，独立性を確保する設計とする。 また，各チャンネルの電源は，分離•独立した母線 から供給する設計とする。	安全保護装置を構成するチャンネルは，それぞれ互 いに分離し，それぞれのチャンネル間において安全保護機能を失わないよう物理的，電気的に分離し，独立性を確保する設計とする。 また，各チャンネルの電源は，分離•独立した母線 から供給する設計とする。【35条4】	－	（変更なし）
安全保護装置は，駆動源の喪失，系統の遮断その他 の不利な状況が発生した場合においても，フェイル・セ イフとすることで発電用原子炉施設をより安全な状態 に移行するか，又は当該状態を維持することにより，発電用原子炉施設の安全上支障がない状態を維持でき る設計とする。	安全保護装置は，駆動源の喪失，系統の遮断その他 の不利な状況が発生した場合においても，フェイル・ セイフとすることで発電用原子炉施設をより安全な状態に移行するか，又は当該状態を維持することにより，発電用原子炉施設の安全上支障がない状態を維持でき る設計とする。【35条5】	－	（変更なし）
計測制御系統施設の一部を安全保護装置と共用する場合には，その安全機能を失わないよう，計測制御系統施設から機能的に分離した設計とする。	計測制御系統施設の一部を安全保護装置と共用する場合には，その安全機能を失わないよう，計測制御系統施設から機能的に分離した設計とする。【35条7】	－	（変更なし）
また，運転条件に応じて作動設定値を変更できる設計とする。	また，運転条件に応じて作動設定値を変更できる設計とする。【35条9】	－	（変更なし）
非常用炉心冷却設備その他の非常時に発電用原子炉 の安全を確保するための設備を運転中に試験する場合 に使用する電動弁用電動機の熱的過負荷保護装置は，設計基準事故時において不要な作動をしないようにで きる設計とする。	非常用炉心冷却設備その他の非常時に発電用原子炉 の安全を確保するための設備を運転中に試験する場合 に使用する電動弁用電動機の熱的過負荷保護装置は，設計基準事故時において不要な作動をしないようにで きる設計とする。【38条5】	－	（変更なし）
	3．1．2 安全保護装置の不正アクセス行為等の被害の防止 安全保護装置のうち，アナログ回路で構成する機器 は，外部ネットワークと物理的分離及び機能的分離，外部ネットワークからの遠隔操作の防止並びに物理的及び電気的アクセスの制限を設け，システムの据付，更新，試験，保守等で，承認されていない者の操作を防止する措置を講じることで，不正アクセス行為その他の電子計算機に使用目的に沿うべき動作をさせず，	VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及ひ警報動作範囲に関する説明書 3．計測装置の構成 3.3 安全保護装置 3．3．1 不正アクセス行為等の被害の防止 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	5．安全保護装置の不正アクセス防止の設計 $<$ 下線部 $>$

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
	又は使用目的に反する動作をさせる行為による被害を防止できる設計とする。【35条6】		
	安全保護装置のらち，一部デジタル演算処理を行ら機器は，外部ネットワークと物理的分離及び機能的分離，外部ネットワークからの遠隔操作防止及びウイル ス等の侵入防止並びに物理的及び電気的アクセスの制限を設け，システムの据付，更新，試験，保守等で，承認されていない者の操作及びウイルス等の侵入を防止する措置を講じることで，不正アクセス行為その他 の電子計算機に使用目的に沿うべき動作をさせず，又 は使用目的に反する動作をさせる行為による被害を防止できる設計とする。【35条6】	VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 3．計測装置の構成 3.3 安全保護装置 3．3．1 不正アクセス行為等の被害の防止 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	5．安全保護装置の不正アクセス防止の設計 ＜下線部＞
	安全保謢装置が収納された盤の施錠によりハードウ ェアを直接接続させない措置を実施すること及び安全保護装置のらち—部デジタル演算処理を行ら機器のソ フトウェア及びハードウェア回路は設計，製作，試験及び変更管理の各段階で検証と妥当性碓認を適切に行 らことを保安規定に定め，不正アクセスを防止する。 ［35条6】	運用に関する記載であり，保安規定にて対応	－
	3.2 ATWS緩和設備（代替制御棒挿入機能） 運転時の異常な過渡変化時において発電用原子炉の運転を緊急汇停止することができない事象が発生する おそれがある場合又は当該事象が発生した場合におい ても炉心の著しい損傷を防止するため，原子炉冷却材圧カバウンダリ及び原子炉格納容器の健全性を維持す るとともに，発電用原子炉を未踟界に移行するために必要な重大事故等対処設備として，ATWS緩和設備（代替制御棒挿入機能）を設ける設計とする。【59条1】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設）	6．工学的安全施設等の設計 VI－1－10－8 「原子炉格納施設」の様式－1 2．原子炬格納施設の兼用に関する設計 2． 1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	発電用原子师が運転を緊急汇停止していなければな らない状況にもかかわらず，原子炉出力，原子炉圧力等のパラメータの変化から緊急停止していないことが推定される場合の重大事故等対处設備として，ATWS緩和設備（代替制御棒挿入機能）は，原子炉圧力高又は原子炉水位低（レベル2）の信号により，全制御棒を全挿入させて発電用原子炉を未臨界にできる設計とす る。 また，ATWS緩和設備（代替制御棒挿入機能）は，中央制御室の操作スイッチを手動で操作することで作動 させることができる設計とする。【59条3】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－5－2 工学的安全施設等の起動（作動）信号の設定値 の根拠に関する説明書 3．施設の詳細設計方針 3.1 その他の工学的安全施設 $\mathrm{VI}-1-5-3$ 発電用原子炉の運転を管理するための制御装置 に係る制御方法に関する説明書 3．中央制御室に係る制御方法 3.4 発電用原子炉の制御設備の構成等 3．4．3 安全保護系（原子炉保護系及び工学的安全施設作動回路）及びその他の工学的安全施設等の作動設備	6．工学的安全施設等の設計

基本設計方針		設計結果の記載箽所	様式 -1 への反映結果
変更前	変更後		
		工学的安全施設等の起動（作動）信号の起動（作動）回路 の説明図 5．5工学的安全施設等の起動信号	
	ATWS緩和設備（代替制御棒挿入機能）の流路として，設計基準対象施設である制御棒駆動水圧系の配管を重大事故等対処設備として使用することから，流路に係 る機能について重大事故等対処設備としての設計を行 う。 その他，設計基準対象施設である制御棒，制御棒駆動機構及び水圧制御ユニットを重大事故等対処設備とし て使用できる設計とする。【59条9】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－1－4－7 設備別記載事項の設定根拠比関する説明書 （原子炉格納施設） 計測制御系統施設に係る機器の配置を明示した図面 5.1 制御材 5．2．1 制御棒駆動機構 5．2．2 制御棒駆動水圧系 計測制御系統施設々係る系統図 5． 2.2 制御棒駆動水圧系 構造図 5.1 制御材 5．2．1 制御棒駆動機構 5．2．2 制御棒駆動水圧系 8.1 原子炉格納容器	6．工学的安全施設等の設計 VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕樣等に関す る設計
	3.3 ATWS緩和設備（代替原子炉再循環ポンプトリップ機能） 運転時の異常な過渡変化時において発電用原子炉の運転を緊急に停止することができない事象が発生する おそれがある場合又は当該事象が発生した場合におい ても炉心の著しい損傷を防止するため，原子炉冷却材圧力バウンダリ及び原子炬格納容器の健全性を維持す るとともに，発電用原子炉を未臨界に移行するために必要な重大事故等対処設備として，ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）を設ける設計と する。【59条1】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設）	6．工学的安全施設等の設計
	発電用原子炉が運転を緊急江停止していなければな らない状況にもかかわらず，原子炉出力，原子炉圧力等のパラメータの変化から緊急停止していないことが推定される場合の重大事故等対処設備として，ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）は，原子炉圧力高又は原子炉水位低（レベル2）の信号によ り，原子炉再循擐ポンプ2台を自動停止させて，発電用原子炉の出力を抑制できる設計とする。【59条4】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－5－2 工学的安全施設等の起動（作動）信号の設定値 の根拠に関する説明書 3．施設の詳細設計方針 3.1 その他の工学的安全施設	6．工学的安全施設等の設計

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
		VI－1－5－3 発電用原子炉の運転を管理するための制御装置 に係る制御方法に関する説明書 3．中央制御室に係る制御方法 3.4 発電用原子炉の制御設備の構成等 3．4．3 安全保護系（原子炬保護系及び工学的安全施設作動回路）及びその他の工学的安全施設等の作動設備 工学的安全施設等の起動（作動）信号の起動（作動）回路 の説明図 5．5工学的安全施設等の起動信号	
	また，ATWS緩和設備（代替原子炉再循環ポンプトリ ップ機能）は，自動で停止しない場合に，中央制御室 の操作スイッチを手動で操作することにより，代替原子炬再循環ポンプトリップ遮断器を開放し，原子炉再循澴ポンプを停止させることができる設計とする。【59条4］	VI－1－5－3 発電用原子炉の運転を管理するための制御装置 に係る制御方法に関する説明書 3．中央制御室に係る制御方法 3.4 発電用原子炉の制御設備の構成等 3．4．3 安全保護系（原子炉保護系及び工学的安全施設作動回路）及びその他の工学的安全施設等の作動設備 工学的安全施設等の起動（作動）信号の起動（作動）回路 の説明図 5．5工学的安全施設等の起動信号	6．工学的安全施設等の設計
	3.4 ATWS緩和設備（自動减圧系作動阻止機能）運転時の異常な過渡変化時において発電用原子炉の運転を緊急に停止することができない事象が発生した場合の重大事故等対処設備として，ATWS緩和設備（自動減圧系作動阻止機能）は，中性子束高及び原子炉水位低（レベル2）の信号により，自動减圧系及び代替自動減圧回路（代替自動減圧機能）の作動を阻止できる設計とする。【59条7】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－5－2 工学的安全施設等の起動（作動）信号の設定値 の根拠に関する説明書 3．施設の詳細設計方針 3.1 その他の工学的安全施設 VI－1－5－3 発電用原子炉の運転を管理するための制御装置 に係る制御方法に関する説明書 3．中央制御室に係る制御方法 3.4 発電用原子炉の制御設備の構成等 3．4．3 安全保護系（原子炉保護系及び工学的安全施設作動回路）及びその他の工学的安全施設等の作動設備 工学的安全施設等の起動（作動）信号の起動（作動）回路 の説明図 5．5工学的安全施設等の起動信号	6．工学的安全施設等の設計
	原子炉緊急停止失敗時に自動減圧系又は代替自動減圧回路（代替自動減圧機能）が作動すると，高圧炬心 スプレイ系からの注水に加え，残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系から大量の泠水が注水され出力の急激な上昇につながるため，ATWS緩和	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設）	6．工学的安全施設等の設計

基本設計方針		設計結果の記載箇所	様式－1 への反映結果	
変更前	変更後			
	設備（自動減圧系作動阻止機能）により自動減圧系及 び代替自動減圧回路（代替自動減圧機能）による自動減圧を阻止できる設計とする。【59条2】【61条3】	VI－1－5－3 発電用原子炉の運転を管理するための制御装置 に係る制御方法に関する説明書 3．中央制御室に係る制御方法 3.4 発電用原子炉の制御設備の構成等 3．4．3 安全保護系（原子炉保護系及び工学的安全施設作動回路）及びその他の工学的安全施設等の作動設備 工学的安全施設等の起動（作動）信号の起動（作動）回路 の説明図 5．5工学的安全施設等の起動信号		
	また，ATWS 緩和設備（自動減圧系作動阻止機能）は，中央制御室の操作スイッチを手動で操作することで，自動減圧系及び代替自動減圧回路（代替自動減圧機能） の作動を阻止させることができる設計とする。【59条8】	VI－1－5－3 発電用原子炉の運転を管理するための制御装置 に係る制御方法に関する説明書 3．中央制御室に係る制御方法 3.4 発電用原子炉の制御設備の構成等 3．4．3 安全保護系（原子炉保護系及び工学的安全施設作動回路）及びその他の工学的安全施設等の作動設備 工学的安全施設等の起動（作動）信号の起動（作動）回路 の説明図 5．5工学的安全施設等の起動信号	6.	工学的安全施設等の設計
	3.5 代替自動減圧回路（代替自動減圧機能）原子炉冷却材圧力バウンダリが高圧の状態であっ て，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても灯心の著しい損傷及 び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダリを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全并を作動させる代替自動減圧回路（代替自動減圧機能）を設ける設計と する。【61条1】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設）	6.	工学的安全施砍等の設計
	自動减圧機能が喪失した場合の重大事故等対処設備 として，代替自動減圧回路（代替自動減圧機能）は，原子炉水位低（レベル1）及び残留熱除去系ポンプ運転 （低圧注水モード）又は低圧炬心スプレイ系ポンプ運転の場合に，主蒸気逃がし安全弁用電磁并を作動させ ることにより，主蒸気逃がし安全弁を強制的に開放し，原子炉冷却材圧カバウンダリを減圧させることができ る設計とする。なおっ，11個の主蒸気逃がし安全弁のう ち， 2 個がこの機能を有するとともに，自動减圧系との干渉及びリセットスイッチの操作判断の時間的余裕を考慮し，時間遅れを設ける設計とする。【61条4】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－5－2 工学的安全施設等の起動（作動）信号の設定値 の根拠に関する説明書 3．施設の詳細設計方針 3.1 その他の工学的安全施設 VI－1－5－3 発電用原子炉の運転を管理するための制御装置 に係る制御方法に関する説明書 3．中央制御室に係る制御方法 3.4 発電用原子炉の制御設備の構成等 3．4．3 安全保護系（原子炉保護系及び工学的安全施設作動回路）及びその他の工学的安全施設等の作動設備	6.	工学的安全施設等の設計

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
		工学的安全施設等の起動（作動）信号の起動（作動）回路 の説明図 5．5工学的安全施設等の起動信号	
3.2 試験及び検査 原子炬保護系は，原子炬運転中でも一度に1つずつの チャンネルを各検出器でトリップさせることによっ て，スクラムパイロット弁までのあらゆる機能をチェ ックすることができる設計とする。 工学的安全施設作動回路は，原子炉連転中でもテス ト信号によって各々のチャンネル（検出器を含む）の詞験を行うことができる設計とする。	3.6 試験及び検査 原子炉保護系は，原子炉運転中でも一度に1つずつの チャンネルを各検出器でトリップさせることによっ て，スクラムパイロット弁までのあらゆる機能をチェ ックすることができる設計とする。 工学的安全施設作動回路は，原子炉運転中でもテス ト信号によって各々のチャンネル（検出器を含む）の試験を行うことができる設計とする。【35条8】	－	(変更なし)
4．通信連絡設備 4.1 通信連絡設備（発電所内） 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常の際に，中央制御室等から人が立ち入る可能性のある原子炉建屋，タービン建屋等の建屋内外各所の人に操作，作業，退避の指示等の連絡を行 らことができる設備として，警報装置及び通信連絡設備（発電所内）を設置又は保管する設計とする。	4．通信連絡設備 4.1 通信連絡設備（発電所内） 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常の際に，中央制御室等から人が立ち入る可能性のある原子炉建屋，タービン建屋等の建屋内外各所の人纪操作，作業，退避の指示，事故対策の ための集合等の連絡をブザー鳴動等により行うことが できる設備及び音声等により行らことができる設備と して，警報装置及び通信連絡設備（発電所内）を設置又は保管する設計とする。【46条5】【47条6】 警報装置として，十分な数量の送受話器（ページン グ）（警報装置を含む。）及び多様性を確保した通信連絡設備（発電所内）として，十分な数量の送受話器（ペ ージング）（警報装置を含む。），電力保安通信用電話設備（固定電話機，PHS端末及びFAX），移動無線設備（固定型），移動無線設備（車載型），携行型通話装置，無線連絡設備（固定型），無線連絡設備（携帯型），衛星電話設備（固定型）及び衛星電話設備（携帯型）を設置又は保管する設計とする。【46条5】【47条7】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．1 送受話器（ページング）（警報装置を含む。） 3．1．2 電力保安通信用電話設備（固定電話機，PHS端末及 ひFAX） 3．1．3 移動無線設備（固定型）及び移動無線設備（車載型） 3．1．4 無線連絡設備（固定型）及び無線連絡設備（携帯型） 3．1．5 携行型通話装置 3．1．6 衛星電話設備（固定型）及び衛星電話設備（携帯型） 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	7．通信連絡設備に関する設計
	また，緊急時対策所へ事故状態等の把握に必要なデ ータを伝送できる設備として，安全パラメータ表示シ ステム（SPDS）を設置する設計とする。【46条3】【47条 8】	$\mathrm{VI}-1-1-10$ 通信連絡設借して関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．7 安全パラメータ表示システム（SPDS） 通信連絡設備つ取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	7．通信連絡設備に関する設計
	警報装置，通信連絡設備（発電所内）及び安全パラ メータ表示システム（SPDS）については，非常用所内電源又は無停電電源（充電器等を含む。）化接続し，外部電源が期待できない場合でも動作可能な設計とす る。【47条9】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．1 送受話器（ページング）（警報装置を含む。） 3．1．2 電力保安通信用電話設備（固定電話機，PHS端末及 びFAX） 3．1．3 移動無線設備（固定型）及び移動無線設備（車載型）	7．通信連絡設備に関する設計

基本設計方針		設計結果の記載䈯所	様式－1 への反映結果
変更前	変更後		
		3．1．4 無線連絡設備（固定型）及び無線連絡設備（携帯型） 3．1．6 衛星電話設備（固定型）及び衛星電話設備（携帯型） 3．1．7 安全パラメータ表示システム（SPDS）	
	重大事故等が発生した場合において，発電所内の通信連絡をする必要のある場所と通信連絡を行らために必要な通信連絡設備（発電所内）及び計測等を行った特に重要なパラメータを発電所内の必要な場所で共有 するために必要な通信連絡設備（発電所内）として，必要な数量の衛星電話設備（固定型），衛星電話設備（携帯型），無線連絡設備（固定型），無線連絡設備（携带型）及び携行型通話装置を設置又は保管する設計とす る。なお，可搬型については必要な数量に加え，故障 を考慮した数量の予備を保管する。【77条1】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．4 無線連絡設備（固定型）及び無線連絡設備（携帯型） 3．1．5 携行型通話装置 3．1．6 衛星電話設備（固定型）及び徫星電話設備（携帯型）	7．通信連絡設備に関する設計
	衛星電話設備（携帯型）は，緊急時対策所内に保管 する設計とする。【77条2】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．6 衛星電話設備（固定型）及び徫星電話設備（携帯型）	7．通信連絡設備に關する設計
	無線連絡設備（携帯型）は，中央制御室及び緊急時対策所内に保管する設計とする。【77条3】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．4 無線連絡設備（固定型）及び無線連絡設備（携帯型）	7．通信連絡設備に関する設計
	携行型通話装置は中央制御室内に保管する設計とす る。【77条4】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．5 携行型通話装置	7．通信連絡設備に関する設計
	衛星電話設備（固定型）及び無線連絡設備（固定型） は，中央制御室及び緊急時対策所内に設置する設計と する。【77条5】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．4 無線連絡設備（固定型）及び無線連絡設備（携帯型） 3．1．6 衛星電話設備（固定型）及び徫星電話設備（携帯型）	7．通信連絡設備に關する設計
	緊急時対策所へ重大事故等に対処するために必要な データを伝送するための設備として，安全パラメータ表示システム（SPDS）のらちデータ収集装置は，制御建屋内に設置し，SPDS伝送装置及びSPDS表示装置は，緊急時対策所内に設置する設計とする。【76条24】【77条61	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．7 安全パラメータ表示システム（SPDS） 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	7．通信連絡設備に関する設計
	衛星電話設備（固定型）及び無線連絡設備（固定型） は，屋外に設置したアンテナと接続することにより，屋内で使用できる設計とする。【77条7】	$\mathrm{VI}-1-1-10$ 通信連絡設借して関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．4 無線連絡設備（固定型）及び無線連絡設備（復带型） 3．1．6 衛星電話設備（固定型）及び衛星電話設借（㨨带型）	7．通信連絡設備に関する設計
	中央制御室内化設置する衛星電話設備（固定型）及 び無線連絡設備（固定型）は，中央制御室待避所にお いても使用できる設計とする。【77条8】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内）	7．通信連絡設備に関する設計

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
		3．1．6 衛星電話設備（固定型）及び㦣星電話設備（携帯型）	
	中央制御室内に設置する衛星電話設備（固定型）及 び無線連絡設備（固定型）は，非常用交流電源設備に加えて，全交流動力電源か猿失した場合においても，代替電源設備である常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。！77条91	$\mathrm{VI}-1-1-10$ 通信連絡設備し関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．4 無線連絡設備（固定型）及び無線連絡設備（携带型） 3．1．6 衛星電話設備（固定型）及ひ衛星電話設備（携带型）	7．通信連絡設備に関する設計
	緊急時対策所内に設置する衛星電話設備（固定型）及び無線連絡設備（固定型）は，非常用交流電源設備 に加えて，全交流動力電源が喪失した場合においても，代替電源設備である常設代替交流電源設備又は緊急時対策所用代替交流電源設備からの給電が可能な設計と する。【77条10】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．4 無線連絡設備（固定型）及び無線連絡設備（携帯型） 3．1．6 衛星電話設備（固定型）及び衛星電話設備（携帯型）	7．通信連絡設備に関する設計
	衛星電話設備（携帯型），無線連絡設備（携帯型）及 び携行型通話装置は，充電式電池又は乾電池を使用す る設計とする。【77条11】	VI－1－1－10 通信連絡設備し関する説明書 3．施設の譵綳計計方針 3.1 通信連絡設備（発電所内） 3．1．4 無線連絡設備（固定型）及び無線連絡設備（携带型） 3．1．5 携行型通話装置 3．1．6 衛星電設備（固定型）及び徫星電話設備（携带型）	7．通信連絡設備に関する設計
	充電式電池を用いるものについては，ほかの端末又 は予備の充電式電池と交換することにより7日間以上繙続して通話を可能とし，使用後の充電式電池は，中央制御室又は緊急時対策所の電源から充電することが できる設計とする。また，乾電池を用いるものについ ては，予備の乾電池と交換することにより，7日間以上継続して通話ができる設計とする。【77条12】	$\mathrm{VI}-1-1-10$ 通信連絡設借して関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．4 無線連絡設備（固定型）及び無線連絡設備（携带型） 3．1．5 携行型通話装置 3．1．6 衛星電談設備（固定型）及已徫星電話設備（携带型）	7．通信連絡設備に関する設計
	安全パラメータ表示システム（SPDS）のらちデータ収集装置は，非常用交流電源設借に加えて，全交流動力電源が喪失した場合においても，代替電源設備であ る常設代替交流電源設備又は可搬型代替交流電源設備 からの給電が可能な設計とする。【77条13】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．7 安全パラメータ表示システム（SPDS）	7．通信連絡設備に闃する設計
	安全パラメータ表示システム（SPDS）のらちSPDS伝送装置及びSPDS表示装置は，非常用交流電源設備に加 えて，全交流動力電源が䨖失した場合においても，代替電源設備である常設代替交流電源設備又は緊急時対策所用代替交流電源設備からの給電が可能な設計とす る。【77条14】	VI－1－1－10 通信連絡設備し関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．7 安全パラメータ表示システム（SPDS）	7．通信連絡設備に関する設計
	重大事故等が発生した場合に必要な通信連絡設備 （発電所内）及び安全パラメータ表示システム（SPDS） については，基準地震動S s による地震力に対し，地震時及び地震後においても通信連絡に係る機能を保持 するため，固縛又は固定による転倒防止措置等を実施 するとともに，信号ケーブル及び電源ケーブルは，耐震性を有する電線管等に敷設する設計とする。【77条 15］	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内）	7．通信連絡設備に関する設計

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
	4.2 通信連絡設備（発電所外） 設計基準事故が発生した場合において，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所へ事故の発生等に係る連絡を音声等により行うこと ができる通信連絡設備（発電所外）として，十分な数量の電力保安通信用電話設備（固定電話機，PHS端末， FAX及び衛星保安電話（固定型）），社内テレビ会議シス テム，局線加入電話設備（加入電話機及び加入FAX），専用電話設備（地方公共団体向ホットライン），衛星電話設備（固定型），衛星電話設備（携帯型）及び統合原子力防災ネットワークを用いた通信連絡設備（テレビ会議システム，IP電話及びIPーFAX）を設置又は保管す る設計とする。【47条10】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．1 電力保安通信用電話設備（固定電話機，PHS端末， FAX及び衛星保安電話（固定型） 3．2．2 社内テレビ会議システム 3．2．3 局線加入電話設備（加入電話機及び加入FAX） 3．2．4 専用電話設備（地方公共団体向ホットライン） 3．2．5 衛星電話設備（固定型）及び衛星電話設備（携帯型） 3．2．6 統合原子力防災ネットワークを用いた通信連絡設 備（テレビ会議システム，IP電話及びIP－FAX） 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	7．通信連絡設備に関する設計
	また，発電所内から発電所外の緊急時対策支援シス テム（ERSS）い必要なデータを伝送できる設備として， データ伝送設備を設置する設計とする。【46条6】【47条 11】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．7 データ伝送設備 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	7．通信連絡設備に関する設計
	通信連絡設備（発電所外）及びデー夕伝送設備につ いては，有線系回線，無線系回線又は衛星系回線によ る通信方式の多様性を碓保した通信回線に接続する。 電力保安通信用電話設備（固定電話機，PHS端末，FAX及び衛星保安電話（固定型）），統合原子力防災ネット ワークを用いた通信連絡設備（テレビ会議システム， IP電話及びIP－FAX），専用電話設備（地方公共団体向 ホットライン），社内テレビ会議システム及びデータ伝送設備は，専用通信回線に接続し，輻淒等による制限 を受けることなく常時使用できる設計とする。また， これらの専用通信回線の容量は，通話及びデータ伝送 に必要な容量に対し，十分な余裕を確保した設計とす る。【46条6】【47条12】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外）	7．通信連絡設備に関する設計
	通信連絡設備（発電所外）及びデータ伝送設備につ いては，非常用所内電源又は無停電電源（充電器等を含む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。【47条13】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．1 電力保安通信用電話設備（固定電話機，PHS端末， FAX及び衛星保安電話（固定型）） 3．2．2 社内テレビ会議システム 3．2．3 局線加入電話設備（加入電話機及び加入FAX） 3．2．4 専用電話設備（地方公共団体向ホットライン） 3．2．5 衛星電話設備（固定型）及び衛星電話設備（携帯型） 3．2．6 統合原子力防災ネットワークを用いた通信連絡設 備（テレビ会議システム，IP電話及びIP－FAX）	7．通信連絡設備に関する設計

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
		3．2．7 データ伝送設備	
	原子炉冷却采統に係る発電用原子炉施設の損壊又は故障その他の異常が発生した場合において，データ伝送設備は，基準地震動S s による地震力に対し，地震時及び地震後においても，緊急時対策支援システム （ERSS）～必要なデータを伝送する機能を保持するた め，固縛又は固定による転倒防止措置等を実施すると ともに，信号ケーブル及び電源ケーブルは，耐震性を有する電線管等の電路に敷設する設計とする。【 47 条 14］	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外）	7．通信連絡設備に關する設計
	重大事故等が発生した場合において，発電所外（社内外）の通信連絡をする必要のある場所と通信連絡を行らために必要な通信連絡設備（発電所外）及び計測等を行った特に重要なパラメータを発電所外（社内外） の必要な場所で共有するための通信連絡設備（発電所外）として，必要な数量の衛星電話設備（固定型），衛星電話設備（携带型）及び統合原子力防災ネットワー クを用いた通信連絡設備（テレビ会議システム，IP電話及びIP－FAX）を設置又は保管する設計とする。なおう，可搬型については必要な数量に加え，故障を考慮した数量の予備を保管する。【77条16】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．5 衛星電話設備（固定型）及び徫星電話設備（携帯型） 3．2．6 統合原子力防災ネットワークを用いた通信連絡設 備（テレビ会議システム，IP電話及びIP－FAX） 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	7．通信連絡設備に関する設計
	衛星電話設備（携帯型）は，緊急時対策所内に保管 する設計とする。【77条17】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．5 衛星電話設備（固定型）及び衛星電話設備（携帯型）	7．通信連絡設備と關する設計
	衛星電話設備（固定型）は，中央制御室及び緊急時対策所内に設置する設計とする。【77条18】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．5 衛星電話設備（固定型）及び衛星電話設備（携带型）	7．通信連絡設備に關する設計
	統合原子力防災ネットワークを用いた通信連絡設備 （テレビ会議システム，IP電話及びIP－FAX）は，緊急時対策所内江設置する設計とする。【77条19】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．6 統合原子力防災ネットワークを用いた通信連絡設 備（テレビ会議システム，IP電話及びIP－FAX）	7．通信連絡設備に開する設計
	重大事故等が発生した場合において，発電所内から発電所外の緊急時対策支援システム（ERSS）へ必要な データを伝送できる設備として，SPDS伝送装置で構成 するデータ伝送設備を緊急時対策所内比設置する設計 とする。【76条27】【77条20】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．7 データ伝送設備 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	7．通信連絡設備と開する設計
	衛星電話設備（固定型）は，屋外纪設置したアンテ ナと接続することにより，屋内で使用できる設計とす る。【77条21】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．5 衛星電話設備（固定型）及び衛星電話設備（携帯型）	7．通信連絡設備儿開する設計

基本設計方針		設計結果の記載笽所	様式一1への反映結果
変更前	変更後		
	また，中央制御室内に設置する衛星電話設備（固定型）は，中央制御室待避所においても使用できる設計 とする。【77条8】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．5 衛星電話設備（固定型）及び徫星電話設備（携帯型）	7．通信連絡設備に關する設計
	中央制御室内に設置する衛星電話設備（固定型）は，非常用交流電源設備に加えて，全交流動力電源が喪失 した場合においても，代替電源設備である常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。【77条22】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．5 衛星電話設備（固定型）及び徫星電話設備（携帯型）	7．通信連絡設備に關する設計
	衛星電話設備（携帯型）は，充電式電池を使用する設計とする。【77条23】 充電式電池を用いるものについては，ほかの端末又 は予備の充電式電池と交換することにより7日間以上䋊続して通話を可能とし，使用後の充電式電池は，中央制御室又は緊急時対策所の電源から充電することが できる設計とする。【77条24】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．5 衛星電話設備（固定型）及び徫星電話設備（携帯型）	7．通信連絡設備に關する設計
	緊急時対策所内に設置する衛星電話設備（固定型）及び統合原子力防災ネットワークを用いた通信連絡設備（テレビ会議システム，IP電話及びIP－FAX）は，非常用交流電源設備に加えて，全交流動力電源が霛失し た場合においても，代替電源設備である常設代替交流電源設備又は緊急時対策所用代替交流電源設備からの給電が可能な設計とする。【77条25】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．5 衛星電話設備（固定型）及び衛星電話設備（携帯型） 3．2．6 統合原子力防災ネットワークを用いた通信連絡設 備（テレビ会議システム，IP電話及びIP－FAX）	7．通信連絡設備に関する設計
	データ伝送設備は，非常用交流電源設備に加えて，全交流動力電源が喪失した場合においても，代替電源設備である常設代替交流電源設備又は緊急時対策所用代替交流電源設備からの給電が可能な設計とする。【77条26】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外） 3．2．7 データ伝送設備	7．通信連絡設備に関する設計
	重大事故等が発生した場合に必要な通信連絡設備 （発電所外）及びデー夕伝送設備については，基準地震動 s s による地震力に対し，地震時及び地震後にお いても通信連絡に係る機能を保持するため，固縛又は固定による転倒防止措置等を実施するとともに，信号 ケーブル及び電源ケーブルは，耐震性を有する電線管等に數設する設計とする。【77条27】	VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.2 通信連絡設備（発電所外）	7．通信連絡設備に関する設計
	中央制御室内，中央制御室待避所内及び緊急時対策所内に設置する通信連絡設備のらち無線連絡設備，衛星電話設備，携行型通話装置，安全パラメータ表示シ ステム（SPDS），統合原子力防災ネットワークを用いた通信連絡設備及びデータ伝送設備は，二以上の発電用原子炬施設と共用しない設計とする。【77条28】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.2 悪影響防止等 3．系統施設ごとの設計上の考慮 3.3 計測制御系統施設	1．共通的に適用される設計 VI－1－10－4 「原子炉泠却系統施設」の栐式－1 11．健全性に係る設計
4.2 設備の共用 通信連絡設備のらち電力保安通信用電話設備（固定電話機及びPHS端末）（焼却炉建屋，固体廃魯物貯蔵所，	4.3 設備の共用 通信連絡設備のらち電力保安通信用電話設備（固定電話機及びPHS端末）（焼却炉建屋，固体廃乗物貯蔵所，	－	(変更なし)

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
サイトバンカ建屋及び予備変圧器配電盤室）（第1号機設備，第1，2，3号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機に係る通信•通話に必要 な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。	サイトバンカ建屋及び予備変圧器配電盤室）（第1号機設備，第1，2，3号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機に係る通信•通話に必要 な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。【15条13】		
5．制御用空気設備 5.1 計装用圧縮空気系 発電用原子炉の運転に必要な圧縮空気を供給する制御用空気設備として，計装用圧縮空気系を設ける設計 とする。	5．制御用空気設備 5.1 計装用圧縮空気系 発電用原子炉の運転に必要な圧縮空気を供給する制御用空気設備として，計装用圧縮空気系を設ける設計 とする。【14条21】	－	（変更なし）
計装用圧縮空気系は，計装用圧縮空気系空気圧縮機，計装用圧縮空気系空気貯槽，除湿装置等で構成し，空気作動の弁，流量制御器等に圧縮空気を供給する設計 とする。	計装用圧縮空気系は，計装用圧縮空気系空気圧縮機，計装用圧縮空気系空気貯槽，除湿装置等で構成し，空気作動の弁，流量制御器等に圧縮空気を供給する設計 とする。【14条22】	－	（変更なし）
計装用圧縮空気系空気圧縮機が故障した場合でも，所内用圧縮空気系空気圧縮機によって，計装用圧縮空気系に圧縮空気を供給できる設計とする。	計装用圧縮空気系空気圧縮機が故障した場合でも，所内用圧縮空気系空気圧縮機によって，計装用圧縮空気系に圧縮空気を供給できる設計とする。【14条23】	－	（変更なし）
所内用圧縮空気系は，所内用圧縮空気系空気圧縮機，所内用圧縮空気系空気貯槽等で構成し，空気貯槽を経 て各負荷先へ圧縮空気を供給できる設計とする。	所内用圧縮空気系は，所内用圧縮空気系空気圧縮機，所内用圧縮空気系空気貯槽等で構成し，空気貯槽を経 て各負荷先へ圧縮空気を供給できる設計とする。【14条 24】	－	（変更なし）
	5.2 高圧窒素ガス供給系 原子炉冷却材圧力バウンダリが高圧の状態であっ て，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炉心の著しい損傷及 び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダリを減圧するために必要な重大事故等対処設備として，高圧窒素ガス供給系（非常用）を設 ける設計とする。【61条1】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） 計測制御系統施設に係る機器の配置を明示した図面 5．6．1 高圧窒素ガス供給系	8．原子炉冷却材圧力バウンダリを減圧するための設備の設計
	原子炉泠却材圧力バウンダリを減圧するための設備 のらち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，高圧窒素ガス供給系（非常用） は，主蒸気逃がし安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機能用アキュムレータ及び主蒸気逃が し安全弁自動減圧機能用アキュムレータの充填圧力が喪失した場合において，主蒸気逃がし安全弁（6個）の作動に必要な窒素を高圧窒素ガスボンベにより供給で きる設計とする。【61条11】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 計測制御系統施設に係る系統図 5．6．1 高圧窒素ガス供給系 構造図 4．2．1 主蒸気系	8．原子炉冷却材圧力バウンダリを減圧するための設備の設計 VI－1－10－4 「原子炉冷却系統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
		5．6．2 代替高圧窒素ガス供給系 構造図 4．2．1 主蒸気系 5．6．2 代替高圧窒素ガス供給系 8.1 原子炉格納容器	2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	高圧窒素ガスボンベの圧力が低下した場合は，現場 で高圧窒素ガスボンベの取替えが可能な設計とする。【61条15】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） 構造図 5．6．2 代替高圧窒素ガス供給系	8．原子炉泠却材圧力バウンダリを減圧するための設備の設計
	代替高圧窒素ガス供給系の流路として，設計基準事故対処設備である主蒸気逃がし安全弁を重大事故等対処設備として使用することから，流路に係る機能につ いて重大事故等対処設備としての設計を行ら。【61条 16】	要目表 VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉冷却系統施設に係る系統図 4．2．1 主蒸気系 計測制御系統施設に係る系統図 5．6．2 代替高圧窒素がス供給系 構造図 4．2．1 主蒸気系 8.1 原子炉格納容器	8．原子炬椧却材圧力バウンダリを減圧するための設備の設計 VI－1－10－4 「原子炉冷却系統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計 18.3 機能を兼用する機器を含む原子炉冷却系統施設の系統図に関する取りまとめ VI－1－10－8 「原子炉格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2．2．機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
6．主要対象設備 計測制御系統施設の対象となる主要な設備につい て，「表1 計測制御系統施設の主要設備リスト」に示 す。	6．主要対象設備 計測制御系統施設の対象となる主要な設備につい て，「表1 計測制御系統施設の主要設備リスト」に示 す。 本施設の設備として兼用する場合に主要設備リスト に記載されない設備については「表2 計測制御系統施設の兼用設備リスト」に示す。	－	（「主要設備リスト」及び「兼用設備リスト」による）

「要目表から設工認添付書類及び様式 -1 への展開表」【計測制御系統施設】

要目表		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
1 制御方式 中央制御方式による自動及び手動制御	1 制御方式 中央制御方式による自動及び手動制御		（変更なし）
2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 中央制御室は以下の機能を有する。 中央制御室は耐震性を有する制御建屋内に設置し，基準地震動による地震力に対して機能を喪失しない設計とするとともに，発電用原子炉の反応度制御系統及 び原子炉停止系統に係る設備，非常用炉心冷却設備そ の他の非常時に発電用原子炉の安全を確保するための設備を操作できる設計とする。	2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 中央制御室は以下の機能を有する。 中央制御室は耐震性を有する制御建屋内に設置し，基準地震動 S s による地震力に対して機能を喪失しな い設計とするとともに，発電用原子炉の反応度制御系統及び原子炉停止系統に係る設備，非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するた めの設備を操作できる設計とする。【38条1】	－	（変更なし）
発電用原子炉及び主要な関連設備の運転状況（発電用原子炉の制御棒の動作状態，発電用原子炉及び原子炉冷却系統に係る主要なポンプの起動•停止状態，発電用原子炉及び原子灲冷却系統に係る主要な弁の開閉状態）の監視及び操作ができるとともに，発電用原子炉施設の安全性を確保するために必要な操作を手動に より行うことができる設計とする。	発電用原子炉及び主要な関連設備の運転状況（発電用原子炉の制御棒の動作状態，発電用原子炉及び原子炉冷却系統に係る主要なポンプの起動•停止状態，発電用原子炉及び原子炉冷却系統に係る主要な弁の開閉状態）の監視及び操作ができるとともに，発電用原子炉施設の安全性を確保するために必要な操作を手動に より行うことができる設計とする。【38条2】	－	（変更なし）
a．中央制御室制御盤等 中央制御室制御盤は，原子炉制御関係，原子炉プラ ントプロセス計装関係，原子炉保護系関係，原子炉補助設備関係，タービン発電機関係，所内電気回路関係等の計測制御装置を設けた中央制御室主制御盤及び中央制御室内裏側直立盤で構成し，設計基準対象施設の健全性を確認するために必要なパラメータ（炉心の中性子束，制御棒位置，原子炉冷却材の圧力，温度及び流量，原子炉水位，原子炉格納容器内の圧力及び温度等）を監視できるとともに，全てのプラント運転状態 において，運転員に過度な負担とならないよう，中央制御室制御盤において監視，操作する対象を定め，通常運転，運転時の異常な過渡変化及び設計基準事故の対応に必要な操作器，指示計，記録計及び警報装置（核燃料物質の取扱施設及び貯蔵施設，計測制御系統施設，放射線管理施設及び放射性廃棄物の廃棄施設の警報装置を含む。）を有する設計とする。 なお，安全保護装置及びそれにより駆動又は制御さ れる機器については，バイパス状態，使用不能状態に ついて表示すること等により運転員が的確に認知でき る設計とする。 また，運転員の監視及び操作を支援するための装置及びプラント状態の把握を支援する装置としてCRT等 を有する設計とする。	a．中央制御室制御盤等 中央制御室制御盤は，原子炉制御関係，原子炉プラ ントプロセス計装関係，原子炉保護系関係，原子灲補助設備関係，タービン発電機関係，所内電気回路関係等の計測制御装置を設けた中央制御室主制御盤及び中央制御室内裏側直立盤で構成し，設計基準対象施設の健全性を確認するために必要なパラメータ（灲心の中性子束，制御棒位置，原子炉冷却材の圧力，温度及び流量，原子炉水位，原子炉格納容器内の圧力及び温度等）を監視できるとともに，全てのプラント運転状態 において，運転員に過度な負担とならないよう，中央制御室制御盤において監視，操作する対象を定め，通常運転，運転時の異常な過渡変化及び設計基準事故の対応に必要な操作器，指示計，記録計及び警報装置（核燃料物質の取扱施設及び貯蔵施設，計測制御系統施設，放射線管理施設及び放射性廃棄物の廃棄施設の警報装置を含む。）を有する設計とする。 なお，安全保護装置及びそれにより駆動又は制御さ れる機器については，バイパス状態，使用不能状態に ついて表示すること等により運転員が的確に認知でき る設計とする。 また，運転員の監視及び操作を支援するための装置及びプラント状態の把握を支援する装置としてCRT等 を有する設計とする。【38条3】	－	（変更なし）
非常用炉心冷却設備その他の非常時に発電用原子炉 の安全を確保するための設備を運転中に試験する場合	非常用炉心冷却設備その他の非常時に発電用原子炉 の安全を確保するための設備を運転中に試験する場合	－	（変更なし）

要目表		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
に使用する電動弁用電動機の熱的過負荷保護装置は，使用状態を運転員が的確に識別できるよう表示装置を設ける設計とする。	に使用する電動弁用電動機の熱的過負荷保護装置は，使用状態を運転員が的確に識別できるよう表示装置を設ける設計とする。【38条5】		
緊急時対策所との連絡及び連携の機能に係る情報伝達の不備や誤判断が生じないよう，緊急時対策に必要 な情報について運転員を介さずとも確認できる設計と する。	緊急時対策所との連絡及び連携の機能に係る情報伝達の不備や誤判断が生じないよう，緊急時対策に必要 な情報について運転員を介さずとも確認できる設計と する。【38条4】	－	（変更なし）
設計基準対象施設は，プラントの安全上重要な機能 に支障をきたすおそれがある機器•弁等に対して，色分けや銘板取り付け等の識別管理や人間工学的な操作性も考慮した監視操作エリア・設備の配置，中央監視操作の盤面配置，理解しやすい表示方法により発電用原子炉施設の状態が正確，かつ迅速に把握できる設計 とするとともに施錠管理を行い，運転員の誤操作を防止する設計とする。 また，保守点検において誤りが生じにくいよう留意 した設計とする。	設計基準対象施設は，プラントの安全上重要な機能 に支障をきたすおそれがある機器•弁等に対して，色分けや銘板取り付け等の識別管理や人間工学的な操作性も考慮した監視操作エリア・設備の配置，中央監視操作の盤面配置，理解しやすい表示方法により発電用原子炉施設の状態が正確，かつ迅速に把握できる設計 とするとともに施錠管理を行い，運転員の誤操作を防止する設計とする。 また，保守点検において誤りが生じにくいよう留意 した設計とする。【38条6】	－	（変更なし）
中央制御室の制御盤は，盤面器具（指示計，記録計，操作器具，表示装置，警報表示）を系統毎にグループ化して主制御盤に集約し，操作器具の統一化（色，形状，大きさ等の視覚的要素での識別），操作器具の操作方法に統一性を持たせること等により，通常運転，運転時の異常な過渡変化及び設計基準事故時において運転員の誤操作を防止するとともに，容易に操作ができ る設計とする。	中央制御室の制御盤は，盤面器具（指示計，記録計，操作器具，表示装置，警報表示）を系統毎にグループ化して主制御盤に集約し，操作器具の統一化（色，形状，大きさ等の視覚的要素での識別），操作器具の操作方法に統一性を持たせること等により，通常運転，運転時の異常な過渡変化及び設計基準事故時において運転員の誤操作を防止するとともに，容易に操作ができ る設計とする。【38条8】	－	（変更なし）
中央制御室主制御盤に手摺を設置することにより，地震発生時における運転員の安全確保及び制御盤上の操作器具への誤接触を防止できる設計とする。	中央制御室主制御盤に手摺を設置することにより，地震発生時における運転員の安全確保及び制御盤上の操作器具への誤接触を防止できる設計とする。【38条9】	－	（変更なし）
運転員が運転時の異常な過渡変化及び設計基準事故 に対応するための設備を中央制御室において容易に操作することができる設計とするとともに，現場操作に ついても運転時の異常な過渡変化及び設計基準事故時 に操作が必要な箇所は環境条件を想定し，適切な対応 を行らことにより容易に操作することができる設計と する。	当該操作が必要となる理由となった事象が有意な可能性をもって同時にもたらされる環境条件及び発電用原子炉施設で有意な可能性をもって同時にもたらされ る環境条件（地震，内部火災，内部溢水，外部電源喪失並びに燃焼ガス，ばい煙，有毒ガス，降下火砕物及び凍結による操作雰囲気の悪化）を想定しても，運転員 が運転時の異常な過渡変化及び設計基準事故に対応す るための設備を中央制御室において操作に必要な照明 の確保等により容易に操作することができる設計とす るとともに，現場操作についても運転時の異常な過渡変化及び設計基準事故時に操作が必要な箇所は環境条件を想定し，適切な対応を行うことにより容易に操作 することができる設計とする。【38条7】	要目表 VI－1－5－4 中央制御室の機能に関する説明書 2．基本方針 2.1 中央制御室制御盤等 3.1 中央制御室制御盤等	9．中央制御室の機能の設計
	b．外部状況把握 発電用原子炉施設の外部の状況を把握するため，津波監視カメラ（浸水防護施設の設備を計測制御系統施設の設備として兼用（以下同じ。）），自然現象監視カメ	要目表 VI－1－5－4 中央制御室の機能に関する説明書 2．基本方針	9．中央制御室の機能の設計

要目表		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	ラ，風向，風速その他の気象条件を測定する気象観測設備（第 1 号機設備，第 $1,2,3$ 号機共用）等を設置し，津波監視カメラ及び自然現象監視カメラの映像，気象観測設備等のパラメータ及び公的機関から地震，津波，竜巻情報等の入手により中央制御室から発電用原子炉施設に影響を及ぼす可能性のある自然現象等を把握で きる設計とする。【38条10】	2.2 外部状況把握 3．中央制御室の機能に係る詳細設計 3.2 外部状況把握 環境測定装置の取付箇所を明示した図面 1.5 環境測定装置の構造図及び取付箇所を明示した図面 環境測定装置の構造図 1.5 環境測定装置の構造図及び取付箇所を明示した図面	
	津波監視カメラ及び自然現象監視カメラは暗視機能等を持ち，中央制御室にて遠隔操作することにより，発電所構内の周辺状況（海側，山側）を昼夜にわたり把握できる設計とする。【38条10】	要目表 VI－1－5－4 中央制御室の機能に関する説明書 2．基本方針 2．2 外部状況把握 3．中央制御室の機能に係る詳細設計 3.2 外部状況把握 環境測定装置の構造図 1.5 環境測定装置の構造図及び取付箇所を明示した図面	9．中央制御室の機能の設計
	なお，津波監視カメラは，地震荷重等を考慮し必要 な強度を有する設計とするとともに，非常用交流電源設備又は常設代替交流電源設備から給電できる設計と する。【38条10】	要目表 VI－1－5－4 中央制御室の機能に関する説明書 2．基本方針 2．2 外部状況把握 3．中央制御室の機能に係る詳細設計 3.2 外部状況把握	9．中央制御室の機能の設計
c．居住性の確保 中央制御室及びこれに連絡する通路並びに運転員そ の他の従事者が中央制御室に出入りするための区域 は，原子炉冷却系統に係る発電用原子炉施設の損壊又 は故障その他の異常が発生した場合に，中央制御室の気密性，遮蔽その他適切な放射線防護措置，気体状の放射性物質並びに火災等により発生する燃焼ガス及び有毒がスに対する換気設備の隔離その他の適切な防護措置を講じることにより，発電用原子炉の運転の停止 その他の発電用原子炉施設の安全性を確保するための措置をとるための機能を有するとともに連絡する通路及び出入りするための区域は従事者が支障なく中央制御室に入ることができるよう，多重性を有する設計と する。	c．居住性の確保 中央制御室及びこれに連絡する通路並びに運転員そ の他の従事者が中央制御室に出入りするための区域 は，原子炉冷却系統に係る発電用原子炉施設の損壊又 は故障その他の異常が発生した場合に，中央制御室の気密性，遮蔽その他適切な放射線防護措置，気体状の放射性物質並びに火災等により発生する燃焼ガス，ば い煙，有毒ガス及び降下火砕物に対する換気設備の隔離その他の適切な防護措置を講じることにより，発電用原子炉の運転の停止その他の発電用原子炉施設の安全性を確保するための措置をとるための機能を有する とともに連絡する通路及び出入りするための区域は従事者が支障なく中央制御室に入ることができるよう，多重性を有する設計とする。【38条12】	VI－1－7－3 中央制御室の居住性に関する説明書 3．中央制御室の居住性を確保するための防護措置 3.1 換気設備	VI－1－10－7 「放射線管理施設」の様式－1 10．中央制御室及び緊急時対策所の居住性に関する設計 10．1 中央制御室
	重大事故等が発生し，中央制御室の外側が放射性物質により汚染したような状況下において，運転員が中央制御室の外側から中央制御室に放射性物質による汚染を持込むことを防止するため，身体サーベイ及び作業服の着替え等を行うための区画を設ける設計とす	運用に関する記載であり，保安規定にて対応	－

要目表		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
	る。【74条17】		
	鿉心の著しい損傷が発生した場合においても，可搬型照明（SA），中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，中央制御室再循環フィルタ装置，中央制御室待避所加圧設備（空気ボンベ），中央制御室しやへい壁，中央制御室待避所遮蔽，補助しや へい，2次しゃへい壁，差圧計（中央制御室待避所用），酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）により，中央制御室内にとどまり必要な操作ができる設計とする。【74条1】	要目表 VI－1－5－4 中央制御室の機能に関する説明書 2．基本方針 2.3 居住性の確保 3．中央制御室 3.3 居住性の確保	9．中央制御室の機能の設計
	炬心の著しい損傷が発生した場合において，原子炉格納施設の非常用ガス処理系及び原子炬建屋ブローア ウトパネル閉止装置により，運転員の被ばくを低減で きる設計とする。【74条20】【74条22】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－5－4 中央制御室の機能に関する説明書 2．基本方針 2.3 居住性の確保 3．中央制御室 3.3 居住性の確保	9．中央制御室の機能の設計 VI－1－10－8 「原子炬格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	中央制御室送風機，中央制御室排風機及び中央制御室再循環送風機は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とする。 ［74条4］	VI－1－7－3 中央制御室の居住性に関する説明書 3．中央制御室の居住性を碓保するための防護措置 3.1 換気設備	VI－1－10－7 「放射線管理施設」の様式 -1 10．中央制御室及び㢣急時対策所つ居住性に開する設計 10.1 中央制御室
	非常用ガス処理系は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とす る。【74条24】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	VI－1－10－4 「原子炉冷却系統施設」の様式－1 11．健全性に係る設計
	可搬型照明（SA）及び原子炉建屋ブローアウトパネ ル閉止装置は，全交流動力電源喪失時においても常設代替交流電源設備からの給電が可能な設計とする。【74条14】【74条25】	要目表 VI－1－5－4 中央制御室の機能に関する説明書 3．中央制御室 3.3 居住性の確保 VI－1－1－12 非常用照明に関する説明書 3．施設の詳細設計方針 3.3 重大事故等発生時の照明 VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 別添4 ブローアウトパネル関連設備の設計方針	9．中央制御室の機能の設計 VI－1－10－8 「原子炬格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 4．その他原子炉格納施設に係る設計 4.3 原子炉建屋ブローアウトパネル関連設備の設計
	炬心の著しい損凗後の原子炬格納容器フィルタバン ト系を作動させる場合に放出される放射性雲通過時 に，運転員の被ばくを低減するため，中央制御室内に中央制御室待避所を設け，中央制御室待避所には，遮蔽設備として，中央制御室待避所遮蔽を設ける。中央	VI－1－7－3 中央制卸室の居住性に関する説明書 3．中央制御室の居住性を確保するための防護措置 3.1 換気設備	VI－1－10－7 「放射線管理施設」の様式 -1 10．中央制御室及ひ緊急時対策所の居住性に関する設計 10.1 中央制御室

要目表		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	制御室待避所は，中央制御室待避所加圧設備（空気ボ ンベ）で正圧化することにより，放射性物質が中央制御室待避所に流入することを一定時間完全に防ぐこと ができる設計とする。【74条5】		
	差圧計（中央制御室待避所用）により，中央制御室待避所と中央制御室との間が正圧化に必要な差圧が碓保できていることを把握できる設計とする。【74条15】	要目表 VI－1－5－4 中央制御室の機能に関する説明書 3．中央制御室の機能に係る詳細設計 3.3 居住性の確保	9．中央制御室の機能の設計
	炬心の著しい損傷が発生した場合に，非常用ガス処理系は，非常用ガス処理系排風機により原子炬建屋原子炉棟内を負圧江維持するとともに，原子炉格納容器 から原子炬建屋原子炉棟内に漏えいした放射性物質を含む気体を排気筒から排気し，原子炉格納容器から漏 えいした空気中の放射性物質の濃度を低減させること で，中央制御室にとどまる運転員を過度の被ばくから防護する設計とする。【74条21】	要目表 VI－1－5－4 中央制御室の機能に関する説明書 3．中央制御室の機能に係る詳細設計 3.3 居住性の確保 VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.1 設計基準事故時における設計条件 3．1．15 原子炉建屋原子炉棟	9．中央制御室の機能の設計 VI－1－10－8 「原子炉格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	炬心の著しい損傷が発生し，非常用ガス処理系を起動する際に，原子炉建屋ブローアウトパネルを閉止す る必要がある場合には，中央制御室から原子炉建屋ブ ローアウトパネル閉止装置を操作し，容易かつ碓実に開口部を閉止できる設計とする。また，原子炉建屋づ ローアウトパネル閉止装置は現場においても，人力に より操作できる設計とする。【74条22】	要目表 VI－1－5－4 中央制御室の機能に関する説明書 2．基本方針 2.3 居住性の確保 3．中央制御室の機能に係る詳細設計 3.3 居住性の確保 $\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 別添4 ブローアウトパネル関連設備の設計方針	9．中央制御室の機能の設計 VI－1－10－8 「原子炉格納施設」の様式 -1 4．その他原子炉格納施設に係る設計 4.3 原子炉建屋ブローアウトパネル関連設備の設計
	設計基準事故時及び炬心の著しい損傷が発生した場合において，中央制御室内及び中央制御室待避所内の酸素濃度及び二酸化炭素浱度が活動に支障がない範囲 にあることを把握できるよう，酸素濃度計（中央制御室用）（個数1（予備1））及び二酸化炭素濃度計（中央制御室用）（個数（予備1）を中央制御室内江保管す る設計とする。また，酸素濃度計（中央制御室用）（個数1）及び二酸化炭素濃度計（中央制御室用）（個数1） を中央制御室待避所内に保管する設計とする。【38条 18】【74条16】	要目表 VI－1－5－4 中央制御室の機能に関する説明書 2．基本方針 2.3 居住性の確保 3．中央制御室の機能に係る詳細設計 3.3 居住性の確保	9．中央制御室の機能の設計
	重大事故等時に，中央制御室内及び中央制御室待避所内での操作等に必要な照度の碓保は，可搬型照明（SA） （個数6（予備1））によりできる設計とし，身体サーベ イ及び作業服の着替え等に必要な照度の碓保は，乾電池内蔵型照明（個数 5 （予備 1 ））によりできる設計とす	要目表 VI－1－5－4 中央制御室の機能に関する説明書 2．基本方針 2.3 居住性の確保	9．中央制御室の機能の設計

要目表		設計結果の記載笽所	様式－1～の反映結果
変更前	変更後		
	る。【74条13】 ${ }^{\text {a }}$（4条19】		
	炬心の著しい損傷が発生した場合においても中央制御室に運転員がとどまるため，以下の設備を設置又は保管する。 中央制御室待避所化待避した運転員が，緊急時対策所と通信連絡を行らため，必要な数量の無線連絡設備 （固定型）及び衛星電話設備（固定型）を設置する設計とする。 中央制御室待避所に待避した運転員が，中央制御室待避所の外に出ることなく発電用原子炬施設の主要な計測装置の監視を行うため，必要な数量のデータ表示装置（待避所）を設置する設計とする。【74条9】744 11］	要目表 VI－1－5－4 中央制御室の機能に関する説明書 3．中央制御室の機能に係る詳細設計 3.3 居住性の確保 VI－1－1－10 通信連絡設備に関する説明書 2．基本方針 2.1 通信連絡設備（発電所内） 2.2 通信連絡設備（発電所外） 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3.2 通信連絡設備（発電所外） 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	7．通信連絡設備に関する設計 9．中央制御室の機能の設計
	無線連絡設備（固定型），衛星電話設備（固定型）及 びデータ表示装置（待避所）は，全交流動力電源喪失時においても常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。【74条10】【74条12】	要目表 VI－1－5－4 中央制御室の機能に関する説明書 3．中央制御室の機能に係る詳細設計 3.3 居住性の確保 VI－1－1－10 通信連絡設備に関する説明書 2．基本方針 2.1 通信連絡設備（発電所内） 2.2 通信連絡設備（発電所外） 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3.2 通信連絡設備（発電所外） 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	7．通信連絡設備に関する設計 9．中央制御室の機能の設計
d．通信連絡 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常の際に，中央制御室等から人が立ち入る可能性のある原子炉建屋，タービン建屋等の建屋内外各所の人に操作，作業，退避の指示等の連絡を行	d．通信連絡 原子炉冷却系統江係る発電用原子炉施設の損壊又は故障その他の異常の際に，中央制御室等から人が立ち入る可能性のある原子炉建屋，タービン建屋等の建屋内外各所の人江操作，作業，退避の指示，事故対策の	要目表 $\mathrm{VI}-1-1-10$ 通信連絡設備に関する説明書 2．基本方針 2.1 通信連絡設備（発電所内）	7．通信連絡設備に関する設計 9．中央制御室の機能の設計

要目表		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
らことができる設計とする。	ための集合等の連絡をブザー鳴動，音声等により行う ことができる設計とする。【47条6】	2.2 通信連絡設備（発電所外） 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3.2 通信連絡設備（発電所外） VI－1－5－4 中央制御室の機能に関する説明書 2．基本方針 2.4 通信連絡 3．中央制御室の機能に係る詳細設計 3.4 通信連絡設備	
	重大事故等が発生した場合において，発電所内外の通信連絡をする必要のある場所と通信連絡を行らこと ができる設計とする。【77条1】【77条16】	要目表 VI－1－1－10 通信連絡設備に関する説明書 2．基本方針 2.1 通信連絡設備（発電所内） 2.2 通信連絡設備（発電所外） 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3.2 通信連絡設備（発電所外） $\mathrm{VI}-1-5-4$ 中央制御室の機能に関する説明書 2．基本方針 2.4 通信連絡 3．中央制御室の機能に係る詳細設計 3.4 通信連絡設備	7．通信連絡設備に関する設計 9．中央制御室の機能の設計
（2）中央制御室外原子炉停止機能 中央制御室外原子灲停止機能は以下の機能を有す る。 火災その他の異常な状態により中央制御室が使用で きない場合において，中央制御室以外の場所から，発電用原子炉を高温停止の状態に直ちに移行及び必要な パラメータを想定される範囲内に制御し，その後，発電用原子炉を安全な低温停止の状態に移行及び低温停止の状態を維持させるために必要な機能を有する中央制御室外原子炉停止装置を設ける設計とする。【38条 11］	変更なし	-	(変更なし)

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－510－5 基本設計方針から設工認添付書類及び様式—1～の展開表 （放射性廃棄物の廃棄施設）

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【放射性廃葉物の廃充施設】

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	$\begin{gathered} \text { (用語の定義のみ) } \end{gathered}$
第1章 共通項目 放射性廃棄物の廃棄施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対する要求（4．7 内燃機関の設計条件， 4.8 電気設備の設計条件を除く。），5．その他」の基本設計方針について は，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 放射性廃棄物の廃葉施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設 の基本設計方針「第1章 共通項目」に基づく設計とす る。	－	1．共通的に適用される設計
第2章 個別項目 1．廃棄物貯蔵設備，廃棄物処理設備等 1.1 廃棄物貯蔵設備 放射性廃棄物を貯蔵する設備の容量は，通常運転時 に発生する放射性廃棄物の発生量と放射性廃棄物処理設備の処理能力，また，放射性廃棄物処理設備の稼働率を想定した設計とする。	第2章 個別項目 1．廃棄物貯蔵設備，廃棄物処理設備等 1.1 廃棄物貯蔵設備 放射性廃棄物を貯蔵する設備の容量は，通常運転時 に発生する放射性廃棄物の発生量と放射性廃棄物処理設備の処理能力，また，放射性廃棄物処理設備の稼働率を想定した設計とする。【40条1】	－	（変更なし）
放射性廃棄物を貯蔵する設備は，放射性廃棄物が漏 えいし難い設計とする。また，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含 まれる化学薬品の影響及び不純物の影響により著しく腐食しない設計とする。	放射性廃棄物を貯蔵する設備は，放射性廃棄物が漏 えいし難い設計とする。また，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含 まれる化学薬品の影響及び不純物の影響により著しく腐食しない設計とする。【40条2】	－	（変更なし）
1.2 廃棄物処理設備 放射性廃棄物を処理する設備は，周辺監視区域の外 の空気中及び周辺監視区域の境界における水中の放射性物質の濃度が，それぞれ，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に定められた濃度限度以下となる ように，発電用原子炉施設において発生する放射性廃棄物を処理する能力を有する設計とする。	1.2 廃棄物処理設備 放射性廃棄物を処理する設備は，周辺監視区域の外 の空気中及び周辺監視区域の境界における水中の放射性物質の濃度が，それぞれ，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に定められた濃度限度以下となる ように，発電用原子炉施設において発生する放射性廃棄物を処理する能力を有する設計とする。【39条1】	－	（変更なし）
さらに，発電所周辺の一般公衆の線量を合理的に達成できる限り低く保つ設計とし，「発電用軽水型原子炉施設周辺の線量目標値に関する指針」を満足する設計 とする。	さらに，発電所周辺の一般公衆の線量を合理的に達成できる限り低く保つ設計とし，「発電用軽水型原子炉施設周辺の線量目標値に関する指針」を満足する設計 とする。【39条2】	－	（変更なし）
気体廃棄物処理系は，蒸気式空気抽出器排ガス中の水素と酸素とを結合させる排ガス再結合器，排ガス復水器，活性炭式希ガスホールドアップ塔等で構成し，排気は，放射性物質の濃度をモニタしつつ排気筒から放出する設計とする。 活性炭式希ガスホールドアップ塔でキセノンを約 18日間，クリプトンを約24時間保持する設計とする。	気体廃棄物処理系は，蒸気式空気抽出器排ガス中の水素と酸素とを結合させる排ガス再結合器，排ガス復水器，活性炭式希ガスホールドアップ塔等で構成し，排気は，放射性物質の濃度をモニタしつつ排気筒から放出する設計とする。 活性炭式希ガスホールドアップ塔でキセノンを約 18日間，クリプトンを約24時間保持する設計とする。【 39	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	条3】		
液体廃棄物処理系は，液体廃棄物を分離収集し，廃液の性状に応じて，機器ドレン系，床ドレン・化学廃液系及びランドリドレン系（第1号機設備，第1，2号機共用）で処理する設計とする。	液体廃棄物処理系は，液体廃棄物を分離収集し，廃液の性状に応じて，機器ドレン系，床ドレン・化学廃液系及びランドリドレン系（第1号機設備，第1，2号機共用）で処理する設計とする。【39条4】	－	（変更なし）
放射性物質を含む原子炉冷却材を通常運転時におい て原子炉冷却系統外に排出する場合は，床ドレン・化学廃液系及び機器ドレン系のサンプを介して，液体廃棄物処理系へ導く設計とする。	放射性物質を含む原子炉冷却材を通常運転時におい て原子炉冷却系統外に排出する場合は，床ドレン・化学廃液系及び機器ドレン系のサンプを介して，液体廃棄物処理系へ導く設計とする。【29条2】	－	（変更なし）
固体廃棄物処理系は，廃棄物の種類に応じて，濃縮廃液，使用済樹脂及び廃スラッジを固型化するプラス チック固化式固化装置（第1，2号機共用），濃縮廃液を固型化するセメント固化式固化装置（第1号機設備，第 1，2号機共用（以下同じ。））及び可燃性雑固体廃棄物，脱塩装置から発生する使用済樹脂及びランドリ廃スラ ッジを焼却する固体廃棄物焼却設備（第1号機設備，第 1，2，3号機共用（以下同じ。）），並びに不燃性雑固体廃棄物を圧縮する減容装置（「第1号機設備，第1，2，3号機共用」，「第1，2，3号機共用」及び「第3号機設備，第1，2，3号機共用」（以下同じ。））及び固型化処理用減容機（第3号機設備，第1，2，3号機共用（以下同じ。）） で処理する設計とする。	固体廃棄物処理系は，廃棄物の種類に応じて，濃縮廃液，使用済樹脂及び廃スラッジを固型化するプラス チック固化式固化装置（第1，2号機共用），濃縮廃液を固型化するセメント固化式固化装置（第1号機設備，第 1，2号機共用（以下同じ。））及び可燃性雑固体廃棄物，脱塩装置から発生する使用済樹脂及びランドリ廃スラ ッジを焼却する固体廃棄物焼却設備（第1号機設備，第 1，2，3号機共用（以下同じ。）），並びに不燃性雑固体廃棄物を圧縮する減容装置（「第1号機設備，第1，2，3号機共用」，「第1，2，3号機共用」及び「第3号機設備，第1，2，3号機共用」（以下同じ。））及び固型化処理用減容機（第3号機設備，第1，2，3号機共用（以下同じ。）） で処理する設計とする。【39条5】	－	（変更なし）
サプレッションチェンバの保守•点検のため，プー ル水の排水，貯留，返送を行らための設備として，サ プレッションプール水貯蔵系（一部第1，2号機共用（以下同じ。））を設置する。 サプレッションプール水貯蔵系を構成するサプレッ ションプール水貯蔵タンク（第1，2号機共用（以下同 じ。））は，サプレッションチェンバ内のプール水を貯留するのに十分な容量を有する設計とする。 また，サプレッションプール水貯蔵タンクは，床ド レン・化学廃液系に導かれた廃液等を貯留することが できる設計とする。【39条5－1】		－	（記載削除のみ，変更なし）
放射性廃棄物を処理する設備は，放射性廃棄物以外 の廃棄物を処理する設備と区別し，放射性廃棄物以外 の流体状の廃棄物を流体状の放射性廃棄物を処理する設備に導かない設計とする。	放射性廃棄物を処理する設備は，放射性廃棄物以外 の廃棄物を処理する設備と区別し，放射性廃棄物以外 の流体状の廃棄物を流体状の放射性廃棄物を処理する設備に導かない設計とする。【39条6】	－	（変更なし）
放射性廃棄物を処理する設備は，放射性廃棄物が漏 えいし難い又は放射性廃裹物を処理する過程において散逸し難い構造とし，かつ，放射性廃臬物に含まれる化学薬品の影響及び不純物の影響により著しく腐食し ない設計とする。	放射性廃棄物を処理する設備は，放射性廃棄物が漏 えいし難い又は放射性廃棄物を処理する過程において散逸し難い構造とし，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食し ない設計とする。【39条7】	－	（変更なし）
気体状の放射性廃棄物はフィルタを通し放射性物質 の濃度を監視可能な排気筒等から放出する設計とす る。	気体状の放射性廃棄物はフィルタを通し放射性物質 の濃度を監視可能な排気筒等から放出する設計とす る。	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
また，フィルタは，放射性物質による汚染の除去又 は交換に必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易な設計とする。	また，フィルタは，放射性物質による汚染の除去又 は交換に必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易な設計とする。【39条8】		
流体状の放射性廃棄物は，管理区域内で処理するこ ととし，流体状の放射性廃棄物を管理区域外において運搬するための容器は設置しない。	流体状の放射性廃棄物は，管理区域内で処理するこ ととし，流体状の放射性廃棄物を管理区域外において運搬するための容器は設置しない。【39条9】	－	（変更なし）
原子炉冷却材圧力バウンダリ内に施設されたものか ら発生する高放射性の固体状の放射性廃蓑物（放射能量が科技庁告示第 5 号第 3 条第 1 号に規定する A_{1} 値又は A_{2} 値を超えるもの（除染等により線量低減ができるも のは除く））を管理区域外において運搬するための固体廃棄物移送容器（第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。））は，容易かつ安全に取扱うことができ，か つ，運搬中に予想される温度及び内圧の変化，振動等 により，亀裂，破損等が生じるおそれがない設計とす る。 また，固体廃棄物移送容器は，放射性廃棄物が漏え いし難い構造であり，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食しな い設計とする。	原子炉冷却材圧力バウンダリ内に施設されたものか ら発生する高放射性の固体状の放射性廃棄物（放射能量が科技庁告示第 5 号第 3 条第 1 号に規定する A_{1} 値又は A_{2} 値を超えるもの（除染等により線量低減ができるも のは除く））を管理区域外において運搬するための固体廃棄物移送容器（第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。））は，容易かつ安全に取扱うことができ，か つ，運搬中に予想される温度及び内圧の変化，振動等 により，亀裂，破損等が生じるおそれがない設計とす る。 また，固体廃棄物移送容器は，放射性廃棄物が漏え いし難い構造であり，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食しな い設計とする。【39条10】	－	（変更なし）
固体廃棄物移送容器は，内部に放射性廃棄物を入れ た場合に，放射線障害を防止するため，その表面の線量当量率及びその表面から 1 m の距離における線量当量率が「核燃料物質等の工場又は事業所の外における運搬に関する規則」に定められた線量当量率を超えない設計とする。	固体廃棄物移送容器は，内部に放射性廃棄物を入れ た場合に，放射線障害を防止するため，その表面の線量当量率及びその表面から1mの距離における線量当量率が「核燃料物質等の工場又は事業所の外における運搬に関する規則」に定められた線量当量率を超えない設計とする。【39条11】	－	（変更なし）
1.3 汚染拡大防止 1．3．1 流体状の放射性廃棄物の漏えいし難い構造及 び漏えいの拡大防止 放射性液体廃棄物処理施設内部又は内包する放射性廃棄物の濃度が $37 \mathrm{~Bq} / \mathrm{cm}^{3}$ を超える放射性液体廃棄物貯蔵施設内部のらち，流体状の放射性廃棄物の漏えいが拡大するおそれがある部分の漏えいし難い構造，漏え いの拡大防止，堰については，次のとおりとする。	1.3 污染拡大防止 1．3．1 流体状の放射性廃棄物の漏えいし難い構造及 び漏えいの拡大防止 放射性液体廃棄物処理施設内部又は内包する放射性廃棄物の濃度が $37 \mathrm{~Bq} / \mathrm{cm}^{3}$ を超える放射性液体廃棄物貯蔵施設内部のらち，流体状の放射性廃棄物の漏えいが拡大するおそれがある部分の漏えいし難い構造，漏え いの拡大防止，堰については，次のとおりとする。【39条12】【40条4】	－	（変更なし）
（1）漏えいし難い構造 全ての床面，適切な高さまでの壁面及びその両者の接合部は，耐水性を有する設計とし，流体状の放射性廃棄物が漏えいし難い構造とする。また，その貫通部 は堰の機能を失わない構造とする。	（1）漏えいし難い構造 全ての床面，適切な高さまでの壁面及びその両者の接合部は，耐水性を有する設計とし，流体状の放射性廃棄物が漏えいし難い構造とする。また，その貫通部 は堰の機能を失わない構造とする。【39条13】【40条5】	－	（変更なし）
（2）漏えいの拡大防止 床面は，床面の傾斜又は床面に設けられた溝の傾斜 により流体状の放射性廃棄物が排液受け口に導かれる構造とし，かつ，気体状のものを除く流体状の放射性	（2）漏えいの拡大防止 床面は，床面の傾斜又は床面に設けられた溝の傾斜 により流体状の放射性廃棄物が排液受け口に導かれる構造とし，かつ，気体状のものを除く流体状の放射性	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
廃棄物を処理又は貯蔵する設備の周辺部には，堰又は堰と同様の効果を有するものを施設し，流体状の放射性廃棄物の漏えいの拡大を防止する設計とする。	廃棄物を処理又は貯蔵する設備の周辺部には，堰又は堰と同様の効果を有するものを施設し，流体状の放射性廃棄物の漏えいの拡大を防止する設計とする。【39条 14】【40条6】		
（3）放射性廃棄物処理施設に係る堰の施設 放射性廃棄物処理施設外に通じる出入口又はその周辺部には，堰を施設することにより，流体状の放射性廃棄物が施設外へ漏えいすることを防止する設計とす る。	（3）放射性廃棄物処理施設に係る堰の施設 放射性廃棄物処理施設外に通じる出入口又はその周辺部には，堰を施設することにより，流体状の放射性廃棄物が施設外へ漏えいすることを防止する設計とす る。【39条15】	－	（変更なし）
施設外へ漏えいすることを防止するための堰は，処理する設備に係わる配管について，長さが当該設備に接続される配管の内径の $1 / 2$ ，幅がその配管の肉厚の $1 / 2$ の大きさの開口を当該設備と当該配管との接合部近傍に仮定したとき，開口からの流体状の放射性廃棄物の漏えい量のらち最大の漏えい量をもってしても，流体状の放射性廃棄物の漏えいが広範囲に拡大するこ とを防止する設計とする。 この場合の仮定は堰の能力を算定するためにのみに設けるものであり，開口は施設内の貯蔵設備に1ヶ所想定し，漏えい時間は漏えいを適切に止めることができ るまでの時間とし，床ドレンファンネルの排出機能を考慮する。床ドレンファンネルは，その機能が確実な ものとなるように設計する。	施設外へ漏えいすることを防止するための堰は，処理する設備に係わる配管について，長さが当該設備に接続される配管の内径の $1 / 2$ ，幅がその配管の肉厚の $1 / 2$ の大きさの開口を当該設備と当該配管との接合部近傍に仮定したとき，開口からの流体状の放射性廃妻物の漏えい量のらち最大の漏えい量をもってしても，流体状の放射性廃棄物の漏えいが広範囲に拡大するこ とを防止する設計とする。 この場合の仮定は堰の能力を算定するためにのみに設けるものであり，開口は施設内の貯蔵設備に1ヶ所想定し，漏えい時間は漏えいを適切に止めることができ るまでの時間とし，床ドレンファンネルの排出機能を考慮する。床ドレンファンネルは，その機能が確実な ものとなるように設計する。【39条16】	－	（変更なし）
（4）放射性廃棄物貯蔵施設に係る堰の施設 放射性廃棄物貯蔵施設外に通じる出入口又はその周辺部には，堰を施設することにより，流体状の放射性廃棄物が施設外へ漏えいすることを防止する設計とす る。 漏えいの拡大を防止するための堰及び施設外へ漏え いすることを防止するための堰は，開口を仮定する貯蔵設備が設置されている区画内の床ドレンファンネル の排出機能を考慮しないものとし，流体状の放射性廃棄物の施設外への漏えいを防止できる能力をもつ設計 とする。	（4）放射性廃葉物貯蔵施設に係る堰の施設 放射性廃棄物貯蔵施設外に通じる出入口又はその周辺部には，堰を施設することにより，流体状の放射性廃棄物が施設外へ漏えいすることを防止する設計とす る。 漏えいの拡大を防止するための堰及び施設外へ漏え いすることを防止するための堰は，開口を仮定する貯蔵設備が設置されている区画内の床ドレンファンネル の排出機能を考慮しないものとし，流体状の放射性廃棄物の施設外への漏えいを防止できる能力をもつ設計 とする。【40条7】	－	（変更なし）
1．3．2 固体状の放射性廃棄物の汚染拡大防止 固体状の放射性廃棄物を貯蔵する設備が設置される発電用原子炉施設は，固体状の放射性廃棄物をドラム缶に詰める，容器に入れる又はタンク内に貯蔵するこ とによる汚染拡大防止措置を講じることにより，放射性廃棄物による汚染が広がらない設計とする。	1．3．2 固体状の放射性廃棄物の汚染拡大防止 固体状の放射性廃棄物を貯蔵する設備が設置される発電用原子炉施設は，固体状の放射性廃蓑物をドラム缶に詰める，容器に入れる又はタンク内に貯蔵するこ とによる汚染拡大防止措置を講じることにより，放射性廃棄物による汚染が広がらない設計とする。【40条3】	－	（変更なし）
1.4 排水路 液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれ らに関連する施設を設ける建屋の床面下には，発電所外に管理されずに排出される排水が流れる排水路を施設しない設計とする。	1.4 排水路 液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれ らに関連する施設を設ける建屋の床面下には，発電所外に管理されずに排出される排水が流れる排水路を施設しない設計とする。【39条17】【40条8】	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
また，液体廃棄物処理設備，液体廃革物貯蔵設備及 びこれらに関連する施設を設ける建屋内部には発電所外に管理されずに排出される排水が流れる排水路に通 じる開口部を設けない設計とする。	また，液体廃棄物処理設備，液体廃棄物貯蔵設備及 びこれらに関連する施設を設ける建屋内部には発電所外に管理されずに排出される排水が流れる排水路に通 じる開口部を設けない設計とする。【41条3】	－	（変更なし）
1.5 設備の共用 プラスチック固化式固化装置は，第 1 号機及び第 2 号機で共用し，固体廃棄物貯蔵所（第 1 号機設備，第 1 ， 2， 3 号機共用），固体廃棄物焼却設備，サイトバンカ（第 1号機設備，第1，2，3号機共用），雑固体廃妻物保管室 （第 1 号機設備，第 $1,2,3$ 号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，放射性廃棄物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮す ることで，共用により安全性を損なわない設計とする。	1.5 設備の共用 プラスチック固化式固化装置は，第1号機及び第 2 号機で共用し，固体廃棄物貯蔵所（第 1 号機設備，第 1 ， 2， 3 号機共用），固体廃妻物焼却設備，サイトバンカ（第 1 号機設備，第 $1,2,3$ 号機共用），雑固体廃棄物保管室 （第1号機設備，第1，2，3号機共用）は，第1号機，第 2 号機及び第 3 号機で共用するが，放射性廃棄物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮す ることで，共用により安全性を損なわない設計とする。 【15条16】	－	（変更なし）
	なお」プラスチック固化式固化装置は休止しており，今後も使用しない。【15条15】	－	（記載追加のみ，変更なし）
排気筒の支持構造物（第 $2, ~ 3$ 号機設備，第 2 ， 3 号機共用）は，第 3 号機と共用するが，支持機能を十分維持 できる設計とすることで，共用により安全性を損なわ ない設計とする。	排気筒の支持構造物（第 $2, ~ 3$ 号機設備，第 2 ， 3 号機共用）は，第 3 号機と共用するが，支持機能を十分維持 できる設計とすることで，共用により安全性を損なわ ない設計とする。【15条14】	－	（変更なし）
サプレッションプール水貯蔵系は，第1号機及び第2号機で共用するが，サプレッションプール水貯蔵タン ク（第1号機設備，第1，2号機共用）及びサプレッショ ンプール水貯蔵タンク（第 1 ， 2 号機共用）を用いるこ とで，第1号機又は第2号機のサプレッションチェンバ のプール水の最大容量を貯蔵でき，安全性を損なわな い設計とする。【15条14－1】		－	（記載削除のみ，変更なし）
2．警報装置等 流体状の放射性廃棄物を処理し，又は貯蔵する設備 から流体状の放射性廃棄物が著しく漏えいするおそれ が発生した場合（床への漏えい又はそのおそれ（数滴程度の微少漏えいを除く。））を早期に検出するよう， タンクの水位，漏えい検知等によりこれらを確実に検出して自動的に警報（機器ドレン，床ドレンの容器又 はサンプの水位）を発信する装置を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報 できる設計とする。 また，タンク水位の検出器，インターロック等の適切な計測制御設備を設けることにより，漏えいの発生 を防止できる設計とする。【47条3】	2．警報装置等変更なし	－	（変更なし）
放射性廃棄物を処理し，又は貯蔵する設備に係る主要な機械又は器具の動作状態を正確，かつ迅速に把握 できるようポンプの運転停止状態及び弁の開閉状態等 を表示灯により監視できる設計とする。【47条5】		－	（変更なし）
3．主要対象設備	3．主要対象設備	－	－

変更前	基本設計方針	設計結果の記載箇所	变更後

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

$\begin{array}{ll}\text { 補足－510－6 } & \text { 基本設計方針から設工認添付書類及び様式 }-1 へ \text { の展開表 } \\ & \text {（放射線管理施設）}\end{array}$

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【放射線管理施設】

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	$\begin{gathered} \text { (用語の定義のみ) } \end{gathered}$
第1章 共通項目 放射線管理施設の共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．設備に対する要求（4．5 安全弁等， 4.6 逆止め弁， 4.7 内燃機関の設計条件， 4． 8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 放射線管理施設の共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．5 安全并等，5．6 逆止め弁，5．7 内燃機関及びガスタービンの設計条件， 5.8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
第2章 個別項目 1．放射線管理施設 1.1 放射線管理用計測装置 発電用原子炉施設には，通常運転時，運転時の異常 な過渡変化時及び設計基準事故時において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリング設備，エリアモニタリング設備及び放射線サーベイ機器 （第1号機設備，第1，2，3号機共用）を設ける設計と する。	第2章 個別項目 1．放射線管理施設 1.1 放射線管理用計測装置 発電用原子炉施設には，通常運転時，運転時の異常 な過渡変化時及び設計基準事故時において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリング設備，エリアモニタリング設備及び放射線サーベイ機器 （第1号機設備，第1，2，3号機共用）を設ける設計と する。【34条4】	－	（変更なし）
出入管理関係設備（第1号機設備，第1，2号機共用） として，放射線業務従事者及び一時立入者の出入管理，汚染管理のための測定機器等を設ける設計とする。 各系統の試料，放射性廃棄物の放出管理用試料及び環境試料の化学分析並びに放射能測定を行うため，化学分析室（第 1 号機設備，第 1,2 号機共用），放射能測定室（第 1 号機設備，第 1,2 号機共用（以下同じ。））に測定機器を設ける設計とする。	出入管理関係設備（第1号機設備，第1， 2 号機共用） として，放射線業務従事者及び一時立入者の出入管理，汚染管理のための測定機器等を設ける設計とする。 各系統の試料，放射性廃棄物の放出管理用試料及び環境試料の化学分析並びに放射能測定を行うため，化学分析室（第 1 号機設備，第1，2号機共用），放射能測定室（第 1 号機設備，第 1,2 号機共用（以下同じ。））に測定機器を設ける設計とする。【34条5】	－	（変更なし）
発電所外へ放出する放射性物質の濃度，周辺監視区域境界付近の空間線量率等を監視するためにプロセス モニタリング設備，固定式周辺モニタリング設備及び移動式周辺モニタリング設備を設ける設計とする。ま た，風向，風速その他の気象条件を測定するため，環境測定装置を設ける設計とする。 プロセスモニタリング設備，エリアモニタリング設備及び固定式周辺モニタリング設備については，設計基準事故時における迅速な対応のために必要な情報を中央制御室に表示できる設計とする。	発電所外へ放出する放射性物質の濃度，周辺監視区域境界付近の空間線量率等を監視するためにプロセス モニタリング設備，固定式周辺モニタリング設備及び移動式周辺モニタリング設備を設ける設計とする。ま た，風向，風速その他の気象条件を測定するため，環境測定装置を設ける設計とする。 プロセスモニタリング設備，エリアモニタリング設備及び固定式周辺モニタリング設備については，設計基準事故時における迅速な対応のために必要な情報を中央制御室及び緊急時対策所に表示できる設計とす る。【34条6】	－	（冒頭宣言）
設計基準対象施設は，発電用原子炉施設の機械又は	設計基準対象施設は，発電用原子炉施設の機械又は	－	－

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼすおそれが発生した場合（原子炉建屋原子炉棟内の放射能レベルが設定値 を超えた場合，主蒸気管又は蒸気式空気抽出器排ガス中の放射能レベルが設定値を超えた場合等）に，これ らを確実に検出して自動的に警報（原子炉建屋放射能高，主蒸気管放射能高等）を発信する装置を設ける設計とする。	器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼすおそれが発生した場合（原子炉建屋原子炉棟内の放射能レベルが設定値 を超えた場合，主蒸気管又は蒸気式空気抽出器排ガス中の放射能レベルが設定値を超えた場合等）に，これ らを確実に検出して自動的に警報（原子炉建屋放射能高，主蒸気管放射能高等）を発信する装置を設ける設計とする。【47条1】		（変更なし）
排気筒の出口又はこれに近接する箇所における排気中の放射性物質の濃度，管理区域内において人が常時立ち入る場所その他放射線管理を特に必要とする場所 （燃料取扱場所その他の放射線業務従事者に対する放射線障害の防止のための措置を必要とする場所をい う。）の線量当量率及び周辺監視区域に隣接する地域に おける空間線量率が著しく上昇した場合に，これらを確実に検出して自動的に中央制御室に警報（排気筒放射能高，エリア放射線モニタ放射能高及び周辺監視区域放射能高）を発信する装置を設ける設計とする。	排気筒の出口又はこれに近接する箇所における排気中の放射性物質の濃度，管理区域内において人が常時立ち入る場所その他放射線管理を特に必要とする場所 （燃料取扱場所その他の放射線業務従事者に対する放射線障害の防止のための措置を必要とする場所をい う。）の線量当量率及び周辺監視区域に隣接する地域に おける空間線量率が著しく上昇した場合に，これらを確実に検出して自動的に中央制御室に警報（排気筒放射能高，エリア放射線モニタ放射能高及び周辺監視区域放射能高）を発信する装置を設ける設計とする。【47条2】	－	（変更なし）
上記の警報を発信する装置は，表示ランプの点灯， ブザー鳴動等により運転員に通報できる設計とする。	上記の警報を発信する装置は，表示ランプの点灯， ブザー鳴動等により運転員に通報できる設計とする。 【47条1】【47条2】	－	（変更なし）
	重大事故等が発生した場合に発電所及びその周辺 （発電所の周辺海域を含む。）において，発電用原子炉施設から放出される放射性物質の濃度及び放射線量を監視し，及び測定し，並びにその結果を記録するため に，移動式周辺モニタリング設備を保管する設計とす る。【75条1】	－	（冒頭宣言）
	重大事故等が発生した場合に発電所において，風向，風速その他の気象条件を測定し，及びその結果を記録 するために，環境測定装置を保管する設計とする。【75条10】	－	（冒頭宣言）
	重大事故等が発生し，当該重大事故等に対処するた めに監視することが必要なパラメータとして，原子炉格納容器内の放射線量率，最終ヒートシンクの確保及 び使用済燃料プールの監視に必要なパラメータを計測 する装置を設ける設計とする。【73条2】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 2．2 重大事故等対処設備に関する計測 2．2．3 重大事故等の対処に必要なパラメータの計測又は推定 放射線管理用計測装置 計測装置の検出器の取付箇所を明	2．プロセスモニタリング設備に関する設計 2.1 原子炉格納容器本体内の放射性物質濃度を計測する装置 2．1．1 格納容器内雾囲気放射線モニタ（D／W，S／C） 2.2 放射性物質により汚染するおそれがある管理区域か ら環境に放出する排水中又は排気中の放射性物質濃度 を測定する装置 2．2．1 フィルタ装置出口放射線モニタ 2．2．2 耐圧強化ベント系放射線モニタ 3．エリアモニタリング設備に関する設計 3.2 使用済燃料貯蔵槽エリアの線量当量率を計測する装置 3.2 .2 使用済燃料プール上部空間放射線モニタ（低線量，

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		示した図面 7.1 放身線管理用計測装置	高線量）
	重大事故等が発生し，計測機器（非常用のものを含 む。）の故障により，当該重大事故等に対処するために監視することが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定する ために必要なパラメータを計測する設備を設置する設計とする。【73条1】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する計測 2．2．3 重大事故等の対処に必要なパラメータの計測又は推定 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面 7.1 放射線管理用計測装置	2．プロセスモニタリンク設借に関する設計 2.1 原子炉格納容器本体内の放射性物質濃度を計測する装置 2．1．1 格納容器内雾囲気放射線モニタ（D／W，S／C） 2.2 放射性物質により污染するおそれがある管理区域か ら環境に放出する排水中又は排気中の放射性物質濃度 を測定する装置 2．2．1 フィルタ装置出口放射線モニタ 2．2．2 耐圧強化ベント系放射線モニタ 3．エリアモニタリンク設備に関する設計 3.2 使用済料料䝪蔵槽エリアの線量当量率を計測する装置 3．2．2 使用济燃料プール上部空間放射線モ二夕（低線量，高線量）
	重大事故等に対処するために監視することが必要な パラメータは，炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設 の状態を把握するためのパラメータとし，計測する装置は「表1 放射線管理施設の主要設備リスト」のプロ セスモニタリング設備に示す重大事故等対処設備，エ リアモニタリング設備のらち使用済燃料プール上部空間放射線モニタ（低線量）及び使用済然料プール上部空間放射線モニタ（高線量）とする。【73条3】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する計測 2．2．3 重大事故等の対処に必要なパラメータの計測又は推定	2．プロセスモニタリンク設備に関する設計 2.1 原子炉格納容器本体内の放射性物質濃度を計測する装置 2．1．1 格納容器内雾囲気放身孫泉モ二タ（D／W， S / C ） 2.2 放射性物質により活染するおそれがある管理区域か ら環境に放出する排水中又は排気中の放射性物質洪度 を測定する装置 2．2．1 フィルタ装置出口放射線モニタ 2．2．2 耐圧強化ベント系放射線モニタ 3．エリアモニタリング設備に関する設計 3.2 使用済料料䝪蔵槽エリアの線量当量率を計測する装置 3．2．2 使用济燃料プール上部空間放射線モ二夕（低線量，高線量）
	炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握 するためのパラメータを計測する装置は，設計基準事故等に想定される変動範囲の最大值を考慮し，適切に対応するための計測範囲を有する設計とするととも に，重大事故等が発生し，当該重大事故等に対処する ため江監視することが必要な原子炉格納容器の線量当量率等のパラメータの計測が困難となった場合に，代替パラメータにより推定ができる設計とする。【73条8】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及ひ警報動作範囲に関する説明書 4．放射線管理用計測装置の計測範囲及び警報動作範囲 4.1 放射線管理用計測装置の計測範囲 放射線管理用計測装置系統図 7.1 放射線管理用計測装置	2．プロセスモニタリンク設備に関する設計 2.1 原子炉格納容器本体内の放射性物質濃度を計測する装置 2．1．1 格納容器内雾囲気放身線モ二タ（D／W，S／C） 2.2 放射性物質により污染するおそれがある管理区域か ら環境に放出する排水中又は排気中の放射性物質洪度 を測定する装置 2．2．1 フィルタ装置出口放射線モニタ 2．2．2 耐圧強化ベント系放射線モニタ 3．エリアモニタリンク設備に関する設計 3.2 使用斎料料䝪蔵槽エリアの線量当量率を計測する装置 3．2．2 使用済燃料プール上部空間放射線モニタ（低線量，

基本設計方針		設計結果の記載籓所	様式－1～の反映結果
変更前	変更後		
			高線量）
	また，重大事故等時に設計基準を超える状態におけ る発電用原子炬施設の状態を把握するための能力（計測可能範囲）を明碓にするとともに，パラメータの計測が困難となった場合の代替パラメータによる推定等，複数のパラメータの中から碓からしさを考慮した優先順位を保安規定に定めて管理する。【73条7】【73条 9】	運用に関する記載であり，保安規定にて対応	－－
	原子炉格納容器内の放射線量率等想定される重大事故等の対応に必要となるパラメータは，計測又は監視 できる設計とする。また，計測結果は中央制御室に指示又は表示し，記録できる設計とする。【73条12】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.1 プロセスモニタリング設備 3．1．1 原子炉格納容器本体内の放射性物質濃度を計測す る装置 3．1．2 放射性物質により汚染するおそれがある管理区域 から環境に放出する排水中又は排気中の放射性物質濃度を測定する装置 3.2 エリアモニタリング設備 3.2 .2 使用済燃料貯蔵槽エリアの線量当量率を計測する装置 3.5 放射線管理用計測装置の計測結果の表示，記録及び保存 3．5．1 計測結果の指示又は表示 3．5．3 重大事故等対処設備に関する計測結果の記録及び保存 放射線管理用計測装置系統図 7.1 放射線管理用言十測装置	2．プロセスモニタリング設備に関する設計 2.1 原子炉格納容器本体内の放射性物質濃度を計測する装置 2．1．1 格納容器内雾囲気放射線モニタ（D／W，S／C） 2.2 放射性物質により汚染するおそれがある管理区域か ら環境に放出する排水中又は排気中の放射性物質濃度 を測定する装置 2．2．1 フィルタ装置出口放射線モニタ 2．2．2 耐圧強化ベント系放射線モニタ 3．エリアモニタリング設備に関する設計 3.2 使用済燃料貯蔵槽エリアの線量当量率を計測する装置 3.2 .2 使用済燃料プール上部空間放射線モニタ（低線量，高線量） 6．放射線管理用計測装置の計測結果の表示，記録の保存 に関する設計
	重大事故等の対応に必要となるパラメータは，安全 パラメータ表示システム（SPDS）のらちSPDS伝送装置 にて電磁的に記録，保存し，電源喪失により保存した記録が失われないとともに帳票が出力できる設計とす る。また，記録は必要な容量を保存できる設計とする。【73条13】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及ひ警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.1 プロセスモニタリング設備 3．1．1 原子炉格納容器本体内の放射性物質濃度を計測す る装置 3．1．2 放射性物質により汚染するおそれがある管理区域	2．プロセスモニタリンク設備に関する設計 2.1 原子炬格納容器本体内の放射性物質濃度を計測する装置 2．1．1 格納容器内雰囲気放射線モニタ（D／W，S／C） 2.2 放射性物質により污染するおそれがある管理区域か ら環境に放出する排水中又は排気中の放射性物質謈度 を測定する装置 2．2．1 フィルタ装置出口放射線モ二タ 2．2．2 耐圧強化ベント系放射線モニタ 3．エリアモニタリンク設備に関する設計 3.2 使用済然料貯蔵槽エリアの線量当量率を計測する装置

基本設計方針		設計結果の記載綯所	様式 -1 への反映結果
変更前	変更後		
		から環境に放出する排水中又は排気中の放射性物質濃度を測定する装置 3.2 エリアモニタリング設備 3．2．2 使用済燃料貯蔵槽エリアの線量当量率を計測する装置 3.5 放射線管理用計測装置の計測結果の表示，記録及び保存 3．5．1 計測結果の指示又は表示 3．5．3 重大事故等対処設備に関する計測結果の記録及び保存 放射線管理用計測装置系統図 7.1 放射線管理用計測装置	3.2 .2 使用済燃料プール上部空間放射線モニタ（低線量，高線量） 6．放射線管理用計測装置の計測結果の表示，記録の保存 に関する設計
	炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握 するためのパラメータを計測する装置の電源は，非常用交流電源設備又は非常用直流電源設備の喪失等によ り計器電源が喪失した場合において，代替電源設備と して常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用できる設計とす る。【73条10】	VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.1 プロセスモニタリング設備 3．1．1 原子炉格納容器本体内の放射性物質濃度を計測す る装置 3．1．2 放射性物質により污染するおそれがある管理区域 から環境に放出する排水中又は排気中の放射性物質濃度を測定する装置 3.2 エリアモニタリング設備 3.2 .2 使用済燃料貯蔵槽エリアの線量当量率を計測する装置	2．プロセスモニタリング設備に関する設計 2.1 原子炉格納容器本体内の放射性物質濃度を計測する装置 2．1．1 格納容器内雰囲気放射線モニタ（D／W，S／C） 2.2 放射性物質により汚染するおそれがある管理区域か ら環境に放出する排水中又は排気中の放射性物質濃度 を測定する装置 2．2．1 フィルタ装置出口放射線モニタ 2．2．2 耐圧強化ベント系放射線モニタ 3．エリアモニタリング設備に関する設計 3.2 使用済燃料貯蔵槽エリアの線量当量率を計測する装置 3．2．2 使用済燃料プール上部空間放射線モニタ（低線量，高線量）
1．1．1 プロセスモニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，原子炉格納容器内の放射性物質の濃度及び線量当量率，主蒸気管中及び空気抽出器その他の蒸気タービン又は復水器に接続する放射性物質を内包する設備の排ガス中の放射性物質の濃度，排気筒 の出口又はこれに近接する箇所における排気中の放射性物質の濃度，排水口近傍における排水中の放射性物質の濃度及び管理区域内において人が常時立ち入る場所その他放射線管理を特に必要とする場所の線量当量率を計測するためのプロセスモニタリング設備を設 け，計測結果を中央制御室に表示できる設計とする。 また，計測結果を記録できる設計とする。	1．1．1 プロセスモニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，原子炉格納容器内の放射性物質の濃度及び線量当量率，主蒸気管中及び空気抽出器その他の蒸気タービン又は復水器に接続する放射性物質を内包する設備の排ガス中の放射性物質の濃度，排気筒 の出口又はこれに近接する箇所における排気中の放射性物質の濃度，排水口近傍における排水中の放射性物質の濃度及び管理区域内において人が常時立ち入る場所その他放射線管理を特に必要とする場所の線量当量率を計測するためのプロセスモニタリング設備を設 け，計測結果を中央制御室に表示できる設計とする。 また，計測結果を記録し，及び保存することができる設計とする。【34条16】【34条18】【34条19】【34条22】【34条24】	＜下線部＞ 運用に関する記載であり，保安規定にて対応	（変更なし） ＜下線部＞
原子炉冷却材の放射性物質の濃度，排気筒の出口又 はこれに近接する箇所における排気中の放射性物質の濃度及び排水口又はこれに近接する箇所における排水	原子炉冷却材の放射性物質の濃度，排気筒の出口又 はこれに近接する箇所における排気中の放射性物質の濃度及び排水口又はこれに近接する箇所における排水	運用に関する記載であり，保安規定にて対応	－

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
中の放射性物質の濃度は，試料採取設備により断続的 に試料を採取し分析を行い，測定結果を記録する。	中の放射性物質の莀度は，試料採取設備により断続的 に試料を採取し分析を行い，測定結果を記録し，及び保存する。【34条11】【34条20】【34条21】		
放射性物質により汚染するおそれがある管理区域内 に開口部がある排水路を施設しないことから，排水路 の出口近傍における排水中の放射性物質の濃度を計測 するための設備を設けない設計とする。	放射性物質により汚染するおそれがある管理区域内 に開口部がある排水路を施設しないことから，排水路 の出口近傍における排水中の放射性物質の濃度を計測 するための設備を設けない設計とする。【34条23】	－	（変更なし）
プロセスモニタリング設備のらち，原子炉格納容器内の線量当量率を計測する格納容器内雾囲気放射線モ ニタ（D／W）及び格納容器内雰囲気放射線モニタ（S／C） は，それぞれ多重性，独立性を確保した設計とする。	プロセスモニタリング設備のうち，原子炉格納容器内の線量当量率を計測する格納容器内雰囲気放射線モ ニタ（D／W）及び格納容器内雾囲気放射線モニタ（S／C） は，それぞれ多重性，独立性を確保した設計とする。【34条17】	－	(変更なし)
	プロセスモニタリング設備のうち，原子炉建屋原子炻楝排気放射線モニタ及び燃料取替エリア放射線モニ夕は，外部電源が使用できない場合においても非常用所内電源系からの電源供給により，線量当量率を計測 することができる設計とする。【34条25】	$\mathrm{VI}-1-7-1$ 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及ひ警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.1 プロセスモニタリンク設備 3．1．2 放射性物質により污染するおろそれがある管理区域 から環境に放出する排水中又は排気中の放射性物質検度を測定する装置	2．プロセスモニタリンク設備に関する設計 2.2 放射性物質により污染するおそれがある管理区域か ら環境に放出する排水中又は排気中の放射性物質漫度 を測定する装置
	原子炉格納容器フィルタベント系の排出経路におけ る放射線量率を測定し，放射性物質濃度を推定できる よう，フィルタ装置出口配管にフィルタ装置出口放射線モニタを設ける設計とする。【67条22】	要目表 $\mathrm{VI}-1-1-4-6$ 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する計測 2．2．1 最終ヒートシンクの確保の監視に必要なパラメー タの計測 3．放射線管理用計測装置の構成 3.1 プロセスモニタリンク設備 3．1．2 放射性物質により污染するおそれがある管理区域 から環境に放出する排水中又は排気中の放射性物質濃度を測定する装置 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面 7.1 放射線管理用計測装置 放射線管理用計測装置系統図 7.1 放射線管理用計測装置	2．プロセスモニタリンク設備に関する設計 2.2 放射性物質により汚染するおうれてがある管理区域か ら環境に放出する排水中又は排気中の放射性物質濃度 を測定する装置 2．2．1 フィルタ装置出口放射線モニタ
	フィルタ装置出口放射線モニタは，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。【67条24】	$\mathrm{VI}-1-7-1$ 放射線管理用計測㨬置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 3．放射線管理用計測装置の構成	2．プロセスモニタリンク設備に関する設計 2.2 放射性物質により污染するおそれがある管理区域か ら環境に放出する排水中又は排気中の放射性物質濃度

基本設計方針		設計結果の記載箘所	様式一1への反映結果
変更前	変更後		
		3.1 プロセスモニタリンク設備 3．1．2 放射性物質により污染するおそれがある管理区域 から嘸境に放出する排水中又は排気中の放射性物質濃度を測定する装置	を測定する装置 2．2．1 フィルタ装置出口放射線モ二タ
1．1．2 エリアモニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内において人が常時立ち入る場所その他放射線管理を特に必要とする場所の線量当量率を計測するためのエリアモニタリング設備を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設計とする。	1．1．2 エリアモニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内氾おいて人が常時立ち入る場所その他放射線管理を特に必要とする場所の線量当量率を計測するためのエリアモニタリング設備を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録し，及び保存することができる設計と する。【34条24】	＜下線部＞ 運用に関する記載であり，保安規定にて対応	（変更なし） ＜下線部〉
	エリアモニタリング設備のらち，燃料交換フロア放射線モニタは，外部電源が使用できない場合において も非常用所内電源系からの電源供給により，線量当量率を計測することができる設計とする。【34条26】	VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及ひ澹報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.2 エリアモニタリング設備 3．2．2 使用済燃料貯蔵槽エリアの線量当量率を計測する装置	3．エリアモニタリンク設備に関する設計 3.2 使用済燃料貯蔵槽エリアの線量当量率を計測する装置 3．2．1 燃料交換フロア放射線モニタ
	重大事故等時に使用斎燃料プールの監視設備とし て，使用済闗料プール上部空間放射線モニタ（低線量）及び使用済燃料プール上部空間放射線モニタ（高線量） を設け，想定される重大事故等により変動する可能性 のある範囲にわたり測定可能な設計とする。また，計測結果は中央制御室札表示し，記録及び保存できる設計とする。【69条51】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.2 エリアモニタリング設備 3．2．2 使用済燃料貯蔵槽エリアの線量当量率を計測する装置 3.5 放射線管理用計測装置の計測結果の表示，記録及び保存 3．5．1 計測結果の指示又は表示 3．5．3 重大事故等対処設備に関する計測結果の記録及び保存 4．放射線管理用言測装置の計測範囲及ひ警報動作範囲 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面 7.1 放射線管理用計測装置	3．エリアモニタリンク設備に関する設計 3.2 使用济燃料眝蔵槽エリアの線量当量率を計測する装置 3．2．2 使用済燃料プール上部空間放身射線モニタ（低線量，高線量） 6．放射線管理用計測装置の計測結果の表示，記録の保存 に関する設計
	使用済燃料プール上部空間放射線モニタ（低線量）及び使用済燃料プール上部空間放射線モニタ（高線量） は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。【69条53】	VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及ひ澹報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.2 エリアモニタリング設備 3.2 .2 使用済燃料貯蔵槽エリアの線量当量率を計測する装置	3．エリアモニタリング設備に関する設計 3.2 使用済燃料貯蔵槽エリアの線量当量率を計測する装置 3．2．2 使用済関料プール上部空間放身射線モ二タ（低線量，高線量）

基本設計方針		設計結果の記載䀋所	様式－1～の反映結果
変更前	変更後		
	緊急時対策所に設ける緊急時対策所可搬型エリアモ ニタは，重大事故等時に緊急時対策所内への希ガス等 の放射性物質の侵入を低減又は防止するための確実な判断ができるよう放射線量を監視，測定し，計測結果 を記録及び保存できる設計とする。【76条23】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する計測 2．2．5 重大事故等時における緊急時対策所内外のモニタ リング設備 3．放射線管理用計測装置の構成 3.2 エリアモニタリング設備 3．2．1 緊急時対策所の線量当量率を計測する装置 3.5 放射線管理用計測装置の計測結果の表示，記録及び保存 3．5．3 重大事故等対処設備に関する計測結果の記録及び保存 4．放射線管理用計測装置の計測範囲及ひ警報動作範囲 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面 7.1 放射線管理用計測装置 構造図 7.1 放射線管理用計測装置	3．エリアモニタリンク設供汇関する設計 3.1 緊急時対策所の線量当量率を計測する装置 3．1．1 緊急時対策所可搬型エリアモニタ 5．移動式周辺モニタリンク設備に関する設計 5.1 可搬型モニタリングポスト 6．放射線管理用計測装置の計測結果の表示，記録の保存 に関する設計
1．1．3 固定式周辺モニタリンク設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，周辺監視区域境界付近の空間線量率を監視及び測定するための固定式周辺モニタリング設備としてモニタリングポスト（第1号機設備，第1， 2，3号機共用（以下同じ。））を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設計とする。	1．1．3 固定式周辺モニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，周辺監視区域境界付近の空間線量率を監視及び測定するための固定式周辺モニタリング設備としてモニタリングポスト（第1号機設備，第1， 2,3 号機共用（以下同じ。））を設け，計測結果を中央制御室で監視し，現場等で記録及び保存を行うことが できる設計とする。また，緊急時対策所でも監視する ことができる設計とする。【34条27】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.3 固定式周辺モニタリング設備 3.5 放射線管理用計測装置の計測結果の表示，記録及び保存 3．5．1 計測結果の指示又は表示 3．5．2 設計基準対象施設に関する計測結果の記録及び保存 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面 7.1 放射線管理用計測装置	4．固定式周辺モニタリンク設備に関する設計 6．放射線管理用計測㳖置の計測結果の表示，記録の保存 に関する設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		＜下線部 $>$ 運用に関する記載であり，保安規定にて対応	< 線部>
	モニタリングポストは，外部電源が使用できない場 合においても，非常用交流電源設備により，空間線量率を計測することができる設計とする。さらに，モニ タリングポストは，専用の無停電電源装置を有し，電源切替時の短時間の停電時に電源を供給できる設計と し，重大事故等が発生した場合には，非常用交流電源設備に加えて，代替電源設備である常設代替交流電源設備から給電できる設計とする。【34条29】【75条9】	VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.3 固定式周辺モニタリング設備	4．固定式周辺モニタリンク設備に関する設計
	モニタリングポストで計測したデータの伝送系は， モニタリングポスト設置場所から中央制御室及び中央制御室から緊急時対策所建屋間において有線系回線及 び無線系回線により多様性を有する設計とする。【34条 30】	VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.3 固定式周辺モニタリング設備	4．固定式周辺モニタリンク設備に関する設計
周辺監視区域境界付近の放射性物質の濃度は，構内 ダストモニタ（第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。））により断続的に試料を採取し分析を行い，測定結果を記録できる設計とする。	周辺監視区域境界付近の放射性物質の濃度は，構内 ダストモニタ（第1号機設備，第1，2，3号機共用（以下同じ。））により断続的に試料を採取し分析を行い，測定結果を記録し，及び保存することができる設計と する。【34条28】	$\mathrm{VI}-1-7-1$ 放射線管理用計測装置の構成に開する説明書並 びに計測範囲及ひ警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.3 固定式周辺モニタリンク設備 3.5 放身楾管理用計測装置の計測結果の表示，記録及び保存 3．5．1 計測結果の指示又は表示 3．5．2 設計基準対象施設に関する計測結果の記録及び保存	4．固定式周辺モニタリンク設備汇関する設計 6．放射線管理用計測装置の計測結果の表示，記録の保存 に関する設計
1．1．4 移動式周辺モニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，周辺監視区域境界付近の放射性物質の浱度を測定するための移動式周辺モニタリング設備として，空気中の放射性粒子及び放射性よう素の濃度を測定するサンプラと測定器を備えた放射能観測車 （第1号機設備，第1，2，3号機共用，屋外汇保管（以下同じ。））を設け，測定結果を表示し，記録できる設計とする。ただし，放射能観測車による断続的な試料 の分析は，従事者が計測結果を記録し，その記録を確認することをもって，これに代えるものとする。	1．1．4 移動式周辺モニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，周辺監視区域境界付近の放射性物質の莀度を測定するための移動式周辺モニタリング設備として，空気中の放射性粒子及び放射性よう素の濃度を測定するサンプラと測定器を備えた放射能観測車 （第1号機設備，第1，2，3号機共用，屋外汇保管（以下同じ。））を設け，測定結果を表示し，記録し，及び保存することができる設計とする。ただし，放射能観測車による断続的な試料の分析は，従事者が計測結果 を記録し，及びこれを保存し，その記䩮を碓認するこ とをつて，これに代えるものとする。【 34 条 31 ！	VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及ひ警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.5 放射線管理用計測装置の計測結果の表示，記録及び保存 3．5．1 計測結果の指示又は表示 3．5．2 設計基準対象施設に関する計測結果の記録及び保 存 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	6．放射線管理用計惻装置の計測結果の表示，記録の保存 に関する設計 ＜下線部＞
	重大事故等が発生した場合に発電所及びその周辺 （発電所の周辺海域を含む。）において，発電用原子炬施設から放出される放射性物質の湄度（空気中，水中，土壌中）及び放射線量を監視するための移動式周辺モ ニタリング設備として，γ 線サーベイメータ，β 線サ ーベイメータ，α 線サーベイメータ及び電魋箱サーベ イメータを設け，測定結果を記録し，保存できるよう に測定值を表示できる設計とし，可搬型ダスト・よう素サンプラ（個数2（予備1）），小型船舶（個数1（予備	要目表 $\mathrm{VI}-1-1-4-6$ 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－1－4－別添2 設定根拠に関する説明書（別添） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書	5．移動式周辺モニタリンク設備に関する設計 5.2 可搬型放射線計測装置 6．放射線管理用計測装置の計測結果の表示，記録の保存 に関する設計 9．可搬型放射線十測装置及ひ環境武料分析装置に関する設計

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	1）を を保管する設計とする。【75条2】	2．基本方針 2.2 重大事故等対処設備に関する計測 2．2．5 重大事故等時における緊急時対策所内外のモニタ リング設備 3．放射線管理用計測装置の構成 3.4 移動式周辺モニタリング設備 3．4．2 β 線サーベイメータ 3．4．3 γ 線サーベイメータ 3．4．4 α 線サーベイメータ 3．4．5 電離箱サーベイメータ 3.6 その他 3．6．1 海上モニタリングについて VI－1－7－2 管理区域の出入管理設備及び環境試料分析装置 に関する説明書 3．施設の詳細設計方針 3.2 可搬型放射線計測装置，小型船舶及ひ環境試料分析装置 3．2．1 環境試料の種類及び測定頻度 3．2．2 可船型放射線計測装置及び小型船舶 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面 7.1 放射線管理用計測装置 構造図 7.1 放射線管理用計測装置 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	< 下線部 >
	放射能観測車のダスト・よう素サンプラ，放射性よ う素測定装置又は放射性ダスト測定装置が機能䨤失し た場合にその機能を代替する重大事故等対処設備とし て，可搬型ダスト・よう素サンプラ，γ 線サーベイメ一夕及び β 線サーベイメータを設け，重大事故等が発生した場合に，発電所及びその周辺において，発電用原子炉施設から放出される放射性物質の濃度（空気中） を監視し，及び測定し，並びにその結果を記録し，保存できるように測定值を表示できる設計とし，放射能観測車を代替し得る十分な個数を保管する設計とす る。【75条3】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及ひ警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.4 移動式周辺モニタリング設備 3．4．2 β 線サーベイメータ 3．4．3 γ 線サーベイメータ 3.5 放射線管理用計測装置の計測結果の表示，記録及び保存 3．5．1 計測結果の指示又は表示 3．5．3 重大事故等対処設備に関する計測結果の記録及び	5．移動式周辺モニタリンク設備に関する設計 5.2 可搬型放射線詁測装置 6．放射線管理用計測装置の計測結果の表示，記録の保存 に関する設計 9．可船型放射線け隫測装置及び環境試料分析装置に関する設計

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
		保存 4．放射線管理用計測装置の計測範囲及び警報動作範囲 4.1 放射線管理用計測装置の計測範囲 4.2 放射線管理用計測装置の警報動作範囲 VI－1－7－2 管理区域の出入管理設備及び環境試料分析装置 に関する説明書 3．施設の詳細設計方針 3.2 可搬型放射線計測装置，小型船舶及び環境試料分析装置 3．2．1 環境試料の種類及び測定頻度 3．2．2 可搬型放射線計測装置及び小型船舶 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面 7.1 放射線管理用計測装置 構造図 7.1 放射線管理用計測装置 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	＜下線部＞
	モニタリングポストが機能㖑失した場合にその機能 を代替する移動式周辺モニタリング設備として，可搬型モニタリングポストを設け，重大事故等が発生した場合に，発電所僌地境界付近において，発電用原子炉施設から放出される放射線量を監視し，及び測定し，並びにその結果を記録できる設計とする。【75条4】	要目表 $\mathrm{VI}-1-1-4-6$ 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.4 移動式周辺モニタリング設備 3．4．1 可搬型モニタリングポスト 3.5 放射線管理用計測装置の計測結果の表示，記録及び保存 3．5．3 重大事故等対処設備に関する計測結果の記録及び保存 4．放射線管理用計測装置の計測範囲及び警報動作範囲 4.1 放射線管理用計測装置の計測範囲 4.2 放射線管理用計測装置の警報動作範囲 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面 7.1 放射線管理用計測装置 構造図	5．移動式周辺モニタリング設備に関する設計 5.1 可搬型モニタリングポスト 6．放射線管理用計測装置の計測結果の表示，記録の保存 に関する設計

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
		7.1 放射線管理用計測䧇置	
	可搬型モニタリングポストで測定した放射線量は，電磁的に記録，保存し，電源喪失により保存した記録 が失われず，必要な容量を保存できる設計とする。【75条5	VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及ひ灤報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.4 移動式周辺モニタリング設備 3．4．1 可搬型モニタリングポスト 3.5 放射線管理用計測装置の計測結果の表示，記録及び保存 3．5．3 重大事故等対処設備に関する計測結果の記録及び保存 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面 7.1 放射線管理用計測装置 構造図 7.1 放射線管理用計測装置	5．移動式周辺モニタリング設備に関する設計 5.1 可搬型モニタリングポスト 6．放射線管理用計測装置の計測結果の表示，記録の保存 に関する設計
	可搬型モニタリングポストは，モニタリングポスト を代替し得る十分な個数を保管する設計とする。また，指示値は，衛星系回線により伝送し，緊急時対策所で可般型モニタリングポストデータ处理装置にて監視で きる設計とする。【75条6】	VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及ひ警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.4 移動式周辺モニタリング設備 3．4．1 可搬型モニタリングポスト	5．移動式周辺モニタリング設備に関する設計 5.1 可搬型モニタリングポスト
	可搬型モニタリングポストは，重大事故等が発生し た場合に，発電所海側及び緊急時対策建屋屋上におい て，発電用原子炉施設から放出される放射線量を監視 し，及び測定し，並びにその結果を記録できる設計と するとともに，緊急時対策所内への希がス等の放射性物質の侵入を低減又は防止するための確実な判断に用 いる設計とする。【75条7】【76条23】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及び警報動作範囲に関する説明書 3．放射線管理用計測装置の構成 3.4 移動式周辺モニタリング設備 3．4．1 可搬型モニタリングポスト 構造図 7.1 放射線管理用計測装置	5．移動式周辺モニタリング設備に関する設計 5.1 可搬型モニタリングポスト 6．放身線管理用言測装置の計測結果の表示，記録の保存 に開する設計
	これらの設備は，炉心の著しい損傷及び原子炉格納容器の破損が発生した場合に放出されると想定される放射性物質の濃度及び放射線量を測定できる設計とす る。【75条8】	－	$\binom{-}{(\text { (豆宣言 }}$
1．1．5 環境測定装置 放射性気体廃㨀物の放出管理，発電所周辺の一般公衆の線量評価，一般気象データ収集及び発電用原子炉	1．1．5 環境測定装置 放射性気体廃乗物の放出管理，発電所周辺の一般公衆の線量評価，一般気象データ収集及び発電用原子炉	－	(変更なし)

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
施設の外部の状況を把握するための気象観測設備（第 1 号機設備，第 $1, ~ 2, ~ 3$ 号機共用（以下同じ。））を設け，計測結果を中央制御室に表示できる設計とする。また，発電所敷地内における風向及び風速の計測結果を記録 できる設計とする。	施設の外部の状況を把握するための気象観測設備（第 1 号機設備，第 1,2 ， 3 号機共用（以下同じ。））を設け，計測結果を中央制御室に表示できる設計とする。また，発電所敷地内における風向及び風速の計測結果を記録 し，及び保存することができる設計とする。【34条35】	$<$ 下線部＞ 運用に関する記載であり，保安規定にて対応	＜下線部＞
	重大事故等が発生した場合に発電所において，風向，風速その他の気象条件を測定し，及びその結果を記録 するための設備として，代替気象観測設備（個数（備1））を保管する設計とする。【75条11】	環境測定装置の取付箇所を明示した図面 1.5 環境測定装置の構造図及び取付箇所を明示した図面 構造図 1.5 環境測定装置の構造図及び取付箇所を明示した図面	7．重大事故等時の気象観測に関する設計
	気象観測設備が機能喪失した場合にその機能を代替 する重大事故等対処設備として，代替気象観測設備は，重大事故等が発生した場合に，発電所において，風向，風速その他の気象条件を測定し，及びその結果を記録 できる設計とする。【75条12】 代替気象観測設備の指示値は，衛星系回線により伝送し，緊急時対策所で代替気象観測設備データ処理装置にて監視できる設計とする。【75条14】代替気象観測設備で測定した風向，風速その他の気象条件は，電磁的に記録，保存し，電源喪失により保存 した記録が失われず，必要な容量を保存できる設計と する。【75条13】	環境測定装置の取付箇所を明示した図面 1.5 環境測定装置の構造図及び取付箇所を明示した図面 構造図 1.5 環境測定装置の構造図及び取付箇所を明示した図面	7．重大事故等時の気象観測に関する設計
1．1．6 設備の共用 放射能測定室は，第1号機と共用するが，試料の分析等を行らために必要な仕様を満足する設計とすること で，共用により安全性を損なわない設計とする。	1．1．6 設備の共用 放射能測定室は，第1号機と共用するが，試料の分析等を行らために必要な仕様を満足する設計とすること で，共用により安全性を損なわない設計とする。【15条 17】	－	（変更なし）
焼却炉建屋排気ロダストモニタ（第1号機設備，第1， 2,3 号機共用），サイトバンカ建屋排気口放射線モニタ （第 1 号機設備，第 $1,2,3$ 号機共用），液体廃妻物処理系排水放射線モニタ（第1，2号機共用），焼却炉建屋放射線モニタ（第1号機設備，第1，2，3号機共用）及び サイトバンカ建屋放射線モニタ（第1号機設備，第1， 2， 3 号機共用）は，女川原子力発電所共用エリア又は設備における放射線量率等を測定するために必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。	焼却炉建屋排気口ダストモニタ（第1号機設備，第1， 2,3 号機共用），サイトバンカ建屋排気口放射線モニタ （第 1 号機設備，第 $1,2,3$ 号機共用），液体廃棄物処理系排水放射線モニタ（第1，2号機共用），焼却炉建屋放射線モニタ（第 1 号機設備，第 $1, ~ 2$ ， 3 号機共用）及び サイトバンカ建屋放射線モニタ（第1号機設備，第1， 2，3号機共用）は，女川原子力発電所共用エリア又は設備における放射線量率等を測定するために必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。【15条18】	－	（変更なし）
モニタリングポスト，構内ダストモニタ，放射能観測車及び気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定するた めに必要な仕様を満足する設計とすることで，共用に より安全性を損なわない設計とする。	モニタリングポスト，構内ダストモニタ，放射能観測車及び気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定するた めに必要な仕様を満足する設計とすることで，共用に より安全性を損なわない設計とする。【15条19】	－	（変更なし）
2．換気設備，生体遮蔽装置等 2.1 中央制御室の居住性を確保するための防護措置	2．換気設備，生体遮蔽装置等 2.1 中央制御室及び緊急時対策所の居住性を確保す	VI－1－7－3 中央制御室の居住性に関する説明書 4．中央制御室の居住性評価	10．中央制御室及び緊急時対策所の居住性に関する設計 10．1 中央制御室

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
中央制御室は，椧却材衰失等の設計基準事故時に，中央制御室内にとどまり，必要な操作及び措置を行う運転員が過度の被ばくを受けないよう施設し，連転員 の勤務形態を考慮し，事故後30日間において，運転員 が中央制御室に入り，とどまっても，中央制御室しや いい壁を透過する放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室の気密性並びに中央制御室換気空調系，中央制御室しゃへい壁，2次しゃへい壁及び補助しゃへいの機能 とあいまって，「原子力発電所中央制御室の居住性に倸 る被ばく評価手法について（内規）」に基づく被ばく評価により，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に示される 100 mSv を下回る設計とする。 また，運転員その他の従事者が中央制御室にとどまる ため，気体状の放射性物質及び中央制御室外の火㷋等 により発生する燃焼がス及び有毒がスに対する換気設備の隔離その他の適切に防護するための設備を設ける設計とする。	るための防護措置 中央制御室は，浍却材喪失等の設計基淮事故時に，中央制御室内にとどまり，必要な操作及び措置を行ら運転員が過度の被ばくを受けないよう施設し，連転員 の勤務形態を考慮し，事故後 30 日間において，運転員 が中央制御室に入り，とどまっても，中央制御室しや へい壁を透過する放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室の気密性並びに中央制御室換気空調系，中央制御室しゃへい壁，2次しゃへい壁及び補助しゃへいの機能 とあいまって，「原子力発電所中央制御室の居住性に係 る被ばく評価手法について（内規）」に基づく被ばく評価により，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に示される 100 mSv を下回る設計とする。 また，運転員その他の従事者が中央制御室にとどまる ため，気体状の放射性物質及び中央制御室外の火災等 により発生する燃焼ガス，ばい晴，有毒ガス及び降下火砤物に対する換気設備の隔離その他の適切に防護す るための設備を設ける設計とする。【38条13】	4.1 線量評価 4．1．2 評価条件及ひ評価結果 4．1．2．1 設計基準事故時における線量評価 構造図 7.3 生体遮蔽装置	
	運転員の被ばくの観点から結果が最も厳しくなる重大事故等時においても中央制御室に運転員がとどまる ために必要な設備を施設し，中央制御室しゃへい壁を透過する放射線による線量，中央制御室に取り込まれ た外気による線量及び入退域時の線量が，全面マスク等の着用及び運転員の交替要員体制を考慮し，その実施のための体制を整備することで，中央制御室の気密性並びに中央制御室換気空調系，中央制御室待避所加圧空気供給系，中央制御室しやへい壁，中央制御室待避所遮蔽，2 次しゃへい壁及び補助しゃへいの機能とあ いまって，運転員の実効線量が7日間で 100 mSv を超えな い設計とする。炬心の著しい損傷が発生した場合にお ける居住性に係る被ばく評価では，設計基準事故時の手法を参考にするとともに，炬心の著しい損傷が発生 した場合に放出される放射性物質の種類，全交流動力電源霍失時の中央制御室換気空調系の起動遅れ等，炉心の著しい損傷が発生した場合の評価条件を適切に考慮する。【74条6】	VI－1－7－3 中央制御室の居住性に関する説明書 4．中央制御室の居住性評価 4.1 線量評価 4．1．2 評価条件及び評価結果 4．1．2．1 設計基淮事故時における線量評価 構造図 7.3 生体遮蔽装置 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	10．中央制御室及び緊急時対策所の居住性に関する設計 10.1 中央制御室 < 下線部 >
	設計基準事故時及び炬心の著しい損傷が発生した場合において，中央制御室内及び中央制御室待避所内の酸素竖度及び二酸化炭素展度が活動に支障がない範囲 にあることを把握できるよう，計測制御系統施設の酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）を使用し，中央制御室内及び中央制御室待避所内の居住性を碓保できる設計とする。【38条18】	$\mathrm{VI}-1-7-3$ 中央制御室の居住性に関する説明書 4．中央制御室の居住性評価 4.2 酸素濃度及び二酸化炭素濃度評価	10．中央制御室及ひ緊急時対策所の居住性に関する設計 10.1 中央制御室 11．中央制御室待避所に関する設計

基本設計方針		設計結果の記載笽所	様式 -1 への反映結果
変更前	変更後		
	【74条16】		
	炬心の著しい損鹪後の原子炬格納容器フィルタバン卜系を作動させる場合に放出される放射性雲通過時 に，運転員の被ばくを低減するため，中央制御室内に中央制御室待避所を設け，中央制御室待避所には，遮蔽設備として，中央制御室待避所遮蔽を設ける。中央制御室待避所は，中央制御室待避所加圧設備（空気ボ ンベ）で正圧化することにより，放射性物質が中央制御室待避所に流入することを一定時間完全に防ぐこと ができる設計とする。【74条5】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－3 中央制御室の居住性に関する説明書 3．中央制御室の居住性を確保するための防護措置 3.1 換気設備 放射線管理施設に係る機器（放射線管理用計測装置を除 く。）の配置を明示した図面 7.3 生体遮蔽装置 放射線管理施設に係る機器（放射線管理用計測装置を除 く。）の系統図 7．2．3 中央制御室待避所加圧空気供給系 構造図 7．2．3 中央制御室待避所加圧空気供給系	10．中央制御室及び緊急時対策所つ居住性汇関する設計 10.1 中央制御室 11．中央制御室待避所に関する設計
	差圧計（中央制御室待避所用）（個数 1 ，計測範囲 $0 \sim$ 200 Pa ）により，中央制御室待避所と中央制御室との間 が正圧化に必要な差圧が碓保できていることを把握で きる設計とする。【74条15】	VI－1－7－3 中央制御室の居住性に関する説明書 3．中央制御室の居住性を碓保するための防護措置 3.1 換気設備	11．中央制御室待避所に関する設計
	炬心の著しい損傷が発生した場合において，原子炉格納施設の非常用ガス処理系及び原子炬建屋ブローア ウトパネル閉止装置により，運転員の被ばくを低減で きる設計とする。【74条20】 74 条22】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） $\mathrm{VI}-1-1-6$－別添4 ブローアウトパネル関連設備の設計方針 原子炉格納施設に係る機器の配置を明示した図面 8．3．3．1 非常用ガス処理系 原子炉格納施設に係る系統図 8．3．3．1 非常用ガス処理系	VI－1－10－8 「原子炬格納施設」の様式 -1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ 4．その他原子炉格納施設に係る設計 4.3 原子炉建屋ブローアウトパネル関連設備の設計
	重大事故等が発生し，中央制御室の外側が放射性物質により汚染したような状況下において，運転員が中央制御室の外側から中央制御室に放射性物質による汚染を持込むことを防止するため，身体サーベイ及び作業服の着替え等を行らための区画を設ける設計とし，身体サーベイの結果，運転員の污染が確認された場合 は，運転員の除染を行うことができる区画を，身体少 ーベイを行ら区画に隣接して設置する設計とする。174条17】74条18】	運用に関する記載であり，保安規定にて対応	- -

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	中央制御室及び中央制御室待避所内の区画の照明 は，可搬型照明（SA）を使用し，身体サーベイ及び作業服の着替え等を行らための区画の照明は，乾電池内蔵型照明を使用する。【74条13】【74条19】	VI－1－1－12 非常用照明に関する説明書 3.3 重大事故等発生時の照明	VI－1－10－5 「計測制御系統施設」の様式－1 9．中央制御室の機能の設計
	中央制御室送風機，中央制御室排風機及び中央制御室再循噮送風機は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とする。 ［74条4］	VI－1－7－3 中央制御室の居住性に関する説明書 3．中央制御室の居住性を碓保するための防護措置 3.1 換気設備	10．中央制御室及び緊急時対策所の居住性に関する設計 10.1 中央制御室
	非常用ガス処理系は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とす る。【74条24】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 11．健全性に係る設計
	可搬型照明（SA）及び原子炉建屋ブローアウトパネ ル閉止装置は，全交流動力電源喪失時においても常設代替交流電源設備からの給電が可能な設計とする。【 74条14】【74条25】	VI－1－1－12 非常用照明に関する説明書 3.3 重大事故等発生時の照明 $\mathrm{VI}-1-1-6$－別添4 ブローアウトパネル関連設備の設計方針	VI－1－10－5 「計測制御系統施設」の様式－1 9．中央制御室の機能の設計 VI－1－10－8 「原子炬格納施設」の様式 -1 4．その他原子炉格納施設に係る設計 4.3 原子炉建屋ブローアウトパネル関連設備の設計
	重大事故等が発生した場合においても，当該事故等 に対処するために必要な指示を行う要員がとどまるこ とができるよう，緊急時対策所の居住性を確保するた めの設備として，緊急時対策所遮蔽，2次しやへい壁，補助しやへい，緊急時対策所換気空調系，緊急時対策所加圧空気供給系，酸素濃度計（緊急時対策所用），酸化炭素濃度計（緊急時対策所用），緊急時対策所可搬型エリアモニタ及び可搬型モニタリングポストを設け る設計とする。【76条13】	要目表 VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書 （放射線管理施設） VI－1－7－1 放射線管理用計測装置の構成に関する説明書並 びに計測範囲及ひ警報動作範囲に関する説明書 2．基本方針 2.2 重大事故等対処設備に関する計測 2．2．5 重大事故等時における緊急時対策所内外のモニタ リンク設備 VI－1－9－3－2 緊急時対策所の居住性に関する説明書 3．緊急時対策所の居住性を確保するための防護措置 3.1 換気設備等 3．1．1 緊急時対策所換気空調系換気空調系及び緊急時対策所加圧空気供給系 4．緊急時対策所の居住性評価 4.2 酸素濃度及び二酸化炭素濃度評価 4．2．2 評価結果 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面 7.1 放射線管理用計測装置 放射線管理施設に係る機器（放射線管理用計測装置を除 く。）の配置を明示した図面 7．2．2 緊急時対策所換気空調系	3．エリアモニタリング設備に関する設計 3.1 緊急時対策所の線量当量率を計測する装置 3．1．1 緊急時対策所可搬型エリアモニタ 5．移動式周辺モニタリング設備に関する設計 5.1 可搬型モニタリングポスト 10．中央制御室及び緊急時対策所の居住性に関する設計 10.2 緊急時対策所

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	とができるよう考慮する。【76条26】	3.4 資機材及び要員の交替等 $<$ 下線部＞ 運用に関する記載であり，保安規定にて対応	＜下線部＞
2.2 換気設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，放射線障害を防止するため，発電所従業員に新鮮な空気を送るとともに，空気中の放射性物質の除去•低減が可能な換気設備を設ける設計と する。	2.2 換気設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，放射線障害を防止するため，発電所従業員に新鮮な空気を送るとともに，空気中の放射性物質の除去•低減が可能な換気設備を設ける設計と する。【43条1】	－	（変更なし）
換気設備は，放射性物質による汚染の可能性からみ て区域を分け，それぞれ別系統とし，清浄区域に新鮮 な空気を供給して，汚染の可能性のある区域に向って流れるようにし，排気は適切なフィルタを通して行う。 また，各換気系統は，その容量が区域及び部屋の必要 な換気並びに除熱を十分行える設計とする。	換気設備は，放射性物質による汚染の可能性からみ て区域を分け，それぞれ別系統とし，清浄区域に新鮮 な空気を供給して，汚染の可能性のある区域に向って流れるようにし，排気は適切なフィルタを通して行う。 また，各換気系統は，その容量が区域及び部屋の必要 な換気並びに除熱を十分行える設計とする。【43条2】	－	（変更なし）
放射性物質を内包する換気ダクトは，溶接構造とし，耐圧試験に合格したものを使用することで，漏えいし難い構造とする。また，ファン，逆流防止用ダンパ等 を設置し，逆流し難い構造とする。	放射性物質を内包する換気ダクトは，溶接構造とし，耐圧試験に合格したものを使用することで，漏えいし難い構造とする。また，ファン，逆流防止用ダンパ等 を設置し，逆流し難い構造とする。【43条3】	－	（変更なし）
排出する空気を浄化するため，気体状の放射性よう素を除去するチャコールエアフィルタ及び放射性微粒子を除去する高性能エアフィルタを設置する。	排出する空気を浄化するため，気体状の放射性よう素を除去するチャコールエアフィルタ及び放射性微粒子を除去する高性能エアフィルタを設置する。【43条4】	－	（変更なし）
これらのフィルタを内包するフィルタユニットは， フィルタの取替えが容易となるよう取替えに必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易な構造とする。	これらのフィルタを内包するフィルタユニットは， フィルタの取替えが容易となるよう取替えに必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易な構造とする。【43条5】	－	（変更なし）
吸気口は，放射性物質に汚染された空気を吸入し難 いように，排気筒，サイトバンカ建屋排気口及び焼却炉建屋排気口から十分離れた位置に設置する。	吸気口は，放射性物質に汚染された空気を吸入し難 いように，排気筒，サイトバンカ建屋排気口及び焼却炉建屋排気口から十分離れた位置に設置する。【43条6】	－	（変更なし）
2．2．1 中央制御室換気空調系 中央制御室の換気及び冷暖房は，中央制御室送風機，中央制御室再循環フィルタ装置，中央制御室再循環送風機，中央制御室排風機等から構成する中央制御室換気空調系により行う。	2．2．1 中央制御室換気空調系 中央制御室の換気及び冷暖房は，中央制御室送風機，中央制御室再循環フィルタ装置，中央制御室再循環送風機，中央制御室排風機等から構成する中央制御室換気空調系により行う。【43条7】	－	（変更なし）
中央制御室外の火災等により発生する燃焼ガス及び有毒ガスに対し，中央制御室換気空調系の外気との連絡口を遮断し，事故時運転モードに切替えることが可能な設計とする。	中央制御室外の火災等により発生する燃焼ガス，ば い煙，有毒ガス及び降下火砕物に対し，中央制御室換気空調系の外気取入れを手動で遮断し，事故時運転モ ードに切替えることが可能な設計とする。【38条16】	－	(記載追加のみ, 変更なし)
中央制御室換気空調系は，通常のラインの他，高性能エアフィルタ及びチャコールエアフィルタを内蔵し た中央制御室再循環フィルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時には外気との連絡口を遮断し，中央制御室再循環 フィルタ装置を通る事故時運転モードとし，運転員を	中央制御室換気空調系は，通常のラインの他，高性能エアフィルタ及びチャコールエアフィルタを内蔵し た中央制御室再循環フィルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時及び重大事故等時には，中央制御室換気空調系の中央制御室外気取入ダンパ（前），（後）（V30－	VI－1－7－3 中央制御室の居住性に関する説明書 3．中央制御室の居住性を確保するための防護措置 3.1 換気設備	10．中央制御室及び緊急時対策所の居住性に関する設計 10．1 中央制御室

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
被ばくから防護する設計とする。外部との遮断が長期 にわたり，室内の雰囲気が悪くなった場合には，外気 を中央制御室再循環フィルタ装置で浄化しながら取り入れることも可能な設計とする。	D303，D304），中央制御室少量外気取入ダンパ（A），（B） （V30－D301A，B）及び中央制御室排風機（A），（B）出口 ダンパ（V30－D305A，B）を閉とすることにより外気との連絡口を遮断し，中央制御室再循環フィルタ装置入口 ダンパ（A），（B）（V30－D302A，B）を開とすることによ り中央制御室再循澴フィルタ装置を通る事故時運転も ードとし，放射性物質を含む外気が中央制御室に直接流入することを防ぐことができ，運転員を被ばくから防護する設計とする。外部との遮断が長期にわたり，室内の雾囲気が悪くなった場合には，外気を中央制御室再循擐フイルタ装置で浄化しながら取り入れること も可能な設計とする。【38条15】【74条2】【74条3】		
	中央制御室換気空調系は，地震時及び地震後におい ても，中央制御室の気密性とあいまって，設計上の空気の流入率を維持でき，「2．1 中央制御室及び緊急時対策所の居住性を碓保するための防護措置」に示す居住性に係る判断基準を満足する設計とする。【38条14】 ［74条7】	VI－1－7－3 中央制御室の居住性に関する説明書 4．中央制御室の居住性評価 4.1 線量普価 4．1．2 評価条件及ひ評価結果 4．1．2．2 炬心の著しい損傷が発生した場合における線量評価	10．中央制御室及び緊急時対策所の居住性に関する設計 10.1 中央制御室
	中央制御室送風機，中央制御室排風機，中央制御室再循環送風機及び中央制御室再循環フィルタ装置は，設計基準事故対処設備であるとともに，重大事故等時 においても使用するため，重大事故等対処設備として の基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多樣性，位置的分散等」 に示す設計方鈌適用しない。【74条26】	$\mathrm{VI}-1-7-3$ 中央制御室の居住性に関する説明書 3．中央制御室の居住性を碓保するための防護措置 3.1 換気設備	10．中央制御室及び緊急時対策所の居住性に関する設計 10．1 中央制御室
	重要度が特に高い安全機能を有する系統において， 計其準事故が発生した場合に長期間にわたてて機能 が要求される静的機器のらち，単一設計とする中央制御室換気空調系のダクトの一部及び中央制御室再循噮 フィルタ装置については，当該設備に要求される原子炉制御室非常用換気空調機能が喪失する単一故障のう ち，想定される最も過酷な条件として，ダクトの全周破断及び中央制御室再循噮フィルタ装置の閉塞を想定 しても，単一故障による放射性物質の放出汇伴ら被ば くの影響を最小限に抑えるよう，安全上支障のない期間に単一故障を碓実に除去又は修復できる設計とし， その単一故障を仮定しない。【14条7】	運用に関する記載であり，保安規定にて対応	－
	想定される単一故障の発生に伴う中央制御室の運転員の被ばく量は保守的に単一故障を除去又は修復がで きない場合で評価し，緊急作業時に係る線量限度を下回ることを確認する。 また，単一故障の除去又は修復のための作業期間と して想定する3日間を考慮し，修復作業に係る従事者の	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.4 放射線管理施設	1．共通的に適用される設計 VI－1－10－4 「原子炉冷却系統施設」の様式－1 11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	計とする。【76条18】		
	緊急時対策所の緊急時対策所換気空調系及び緊急時対策所加圧空気供給系は，基準地震動 S s による地震力に対し，機能を喪失しないようにするとともに，緊急時対策所の気密性とあいまって緊急時対策所の居住性に係る判断基準を満足する設計とする。【76条21】	VI－1－9－3－2 緊急時対策所の居住性に関する説明書 3．緊急時対策所の居住性を確保するための防護措置 3.1 換気設備等 3．1．1 緊急時対策所換気空調系及び緊急時対策所加圧空気供給系 4．緊急時対策所の居住性評価 4.2 酸素濃度及び二酸化炭素濃度評価 4．2．2 評価結果	10．中央制御室及び緊急時対策所の居住性に関する設計 10.2 緊急時対策所
2．2．2 原子炉建屋原子炉棟換気空調系 原子炉建屋原子炉棟換気空調系は，原子炉棟送風機，原子炉棟排風機等で構成し，原子炉建屋原子炉棟の換気を行う。汚染の可能性のある区域は，給•排気量を適切に設定することによって，清浄区域より負圧に保 つ。供給された空気は，フィルタを通した後，排風機 により排気筒から放出する。 給気及び排気ダクトには，それぞれ2個の空気作動の隔離弁を設け，排気ダクトの放射能レベルが高くなっ た場合等に自動閉鎖し，本換気空調系から非常用ガス処理系に切り換わることで放射性ガスの放出を防ぐ設計とする。	2．2．3 原子炉建屋原子炉棟換気空調系 原子炉建屋原子炉棟換気空調系は，原子炉棟送風機，原子炉棟排風機等で構成し，原子炉建屋原子炉棟の換気を行う。汚染の可能性のある区域は，給•排気量を適切に設定することによって，清浄区域より負圧に保 つ。供給された空気は，フィルタを通した後，排風機 により排気筒から放出する。 給気及び排気ダクトには，それぞれ2個の空気作動の隔離弁を設け，排気ダクトの放射能レベルが高くなっ た場合等に自動閉鎖し，本換気空調系から非常用ガス処理系に切り換わることで放射性ガスの放出を防ぐ設計とする。【43条9】	（1）	（変更なし）
2．2．3 タービン建屋換気空調系 タービン建屋換気空調系はタービン建屋送風機，タ ービン建屋排風機等から構成され，建屋内の空気の流 れを適正に保ち，清浄区域の汚染を防止する。 建屋内に供給された空気は，フィルタを通した後，排風機により排気筒から放出する設計とする。	2．2．4 タービン建屋換気空調系 タービン建屋換気空調系はタービン建屋送風機，タ ービン建屋排風機等から構成され，建屋内の空気の流 れを適正に保ち，清浄区域の汚染を防止する。 建屋内に供給された空気は，フィルタを通した後，排風機により排気筒から放出する設計とする。【43条 10】	－	（変更なし）
2．2．4 原子炉建屋廃棄物処理区域換気空調系 原子炉建屋廃臬物処理区域換気空調系は，廃棄物処理区域送風機，廃棄物処理区域排風機等で構成され，建屋内の空気の流れを適正に保ち，清浄区域の汚染を防止する。 廃棄物処理区域内に供給された空気は，フィルタを通した後，排風機により排気筒から大気に放出する設計とする。	2．2．5 原子炉建屋廃棄物処理区域換気空調系 原子炉建屋廃棄物処理区域換気空調系は，廃棄物処理区域送風機，廃棄物処理区域排風機等で構成され，建屋内の空気の流れを適正に保ち，清浄区域の汚染を防止する。 廃棄物処理区域内に供給された空気は，フィルタを通した後，排風機により排気筒から大気に放出する設計とする。【43条11】	－	（変更なし）
2．2．5 制御建屋換気系 制御建屋換気系は，C／B污染区域送風機（第 1 号機設備，第 1,2 号機共用），C／B污染区域排風機（第 1 号機設備，第1，2号機共用）等で構成する。 制御建屋内に供給された空気は，フィルタを通した後，排風機により排気筒から大気に放出する設計とす る。	2．2．6 制御建屋換気系 制御建屋換気系は，C／B污染区域送風機（第 1 号機設備，第 1,2 号機共用），C／B污染区域排風機（第 1 号機設備，第1， 2 号機共用）等で構成する。 制御建屋内に供給された空気は，フィルタを通した後，排風機により排気筒から大気に放出する設計とす る。【43条12】	－	（変更なし）
2．2．6 焼却炉建屋換気空調系 焼却炉建屋換気空調系は，焼却炉建屋給気ファン（第	2．2．7 焼却炉建屋換気空調系 焼却炉建屋換気空調系は，焼却炉建屋給気ファン（第	－	（変更なし）

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
1 号機設備，第 $1,2,3$ 号機共用），焼却炉建屋排気ファ （第 1 号機設備，第 $1,2,3$ 号機共用）等で構成する。焼却炉建屋内に供給された空気は，フィルタを通し た後，排気ファンにより焼却炉建屋排気口から大気に放出する設計とする。	1 号機設備，第1， $2, ~ 3$ 号機共用），焼却炉建屋排気ファ ン（第 1 号機設備，第 $1,2,3$ 号機共用）等で構成する。焼却炉建屋内に供給された空気は，フィルタを通し た後，排気ファンにより焼却炉建屋排気口から大気に放出する設計とする。【43条13】		
2．2． 7 サイトバンカ建屋換気空調系 サイトバンカ建屋換気系は，サイトバンカ建屋送風機（第1号機設備，第1，2，3号機共用），サイトバンカ建屋排風機（第1号機設備，第1，2，3号機共用）等で構成する。 サイトバンカ建屋内化供給された空気は，フィルタ を通した後，排風機によりサイトバンカ建屋排気口か ら大気に放出する設計とする。	2．2．8 サイトバンカ建屋換気空調系 サイトバンカ建屋換気系は，サイトバンカ建屋送風機（第 1 号機設備，第1，2，3号機共用），サイトバンカ建屋排風機（第 1 号機設備，第 $1,2,3$ 号機共用）等で構成する。 サイトバンカ建屋内に供給された空気は，フィルタ を通した後，排風機によりサイトバンカ建屋排気口か ら大気に放出する設計とする。【43条14】	－	(変更なし)
2.3 生体遮蔽装置等 設計基準対象施設は，通常運転時において発電用原子炉施設からの直接線及びスカイシャイン線による発電所周辺の空間線量率が，放射線業務従事者等の放射線障害を防止するために必要な生体遮蔽等を適切に設置すること及び発電用原子炉施設と周辺監視区域境界 までの距離とあいまって，発電所周辺の空間線量率を合理的に達成できる限り低減し，周辺監視区域外にお ける線量限度に比べ十分に下回る，空気カーマで年間 $50 \mu \mathrm{~Gy}$ を超えないような遮蔽設計とする。	2.3 生体遮蔽装置等 設計基準対象施設は，通常運転時において発電用原子炉施設からの直接線及びスカイシャイン線による発電所周辺の空間線量率が，放射線業務従事者等の放射線障害を防止するために必要な生体遮蔽等を適切に設置すること及び発電用原子炉施設と周辺監視区域境界 までの距離とあいまって，発電所周辺の空間線量率を合理的に達成できる限り低減し，周辺監視区域外にお ける線量限度に比べ十分に下回る，空気カーマで年間 50μ Gyを超えないような遮蔽設計とする。【42条1】	要目表 VI－1－7－3 中央制御室の居住性に関する説明書 3．中央制御室の居住性を確保するための防護措置 3.2 生体遮蔽装置 VI－4－2 生体遮蔽装置の放射線の遮蔽及び熱除去について の計算書 放射線管理施設 生体遮蔽装置に係る機器の配置を明示し た図面 7.3 生体遮蔽装置 構造図 7.3 生体遮蔽装置	（基本設計方釓変更はないが，設工認で必要な設計） 10．中央制御室及ひ緊急時対策所の居住性に関する設計 10.1 中央制御室
発電所内における外部放射線による放射線障害を防止する必要がある場所には，通常運転時の放射線業務従事者等の被ばく線量が適切な作業管理とあいまつ て，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」を満足できる遮蔽設計とする。	発電所内における外部放射線による放射線障害を防止する必要がある場所には，通常運転時の放射線業務従事者等の被ばく線量が適切な作業管理とあいまっ て，「核原料物質又は核燃料物質の製鍊の事業に関する規則等の規定に基づく線量限度等を定める告示」を满足できる遮蔽設計とする。【42条2】	要目表 VI－1－7－3 中央制御室の居住性に関する説明書 3．中央制御室の居住性を確保するための防護措置 3.2 生体遮蔽装置 VI－4－2 生体遮蔽装置の放射線の遮蔽及び熱除去について の計算書 放射線管理施設 生体遮蔽装置に係る機器の配置を明示し た図面 7.3 生体遮蔽装置 構造図 7.3 生体遮蔽装置	（基本設計方釓変更はないが，設工認で必要な設計） 10．中央制御室及び緊急時対策所の居住性に関する設計 10．1 中央制御室
生体遮蔽は，主に原子炬しやへい壁，1次しやへい壁 （ドライウェル外側壁），2次しやへい壁（原子炬建屋	生体遮蔽は，主に原子炬しやへい壁，1次しゃへい壁 （ドライウェル外側壁）2次しやへい壁（原子炬建屋	要目表	10．中央制御室及び緊急時対策所の居住性に関する設計 10.1 中央制御室

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
原子炉棟外壁），補助しゃへい及び中央制御室しゃへい壁から構成し，想定する通常運転時，運転時の異常な過渡変化時，設計基準事故時に対し，地震時及び地震後においても，発電所周辺の空間線量率の低減及び放射線業務従事者等の放射線障害防止のために，遮蔽性 を維持する設計とする。 生体遮蔽に開口部又は配管その他の貫通部があるも のにあっては，必要に応じて次の放射線漏えい防止措置を講じた設計とするとともに，自重，附加荷重及び熱応力に耐える設計とする。	原子炉棟外壁），補助しやへい，中央制御室しやへい壁，中央制御室待避所遮蔽及び緊急時対策所遮蔽から構成 し，想定する通常運転時，運転時の異常な過渡変化時，設計基準事故時及び重大事故等時に対し，地震時及び地震後においても，発電所周辺の空間線量率の低減及 び放射線業務従事者等の放射線障害防止のために，遮蔽性を維持する設計とする。 生体遮蔽に開口部又は配管その他の貫通部があるも のにあっては，必要に応じて次の放射線漏えい防止措置を講じた設計とするとともに，自重，附加荷重及び熱応力に耐える設計とする。【42条3】	VI－1－7－3 中央制御室の居住性に関する説明書 3．中央制御室の居住性を碓保するための防護措置 3.2 生体遮蔽装置 VI－1－9－3－2 緊急時対策所の居住性に関する説明書 3．緊急時対策所の居住性を確保するための防護措置 3.2 生体遮蔽装置 VI－4－2 生体遮蔽装置の放射線の遮蔽及び熱除去について の計算書 放射線管理施設 生体遮蔽装置に係る機器の配置を明示し た図面 7.3 生体遮蔽装置 構造図 7.3 生体遮蔽装置	10.2 緊急時対策所
－開口部を設ける場合，人が容易に接近できないよう な場所（通路の行き止まり部，高所等）への開口部設置 －貫通部に対する遮蔽補強（スリーブと配管との間隙 への遮蔽材の充てん等） －線源機器と貫通孔との位置関係により，貫通孔から線源機器が直視できない措置	－開口部を設ける場合，人が容易に接近できないよう な場所（通路の行き止まり部，高所等）への開口部設置 －貫通部に対する遮蔽補強（スリーブと配管との間隙 への遮蔽材の充てん等） －線源機器と貫通孔との位置関係により，貫通孔から線源機器が直視できない措置 【42条4】	（l）	（変更なし）
遮蔽設計は，実効線量が $1.3 \mathrm{mSv} / 3$ 月間を超えるおそ れがある区域を管理区域としたうえで，日本電気協会「原子力発電所放射線遮へい設計規程（J E A C 46 $15)$ 」の通常運転時の遮蔽設計に基づく設計とする。	遮蔽設計は，実効線量が $1.3 \mathrm{mSv} / 3$ 月間を超えるおそ れがある区域を管理区域としたらえで，日本電気協会「原子力発電所放射線遮へい設計規程（J E A C 46 15 ）」の通常運転時の遮蔽設計に基づく設計とする。【42条5】	－	（変更なし）
	原子炉格納容器フィルタベント系のフィルタ装置等 は，原子炉建屋原子炉棟内に設置することにより，フ イルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタベント系の使用時に本系統内 に蓄積される放射性物質から放出される放射線から作業員を防護する設計とする。【63条19】65条31】【67条 17】	VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉格納施設に係る機器の配置を明示した図面 8．3．5．1 原子炉格納容器フィルタベント系	VI－1－10－8 「原子炉格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計
中央制御室しゃへい壁，2次しゃへい壁及び補助しゃ へいは，「2．1 中央制御室の居住性を確保するための防護措置」に示す居住性に係る判断基準を満足する設計とする。	中央制御室しやへい壁，中央制御室待避所遮蔽，緊急時対策所遮蔽，2次しやへい壁及び補助しやへいは，「2．1 中央制御室及び緊急時対策所の居住性を確保 するための防護措置」に示す居住性に係る判断基準を満足する設計とする。【38条17】【74条8】【76条15】	要目表 VI－1－7－3 中央制御室の居住性に関する説明書 3．中央制御室の居住性を確保するための防護措置 3.2 生体遮蔽装置	10．中央制御室及び緊急時対策所の居住性に関する設計 10．1 中央制御室 10.2 緊急時対策所 11．中央制御室待避所に関する設計

基本設計方針		設計結果の記載笽所	様式 -1 への反映結果
変更前	変更後		
		VI－1－9－3－2 緊急時対策所の居住性に関する説明書 3．緊急時対策所の居住性を確保するための防護措置 3.2 生体遮蔽装置 構造図 7.3 生体遮蔽装置	
	中央制御室しやへい壁は，設計基準事故対処設備で あるとともに，重大事故等時においても使用するため，重大事故等対処設借としての基本方針に示す設計方針 を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はない ことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。【74条26】	VI－1－7－3 中央制御室の居住性に関する説明書 3．中央制御室の居住性を碓保するための防護措置 3.2 生体遮蔽装置	10．中央制御室及ひ祭急時対策所の居住性に関する設計 10．1 中央制御室
3．主要対象設備放射線管理施設の対象となる主要な設備について，「表1 放射線管理施設の主要設備リスト」に示す。	3．主要対象設備 放射線管理施設の対象となる主要な設備について， 「表1 放射線管理施設の主要設備リスト」に示す。	－	（「主要設備リスト」による）

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－510－7 基本設計方針から設工認添付書類及び様式 -1 への展開表 （原子炉格納施設）

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【原子炉格納施設】

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	(用語の定義のみ)
第1章 共通項目 原子炉格納施設の共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．設備に対する要求（4．7 内燃機関の設計条件， 4.8 電気設備の設計条件を除 く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 原子炉格納施設の共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．7 内燃機関及びガスタービンの設計条件， 5.8電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
第2章 個別項目 1．原子炉格納容器 1．1 原子炉格納容器本体等 原子炉格納施設は，設計基準対象施設として，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に漏えいする放射性物質が公衆に放射線障害を及ぼ すおそれがない設計とする。	第2章 個別項目 1．原子炉格納容器 1.1 原子炉格納容器本体等 原子炉格納施設は，設計基準対象施設として，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に漏えいする放射性物質が公衆に放射線障害を及ぼ すおそれがない設計とする。【44条1】	－	（変更なし）
原子炉格納容器にはドライウェル内のガスを循環冷却するための設備として，冷却装置及び送風機からな るドライウェル泠却系（個数4（予備2））を設ける設計とする。	原子炉格納容器にはドライウェル内のガスを循環冷却するための設備として，冷却装置及び送風機からな るドライウェル泠却系（個数4（予備2））を設ける設計 とする。【44条20】	－	（変更なし）
原子炉格納容器は，残留熱除去系（格納容器スプレ イ冷却モード）とあいまって原子炉冷却材圧力バウン ダリ配管の最も過酷な破断を想定し，これにより放出 される原子炉冷却材のエネルギによる冷却材喪失時の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，泠却材喪失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器に生じる動荷重に耐える設計とする。	原子炉格納容器は，残留熱除去系（格納容器スプレ イ泠却モード）とあいまって原子炉泠却材圧力バウン ダリ配管の最も過酷な破断を想定し，これにより放出 される原子炉泠却材のエネルギによる泠却材喪失時の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，泠却材喪失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器に生じる動荷重に耐える設計とする。【44条2】	－	（変更なし）
原子炉格納容器の開口部である出入口及び貫通部を含めて原子炬格納容器全体の漏えい率を許容値以下に保ち，冷却材喪失時及び主蒸気逃がし安全弁作動時に おいて想定される原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウンダリ の健全性を保つ設計とする。	原子炉格納容器の開口部である出入口及び貫通部を含めて原子炬格納容器全体の漏えい率を許容値以下に保ち，冷却材喪失時及び主蒸気逃がし安全弁作動時に おいて想定される原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウンダリ の健全性を保つ設計とする。【44条3】	－	（変更なし）
通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，原子炉格納容器バウンダリを構成 する機器は脆性破壊及び破断が生じない設計とする。脆性破壊に対しては，最低使用温度を考慮した破壊じ ん性試験を行い，規定値を満足した材料を使用する設計とする。	通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，原子炉格納容器バウンダリを構成 する機器は脆性破壊及び破断が生じない設計とする。脆性破壊に対しては，最低使用温度を考慮した破壊じ ん性試験を行い，規定値を満足した材料を使用する設計とする。【44条4】	－	（変更なし）
原子炬格納容器を貫通する箇所及び出入口は，想定	原子炉格納容器を貫通する箇所及び出入口は，想定	－	－

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」 （J E A C 4 2 0 3）に定める漏えい試験のらちB種試験ができる設計とする。	される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」 （J E A C 4 2 0 3）に定める漏えい試験のらちB種試験ができる設計とする。【44条5】		（変更なし）
サプレッションチェンバは，設計基準対象施設とし て容量 $2800 \mathrm{~m}^{3}$ ，個数 1 個を設置する。	サプレッションチェンバは，設計基漼対象施設とし て容量 $2800 \mathrm{~m}^{3}$ ，個数1個を設置する。【44条 30 】	－	(変更なし)
	原子炬格納容器は，想定される重大事故等時におい て，設計基準対象施設としての最高使用圧力及び最高使用温度を超える可能性があるが，設計基準対象施設 としての最高使用圧力の 2 倍の圧力及び $200^{\circ} \mathrm{C}$ の温度で閉じ込め機能を損なわない設計とする。【63条24】【63条35】【64条6】【64条14】【64条27】【64条39】【65条15】【65条36】【66条5】【66条10】【66条18】【66条24】【66条32】66条45】【67条9】【67条26】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．1 重大事故等時の評価温度，評価圧力 3．2．9 重大事故等時の動荷重 VI－1－8－1－別添1 重大事故等時における原子炬格納容器の放射性物質閉じ込め機能健全性について 3．ドライウェル主フランジ 3.3 評価結果まとめ 8．配管貫通部 8.9 評価結果まとめ 原子炉格納施設こ係る機器の配置を明示した図面 8.1 原子炉格納容器 構造図 8.1 原子炉格納容器	2．原子师格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炻格納施設の機器の仕栐等に関す る設計 3．原子彷格紡施設の設計 3.1 原子炉格納容器に係る設計 3.3 重大事故等時における原子炉格納容器の放射性物質 の閉じ込め機能評価
1．2 原子炉格納容器隔離弁 原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁（以下「隔離弁」という。）は，安全保護装置からの信号により，自動的に閉鎖する動力駆動弁，チェーンロックが可能な手動弁，キーロッ クが可能な遠隔操作弁又は隔離機能を有する逆止弁と し，原子炉格納容器の隔離機能の確保が可能な設計と する。	1.2 原子炉格納容器隔離弁 原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁（以下「隔離弁」という。）は，安全保護装置からの信号により，自動的に閉鎖する動力駆動弁，チェーンロックが可能な手動弁，キーロッ クが可能な遠隔操作弁又は隔離機能を有する逆止弁と し，原子炉格納容器の隔離機能の確保が可能な設計と する。【44条6】	－	(変更なし)
原子炬冷却材圧カバウンダリに接続するか，又は原子炬格納容器内に開口し，原子炉格納容器を貫通して いる各配管は，椧却材啔失事故時に必要とする配管及 び計測制御系統施設に関連する小口径配管を除いて，原則として原子炬格納容器の内側して1個，外側して1個の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。	原子炬冷却材圧カバウンダリに接続するか，又は原子炉格納容器内に開口し，原子炬格納容器を貫通して いる各配管は，椧却材裏失事故時に必要とする配管及 び計測制御系統施設に関連する小口径配管を除いて，原則として原子炉格納容器の内側に1個，外側に1個の自動隔離并を原子炉格納容器に近接した箇所に設ける設計とする。【44条7】	－	(変更なし)

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
ただし，原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部がなく，かつ，原子炉泠却系統に係る発電用原子炉施設の損壊の際に損壊す るおそれがない管，又は原子炉格納容器外側で閉じた系を構成した管で，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常の際に，原子炉格納容器内 で水封が維持され，かつ，原子炉格納容器外へ導かれ た漏えい水による放射性物質の放出量が，泠却材喪失事故の原子炉格納容器内気相部からの漏えいによる放出量に比べ十分小さい配管については，原子炉格納容器の外側又は内側に少なくとも 1 個の隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。	ただし，原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部がなく，かつ，原子炉泠却系統に係る発電用原子炉施設の損壊の際に損壊す るおそれがない管，又は原子炉格納容器外側で閉じた系を構成した管で，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常の際に，原子炉格納容器内 で水封が維持され，かつ，原子炉格納容器外へ導かれ た漏えい水による放射性物質の放出量が，冷却材喪失事故の原子炉格納容器内気相部からの漏えいによる放出量に比べ十分小さい配管については，原子炉格納容器の外側又は内側に少なくとも1個の隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。【44条8】	－	（変更なし）
原子炉格納容器の内側で閉じた系を構成する管に設置する隔離弁は，遠隔操作にて閉止可能な弁を設置す ることも可能とする。	原子炉格納容器の内側で閉じた系を構成する管に設置する隔離弁は，遠隔操作にて閉止可能な弁を設置す ることも可能とする。【44条9】	－	（変更なし）
貫通箇所の内側又は外側に設置する隔離弁は，一方 の側の設置箇所における管であって，湿気や水滴等に より駆動機構等の機能が著しく低下するおそれがある箇所，配管が狭隘部を貫通する場合であって貫通部に近接した箇所に設置できないことによりその機能が著 しく低下するような箇所には，貫通箇所の外側であっ て近接した箇所に2個の隔離弁を設ける設計とする。	貫通箇所の内側又は外側に設置する隔離弁は，一方 の側の設置箇所における管であって，湿気や水滴等に より駆動機構等の機能が著しく低下するおそれがある箇所，配管が狭隘部を貫通する場合であって貫通部に近接した箇所に設置できないことによりその機能が著 しく低下するような箇所には，貫通箇所の外側であっ て近接した箇所に2個の隔離弁を設ける設計とする。 【44条10】	－	（変更なし）
	原子炉格納容器を貫通する配管には，圧力開放板を設けない設計とする。【44条11】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.1 設計基準事故時における設計条件 3．1．9 原子炉格納容器隔離弁	3．原子炉格納施設の設計 3.2 原子炉格納容器隔離弁に係る設計
設計基準事故の収束に必要な非常用炉心冷却設備及 び残留熱除去系（格納容器スプレイ冷却モード）で原子炉格納容器を貫通する配管，その他隔離弁を設ける ことにより安全性を損ならおそれがあり，かつ，当該系統の配管により原子炉格納容器の隔離機能が失われ ない場合は，自動隔離弁を設けない設計とする。	設計基準事故及び重大事故等の収束に必要な非常用炉心冷却設備及び残留熱除去系（格納容器スプレイ冷却モード）で原子炉格納容器を貫通する配管，その他隔離弁を設けることにより安全性を損なうおそれがあ り，かつ，当該系統の配管により原子炉格納容器の隔離機能が失われない場合は，自動隔離弁を設けない設計とする。【44条12】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.1 設計基準事故時における設計条件 3．1．9 原子炉格納容器隔離弁	3．原子炉格納施設の設計 3.2 原子炉格納容器嗝離并に係る設計
ただし，原則遠隔操作が可能であり，設計基準事故時に容易に閉鎖可能な隔離機能を有する弁を設置する設計とする。	ただし，原則遠隔操作が可能であり，設計基準事故時及び重大事故等時に容易に閉鎖可能な隔離機能を有 する弁を設置する設計とする。【44条12】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.1 設計基準事故時における設計条件 3．1．9 原子炉格納容器隔離弁	3．原子炉格納施設の設計 3.2 原子炉格納容器瀜離弁に係る設計
	また，重大事故等時に使用する原子炉格納容器調気系の隔離弁については，設計基準事故時の隔離機能の確保を考慮し自動隔離弁とし，重大事故等時に容易に開弁が可能な設計とする。【44条32】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.1 設計基準事故時における設計条件 3．1．9 原子炉格納容器隔離弁	3．原子炉格納施設の設計 3.2 原子炉格納容器嗝離弁に係る設計
原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配管であって特に隔離弁を設けない場合には，隔離弁を設置したものと同等	原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配管であって特に隔離弁を設けない場合には，隔離弁を設置したものと同等	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
の隔離機能を有する設計とする。	の隔離機能を有する設計とする。【44条13】		
原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通する計測系配管に隔離弁を設けない場合 は，オリフィス又は過流量防止逆止弁を設置し，流出量抑制対策を講じる設計とする。	原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通する計測系配管に隔離弁を設けない場合 は，オリフィス又は過流量防止逆止弁を設置し，流出量抑制対策を講じる設計とする。【44条14】	－	（変更なし）
隔離弁は，閉止後に駆動動力源が喪失した場合にお いても閉止状態が維持され隔離機能が喪失しない設計 とする。また，隔離弁のうち，隔離信号で自動閉止す るものは，隔離信号が除去されても自動開とはならな い設計とする。	隔離弁は，閉止後に駆動動力源が喪失した場合にお いても閉止状態が維持され隔離機能が喪失しない設計 とする。また，隔離弁のうち，隔離信号で自動閉止す るものは，隔離信号が除去されても自動開とはならな い設計とする。【44条15】	－	（変更なし）
隔離并は，想定される漏えい量その他の漏えい試験 に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏 えい率試験規程」（J E A C 4 2 0 3 ）に定める漏えい試験のらちC種試験ができる設計とする。また，隔離弁 は動作試験ができる設計とする。	隔離并は，想定される漏えい量その他の漏えい試験 に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏 えい率試験規程」（J E A C 4 2 0 3 ）に定める漏えい試験のうちC種試験ができる設計とする。また，隔離弁 は動作試験ができる設計とする。【44条16】	－	（変更なし）
2．原子炉建屋 2.1 原子炉建屋原子炉棟等 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針（平成2年8月30日原子力安全委員会）」に規定する線量を超 えないよう，当該放射性物質の濃度を低減する設備と して原子炉建屋原子炉棟を設置する。	2．原子炉建屋 2.1 原子炉建屋原子炉棟等 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針（平成2年8月30日原子力安全委員会）」に規定する線量を超 えないよう，当該放射性物質の濃度を低減する設備と して原子炉建屋原子炉棟を設置する。【44条19】	－	（変更なし）
原子炉建屋原子炉棟は，原子炉格納容器を収納する建屋であって，非常用ガス処理系等により，内部の負圧を確保し，原子炉格納容器から放射性物質の漏えい があっても発電所周辺に直接放出されることを防止す る設計とする。	原子炉建屋原子灲棟は，原子炉格納容器を収納する建屋であって，非常用ガス処理系等により，内部の負圧を確保し，原子炉格納容器から放射性物質の漏えい があっても発電所周辺に直接放出されることを防止す る設計とする。【44条21】	－	（変更なし）
原子炉建屋原子炉棟に開口部を設ける場合には，気密性を確保する設計とする。	原子炉建屋原子炉棟に開口部を設ける場合には，気密性を確保する設計とする。【44条23】	－	（変更なし）
新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出によ り公衆に放射線障害を及ぼすおそれがある場合におい て，放射性物質による敷地外への影響を低減するため，原子炉建屋原子炉棟内に設置する設計とする。	新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出によ り公衆に放射線障害を及ぼすおそれがある場合におい て，放射性物質による敷地外への影響を低減するため，原子炉建屋原子炉棟内に設置する設計とする。【26条 47】	－	（変更なし）
	原子炉建屋原子炉棟は，重大事故等時においても，非常用ガス処理系により，内部の負圧を確保すること ができる設計とする。原子炉建屋原子炉棟の気密バウ ンダリの一部として原子炉建屋原子炉棟に設置する原子炉建屋ブローアウトパネル（原子炉冷却系統施設の らち「5．2 高圧灲心スプレイ系」，浸水防護施設と兼用）（以下同じ。）は，閉状態の維持又は開放時に容易	要目表 VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.1 設計基準事故時における設計条件 3．1．15 原子炉建屋原子炉棟	3．原子炉格納施設の設計 3.7 原子炉建屋原子炉棟に係る設計 4．その他原子炉格納施設に係る設計 4.3 原子炉建屋ブローアウトパネル関連設備の設計

基本設計方針		設計結果の記載䈏所	様式一1への反映結果
変更前	変更後		
	かつ碓実に原子炉建屋ブローアウトパネル閉止装置に より開口部を閉止可能な設計とする。【74条23】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書別添4 ブローアウトパネル関連設借つ設計方針	
3．圧力低減設備その他の安全設備 3.1 真空破壊装置 冷却材震失事故後，ドライウェル圧力がサプレッシ ョンチェンバ圧力より低下した場合に，ドライウェル とサプレッションチェンバ間に設置された6個の真空破壊弁が，圧力差により自動的に働き，サプレッショ ンチェンバのプール水のドライウェルへの逆流及びド ライウェルの破損を防止できる設計とする。 なお，発電用原子炉の連転時に原子炉格納容器に窒素を充てんしていることなどから，原子炉格納容器外面に受ける圧力が設計を超えることはない。	3．圧力低減設備その他の安全設備 3.1 真空破壊装置 冷却材震失事故後，ドライウェル圧力がサプレッシ ヨンチェンバ圧力より低下した場合に，ドライウェル とサプレッションチェンバ間に設置された6個の真空破壊并が，圧力差により自動的に働き，サプレッショ ンチェンバのプール水のドライウェルへの逆流及びド ライウェルの破損を防止できる設計とする。【20条14】 なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしていることなどから，原子炉格納容器外面に受ける圧力が設計を超えることはない。【20条14】	－	（変更なし）
	想定される重大事故等時において，ドライウェル圧 カガサプレッションチェンバ圧力より低下した場合 に，ドライウェルとサプレッションチェンバ間彻設置 された6個の真空破壞弁が，圧力差により自動的に働 き，サプレッションチェンバのプール水のドライウェ ル～の逆流及びドライウェルの破損を防止できる設計 とする。【57条14】【63条25】【63条36】【64条7】【64条 15】【64条28】【64条40】【65条16】【65条37】【66条6】【66条11】【66条19】【66条25】【66条33】【66条46】【67条10】【67条27】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.1 設計基準事故時における設計条件 3．1．14 真空破壊装置	3．原子炻格納施設の設計 3.6 真空破啵装置の設計
3.2 原子炉格納容器安全設備 3．2．1 原子炉格納容器スプレイ椧却系 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針（平成2年8月30日原子力安全委員会）」に規定する線量を超 えないよう，当該放射性物質の濃度を低減する設備と して残留熱除去系（格納容器スプレイ泠却モード）を設置する。	3.2 原子炉格納容器安全設備 3．2．1 原子炬格納容器スプレイ佮却系 原子炉冷却采統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針（平成2年8月30日原子力安全委員会）」沉規定する線量を超 えないよう，当該放射性物質の浱度を低減する設備と して残留熱除去系（格納容器スプレイ掵却モード）を設置する。【44条19】	－	(変更なし)
	重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合に長期間にわたつて機能 が要求される静的機器のらち，単一設計とする残留熱除去系（格納容器スプレイ椧却モード）のドライウェ ルスプレイ管及びサプレッションチェンバスプレイ管 については，想定される最も過酷な単一故障の条件と して，配管1箇所の全周破断を想定した場合において も，原子炉格納容器の泠却機能を達成できる設計とす る。【14条10】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炬格納施設	4．その他原子炉格納施設に係る設計 4.1 放射性物質濃度低減設備の単一故障に係る設備（上記 は項目のみ） VI－1－10－4 「原子炉冷却采統施設」の様式 -1 11．健全性に係る設計
	ここで，単一故障時には，残留熱除去系1系統による格納容器スプレイ泠却モードは，スプレイ効果に期待	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	4．その他原子炉格納施設に係る設計 4.1 放射性物質濃度低減設備の単一故障に係る設備（上記

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
	できない状態となり，スプレイ液滴による除熱を考慮 しないこと及び椧却水が破断箇所から落下してサプレ ッションチェンバのプール水に移行することを想定す る。このような場合においても，他の残留熱除去系 1 系統をサプレッションプール水冷却モードで運転するこ とで原子炉格納容器の椧却機能を代替できる設計とす る。【14条11】	3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	は項目のみ）VI－1－10－4 11． 1健全性に原子係る設詅脚系統施設」の様式 -1
	3．2．2 原子炬格納容器下部注水系 炬心の著しい損傷が発生した場合において原子炬格納容器の破損を防止するため，溶融し，原子炬格納容器の下部に落下した炉心を椧却するために必要な重大事故等対処設備として，原子炉格納容器下部注水系（常設）（復水移送ポンプ），原子炉格納容器下部注水系（常設）（代替循噮椧却ポンプ）及び原子炉格納容器下部注水系（可搬型）を設ける設計とする。【66条1】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び盱蔵施設） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炬心泠却機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．2 原子炬格納容器下部注水系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 $\mathrm{VI}-1-10-3$ 「核燃料物質の取扱施設及び賏蔵施設」の様式 -1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設借して係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設諎㲸係る設計 VI－1－10－4 「原子炉泠却采統施設」の㤸式－1 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含を原子炉冷却系続施設の機器の仕様等に関する設計
	（1）原子炉格納容器下部注水系（常設）（復水移送术 ンプ）による原子炉格納容器下部への注水原子炉格納容器下部に落下した溶融炬心の洽却を行 らための重大事故等対処設備として，原子炬格納容器下部注水系（常設）（復水移送ポンプ）は，復水移送 ポンプにより，復水貯蔵タンクの水を補給水系配管等 を経由して原子炉格納容器下部い注水し，溶融炬心が落下するまでし原子炉格納容器下部にあらかじめ十分 な水位を確保するとともに，落下した溶融虾心を椧却 できる設計とする。【66条2】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炬格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炬心泠却機能 原子炉格納施設に係る系統図 8．3．2． 2 原子炉格納容器下部注水系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子师冷却系統施設」の様式－1 18．原子炉冷却采統施設の兼用に関する設計 18．1 設備に係る設計のための系統つ明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を合む設備に係る設計 18．2．1 兼用を含む原子炬冷却采統施設の機器の仕樣等に関する設計

基本設計方針		設計結果の記載䈏所	様式一1への反映結果
変更前	変更後		
	原子炉格納容器下部注水系（常設）（復水移送ポン プ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可般型代替交流電源設備からの給電が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。【66条 3】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炬心泠却機能	2．原子炉格納紨設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2． 2 各機器固有の設計
	原子炉格納容器下部注水系（常設）（復水移送ポンプ） の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【66条4】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．2 原子炉格納容器下部注水系 原子炬格納施設に係る系統図 8．3．2．2 原子炉格納容器下部注水采	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	原子炉格納容器安全設備のうち，復水貯蔵タンクを水源として原子炉格納容器泠却のために連転するポン プは，復水貯蔵タンクの圧力及び温度により，想定さ れる最も小さい有効吸込水頭においても，正常に機能 する能力を有する設計とする。【54条89】	VI－1－4－3 非常用炉心泠却設備その他原子炉注水設備のポ ンプの有効吸込水頭に関する説明書 3．評価 3.5 評価結果 3．5．2 サプレッションプールを除くタンク等を水源とす るポンプの有效NPSH評価結果	VI－1－10－4 「原子炉冷却采統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18.2 機能を兼用する機器を含む設備に係る設計 18．2．2 各機器固有の設計
	（2）原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）による原子炉格納容器下部への注水原子炉格納容器下部に落下した溶融炬心の泠却を行 らための重大事故等対処設備として，原子炉格納容器下部注水系（常設）（代替循擐泠却ポンプ）は，代替循環冷却ポンプにより，サプレッションチェンバのプー ル水を残留熱除去系等を経由して原子炉格納容器下部 へ注水し，溶融炬心か落下するまでし原子炉格納容器下部にあらかじめ十分な水位を確保するとともに，落下した溶融炬心を椧却できる設計とする。【66条7】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炬心泠却機能 原子炉格納施設に係る系統図 8．3．2．2 原子炉格納容器下部注水系	2．原子炣格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確忍 2.2 機能を兼用する機器を含むち設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炧格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子炉冷却采統施設」の栐式－1 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含む原子炉泠却采統施設の機器の仕様等に関する設計
	原子炬格納容器下部注水系（常設）（代替循環冷却ポ ンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備からの給電が可能な設計とする。【66条8】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炉心泠却機能	2．原子师格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計
	原子炉格納容器下部注水系（常設）（代替循澴冷却ポ	要目表	2．原子炉格納施設の兼用に関する設計

基本設計方針		設計結果の記載䈏所	様式一1への反映結果
変更前	変更後		
	ンプ）の流路として，設計基準対象施設である残留熱除去系熱交換器及び原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能につい て重大事故等対処設備としての設計を行う。【66条9】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炬格納施設） 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．2 原子炉格納容器下部注水系 原子灲格納施設に係る系統図 8．3．2． 2 原子炉格納容器下部注水系	2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子炉冷却系統施設」の様式－1 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	原子炉格納容器安全設備のうち，サプレッションチ ェンバのプール水を水源として原子炉格納容器除熱の ために運転するポンプは，原子炬格納容器内の圧力及 び温度並びに，原子炉泠却材中の異物の影響について「非常用炉心泠却設備又は格納容器熱除去設備に係る万過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot$ 12原院第5号（平成 20 年 2 月 27 日原子力安全•保安院制定））による万過装置の性能評価により，重大事故等時 に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。【54条87】	VI－1－8－4 压力低減設備その他の安全設備のポンプの有効吸込水頭に関する説明書 2．基本方針 3．評価 3.5 評亚結果 3．5．1 サプレッションプールを水源とするポンプの有効 NPSH評価結果	2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設借にて係る設計 2．2． 2 各機器固有の設計
	（3）原子炉格納容器下部注水系（可搬型）による原子炬格納容器下部への注水 原子炉格納容器下部に落下した溶融炉心の椧却を行 らための重大事故等対処設備として，原子炉格納容器下部注水系（可搬型）は，大容量送水ポンプ（タイプ I）により，代替淡水源の水をあらかじめ敷設した補給水系配管を経由して原子炉格納容器下部へ注水し，落下した溶融炉心を泠却できる設計とする。【66条12】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） $\mathrm{VI}-1-1-4-7$ 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炉心泠却機能 原子炉格納施設に係る系統図 8．3．2．2 原子炬格納容器下部注水系	2．原子师格納施設の兼用に関する設計 2.1 設備に係る設計のための系䖻の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 －1 2．核然料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための采䖻の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含を設借に係る設計
	原子炬格納容器下部注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要 となる水の供給設備である大容量送水ポンプ（タイプ I）により海を利用できる設計とする。【66条13】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 $\left(\begin{array}{ll}\text {（核燃料物質の取扱施設及び貯蔵施設）}\end{array}\right.$ VI－1－8－1 原子子炉格納施設の設計条件に関する説明書	2．原子师格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含き設借に係る設計

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
		3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炉心泠却機能	2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2．2．2 各機器固有の設計 VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び盱蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	原子炉格納容器下部注水系（可搬型）は，非常用交流電源設備に加えて代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。 また，大容量送水ポンプ（タイプI）は，空冷式の ディーゼルエンジンにより駆動できる設計とする。【66条14］	要目表 VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子灲格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炉心冷却機能 構造図 3．2．2 燃料プール代替注水系	2．原子师格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含を設借に係る設計 2．2．1 兼用を含む原子炋格納施設の機器の仕栐等に関す る設計 2．2．2 各機器固有の設計 VI－1－10－3 「核籶料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2.3 機能を兼用する機器を含を核燃料物質の取扱施設及 び貯蔵施設の系統図に閉する取りまとめ
	原子炬格納容器下部注水系（可搬型）に使用する木一スの敷設等は，ホース延長回収車（台数 4 （予備1）） （核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炬格納施設のらち「3．2．2 原子炉格納容器下部注水系」の設備として兼用）により行ら設計とする。【66条16】	VI－1－1－4－別添2設定根拠に闒する説明書（別添）	 2．核然料物質の取扱施設及び賏蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借汇係る設計
	原子炉格納容器下部注水系（可搬型）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能に ついて重大事故等対処設備としての設計を行う。【66条 17］	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び盱蔵施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炉格納施設に係る機器の配置を明示した図面 8．3．2． 2 原子炬格納容器下部注水系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子灲格納施設の系統図 に関する取りまとめ VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式

基本設計方針		設計結果の記載覧所	様式－1 への反映結果
変更前	変更後		
		原子炬格納施設に係る系統図 8．3．2．2 原子炉格納容器下部注水系	－1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	原子炉格納容器安全設備のうち，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海を水源として原子炉格納容器椧却のために運転するポンプは，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧力及び温度により，想定される最も小さい有效吸込水頭においても，正常に機能する能力を有する設計とする。【54条89】	VI－1－4－3 非常用炉心浍却設備その他原子炬注水設備のポ ンプの有効吸込水頭に開する説明書 3．評価	VI－1－10－4 「原子炉泠却系統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18.2 機能を兼用する機器を含む設備に係る設計 18．2．2 各機器固有の設計
	（4）多重性又は多様性及び独立性，位置的分散原子炉格納容器下部注水系（常設）（復水移送ポンプ） は，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ椧却系（可搬型）と共通要因に よって同時に機能を損なわないよう，原子炉格納容器下部注水系（常設）（復水移送ポンプ）の復水移送ポン プを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電による電動機駆動とし，原子炉格納容器下部注水系（可搬型）及 び原子炉格納容器代替スプレイ冷却系（可搬型）の大容量送水ポンプ（タイプI）を空冷式のディーゼルエ ンジンによる駆動とすることで，多様性を有する設計 とする。【66条71】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設びとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炬冷却采統施設」の様式 -1 11．健全性に係る設計
	原子炉格納容器下部注水系（常設）（代替循澴泠却术 ンプ）は，原子炬格納容器下部注水系（可般型）及び原子炉格納容器代替スプレイ椧却系（可搬型）と共通要因によって同時に機能を損なわないよう，原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）の代替循嬹冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電による電動機駆動とし，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ椧却系（可搬型）の大容量送水ポン プ（タイプI）を空冷式のディーゼルエンジンによる駆動とすることで，多様性を有する設計とする。【66条 72】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子师椧却采統施設」の様式 -1 11．健全性纪係る設計
	原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ椧却系（常設）並び に原子炉格納容器下部注水系（常設）（代替循睘泠却术 ンプ）及び代替循澴泠却系は，共通要因によって同時 に機能を損なわないよう，非常用所内電気設備を経由 した非常用交流電源設備からの給電に対して，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設びとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子师洽却采統施設」の様式 -1 11．健全性に係る設計

基本設計方針		設計結果の記載箅所	様式－1 への反映結果
変更前	変更後		
	子炉格納容器代替スプレイ椧却系（常設）の復水移送 ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電とし，原子炬格納容器下部注水系（常設）（代替循環冷却ポン プ）及び代替循環冷却系の代替循環冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電とすることで，多様性を有する設計とする。【66条 731		
	原子炬格納容器下部注水系（常設）（復水移送ポンプ） の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，常設代替交流電源設備又は可搬型代替交流電源設備からの給電による遠隔操作に対して多様性を有する設計とし，原子炉格納容器下部注水系（常設）（代替循澴冷却ポンプ）の電動弁（交流）は，ハン ドルを設けて手動操作を可能とすることで，常設代替交流電源設備からの給電による遠隔操作に対して多栐性を有する設計とする。また，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）の電動弁（交流）は，代替所内電気設備を経由して給電する系統に おいて，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。【66条74】 原子炬格納容器下部注水系（常設）（復水移送ポンプ） の電動亣（直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設借からの給電による遠隔操作に対して多栐性を有する設計とす る。また，原子炉格納容器下部注水系（常設）（復水移送ポンプ）の電動升（直流）は，125V蓄電池から125V直流主母線艦までの系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。さらに，常設代替直流電源設備からの給電 も可能であり， 125 V代替蓄電池から 125 V直流主母線盤 までの系統において，独立した電路で系統構成するこ とにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。【66条811	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 11．健全性に係る設計
	また，原子炬格納容器下部注水系（可搬型）は代替淡水源を水源とすることで，復水眝蔵タンクを水源と する原子炬格納容器下部注水系（常設）（復水移送ポン プ）及び原子炉格納容器代替スプレイ洽却系（常設）並びにサプレッションチェンバを水源とする原子炉格納容器下部注水系（常設）（代替循擐泠却ポンプ）及び代替循環冷却系に対して，異なる水源を有する設計と	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炉泠却系統施設」の様式 -1 11．健全性に係る設計

基本設計方針		設計結果の記載笽所	様式－1への反映結果
変更前	変更後		
	する。【66条75】		
	復水移送ポンプは，原子炬建屋原子炉棟内，代替循環冷却ポンプは原子炉建屋付属棟内に設置し，大容量送水ポンプ（タイプI）は原子炉建屋から離れた屋外 に分散して保管することで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。【66条76】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子灲格納施設に係る機器の配置を明示した図面 8．3．2．2 原子炉格納容器下部注水系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含も設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 VI－1－10－3 「核然料物質の取扱施設及ひ貯蔵施設」の様式 －1 2．核笖料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－4 「原子炉椧却采統施設」の様式 -1 18．原子炉汾却采統施設の兼用に開する設計 18． 1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設借次係る設計 18．2．1 兼用を含を原子炉泠却系続施設の機器の仕様等に関する設計
	原子炉格納容器下部注水系（可搬型）の電動弁は， ハンドルを設けて手動操作を可能とすることで，常設代替交流電源設備又は可搬型代替交流電源設備からの給電による遠隔操作に対して多様性を有する設計とす る。また，原子炉格納容器下部注水系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統に おいて，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。【66条77】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格縼敵設	$\mathrm{VI}-1-10-4$ 「原子炬冷却系統施設」の様式 -1 11．健全性に係る設計
	大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。I66条791 これらの多様性及び系統の独立性並びに位置的分散 によって，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炬格納容器代替スプレイ泠却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系並びに原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替ス プレイ冷却系（可搬型）は，それぞれ互いに重大事故等対処設備としての独立性を有する設計とする。I66条 80】	原子炉泠却系統施設に係る主配管の配置を明示した図面 4． 4.5 低圧代替注水系	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉泠却采統施設の機器の仕様等に関する設計

基本設計方針		設計結果の記載箇所	様式一1 への反映結果
変更前	変更後		
	3．2．3 原子炉格納容器代替スプレイ浍却系 原子炉格納容器内の冷却等のための設備のらち，設計基準事故対処設備が有する原子炉格納容器内の洽却機能が霊失した場合において炉心の著しい損傷を防止 するために原子炉格納容器内の圧力及び温度を低下さ せるため，また，炬心の著しい損傷が発生した場合に おいて原子炉格納容器の破損を防止するために原子炉格納容器内の圧力及び温度亚びに放射性物質の濃度を低下させるための重大事故等対処設備として，原子炉格納容器代替スプレイ椧却系（常設）及び原子炉格納容器代替スプレイ椧却系（可搬型）を設ける設計とす る。【64条1】 炬心の著しい損傷が発生した場合において原子炬格納容器の破損を防止するため，溶融し，原子炉格納容器の下部に落下した炉心を洽却するために必要な重大事故等対処設備として，原子炉格納容器代替スプレイ洽却系（常設）及び原子炉格納容器代替スプレイ椧却系（可搬型）を設ける設計とする。【66条1】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器冷却機能 3．2．5 重大事故等時における原子炉格納容器下部の溶融炉心椧却機能	2．原子炉格納施設の兼用に関する設計 2.1 設借に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含き設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 VI－1－10－3 「核燃料物質の取扱施設及び賏蔵施設」の様式 -1 2．核燃料物質の取扱施設及び賏蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－4 「原子炉冷却采統施設」の様式 -1 18．原子炉冷却采統施設の兼用に関する設計 18． 1 設備に係る設計のための系統つ明碓化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含を原子炉泠却系統施設の機器の仕焃等に関する設計
	（1）原子炉格納容器代替スプレイ佮却系（常設）によ る代替格納容器スプレイ 炬心の著しい損傷防止のための原子炉格納容器内泠却に用いる設備のらち，残留熱除去系（格納容器スプ レイ椧却モード）が機能喪失した場合及び全交流動力電源襄失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障によ り，残留熱除去系（格納容器スプレイ佮却モード）及 び残留熱除去系（サプレッションプール水椧却モード） が起動できない場合の重大事故等対处設備として，原子炉格納容器代替スプレイ椧却系（常設）は，復水移送ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉格納容器内のドライウェルスプレ イ管からドライウェル内にスプレイすることで，原子炉格納容器内の圧力及び温度を低下させることができ る設計とする。【64条3】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器冷却機能 原子炉格納施設に係る系統図 8．3．2．3 原子炉格納容器代替スプレイ冷却系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含を原子师格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子炉冷却系統施設」の様式－1 18．原子炉冷却采統施設の兼用汇関する設計 18． 1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子师冷却采統施設の機器の仕様等に関する設計
	炬心の著しい損傷が発生した場合において，残留熱除去系（格納容器スプレイ椧却モード）が機能喪失し た場合及び全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機洽却海水系を含む。）機能霛失によるサ ポート系の故障により，残留熱除去系（格納容器スプ レイ冷却モード）及び残留熱除去系（サプレッション プール水冷却モード）が起動できない場合の重大事故	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設）	2．原子炉格納施設の兼用に関する設計 2.1 設借に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図

基本設計方針		設計結果の記載箘所	様式一1への反映結果
変更前	変更後		
	等対処設備として，原子炉格納容器代替スプレイ椧却系（常設）は，復水移送ポンプにより，復水眝蔵タン クの水を残留熱除去系等を経由してドライウェルスプ レイ管からドライウェル内にスプレイすることで，原子炉格納容器内の圧力及び温度並びに放射性物質の漲度を低下させることができる設計とする。【64条41】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器泠却機能 原子炉格納施設に係る系統図 8．3．2．3 原子炬格納容器代替スプレイ冷却系	に関する取りまとめ VI－1－10－4 「原子炉冷却奚統施設」の様式－1 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却采統施設の機器の仕様等に関する設計
	原子炬格納容器下部に落下した溶融炬心の椧却を行 らための重大事故等対処設備として，原子炉格納容器代替スプレイ洽却系（常設）は，復水移送ポンプによ り，復水貯蔵タンクの水を残留熱除去系配管等を経由 して原子炉格納容器内のドライウェルスプレイ管から ドライウェル内にスプレイレ，スプレイレた水がドラ イウェル床面に溜まり，原子炉格納容器下部開口部を経由して原子炉格納容器下部—流入することで，溶融炬心が落下するまでし原子炉格納容器下部にあらかじ め十分な水位を確保するとともに，落下した溶融炉心 を冷却できる設計とする。【66条21】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器冷却機能 3．2．5 重大事故等時における原子炉格納容器下部の溶融炉心泠却機能 原子炉格納施設に係る系統図 8．3．2．3 原子炉格納容器代替スプレイ泠却系	2．原子师格納施設の兼用に関する設計 2.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子炉冷却系䖻施設」の様式－1 18．原子炉伶却系統施設の兼用に関する設計 18． 1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を合む設備に係る設計 18．2．1 兼用を含を原子师椧却采統施設の機器の仕栐等に関する設計
	原子炉格納容器代替スプレイ洽却系（常設）は，非常用交流電源設備に加えて，代替所内電気設備を経由 した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。【64条4】66条22】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器冷却機能 3．2．5 重大事故等時における原子炉格納容器下部の溶融炬心泠却機能	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系䖻の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計
	原子炬格納容器代替スプレイ洽却系（常設）の流路 として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係 る機能について重大事故等対処設備としての設計を行 ら。【64条5】【66条23】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．3 原子炉格納容器代替スプレイ伶却系 原子炉格納施設に係る系統図 8．3．2．3 原子炉格納容器代替スプレイ冷却系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系䖻の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	原子炉格納容器代替スプレイ椧却系（常設）は，炉心の著しい損傷及び原子炉格納容器の破損を防止する ための設備として兼用する設計とする。【64条45】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		（原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3．2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器冷却機能	2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 VI－1－10－4 「原子炉冷却系統施設」の様式 -1 18．原子炉泠却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	原子炬格納容器安全設備のらち，復水貯蔵タンクを水源として原子炬格納容器冷却のために運転するポン プは，復水貥蔵タンクの圧力及び温度により，想定さ れる最も小さい有効吸込水頭においても，正常に機能 する能力を有する設計とする。【54条89】	$\mathrm{VI}-1-4-3$ 非常用炬心洽却設備その他原子炬注水設備のポ ンプの有効吸込水頭に関する説明書 3．評価 3.5 評洒結果 3．5．2 サプレッションプールを除くタンク等を水源とす るポンプの有效NPSH評価結果	VI－1－10－4 「原子师冷却采統施設」の様式 -1 18．原子炉泠却采統施設の兼用に開する設計 18.2 機能を兼用する機器を含む設備に係る設計 18．2．2 各機器固有の設計
	（2）原子炉格納容器代替スプレイ冷却系（可搬型）に よる代替格納容器スプレイ 灲心の著しい損傷防止のための原子炉格納容器内泠却に用いる設備のらち，残留熱除去系（格納容器スプ レイ泠却モード）の機能が喪失した場合及び全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障によ り，残留熱除去系（格納容器スプレイ泠却モード）及 び残留熱除去系（サプレッションプール水泠却モード） が起動できない場合の重大事故等対処設備として，原子炉格納容器代替スプレイ泠却系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して原子炉格納容器内のドライ ウェルスプレイ管からドライウェル内にスプレイする ことで，原子炉格納容器内の圧力及び温度を低下させ ることができる設計とする。【64条8】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器冷去叩機能 原子炉格納施設に係る系統図 8．3．2．3 原子炉格納容器代替スプレイ泠却系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ VI－1－10－3 「核燃料物質の取扱施設及び賏蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設備に係る設計
	炬心の著しい損傷が発生した場合において，残留熱除去系（格納容器スプレイ椧却モード）の機能が喪失 した場合及び全交流動力電源喪失又は原子炻補機冷却水系（原子炬補機洽却海水系を含む。）機能喪失による サポート系の故障により，残留熱除去系（格納容器下 プレイ椧却モード）及び残留熱除去系（サプレッショ ンプール水冷却モード）が起動できない場合の重大事故等対処設備として，原子炬格納容器代替スプレイ伶却系（可搬型）は，大容量送水ポンプ（タイプI）に より，代替淡水源の水を残留熱除去系等を経由してド ライウェルスプレイ管からドライウェル内にスプレイ することで，原子炬格納容器内の圧力及び温度並びに	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器冷却機能	2．原子炉格納施設の兼用に関する設計 2.1 設借に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ $\mathrm{VI}-1-10-3$ 「核燃料物質の取扱施設及び賏蔵施設」の様式 －1 2．核燃料物質の取扱施設及び賏藏施設の兼用に関する設

基本設計方針		設計結果の記載笽所	様式 -1 への反映結果
変更前	変更後		
	放射性物質の濃度を低下させることができる設計とす る。【64条42】	原子炉格納施設に係る系統図 8．3．2．3 原子炉格納容器代替スプレイ冷却系	計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借沅係る設計 2.3 機能を兼用する機器を含も核燃料物質の取扱施設及 び貯蔵施設の系統図に関する取りまとめ VI－1－10－4 「原子炉泠却采統施設」の樣式－1 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統つ明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含も原子炬泠却采統施設の機器の仕樣等に関する設計
	原子炉格納容器代替スプレイ泠却系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ （タイプI）により海を利用できる設計とする。【64条 9】【66条27】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炉心泠却機能	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 $\mathrm{VI}-1-10-3$ 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及ひ貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含き設諎に係る設計
	原子炉格納容器下部に落下した溶融炉心の泠却を行 らための重大事故等対処設備として，原子炉格納容器代替スプレイ冷却系（可搬型）は，大容量送水ポンプ （タイプI）により，代替淡水源の水を残留熱除去系配管等を経由して原子炉格納容器内のドライウェルス プレイ管からドライウェル内にスプレイレ，スプレイ した水がドライウェル床面に溜まり，原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入する ことで，落下した溶融炉心を泠却できる設計とする。【66条26】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核然料物質の取扱施設及び販蔵施設） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炉心泠却機能	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炬格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ VI－1－10－3 「核然料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		原子炬格納施設記係る系統図 8．3．2．3 原子炉格納容器代替スプレイ冷却系	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 18．原子炉冷却采統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	原子炉格納容器代替スプレイ浍却系（可搬型）は，非常用交流電源設借に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。 また，大容量送水ポンプ（タイプI）は，空冷式の ディーゼルエンジンにより駆動できる設計とする。I64条10】【66条28】	要目表 VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器冷却機能 3．2．5 重大事故等時における原子炉格納容器下部の溶融炬心泠却機能 構造図 3．2．2 燃料プール代替注水系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2．2．2 各機器固有の設計 VI－1－10－3「核燃料物質の取扱施設及ひ賏蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借にし係る設計 2.3 機能を兼用する機器を含む核燃料物質の取扱施設及 び貯蔵施設の系統図に開する取りまとめ
	原子炬格納容器代替スプレイ椧却系（可搬型）に使用するホースの數設等は，ホース延長回収車（台数 4 （予備1）（核然料物質の取扱施設及び賏藏施設のらち 14.2燃料プール代替注水系」の設備を原子炉格納施設のら ち「3．2．3 原子炉格納容器代替スプレイ浍却系」の設備として兼用）により行ら設計とする。【64条12】66条 301	$\mathrm{VI}-1-1-4-$ 別添 2 設定根拋几関する説明書（別添）	VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計
	原子炉格納容器代替スプレイ椧却系（可搬型）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対处設備としての設計を行う。【64条13】【66条31】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．3 原子炉格納容器代替スプレイ泠却系 原子炉格納施設に係る系統図 8．3．2．3 原子炉格納容器代替スプレイ椧却系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炧格納施設の系統図 に関する取りまとめ VI－1－10－3 「核粐料物質の取扱施設及び貯蔵施設」の様式 －1 2．核然料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する

基本設計方針		設計結果の記載笽所	様式－1への反映結果
変更前	変更後		
			機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	原子炉格納容器代替スプレイ椧却系（可搬型）は，炉心の著しい損傷及び原子炉格納容器の破損を防止す るための設備として兼用する設計とする。【64条45】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核然料物質の取扱施設及び貯蔵施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器冷去口機能	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含き設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 VI－1－10－3 「核燃料物質の取扱施設及び賏蔵施設」の様式 －1 2．核然料物質の取报施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計
	原子炬格納容器安全設備のらち，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海を水源として原子炉格納容器泠却のために運転するポンプは，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧力及び温度により，想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。【54条89】	VI－1－4－3 非常用炉心椧却設備その他原子炉注水設備のポ ンプの有効吸込水頭に関する説明書 3．評価	VI－1－10－4 「原子炉冷却采統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18．2 機能を兼用する機器を含む設備に係る設計 18．2．2 各機器固有の設計
	（3）多重性又は多様性及び独立性，位置的分散原子炬格納容器代替スプレイ椧却系（常設）は，残留熱除去系（格納容器スプレイ掵却モード）と共通要因によって同時に機能を損なわないよう，復水移送ポ ンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動する残留熱除去系 ポンプを用いた残留熱除去系（格納容器スプレイ椧却 モード）に対して多様性を有する設計とする。【64条47】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炬冷却系統施設」の様式 -1 11．健全性に係る設計
	原子炬格納容器代替スプレイ椧却系（常設）の電動弁（交流）は，ハンドルを設けて手動操作を可能とす ることで，非常用交流電源設備からの給電による遠隔操作に対して多樣性を有する設計とする。また，原子炉格納容器代替スプレイ泠却系（常設）の電動升（交流）は，代替所内電気設備を経由して給電する系統に おいて，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。【64条48】 原子炬格納容器代替スプレイ椧却系（常設）の電動弁（直流）は，ハンドルを設けて手動操作を可能とす ることで，所内常設蓄電式直流電源設備からの給電に よる遠隔懆作に対して多栐性を有する設計とする。ま	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下にむおける健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炬格納施設	$\mathrm{VI}-1-10-4$ 「原子炬冷却系統施設」の様式 -1 11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	た，原子炉格納容器代替スプレイ泠却系（常設）の電動弁（直流）は，125V蓄電池から125V直流主母線盤ま での系統において，独立した電路で系統構成すること により，非常用ディーゼル発電機の交流を直流に変換 する電路に対して，独立性を有する設計とする。さら に，常設代替直流電源設備からの給電も可能であり， $125 V$ 代替蓄電池から $125 V$ 直流主母線盤までの系統にお いて，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対 して，独立性を有する設計とする。【64条58】		
	また，原子炬格納容器代替スプレイ椧却系（常設） は，復水貯蔵タンクを水源とすることで，サプレッシ ョンチェンバを水源とする残留熱除去系（格納容器ス プレイ椧却モード）に対して異なる水源を有する設計 とする。 復水移送ポンプは，原子炉建屋原子炉棟内の残留熱除去系ポンプと異なる区画江設置することで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。【64条49】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 11．健全性に係る設計
	復水貯蔵タンクは，屋外扎設置することで，原子炉建屋原子炉棟内に設置されているサプレッションチェ ンバと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。【 64 条50】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炉冷却采統施設」の様式 -1 11．健全性に係る設計
	原子炉格納容器代替スプレイ泠却系（可搬型）は，残留熱除去系（格納容器スプレイ泠却モード）及び原子炉格納容器代替スプレイ泠却系（常設）と共通要因 によって同時に機能を損なわないよう，大容量送水ポ ンプ（タイプI）を空冷式のディーゼルエンジンによ り駆動とすることで，電動機駆動ポンプにより構成さ れる残留熱除去系（格納容器スプレイ伶却モード）及 び原子炉格納容器代替スプレイ椧却系（常設）に対し て多栐性を有する設計とする。【64条51】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炉泠却系統施設」の様式 -1 11．健全性に係る設計
	原子炉格納容器代替スプレイ泠却系（可搬型）の電動弁は，ハンドルを設けて手動操作を可能とすること で，非常用交流電源設備からの給電による遠隔操作に対して多樣性を有する設計とする。また，原子炬格納容器代替スプレイ掵却系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統において，独立 した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。【64条52】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炬格納施設	VI－1－10－4 「原子炉冷却奚統施設」の様式 -1 11．健全性に係る設計
	原子炬格納容器代替スプレイ椧却系（可搬型）は，代替淡水源を水源とすることで，サプレッションチェ ンバを水源とする残留熱除去系（格納容器スプレイ伶却モード）及び復水貯蔵タンクを水源とする原子炉格	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炬冷却系統施設」の様式 -1 11．健全性纪係る設計

基本設計方針		設計結果の記載䈏所	様式一1への反映結果
変更前	変更後		
	納容器代替スプレイ冷却系（常設）に対して異なる水源を有する設計とする。【64条53】		
	大容量送水ポンプ（タイプI）は，原子炬建屋から離れた屋外に分散して保管することで，原子师建屋原子炬棟内の残留熱除去系ポンプ及び復水移送ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。【64条54】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び盱蔵施設） 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．3 原子炉格納容器代替スプレイ冷却系	2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。【64条55】【66条79】	原子彷格納施設に係る主配管の配置を明示した図面 8．3．2．3 原子炉格納容器代替スプレイ伶却系	2．原子师格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含を設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計
	原子炉格納容器代替スプレイ椧却系（常設）及び原子炉格納容器代替スプレイ椧却系（可搬型）は，残留熱除去系と共通要因によって同時に機能を損なわない よう，水源から残留熱除去系配管との合流点までの系統について，残留熱除去系に対して独立性を有する設計とする。【64条56】	原子炉格納施設に係る系統図 8．3．2．3 原子炉格納容器代替スプレイ伶却系	2．原子炬格納施設の兼用に関する設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	これらの多様性及び系統の独立性並びに位置的分散 によって，原子炻格納容器代替スプレイ泠却系（常設）及び原子炬格納容器代替スプレイ洽却采（可搬型）は，設計基準事故対処設備である残留熱除去系（格納容器 スプレイ椧却モード）に対して重大事故等対処設備と しての独立性を有する設計とする。【64条57】	原子炉格納施設に係る系統図 8．3．2．3 原子炉格納容器代替スプレイ泠却系	2．原子师格納施設の兼用に関する設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	原子炉格納容器代替スプレイ泠却系（常設）は，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ椧却系（可搬型）と共通要因によって同時に機能を損なわないよう，原子炉格納容器代替ス プレイ椧却系（常設）の復水移送ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電による電動機駆動とし，原子炉格納容器下部注水系（可搬型）及び原子炬格納容器代替スプレイ椧却系（可搬型）の大容量送水ポンプ （タイプI）を空伶式のディーゼルエンジンによる駆動とすることで，多様性を有する設計とする。【66条711	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炉泠却系統施設」の様式 -1 11．健全性に係る設計
	原子炬格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ椧却系（常設）並び	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	VI－1－10－4 「原子炉泠却系統施設」の様式 -1 11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	に原子炉格納容器下部注水系（常設）（代替循環冷却ホ ンプ）及び代替循環冷却系は，共通要因によって同時 に機能を損なわないよう，非常用所内電気設備を経由 した非常用交流電源設備からの給電に対して，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ椧却系（常設）の復水移送 ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電とし，原子炉格納容器下部注水系（常設）（代替循環冷却ポン プ）及び代替循環冷却系の代替循環冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電とすることで，多様性を有する設計とする。【66条 73】	3．系統施設びとの設計上の考慮 3.5 原子炬格納施設	
	原子炉格納容器代替スプレイ洽却系（常設）の電動弁（交流）は，ハンドルを設けて手動操作を可能とす ることで，常設代替交流電源設備又は可搬型代替交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炬格納容器代替スプレ イ泠却系（常設）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路 で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とす る。【66条74】 原子炉格納容器代替スプレイ泠却系（常設）の電動弁（直流）は，ハンドルを設けて手動操作を可能とす ることで，所内常設蓄電式直流電源設備からの給電に よる遠隔操作に対して多樣性を有する設計とする。ま た，原子炉格納容器代替スプレイ洽却系（常設）の電動弁（直流）は，125V蓄電池から125V直流主母線盤ま での系統において，独立した電路で系統構成すること により，非常用ディーゼル発電機の交流を直流に変換 する電路に対して，独立性を有する設計とする。さら に，常設代替直流電源設備からの給電も可能であり， 125V代替蓄電池から125V直流主母線盤までの系䖻にお いて，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対 して，独立性を有する設計とする。【66条81】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炬冷却系統施設」の様式 -1 11．健全性纪係る設計
	また，原子炉格納容器代替スプレイ佮却系（可般型） は代替淡水源を水源とすることで，復水眝蔵タンクを水源とする原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ椧却系（常設）並びにサプレッションチェンバを水源とする原子炉格納容器下部注水系（常設）（代替循環洽却ポンプ）及び代替循環泠却系に対して，異なる水源を有する設計とする。【66条75】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 11．健全性に係る設計

基本設計方針		設計結果の記載䈏所	様式一1への反映結果
変更前	変更後		
	復水移送ポンプは，原子炉建屋原子炬棟内，代替循環冷却ポンプは原子炬建屋付属棟内氾設置し，大容量送水ポンプ（タイプI）は原子炉建屋から離れた屋外 に分散して保管することで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。【66条76】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．3 原子炉格納容器代替スプレイ冷却系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炬格納施設の機器の仕様等に関す る設計 VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含を設備に係る設計 VI－1－10－4 「原子炉冷却系統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18．2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含を原子炉冷却系統施設の機器の仕様等に関する設計
	原子炉格納容器代替スプレイ泠却系（可搬型）の電動弁は，ハンドルを設けて手動操作を可能とすること で，常設代替交流電源設備又は可搬型代替交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器代替スプレイ椧却系（可搬型）の電動弁は，代替所内電気設備を経由し て給電する系統において，独立した電路で系統構成す ることにより，非常用所内電気設備を経由して給電す る系統に対して独立性を有する設計とする。【66条77】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される 条件の下沉おける健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炬格納旅設	$\mathrm{VI}-1-10-4$ 「原子炬冷却系統施設」の様式 -1 11．健全性に係る設計
	これらの多様性及び系統の独立性並びに位置的分散 によって，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ洽却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系並びに原子炬格納容器下部注水系（可搬型）及び原子炉格納容器代替下 プレイ掵却系（可搬型）は，それぞれ互いに重大事故等対処設備としての独立性を有する設計とする。【66条 80】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下沉おける健全性に関する説明書 3．系統施設びとの設計上の考慮 3.5 原子炬格納施設	$\mathrm{VI}-1-10-4$ 「原子炬冷却系統施設」の様式 -1 11．健全性次係る設計
	3．2．4 代替循環冷却系 炉心の著しい損傷が発生した場合において，原子炉格納容器の過圧による破損を防止するために必要な重大事故等対処設備のらち，原子炉格納容器バウンダリ を維持しながら原子炉格納容器内の圧力及び温度を低	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体）	2．原子炉格納施設の兼用に関する設計 2．1設備に係る設計のための系統の明確化及び兼用する 機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す

基本設計方針		設計結果の記載笽所	様式 -1 への反映結果
変更前	変更後		
	下させるための設備として，代替循環冷却系を設ける設計とする。【65条1】 灲心の著しい損傷が発生した場合に溶融炉心の原子炉格納容器下部への落下を遅延•防止するための重大事故等対処設備として，代替循環冷却系を設ける設計 とする。なお，溶融炉心の原子炉格納容器下部への落下を遅延•防止する場合は，ほら酸水注入系による原子炉圧力容器へのほう酸水注入と並行して行う。【66条 64】 灲心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため，溶融し，原子炉格納容器の下部に落下した师心を泠却するために必要な重大事故等対処設備として，代替循環冷却系を設ける設計 とする。【66条1】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炬格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 3．2．5 重大事故等時における原子炉格納容器下部の溶融炉心泠却機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2． 2 原子炉格納容器下部注水系 8．3．2．4 代替循環冷却系	```る設計 VI-1-10-2 「原子炉本体」の様式-1 3. 原子炬本体の兼用に関する設計 3.1 設備に係る設計のための系統の明碓化及び兼用する 機能の碓認 3.2 機能を兼用する機器を含を設備に係る設計```
	（1）系統構成 代替循環冷却系は，代替循環冷却ポンプによりサプ レッションチェンバのプール水を残留熱除去系熱交換器にて泠却し，残留熱除去系等を経由して原子炉圧力容器へ注水及び原子炉格納容器内ヘスプレイすること で，原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下できる設計とする。 また，本系統に使用する冷却水は，原子炬補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炬補機代替冷却水系から供給できる設計とする。【65条2】	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．4 代替循環泠却系 原子炉格納施設に係る系統図 8．3．2．4 代替循環冷却系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 2．2．2 各機器固有の設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ VI－1－10－2 「原子炉本体」の様式－1 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 3.2 機能を兼用する機器を含き設借に係る設計
	代替循噮洽却系は，代替循澴泠却ポンプにより，サ プレッションチェンバのプール水を残留熱除去系配管 を経由して原子炉圧力容器へ注水することで，原子炉圧力容器内に存在する溶融炬心を泠却できる設計とす る。 また，本系統に使用する洽却水は，原子炉補機冷却水系（原子炋補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。【65条6】 66条65	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炬格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融	```2. 原子彷格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する 機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2.2.1 兼用を含む原子炬格納施設の機器の仕様等に関す る設計 2.2.2 各機器固有の設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ VI-1-10-2 「原子炉本体」の様式-1 3. 原子炬本体の兼用に関する設計```

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
		炬心椧却機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．4 代替循環冷却系 原子炉格納施設に係る系統図 8．3．2．4 代替循環冷却系	3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備に係る設計
	代替循澴洽却系は，代替循澴泠却ポンプによりサプ レッションチェンバのプール水を残留熱除去系熱交換器にて椧却し，残留熱除去系配管を経由して，原子炬格納容器内ヘスプレイレ，スプレイレた水がドライウ エル床面に溜まり，原子炉格納容器下部開口部を経由 して原子炉格納容器下部へ流入することで，溶融炕心 が落下するまでし原子炉格納容器下部にあらかじめ十分な水位を碓保するとともに，落下した溶融炬心を泠却できる設計とする。 また，本系統に使用する椧却水は，原子炉補機冷却水系（原子炬補機洽却海水系を含き。）又は原子炉補機代替冷却水系から供給できる設計とする。【65条7】【66条35】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炬格納容器下部の溶融炬心泠却機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．4 代替循環冷却系 原子炬格納施設に係る系統図 8．3．2．4 代替循睘冷却系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系䖻の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2．2．2 各機器固有の設計 2.3 機能を兼用する機器を含も原子焒格納施設の系統図 に関する取りまとめ VI－1－10－2 「原子炉本体」の様式－1 3．原子炬本体の兼用汇関する設計 3.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設借に係る設計
	原子炉圧力容器に注水された水は，原子炉圧力容器又は原子炉格納容器内配管の破断口等から流出し，原子炉格納容器内ヘスプレイされた水とともに，ベント管を経てサプレッションチェンバに戻ることで循環で きる設計とする。【65条5】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 原子炉格納施設に係る系統図 8．3．2．4 代替循環冷却系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 2．2．2 各機器固有の設計 2.3 機能を兼用する機器を含を原子焒格納施設の系統図 に関する取りまとめ
	代替循擐冷却系は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備か らの給電が可能な設計とする。【65条8】【66条38】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 3．2．5 重大事故等時における原子炉格納容器下部の溶融炬心泠却機能	2．原子炉格納施設の兼用に関する設計 2．2．2 各機器固有の設計
	代替循嘸洽却系の流路として，設計基準対象施設で ある原子炉圧力容器，炉心支持構造物及び原子炬圧力容器内部構造物並びに原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能につ いて重大事故等対処設備としての設計を行う。【 65 条 14】【66条44】【66条66】	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） $\mathrm{VI}-1-1-4-7$ 設備別記載事項の設定根拠に関する説明書	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含むを設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
		（原子炉格納施設） VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－別添 6 灲心支持構造物の強度に関する説明書 VI－3－別添 7 原子炉圧力容器内部構造物の強度計算書原子炉格納施設に係る機器の配置を明示した図面 8．3．2．4 代替循噮冷却系 原子炉格納施設に係る系統図 8．3．2．4 代替循噮泠却系	2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ VI－1－10－2 「原子炉本体」の様式 -1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－4 「原子炉冷却系統施設」の様式－1 12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価 12.7 炉心支持構造物の強度評価
	原子炬格納容器安全設備のうち，サプレッションチ ェンバのプール水を水源として原子炉格納容器除熱の ために運転するポンプは，原子炉格納容器内の圧力及 び温度並びに，原子炬洽却材中の異物の影響について「非常用炉心泠却設備又は格納容器熱除去設備に係る万過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot$ 12 原院第5号（平成 20 年 2 月 27 日原子力安全•保安院制定）による万過装置の性能評価により，重大事故等時 に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。【54条87】	VI－1－8－4 圧力低減設備その他の安全設備のポンプの有効吸込水頭に関する説明書 2．基本方針 3．評価 3.5 評価結果 3．5．1 サプレッションプールを水源とするポンプの有効 NPSH評価結果	2．原子小烙格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計
	（2）多重性又は多様性及び独立性，位置的分散代替循環冷却系及び原子炉格納容器フィルタベント系は，共通要因によって同時に機能を損なわないよう，原理の異なる泠却手段及び原子炉格納容器内の減圧手段を用いることで多様性を有する設計とする。【65条 38】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	3．原子小格格紨施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計 VI－1－10－4 「原子炉冷却系統施設」の様式－1 11．健全性に係る設計
	代替循澴泠却系は，非常用交流電源設備に対して多樣性を有する常設代替交流電源設備からの給電により駆動できる設計とする。また，原子炋格納容器フィル タベント系は，非常用交流電源設備に対して多栐性を有する常設代替交流電源設備，可船型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により駆動できる設計とする。原子炬格納容器フィルタバント系は，人力により排出経路に設置される隔離弁を操作 できる設計とすることで，代替循睘冷却系に対して駆動源の多様性を有する設計とする。【65条39】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	3．原子炬格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計 VI－1－10－4 「原子炉冷却采統施設」の様式－1 11．健全性次係る設計
	代替循環冷却系に使用する原子炉補機代替冷却水系熱交換器ユニット及び大容量送水ポンプ（タイプ I ）	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低

基本設計方針		設計結果の記載笽所	様式 -1 への反映結果
変更前	変更後		
	は，原子炉建屋から離れた屋外に分散して保管するこ とで，原子炉建屋内の原子炉格納容器フィルタベント系と共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。【65条40】 原子炬補機代替冷却水系熱交換器ユニットの接続口 は，共通要因によって接続できなくなることを防止す るため，互いに異なる複数箇所に設置し，かつ原子炉格納容器フィルタベント系と異なる区画に設置する設計とする。【65条40】	3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2．3 原子格納容器フィルタベント系 2．3．3 配置 原子炉冷却系統施設に係る主配管の配置を明示した図面 4．6．3 原子炬補幾代替泠却水系	減設犕の設計 3．4．2 原子炉格䋉器フィルタベント系による水素排出 に関する設計 VI－1－10－4 「原子炬冷却采統施設」の様式－1 11．健全性に係る設計 18．原子炉冷却系統施設の兼用に関する設計 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含も原子炬冷却系統施設の機器の仕㥞等に関する設計
	代替循睘泠却系の代替循澴冷却ポンプは原子炬建屋付属棟内に，残留熱除去系熱交換器及びサプレッショ ンチェンバは原子炬建屋原子炉棟内に設置し，原子炉格納容器フィルタベント系のフィルタ装置及びフィル夕装置出口側ラプチャディスクは原子炉建屋原子炉棟内の代替循噮冷却系と異なる区画に設置することで共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。【65条41】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．4 代替循環冷却系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炋格納施設の機器の仕栐等に関す る設計 3．原子炉格縼戺設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計 VI－1－10－4 「原子炬冷却系統施設」の様式－1 18．原子炉冷却系統施設の兼用に関する設計 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含も原子炉冷却采統施設の機器の仕様等に関する設計
	代替循澴泠却系と原子炉格納容器フィルタバント系 は，共通要因によって同時に機能を損なわないよう，流路を分離することで独立性を有する設計とする。165条421	VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉格納施設に係る系統図 8．3．2．4 代替循環泠却系	2．原子师格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炻格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炧格納施設の系統図 に関する取りまとめ 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炬格䋉容器フィルタベント系による水素排出 に関する設計
	これらの多様性及び流路の独立性並びに位置的分散 によって，代替循喭洽却系と原子炉格納容器フィルタ ベント系は，互いに重大事故等対処設備として，可能 な限りの独立性を有する設計とする。【65条43】	VI－1－8－1－別添 2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉格納施設に係る系統図	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		8．3．2．4 代替循擐椧却奚	る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	代替循嚎洽却系は，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ冷却系（可搬型）と共通要因によって同時に機能を損なわないよう，代替循環冷却系の代替循環冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電によ る電動機駆動とし，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ椧却系（可搬型） の大容量送水ポンプ（タイプI）を空冷式のディーゼ ルエンジンによる駆動とすることで，多㨾性を有する設計とする。【66条72】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 11．健全性に係る設計
	原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ椧却系（常設）並び に原子炋格納容器下部注水系（常設）（代替循睘洽却ポ ンプ）及び代替循環泠却系は，共通要因によって同時 に機能を損なわないよう，非常用所内電気設備を経由 した非常用交流電源設備からの給電に対して，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ椧却系（常設）の復水移送 ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電とし，原子炉格納容器下部注水系（常設）（代替循嬹冷却ポン プ）及び代替循嘸洽却系の代替循環洽却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電とすることで，多樣性を有する設計とする。【66条 73］	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 11．健全性に係る設計
	代替循澴泠却系の電動弁（交流）は，ハンドルを設 けて手動操作を可能とすることで，常設代替交流電源設備からの給電による遠隔操作に対して多様性を有す る設計とする。また，代替循環冷却系の電動升（交流） は，代替所内電気設備を経由して給電する系統におい て，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性 を有する設計とする。【66条74】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炉冷却奚統施設」の様式 -1 11．健全性に係る設計
	また，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ椧却系（可搬型）は代替淡水源を水源とすることで，復水貯蔵タンクを水源とす る原子炉格納容器下部注水系（常設）（復水移送ポンプ）	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	$\mathrm{VI}-1-10-4$ 「原子炬冷却系統施設」の様式 -1 11．健全性に係る設計

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
	及び原子炉格納容器代替スプレイ冷却系（常設）並び にサプレッションチェンバを水源とする原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系に対して，異なる水源を有する設計とする。【66条75】		
	代替循睘泠却系に使用する原子炉禣機代替泠却水系熱交換器ユニット及び大容量送水ポンプ（タイプI） は，原子炉建屋から催れた屋外に分散して保管するこ とで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。【66条78】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子师椧却采統施設」の様式 -1 11．健全性纪係る設計
	原子炉補機代替洽却水系熱交換器ユニット及び大容量送水ポンプ（タイプI）の接続口は，共通要因によ って接続できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。【66条79】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炬冷却系統施設」の様式 -1 11．健全性に係る設計
	これらの多様性及び系統の独立性並びに位置的分散 によって，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ泠却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環洽却ポンプ）及び代替循澴泠却系並びに原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替ス プレイ冷却采（可搬型）は，それぞれ互いに重大事故等対処設備としての独立性を有する設計とする。【66条 80】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	VI－1－10－4 「原子炉冷却采統施設」の様式－1 11．健全性に係る設計
	3．2．5 高圧代替注水系 炬心の著しい損傷が発生した場合に溶融炬心の原子炉格納容器下部への落下を遅延•防止するための重大事故等対処設備として，高圧代替注水系を設ける設計 とする。なお，この場合は，ほら酸水注入系による原子炉压力容器へのほら酸水注入と並行して行ら。【66条 60	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） $\mathrm{VI}-1-1-4-3$ 設備別記載事項の設定根拠に関する説明書 （原子炉泠却系統施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炬格納容器下部の溶融炬心泠却機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．5 高圧代替注水系 原子炉格納施設に係る系統図 8．3．2．5 高圧代替注水系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ VI－1－10－2 「原子炬本体」の様式－1 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 3.2 機能を兼用する機器を含むを設借に係る設計 VI－1－10－4 「原子炉泠却采統施設」の焃式－1 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 18．2．1 兼用を含を原子炉冷却系統旅設の機器の仕様等に関する設計
	高圧代替注水系は，蒸気タービン駆動ポンプにより	要目表	2．原子小炉格納施設の兼用に関する設計

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
	復水貯蔵タンクの水を高圧炬心スプレイ系等を経由し て，原子炬圧力容器へ注水することで溶融炬心を洽却 できる設計とする。【66条61】	VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明（原子炉冷却系統施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炬心泠却機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．5 高圧代替注水系 原子炉格納施設に係る系統図 8．3．2．5 高圧代替注水系	2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ VI－1－10－2 「原子炉本体」の様式－1 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－4 「原子炉冷却采統施設」の様式－1 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備又は所内常設蓄電式直流電源設備か らの給電が可能な設計とし，所内常設蕃電式直流電源設備が機能䨤失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により中央制御室からの操作が可能な設計とする。【66条62】	単線結線図 1．4 単線結線図	$\mathrm{VI}-1-10-9$ 「非常用電源設備」の様式－1 2.1 非常用発電装置
	高圧代替注水系の流路として，設計基準対象施設で ある原子炉圧力容器，灲心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用する ことから，流路に係る機能について重大事故等対処設備としての設計を行う。【66条63】	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明（原子炉冷却系統施設） VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－別添6 炬心支持構造物の強度に関する説明書 VI－3－別添7 原子炉圧力容器内部構造物の強度に関する説明書 原子炉格納施設に係る機器の配置を明示した図面 8．3．2． 5 高圧代替注水系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含むを設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ VI－1－10－2 「原子炉本体」の様式－1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 3.2 機能を兼用する機器を含を設借に係る設計 VI－1－10－4 「原子炉冷却采統施設」の栐式－1 12．材料及び構造に係る設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		原子炉格納施設に係る機器か）配置を明示した図面 8．3．2．6 低圧代替注水系	VI－1－10－4 「原子炉冷却采統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	低圧代替注水系（可搬型）は，大容量送水ポンプ（タ イプ I）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器へ注水することで溶融炉心を泠却できる設計とする。【66条52】	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炉心泠却機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．6 低圧代替注水系 原子炉格納施設に係る系統図 8．3．2．6 低圧代替注水系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ VI－1－10－2 「原子炉本体」の様式－1 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び盱蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 VI－1－10－4 「原子炉冷却系統施設」の様式－1 18．原子炉冷却采統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	低圧代替注水系（可搬型）は，代替淡水源が林渴し た場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）により海を利用できる設計とする。【66条53】	VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借江係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計

基本設計方針		設計結果の記載䈏所	様式一1への反映結果
変更前	変更後		
		炬泠却幾能	VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び盱蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設備に係る設計
	低圧代替注水系（可搬型）は，非常用交流電源設備 に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。【66条54】	要目表 VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炬心泠却機能	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2．2．2 各機器固有の設計
	大容量送水ポンプ（タイプI）は，空冷式のディー ゼルエンジンにより駆動できる設計とする。【66条55】	構造図 3．2．2 燃料プール代替注水系	VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	低圧代替注水系（可搬型）に使用するホースの數設等は，ホース延長回収車（台数 4 （予備1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉格納施設のらち「3．2．6 低圧代替注水系」の設備として兼用）により行う設計と する。【66条57】	VI－1－1－4－別添2設定根拠比関する説明書（別添）	VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	低圧代替注水系（可搬型）の流路として，設計基準対象施設である原子炉圧力容器，炬心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備とし て使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【66条58】	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－別添6 炉心支持構造物の強度に関する説明書 VI－3－別添7 原子炉圧力容器内部構造物の強度計算書 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．6 低圧代替注水系	2．原子师格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炋格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ VI－1－10－2 「原子炉本体」の様式－1 1．共通的に適用される設計 3．原子炉本体の兼用汇関する設計 3.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設借に係る設計 VI－1－10－4 「原子炬泠却采統施設」の焃式－1

基本設計方針		設計結果の記載䈏所	様式一1 への反映結果
変更前	変更後		
		原子炉格納施設に係る系統図 8．3．2．6 低圧代替注水系	12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価 12.7 炬心支持構造物の強度評価
	3．2．7 ほう酸水注入系 炉心の著しい損傷が発生した場合に溶融炉心の原子灲格納容器下部への落下を遅延•防止するための重大事故等対処設備として，ほう酸水注入系を設ける設計 とする。なお，この場合は，低圧代替注水系（常設） （復水移送ポンプ），低圧代替注水系（可搬型），代替循環冷却系及び高圧代替注水系のいずれかによる原子炉圧力容器への注水と並行して行う。【66条67】	要目表 VI－1－1－4－1 設備別記載事項の設定根拠化関する説明書 （原子炉本体） VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炬心泠却機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．7 ほう酸水注入系 原子炉格納施設に係る系統図 8．3．2．7 ほう酸水注入系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含むを設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炧格納施設の系統図 に関する取りまとめ VI－1－10－2 「原子炬本体」の様式－1 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 3.2 機能を兼用する機器を含むを設借に係る設計 VI－1－10－5 「計測制御系統施設」の様式 -1 2．計測制御系統雄設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含むち設借に係る設計
	ほら酸水注入系は，ほら酸水注入系ポンプにより， ほら酸水注入系貯蔵タンクのほら酸水を原子炬圧力容器へ注入することで，溶融炬心の原子炉格納容器下部 への落下を遅延•防止できる設計とする。【66条68】	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．5 重大事故等時における原子炉格納容器下部の溶融炬心冷却機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．7 ほう酸水注入系 原子炉格納施設に係る系統図 8．3．2．7 ほう酸水注入系	2．原子师格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含むち設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炧格納施設の系統図 に関する取りまとめ VI－1－10－2 「原子炉本体」の様式－1 3．原子炬本体の兼用に関する設計 3.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設借に係る設計 VI－1－10－5 「計測制御系統施設」の様式 -1 2．計測制御系統施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含を設借に係る設計
	ほら酸水注入系は，非常用交流電源設備に加え，代替所内電気設備を経由した常設代替交流電源設備又は	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	VI－1－10－4 「原子炬冷却系統施設」の様式 -1 11．健全性に係る設計

基本設計方針		設計結果の記載笽所	様式－1への反映結果
変更前	変更後		
	可搬型代替交流電源設備からの給電が可能な設計とす る。【66条69】		
	ほら酸水注入系の流路として，設計基準対象施設で ある原子炉圧力容器，灯心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用する ことから，流路に係る機能について重大事故等対処設備としての設計を行う。【66条70】	要目表 VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書 （原子炉本体） VI－3－3－1 原子炉本体の強度に関する説明書 VI－3－3－2 原子炬圧力容器付属構造物の強度計算書 VI－3－別添 6 灲心支持構造物の強度に関する説明書 VI－3－別添 7 原子炉圧力容器内部構造物の強度計算書 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．7 ほう酸水注入系 原子炉格納施設に係る系統図 8．3．2．7 ほう酸水注入系	2．原子炉格縼施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含き設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕樣等に関す る設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ VI－1－10－2 「原子炉本体」の栐式－1 1．共通的に適用される設計 3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 3.2 機能を兼用する機器を含む設借にし係る設計 VI－1－10－4 「原子炬冷却系統施設」の様式 -1 12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価 12.7 炬心支持構造物の強度評価
	3．2．8 残留熱除去系（格納容器スプレイ泠却モード） （1）系統構成 原子炉格納容器内の冷却等のための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（格納容器スプレイ冷却モード） が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。【64条2】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器冷却機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．8 残留熱除去系（格納容器スプレイ冷却モード） 原子炉格納施設に係る系統図 8．3．2．8 残留熱除去系（格納容器スプレイ冷却モード）	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含を設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕焃等に関す る設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子炬冷却系統施設」の様式 -1 18．原子炉冷却采統施設の兼用汇関する設計 18． 1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含き原子师冷却采統施設の機器の仕樣等に関する設計
	炬心の著しい損傷防止のための原子炉格納容器内冷却に用いる設備のらち，全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器スプレイ椧却モード）が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系（格納容器スプレイ给却モード）	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	VI－1－10－4 「原子炬冷却系統施設」の様式 -1 11．健全性に係る設計

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
	を復旧できる設計とする。【64条17】		
	炬心の著しい損傷が発生した場合において，全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障に より，残留熱除去系（格納容器スプレイ冷却モード） が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系（格納容器スプレイ洽却モード）を復旧できる設計とする。【64条43】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	VI－1－10－4 「原子炉泠却采統施設」の栐式－1 11．健全性に係る設計
	残留熱除去系（格納容器スプレイ泠却モード）は，常設代替交流電源設備からの給電により機能を復旧 し，残留熱除去系ポンプ及び残留熱除去系熱交換器に よりサプレッションチェンバのプール水をドライウェ ル内及びサプレッションチェンバ内にスプレイするこ とで原子炉格納容器を泠却できる設計とする。 本系統に使用する泠却水は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。【64条18】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．3 重大事故等時における原子炉格納容器冷却機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．8 残留熱除去系（格納容器スプレイ椧却モード） 原子炉格納施設に係る系統図 8．3．2．8 残留熱除去系（格納容器スプレイ泠却モード）	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炧格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子炉冷却采統施設」の栐式－1 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含も原子炉冷却采統施設の機器の仕様等に関する設計
	残留熱除去系（格納容器スプレイ泠却モード）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【64条19】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－3－3－6 原子炉格納施設の強度に関する計算書 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．8 残留熱除去系（格納容器スプレイ冷却モード） 原子炉格納施設に係る系統図 8．3．2．8 残留熱除去系（格納容器スプレイ泠却モード）	1．共通的に適用される設計 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含を設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子炉冷却采統施設」の様式－1 12．材料及び構造に係る設計 12.1 クラス機器及び支持構造物の強度評価 18．原子炉冷却系統施設の兼用に開する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含む原子炉冷却采統施設の機器の仕様等に関する設計
	原子炉格納容器安全設備のらち，サプレッションチ	$\mathrm{VI}-1-8-4$ 圧力低澸設備その他の安全設備のポンプの有効	2．原子炉格納施設の兼用に関する設計

基本設計方針		設計結果の記載䈏所	様式一1への反映結果
変更前	変更後		
	エンバのプール水を水源として原子炬格納容器除熱の ために運転するポンプは，原子师格納容器内の圧力及 び温度並びに，原子炉椧却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係る万過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot$ 12 原院第5号（平成20年2月27日原子力安全•保安院制定））による万過装置の性能評価により，重大事故等時 に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。【54条87】	吸込水頭に関する説明書 3．評価 3.5 評価結果 3．5．1 サプレッションプールを水源とするポンプの有効 NPSH評価結果	2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計
	（2）多様性，位置的分散等 残留熱除去系（格納容器スプレイ椧却モード）は，設計基準事故対処設備であるとともに，重大事故等時 においても使用するため，重大事故等対処設備として の基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」 に示す設計方針は適用しない。【64条46】	原子炉格納施設に係る機器の配置を明示した図面 8．3．2．8 残留熱除去系（格納容器スプレイ泠却モード） 原子炉格納施設に係る系統図 8．3．2．8 残留熱除去系（格納容器スプレイ冷却モード）	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を合む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	3．2．9 残留熱除去系（サプレッションプール水冷却モ ード） （1）系統構成 原子炉格納容器内の泠却等のための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（サプレッションプール水冷却 モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。【64条2】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．9 残留熱除去系（サプレッションプール水冷却モー ド） 原子炬格納施設に係る系統図 8．3．2．9 残留熱除去系（サプレッションプール水冷却モー ド）	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炋格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子聄格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子炉冷却系統施設」の様式－1 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含も原子炬泠却采統施設の機器の仕樣等に関する設計
	炉心の著しい損馥防止のための原子炉格納容器内泠却に用いる設備のらち，全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（サ プレッションプール水泠却モード）が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系（サプレッションプール水洽却モード）を復旧できる設計とする。【64条29】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	$\mathrm{VI}-1-10-4$ 「原子炬冷却系統施設」の様式 -1 11．健全性沉係る設計
	炉心の著しい損傷が発生した場合において，全交流動力電源啔失又は原子炋補機冷却水系（原子炬補機冷却海水系を含む。）機能電失によるサポート系の故障に	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	VI－1－10－4 「原子师冷却采統施設」の様式 -1 11．健全性纪係る設計

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
	より，残留熱除去系（サプレッションプール水冷却モ ード）が起動できない場合の重大事故等対処設備とし て，常設代替交流電源設備を使用し，残留熱除去系（サ プレッションプール水泠却モード）を復旧できる設計 とする。【64条44】		
	残留熱除去系（サプレッションプール水冷却モード） は，常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプ及び残留熱除去系熱交換器 により，サプレッションチェンバのプール水を泠却す ることで原子炉格納容器を椧却できる設計とする。 本系統に使用する洽却水は，原子炉補幾冷却水系（原子炉補機冷却海水系を含む。）又は原子炬補機代替冷却水系から供給できる設計とする。【64条30】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．9 残留熱除去系（サプレッションプール水冷却モー ド） 原子炉格納施設に係る系統図 8．3．2．9 残留熱除去系（サプレッションプール水泠却モー ド）	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ $\mathrm{VI}-1-10-4$ 「原子炬冷却采統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含を設備に係る設計 18．2．1 兼用を含む原子炉冷却系䖻施設の機器の仕樣等に関する設計
	残留熱除去系（サプレッションプール水泠却モード） の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【64条31】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－3－3－6 原子炉格納施設の強度に関する計算書 原子炉格納施設に係る機器の配置を明示した図面 8．3．2．9 残留熱除去系（サプレッションプール水冷却モー ド） 原子炉格納施設に係る系統図 8．3．2．9 残留熱除去系（サプレッションプール水泠却モー ド）	1．共通的に適用される設計 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炋格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子彷格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子炉冷却采統施設」の様式－1 12．材料及び構造汇係る設計 12.1 クラス機器及び支持構造物の強度評価 18．原子炉冷却系統施設の兼用に関する設計 18.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含を原子炬泠却采統施設の機器の仕樣等に関する設計
	原子炉格納容器安全設備のらち，サプレッションチ ェンバのプール水を水源として原子炉格納容器除熱の ために運転するポンプは，原子炉格納容器内の圧力及 び温度並びに，原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係る	VI－1－8－4 圧力低減設備その他の安全設備のポンプの有効吸込水頭に関する説明書 2．基本方針 3．評価 3.5 評洒結果	2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設借に係る設計 2．2．2 各機器固有の設計

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	ろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot$ 12原院第5号（平成20年2月27日原子力安全•保安院制定））によるろ過装置の性能評価により，重大事故等時 に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。【54条87】	3．5．1 サプレッションプールを水源とするポンプの有効 NPSH評価結果	
	（2）多様性，位置的分散等 残留熱除去系（サプレッションプール水冷却モード） は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備と しての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象 の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。【64条46】	原子炉格納施設に二係る機器の配置を明示した図面 8．3．2．9 残留熱除去系（サプレッションプール水冷却モー ド） 原子炉格納施設に係る系統図 8．3．2．9 残留熱除去系（サプレッションプール水冷却モー ド）	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．1 非常用ガス処理系 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針（平成2年8月30日原子力安全委員会）」に規定する線量を超 えないよう，当該放射性物質の濃度を低減する設備と して非常用ガス処理系を設置する。	3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．1 非常用ガス処理系 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針（平成2年8月30日原子力安全委員会）」に規定する線量を超 えないよう，当該放射性物質の濃度を低減する設備と して非常用ガス処理系を設置する。【44条19】	－	（変更なし）
非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガス処理系排風機及び高性能エアフィルタ， チャコールエアフィルタを含む非常用ガス処理系フィ ルタ装置等から構成される。 放射性物質の放出を伴う設計基準事故時には，常用換気系を閉鎖し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炉格納容器等から漏えいした放射性物質を非常用 ガス処理系フィルタ装置を通して除去•低減した後，排気筒から放出する設計とする。	非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガス処理系排風機及び高性能エアフィルタ， チャコールエアフィルタを含む非常用ガス処理系フィ ルタ装置等から構成される。 放射性物質の放出を伴う設計基準事故時には，常用換気系を閉鎖し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炬格納容器等から漏えいした放射性物質を非常用 ガス処理系フィルタ装置を通して除去•低減した後，排気筒から放出する設計とする。【43条8】	－	（変更なし）
非常用ガス処理系は，冷却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素 を除去し，環境に放出される放射性物質の濃度を減少 させる設計とする。	非常用ガス処理系は，冷却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素 を除去し，環境に放出される放射性物質の濃度を減少 させる設計とする。【44条22】	－	（変更なし）
非常用ガス処理系のうち，非常用ガス処理系フィル夕装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可を受けた設計基準事故の評価の条件を満足する設計とする。	非常用ガス処理系のうち，非常用ガス処理系フィル夕装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可を受けた設計基準事故の評価の条件を満足する設計とする。【44条25】	－	（変更なし）
新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出によ り公衆に放射線障害を及ぼすおそれがある場合におい	新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出によ り公衆に放射線障害を及ぼすおそれがある場合におい	－	（変更なし）

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
て，放射性物質による敷地外への影響を低減するため，非常用がス处理系により放射性物質の放出を低減でき る設計とする。	て，放射性物質による敷地外への影響を低減するため，非常用がス処理系により放射性物質の放出を低減でき る設計とする。【26条47】		
	重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合に長期間にわたつて機能 が要求される静的機器のらち，単一設計とする非常用 ガス処理系の配管の一部及び非常用ガス処理系フィル夕装置については，当該設備に要求される原子炉格納容器内又は放射性物質が原子炋格納容器内から漏れ出 た場所の雰囲気中の放射性物質の莀度低滅機能が喪失 する単一故障のらち，想定される最も過酷な条件とし て，配管の全周破断及び非常用ガス処理系フィルタ装置の閉塞を想定しても，単一故障による放射性物質の放出に伴ら被ばくの影響を最小限に抑えるよう，安全上支障のない期間に単一故障を碓実に除去又は修復で きる設計とし，その単一故障を仮定しない。【14条5】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	4．その他原子炉格納施設に係る設計 4.1 放射性物質濃度低減設備の単一故障に係る設備（上記 は項目のみ） VI－1－10－4 「原子炉冷却采統施設」の様式 -1 11．健全性に係る設計
	想定される単一故障の発生に伴ら周辺公衆に対する放射線被ばくは，保守的に単一故障を除去又は修復が できない場合で評価し，安全評価指針に示された設計基準事故時の判断基準を下回ることを確認する。 また，単一故障の除去又は修復のための作業期間と して想定する3日間を考慮し，修復作業に係る従事者の被ばく線量は緊急時作業に係る線量限度に照らしても十分小さくする設計とする。【14条6】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	4．その他原子炉格納施設に係る設計 4.1 放射性物質濃度低減設備の単一故障に係る設備（上記 は項目のみ） VI－1－10－4 「原子炉冷却系統施設」の様式 -1 11．健全性に係る設計
	単一設計とする箇所の設計に当たつては，想定され る単一故障の除去又は修復のためのアクセスが可能で あり，かつ，補修作業が容易となる設計とする。【14条 9］	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.5 原子炉格納施設	4．その他原子炉格納施設に係る設計 4.1 放射性物質濃度低減設備の単一故障に係る設備（上記 は項目のみ） VI－1－10－4 「原子炉泠却采統施設」の様式 -1 11．健全性に係る設計
	炬心の著しい損傷が発生した場合に，非常用がス処理系は，非常用ガス処理系排風機により原子炉建屋原子炉棟内を負圧に維持するとともに，原子炉格納容器 から原子炬建屋原子炉棟内に漏えいした放射性物質を含む気体を排気筒から排気し，原子炉格納容器から漏 えいした空気中の放射牲物質の濃度を低減させること で，中央制御室にとどまる運転員を過度の被ばくから防護する設計とする。【74条21】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－7－3 中央制御室の居住性に関する説明書 2．中央制御室の居住性に関する基本方針 2.1 基本方針 4．中央制御室の居住性評価 原子炉格納施設に係る機器の配置を明示した図面 8．3．3．1 非常用ガス処理系 原子炉格納施設に係る系統図 8．3．3．1 非常用ガス処理系	2．原子师格納施設の兼用に関する設計 2.1 設借に係る設計のための采統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炻格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ 4．その他原子炉格納施設に係る設計 4.2 非常用がス処理系排風機の設計 VI－1－10－7 「放射線管理施設」の様式 -1 10．中央制御室及び緊急時対策所つ居住性に関する設計 10.1 中央制御室

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
		構造図 8．3．3．1 非常用ガス处理系	
	炬心の著しい損傷が発生し，非常用ガス処理系を起動する際に，原子炬建屋ブローアウトパネルを閉止す る必要がある場合には，中央制御室から原子炉建屋づ ローアウトパネル閉止装置（個数1）を操作し，容易か つ確実に開口部を閉止できる設計とする。また，原子炉建屋ブローアウトパネル閉止装置は現場において も，人力により操作できる設計とする。【74条22】	$\mathrm{VI}-1-1-6$－別添4 ブローアウトパネル関連設備の設計方針	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 4．その他原子炉格納施設に係る設計 4.3 原子炉建屋ブローアウトパネル関連設備の設計
	非常用ガス处理系は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とす る。【74条24】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 11．健全性に係る設計
	また，原子炬建屋ブローアウトパネル閉止装置は，常設代替交流電源設備からの給電が可能な設計とす る。【74条25】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対处設備が使用される条件の下における健全性に関する説明書 VI－1－1－6－別添 4 ブローアウトパネル関連設備の設計方針	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計 4．その他原子炉格納施設に係る設計 4.3 原子炉建屋ブローアウトパネル関連設備の設計
	非常用ガス処理系の流路として，設計基準対象施設 である非常用がス処理系空気乾燥装置，非常用ガス処理系フィルタ装置，排気筒，原子炉建屋原子炉棟，原子炉建屋大物般入口及び原子炉建屋エアロックを重大事故等対处設備として使用することから，流路に係る機能について重大事故等対处設備としての設計を行 う。【74条27】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－3－3－6 原子炉格納施設の強度に関する計算書 原子炉格納施設に係る機器の配置を明示した図面 8．3．3．1 非常用ガス処理系 原子炉格納施設に係る系統図 8．3．3．1 非常用ガス処理系	1．共通的に適用される設計 2．原子炇格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕樣等に関す る設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子炉冷却系統施設」の様式 -1 12．材料及び構造に係る設計 12．1 クラス機器及び支持構造物の強度評価
3．3．2 可燃性ガス濃度制御系 冷却材喪失事故時に原子炉格納容器内で発生する水素及び酸素の反応を防止するため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあいまって，可燃限界 に達しないための制限値である水素濃度 $4 \mathrm{vol} \%$ 未満又 は酸素濃度 $5 \mathrm{vol} \%$ 未満に維持できる設計とする。	3．3．2 可燃性ガス濃度制御系 冷却材喪失事故時に原子炉格納容器内で発生する水素及び酸素の反応を防止するため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあいまって，可燃限界 に達しないための制限値である水素濃度 $4 \mathrm{vol} \%$ 未満又 は酸素濃度 $5 \mathrm{vo} 1 \%$ 未満に維持できる設計とする。【44条 17］	－	(変更なし)
	3．3．3 原子炉建屋水素濃度抑制系炉心の著しい損傷が発生した場合において原子炉建	要目表	3．原子炉格納施設の設計 3.5 原子炉建屋等の損傷を防止するための水素濃度低減

基本設計方針		設計結果の記載綯所	様式一1への反映結果
変更前	変更後		
	屋等の水素爆発による損傷を防止するために原子炬建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備とし て，水素濃度制御設備である静的触媒式水素再結合装置を設ける設計とする。【68条1】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－2 原子炉格納施設の水素濃度低滅性能に関する説明書 2．基本方針 2.2 原子炉建屋等の損傷を防止するための水素濃度低減設備 2．2．1 静的触媒式水素再結合装置 原子炉格納施設に係る機器の配置を明示した図面 8．3．3．3 原子炉建屋水素濃度抑制系 構造図 8．3．3．3 原子炉建屋水素濃度抑制系	設備の設計
	水素浱度制御設備である静的触媒式水素再結合装置 は，運転員の起動操作を必要とせずに，原子炬格納容器から原子炉建屋原子炬棟内に漏えいした水素と酸素 を触媒反応によって再結合させることで，原子炉建屋原子炉棟内の水素濃度の上昇を抑制し，原子炬建屋原子炉棟の水素爆発を防止できる設計とする。また評価 に用いる性能を満足し，試験により性能及び而擐境性 が碓認された型式品を設置する設計とする。静的触蝶式水素再結合装置は，原子炉建屋原子炉棟内に漏えい した水素が滞留すると想定される原子炉建屋原子炉棟 3 階に設置することとし，静的触媒式水素再結合装置の触媒反応時の高温ガスの排出が重大事故等時の対処に重要な計器•機器に悪影響がないよう離隔距離を設け る設計とする。【68条3】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炬格納施設） VI－1－8－2 原子灲格納施設の水素濃度低滅性能に関する説明書 4．原子灲格納施設の水素濃度低減設備の詳細設計 4.2 原子炉建屋等の破損を防止するための水素濃度低減設備 4．2．1 静的触媒式水素再結合装置 原子炉格納施設に係る機器の配置を明示した図面 8．3．3． 3 原子炉建屋水素濃度抑制系	3．原子炬格納施設の設計 3.5 原子炬建屋等の損傷を防止するための水素涱度低減設備の設計
	静的触媒式水素再結合装置の流路として，設計基準対鱼施設である原子炉建屋原子炉棟，原子炉建屋大物搬入口及び原子炬建屋エアロックを重大事故等対处設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【68条2】	要目表 VI－1－8－2 原子灲格納施設の水素濃度低減性能に関する説明書 原子炉格納施設に係る機器の配置を明示した図面 8．2 原子炉建屋 8．3．3．3 原子炬建屋水素濃度抑制系	3．原子炬格納施設の設計 3.5 原子炬建屋等の損傷を防止するための水素榐度低減設備の設計
	3．3．4 放射性物質拡散抑制系 炬心の著しい損傷及び原子炉格納容器の破損に至っ た場合において，発電所外いの放射性物質の抁散を抑制するための重大事故等対処設備として，放水設備（大気いの拡散抑制設備）及び海洋への拡散抑制設備（シ ルトフェンス）を設ける設計とする。【70条1】	$\mathrm{VI}-1-1-4$－別添 2 設定根拠に関する説明書（別添） VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設）	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
		VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．8 重大事故等時における放射性物質拡散抑制機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．3．4 放射性物質拡散抑制系 原子炉格納施設に係る系統図 8．3．3．4 放射性物質拡散抑制系	VI－1－10－4 「原子炉冷却奚統施設」の様式－1 18．原子炉冷却采統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18．2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉泠却采統施設の機器の仕様等に関する設計
	（1）放水設備（大気への抎散抑制設備） 大気いの放射性物質の拡散を抑制するための重大事故等対処設備として，放水設備（大気いの拡散抑制設備）は，大容量送水ポンプ（タイプII）により海水を取水し，ホースを経由して放水砲から原子炉建屋へ放水できる設計とする。大容量送水ポンプ（タイプII）及び放水砲は，設置場所を任意に設定し，複数の方向 から原子炬建屋に向けて放水できる設計とする。I70条 2】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．8 重大事故等時における放射性物質拡散抑制機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．3．4 放射性物質拡散抑制系 原子炉格納施設に係る系統図 8．3．3． 4 放射性物質拡散抑制系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ VI－1－10－4 「原子炉冷却系統施設」の様式－1 18．原子炉冷却系統施設の兼用汇関する設計 18．1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含を原子师泠却采統施設の機器の仕栐等に関する設計
	放水設備（大気への拡散抑制設備）に使用するホー スの敷設は，ホース延長回収車（台数4（予備1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プ ール代替注水系」の設備を原子炉格納施設のらち 「3．3．4 放射性物質拡散抑制系」の設備として兼用） により行ら設計とする。【70条4】	VI－1－1－4－別添 2 設定根执㣗関する說明書（別添）	VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	（2）海洋への拡散抑制設備（シルトフェンス） 海洋への放射性物質の拡散を抑制するための重大事故等対処設備として，海洋への拡散抑制設備（シルト フェンス）は，シルトフェンス（核燃料物質の取扱施設及び貯蔵施設のうち「4．4 放射性物質拡散抑制系」 の設備と兼用）で構成する。シルトフェンスは，污染水が発電所から海洋に流出する4箇所（南側排水路排水桝，タービン補機放水ピット，北側排水路排水桝及び取水口）に設置できる設計とする。【70条7】	VI－1－1－4－別添2 設定根执に関する説明書（別添） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．8 重大事故等時沉おける放射性物質抆敬抑制機能	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設蒨に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計
	シルトフェンスは，海洋への放射性物質の拡散を抑制するため，設置場所に応じた高さ及び幅を有する設	VI－1－1－4－別添 2 設定根拠に関する說明書（別添）	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
	計とする。必要数は，各設置場所に必要な幅に対して シルトフェンスを二重に設置することとし，南側排水路排水桝に1本1組（高さ約5m，幅約5m）として計2本， タービン補機放水ピットに1本1組（高さ約 7 m ，幅約 5 m ） として計2本，北側排水路排水桝に1本1組（高さ約6m，幅約11m）として計2本及び取水口に3本1組（1本あたり高さ約 12 m ，幅約 20 m ）として計 6 本の合計 12 本使用する設計とする。また，予備については，破損時のバック アップとして，各設置場所に対して1組の合計6本を保管する。【70条8】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．8 重大事故等時における放射性物質拡散抑制機能	機能の碓認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕様等に関す る設計
	3．3．5 放射性物質拡散抑制系（航空機燃料火災への泡消火） 原子炉建屋周辺における航空機衝突による航空機燃料火災に対応できる設備として，放水設備（泡消火設備）を設ける設計とする。【70条1】	$\mathrm{VI}-1-1-4$－別添 2 設定根拠に関する説明書（別添） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．8 重大事故等時における放射性物質拡散抑制機能 原子炉格納施設に係る機器の配置を明示した図面 8．3．3．5 放射性物質拡散抑制系	2．原子炉格納施設の兼用に関する設計 2.1 設借に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含を設備に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕様等に関す る設計
	原子炬建屋周辺における航空機重突による航空機然料火災に対応するための重大事故等対処設備として，放水設備（泡消火設備）は，大容量送水ポンプ（タイ プII）により泡消火薬剤混合装置を通して，海水を泡消火薬剤と混合しながらホースを経由して放水砲から原子炉建屋周辺へ放水できる設計とする。【70条9】	VI－1－1－4－別添 2 設定根执化関する説明書（別添） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炻格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．8 重大事故等時における放射性物質抁散抑制機能 原子炉格納施設に係る系統図 8．3．3．5 放身性物質拉散抑制系	2．原子师格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	泡消火薬剤混合装置1個の泡消火薬剤の保有量は，必要な容量である646Lに対し余裕をみた1000Lを保管す る。【70条15】	$\mathrm{VI}-1-1-4-$ 別添 2 設定根执几関する説明書（別添）	2．原子炉格縼施設の兼用に関する設計 2.1 設借に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計
	泡消火薬剤混合装置は，航空機然料火災に対応する ため，大容量送水ポンプ（タイプII）及び放水砲に接続することで，泡消火薬剤を混合して放水できる設計 とする。また，泡消火薬剤混合装置の保有数は，航空機燃料火災に対応するため，1個と故障時及び保守点検時の予備として1個の合計2個を保管する。【70条10】	VI－1－1－4－別添2 設定根执に関する説明書（別添） $\mathrm{VI}-1-8-1$ 原子炇格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．8 原子炉格納容器外面への放水設借等	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	放水設備（泡消火設備）に使用するホースの數設は， ホース延長回収車（台数 4 （予備1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水	VI－1－1－4－別添 2 設定根扰に関する説明書（別添）	VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 2．核燃料物質の取扱施設及び眝蔵施設の兼用に関する設

基本設計方針		設計結果の記載箅所	様式－1への反映結果
変更前	変更後		
	系」の設備を原子炬格納施設のらち「3．3．5 放射性物質㹡散抑制系（航空機燃料火災への泡消火）」の設備と して兼用）により行ら設計とする。【70条12】		計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設備に係る設計
	3．3．6 可搬型窒素ガス供給系 可搬型窒素ガス供給系は，可燃性ガスによる爆発及 び原子炉格納容器の負圧破損を防止するために，可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活性ガス（窒素）の供給が可能な設計とする。また，原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガスによる爆発を防ぐため，可搬型窒素ガス供給系により，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器ベント後においても不活性ガス（窒素）で置換できる設計とする。【63条12】【65条24】【67条13】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 VI－1－8－2 原子炬格納施設の水素濃度低滅性能に関する説明書 2．基本方針 2． 1 原子炉格納容器の破損を防止するための水素濃度低減設備 2．1．2 可搬型窒素がス供給装置 原子炉格納施設に係る機器の配置を明示した図面 8．3．3．6 可搬型窒素ガス供給系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 3．原子炬格納施設の設計 3.4 原子炳格納容器の破損を防止するための水素濃度低減設備の設計
	炬心の著しい損傷が発生した場合において，原子灲格納容器内における水素爆発による破損を防止するた めに必要な重大事故等対処設備のらち，原子炉格納容器内を不活性化するための設備として，可搬型窒素が ス供給装置を設ける設計とする。【67条1】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．6 重大事故等時における水素爆発による原子炉格納容器の破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2． 1 設計方針	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
		VI－1－8－2 原子彷格納施設の水素濃度低減性能に関する説明書 4．原子炉格納施設の水素濃度低減設備の詳細設計 4.1 原子炉格納容器の破損を防止するための水素濃度低減設備 4．1．2 可搬型窒素ガス供給装置 原子炉格納施設に係る機器の配置を明示した図面 8．3．3．6 可搬型空素ガス供給系	
	可搬型窒素ガス供給装置は，原子炬格納容器内に窒素を供給することで，ジルコニウム一水反応，水の放射線分解等により原子炉格納容器内纪発生する水素及 び酸素の濃度を可燃限界未満にできる設計とする。I67条5	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炬格納施設） VI－1－8－1 原子炬格納施設の設計条件に関する説明書 3．原子炬格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．2 重大事故等時における原子炉格納容器の熱の輸送機能 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 4．原子炉格納施設の水素濃度低減設備の詳細設計 4． 1 原子炉格納容器の破損を防止するための水素濃度低減設備 4．1．2 可搬型窒素ガス供給装置	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 3．原子炬格縼施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計
	可搬型空素がス供給装置は，車両内に搭載された可搬型窒素かス供給装置発電設備により給電できる設計 とする。【63条57】【65条44】【67条33】【67条35】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 構造図 8．3．3．6 可搬型窒素がス供給系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 3．原子炉格縼施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計
	可搬型窒素ガス供給系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備とし て使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。【67条8】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書	2．原子炉格納施設の兼用に関する設計 2.1 設借に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
		2．基本方針 2.2 重大事故等時における基本方針 原子炉格納施設に係る機器の配置を明示した図面 8．3．3．6 可搬型窒素ガス供給系 原子炬格納施設に係る系統図 8．3．3．6 可搬型窒素ガス供給系	2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	3．3．7 原子炬格納容器フィルタベント系 炉心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発による破損を防止できるよ らに，原子炉格納容器内に滞留する水素及び酸素を大気へ排出するための設備として，原子炉格納容器フィ ルタベント系を設ける設計とする。【67条2】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．6 重大事故等時における水素爆発による原子炉格納容器の破損防止機能 VI－1－8－1－別添2 原子炬格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 2．基本方針 2.1 原子炉格納容器の破損を防止するための水素濃度低減設備 2．1．3 原子炉格納容器フィルタベント系 原子炉格納施設に係る機器の配置を明示した図面 8．3．5．1 原子炬格納容器フィルタベント系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含き設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計
	原子炉格納容器内に滞留する水素及び酸素を大気へ排出するための重大事故等対処設備として，原子炉格納容器フィルタバント系は，フィルタ装置（フィルタ容器，スクラバ溶液，金属繊維フィルタ，放射性よう素フィルタ），フィルタ装置出口側ラプチャディスク，配管•弁類，計測制御装置等で構成し，炬心の著しい損傷が発生した場合において，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィル夕装置へ導き，放射性物質を低減させた後に原子炬建屋屋上に設ける放出口から排出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$（ 1 Pdにおいて））することで，排気中汇含ま れる放射性物質の環境への放出量を低減しつつ，ジル コニウム一水反応，水の放射線分解等により発生する	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．6 重大事故等時における水素爆発による原子炉格納容器の破損防止機能 VI－1－8－1－別添2 原子炬格納容器フィルタベント系の設計 2．系統設計	2．原子炉格納施設の兼用に関する設計 2.1 設借に係る設計のための采統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含も設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格縼施設の系統図 に関する取りまとめ 3．原子炬格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
	原子师格納容器内の水素及び酸素を大気に排出できる設計とする。【67条11】	2.1 設計方針 2.2 設計条件 VI－1－8－2 原子炉格納施設の水素濃度低滅性能に関する説明書 4．原子炉格納施設の水素濃度低減設備の詳細設計 4.1 原子炉格納容器の破損を防止するための水素濃度低減設備 4．1．3 原子炉格納容器フィルタベント系 原子炉格納施設に係る系統図 8．3．5．1 原子炉格納容器フィルタベント系 構造図 8．3．5．1 原子炉格納容器フィルタベント系	
	フィルタ装置は3台を並列に設置し，排気中に含まれ る粒子状放射性物質，ガス状の無機よう素及び有機よ ら素を除去できる設計とする。また，無機よう素をス クラバ溶液中に捕集•保持するためにアルカリ性の状態（待機状態においてpH13以上）に維持する設計とす る。【67条12】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 2． 3 原子炉格納容器フィルタベント系 2．3．2 フィルタ装置 VI－1－8－2 原子炉格納施設の水素浱度低減性能に関する説明書 4．原子炬格納施設の水素濃度低減設備の詳細設計 4.1 原子炉格納容器の破損を防止するための水素濃度低減設備 4．1．3 原子炉格納容器フィルタベント系 構造図 8．3．5．1 原子炉格納容器フィルタベント系	2．原子炇格納施設の兼用に関する設計 2.1 設借に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借して係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 3．原子炬格縼锫の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタバント系による水素排出 に関する設計
	原子炬格納容器フィルタベント系は，排気中に含ま れる可燃性ガスによる爆発を防ぐため，可搬型窒素が ス供給采により，系統内を不活性ガス（窒素）で置換 した状態で待機させ，原子炉格納容器ベント開始後に おいても不活性ガス（窒素）で置換できる設計とする とともに，系統内汇可燃性がスが蓄積する可能性のあ る箇所にはバイパスラインを設け，可然性ガスを連続 して排出できる設計とすることで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。【67条13】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．6 重大事故等時における水素爆発による原子炉格納容器の破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計	2．原子师格納施設の兼用に関する設計 2.1 設借に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
		2．系統設計 2.1 設計方針 2.4 付帯設備 2．4．4 可搬型空素ガス供給装置 VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 2．基本方針 2.1 原子炉格納容器の破損を防止するための水素濃度低減設備 2．1．3 原子灲格納容器フィルタベント系 4．原子炬格納施設の水素浱度低減設備の詳細設計 4.1 原子炉格納容器の破損を防止するための水素濃度低減設備 4．1．3 原子灲格納容器フィルタベント系 原子炉格納施設に係る系統図 8．3．5．1 原子炉格納容器フィルタベント系	に関する設計
	可搬型窒素がス供給装置は，車両内に搭載された可搬型窒素ガス供給装置発電設備により給電できる設計 とする。【67条35】	VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	3．原子炬格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．1 可搬型空素ガス供給系の設計
	原子炉格納容器フィルタベント系使用時の排出経路 に設置される隔離弁は，遠隔手動并操作設備（個数4） （原子炉格納施設のうち「3．5．1 原子炉格納容器フィ ルタバント系」の設備を原子炉格納施設のらち「3．3．7原子炉格納容器フィルタベント系」の設備として兼用） によって人力により容易かつ碓実に操作が可能な設計 とする。【67条14】	VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 2.3 原子炉格納容器フィルタベント系 2．3．1 系統構成	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含むを設借に係る設計 2．2．1 兼用を合を原子炉格納施設の機器の仕栐等に関す る設計 3．原子师格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	排出経路に設置される隔㒀升の電動弁については，常設代替交流電源設備，可搬型代替交流電源設備，所内常設著電式直流電源設備，常設代替直流電源設備又 は可搬型代替直流電源設借からの給電により，中央制御室から操作が可能な設計とする。【67条16】	VI－1－8－1－別添 2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 2.4 付帯設備 2．4．2 電源設備	2．原子炉格納施設の兼用に関する設計 2.1 設借に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕様等に関す る設計 2．2．2 各機器固有の設計 3．原子炬格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素浱度低減設備の設計 3．4．2 原子炉格納容器フィルタベント采による水素排出 に関する設計

基本設計方針		設計結果の記載笽所	様式 -1 への反映結果
変更前	変更後		
	原子炉格納容器フィルタベント系は，代替淡水源か ら，大容量送水ポンプ（タイプI）によりフィルタ装置にスクラバ溶液を補給できる設計とする。【67条18】	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 2.4 付帯設備 2．4．3 給水設備 原子炉格納施設に係る系統図 8．3．5．1 原子炉格納容器フィルタベント系 構造図 3．2．2 燃料プール代替注水系	2．原子炬格納施設の兼用に関する設計 2.1 設備に係る設計のための系䖻の明碓化及び兼用する機能け確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ $\mathrm{VI}-1-10-3$ 「核燃料物質の取扱施設及び賏蔵施設」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	原子炉格納容器フィルタベント系使用時の排出経路 に設置される隔離亣化設ける遠隔手動弁操作設備の操作場所は，原子炬建屋付属棟内とし，サプレッション チェンバベント用出口隔離亣（T48－F022）の操作を行 ら原子炉建屋地下1階及びドライウェルベント用出口隔離亣（T48－F019）の操作を行う原子炉建屋地上1階に遮蔽体（遠隔手動弁操作設備遮蔽（原子炬格納施設の うち「3．5．1 原子炉格納容器フィルタベント系」の設備を原子炬格納施設のらち 13.3 .7 原子炬格納容器 ィルタベント系」の設備として兼用）（以下同じ。））を設置し，放射線防護を考慮した設計とする。遠隔手動弁操作設備遮蔽は，炉心の著しい損傷時においても，原子炉格納容器フィルタバント系の隔䧺升操作ができ るよう，どちらの遮蔽体においても鉛厚さ 2 mm の遮蔽厚 さを有する設計とする。【67条15】	VI－1－8－1－別添 2 原子炣格納容器フィルタベント系の設計別維5 原子炉格䋉容器フィルタベント系隔離弁の人力操作について	3．原子炬格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炷格納容器フィルタバント系による水素排出 に関する設計
	原子炬格納容器フィルタベント系に使用するホース の敷設等は，ホース延長回収車（台数4（予備1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プ ール代替注水系」の設備を原子炉格納施設のうち「3．3．7 原子炉格納容器フィルタベント系」の設備と して兼用）により行ら設計とする。【67条20】	VI－1－1－4－別添2設定根拠比関する説明書（別添）	VI－1－10－3 「核燃料物質の取捜施設及び䝰蔵施設」の様式 －1 2．核然料物質の取扱施設及び賏蔵施設の兼用に関する設計 2.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	原子炉格納容器フィルタベント系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能につ いて重大事故等対処設備としての設計を行う。【 67 条 25】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炉格納施設に係る系統図 8．3．5．1 原子炉格納容器フィルタベント系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
		構造図 8.1 原子炉格納容器	に開する取りまとめ
3.4 原子炉格納容器調気設備 3．4．1 原子炉格納容器調気系 原子炉格納容器調気系は，水素及び酸素の反応を防止するため，あらかじめ原子炉格納容器内に窒素を充填することにより，水素濃度及び酸素濃度を可燃限界未満に保つ設計とする。	3.4 原子炉格納容器調気設備 3．4．1 原子炉格納容器調気系 原子炉格納容器調気系は，水素及び酸素の反応を防止するため，あらかじめ原子炉格納容器内に窒素を充填することにより，水素濃度及び酸素濃度を可燃限界未満に保つ設計とする。【44条18】	－	（変更なし）
	炉心の著しい損傷が発生した場合において原子炬格納容器内における水素爆発による破損を防止できるよ うに，発電用原子炉の運転中は，原子炬格納容器内を原子炬格納容器調気系により常時不活性化する設計と する。【67条4】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書 2．基本方針 2.1 原子炉格納容器の破損を防止するための水素濃度低減設備	2．原子炉格納施設の兼用に関する設計 2．設備に係る設計のための系統の明碓化及び兼用する機能の碓認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 3．原子炬格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	3．5 圧力逃がし装置 3．5．1 原子炉格納容器フィルタバント系 炉心の著しい損傷が発生した場合において，原子炉格納容器の過圧による破損を防止するために必要な重大事故等対处設備のらち，原子师格納容器内の圧力を大気中に逃がすための設備として，原子炉格納容器フ ィルタバント系を設ける設計とする。【65条17】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉格納施設に係る機器の配置を明示した図面 8．3．5．1 原子炉格納容器フィルタベント系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 3．原子炉格縼铇設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備つ設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	（1）系統構成原子炬格納容器フィルタバント系は，フィルタ装置 （フィルタ容器，スクラバ溶夜，金属織維フィルタ，放射性よう素フィルタ），フィルタ装置出口側ラプチヤ ディスク，配管•弁類，計測制御装置等で構成し，原子炬格納容器内雰囲気ガスを原子炉格納容器調気系等 を経由して，フィルタ装置へ導き，放射性物質を低減 させた後に原子炬建屋屋上に設ける放出口から排出	要目表 $\mathrm{VI}-1-1-4-7$ 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件	2．原子师格納施設の兼用に関する設計 2.1 設備に係る設計のための系䖻の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含む原子炳格納施設の系統図 に関する取りまとめ

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
	（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$（1Pdにおいて））することで，排気中に含まれる放射性物質の環境への放出量を低減 しつつ，原子炉格納容器内の圧力及び温度を低下でき る設計とする。【65条18】	3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタバント系の設計 2．系統設計 2． 1 設計方針 2.2 設計条件 原子炉格納施設に係る系統図 8．3．5．1 原子炉格納容器フィルタベント系 構造図 8．3．5．1 原子炉格納容器フィルタベント系	3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	フィルタ装置は3台を並列に設置し，排気中に含まれ る粒子状放射性物質，ガス状の無機よう素及び有機よ ら素を除去できる設計とする。また，無機よう素をス クラバ溶液中に捕集•保持するためにアルカリ性の状態（待機状態においてpH13以上）に維持する設計とす る。【65条19】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2． 1 設計方針 構造図 8．3．5．1 原子炬格納容器フィルタベント系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含き設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 3．原子炉格縼铇設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	原子炉格納容器フィルタベント系は，サプレッショ ンチェンバ及びドライウェルと接続し，いずれからも排気できる設計とする。サプレッションチェンバ側か らの排気ではサプレッションチェンバの水面からの高 さを確保し，ドライウェル側からの排気では，ドライ ウェル床面からの高さを確保するとともに有効燃料棒頂部よりも高い位置に接続箇所を設けることで長期的 にも溶融炉心及び水没の悪影響を受けない設計とす る。【65条20】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 2．3 原子炉格納容器フィルタベント系 2．3．3 配置 原子炉格納施設に係る系統図 8．3．5．1 原子炉格納容器フィルタベント系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	原子炉格納容器フィルタバント系は，排気中に含ま	VI－1－8－1 原子炉格納施設の設計条件に閵する説明書	2．原子炉格納施設の兼用に関する設計

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
	れる可燃性がスによる爆発を防ぐため，可搬型窒素が ス供給系により，系統内を不活性ガス（窒素）で置換 した状態で待機させ，原子炉格納容器ベント開始後に おいても不活性ガス（窒素）で置換できる設計とする とともに，系統内に可燃性がスが蓄積する可能性のあ る箇所にはバイパスラインを設け，可燃性ガスを連続 して排出できる設計とすることで，系統内で水素浱度及び酸素濃度が可燃頜域に達することを防止できる設計とする。【65条21】	3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	原子炉格納容器フィルタベント系は，他の発電用原子炉施設とは共用しない設計とする。また，原子炉格納容器フィルタベント系と他の系統•機器を隔離する弁は，直列で2個設置（ベント用非常用ガス処理系側隔離弁（T48－F020）と格納容器排気非常用ガス処理系側止め弁（T48－F045）（原子炉冷却系統施設のうち「4．2原子炉格納容器フィルタベント系」の設備と兼用）， ント用換気空調系側隔離弁（T48－F021）と格納容器排気換気空調系側止め弁（T48－F046）（原子炉冷却系統施設のらち「4．2 原子炉格納容器フィルタベント系」 の設備と兼用），原子炉格納容器耐圧強化ベント用連絡配管隔離弁（T48－F043）（原子炉冷却系統施設のうち 「4．2 原子炉格納容器フィルタベント系」，原子炉冷却系統施設のらち「4．3 耐圧強化ベント系」の設備と兼用）と原子炉格納容器耐圧強化ベント用連絡配管止 め弁（T48－F044）（原子炉冷却系統施設のらち「4．2 原子炉格納容器フィルタベント系」，原子炉冷却系統施設 のうち「4．3 耐圧強化ベント系」の設備と兼用））し，原子炬格納容器フィルタベント系と他の系統•機器を確実に隔離することで悪影響を及ぼさない設計とす る。【65条22】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉格納施設に係る系統図 8．3．5．1 原子炉格納容器フィルタベント系	2．原子炉格納施設の兼用に関する設計 2.1 設借に係る設計のための系統の明碓化及び兼用する機能の確諰 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を合を原子炉格納施設の機器の仕栐等に関す る設計 2.3 機能を兼用する機器を含を原子炉格納施設の系統図 に関する取りまとめ 3．原子师格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
－	原子炬格納容器フィルタバント系の使用に際して は，原子炉格納容器が負圧とならないよう，原子炉格納容器代替スプレイ椧却系等による原子炬格納容器内 へのスプレイを停止する運用を保安規定に定めて管理 する。原子炬格納容器フィルタベント系の使用後に再度，原子炬格納容器内にスプレイする場合においても，原子炬格納容器内圧力が規定の圧力まで減圧した場合 には，原子炬格納容器内へのスプレイを停止する運用 を保安規定に定めて管理する。【65条23】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	2．原子炉格納施設の兼用に関する設計 2.1 設借に係る設計のための系䖻の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計 ＜下線部＞

基本設計方針		設計結果の記載箅所	様式－1 への反映結果
変更前	変更後		
	可搬型窒素ガス供給系は，可燃性ガスによる爆発及 び原子炉格納容器の負圧破損を防止するために，可搬型窒素ガス供給装置を用いて原子炬格納容器内に不活性ガス（窒素）の供給が可能な設計とする。【65条24】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 VI－1－8－2 原子彷格納施設の水素濃度低減性能に関する説明書 2．基本方針 2． 1 原子炉格納容器の破損を防止するための水素濃度低減設備 2．1．2 可搬型窒素がス供給装置 4．原子炉格納施設の水素濃度低減設備の詳細設計 4． 1 原子炉格納容器の破損を防止するための水素濃度低減設備 4．1．2 可搬型窒素ガス供給装置 原子炉格納施設に係る系統図 8．3．5．1 原子炉格納容器フィルタベント系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	可搬型窒素がス供給装置は，車両内に搭載された可搬型窒素ガス供給装置発電設備により給電できる設計 とする。【65条44】	VI－1－8－1－別添 2 原子师格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	2．原子炇格納旅設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計 2．2．2 各機器固有の設計
	原子炉格納容器フィルタベント系使用時の排出経路 に設置される隔離亣は，遠隔手動并操作設備（個数4） （原子炉冷却系統施設のらち「4．2 原子炉格納容器フ ィルタベント系」，「4．3耐圧強化ベント系」，原子炬格納施設のらち「3．3．7 原子炬格納容器フィルタベン ト系」と兼用）によって人力により容易かつ確実に操作が可能な設計とする。【65条27】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	2．原子炇格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含むを設偣に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 3．原子炉格納施設の設計 3.4 原子炬格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	排出経路に設置される隔離弁の電動弁については，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又 は可搬型代替直流電源設備からの給電により，中央制御室から操作が可能な設計とする。【65条29】	VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に開す

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
		VI－1－8－1－別添 2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 2.4 付帯設備 2．4．2 電源設備	る設計 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	系統内に設けるフィルタ装置出口側ラプチャディス クは，原子炉格納容器フィルタベント系の使用の妨げ にならないよう，原子炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計とする。【65条 30】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） VI－1－8－1 原子炬格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 1．概要 1.3 系統概要 2．系統設計 2.1 設計方針 構造図 8．3．5．1 原子炬格納容器フィルタベント系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確諰 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 3．原子炬格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計
	原子炬格納容器フィルタベント系は，代替淡水源か ら，大容量送水ポンプ（タイプI）により，フィルタ装置にスクラバ溶液を補給できる設計とする。【65 夂 321	要目表 VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書 （核燃料物質の取扱施設及び貯蔵施設） VI－1－8－1 原子炉格納施設の設計条件に関する説明書 3．原子炉格納施設の設計条件 3.2 重大事故等時における設計条件 3．2．4 重大事故等時における原子炉格納容器の過圧破損防止機能 $\mathrm{VI}-1-8-1$－別添2 原子炉格納容器フィルタベント系の設計 1．概要 1.3 系統概要 2．系統設計 2.4 付帯設備 2．4．3 給水設備 原子炉格納施設に係る系統図 8．3．5．1 原子炉格納容器フィルタベント系	2．原子炬格納施設の兼用に関する設計 2.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含も原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ 3．原子炬格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計 VI－1－10－3 「核燃料物質の取扱施設及び貯蔵施設」の様式 -1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
		構造図 3．2．2 燃料プール代替注水系	2.2 機能を兼用する機器を含む設備に係る設計
	原子炬格納容器フィルタベント系使用時の排出経路 に設置される隔離弁に設ける遠隔手動弁操作設備の操作場所は，原子炬建屋付属棟内とし，サプレッション チェンバベント用出口隔催弁（T48－F022）の操作を行 ら原子炉建屋地下1階及びドライウェルベント用出口隔離亣（T48－F019）の操作を行ら原子炬建屋地上1階に遮蔽体（遠隔手動弁操作設備遮蔽（原子炉冷却系統施設のらち「4．2 原子炉格納容器フィルタバント系」，原子炉格納施設のうち「3．3．7 原子炉格納容器フィル タバント系」と兼用）（以下同じ。））を設置し，放射線防護を考慮した設計とする。遠隔手動弁操作設備遮蔽 は，炬心の著しい損傷時においても，原子炉格納容器 フィルタバント系の隔離亣操作ができるよう，どちら の遮蔽体においても鉛厚さ 2 mm の遮蔽厚さを有する設計とする。【65条28】	VI－1－8－1－別添 2 原子炉格納容器フィルタバント系の設計別紙5 原子炉格納容器フィルタベント系隔鹪弁の人力操作について	3．原子炬格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタバント采による水素排出 に関する設計
	原子炉格納容器フィルタベント系に使用するホース の數設等は，ホース延長回収車（台数4（予備1））（核燃料物質の取扱施設及び貯蔵揓設のらち「4．2 燃料ブ一ル代替注水系」の設備を原子炉格納施設のらち「3．5．1 原子炉格納容器フィルタベント系」の設備と して兼用）により行ら設計とする。【65条34】	VI－1－1－4－別添 2 設定根拠に関する說明書（別添）	VI－1－10－3 「核然料物質の取扱施設及び貯蔵施砓」の様式 －1 2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	原子炉格納容器フィルタベント系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能につ いて重大事故等対処設備としての設計を行う。【65条 35】	要目表 VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炬格納施設に係る系統図 8．3．5．1 原子炬格納容器フィルタベント系 構造図 8.1 原子炉格納容器	2．原子炉格納施設の兼用に関する設計 2.1 設借に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含を設備に係る設け十機能を兼用する機器を含も設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 2.3 機能を兼用する機器を含む原子炉格納施設の系統図 に関する取りまとめ
	（2）多重性又は多様性及び独立性，位置的分散代替循噮冷却采及び原子炉格納容器フィルタベント系は，共通要因によって同時に機能を損なわないよう，原理の異なる椧却手段及び原子炉格納容器内の減圧手段を用いることで多様性を有する設計とする。【65条 381	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.6 原子炉格納施設 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタバント系による水素排出 に関する設計 VI－1－10－4 「原子炉椧却系統施設」の様式－1 11．健全性に係る設計
	代替循環冷却系は，非常用交流電源設備に対して多様性を有する常設代替交流電源設備からの給電により	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	駆動できる設計とする。また，原子炉格納容器フィル タベント系は，非常用交流電源設備に対して多様性を有する常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により駆動できる設計とする。 原子炉格納容器フィルタベント系は，人力により排出経路に設置される隔離弁を操作できる設計とするこ とで，代替循環冷却系に対して駆動源の多様性を有す る設計とする。【65条39】	3．系統施設ごとの設計上の考慮 3.6 原子炉格納施設 VI－1－8－1－別添 2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針	減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計 VI－1－10－4 「原子炉冷却系統施設」の様式－1 11．健全性次係る設計
	代替循澴泠却系の代替循澴冷却ポンプは原子炬建屋付属棟内に，残留熱除去系熱交換器及びサプレッショ ンチェンバは原子炉建屋原子炉棟内化設置し，原子炉格納容器フィルタベント系のフィルタ装置及びフィル夕装置出口側ラプチャディスクは原子炉建屋原子炉棟内の代替循澴泠却系と異なる区画に設置することで共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。【65条41】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.6 原子炉格納施設 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2.1 設計方針 原子炉格納施設に係る機器の配置を明示した図面 8．3．5．1 原子炉格納容器フィルタベント系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための采統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借沅係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 3．原子炉格縼铇設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタバント系による水素排出 に関する設計 VI－1－10－4 「原子炉冷却采統施設」の様式－1 11．健全性に係る設計
	代替循環冷却系と原子炉格納容器フィルタベント系 は，共通要因によって同時に機能を損なわないよう，流路を分離することで独立性を有する設計とする。【65条421	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.6 原子炉格納施設 VI－1－8－1－別添2 原子炉格納容器フィルタベント系の設計 2．系統設計 2． 1 設計方針	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計 3．原子炉格納施設の設計 3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計 VI－1－10－4 「原子炉冷却采統施設」の様式－1 11．健全性に係る設計
	これらの多様性及び流路の独立性並びに位置的分散 によって，代替循問冷却系と原子炉格納容器フィルタ ベント系は，互いに重大事故等対処設備として，可能 な限りの独立性を有する設計とする。【65条43】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.6 原子炉格納施設 VI－1－8－1－別添 2 原子炉格納容器フィルタベント系の設計 2．系統設計	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含を原子炉格納施設の機器の仕栐等に関す る設計 3．原子炉格縼戺設の設計

基本設計方針		設計結果の記載䈏所	様式一1への反映結果
変更前	変更後		
		2.1 設計方針	3.4 原子炉格納容器の破損を防止するための水素濃度低減設備の設計 3．4．2 原子炉格納容器フィルタベント系による水素排出 に関する設計 VI－1－10－4 「原子炉冷却系統施設」の様式－1 11．健全性に係る設計
	3.6 重大事故等の収束に必要となる水源設計基準事故の収束に必要な水源とは別に，重大事故等の収束に必要となる十分な量の水を有する水源を確保することに加えて，発電用原子炉施設には，設計基淮事故対処設備及び重大事故等対処設備に対して重大事故等の収束に必要となる十分な水の量を供給する ために必要な重大事故等対処設備として，復水貯蔵夕 ンク，サプレッションチェンバ及びほう酸水注入系貯蔵タンクを重大事故等の収束に必要となる水源として設ける設計とする。【71条1】	要目表 VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設） VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設） VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設） 原子炉冷却系統施設に係る機器の配置を明示した図面 4．5．2 補給水系 計測制御系統施設に係る機器の配置を明示した図面 5．3．1 ほう酸水注入系	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕栐等に関す る設計 $\mathrm{VI}-1-10-4$ 「原子炉冷却系統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18． 1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設借に係る設計 18．2．1 兼用を含む原子炉泠却采統施設の機器の仕様等に関する設計 VI－1－10－5 「計測制御系統施設」の栐式－1 2．計測制御系統雄設の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設借に係る設計
	また，これら重大事故等の収束に必要となる水源と は別に，代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽（No．2）を設ける設計とする。【71条2】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 18．原子炉冷却采統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	また，淡水が枯渴した場合に，海を水源として利用 できる設計とする。【71条3】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	復水貯蔵タンクは，想定される重大事故等時におい て，原子炬圧力容器への注水及び原子炉格納容器への スプレイに使用する設計基準事故対処設備が機能喪失 した場合の代替手段である高圧代替注水系，低圧代替	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	```VI-1-10-4 「原子炬冷却采統施設」の様式 -1 18. 原子炉泠却系統施設の兼用に閉する設計 18.1 設備に係る設計のための系統の明碓化及び兼用する 機能の確認```

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	注水系（常設）（復水移送ポンプ），原子炉格納容器代替スプレイ泠却系（常設）及び原子炉格納容器下部注水系（常設）（復水移送ポンプ）の水源として使用でき る設計とする。【71条6】		18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	サプレッションチェンバ（容量 $2800 \mathrm{~m}^{3}$ ，個数1）は，想定される重大事故等時において，原子炉圧力容器へ の注水及び原子炉格納容器へのスプレイに使用する設計基準事故対処設備が機能喪失した場合の代替手段で ある代替循環冷却系及び原子炉格納容器下部注水系 （常設）（代替循環冷却ポンプ）並びに重大事故等対処設備（設計基準拡張）である残留熱除去系（格納容器 スプレイ泠却モード）及び残留熱除去系（サプレッシ ョンプール水冷却モード）の水源として使用できる設計とする。【71条7】	VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炬格納施設）	2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関す る設計
	ほう酸水注入系貯蔵タンクは，想定される重大事故等時において，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段で あるほう酸水注入系の水源として使用できる設計とす る。【71条8】	VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書 （計測制御系統施設）	VI－1－10－5 「計測制御系統施設」の様式 -1 2．計測制御系統施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計
	代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）は，想定される重大事故等時において，原子炉圧力容器への注水及び原子炉格納容器へのスプレ イに使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型），原子炉格納容器代替スプレイ冷却系（可搬型），原子炉格納容器フィルタベント系への水補給及び原子炉格納容器下部注水系（可搬型）の水源として使用できる設計とす る。【71条9】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 18．原子炉冷却系統施設の兼用に関する設計 18．1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18.2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
	海は，想定される重大事故等時において，淡水が枯渇した場合に，原子炉圧力容器への注水及び原子炉格納容器へのスプレイに使用する設計基準事故対処設備 が機能喪失した場合の代替手段である低圧代替注水系 （可搬型），原子炉格納容器代替スプレイ冷却系（可搬型）及び原子炉格納容器下部注水系（可搬型）の水源 として，さらに，放水設備（大気への拡散抑制設備）及び放水設備（泡消火設備）の水源として利用できる設計とする。【71条10】	VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 18．原子炉泠却系統施設の兼用に関する設計 18.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 18．2 機能を兼用する機器を含む設備に係る設計 18．2．1 兼用を含む原子炉冷却系統施設の機器の仕様等に関する設計
3.5 設備の共用 液体窒素蒸発装置（第2，3号機共用）は，第3号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作することにより隔離できる設計と することで，共用により安全性を損なわない設計とす る。	3.7 設備の共用 液体窒素蒸発装置（第2，3号機共用）は，第3号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作することにより隔離できる設計と することで，共用により安全性を損なわない設計とす る。【15条20】	－	（変更なし）
4．主要対象設備原子炉格納施設の対象となる主要な設備について，	4．主要対象設備原子炉格納施設の対象となる主要な設備について，	－	（「主要設備リスト」及び「兼用リスト」による）

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
「表1 原子炬格納施設の主要設備リスト」に示す。	表1 原子炉格納施設の主要設備リスト」に示す。本施設の設備として兼用する場合に主要設備リスト に記載されない設備については，「表2 原子炉格納施設の兼用設備リスト」に示す。		

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－510－8 基本設計方針から設工認添付書類及び様式－ 1 への展開表 （非常用電源設備）

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【非常用電源設備】

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	（用語の定義のみ）
第1章 共通項目 非常用電源設備の共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．設備に対する要求（4．6逆止め弁を除く。），5．その他（5．4 放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」 に基づく設計とする。	第1章 共通項目 非常用電源設備の共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．6 逆止め弁を除く。），6．その他（6．4 放射性物質による汚染の防止を除く。）」の基本設計方針 については，原子炉冷却系統施設の基本設計方針「第 1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
第2章 個別項目 1．非常用電源設備の電源系統 1.1 非常用電源系統 重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。	第2章 個別項目 1．非常用電源設備の電源系統 1.1 非常用電源系統 重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。【45条10】	－	（変更なし）
非常用高圧母線（メタルクラッド開閉装置で構成） は，多重性を持たせ，3系統の母線で構成し，工学的安全施設に関係する高圧補機と発電所の保安に必要な高圧補機へ給電する設計とする。また，動力変圧器を通 して降圧し，非常用低圧母線（パワーセンタ及びモー タコントロールセンタで構成）へ給電する。非常用低圧母線も同様に多重性を持たせ3系統の母線で構成し，工学的安全施設に関係する低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障に よる影響を局所化できるとともに，他の安全施設への影響を限定できる設計とする。	非常用高圧母線（メタルクラッド開閉装置で構成） は，多重性を持たせ，3系統の母線で構成し，工学的安全施設に関係する高圧補機と発電所の保安に必要な高圧補機へ給電する設計とする。また，動力変圧器を通 して降圧し，非常用低圧母線（パワーセンタ及びモー タコントロールセンタで構成）へ給電する。非常用低圧母線も同様に多重性を持たせ3系統の母線で構成し，工学的安全施設に関係する低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障に よる影響を局所化できるとともに，他の安全施設への影響を限定できる設計とする。【45条23】	－	（変更なし）
さらに，非常用所内電源系からの受電時の母線切替操作が容易な設計とする。	さらに，非常用所内電源系からの受電時の母線切替操作が容易な設計とする。【45条11】	－	（変更なし）
	重要安全施設への電力供給に係る電気盤及び当該電気盤に影響を与えるおそれのある電気盤（安全施設（重要安全施設を除く。）への電力供給に係るものに限る。） について，遮断器の遮断時間の適切な設定，非常用デ ィーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）の停止等により，高エネルギーのアーク放電によるこれらの電気盤の損壊の拡大を防止するこ とができる設計とする。【45条8】	VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 2．基本方針 2.1 常設の非常用発電装置の出力に関する設計方針 2．1．4 遮断器	2．非常用電源設備の設計 2.6 非常用電源系統
これらの母線は，独立性を確保し，それぞれ区画分離された部屋に配置する設計とする。	これらの母線は，独立性を確保し，それぞれ区画分離された部屋に配置する設計とする。【45条24】	－	（変更なし）
原子灲保護系並びに工学的安全施設に関係する多重	原子炉保護系並びに工学的安全施設に関係する多重	－	－

基本設計方針		設計結果の記載箇所		様式一1への反映結果
変更前	変更後			
性をもつ動力回路に使用するケーブルは，負荷の容量 に応じたケーブルを使用し，多重化したそれぞれのケ ーブルについて相互に物理的分離を図る設計とすると ともに制御回路や計装回路への電気的影響を考慮した設計とする。	性をもつ動力回路に使用するケーブルは，負荷の容量 に応じたケーブルを使用し，多重化したそれぞれのケ ーブルについて相互に物理的分離を図る設計とすると とも纪制御回路や計装回路への電気的影響を考慮した設計とする。【45条28】			（変更なし）
1.2 所内電気系統 1．2．1 系統構成 非常用所内電気設備は，3系統の非常用母線等（メタ ルクラッドスイッチギア（非常用）（6900V，1200Aのも のを2個），メタルクラッドスイッチギア（高圧炉心ス プレイ系用）（6900V，1200Aのものを1個），パワーセン タ（非常用）（600V，5000Aのものを2個），モータコン トロールセンタ（非常用）（600V，800Aのものを14個）， モータコントロールセンタ（高圧炉心スプレイ系用） （600V，800Aのものを 1 個），動力変圧器（非常用） （3300kVA，6750／460Vのものを2個），動力変圧器（高圧炉心スプレイ系用）（ 750 kVA ，6900／460Vのものを 1 個）及び中央制御室 $120 V$ 交流分電盤（非常用）（ 75 kVA ， 460／120Vのものを4個））により構成することにより，共通要因で機能を失うことなく，少なくとも1系統は電力供給機能の維持及び人の接近性の確保を図る設計と する。	1.2 代替所内電気系統 1．2．1 系統構成 非常用所内電気設備は，3系統の非常用母線等（メタ ルクラッドスイッチギア（非常用）（6900V，1200Aのも のを2個），メタルクラッドスイッチギア（高圧炉心ス プレイ系用）（6900V，1200Aのものを1個），パワーセン タ（非常用）（600V，5000Aのものを2個），モータコン トロールセンタ（非常用）（600V，800Aのものを14個）， モータコントロールセンタ（高圧炉心スプレイ系用） （600V，800Aのものを 1 個），動力変圧器（非常用） （3300kVA，6750／460Vのものを2個），動力変圧器（高圧炉心スプレイ系用）（ $750 \mathrm{kVA}, 6900 / 460 \mathrm{~V}$ のものを 1 個）及び中央制御室 120 V 交流分電盤（非常用）（ 75 kVA ， 460／120Vのものを4個））により構成することにより，共通要因で機能を失うことなく，少なくとも1系統は電力供給機能の維持及び人の接近性の確保を図る設計と する。【72条19】	$\mathrm{VI}-1-1-4$－別添 2 設 単線結線図 1.4 単線結線図	設定根拠に関する説明書（別添）	（基本設計方針に変更はないが，設工認で必要な設計） 2．非常用電源設備の設計 2.5 代替所内電気設備 2．5．1 代替所内電気設備
	これとは別に上記 3 系統の非常用母線等の機能が震失したことにより発生する重大事故等の対応に必要な設備に電力を給電する代替所内電気設備として，ガス タービン発電機接続盤（ $7200 \mathrm{~V}, 1200 \mathrm{~A}$ のものを 2 個）， メタルクラッドスイッチギア（緊急用）（7200V，1200A のものを3個），動力変圧器（緊急用）（500kVA，6900／460V のものを 2 個， $750 \mathrm{kVA}, 6750 / 460 \mathrm{~V}$ のものを 1 個），パワ ーセンタ（緊急用）（600V，3000Aのものを1個），モー タコントロールセンタ（緊急用）（600V，800Aのものを 4 個），ガスタービン発電設備燃料移送ポンプ接続盤 （600V，100Aのものを 1 個），460V原子炉建屋交流電源切替盤（ 緊急用）（ $600 \mathrm{~V}, 150 \mathrm{~A}$ のものを 1 個）， 460 V 原子炉建屋交流電源切替盤（非常用）（ $600 \mathrm{~V}, 30 \mathrm{~A}$ のものを 2個），メタルクラッドスイッチギア（非常用）（6900v， 1200 A のものを 2 個）， 120 V原子炉建屋交流電源切替盤 （緊急用）（ $120 V$ ，30Aのものを 1 個）及び中央制御室 $120 V$交流分電盤（緊急用）（20kVA，460／120Vのものを1個） を使用できる設計とする。【72条20】	$\mathrm{VI}-1-1-4$－別添 2 設 単線結線図 1.4 单線結線図	設定根执に関する説明書（別添）	2．非常用電源設備の設計 2.5 代替所内電気設備 2．5．1 代替所内電気設備
	代替所内電気設備は，上記に加え，電路，計測制御装置等で構成し，常設代替交流電源設備又は可搬型代替交流電源設備の電路として使用し電力を供給できる設計とする。また，代替所内電気設備は，少なくとも 1 系統は機能の維持及び人の接近性を考慮した設計と	$\mathrm{VI}-1-1-4$－別添 2 設	設定根拠に關する説明書（別添）	2．非常用電源設備の設計 2.5 代替所内電気設備 2．5．1 代替所内電気設備

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
	する。【72条21】		
	1．2．2 多様性，位置的分散等 代替所内電気設備のガスタービン発電機接続盤，メ タルクラッドスイッチギア（緊急用），動力変圧器（緊急用），パワーセンタ（緊急用），モータコントロール センタ（緊急用），ガスタービン発電設備燃料移送ポン プ接続盤，460V原子炉建屋交流電源切替盤（緊急用）， 460V原子炉建屋交流電源切替盤（非常用），120V原子炉建屋交流電源切替盤（緊急用）及び中央制御室 $120 V$ 交流分電盤（緊急用）は，非常用所内電気設備と異なる区画に設置することで，非常用所内電気設備と共通要因によって同時に機能を損なわないよう，位置的分散 を図る設計とする。【72条53】	VI－1－1－4－別添2 設定根拠に関する説明書（別添）	2．非常用電源設備の設計 2.5 代替所内電気設備 2．5．1 代替所内電気設備
	代替所内電気設備は，独立した電路で系統構成する ことにより，非常用所内電気設備に対して，独立性を有する設計とする。【72条54】	単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.5 代替所内電気設備 2．5．1 代替所内電気設備
	これらの位置的分散及び電路の独立性によって，代替所内電気設備は非常用所内電気設備に対して独立性 を有する設計とする。【72条55】	－	(冒頭宣言)
	重大事故等対処施設の動力回路に使用するケーブル は，負荷の容量に応じたケーブルを使用し，非常用電源系統に接続するか，非常用電源系統と独立した代替所内電気系統へ接続する設計とする。【72条22】	要目表 单線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．2 ガスタービン発電機 2．1．3 電源車 2.5 代替所内電気設備 2．5．1 代替所内電気設備
2．交流電源設備 2． 1 非常用交流電源設備 2．1．1 系統構成 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。	2．交流電源設備 2.1 非常用交流電源設備 2．1．1 系統構成 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。【45条1】	－	（変更なし）
発電用原子炉施設には，電線路及び当該発電用原子炉施設において常時使用される発電機からの電力の供給が停止した場合において発電用原子炉施設の安全性 を確保するために必要な装置の機能を維持するため，内燃機関を原動力とする非常用交流電源設備を設ける設計とする。	発電用原子炉施設には，電線路及び当該発電用原子炉施設において常時使用される発電機からの電力の供給が停止した場合において発電用原子炉施設の安全性 を確保するために必要な装置の機能を維持するため，内燃機関を原動力とする非常用交流電源設備を設ける設計とする。【45条2】	－	（変更なし）
発電用原子炉施設の安全性を確保するために必要な装置（非常用電源設備及びその燃料補給設備，使用済燃料プールへの補給設備，原子炉格納容器内の圧力，温度，酸素•水素濃度，放射性物質の濃度及び線量当量率の監視設備並びに中央制御室外からの原子炉停止設備）は，内燃機関を原動力とする非常用交流電源設備の非常用ディーゼル発電機（高圧炉心スプレイ系デ イーゼル発電機を含む。）からの電源供給が可能な設計	発電用原子炉施設の安全性を確保するために必要な装置（非常用電源設備及びその燃料補給設備，使用済燃料プールへの補給設備，原子炉格納容器内の圧力，温度，酸素•水素濃度，放射性物質の濃度及び線量当量率の監視設備並びに中央制御室外からの原子炬停止設備）は，内燃機関を原動力とする非常用交流電源設備の非常用ディーゼル発電機（高圧炉心スプレイ系デ ィーゼル発電機を含む。）からの電源供給が可能な設計	－	（変更なし）

基本設計方針		設計結果の記載箇所	様式－1～の反映結果
変更前	変更後		
とする。	とする。【45条3】		
非常用交流電源設備及びその附属設備は，多重性又 は多㥞性を碓保し，及び独立性を碓保し，その系統を構成する機械又は器具の単一故障が発生した場合であ つても，運転時の異常な過渡変化時又は設計基準事故時において，工学的安全施設及び設計基準事故に対処 するための設備がその機能を確保するために十分な容量を有する設計とする。	非常用交流電源設備及びその附属設備は，多重性又 は多㥭性を碓保し，及び独立性を碓保し，その系統を構成する機械又は器具の単一故障が発生した場合であ っても，運転時の異常な過渡変化時又は設計基準事故時において，工学的安全施設及び設計基準事故に対処 するための設備がその機能を確保するために十分な容量を有する設計とする。【45条19】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る系統図 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炉心スプレイ系ディーゼル発電設備 構造図 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炉心スプレイ系ディーゼル発電設備	（基本設計方針に変更はないが，設工認で必要な設計） 2．非常用電源設備の設計 2.4 燃料設備 2．4．1 軽油タンク （1）設備に係る設計のための系統の明確化及び兼用する機能の確認 （2）機能を兼用する機器を含む設備に係る設計 （3）機能を兼用する機器を含む非常用電源設備の系統図 に関する取りまとめ
非常用ディーゼル発電機（高圧炬心スプレイ系ディ一ゼル発電機を含む。）は，非常用高圧母線低電圧信号又は非常用炬心冷却設備作動信号で起動し，設置（変更）許可を受けた椧却材喪失事故における工学的安全施設の設備の作動開始時間を満足する時間として非常用ディーゼル発電機は10秒及び高圧炬心スプレイ系デ ィーゼル発電機は13秒以内に電圧を確立した後は，各非常用高圧母線に接続し，負荷に給電する設計とする。	非常用ディーゼル発電機（高圧炉心スプレイ系ディ ーゼル発電機を含む。）は，非常用高圧母線低電圧信号又は非常用炬心椧却設備作動信号で起動し，設置（変更）許可を受けた椧却材喪失事故次おける工学的安全施設の設備の作動開始時間を満足する時間として非常用ディーゼル発電機は10秒及び高圧炉心スプレイ系デ ィーゼル発電機は13秒以内に電圧を確立した後は，各非常用高圧母線に接続し，負荷汇給電する設計とする。【45条20】	- -	(変更なし)
設計基準事故時において，発電用原子炬施設に属す る非常用所内電源設備及びその附属設備は，発電用原子炉ごとに単独で設置し，他の発電用原子炉施設と共用しない設計とする。	設計基準事故時において，発電用原子炬施設に属す る非常用所内電源設備及びその附属設備は，発電用原子炉ごとに単独で設置し，他の発電用原子炉施設と共用しない設計とする。【45条22】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る機器の配置を明示した図面 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炬心スプレイ系ディーゼル発電設備	（基本設計方針に変更はないが，設工認で必要な設計） 2．非常用電源設備の設計 2.1 非常用発電装置 2．1．1 ディーゼル発電機 2.4 燃料設備 2．4．1 軽油タンク （1）設備に係る設計のための系統の明確化及び兼用する機能の確認 （2）機能を兼用する機器を含む設備に係る設計
	非常用交流電源設備は，想定される重大事故等時に おいて，重大事故等対処設備（設計基準抁張）として使用できる設計とする。【72条23】	－	$\begin{gathered} - \\ (\text { 冒頭宣言) } \end{gathered}$
	非常用交流電源設備のらち非常用ディーゼル発電機 は重大事故等時に，ATWS緩和設備（代替制御棒挿入機能），ATWS緩和設備（代替原子炬再循環ポンプトリップ機能），ATWS緩和設備（自動減圧系作動阻止機能），ほ ら酸水注入系，代替自動减圧回路（代替自動減圧機能），高圧窒素ガス供給系（非常用），低圧代替注水系（常設） （復水移送ポンプ），低圧代替注水系（可搬型），残留熱除去系（低圧注水モード），低圧炉心スプレイ系，残留熱除去系（原子炬停止時冷却モード），原子炬補機冷却水系（原子炉補機冷却海水系を含む。），原子炬格納	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 3．施設の詳細設計方針 3.1 非常用ディーゼル発電機 3．1．2 重大事故等対処設備	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．1 ディーゼル発電機

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	容器代替スプレイ泠却系（常設），原子炉格納容器代替 スプレイ泠却系（可搬型），残留熱除去系（格納容器ス プレイ冷却モード），残留熱除去系（サプレッションプ ール水冷却モード），代替循環冷却系，原子炉格納容器下部注水系（常設）（復水移送ポンプ），原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ），原子炉格納容器下部注水系（可搬型），計測制御装置及び非常用ガス処理系へ電力を供給できる設計とする。【72条 24】	非常用電源設備に係る系統図 9．1．1 非常用ディーゼル発電設備 構造図 9．1．1 非常用ディーゼル発電設備 単線結線図 1．4 単線結線図	
	非常用交流電源設備のうち高圧炉心スプレイ系ディ一ゼル発電機は重大事故等時に，高压炬心スプレイ系及び計測制御装置へ電力を供給できる設計とする。I72条251	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 3．施設の詳細設計方針 3.2 高圧炬心スプレイ系ディーゼル発電機 3．2．2 重大事故等対処設備 非常用電源設備江係る系統図 9．1．2 高圧灲心スプレイ系ディーゼル発電設備 構造図 9．1．2 高圧炉心スプレイ系ディーゼル発電設備 単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．1 ディーゼル発電機
	2．1．2 多㥞性，位置的分散等 非常用交流電源設備は，設計基準事故対処設備であ るとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針 を適用する。ただし，多栐性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はない ことから，重大事故等対処設備の基本方針のらち， 「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。【72条26】	-	$\begin{gathered} - \\ \left({ }_{\text {昌頭宣言 }}\right) \end{gathered}$
	2.2 常設代替交流電源設備 2．2．1 系統構成 設計基準事故対処設備の交流電源が喪失（全交流動力電源霛失）した場合に，重大事故等の対応必要な炉心の著しい損傷，原子炉格納容器の破損，使用済燃料 プール内の燃料体等の著しい損傷及び運転停止中原子炬内燃料体の著しい損傷を防止するための交流負荷へ電力を供給する常設代替交流電源設備としてガスター	－	(昌頭宣言)

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
	ビン発電機を使用できる設計とする。【72条1】		
	常設代替交流電源設備は，ガスタービン発電機，ガ スタービン発電設備軽油タンク，ガスタービン発電設備燃料移送ポンプ，非常用ディーゼル発電設備軽油夕 ンク，高圧炉心スプレイ系ディーゼル発電設備軽油夕 ンク，タンクローリ，電路，計測制御装置等で構成し，設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合に，重大事故等時に対処するため に外部電源喪失時に自動起動したガスタービン発電機 を，メタルクラッドスイッチギア（緊急用）を介して メタルクラッドスイッチギア（非常用）又はモータコ ントロールセンタ（緊急用）へ接続することで電力を供給できる設計とする。 また，緊急時対策所への電力確保のため，外部電源喪失時に自動起動したガスタービン発電機を，メタル クラッドスイッチギア（緊急用）を介してメタルクラ ッドスイッチギア（緊急時対策所用）へ接続すること で電力を供給できる設計とする。【72条2】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） VI－1－1－4－別添2 設定根拠に関する説明書（別添） VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 3．施設の詳細設計方針 3.3 ガスタービン発電機 3．3．1 ガスタービン 3．3．2 発電機 非常用電源設備に係る機器の配置を明示した図面 9．1．3 ガスタービン発電設備 補機駆動用燃料設備に係る機器の配置を明示した図面 9．5．1 燃料設備 非常用電源設備に係る系統図 9．1．3 ガスタービン発電設備 補機駆動用燃料設備に係る系統図 9．5．1 燃料設備 構造図 9．1．3 ガスタービン発電設備 9．5．1 燃料設備 単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．2 ガスタービン発電機 2.4 燃料設備 2．4．1 軽油タンク （1）設備に係る設計のための系統の明確化及び兼用する機能の確認 （2）機能を兼用する機器を含む設備に係る設計 （3）機能を兼用する機器を含む非常用電源設備の系統図 に関する取りまとめ 2．4．4 タンクローリ 2.5 代替所内電気設備 2．5．1 代替所内電気設備 VI－1－10－14 「補機駆動用燃料設備」の様式 -1 2．補機駆動用燃料設備の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2.3 機能を兼用する機器を含む補機駆動用燃料設備の系統図に関する取りまとめ
	2．2．2 多㥞性，位置的分散等 常設代替交流電源設備は，非常用交流電源設備と共通要因によって同時に機能を損なわないよう，ガスタ ービン発電機をガスタービンにより駆動することで， ディーゼルエンジンにより駆動する非常用ディーゼル発電機及び高圧炬心スプレイ系ディーゼル発電機を用 いる非常用交流電源設備に対して多様性を有する設計 とする。【72条31】	要目表 構造図 9.1 .3 ガスタービン発電設備	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．2 ガスタービン発電機
	常設代替交流電源設備のガスタービン発電機，ガス タービン発電設備軽油タンク，ガスタービン発電設備燃料移送ポンプ及びタンクローリは，原子炉建屋付属棟から離れた屋外に設置又は保管することで，原子炉	要目表 非常用電源設備に係る機器の配置を明示した図面 9．1．3 ガスタービン発電設備	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．2 ガスタービン発電機 2.4 燃料設備

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	建屋付属棟内の非常用ディーゼル発電機，高圧炉心ス プレイ系ディーゼル発電機及び燃料デイタンク並びに原子炉建屋付属楝近傍か燃料移送ポンプと共通要因に よって同時に機能を損なわないよう，位置的分散を図 る設計とする。【72条32】	補機駆動用燃料設備に係る機器の配置を明示した図面 9．5．1 燃料設備	2．4．1 軽油タンク （2）機能を兼用する機器を含む設備に係る設計 2.4.4 タンクローリ VI－1－10－14 「補機駆動用燃料設備」の様式—1 2．補機駆動用燃料設備の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計
	常設代替交流電源設備は，ガスタービン発電機から メタルクラッドスイッチギア（非常用）までの系統に おいて，独立した電路で系統構成することにより，非常用ディーゼル発電機からメタルクラッドスイッチギ ア（非常用）までの系統及び高圧炉心スプレイ系ディ ーゼル発電機からメタルクラッドスイッチギア（高圧炉心スプレイ系用）までの系統に対して，独立性を有 する設計とする。【72条33】	単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．2 ガスタービン発電機 2.5 代替所内電気設備 2．5．1 代替所内電気設備
	これらの多様性及び位置的分散並びに電路の独立性 によって，常設代替交流電源設備は非常用交流電源設備に対して独立性を有する設計とする。【72条34】	\square	$\begin{gathered} - \\ \left(⿱_{1} \text { 頭宣言 }^{2}\right) \end{gathered}$
	2.3 可搬型代替交流電源設備 2．3．1 系統構成 設計基準事故対処設備の交流電源が䨤失（全交流動力電源喪失）した場合に，重大事故等の対応に必要な炬心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための交流負荷 へ電力を供給する可搬型代替交流電源設備として，電源車を使用できる設計とする。【72条5】 可搬型代替交流電源設備は，電源車，非常用ディー ゼル発電設備軽油タンク，高圧炉心スプレイ系ディー ゼル発電設備軽油タンク，ガスタービン発電設備軽油 タンク，タンクローリ，電路，計測制御装置等で構成 し，電源車を，メタルクラッドスイッチギア（緊急用） を経由してメタルクラッドスイッチギア（非常用）又 はモータコントロールセンタ（緊急用）へ接続するこ とで電力を供給できる設計とする。【72条6】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） VI－1－1－4－別添 2 設定根拠に関する説明書（別添） VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 3．施設の詳細設計方針 3.4 可搬型の非常用発電装置 3．4．1 電源車 非常用電源設備に係る機器の配置を明示した図面 9．1．4 可搬型代替交流電源設備 補機駆動用燃料設備に係る機器の配置を明示した図面 9．5． 1 燃料設備 非常用電源設備に係る系統図 9．1．4 可搬型代替交流電源設備 補機駆動用燃料設備に係る系統図 9．5． 1 燃料設備 構造図 9．1．4 可搬型代替交流電源設備	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．3 電源車 2.4 燃料設備 2．4．1 軽油タンク （1）設備に係る設計のための系統の明碓化及び兼用する機能の確認 （2）機能を兼用する機器を含む設備に係る設計 （3）機能を兼用する機器を含む非常用電源設備の系統図 に関する取りまとめ 2．4．4 タンクローリ 2.5 代替所内電気設備 2．5．1 代替所内電気設備 VI－1－10－14 「補機駆動用燃料設備」の様式—1 2．補機駆動用燃料設備の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2.3 機能を兼用する機器を含む補機駆動用燃料設備の系統図に関する取りまとめ

基本設計方針		設計結果の記載簂所	様式 -1 への反映結果
変更前	変更後		
		9．5．1 燃料設備 単線結線図 1.4 単線結線図	
	2．3．2 多漾性，位置的分散等 可搬型代替交流電源設備は，非常用交流電源設備と共通要因によって同時に機能を損なわないよう，電源車の泠却方式を空泠とすることで，泠却方式が水泠で ある非常用ディーゼル発電機及び高圧炬心スプレイ系 ディーゼル発電幾を用いる非常用交流電源設備に対し て多栐性を有する設計とする。また，可搬型代替交流電源設備は，常設代替交流電源設備と共通要因によっ て同時に機能を損なわないよう，電源車をディーゼル エンジンにより駆動することで，ガスタービンにより駆動するガスタービン発電機を用いる常設代替交流電 源設備に対して多様性を有する設計とする。【 72 条 35 ］ \qquad	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 構造図 9．1．4 可搬型代替交流電源設備	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．3 電源車
	可搬型代替交流電源設備の電源車は，屋外の原子炉建屋付属棟から離れた場所に保管することで，原子炉建屋付属棟内の非常用ディーゼル発電機，高圧炬心ス プレイ系ディーゼル発電機，非常用ディーゼル発電設備然料デイタンク及び高圧炬心スプレイ系ディーゼル発電設備然料デイタンクと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 また，可搬型代替交流電源設備の電源車は，屋外（緊急用電気品建屋）のガスタービン発電機から離れた場所に保管することで，共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。【 72 条 361	要目表 非常用電源設備に係る機器の配置を明示した図面 9．1．4 可搬型代替交流電源設備	2．非常用電源設備O設計 2.1 非常用発電装置 2．1．3 電源車
	可搬型代替交流電源設備は，電源車からメタルクラ ッドスイッチギア（非常用）までの系統において，独立した電路で系統構成することにより，非常用ディー ゼル発電機からメタルクラッドスイッチギア（非常用） までの系統及び高圧炉心スプレイ系ディーゼル発電機 からメタルクラッドスイッチギア（高圧炬心スプレイ系用）までの系統に対して，独立性を有する設計とす る。【72条37】	単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．3 電源車 2.5 代替所内電気設備 2．5．1 代替所内電気設備
	これらの多様性及び位置的分散並びに電路の独立性 によって，可搬型代替交流電源設備は非常用交流電源設備である非常用ディーゼル発電機及び高圧炬心スプ レイ系ディーゼル発電機に対して独立性を有する設計 とする。【72条38】	\square	
	可搬型代替交流電源設備の電源車の接絸箇所は，共通要因によって接続できなくなることを防止するた め，位置的分散を図った複数箇所に設置する設計とす る。【72条39】	単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.5 代替所内電気設備 2．5．1 代替所内電気設備

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
	2.4 緊急時対策所用代替交流電源設備 緊急時対策所用代替交流電源設備である電源車（緊急時対策所用）は，メタルクラッドスイッチギア（緊急時対策所用）（ $7200 \mathrm{~V}, 1200 \mathrm{~A}$ のものを 2 個），動力変圧器（緊急時対策所用）（500kVA，6900／460Vのものを2個）， モータコントロールセンタ（緊急時対策所用）（600V， 800Aのものを 3 個），105V交流電源切替盤（緊急時対策所用）（460／210－105V，225Aのものを 1 個），105V交流分電盤（緊急時対策所用）（30kVA，210－105Vのものを1個）， 120 V 交流分電盤（緊急時対策所用）（10kVA，460／120Vの ものを 2 個）， 210 V 交流分電盤（緊急時対策所用） （ $150 \mathrm{kVA}, 460 / 210 \mathrm{~V}$ のものを 2 個）， 125 V 直流主母線盤 （緊急時対策所用）（125V，1800Aのものを3個）を経由 して緊急時対策所非常用送風機，衛星電話設備（固定型），無線連絡設備（固定型），統合原子力防災ネット ワークを用いた通信連絡設備（テレビ会議システム， IP電話及びIP－FAX）及び安全パラメータ表示システム （SPDS）等へ給電できる設計とする。【76条10】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） VI－1－1－4－別添2 設定根拠に関する説明書（別添） VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 3．施設の詳細設計方針 3.4 可搬型の非常用発電装置 3．4．2 電源車（緊急時対策所用） 非常用電源設備に係る機器の配置を明示した図面 9．1．6 緊急時対策所ディーゼル発電設備 非常用電源設備に係る系統図 9．1．6 緊急時対策所ディーゼル発電設備 構造図 9．1．6 緊急時対策所ディーゼル発電設備 単線結線図 1．4 単線結線図	2．非常用電源設備の設計 2．1 非常用発電装置 2．1．4 電源車（緊急時対策所用）
	2.5 可搬型窒素ガス供給装置発電設備 可搬型空素がス供給装置発電設備は，車両内纪搭載 し，可搬型窒素ガ大供給装置に給電できる設計とする。【63条13】【65条25】【67条6】【67条34】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 3．施設の詳細設計方針 3.4 可搬型の非常用発電装置 3．4．3 可搬型窒素ガス供給装置発電設備 非常用電源設備に係る機器の配置を明示した図面 9．1．7 可搬型窒素がス供給装置発電設備 非常用電源設備に係る采統図 9．1．7 可搬型窒素ガス供給装置発電設備 構造図 9．1．7 可搬型窒素ガス供給装置発電設備	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．5 可搬型空素ガス供給装置発電設備
3．直流電源設備及び計測制御用電源設備 3.1 常設直流電源設備	3．直流電源設備及び計測制御用電源設備 3.1 常設直流電源設備	－	（冒頭宣言）

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
3．1．1 系統構成 設計基準対象施設の安全性を確保する上で特に必要 な設備に対し，直流電源設備を施設する設計とする。	3．1．1 系統構成 設計基準対象施設の安全性を確保する上で特に必要 な設備に対し，直流電源設備を施設する設計とする。【45条4】		
直流電源設備は，短時間の全交流動力電源喪失時に おいても，発電用原子炉を安全に停止し，かつ，発電用原子炉の停止後に灲心を泠却するための設備が動作 することができるよう，これらの設備の動作に必要な容量を有する125V蓄電池を設ける設計とする。	直流電源設備は，全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの約 15 分を包絡した約 8時間に対し，発電用原子炉を安全汇停止し，かつ，発電用原子炉の停止後に炉心を泠却するための設備が動作するとともに，原子炉格納容器の健全性を確保する ための設備が動作することができるよう，これらの設備の動作に必要な容量を有する125V蓄電池を設ける設計とする。【16条1】【45条6】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る機器の配置を明示した図面 9．1．8．2 電力貯蔵装置 構造図 9．1．8．2 電力貯蔵装置 単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.2 電力貯蔵装置 2．2．1 125 V蓄電池
非常用の直流電源設借は，直流 $125 V 3$ 系統の蓄電池，充電器及び125V直流主母線盤等で構成する。 これらの3系統のらち1系統が故障しても発電用原子炉の安全性は碓保できる設計とする。また，これらの系統は，多重性及び独立性を碓保することにより，共通要因により同時に機能が喪失することのない設計と する。直流母線は125Vであり，非常用直流電源設備3組 の電源の負荷は，工学的安全施設等の制御装置，電磁弁，無停電交流母線に給電する無停電交流電源用静止形無停電電源装置等である。	非常用の直流電源設備は，直流 125 V 3 系統の蓄電池，充電器及び125V直流主母線盤等で構成する。【45条25】 これらの3系䖻のらち1系䖻が故障しても発電用原子炉の安全性は碓保できる設計とする。また，これらの系統は，多重性及び独立性を碓保することにより，共通要因により同時に機能が喪失することのない設計と する。直流母線は125Vであり，非常用直流電源設備3組 の電源の負荷は，工学的安全施設等の制御装置，電磁弁，無停電交流母線に給電する無停電交流電源用静止形無停電電源装置等である。【45条26】	－	(変更なし)
	設計基準事故対処設備の交流電源が搉失（全交流動力電源衰失）した場合に，重大事故等の対応に必要な炉心の著しい損傷，原子炉格納容器の破損，使用済然料プール内の燃料体等の著しい損傷及び荤転停止中原子炉内燃料体の著しい損傷を防止するための直流負荷 －電力を供給する所内常設蓄電式直流電源設備とし て，125V蓄電池 2 A 及び $2 B$ 並びに125V充電器2A及び2Bを使用できる設計とする。【72条9】 所内常設蓄電式直流電源設備は，125V蓄電池 2 A及び $2 B, 125 \mathrm{~V}$ 充電器 2 A及び 2 B （ 125 V ，700Aのものを 2 個），電路，計測制御装置等で構成し，125V蓄電池2A及び2B は，125V直流主母線盤2A及び2B（125V，1800Aのものを 2 個），125V直流主母線盤2A－1及び2B－1（ 125 V ， 1800 A の ものを 2 個）， 125 V直流分電盤 $2 A-1,2 A-2,2 A-3,2 B-1$ ， 2B－2及び2B－3（ $125 \mathrm{~V}, 1200 \mathrm{~A}$ のものを6個），125V直流電源切替盤2A及び2B（125V，60Aのものを2個）並びに 125 V	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） VI－1－1－4－別添 2 設定根拠に関する説明書（別添） 非常用電源設備に係る機器の配置を明示した図面 9．1．8．2 電力貯蔵装置 構造図 9．1．8．2 電力貯蔵装置 単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.2 電力䝰蔵装置 2．2．1 12 VV蓄電池

基本設計方針		設計結果の記載箘所	様式 -1 への反映結果
変更前	変更後		
	直流RCICモータコントロールセンタ（125V，800Aのも のを1個）へ電力を給電できる設計とする。【72条10】所内常設蓄電式直流電源設備の 125 V蓄電池 2 A及び 2 B は，全交流動力電源震失から1時間以内に中央制御室に おいて不要な負荷の切り巏しを行うこと，また全交流動力電源哀失から8時間後に中央制御室外において不要な負荷の切り離しを行うことで，全交流動力電源震失から 24 時間にわたり， 125 V蓄電池 2 A 及び 2 Bから電力 を供給できる設計とする。また，交流電源復旧後に，交流電源を 125 V 充電器 2 A 及び 2 Bを経由し 125 V直流主母線盤2A及び2Bい接続することで電力を供給できる設計 とする。【72条11】		
	非常用直流電源設備の 125 V蓄電池 $2 \mathrm{~A}, 2 \mathrm{~B}$ 及び 2 H並び に125V充電器 $2 \mathrm{~A}, ~ 2 \mathrm{~B}$ 及び 2 H （ 125 V ，700Aのものを 2 個， 125 V ，50Aのものを 1 個）は，想定される重大事故等時 において，重大事故等対処設備（設計基準拡張）とし て使用できる設計とする。【72条28】	${ }^{-}$	$\begin{gathered} - \\ (\text { (冒頭宣言 }) \end{gathered}$
	非常用直流電源設備のらち，125V蓄電池 2 HB び 125 V充電器 2 H は， 125 V 直流主母線盤2 2 H （ 125 V ，1200Aのもの を1個）及び 125 V 直流分電盤 2 H （ 125 V ，1200Aのものを 1個）へ接続することで，高圧灲心スプレイ系ディーゼ ル発電機の起動信号及び初期励磁並びにメタルクラッ ドスイッチギア（高圧灲心スプレイ系用）の制御回路等の高圧㷋心スプレイ系の負荷に電力を供給できる設計とする。【72条29】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） VI－1－1－4－別添 2 設定根拠に関する説明書（別添） 非常用電源設備に係る機器の配置を明示した図面 9．1．8．2 電力盱蔵装置 単線結線図 1.4 单線結線図	2．非常用電源設備の設計 2.2 電力貯蔵装置 2．2．1 125 V蓄電池
	3．1．2 多㥞性，位置的分散等 所内常設蓄電式直流電源設備は，原子炉建屋付属棟内の非常用ディーゼル発電機及び高圧炬心スプレイ系 ディーゼル発電機と異なる制御建屋内に設置すること で，非常用交流電源設備と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。【72条40】	要目表 非常用電源設備に係る機器の配置を明示した図面 9．1．8．2 電力貯蔵装置	2．非常用電源設備の設計 2.2 電力貯蔵装置 2．2．1 125 V蓄電池
	所内常設蓄電式直流電源設備は， 125 V蓄電池 2 A及び 2Bから125V直流主母線盤2A及び2Bまでの系統におい て，独立した電路で系統構成することにより，非常用 ディーゼル発電機の交流を直流に変換する電路を用い た125V直流主母線盤2A及び2Bまでの系統に対して，独立性を有する設計とする。【72条41】	単線結線図 1.4 单線結線図	2．非常用電源設備の設計 2.2 電力貯蔵装置 2．2．1 125V蓄電池
	これらの位置的分散及び電路の独立性によって，所内常設蓄電式直流電源設備は非常用交流電源設備に対	－	（冒頭宣言）

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	して独立性を有する設計とする。【72条42】		
	非常用直流電源設備は，設計基準事故対処設備であ るとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針 を適用する。ただし，多樣性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はない ことから，重大事故等対処設備の基本方針のらち「5．1．2 多樣性，位置的分散等」に示す設計方針は適用しない。【72条30】	－	$\stackrel{-}{-}\left(\begin{array}{c} \text { (豆宣言) } \end{array}\right.$
	3.2 常設代替直流電源設備 3．2．1 系統構成 設計基準事故対処設備の交流電源及び直流電源が䨤失した場合に，重大事故等の対応に必要な炉心の著し い損傷，原子炉格納容器の破損，使用済燃料プール内 の燃料体等の著しい損傷及び運転停止中原子炬内燃料体の著しい損傷を防止するための直流負荷へ電力を供給する常設代替直流電源設備として，125V代替蓄電池 を使用できる設計とする。また，設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合又は交流電源及び直流電源が霛失した場合は，常設代替直流電源設備として， 250 V 蓄電池を使用できる設計 とする。【72条12】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る機器の配置を明示した図面 9．1．8．2 電力貯蔵装置 構造図 9．1．8．2 電力貯蔵装置 単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.2 電力貯蔵装置 2．2．2 125V代替蓄電池 2．2．3 250V蓄電池
	常設代替直流電源設備は， 125 V 代替蓄電池， $250 V$ 蓄電池，電路，計測制御装置等で構成し， $125 V$ 代替蓄電池は，電力の供給開始から8時間後に中央制御室外にお いて不要な負荷の切離しを行うこと，また250V蓄電池 は，電力の供給開始から1時間後に中央制御室において不要な負荷の切離しを行うことで，電力の供給開始か ら24時間にわたり，125V代替蓄電池及び250V蓄電池か ら電力を供給できる設計とする。【72条13】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る機器の配置を明示した図面 9．1．8．2 電力貯蔵装置 構造図 9．1．8．2 電力貯蔵装置 単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.2 電力貯蔵装置 2．2．2 125V代替蓄電池 2．2．3 250V蓄電池
	3．2．2 多様性，位置的分散等 常設代替直流電源設備は，制御建屋内の非常用直流電源設備と異なる区画に設置することで，非常用直流電源設備と共通要因によって同時に機能を損なわない よう，位置的分散を図る設計とする。【72条43】	要目表 非常用電源設備に係る機器の配置を明示した図面 9．1．8．2 電力貯蔵装置	2．非常用電源設備の設計 2.2 電力貯蔵装置 2．2．2 125V代替蓄電池 2．2．3 250V蓄電池
	常設代替直流電源設備は， 125 V 代替蓄電池から 125 V直流主母線盤 $2 A-1$ 及び $2 B-1$ までの系統並びに 250 V蓄電池から250V直流主母線盤までの系統において，独立し	単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.2 電力貯蔵装置 2．2．2 125V代替蓄電池

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	た電路で系統構成することにより，非常用直流電源設備の 125 V蓄電池 $2 \mathrm{~A}, 2 \mathrm{~B}$ 及び 2 H から 125 V 直流主母線盤 2 A ， 2B及び 2 Hまでの系統に対して，独立性を有する設計と する。【72条44】		2.2 .3 250V蓄電池
	これらの位置的分散及び電路の独立性によって，常設代替直流電源設借は非常用直流電源設備に対して独立性を有する設計とする。【72条45】	－	（冒頭宣言）
	3.3 可搬型代替直流電源設備 3．3．1 系統構成 設計基準事故対処設備の交流電源及び直流電源が震失した場合に，重大事故等の対応に必要な炉心の著し い損傷，原子炉格納容器の破損，使用済燃料プール内 の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための直流負荷へ電力を供給する可搬型代替直流電源設備として125V代替蓄電池，250V蓄電池，電源車，125V代替充電器及び 250 V 充電器を使用できる設計とする。【72条14】 可搬型代替直流電源設備は，125V代替蓄電池， 250 V蓄電池，電源車， 125 V 代替充電器（ $125 \mathrm{~V}, 700 \mathrm{~A}$ のもの を1個），250V充電器（250V，400Aのものを 1 個），非常用ディーゼル発電設備軽油タンク，高圧灲心スプレイ系ディーゼル発電設備軽油タンク，ガスタービン発電設備軽油タンク，タンクローリ，電路，計測制御装置等で構成し， 125 V 代替蓄電池は 125 V 直流主母線盤 $2 \mathrm{~A}-1$及び2B－1（125V，1800Aのものを2個）並びに125V直流電源切替盤2A及び2B（125V，60Aのものを2個）へ，250V蓄電池は250V直流主母線盤（ 250 V ，1800Aのものを 1 個） へ接続することで電力を供給できる設計とする。【72条 15】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） VI－1－1－4－別添2 設定根拠に関する説明書（別添） 非常用電源設備に係る機器の配置を明示した図面 9．1．5 可搬型代替直流電源設備 9．1．8．2 電力貯蔵装置 非常用電源設備に係る系統図 9．1．5 可搬型代替直流電源設備 構造図 9．1．4 可搬型代替交流電源設備 9．1．8．2 電力貯蔵装置 単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．3 電源車 2.2 電力貯蔵装置 2．2．2 125V代替蓄電池 2．2．3 250V蓄電池 2.3 無停電電源装置 2．3．2 125V代替充電器 2．3．3 250V充電器
	可搬型代替直流電源設備の 125 V代替蓄電池は，電力 の供給開始から8時間後に中央制御室外において不要 な負荷の切離しを行うこと，また250V蓄電池は，電力 の供給開始から1時間後に中央制御室において不要な負荷の切離しを行い，125V代替蓄電池及び250V蓄電池 から電力を供給し，その後，電源車を代替所内電気設備， 125 V 代替充電器及び 250 V 充電器を経由し 125 V 直流主母線盤2A－1及び2B－1並びに250V直流主母線盤へ接続 することで，電力を供給できる設計とする。 可搬型代替直流電源設備は，電源車の運転を継続す ることで，設計基準事故対処設備の交流電源及び直流電源の喪失から 24 時間にわたり必要な負荷に電力の供給を行らことができる設計とする。【72条16】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他）発電用原子炉の附属施設（非常用電源設備） VI－1－1－4－別添2 設定根拠に関する説明書（別添） VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書 3．施設の詳細設計方針 3.4 可搬型の非常用発電装置 3．4．1 電源車 非常用電源設備に係る系統図 9．1．5 可搬型代替直流電源設備	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．3 電源車 2.2 電力貯蔵装置 2．2．2 125V代替蓄電池 2．2．3 250V蓄電池 2.3 無停電電源装置 2．3．2 125V代替充電器 2．3．3 250V充電器

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
		構造図 9．1．4 可搬型代替交流電源設備 9．1．8．2 電力貯蔵装置 単線結線図 1.4 単線結線図	
	3．3．2 多樣性，位置的分散等 可搬型代替直流電源設備は，非常用直流電源設備と共通要因によって同時に機能を損なわないよう，電源車の椧却方式を空泠とすることで，泠却方式が水泠で ある非常用ディーゼル発電機及び高圧炬心スプレイ系 ディーゼル発電機から給電する非常用直流電源設備に対して多㨾性を有する設計とする。また，125V代替充電器及び 250 V 充電器により交流を直流に変換できるこ とで，125V蓄電池2A，2B及び2Hを用いる非常用直流電源設借に対して多樣性を有する設計とする。【72条46】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） VI－1－1－4－別添2 設定根拠に関する説明書（別添） 構造図 9．1．4 可搬型代替交流電源設備 9．1．8．2 電力貯蔵装置 単線結線図 1.4 単線結線図	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．3 電源車 2.2 電力貯蔵装置 2．2．2 125V代替蓄電池 2．2．3 250V蓄電池 2.3 無停電電源装置 2．3．2 125V代替充電器 2．3．3 250V充電器
	可搬型代替直流電源設備の125V代替蓄電池， $250 V$ 蓄電池， 125 V代替充電器及び $250 V$ 充電器は，制御建屋内 の 125 V蓄電池 2 A及び $2 B$ ， $125 V$ V充電器 2 A及び $2 B$ 並びに原子炬建屋付属棟内の 125 V蓄電池 2 H 及び 125 V 充電器 2 H と異なる区画又は建屋に設置することで，非常用直流電源設備と共通要因によって同時に機能を損なわないよ う，位置的分散を図る設計とする。【72条47】		
	可搬型代替直流電源設備の電源車は，屋外の，原子炬建屋付属㤓から離れた場所に保管することで，原子炉建屋付属棟内の非常用ディーゼル発電機，高圧炬心ス プレイ系ディーゼル発電機，非常用ディーゼル発電設備然料デイタンク及び高圧炉心スプレイ系ディーゼル発電設備然料デイタンクと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。【72条48】	要目表 非常用電源設備に係る機器の配置を明示した図面 9．1．5 可搬型代替直流電源設備	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．3 電源車
	可搬型代替直流電源設備は， 125 V 代替蓄電池及び電源車から125V直流主母線盤2A－1及び2B－1までの系䖻並 びに250V蓄電池及び電源車から250V直流主母線艦まで の系統において，独立した電路で系統構成することに より，非常用直流電源設備の125V蓄電池 $2 \mathrm{~A}, ~ 2 \mathrm{~B}$ 及び 2 H から125V直流主母線艦2A，2B及び2Hまでの系統に対し て，独立性を有する設計とする。【72条49】	単線結線図 1.4 単線結線図	2．非常用電源設備つ設計 2.1 非常用発電装置 2．1．3 電源車
	これらの多樣性及び位置的分散並びに電路の独立性 によって，可搬型代替直流電源設備は非常用直流電源設備に対して独立性を有する設計とする。【72条50】	－	$\stackrel{-}{\left(⿱_{\text {頭宣言) }}\right.}$

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	可搬型代替直流電源設備の電源車の接続箇所は，共通要因によって接続できなくなることを防止するた め，位置的分散を図った複数箇所に設置する設計とす る。【72条51】	要目表 非常用電源設備に係る機器の配置を明示した図面 9．1．5 可搬型代替直流電源設備	2．非常用電源設備の設計 2.1 非常用発電装置 2．1．3 電源車
	3.4 主蒸気逃がし安全弁用可搬型蓄電池 原子炉冷却材圧力バウンダリを減圧するための設備 のらち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，主蒸気逃がし安全弁用可搬型蓄電池は，主蒸気逃がし安全弁の作動に必要な常設直流電源系統が喪失した場合においても，主蒸気逃がし安全弁の作動回路に接続することにより，主蒸気逃が し安全弁（2個）を一定期間にわたり連続して開状態を保持できる設計とする。【61条9】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る機器の配置を明示した図面 9．1．8．2 電力貯蔵装置 構造図 9．1．8．2 電力貯蔵装置 単線結線図 1．4 单線結線図	2．非常用電源設備の設計 2.2 電力貯蔵装置 2．2．4 主蒸気逃がし安全弁用可搬型蓄電池
3.2 計測制御用電源設備 設計基準対象施設の安全性を確保する上で特に必要 な設備に対し，計測制御用電源設備として，無停電交流電源用静止形無停電電源装置を施設する設計とす る。	3.5 計測制御用電源設備 設計基準対象施設の安全性を確保する上で特に必要 な設備に対し，計測制御用電源設備として，無停電交流電源用静止形無停電電源装置を施設する設計とす る。【45条5】	－	（変更なし）
非常用の計測制御用電源設備は，無停電交流120V 2母線及び計測母線120V 2母線で構成する。 非常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する無停電交流電源用静止形無停電電源装置等で構成し，核計装の監視による発電用原子炉の安全停止状態及び未臨界の維持状態の確認が可能な設計とする。	非常用の計測制御用電源設備は，無停電交流120V 2母線及び計測母線120V 2母線で構成する。 非常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する無停電交流電源用静止形無停電電源装置等で構成し，核計装の監視による発電用原子炉の安全停止状態及び未臨界の維持状態の確認が可能な設計とする。【45条27】	－	（変更なし）
無停電交流電源用静止形無停電電源装置は，直流電源設備である $125 V$ 蓄電池から直流電源が供給されるこ とにより，無停電交流母線に対し電源供給を確保する設計とする。	無停電交流電源用静止形無停電電源装置は，外部電源喪失及び全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの間においても，非常用直流電源設備である $125 V$ 蓄電池から直流電源が供給されるこ とにより，無停電交流母線に対し電源供給を確保する設計とする。 なお，無停電交流電源用静止形無停電電源装置は約 1 時間，電源供給が可能な設計とする。【45条7】	要目表 非常用電源設備に係る機器の配置を明示した図面 9．1．8．1 無停電電源装置 構造図 9．1．8．1 無停電電源装置 単線結線図 1．4 単線結線図	2．非常用電源設備の設計 2.3 無停電電源装置 2．3．1 無停電交流電源用静止形無停電電源装置
4．燃料設備 4． 1 非常用交流電源設備の燃料補給設備 7日間の外部電源喪失を仮定しても，運転時の異常な過渡変化又は設計基準事故に対処するために必要な非常用ディーゼル発電機を7日間運転することにより必	4．燃料設備 4.1 非常用交流電源設備の燃料補給設備 7日間の外部電源喪失を仮定しても，運転時の異常な過渡変化又は設計基準事故に対処するために必要な非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼ	要目表 $\mathrm{VI}-1-1-4-8-1$ 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備）	2．非常用電源設備の設計 2.4 燃料設備 2．4．1 軽油タンク （1）設備に係る設計のための系統の明確化及び兼用する機能の確認

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
要とする電力を供給できる容量以上の燃料を敷地内の軽油タンクに貯蔵する設計とする。		非常用電源設備に係る機器の配置を明示した図面 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炬心スプレイ系ディーゼル発電設備 構造図 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炬心スプレイ系ディーゼル発電設備 $<$ 下線部 $>$ 運用に関する記載であり，保安規定にて対応	（2）機能を兼用する機器を含を設備に係る設計 $<$ 下線部＞
	重大事故等時に，非常用ディーゼル発電機及び高圧梕スプレイ系ディーゼル発電機の燃料は，非常用デ ィーゼル発電設備軽油タンク，高圧炬心スプレイ系デ ィーゼル発電設備軽油タンク及び燃料移送ポンプを用 いて給油できる設計とする。【72条27】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る機器の配置を明示した図面 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧灲心スプレイ系ディーゼル発電設備 構造図 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧灲心スプレイ系ディーゼル発電設備	2．非常用電源設備の設計 2.4 燃料設備 2．4．3 燃料移送ポンプ
	4.2 常設代替交流電源設備の燃料補給設備 ガスタービン発電機は，ガスタービン発電設備軽油 タンクからガスタービン発電設備燃料移送ポンプを用 いて然料を補給できる設計とする。また，ガスタービ ン発電設備軽油タンクは，非常用ディーゼル発電設備軽油タンク及び高圧炬心スプレイ系ディーゼル発電設備軽油タンクからタンクローリを用いて燃料を補給で きる設計とする。【72条3】 非常用ディーゼル発電設備軽油タンク及び高圧炬心 スプレイ系ディーゼル発電設備軽油タンクからタンク ローリへの燃料の補給は，ホースを用いる設計とする。 ［72条4】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る系統図 9．1．3 ガスタービン発電設備 補機駆動用燃料設備に係る系統図 9．5．1 燃料設備 構造図 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炉心スプレイ系ディーゼル発電設備 9．1．3 ガスタービン発電設備 9．5．1 燃料設備	2．非常用電源設備の設計 2.4 燃料設備 2．4．1 軽油タンク （1）設備に係る設計のための系統の明確化及び兼用する機能の確認 （2）機能を兼用する機器を含む設備に係る設計 （3）機能を兼用する機器を含む非常用電源設備の系統図 に関する取りまとめ 2．4．3 燃料移送ポンプ 2．4．4 タンクローリ VI－1－10－14 「補機駆動用燃料設備」の様式 -1 2．補機駆動用燃料設備の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2.3 機能を兼用する機器を含む補機駆動用燃料設備の系統図に関する取りまとめ
	燃料補給設備のガスタービン発電設備然料移送ポン プ及びタンクローリは，原子炉建屋付属棟から離れた	要目表	2．非常用電源設備の設計 2.4 燃料設備

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
	屋外に設置又は分散して保管することで，原子炉建屋付属棟近傍の燃料移送ポンプと共通要因によって同時 に機能を損なわないよう，位置的分散を図る設計とす る。また，予備のタンクローリについては，上記タン クローリと異なる場所に保管する設計とする。【 72 条 32【【72条56】【72条57】	非常用電源設備に係る機器の配置を明示した図面 9．1．3 ガスタービン発電設備 補機駆動用燃料設備に係る機器の配置を明示した図面 9．5．1 燃料設備	2．4．3 燃料移送ポンプ 2．4．4 タンクローリ VI－1－10－14 「補機駆動用燃料設備」の様式 -1 2．補機駆動用燃料設備の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計
	ガスタービン発電設備軽油タンクは，非常用ディー ゼル発電設借軽油タンク及び高圧炬心スプレイ系ディ一ゼル発電設備軽油タンクと離れた屋外皀分散して設置することで，共通要因によって同時に機能を損なわ ないよう，位置的分散を図る設計とする。【72条32】 72条56】【72条57】	要目表 非常用電源設備に係る機器の配置を明示した図面 9．1．3 ガスタービン発電設備	2．非常用電源設備の設計 2.4 燃料設備 2．4．1 軽油タンク （2）機能を兼用する機器を含む設備に係る設計
	4.3 可搬型代替交流電源設備及び可搬型代替直流電源設備の燃料補給設備 電源車は，非常用ディーゼル発電設備軽油タンク，高圧炬心スプレイ系ディーゼル発電設備軽油タンク又 はガスタービン発電設備軽油タンクからタンクローリ を用いて燃料を補給できる設計とする。【72条7】 【 72 条 17】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る系統図 9．1．4 可搬型代替交流電源設備 9．1．5 可搬型代替直流電源設備 補機駆動用燃料設備に係る系統図 9．5． 1 燃料設備 構造図 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炬心スプレイ系ディーゼル発電設備 9．1．3 ガスタービン発電設備 9．1．4 可船型代替交流電源設備 9．5． 1 燃料設備	2．非常用電源設備の設計 2.4 燃料設備 2．4．1 軽油タンク （1）設備に係る設計のための系統の明確化及び兼用する機能の確認 （2）機能を兼用する機器を含む設備に係る設計 （3）機能を兼用する機器を含む非常用電源設備の系統図 に関する取りまとめ 2.4.4 タンクローリ VI－1－10－14 「補機駆動用燃料設備」の様式 -1 2．補機駆動用燃料設備の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 2.3 機能を兼用する機器を含む補機駆動用燃料設備の系統図に関する取りまとめ
	非常用ディーゼル発電設備軽油タンク，高圧炉心ス プレイ系ディーゼル発電設備軽油タンク又はガスター ビン発電設備軽油タンクからタンクローリへの燃料の補給は，ホースを用いる設計とする。【72条8】【72条18】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る系統図 9．1．4 可搬型代替交流電源設備 9．1．5 可搬型代替直流電源設備 補機駆動用燃料設備に係る系統図 9．5．1 燃料設備 構造図	2．非常用電源設備の設計 2.4 燃料設備 2．4．1 軽油タンク （1）設備に係る設計のための系統の明確化及び兼用する機能の確認 （2）機能を兼用する機器を含む設備に係る設計 （3）機能を兼用する機器を含む非常用電源設備の系統図 に関する取りまとめ 2.4.4 タンクローリ VI－1－10－14 「補機駆動用燃料設備」の様式 -1 2．補機駆動用燃料設備の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
		9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炬心スプレイ系ディーゼル発電設備 9．1．3 ガスタービン発電設備 9．5．1燃料設備	2.2 機能を兼用する機器を含を設備に係る設計 2.3 機能を兼用する幾器を含を補機䮗動用燃料設備の系統図に関する取りまとめ
	燃料補給設備のタンクローリは，屋外の原子炬建屋付属徚から離れた場所に保管することで，原子炉建屋付属棟近傍の燃料移送ポンプと共通要因によって同時 に機能を損なわないよう，位置的分散を図る設計とす る。また，予備のタンクローリについては，上記タン クローリと異なる場所に保管する設計とする。【72条 56】【72条57】	要目表 非常用電源設備に係る機器の配置を明示した図面 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炬心スプレイ系ディーゼル発電設備 補機駆動用燃料設備に係る機器の配置を明示した図面 9．5．1 燃料設備	$\begin{aligned} & \text { 2. 非常用電源設備の設計 } \\ & \text { 2.4 燃籼備 } \\ & \text { 2.4.4 タンクローリ } \end{aligned}$ VI－1－10－14 「補機駆動用燃料設備」の様式 -1 2．補機駆動用燃料設備の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計
	ガスタービン発電設備軽油タンクは，非常用ディー ゼル発電設備軽油タンク及び高圧炉心スプレイ系ディ一ゼル発電設備軽油タンクと離れた屋外搘分散して設置することで，共通要因によって同時に機能を損なわ ないよう，位置的分散を図る設計とする。【72条56】 【72条571	要目表 非常用電源設備に係る機器の配置を明示した図面 9．1．1 非常用ディーゼル発電設備 9．1．2 高圧炬心スプレイ系ディーゼル発電設備 9．1．3 ガスタービン発電設備	2．非常用電源設備の設計 2.4 燃料設備 2．4．1 軽油タンク （2）機能を兼用する機器を含む設備に係る設計
	4.4 緊急時対策所用代替交流電源設備の燃料補給設備 重大事故等時に電源車（緊急時対策所用）の燃料を貯蔵及び補給する設備として，緊急時対策所軽油タン ク及びホースを使用できる設計とする。 電源車（緊急時対策所用）は，緊急時対策所軽油夕 ンクから燃料を補給できる設計とする。【76条9】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る機器の配置を明示した図面 9．1．6 緊急時対策所ディーゼル発電設備 非常用電源設備に係る系統図 9．1．6 緊急時対策所ディーゼル発電設備 構造図 9．1．6 緊急時対策所ディーゼル発電設備	2．非常用電源設備の設計 2.4 燃料設備 2．4．2 緊急時対策所軽油タンク
	4.5 可搬型窒素ガス供給装置発電設備の燃料補給設備 可搬型窒素ガス供給装置発電設備は，非常用ディー ゼル発電設備軽油タンク，高圧灲心スプレイ系ディー ゼル発電設備軽油タンク又はガスタービン発電設備軽油タンクからタンクローリを用いて燃料を補給できる設計とする。 非常用ディーゼル発電設備軽油タンク，高圧炉心ス プレイ系ディーゼル発電設備軽油タンク又はガスター ビン発電設備軽油タンクからタンクローリへの燃料の補給は，ホースを用いる設計とする。【63条14】65条 26】【67条7】【67条36】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） 非常用電源設備に係る系統図 9．1．7 可搬型空素ガス供給装置発電設備 補機駆動用燃料設備に係る系統図 9．5．1 燃料設備 構造図	2．非常用電源設備の設計 2.4 燃料設備 2．4．1 軽油タンク （1）設備に係る設計のための系統の明確化及び兼用する機能の確認 （2）機能を兼用する機器を含む設備に係る設計 （3）機能を兼用する機器を含む非常用電源設備の系統図 に関する取りまとめ 2.4.4 タンクローリ VI－1－10－14 「補機駆動用燃料設備」の様式 -1 2．補機駆動用燃料設備の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
		9．1．1 非常用ディーゼル発電設備 9．1．2 高压炉心スプレイ系ディーゼル発電設備 9．1．3 ガスタービン発電設備 9．1．7 可搬型空素がス供給装置発電設備 9．5．1 燃料設備	```2.2 機能を兼用する機器を含を設諎して係る設計 2.3 機能を兼用する機器を含む補機駆動用闗料設備の系 統図に関する取りまとめ```
5．主要対象設備非常用電源設備の対象となる主要な設備について は，「表1 非常用電源設備の主要設備リスト」に示す。	5．主要対象設備 非常用電源設備の対象となる主要な設備について は，「表1 非常用電源設備の主要設備リスト」に示す。	－	（「主要設備リスト」による）

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料 $~(~ 02-$ 補－E－18－0510－9＿改1 \quad.

補足－510－9 基本設計方針から設工認添付書類及び様式－1 への展開表 （常用電源設備）

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【常用電源設備】

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	$\begin{gathered} \text { 一 } \\ \text { (用語の定義のみ) } \end{gathered}$
第1章 共通項目 常用電源設備の共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．設備に対する要求（4．2 材料及び構造等， 4.3 使用中の亀裂等による破壊の防止， 4．4 耐圧試験等， 4.5 安全弁等， 4.6 逆止め弁， 4.7内燃機関の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 常用電源設備の共通項目である「1．地盤等， 2 ．自然現象（2．2 津波による損傷の防止を除く。），3．火災，5．設備に対する要求（5．2 材料及び構造等，5．3使用中の亀裂等による破壊の防止，5．4 耐圧試験等， 5.5 安全弁等， 5.6 逆止め弁， 5.7 内燃機関及びガ スタービンの設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
第2章 個別項目 1．保安電源設備 1.1 発電所構内における電気系統の信頼性確保 1．1．1 機器の破損，故障その他の異常の検知と拡大防止	第2章 個別項目 1．保安電源設備 1.1 発電所構内における電気系統の信頼性確保 1．1．1 機器の破損，故障その他の異常の検知と拡大防止 安全施設へ電力を供給する保安電源設備は，電線路，発電用原子炉施設において常時使用される発電機，外部電源系及び非常用所内電源系から安全施設への電力 の供給が停止することがないよう，発電機，送電線，変圧器，母線等に保護継電器を設置し，機器の損壊，故障その他の異常を検知するとともに，異常を検知し た場合は，ガス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動作することにより，その拡大 を防止する設計とする。【45条9】	要目表 VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.1 外部電源に関する設計 3．1．4 機器の損壊，故障その他の異常の検知と拡大防止 3．1．5 1相の電路の開放に対する検知及び電力の安定性回復 3.2 発電機に関する設計 3．2．1 機器の損壊，故障その他の異常の検知と拡大防止 3.3 ガス絶縁開閉装置及び変圧器等に関する設計 3．3．2 機器の損壊，故障その他の異常の検知と拡大防止 単線結線図 1.4 単線結線図	2．発電所構内における電気系統の信頼性確保に関する設計 2.1 機器の損壊，故障その他の異常の検知と拡大防止に関 する設計
重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。	特に重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。【45条10】	要目表 VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.1 外部電源に関する設計 3．1．4 機器の損壊，故障その他の異常の検知と拡大防止 3．1．5 1相の電路の開放に対する検知及び電力の安定性回復 3.2 発電機に関する設計 3．2．1 機器の損壊，故障その他の異常の検知と拡大防止 3.3 ガス絶縁開閉装置及び変圧器等に関する設計 3．3．2 機器の損壊，故障その他の異常の検知と拡大防止 単線結線図 1．4 単線結線図	（基本設計方針に変更はないが，設工認で必要な設計） 2．発電所構内における電気系統の信頼性確保に関する設計 2.1 機器の損壊，故障その他の異常の検知と拡大防止に関 する設計

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
常用高圧母線（メタルクラッド開閉装置で構成）は， 2母線で構成し，通常運転時に必要な負荷を各母線に振 り分け給電する。それぞれの母線から動力変圧器を通 して降圧し，常用低圧母線（パワーセンタ及びモータ コントロールセンタで構成）へ給電する。 共通用高圧母線（メタルクラッド開閉装置で構成） は，2母線で構成し，それぞれの母線から動力変圧器を通して降圧し，共通用低圧母線（パワーセンタ及びモ ータコントロールセンタで構成）へ給電する設計とす る。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障に よる影響を局所化できるとともに，他の安全施設への影響を限定できる設計とする。	常用高圧母線（メタルクラッド開閉装置で構成）は， 2母線で構成し，通常運転時に必要な負荷を各母線に振 り分け給電する。それぞれの母線から動力変圧器を通 して降圧し，常用低圧母線（パワーセンタ及びモータ コントロールセンタで構成）へ給電する。 共通用高圧母線（メタルクラッド開閉装置で構成） は，2母線で構成し，それぞれの母線から動力変圧器を通して降圧し，共通用低圧母線（パワーセンタ及びモ ータコントロールセンタで構成）へ給電する設計とす る。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障に よる影響を局所化できるとともに，他の安全施設への影響を限定できる設計とする。【45条29】	－	（変更なし）
常用の直流電源設備は，250V蓄電池， 250 V 充電器， 250V直流主母線盤等で構成する。 常用の直流電源設備は，タービンの非常用油ポンプ，発電機の非常用密封油ポンプ等へ給電する設計とす る。	常用の直流電源設備は，250V蓄電池， 250 V 充電器， $250 V$ 直流主母線盤等で構成する。 常用の直流電源設備は，タービンの非常用油ポンプ，発電機の非常用密封油ポンプ等へ給電する設計とす る。【45条30】	－	（変更なし）
常用の計測制御用電源設備は，計測母線で構成する。	常用の計測制御用電源設備は，計測母線で構成する。 【45条31】	－	（変更なし）
常用電源設備の動力回路のケーブルは，負荷の容量 に応じたケーブルを使用する設計とし，多重化した非常用電源設備の動力回路のケーブルの系統分離対策に影響を及ぼさない設計とするとともに，制御回路や計装回路への電気的影響を考慮した設計とする。	常用電源設備の動力回路のケーブルは，負荷の容量 に応じたケーブルを使用する設計とし，多重化した非常用電源設備の動力回路のケーブルの系統分離対策に影響を及ぼさない設計とするとともに，制御回路や計装回路への電気的影響を考慮した設計とする。【45条 32】	－	（変更なし）
	1．1．2 1相の電路の開放に対する検知及び電力の安定性回復 変圧器1次側において3相のらちの1相の電路の開放 が生じた場合に検知できるよう，変圧器1次側の電路 は，電路を筐体に内包する変圧器やガス絶縁開閉装置等により構成し，3相のらちの1相の電路の開放が生じ た場合に保護継電器にて自動で故障箇所の隔離及び非常用母線の受電切替ができる設計とし，電力の供給の安定性を回復できる設計とする。【45条12】	要目表 VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.3 ガス絶縁開閉装置及び変圧器等に関する設計 3．3．31相の電路の開放に対する検知及び電力の安定性回復 常用電源設備に係る機器の配置を明示した図面 9.2 常用電源設備	2．発電所構内における電気系統の信頼性確保に関する設計 2.2 1相の電路の開放に対する検知及び電力の安定性回復 に関する設計
	送電線において 3 相のらちの 1 相の電路の開放が生じ た場合，275kV送電線は1回線での電路の開放時に安全施設への電力の供給が不安定にならないよう，多重化 した設計とする。【45条12】	VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.1 外部電源に関する設計 3．1．51相の電路の開放に対する検知及び電力の安定性回復 送電関係一覧図 1.1 送電関係一覧図	2．発電所構内における電気系統の信頼性確保に関する設計 2.2 1相の電路の開放に対する検知及び電力の安定性回復 に関する設計

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
		単綏結線図 1.4 単線結線図	
	また，電力送電時，保護装置による 3 相の電流不平衡監視にて常時自動検知できる設計とする。【45条12】	VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.1 外部電源に関する設計 3．1．5 1相の電路の開放に対する検知及び電力の安定性回復 送電関係一覧図 1．1 送電関係一覧図 単線結線図 1.4 単線結線図	2．発電所構内における電気系統の信頼生碓保に関する設計 2.21 相の電路の開放に対する検知及び電力の安定性回復 に関する設計
	66 kV 送電線は，各相の不足電圧継電器にて常時自動検知できる設計とする。【45条12】	VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.1 外部電源に関する設計 3．1．5 1相の電路の開放に対する検知及び電力の安定性回復 送電関係一覧図 1.1 送電関係一覧図 単線結線図 1.4 単線結線図	2．発電所構内における電気系統の信頼性確保に関する設計 2.2 1相の電路の開放に対する検知及び電力の安定性回復 に関する設計
	さらに， 275 kV 送電線及び 66 kV 送電線は，保安規定に定めている巡視点検を加えることで，保護装置による検知が期待できない場合の1相開放故障や，その兆候を早期に検知できる設計とする。【45条12】	VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.1 外部電源に関する設計 3．1．5 1 相の電路の開放に対する検知及び電力の安定性回復 送電関係一覧図 1.1 送電関係一覧図 单線結線図 1．4 単線結線図 $<$ 下線部 $>$ 運用に関する記載であり，保安規定にて対応	2．発電所構内における電気系統の信頼性確保に関する設計 2.21 相の電路の開放に対する検知及び電力の安定性回復 に関する設計
	275 kV 送電線及び 66 kV V送電線において1相の電路の開放を検知した場合は，自動又は手動で故障箇所の隔離及び非常用母線の受電切替ができる設計とし，電力の供給の安定性を回復できる設計とする。【45条12】	VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.1 外部電源に関する設計 3．1．5 1相の電路の開放に対する検知及び電力の安定性回復	2．発電所構内における電気系統の信頼性碓保に関する設計 2.2 1相の電路の開放に対する検知及び電力の安定性回復 に関する設計

基本設計方針		設計結果の記載笽所	様式－1への反映結果
変更前	変更後		
		送電関係一覧図 1.1 送電関係一覧図 単線結線図 1.4 単線結線図	
1.2 電線路の独立性及び物理的隔離 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。 設計基準対象施設は，送受電可能な回線として275kV送電線（東北電カネットワーク株式会社牡鹿幹線（以下「牡鹿幹線」という。））（第 1 号機設備，第1，2，3号機共用（以下同じ。））及び 275 kV 送電線（東北電カネッ トワーク株式会社松島幹線（以下「松島幹線」という。）） （第3号機設備，第1，2，3号機共用（以下同じ。））の 2 ルート各2回線及び受電専用の回線として66kV送電線 （東北電力ネットワーク株式会社塚浜支線（以下「塚浜支線」という。）（東北電力ネットワーク株式会社鮎川線（以下「鮎川線」という。）1号を一部含む。）及び東北電力ネットワーク株式会社万石線（以下「万石線」 という。））（第1号機設備，第1，2，3号機共用（以下同 じ。））1ルート1回線の合計3ルート5回線にて，電力系統に接続する設計とする。 275 kV 送電線（牡鹿幹線）1ルート2回線は東北電力ネ ットワーク株式会社石巻変電所（以下「石巻変電所」 という。），275kV送電線（松島幹線）1ルート2回線は東北電力ネットワーク株式会社宮城中央変電所（以下 ${ }^{\circ}$ 宮城中央変電所」という。）に連系する設計とする。また， 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含む。））1 ル ート1回線は東北電力ネットワーク株式会社女川変電所（以下「女川変電所」という。）及び万石線を経由し， その上流接続先である東北電力ネットワーク株式会社西石巻変電所（以下「西石巻変電所」という。）に連系 する設計とする。	1.2 電線路の独立性及び物理的隔離 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。【45条1】 設計基準対象施設は，送受電可能な回線として275kV送電線（東北電力ネットワーク株式会社牡鹿幹線（以下「牡鹿幹線」という。））（第1号機設備，第1，2，3号機共用（以下同じ。））及び 275 kV 送電線（東北電力ネッ トワーク株式会社松島幹線（以下「松島幹線」という。）） （第 3 号機設備，第 1,2 ， 3 号機共用（以下同じ。））の 2 ルート各2回線及び受電専用の回線として66kV送電線 （東北電力ネットワーク株式会社塚浜支線（以下「塚浜支線」という。）（東北電力ネットワーク株式会社鮎川線（以下「鮎川線」という。）1号を一部含む。）及び東北電力ネットワーク株式会社万石線（以下「万石線」 という。））（第1号機設備，第1，2，3号機共用（以下同 じ。））1ルート1回線の合計3ルート5回線にて，電力系統に接続する設計とする。【45条13】 275 kV 送電線（牡鹿幹線）1ルート2回線は東北電力ネ ットワーク株式会社石巻変電所（以下「石巻変電所」 という。），275kV送電線（松島幹線）1ルート2回線は東北電力ネットワーク株式会社宮城中央変電所（以下「宮城中央変電所」という。）に連系する設計とする。また， 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含む。））1 ル ート1回線は東北電力ネットワーク株式会社女川変電所（以下「女川変電所」という。）及び万石線を経由し， その上流接続先である東北電力ネットワーク株式会社西石巻変電所（以下「西石巻変電所」という。）に連系 する設計とする。【45条14】	Cle	(変更なし)
	上記3ルート5回線の送電線の独立性を碓保するた め，万一，送電線の上流側接続先である石巻変電所が停止した場合でも，外部電源からの電力供給が可能と なるよう，宮城中央変電所又は女川変電所を経由する ルートで本発電所に電力を供給することが可能な設計 とする。また，宮城中央変電所が停止した場合には，石巻変電所又は女川変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。さらに，女川変電所が停止した場合には，石巻変電所又は宮城中央変電所を経由するルートで本発電所に電力を供給 することが可能な設計とする。【45条15】	VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.1 外部電源に関する設計 3．1．2 独立性が確保された電線路からの受電 送電関係一覧図 1.1 送電関係一覧図 単線結線図 1.4 単線結線図	3．電線路の独立性及び物理的分離に関する設計 3.1 送電系統の独立性に関する設計

基本設計方針		設計結果の記載籄所	様式一1への反映結果
変更前	変更後		
	設計基準対象施設は，電線路のらち少なくとも1回線 は，同一の送電鉄塔に架線されていない，他の回線と物理的に分離された送電線から受電する設計とする。【45条16】	VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.1 外部電源に関する設計 3．1．3 物理的分離が施された電線路からの受電 3．1．3．1 送電線の物理的分離 3．1．3．2 鉄塔基礎の安定性 3．1．3．3 送電線の強風対策	3．電線路の独立性及び物理的分㩆に関する設計 3.2 送電系統の物理的分離に関する設計
	また，大規模な盛土の崩壊，大規模な地すべり，急傾斜地の崩壊に対し鉄塔基硙の安定性が碓保され，台風等による強風発生時及び着水雪の事故防止対策が図 られ，送電線の接近•交差•併架箇所については，仮 に 1 つの鉄塔が倒壊しても，全ての送電線が同時に機能喪失しない離隔距蓶が碓保された送電線，又は電線 の張力方向によって，全ての送電線が同時に機能喪失 しないように配置された鉄塔の送電線から受電できる設計とする。【45条16】	VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.1 外部電源に関する設計 3．1．3 物理的分離が施された電線路からの受電 3．1．3．1 送電線の物理的分離 3．1．3．2 鉄塔基礎の安定性 3．1．3．3 送電線の強風対策	3．電線路つ独立性及び物理的分榔に関する設計 3.2 送電系統の物理的分離に開する設計
	1.3 発電用原子炉施設への電力供給確保 設計基準対象施設に接続する電線路は，いずれの2回線が喪失した場合においても電力采統から発電用原子炬施設への電力の供給が停止しない設計とし，275kV送電線4回線は母線連絡遮断器を設置したタイラインに より起動変圧器を介して接続するとともに， 66 kV 送電線は予備変圧器（第1号機設備，第1，2，3号機共用） を介して接続する設計とする。【45条17】	要目表 VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.3 ガス絶縁開閉装置及び変圧器等に関する設計 3．3．1 発電用原子炉施設の電力供給確保 3．3．1．1 2 回線喪失時の電力供給継続 3．3．2 機器の損壊，故障その他の異常の検知と拡大防止 常用電源設備に係る機器の配置を明示した図面 9.2 常用電源設備	4．発電用原子炉施設の電力供給碓保に関する設計 4.1 電力の供給が同時に停止しない設計
	開閉所から主発電機側の送受電設備は，十分な支持性能を持つ地盤に設置するとともに，耐震性の高い，可とら性のある懸垂碍子及び重心の低いがス絶縁開閉装置を設置する設計とする。【45条18】	要目表 VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3.3 ガス絶缘開閉装置及び変圧器等に関する設計 3．3．1 発電用原子炉施設の電力供給確保 3．3．1．2 開閉所等の基礎 3．3．1．3 碍子及び遮断器等の而震性 常用電源設備に係る機器つ配置を明示した図面 9.2 常用電源設備	4．発電用原子炉施設の電力供給碓保に関する設計 4.2 送受電設備つ而震性，津波，塩害に関する設計
	さらに，防潮堤等により津波の影響を受けないエリ アに設置するとともに，塩害を考慮し， 275 kV 送電線引留部の碍子に対しては，碍子洗浄ができる設計とし， 66 kV 送電線引留部の碍子に対しては，絶縁強化を施し た碍子を設置し，遮断器等に対しては，電路がタンク に内包されているガス絶䋎開閉装置を設置する。【45条 18】	要目表 VI－1－9－2－1 常用電源設備の健全性に関する説明書 3．施設の詳細設計方針 3．3 ガス絶縁開閉装置及び変圧器等に関する設計 3．3．1 発電用原子炉施設の電力供給確保 3．3．1．4 碍子及び遮断器等への津波の影響	4．発電用原子炉施設の電力供給確保に関する設計 4.2 送受電設備つ耐震性，津波，塩害に関する設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		3．3．1．5 碍子及び遮断器等の塩害対策 3．3．31相の電炉の開放に対する検知及び電力の安定性回復 常用電源設備に係る機器の配置を明示した図面 9.2 常用電源設備 $<$ 下線部＞ 運用に関する記載であり，保安規定にて対応	＜下線部＞
1．3 設備の共用 275 kV 送電線， 275 kV 開閉所， 66 kV 送電線， 66 kVV 開閉所及び予備電源盤は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機の必要負荷容量を満足する設計と すること，また，各号機に遮断器を設け，短絡•地絡等の故障が発生した場合，故障箇所を隔離し，他号機 へ影響を及ぼさない設計とし，共用箇所の故障により外部電源を受電できなくなった場合は，非常用ディー ゼル発電機（高圧炬心スプレイ系ディーゼル発電機を含む。）により各号機の非常用所内電源系に給電できる設計とすることで，共用により安全性を損なわない設計とする。	1． 4 設備の共用及び相互接続 275 kV 送電線， 275 kV 開閉所， 66 kV 送電線， 66 kV 開閉所及び予備電源盤は，第1号機，第2号機及び第 3 号機で共用するが，各号機の必要負荷容量を満足する設計と すること，また，各号機に遮断器を設け，短絡•地絡等の故障が発生した場合，故障箇所を隔離し，他号機 へ影響を及ぼさない設計とし，共用箇所の故障により外部電源を受電できなくなった場合は，非常用ディー ゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）により各号機の非常用所内電源系に給電できる設計とすることで，共用により安全性を損なわない設計とする。【15条21】	－	(記載追加のみ, 変更なし)
	共通用高圧母線（第 $1 \sim 2$ 号機間及び第 $2 \sim 3$ 号機間） は，第1号及び第2号機並びに第2号及び第3号機で相互接続しているが，電源融通時に何らかの要因で電気故障が発生した場合，遮断器により故障箇所を隔離し，他の号機へ影響を及ぼさない設計とすることで，相互接続により安全性を損なわない設計とする。【15条24】	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 2．基本方針 2.2 悪影響方止等	1．共通的に適用される設計 VI－1－10－4 「原子炉冷却系統施設」の様式 -1 11．健全性に係る設計
2．主要対象設備 常用電源設備の対象となる主要な設備について，「表 1 常用電源設備の主要設備リスト」に示す。	2．主要対象設備常用電源設備の対象となる主要な設備について，「表 1 常用電源設備の主要設備リスト」に示す。	－	（「主要設備リスト」による）

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－510－10 基本設計方針から設工認添付書類及び様式—1 への展開表 （補助ボイラー）

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子灲及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	$\begin{gathered} \text { (用語の定義のみ) } \end{gathered}$
第1章 共通項目 補助ボイラーの共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．設備に対する要求（4．2 材料及び構造等， 4.3 使用中の亀裂等による破壊の防止， 4．4 耐圧試験等， 4.6 逆止め弁， 4.7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他（5．4 放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 補助ボイラーの共通項目である「1．地盤等，2．自然現象（2．2 津波による損傷の防止を除く。），3．火災，5．設備に対する要求（5．2 材料及び構造等， 5.3使用中の亀裂等による破壊の防止，5．4 耐圧試験等， 5.6 逆止め弁， 5.7 内燃機関及びガスタービンの設計条件， 5.8 電気設備の設計条件を除く。），6．その他（6．4 放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
第2章 個別項目 1．補助ボイラー 1.1 補助ボイラーの機能 発電用原子炉施設には，設計基準事故に至るまでの間に想定される使用条件として，液体廃葉物処理系の濃縮装置，排ガス予熱器，屋外タンクの保温及び建屋 の暖房用並びに主蒸気が使用できない場合のタービン のグランドシール及び起動停止用蒸気式空気抽出器 に，必要な蒸気を供給する能力を有する主ボイラー（第 1 号機設備，第1，2号機共用（以下同じ。））及び補助ボ イラー（第1，2号機共用（以下同じ。））を設置する。 主ボイラー及び補助ボイラーは，発電用原子炉施設 の安全性を損なわない設計とする。	第2章 個別項目 1．補助ボイラー 1.1 補助ボイラーの機能 発電用原子炉施設には，設計基準事故に至るまでの間に想定される使用条件として，液体廃重物処理系の濃縮装置，排ガス予熱器，屋外タンクの保温及び建屋 の暖房用並びに主蒸気が使用できない場合のタービン のグランドシール及び起動停止用蒸気式空気抽出器 に，必要な蒸気を供給する能力を有する補助ボイラー （第1，2号機共用（以下同じ。））を設置する。 補助ボイラーは，発電用原子炉施設の安全性を損な わない設計とする。【48条1】	－	（記載削除のみ，変更なし）
1.2 補助ボイラーの設計条件 主ボイラーは，ボイラー本体，重油燃焼設備，通風設備，給水設備，制御装置等から，補助ボイラーは， ボイラー本体，給水設備，制御装置等から構成する。 蒸気は蒸気だめより加熱蒸気系を経て，蒸気を使用 する各機器に供給できる設計とする。 各機器で使用された蒸気のうち回収できるものは，復水戻り系により，主ボイラー及び補助ボイラーの給水として再使用し，給水使用量を低減できる設計とす る。	1.2 補助ボイラーの設計条件 補助ボイラーは，ボイラー本体，給水設備，制御装置等から構成し，蒸気は蒸気だめより加熱蒸気系を経 て，蒸気を使用する各機器に供給できる設計とする。 各機器で使用された蒸気のらち回収できるものは，復水戻り系により，補助ボイラーの給水として再使用 し，給水使用量を低減できる設計とする。【48条5】	－	（記載削除のみ，変更なし）
主ボイラー及び補助ボイラーは，長期連続運転及び負荷変動に対応できる設計とし，設計基準事故時及び当該事故に至るまでの間に想定される全ての環境条件 において，その機能を発揮できる設計とするとともに，主ボイラー及び補助ボイラーの健全性及び能力を確認 するため，必要な箇所の保守点検（試験及び検査を含	補助ボイラーは，長期連続運転及び負荷変動に対応 できる設計とし，設計基準事故時及び当該事故に至る までの間に想定される全ての環境条件において，その機能を発揮できる設計とするとともに，補助ボイラー の健全性及び能力を確認するため，必要な箇所の保守点検（試験及び検査を含む。）ができるよう設計する。	－	（記載削除のみ，変更なし）

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
む。）ができるよう設計する。	【48条6】		
設計基準対象施設に施設する主ボイラー及び補助ボ イラー並びにその附属設備の耐圧部分に使用する材料 は，安全な化学的成分及び機械的強度を有するととも に，耐圧部分の構造は，最高使用圧力及び最高使用温度において，発生する応力に対して安全な設計とする。	設計基準対象施設に施設する補助ボイラー並びにそ の附属設備の耐圧部分に使用する材料は，安全な化学的成分及び機械的強度を有するとともに，耐圧部分の構造は，最高使用圧力及び最高使用温度において，発生する応力に対して安全な設計とする。【48条3】	－	（記載削除のみ，変更なし）
設計基準対象施設に施設する主ボイラー及び補助ボ イラーに属する主要な耐圧部の溶接部は，次のとおり とし，使用前事業者検査により適用基準及び適用規格 に適合していることを確認する。 （1）不連続で特異な形状でない設計とする。 （2）溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他 の欠陥がないことを非破壊試験により確認する。 （3）適切な強度を有する設計とする。 （4）適切な溶接施工法，溶接設備及び技能を有する溶接士であることを機械試験その他の評価方法 によりあらかじめ確認する。	設計基準対象施設に施設する補助ボイラーに属する主要な耐圧部の溶接部は，次のとおりとし，使用前事業者検査により適用基準及び適用規格に適合している ことを確認する。 （1）不連続で特異な形状でない設計とする。 （2）溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他 の欠陥がないことを非破壊試験により確認する。 （3）適切な強度を有する設計とする。 （4）適切な溶接施工法，溶接設備及び技能を有する溶接士であることを機械試験その他の評価方法 によりあらかじめ確認する。【48条2】	－	（記載削除のみ，変更なし）
主ボイラー及び補助ボイラーの蒸気ドラムには，圧力の上昇による設備の損傷防止のため，最大蒸発量と同等容量以上の安全弁を設ける設計とする。	補助ボイラーの蒸気ドラムには，圧力の上昇による設備の損傷防止のため，最大蒸発量と同等容量以上の安全弁を設ける設計とする。【48条4】	－	(記載削除のみ, 変更なし)
主ボイラー及び補助ボイラーの蒸気ドラムには，圧力の上昇による設備の損傷防止のため，ドラム内水位， ドラム内圧力等の運転状態を計測する装置を設ける設計とする。	補助ボイラーの蒸気ドラムには，圧力の上昇による設備の損傷防止のため，ドラム内水位，ドラム内圧力等の運転状態を計測する装置を設ける設計とする。【48条9】	－	(記載削除のみ, 変更なし)
主ボイラー及び補助ボイラーには，ボイラーの最大連続蒸発時において，熱的損傷が生ずることのないよ ら水を供給できる適切な容量の給水設備を設け，給水 の入口及び蒸気の出口については，流路を速やかに自動でかつ確実に遮断できる設計とする。	補助ボイラーには，補助ボイラーの最大連続蒸発時 において，熱的損傷が生ずることのないよう水を供給 できる適切な容量の給水設備を設け，給水の入口及び蒸気の出口については，流路を速やかに自動でかつ確実に遮断できる設計とする。【48条7】	－	(記載削除のみ, 変更なし)
主ボイラー及び補助ボイラーは，ボイラー水の濃縮 を防止し，及び水位を調整するために，ボイラー水を抜くことができる設計とする。	補助ボイラーは，ボイラー水の濃縮を防止し，及び水位を調整するために，ボイラー水を抜くことができ る設計とする。【48条8】	－	(記載削除のみ, 変更なし)
主ボイラーから排出されるばい煙については，良質燃料（A重油）を使用することにより，硫黄酸化物排出量，窒素酸化物濃度及びばいじん濃度を低減する設計 とする。 また，補助ボイラーは電気ボイラーを使用すること により，ばい煙を発生しない設計とする。	補助ボイラーは電気ボイラーを使用することによ り，ばい煙を発生しない設計とする。【48条10】	－	（記載削除のみ，変更なし）
1.3 設備の共用 補助ボイラー並びに加熱蒸気及び復水戻り系は，第 1号機と共用するが，各号機に必要な容量を碓保すると ともに，接続部の弁を閉操作することにより隔離でき る設計とすることで，共用により安全性を損なわない設計とする。	1.3 設備の共用 補助ボイラー並びに加熱蒸気及び復水戻り系は，第 1 号機と共用するが，各号機に必要な容量を確保すると ともに，接続部の弁を閉操作することにより隔離でき る設計とすることで，共用により安全性を損なわない設計とする。【15条22】	－	（変更なし）

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－510－11 基本設計方針から設工認添付書類及び様式 -1 への展開表 （火災防護設備）

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【火災防護設備】

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
用語の定義は「発電用軽水型原子炉施設の火災防護 に関する審査指針」による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」，「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈並びに「実用発電用原子炉及 びその附属施設の火災防護に係る審査基準」（平成25年 6月19日原子力規制委員会）による。	－	(用語の定義のみ)
第1章 共通項目	第1章 共通項目 火災防護設備の共通項目である「1．地盤等，2．自然現象（2．2 津波による損傷の防止を除く。），5．設備に対する要求（5．5 安全弁等，5．6 逆止め弁， 5.8電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
第2章 個別項目 1．火災防護設備の基本方針 火災により原子炉の安全性が損なわれないように，「原子力発電所の火災防護指針」（日本電気協会 J E AG4607）に準じ，火災の発生防止対策，火災の検知及び消火対策並びに火災の影響軽減対策を組み合 わせて対応する。	第2章 個別項目 1．火災防護設備の基本設計方針 設計基準対象施設は，火災により発電用原子炉施設 の安全性を損なわないよう，火災防護上重要な機器等 を設置する火災区域及び火災区画に対して，火災防護対策を講じる。【11条1】	－	（冒頭宣言）
	発電用原子炉施設は，火災によりその安全性を損な わないように，適切な火災防護対策を講じる設計とす る。火災防護対策を講じる対象として「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」のクラス1，クラス2及び安全評価上その機能を期待するクラス3に属する構築物，系統及び機器とする。 火災防護上重要な機器等は，上記構築物，系統及び機器のらち原子炉の高温停止及び低温停止を達成し，維持するために必要な構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器とする。【11条2】 原子炉の高温停止及び低温停止を達成し，維持する ために必要な構築物，系統及び機器は，発電用原子炉施設において火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な以下 の機能を確保するための構築物，系統及び機器とする。 （1）原子炉冷却材圧力バウンダリ機能 （2）過剰反応度の印加防止機能 （3）炉心形状の維持機能 （4）原子炉の緊急停止機能 （5）未臨界維持機能 （6）原子炉冷却材圧力バウンダリの過圧防止機能 （7）原子炉停止後の除熱機能 （8）炉心椧却機能	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 3．火災防護の基本事項 3.1 火災防護対策を行う機器等の選定	2．火災防護対策を行ら機器等の選定

基本設計方針		設計結果の記載箇所	様式一1 への反映結果
変更前	変更後		
	（9）工学的安全施設及び原子炉停止系への作動信号 の発生機能 （10）安全上特に重要な関連機能 （11）安全弁及び逃がし弁の吹き止まり機能 （12）事故時のプラント状態の把握機能 （13）制御室外からの安全停止機能【11条3】 放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器は，発電用原子炬施設において火災 が発生した場合に，放射性物質の盱蔵又は閉じ込め機能を確保するために必要な構築物，系統及び機器とす る。【11条4】		
	重大事故等対処施設は，火災により重大事故等に対処するために必要な機能が損なわれないよう，重大事故等対処施設を設置する火災区域及び火災区画に対し て，火災防護対策を講じる。【52条1】	VI－1－1－7 発電用原子炉施設の火火災防護し関する説明書 3．火災防護の基本事項 3.1 火炏防護対策を行ら機器等の選定	2．火災防護対策を行ら機器等の選定
	建屋等の火災区域は，耐火壁により囲まれ，他の区域と分離されている区域を，火災防護上重要な機器等及び重大事故等対処施設の配置を系統分離も考慮して設定する。【11条5】【52条2】	${ }^{-}$	$\begin{gathered} - \\ (\text { (冒頭宣言) } \end{gathered}$
	建屋内のらち，火災の影響軽減の対策が必要な原子炉の高温停止及び低温停止を達成し，維持するための安全機能を有する構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及 び機器を設置する火災区域は，3時間以上の耐火能力を有する耐火壁として，3時間耐火に設計上必要なコンク リート壁厚である 150 mm 以上の壁厚を有するコンクリ一ト壁や火災耐久試験により3時間以上の耐火能力を有することを確認した耐火壁（費通部シール，防火扉，防火ダンパ）により隣接する他の火災区域と分離する ように設定する。【11条6】 5 2 条 3 】	$\mathrm{VI}-1-1-7$ 発電用原子炉施設の火災队方護に関する説明書 6．火災の影響軽減対策 6.1 火災の影響軽減文策が必要な火災区域の分離 火炎防護設備に係る機器つ配置を明示した図面及び構造図 9．3．1 火災区域構造物及び火災区画構造物	3．火災区域及び火災区画の設定 6．火災の影響轾減対策 6.1 火災の影響㳗澸対策が必要な火災区域の分離
	火災区域又は火災区画のファンネルは，煙等流入防止装置の設置によって，他の火災区域又は火災区画か らの煙の流入を防止する設計とする。【11条7】	VI－1－1－7 発電用原子炉施設の火火災防蒦して関する説明書 6．火災の影響軽減対策 6.1 火災の影響軽減文策が必要な火災区域の分離	6．火災の影響軽減対策 6．1 火災の影響轾減対策が必要な火災区域の分離
	屋外の火災区域は，他の区域と分離して火災防護対策を実施するために，火災防護上重要な機器等を設置 する区域及び重大事故等対処施設の配置を考慮すると ともに，延焼防止を考慮した管理を踏まえた区域を火災区域として設定する。 この延焠防止を考慮した管理については，保安規定 に定めて，管理する。【11条8】【52条4】	要目表 $\mathrm{VI}-1-1-7$ 発電用原子炉施設の火災队方蒦に関する説明書 3．火災防護の基本事項 3.2 火災区域及び火災区画の設定 火災防境設備に係る機器つ配置を明示した図面及び構造図 9．3．1 火災区域構造物及び火災区画構造物 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	3．火災区域及び火災区画の設定 ＜下線部＞
	火災区画は，建屋内及び屋外で設定した火伙区域を	要目表	3．火火災区域及び火火災区画の設定

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	系統分離の状況及び壁の設置状況並びに重大事故等対処施設と設計基準事故対処設備の配置に応じて分割し て設定する。【11条9】【52条5】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 3．火災防護の基本事項 3.2 火災区域及び火災区画の設定 火災防護設備に係る機器の配置を明示した図面及び構造図 9．3．1 火災区域構造物及び火災区画構造物	
	設定する火災区域及び火災区画に対して，以下に示 す火災の発生防止，火災の感知及び消火並びに火災の影響軽減のそれぞれを考慮した火災防護対策を講じる設計とする。【11条10】【52条6】	－	（冒頭宣言）
	なお，発電用原子炉施設のうち，火災防護上重要な機器等又は重大事故等対処施設に含まれない構築物，系統及び機器は，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」に基づき設備に応じた火災防護対策を講じる設計とする。【11条10】【52条6】	－	（冒頭宣言）
	発電用原子炉施設の火災防護上重要な機器等は，火災の発生防止，火災の早期感知及び消火並びに火災の影響軽減の 3 つの深層防護の概念に基づき，必要な運用管理を含む火災防護対策を講じることを保安規定に定 めて，管理する。 重大事故等対処施設は，火災の発生防止，火災の早期感知及び消火の必要な運用管理を含む火災防護対策 を講じることを保安規定に定めて，管理する。 重大事故等対処施設のらち，可搬型重大事故等対処設備に対する火災防護対策についても保安規定に定め て，管理する。 その他の発電用原子炉施設については，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」 に基づき設備に応じた火災防護対策を講じることを保安規定に定めて，管理する。 外部火災については，設計基準対象施設及び重大事故等対処施設を外部火災から防護するための運用等に ついて保安規定に定めて，管理する。【11条11】【52条 7】【52条8】	運用に関する記載であり，保安規定にて対応	－
2．火災の発生防止対策 2.1 発火性，引火性材料の予防措置 2．1．1 設備の対策	1.1 火災発生防止 1．1．1 火災の発生防止対策 火災の発生防止における発火性又は引火性物質に対 する火災の発生防止対策は，火災区域又は火災区画に設置する潤滑油又は燃料油を内包する設備並びに水素 を内包する設備を対象とする。【11条12】【52条9】	VI－1－1－7 発電用原子灲施設の火災防護に関する説明書 4．火災発生防止 4.1 発電用原子炉施設の火災の発生防止について	4．火災発生防止 4.1 火災の発生防止対策の設計
（1）潤滑油及び燃料油を内包する設備の対策潤滑油又は燃料油を内包する設備は，オイルパン， ドレンリム及び堰による漏えい防止対策を講じるとと もに，ポンプの軸受部は溶接構造又はシール構造とす	潤滑油又は燃料油を内包する設備は，溶接構造，シ ール構造の採用による漏えいの防止及び防爆の対策を講じるとともに，堰等を設置し，漏えいした潤滑油又	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火㷋発生防止 4.1 発電用原子炉施設の火災の発生防止について	4．火災発生防止 4.1 火災の発生防止対策の設計

基本設計方針		設計結果の記載蝺所	様式－1 への反映結果
変更前	変更後		
る。 配管及びタンクは原則溶接構造とする。 また，安全機能を有する構造物，系統及び機器を設置する火災区域で使用する瀾滑油及び燃料油は，必要以上に眝蔵しない。	は然料油が拡大することを防止する設計とし，瀾滑油又は燃料油を内包する設備の火災により発電用原子炉施設の安全機能及び重大事故等に対処する機能を損な わないよう，壁の設置又は離隔による配置上の考慮を行ら設計とする。【11条13】【52条10】 潤滑油又は燃料油を内包する設備を設置する火災区域又は火災区画は，空調機器による機械換気又は自然換気を行う設計とする。【11条14】【52条11】 潤滑油又は燃料油を貯蔵する設備は，貯蔵量を一定時間の運転に必要な量にとどめる設計とする。【11条 15】【52条12】		
（2）水素を内包する設備の対策 水素を内包する設備及び機器には，気体廃棄物処理設備及び蓄電池がある。 これらの設備及び機器は，以下に示す漏えい防止及 び換気等による防爆対策を講じることにより火災の発生を防止する。 a．配管及び機器は原則溶接構造とし，弁は溶接構造， ベローズ弁等の漏えい防止構造とする。 b．溶接構造としている配管設置区域以外は，以下に示すとおり換気により雰囲気中での水素の滞留を防止 する。 （a）気体廃軍物処理設備の構成機器を設置する区画 は，空調設備にて換気する。 （b）蓄電池室は，充電中に内部から水素が放出される ことから，空調設備で換気する。	水素を内包する設備のらち気体廃衰物处理系設備及 び発電機水素がス供給設備の配管等は水素の漏えいを考慮した溶接構造とし，弁グランド部から水素の漏え いの可能性のある弁は，ベローズ升等を用いて防爆の対策を行ら設計とし，水素を内包する設備の火災によ $り$ ，発電用原子炉施設の安全機能及び重大事故等に対処する機能を損なわないよう，壁の設置による配置上 の考慮を行ら設計とする。【11条16】【52条13】 水素を内包する設備である蓄電池，気体廃乗物処理系設備，発電機水素ガス供給設備及び水素ボンべを設置する火災区域又は火災区画は，送風機及び排風機に よる機械換気を行い，水素濃度を燃忨限界濃度以下と する設計とする。【11条17】【52条14】 水素ボンベは，ボンベ使用時のみ建屋内汇持込みを行ら運用として保安規定に定めて，管理し，火災区域内に水素の販蔵機器は設置しない設計とする。【11条 18】【52条15】 火災の発生防止における水素漏えい検出は，蓄電池室の上部に水素濃度検出器を設置し，水素の燃焼限界濃度である $4 \mathrm{vol} \%$ の $1 / 4$ 亿達する前の濃度にて中央制御室に警報を発する設計とする。 気体廃裹物処理系設備内の水素濃度については，水素濃度計により中央制御室で常時監視ができる設計と し，水素浱度が上昇した場合には中央制御室に警報を発する設計とする。 発電機水素がス供給設備は，水素消費量を管理する とともに，発電機内の水素純度，水素圧力を中央制御室で常時監視ができる設計とし，発電機内の水素純度 や水素圧力が低下した場合には中央制御室に警報を発 する設計とする。 \qquad ては，ボンバ使用時のみ建屋内仁持込みを行ら運用と して保安規定に定めて，管理し，機械換気により水素	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火災発生防止 4.1 発電用原子灲施設の火災の発生防止について $<$ 下線部＞ 運用に関する記載であり，保安規定にて対応	4．火災発生防止 4.1 火災の発生防止対策の設計 $<$ 下線部 $>$

基本設計方針		設計結果の記載䈏所	様式－1～の反映結果
変更前	変更後		
	濃度を燃焼限界濃度以下とするように設計することか ら，水素濃度検出器は設置しない設計とする。【11条 19】【52条16】 蓄電池室の換気設備が停止した場合には，中央制御室に警報を発する設計とする。また，蓄電池室には，直流開閉装置やインバータを設置しない。【11条20】【52条17】		
（3）換気設備の対策 換気設備で使用するチャコールフィルタは，固体廃重物として处理するまでの間，鋼製容器内沉収納し保管する。	放射性廃棄物処理設備及び放射性廃棄物貯蔵設備に おいて，崩壊熱が発生し，火災事象に至るような放射性廃革物を貯蔵しない設計とする。 また，放射性物質を含んだ使用済イオン交換樹脂， チャコールフィルタ及びHEPAフィルタは，固体廃妻物 として処理を行うまでの間，金属容器や不燃シートに包んで保管することを保安規定に定めて，管理する。 放射性廃重物処理設備及び放射性廃重物貯蔵設備を設置する火災区域又は火災区画の換気設備は，火災時 に他の火災区域又は火災区画や環境への放射性物質の放出を防ぐために，換気設備の停止及び風量調整ダン パの閉止により，隔離ができる設計とする。【11条21】【52条18】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火災発生防止 4． 1 発電用原子炉施設の火災の発生防止について ＜下線部＞ 運用に関する記載であり，保安規定にて対応	4．火災発生防止 4.1 火災の発生防止対策の設計 $<$ 下線部＞
	火災の発生防止のため，火災区域又は火災区画にお いて有機溶剤を使用する場合は必要量以上持ち込まな い運用として保安規定に定めて，管理するとともに，可燃性の蒸気が滞留するおそれがある場合は，使用す る作業場所において，換気，通風，抁散の措置を行ら とともに，建屋の送風機及び排風機による機械換気に より滞留を防止する設計とする。【11条22】【52条19】	運用に関する記載であり，保安規定にて対応	－
	火災区域又は火災区画において，発火性又は引火性物質を内包する設借は，溶接構造の採用及び機械換気等により，「電気設備に関する技術基準を定める省令」及び「工場電気設備防爆指針」で要求される爆発性雰囲気とならない設計とするとともに，当該の設備を設 ける火災区域又は火炏区画に設置する電気•計装品の必要な箇所には，接地を施す設計とする。【11条23】【52条201	VI－1－1－7 発電用原子灲施設の火災防護に関する説明書 4．火災発生防止 4.1 発電用原子炉施設の火災の発生防止について	4．火災発生防止 4.1 火災の発生防止対策の設計
	火災の発生防止のため，可燃性の微扮を発生する設備及び静電気が溜まるおそれがある設備を火災区域又 は火災区画に設置しないことによって，可燃性の微粉及び静電気による火災の発生を防止する設計とする。【11条24】52条21】	運用に関する記載であり，保安規定にて対応	${ }^{-}$
	火災の発生防止のため，発火源への対策として，設備を金属製の筐体内に収納する等，火花が設備外部に出ない設備を設置するとともに，高温部分を保温材で覆らことによって，可燃性物質との接触防止や澴滑油等可燃物の過熱防止を行ら設計とする。【11条25】【52	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火災発生防止 4.1 発電用原子炉施設の火災の発生防止について	4．火災発生防止 4.1 火災の発生防止対策の設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	条221		
2.2 電気設備の過電流による過熱防止対策 電気系統は，地絡及び短絡に起因する過電流による過熱防止のため，過負荷継電器又は過電流継電器等の保護継電装置と遮断器の組合せにより故障機器系統の早期遮断を行い，過熱及び焼損の未然防止を図る。	火災の発生防止のため，発電用原子炉施設内の電気系統は，保護継電器及び遮断器によって故障回路を早期に遮断し，過電流による過熱及び恠損を防止する設計とする。【11条 26 【52条23】	$\mathrm{VI}-1-1-7$ 発電用原子炉施設の火災防護し関する説明書 4．火災発生防止 4.1 発電用原子炉施設の火災の発生防止について	4．火災発生防止 4.1 火災の発生防止対策の設計
	電気品室は，電源供給のみ使用する設計とする。【11条 27 【52条24】	$\mathrm{VI}-1-1-7$ 発電用原子炉施設の火災防護し関する説明書 4．火炎発生防止 4.1 発電用原子炬施設の火災の発生防止について	4．火災発生防止 4.1 火災の発生防止対策の設計
	火災の発生防止のため，放射線分解により水素が発生する火災区域又は火災区画における，水素の蓄積防止対策として，社団法人火力原子力発電技術協会「BWR配管における混合ガス（水素•酸素）蓄積防止汇関す るがイドライン（平成17年10月）」等に基づき，原子炉の安全性を損ならおそれがある場合には水素の蓄積 を防止する設計とする。【11条28】【52条25】 重大事故等時の原子炉格納容器内及び建屋内の水素 については，重大事故等対処施設にて，蓄積防止対策 を行う設計とする。【52条26】	$\mathrm{VI}-1-1-7$ 発電用原子炬施設の火災防蒦じ関する説明書 4．火災発生防止 4.1 発電用原子炉施設の火災の発生防止について	4．火災発生防止 4.1 火災の発生防止対策の設計
2.3 不燃性材料，難燃性材料の使用 安全機能を有する構築物，系統及び機器は，以下の とおり不燃性又は難燃性材料を使用する。 （1）構築物は，不燃性である鉄筋コンクリート及び鋼材により構成する。 （5）安全機能を有する動力盤及び制御盤は，不燃性で ある鋼製の筐体，塩化ビニル等難燃性の配線ダクト及 びテフロン等実用上可能な限り難燃性の電線を使用す る。	1．1．2 不然性材料又は難然性材料の使用火災防護上重要な機器等及び重大事故等対处施設 は，不燃性材料又は難㦓性材料を使用する設計とし，不燃性材料又は難㦓性材料が使用できない場合は，不燃性材料又は難㦓性材料と同等以上の性能を有するも の（以下「代替材料」という。）を使用する設計，若し くは，当該構築物，系統及び機器の機能を碓保するた めに必要な代替材料の使用が技術上困難な場合は，当該構築物，系統及び機器における火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設におう いて火㷋が発生することを防止するための措置を講じ る設計とする。【11条29】【52条27】	－	（冒頭宣言）
（2）機器，配管，ダクト，トレイ，電線管及びこれら の支持構造物は，主要な構造材に不燃性である金属を使用する。	火炏防護上重要な機器等及び重大事故等対処施設の らち，機器，配管，ダクト，トレイ，電線管，盤の筐体及びこれらの支持構造物の主要な構造村は，ステンレ ス鋼，低合金龬，炭素龬等の金属材料又はコンクリー ト等の不燃性材料を使用する設計とする。 ただし，配管のパッキン類は，その機能を碓保する ために必要な代替材料の使用が技術上困難であるた め，金属で覆われた狭险部に設置し直接火炎に晒され ることのない設計とする。【11条30】【52条28】 金属に覆われたポンプ及び升等の駆動部の㵎滑油並 びに金属に覆われた機器躯体内部に設置する電気配線 は，発火した場合でも他の火㷋防護上重要な機器等及 び重大事故等対処施設に延焼しないことから，不燃性材料又は難燃性材料でない材料を使用する設計とす	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火災発生防止 4.2 不燃性材料又は難㜣性材料の使用について	4．火災発生防止 4.2 不燃性材料又は難㦓性材料の使用

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	る。【11条31】【52条29】		
（7）保温材は，不燃性の金属保温並びに難燃性のロッ クウール，グラスウール等を使用する。	火災防護上重要な機器等及び重大事故等対処施設に使用する保温材は，原則，「平成12年建設省告示第1400号」に定められたもの又は「建築基準法」で不燃性材料として認められたものを使用する設計とする。【11条32】【52条30】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火災発生防止 4.2 不燃性材料又は難燃性材料の使用について	4．火災発生防止 4.2 不燃性材料又は難㜣性材料の使用
（8）建屋内装材は，実用上可能な限り不燃性材料及び難燃性材料を使用する。	火災防護上重要な機器等及び重大事故等対処施設を設置する建屋の内装材は，「建築基準法」で不燃性材料として認められたものを使用する設計とする。条33】【52条31】 ただし，管理区域の床や，原子炉格納容器内の床や壁に使用する耐放射線性のコーティング剤は，不燃性材料であるコンクリート表面に塗布すること，難㦓性 が確認された塗料であること，加熱源を除去した場合 はその燃焼部が広がらないこと，原子炉格納容器内を含む建屋内に設置する火災防護上重要な機器等及び重大事故等対処施設は，不燃性又は難燃性の材料を使用 し，その周辺には可燃物がないことから，難燃性材料 を使用する設計とする。【11条34】【52条32】 また，中央制御室の床面は，防炎性能を有するカー ペットを使用する設計とする。【11条35】【52条33】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火㷋発生防止 4.2 不燃性材料又は難燃性材料の使用について ＜下線部＞ 運用に関する記載であり，保安規定にて対応	4．火災発生防止 4.2 不燃性材料又は難㜣性材料の使用
（3）安全機能を有するケーブルは，実用上可能な限り「IEEE Standard for Type of Class 1E Electric Cables，Field Splices，and Connections for Nuclear Power Generating Stations」（I E E E S t d 383－1974）又は電気学会技術報告 II 部第139号（昭和57年11月）の垂直トレイ燃焼試験に合格した難燃性ケーブルを使用する。また，必要に応じ延焼防止塗料を使用する。	火災防護上重要な機器等及び重大事故等対処施設に使用するケーブルは，実証試験により自己消火性（U L垂直燃焼試験）及び耐延焼性（I E E E 3 8 3（光 ファイバケーブルの場合はIEEE1202）垂直ト レイ燃焼試験）を確認した難燃ケーブルを使用する設計とする。【11条36】【52条34】 ただし，実証試験により耐延焼性が確認できない核計装ケーブル及び放射線モニタケーブルは，原子炉格納容器外については専用電線管に収納するとともに，電線管の両端は，耐火性を有するシール材を処置する ことにより，難燃ケーブルと同等以上の性能を有する設計とするか，代替材料の使用が技術上困難な場合は，当該ケーブルの火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設において火災が発生す ることを防止するための措置を講じる設計とする。【11条37】【52条35】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火災発生防止 4.2 不燃性材料又は難然性材料の使用について	4．火災発生防止 4.2 不燃性材料又は難㜣性材料の使用
（6）換気設備のフィルタは，チャコールフィルタを除 き難燃性のガラス繊維を使用する。	火災防護上重要な機器等及び重大事故等対処施設の らち，換気空調設備のフィルタはチャコールフィルタ を除き，「JIS L 1091（繊維製品の燃焼性試験方法）」又は「J A C A No．11A－2003（空気清浄装置用万材燃焼性試験方法指針（公益社団法人日本空気清浄協会））」を満足する難燃性材料を使用する設計とす る。【11条38】【52条36】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火災発生防止 4.2 不燃性材料又は難然性材料の使用について	4．火災発生防止 4.2 不燃性材料又は難㜣性材料の使用
（4）建屋内における変圧器は乾式とし，遮断器は実用	火災防護上重要な機器等及び重大事故等対処施設の	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書	4．火災発生防止

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
上可能な限りオイルレスとする。	らち，屋内の変圧器及び遮断器は，可燃性物質である絶縁油を内包していないものを使用する設計とする。 【11条39】【52条37】	4．火災発生防止 4.2 不燃性材料又は難燃性材料の使用について	4.2 不燃性材料又は難燃性材料の使用
2.4 落雷，地震等の自然現象による火災発生防止策原子炉施設内の構築物，系統及び機器は，以下のと おり落雷，地震の自然現象により火災が生じることが ないように防護した設計とする。	1．1．3 自然現象による火災の発生防止 自然現象として，地震，津波，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災及び高潮を考慮する。 これらの自然現象のらち，火災を発生させるおそれ のある落雷，地震，竜巻（風（台風）を含む。）及び森林火災について，これらの現象によって火災が発生し ないように，以下のとおり火災防護対策を講じる設計 とする。【11条40】【52条38】	－	（冒頭宣言）
2．4．1 避雷設備 原子炉施設の避雷設備として，「建築基準法施行令」 に従い，原子炉格納施設等に避雷針を設け，落雷によ る火災発生を防止する。	落雷によって，発電用原子炬施設内の構築物，系統及び機器に火災が発生しないよう，避雷設備の設置及 び接地網の敷設を行う設計とする。【11条40】【52条 38】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火災発生防止 4.3 落雷，地震等の自然現象による火災発生の防止につい て	4．火災発生防止 4.3 落雷•地震等の自然現象による火災発生の防止につい て
2．4．2 耐震設計 安全機能を有する構築物，系統及び機器は，「発電用原子炉施設に関する耐震設計審査指針」の耐震設計上 の重要度分類に従った耐震設計を行い，破損又は倒壊 を防ぐことにより火災発生を防止する。	火災防護上重要な機器等は，耐震クラスに応じて十分な支持性能をもつ地盤に設置する設計とするととも に，「実用発電用原子炉及びその附属施設の技術基集に関する規則の解釈」（平成25年6月19日原子力規制委員会）に従い，耐震設計を行ら設計とする。【11条41】 重大事故等対処施設は，施設の区分に応じて十分な支持性能をもつ地盤に設置する設計とするとともに，「実用発電用原子炉及びその附属施設の技術基集に関 する規則の解釉」（平成25年6月19日原子力規制委員会） に従い，耐震設計を行ら設計とする。【52条39】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火災発生防止 4.3 落雷，地震等の自然現象による火災発生の防止につい て	4．火災発生防止 4.3 落雷•地震等の自然現象による火災発生の防止につい て
	火災防護上重要な機器等及び重大事故等対処施設 は，森林火災による発電用原子炉施設への延焼防止対策として発電所敷地内に設置した防火帯で囲んだ内側 に配置することで，火災発生防止を講じる設計とし，童巻（風（台風）を含む。）から，竜巻防護対策設備の設置，固縛等により，火災の発生防止を講じる設計と する。【11条42】【52条40】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 4．火災発生防止 4.3 落雷，地震等の自然現象による火災発生の防止につい て ＜下線部＞ 運用に関する記載であり，保安規定にて対応	4．火災発生防止 4.3 落雷•地震等の自然現象による火災発生の防止につい て $<$ 下線部＞
3．火災の検知及び消火対策 安全機能を有する構築物，系統及び機器に使用する材料は，実用上可能な限り不燃性又は難燃性とし，火災の発生を防止するための予防措置を講じていること から，火災の可能性は小さいが，万一の場合に備え，火災報知設備及び消火設備を設ける。	1.2 火災の感知及び消火 火災区域又は火災区画の火災感知設備及び消火設備 は，火災防護上重要な機器等及び重大事故等対処施設 に対して火災の影響を限定し，早期の火災感知及び消火を行ら設計とする。【11条43】52条41】 火災感知設備及び消火設備は，「1．1．3 自然現象に よる火災の発生防止」で抽出した自然現象に対して，火災感知及び消火の機能，性能が維持できる設計とす る。【11条44】【52条42】	－	（冒頭宣言）
	火災感知設備及び消火設備については，火災区域及び	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書	1．共通的に適用される設計

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
	火災区画に設置された火災防護上重要な機器等の耐震 クラス及び重大事故等対処施設の区分に応じて，地震 に対して機能を維持できる設計とする。【11条44】52条42】	5．火災の感知及び消火 5.1 火災感知設備について 5．1．1 要求機能及び性能目標 5．1．2 機能設計 5．1．3 構造強度設計 5.2 消火設備について 5．2．1 要求機能及び性能目標 5．2．2 機能設計 5．2．3 構造強度設計 VI－2－別添1－2 火災感知器の耐震性についての計算書 VI－2－別添1－3 火災受信機盤の耐震性についての計算書 VI－2－別添1－4 ガスボンベの耐震性についての計算書 VI－2－別添1－5 選択弁の而震性についての計算書 VI－2－別添1－6 制御盤の而震性についての計算書 VI－2－別添1－7 消火配管の耐震性についての計算書 VI－2－別添1－8 火災防護設備の水平2方向及び鉛直方向地震力の組合せに関する影響評亚結果	5．火災の感知及び消火 5.1 要求機能及び生能目標 5.2 火災感知設備 5.3 消火設備 VI－1－10－4 「原子炉冷却系統施設」の様式 -1 4．地震による損傷防止に関する設計 4.11 耐震設計の基本方針を準用して行う耐震評価
3.1 火災報知設備 火災報知設備は，火災感知器及び火災受信機等で構成する。 3．1．1 火災感知器 火災感知器は，火災の発生による原子炉に外乱が及 び，かつ，原子炉保護設備又は工学的安全施設作動設備の作動を要求される場合の高温停止を達成するに必要な系統及び機器，原子炉を低温停止するに必要な系統及び機器，放射性物質の抑制されない放出を防止す るに必要な系統及び機器並びにそれらが機能する必要 な計測制御系，電源系及び冷却系等の関連系の設置区域に設置する，ただし，これら区域に設置される系統及び機器が火災による悪影響を受ける可能性がない場合等は，火災感知器を設置しない。 3．1．2 火災感知器設置要領 （1）火災感知器は，消防法施行規則に準じて，煙感知器又は熱感知器を設置する。	1．2．1 火災感知設備 火災感知設備の火災感知器は，火災区域又は火災区画における放射線，取付面高さ，温度，湿度，空気流等の環境条件，予想される火災の性質を考慮し，火災感知器を設置する火災区域又は火災区画の火災防護上重要な機器等及び重大事故等対処施設の種類に応じ，火災を早期に感知できるよう，固有の信号を発するア ナログ式の煙感知器及びアナログ式の熱感知器の異な る種類の火災感知器を組み合わせて設置する設計とす る。 ただし，発火性又は引火性の雰囲気を形成するおそ れのある場所及び屋外等は，環境条件や火災の性質を考慮し，非アナログ式の炎感知器，アナログ式の屋外仕様の熱感知カメラ，非アナログ式の屋外仕様の炎感知器，非アナログ式の防爆型の煙感知器及び非アナロ グ式の防爆型の熱感知器も含めた組み合わせで設置す る設計とする。 火災感知器については，消防法施行規則等に従い設置する，又は火災区域内の感知器の網羅性及び火災報知設備の感知器及び発信機に係る技術上の規格を定め る省令に定める感知性能と同等以上の方法により設置 する設計とする。 非アナログ式の火災感知器は，環境条件等を考慮す ることにより誤作動を防止する設計とする。 なお，アナログ式の屋外仕様の熱感知カメラ及び非 アナログ式の屋外仕様の炎感知器は，監視範囲に火災 の検知に影響を及ぼす死角がないように設置する設計	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.1 火災感知設備について 5．1．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.2 火災感知設備

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	とする。 また，発火源となるようなものがない火災区域又は火災区画は，可燃物管理により可燃物を持ち込まない運用として保安規定に定めて，管理することから，火災感知器を設置しない設計とする。【11条45】【52条43】【52条44】	＜下線部＞ 運用に関する記載であり，保安規定にて対応	＜下線部＞
3．1．3 火災受信機設置要領 火災受信機は中央制御室に設置し，火災発生時には警報を発信するとともに，火災発生区域を表示できる ようにする。 （2）火災感知器の電源は，通常時は常用低圧母線から給電するが，交流電源喪失時には，火災受信機の蓄電池から給電することにより，その機能を失わないよう にする。	火災感知設備のらち火災受信機盤は中央制御室に設置し，火災感知設備の作動状況を常時監視できる設計 とする。また，火災受信機盤は，構成されるアナログ式の受信機により作動した火災感知器を1つずつ特定 できる設計とする。屋外の海水ポンプ室（補機ポンプ エリア）及びガスタービン発電設備燃料移送ポンプを監視するアナログ式の屋外仕様の熱感知カメラの火災受信機盤においては，カメラ機能による映像監視（熱 サーモグラフィ）により火災発生箇所の特定が可能な設計とする。 火災感知器は，自動試験機能又は遠隔試験機能によ り点検ができる設計とする。 自動試験機能又は遠隔試験機能を持たない火災感知器は，機能に異常がないことを確認するため，「消防法施行規則」に準じ，煙等の火災を模擬した試験を実施する。【11条46】【52条45】 火災感知設備は，外部電源䨤失時又は全交流動力電源霛失時においても火災の感知が可能となるように蓄電池を設け，電源を確保する設計とする。また，火災防護上重要な機器等及び重大事故等対処施設を設置す る火災区域又は火災区画の火災感知設備の電源は，非常用電源又は常設代替交流電源設備からの受電も可能 な設計とする。【11条47】【52条46】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.1 火災感知設備について 5．1．2 機能設計 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.2 火災感知設備 ＜下線部＞
	火災区域又は火災区画の火災感知設備は，凍結等の自然現象によっても，機能，性能が維持できる設計と する。【11条48】52条47】	－	（冒頭宣言）
	屋外に設置する火災感知設備は，$-14.6^{\circ} \mathrm{C}$ まで気温が低下しても使用可能な火災感知設備を設置する設計と する。 屋外の火災感知設備は，火災感知器の予備を保有し，万一，風水害の影響を受けた場合にも，早期に取替え を行うことにより機能及び性能を復旧する設計とす る。【11条49】【52条48】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.1 火災感知設備について 5．1．2 機能設計 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	5．火災の感知及び消火 5.2 火災感知設備 ＜下線部＞
3.2 消火設備 消火設備は，消火栓設備，二酸化炭素消火設備及び消火器で構成する。 3．2．1 消火設備設置対象区域 （1）火災防護上，以下の区域に消火設備を設置する。 a．原子炉建屋，タービン建屋及び制御建屋等には，	1．2．2 消火設備 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の消火設備は，破損，誤作動又は誤操作が起きた場合においても，原子炉を安全に停止させるための機能又は重大事故等に対処す るために必要な機能を有する電気及び機械設備に影響	要目表 VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び甡能目標 5.3 消火設備

基本設計方針		設計結果の記載蝺所	様式－1～の反映結果
変更前	変更後		
すべての区域の消火活動に対処できるように屋内消火栓を設置する。 b．火災の影響軽減対策として，火災荷重の大きいデ ィーゼル発電機室及びケーブル処理室には，二酸化炭素消火設備を設置する。 c．中央制御室には消火器を設置する。 3.3 消火設備の破損，誤作動又は誤操作対策消火設備は，以下のとおり破損，誤作動又は誤操作に よって安全機能を有する構築物，系統及び機器の安全機能を喪失しないようにする。 （1）消火設備は，安全機能を有する構築物，系統及び機器に対し，地震に伴う波及的影響を及ぼさないよう にする。 （2）ディーゼル発電機は，二酸化炭素消火設備の誤動作又は誤操作により，ディーゼル機関内の燃焼が阻害 されることがないよう，ディーゼル機関に外気を直接吸気し，室外へ排気する。	を与えない設計とし，火災発生時の煙の充満又は放射線の影響により消火活動が困難となるところは，自動消火設備又は手動操作による固定式消火設備であるハ ロンガス消火設備及びケーブルトレイ消火設備を設置 して消火を行ら設計とする。 火災発生時の煙の充満又は放射線の影響により消火活動が困難とならないところは，消火器，移動式消火設備又は消火栓により消火を行ら設計とする。 なお，消火設備の破損，誤作動又は誤操作に伴う溢水による安全機能及び重大事故等に対処する機能への影響については，浸水防護設備の基本設計方針にて確認する。【11条50】【52条49】 原子炉格納容器は，運転中は窒素に置換され火災は発生せず，内部に設置された火災防護上重要な機器等 が火災により機能を損なうおそれはないことから，原子炉起動中並びに低温停止中の状態に対して措置を講 じる設計とし，消火については，消火器又は消火栓を用いた消火ができる設計とする。火災の早期消火を図 るために原子炉格納容器内の消火活動の手順を定め て，自衛消防隊（運転員，初期消火要員）の訓練を実施する。【11条51】 なお，原子炉格納容器内において火災が発生した場合，原子炉格納容器の空間体積（約 $7650 \mathrm{~m}^{3}$ ）に対してパ ージ用排風機の容量が約 $24000 \mathrm{~m}^{3} / \mathrm{h}$ であることから，煙 が充満しないため，消火活動が可能であることから，消火器又は消火检を用いた消火ができる設計とする。【11条52】【52条50】	火災防護設備に係る機器の配置を明示した図面及び系統図 9．3．2．2 ハロンガス消火設備 9．3．2．3 ケーブルトレイ消火設備 構造図 9．3．2．2 ハロンガス消火設備 9．3．2．3 ケーブルトレイ消火設備 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	＜下綏部＞
	中央制御室は，消火器で消火を行ら設計とし，中央制御室制御盤内の火災については，電気機器への影響 がない二酸化炭素消火器で消火を行ら設計とする。ま た，中央制御室床下ケーブルピットについては，自動消火設備であるハロンガス消火設備（局所）を設置す る設計とする。【11条53】【52条52】	要目表 VI－1－1－4－8－2 設備別記載事項の設定根执に関する説明書 （その他発電用原子炉の附属施設（火災防護設備） VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計 火災防護設備に係る機器の配置を明示した図面及び系統図 9．3．2．2 ハロンガス消火設備 $<$ 下線部＞ 運用に関する記載であり，保安規定にて対応	5．火災の感知及び消火 5.3 消火設備 $<$ 下線部＞
	トーラス室において火災が発生した場合，トーラス室の空間体積（約 $11000 \mathrm{~m}^{3}$ ）に対して換気風量の容量が	運用に関する記載であり，保安規定にて対応	－

基本設計方針		設計結果の記載箇所	様式一1 への反映結果
変更前	変更後		
	約21600m³／hであることから，煙が充満しないため，消火活動が可能であることから，消火器を用いた消火が できる設計とする。【11条54】【52条51】		
	火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の消火設備は，以下の設計を行ら。【11条55】【52条53】	\square	$\begin{gathered} - \\ \left(⿱_{\text {豆宣誩) }}\right) \end{gathered}$
	（1）消火設備の消火剤の容量 a．消火設備の消火剤は，想定される火災の性質に応 じた十分な容量を確保するため，「消防法施行規則」及び試験結果に基づく容量を配備する設計とする。【11条56】【52条54】 b．消火用水供給系は， 2 時間の最大放水量を碓保する設計とする。【11条57】【52条55】 c．屋内，屋外の消火栓は，「消防法施行令」に基づく容量を確保する設計とする。【11条58】52条56】	要目表 VI－1－1－4－8－2 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（火災防護設備） VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及びサ生能目標 5.3 消火設備
3．2．3 消火用水供給設備 消火栓への消火用水供給設備は，消火水槽（第1，2号機共用（以下同じ。）），消火ポンプ（第 1 ，2号機共用 （以下同じ。））及び消火采配管等で構成する。消火用水は，消火ポンプで建屋内外に布設された消火系配管 に導かれ，必要箇所に送水される。また，消火ポンプ故障時には，中央制御室に警報を発信する。	（2）消火設備の系統構成 a．消火用水供給系の多重性又は多様性 屋内水消火系の水源は，消火水槽（第 1,2 号機共用 （以下同じ。）），消火水タンクを設置し，屋外水消火系は，屋外消火系消火水タンクを2基設置し多重性を有する設計とする。 屋内水消火系の消火ポンプは，電動機駆動消火ポン プ（第1，2号機共用（以下同じ。））を2台設置し，多重性を有する設計とする。 屋外水消火系の消火ポンプは，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプ を設置し，多様性を有する設計とする。【11条59】【52条571	要目表 VI－1－1－4－8－2 設供別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（火災防護設備） VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計 火災防護設備に係る機器の配置を明示した図面及び系統図 9．3．2．1 水消火設備 構造図 9．3．2．1 水消火設備	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
	屋外消火系ディーゼル駆動消火ポンプの駆動用燃料 は，屋外消火系ディーゼル駆動消火ポンプに付属する燃料タンクに貯蔵する。【11条60】【52条58】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
	b．系統分離に応じた独立性 原子炉の高温停止及び低温停止を達成し，維持する ために必要な構築物，系統及び機器の相互の系統分離 を行らために設けられた火災区域又は火災区画に設置 されるハロンガス消火設備及びケーブルトレイ消火設備は，以下に示すとおり，系統分離に応じた独立性を備えた設計とする。 （a）動的機器である選択弁は多重化する。 （b）容器弁及びボンベを必要数より1つ以上多く設置	要目表 VI－1－1－4－8－2 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（火災防護設備） VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
	する。【11条61】 重大事故等対処施設は，重大事故汇対処する機能と設計基準事故対処設備の安全機能が単一の火災によっ て同時に機能喪失しないよう，区分分離や位置的分散 を図る設計とする。 重大事故等対処施設のある火災区域又は火火災区画，及ひ設計基準事故対処設備のある火災区域又は火災区画に設置するハロンガス消火設備は，上記の区分分離 や位置的分散に応じた独立性を備えた設計とする。！ 52条591	5．2．2 機能設計 火災防護設備に係る機器の配置を明示した図面及び系統図 9．3．2．2 ハロンガス消火設備 9．3．2．3 ケーブルトレイ消火設備	
	c．消火用水の優先供給 消火用水供給系は，飲料水系や所内用水系等と共用 する場合には，隔離弁を設置して遮断する措置により，消火用水の供給を優先する設計とする。【11条62】【52条601	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
	（3）消火設備の電源確保 屋内水消火系の電動機駆動消火ポンプは，外部電源喪失時でも起動できるように非常用電源から受電する設計とする。 屋外水消火系のらち屋外消火系ディーゼル駆動消火 ポンプは，外部電源喪失時にもディーゼル機関を起動 できるように蓄電池を設け，電源を確保する設計とす る。【11条63】【52条61】 ハロンガス消火設備は，外部電源喪失時にも消火が できるように，非常用電源から受電するとともに，設備の作動に必要な電源を供給する蓄電池も設け，全交流動力電源喪失時にも電源を確保する設計とする。 ケーブルトレイ消火設備については，作動に電源が不要な設計とする。【11条64】【52条62】	VI－1－1－7 発電用原子炬施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
	（4）消火設備の配置上の考慮 a．火災による二次的影響の考慮 ロロンガス消火設備（全域）のボンベ及び制御盤は，火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさないよう消火対象となる機器が設置され ている火災区域又は火災区画と別の区画に設置する設計とする。 また，ハロンガス消火設備（全域）は，電気絶缘性 の高いがスを採用し，火災の火炎，熱による直接的な影響のみならず，㯖，流出流体，断線及び爆発等の二次的影響が，火災が発生していない火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とする。【11条65】【52条63】 ハロンガス消火設備（局所）及びケーブルトレイ消火設備は，電気絶縁性の高いガスを採用するとともに，	要目表 VI－1－1－4－8－2 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（火災防護設備） VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計 火災防護設備に係る機器の配置を明示した図面及び系統図 9．3．2．2 ハロンガス消火設備 9．3．2．3 ケーブルトレイ消火設備	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	火設備（局所）については，ケーブルトレイ内又は電源盤周囲の隔壁内に消火剂を留める設計とする。 また，消火対象と十分離れた位置にボンべ及び制御盤を設置することで，火災の火炎，熱による直接的な影響のみならず，煙，流出流体，断線及び爆発等の二次的影響が，火炎が発生していない火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ばさない設計とする。【11条66】【52条64】 消火設備のボンベは，火災による熱の影響を受けて も破損及び爆発が発生しないよう，ボンべに接続する安全弁によりボンべの過圧を防止する設計とする。【11条67】52条65】 また，防火ダンパを設け，煙の二次的影響が火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とする。【11条68】 52 条 66 】		
3．2．2 消火設備の設置要領消火設備は，「消防法施行令」に淮じて設置する。 なお，污染の可能性のある消火排水が建屋外－流出 するおそれがある場合には，建屋外に通じる出入口部 に堰又はトレンチあるいは床面スロープを設置し，消火排水を床ドレンより液体廃重物处理設備に道く。	b．管理区域からの放出消火剤の流出防止 管理区域内で放出した消火剤は，放射性物質を含む おそれがあることから，管理区域外への流出を防止す るため，管理区域と非管理区域の境界纪堰等を設置す るとともに，各フロアの建屋内排水系により，液体廃重物処理設備に回収し，処理する設計とする。【11条69】【52条67】	VI－1－1－7 発電用原子灲施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.3 消火設備
	c．消火栓の配置 火炎防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画に設置する屋内，屋外 の消火栓は，「消防法施行令」に準逝し，全ての火災区域又は火災区画の消火活動に対処できるように配置す る設計とする。【11条70】【52条68】	要目表 VI－1－1－4－8－2 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（火炎防護設備） VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5.2 消火設備について 5．2．2 機能設計 火災防護設備に係る機器の配置を明示した図面及び系統図 9．3．2．1 水消火設備	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
	（5）消火設備の警報 a．消火設備の故障警報 電動機駆動消火ポンプ，屋外消火系電動機駆動消火 ポンプ，屋外消火系ディーゼル駆動消火ポンプ，ハロ ンガス消火設備及びケーブルトレイ消火設備は，電源断等の故障警報を中央制御室に発する設計とする。【11条71】【52条69】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
	b．ハロンガス消火設備の職員退避警報 固定式消火設備であるハロンガス消火設備は，作動前に職員等の退出ができるように警報又は音声警報を発する設計とする。	VI－1－1－7 発電用原子炬施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	ケーブルトレイ消火設備は，消火剤に毒性がなく，消火時に生成されるフッ化水素は延焼防止シートを設置したケーブルトレイ内に留まり，外部に有意な影響 を及ぼさないため，消火設備作動前に退避警報を発し ない設計とする。【11条72】【52条70】		
3.4 自然現象に対する火災報知設備及び消火設備の性能維持 火災報知設備及び消火設備の耐震重要度分類はCク ラスとする。また，屋外消火栓は凍結防止構造とする。 さらに，消火設備を内蔵する建屋，構築物等は，台風 に対し消火設備の性能が著しく阻害されないよう建築基準法施行令等に基づき設計する。	（6）消火設備に対する自然現象の考慮 a．凍結防止対策 屋外消火設備の配管は，保温材により配管内部の水 が涷結しない設計とする。 屋外消火栓は，凍結を防止するため，自動排水機構 により消火栓内部に水が溜まらないような構造とする設計とする。【11条73】【52条71】	VI－1－1－7 発電用原子灲施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
	b．風水害対策 消火用水供給系の消火設備を構成する電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケーブルトレイ消火設備は，風水害に対してその性能が著しく阻害されることのないよう，建屋内に設置する設計とする。【11条74】52条72】	要目表 VI－1－1－4－8－2 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（火災防護設備） VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
	c．地盤変位対策 地震時における地盤変位対策として，水消火配管の レイアウト，配管支持長さからフレキシビリティを考慮した配置とすることで，地盤変位による変形を配管系統全体で吸収する設計とする。 さらに，屋外消火配管が破断した場合でも移動式消火設備を用いて屋内消火栓へ消火用水の供給ができる よう，建屋に給水接続口を設置する設計とする。【11条 75】【52条73】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
	（7）その他 a．移動式消火設備 移動式消火設備は，恒設の消火設備の代替として消火ホース等の資機材を備え付けている化学消防自動車 を2台及び泡原液搬送車を1台配備する設計とする。【11条76】【52条74】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
	b．消火用の照明器具 建屋内の消火栓，消火設備現場盤の設置場所及び設置場所までの経路には，移動及び消火設備の操作を行 らため，消防法で要求される消火継続時間20分に現場 への移動等の時間も考慮し，8時間以上の容量の蓄電池 を内蔵する照明器具を設置する設計とする。【11条77】【52条75】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
	c．ポンプ室の煙の排気対策	$\mathrm{VI}-1-1-7$ 発電用原子炉施設の火災防護に関する説明書	5．火災の感知及び消火

基本設計方針		設計結果の記載䉒所	様式－1～の反映結果
変更前	変更後		
	火災発生時の煄の充满により消火活動が困難となる ポンプ室には，消火活動によらなくとも迅速に消火で きるように固定式消火設備を設置し，鎮火の碓認のた めに自衛消防隊がポンプ室に入る場合については，再発火するおそれがあることから，十分に泠却时間を碓保した上で扉の開放，換気空調系及び可搬型排悜装置 により換気が可能な設計とする。【11条78】【52条76】	5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計 火災防護設備に係る機器の配置を明示した図面及び系統図 9．3．2．2 ハロンガス消火設備 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	5.1 要求機能及び生能目標 5.3 消火設備 ＜下線部＞
	d．使用斎然料貯蔵設備及び新然料貯蔵設備使用済然料貯蔵設備は，水中に設置されたラックに燃料を貯蔵することで未臨界性が碓保される設計とす る。【11条79】【52条77】 新燃料貯蔵設備については，消火活動により消火水 が噴雾され，水分雰囲気に満たされた状態となっても末臨界性が碓保される設計とする。【11条80】【52条 78】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び生能目標 5.3 消火設備
	e．ケーブル処理室 ケーブル処理室は，自動消火設備であるハロンガス消火設備により消火する設計とする。区分 I ケーブル处理室及び区分 II ケーブル处理室については，消火活動のため2箇所の入口を設置する設計とする。 なお，区分IIIケーブル処理室は，消火活動のための入口は1箇所であるが，部屋の大きさかが狭く，室内の可燃物は少量のケーブルトレイのみであるため，火災が発生した場合においても，入口から消火要員による当該室全域の消火活動を行うことが可能な設計とする。【11条81】【52条79】	VI－1－1－7 発電用原子灲施設の火災防護に関する説明書 5．火災の感知及び消火 5.2 消火設備について 5．2．2 機能設計	5．火災の感知及び消火 5.1 要求機能及び性能目標 5.3 消火設備
4．火炎の影響軽隇対策	1.3 火災の影響軽減 1．3．1 火災の影響埾減対策 火災の影響軽減対策の設計に当たり，発電用原子炉施設において火炎が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な火災防護対象機器及び火災防護対象ケーブルを火災防護対象機器等とする。【11条82】	－	（用語の定義のみ）
原子炉の施設内のいかなる場所の想定火災に対して も，その火災により原子炉に外乱が及び，かつ，原子炉保護設備又は工学的安全施設作動設備の作動を要求 される場合に，動的機器の単一故障を想定しでも，原子炬を高温停止できるように，また，低温停止に必要 な系統及び機器は，その安全機能を失わず，低温停止 できるように，以下に示す火災の影響軽減対策を実施 する。	火災が発生しても原子炉の高温停止及び低温停止を達成し，維持するためには，プロセスを監視しながら原子炉を停止し，冷却を行うことが必要であり，この ためには，手動操作に期待してでも原子炉の高温停止及び低温停止を達成し，維持するために必要な機能を少なくとも1つ確保するように系統分離対策を講じる必要がある。【11条83】 このため，火災防護対象機器等に対して，以下に示 す火災の影響軽減対策を講じる設計とする。【11条84】	－	(冒頭宣言)

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
4．1 耐火壁による軽減対策 （1）原子炉の安全確保に必要な設備を設置している原子炉建屋及び制御建屋に隣接するタービン建屋で火災が発生しても，原子炉建屋及び制御建屋に影響を及 ぼさないように，原子炬建屋及び制御建屋とタービン建屋の境界の壁は，2時間の耐火能力を有する耐火壁 （以下「耐火壁」という。）とする。 （2）燃料油の漏えい油火災を想定する補機を設置す るディーゼル発電機室（ディーゼル制御盤室も含む） は，それぞれトレン別に二つの区域に分け，互いの区域及び周囲の区域に火災の影響を及ぼさないようにそ れぞれを耐火壁で囲む。 （3）耐火壁の貫通口は耐火シールを施工し，換気設備 のダクトには防火ダンパ，出入口には防火戸を設置し，耐火壁効果を減少させないようにする。 4．2 固定式消火設備による軽減対策 火災荷重の大きいディーゼル発電機室には，二酸化炭素消火設備を設置する。	（1）火災防護対象機器等の系統分離による影響軽減対策 中央制御室及び原子炉格納容器を除く火災防護対象機器等は，原則として安全系区分Iと安全系区分II， IIをを境界とし，以下のいずれかの系統分離によって，火災の影響を軽減するための対策を講じる。【11条85】	－	（冒頭宣言）
	a．3時間以上の耐火能力を有する隔壁等 互いに相違する系列の火災防護対象機器等は，火災耐久試験により3時間以上の耐火能力を碓認した隔壁等で分離する設計とする。【11条86】	VI－1－1－7 発電用原子炉施設の火災队方護に関する説明書 6．火災の影響柽減対策 6.2 火災の影響軽減のらち火災防護対象機器等の系統分離 6．2．2 火災防護対象機器等に対する系統分離対策の基本方針	6．火災の影響㹩減対策 6.2 火災の影響軽減対策のらち火災防護対象機器等の系統分離
	b．6m以上離隔，火災感知設備及び自動消火設備互いに相違する系列の火災防護対象機器等は，仮置 きするものを含めて可燃性物質のない水平路離 6 m 以上 の離隔距離を確保する設計とする。【11条87】 火災感知設備は，自動消火設備を作動させるために設置し，自動消火設備の誤作動防止を考慮した火災感知器の作動信号により自動消火設備を作動させる設計 とする。【11条88】	$\mathrm{VI}-1-1-7$ 発電用原子炉施設の火災防護して関する説明書 6．火災の影響㹩減対策 6.2 火災の影響軽減のらち火災队方蒦対象機器等の系統分離	6．火災の影響鈘減対策 6．2 火災の影響軽減対策のらち火災防護対象機器符の系統分離
	c．1時間耐火隔壁等，火災感知設備及び自動消火設備互いに相違する系列の火災防護対象機器等は，火災耐久試験により1時間以上の耐火能力を確認した隔壁等で分離する設計とする。【11条89】 また，火災感知設備及び消火設備は，上記b，と同様 の設計とする。【11条90】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 6．火災の影響軽澸対策 6.2 火災の影響軽減のうち火災防護対象機器等の系統分離	6．火災の影響柽減対策 6.2 火災の影響軽減対策のらち火災防護対象機器等の系統分離
	（2）中央制御室の火災の影響軽減対策 a．中央制御室制御盤内の火災の影響軽減 中央制御室制御盤内の火災防護対象機器等は，以下 に示すとおり，実証試験結果に基づく離隔跲離等によ る分離対策，高感度煙検出設備の設置による早期の火災感知及び常駐する運転員による早期の消火活動に加 え，火災により中央制御室制御盤の1つの区画の安全機	－	(冒頭宣言)

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	能が全て喪失しても，他の区画の制御盤は機能が維持 されることを碓認することにより，原子炉の高温停止及び低温停止の達成，維持ができることを確認し，上記（1）と同等の火災の影響軽減対策を講じる設計とす る。【11条91】		
	離隔距催等による分離として，中央制御室制御盤に ついては，安全系区分ごとに別々の盤で分離する設計 とし， 1 つの制御盤内红複数の安全系区分のケーブルや機器を設置しているものは，安全系区分間に金属製の仕切りを設置する。ケーブルは，当該ケーブルに火災 が発生しても延焼せず，また，周囲へ火災の影響を与 えない而熱ビニル電線，難然仕様のフッ素樹脂（ETFE）電線及び難燃ケーブルの使用，電線管への敷設，操作 スイッチの離隔等により系統分離する設計とする。111条921 中央制御室内には，異なる2種類の火災感知器を設置 する設計とするとともに，火災発生時には常駐する運転員による早期の消火活動によって，異なる安全系区分への影響を軽減する設計とする。これに加えて盤内 へ高感度煙検出設備を設置する設計とする。【11条93】火災の発生箇所の特定が困難な場合も想定し，サー モグラフィカメラ等，火災の発生箇所を特定できる装置を配備する設計とする。【11条94】	$\mathrm{VI}-1-1-7$ 発電用原子炉施設の火災防蒦に関する説明書 6．火災の影響軽減対策 6.2 火災の影響軽減のうち火災防護対象機器等の系統分離 運用に関する記載であり，保安規定にて対応	6．火災の影響軽減対策 6.2 火災の影響軽減対策のらち火災防護対象機器等の系統分離 $<$ 下線部＞
	b．中央制御室床下ケーブルピットの影響軽減対策 中央制御室の火災防護対象機器等は，運転員の操作性及び視認性向上を目的として近接して設置すること から，中央制御室床下ケーブルピットに敷設する火災防護対象ケーブルは，互いに相違する系列の 3 時間以上 の耐火能力を有する隔壁による分離，又は水平趾離を 6 m 以上碓保することが困難である。このため，中央制御室床下ケーブルピットについては，下記に示す分離対策等を行ら設計とする。【11条95】	－	$\begin{gathered} - \\ (\text { (冒頭宣言 }) \end{gathered}$
	（a）分離板等による分離 中央制御室床下ケーブルピットに敷設する互いに相違する系列の火災防護対象ケーブルについては，1時間以上の耐火能力を有するコンクリート壁，分離板又は障壁で分離する設計とする。【11条96】	$\mathrm{VI}-1-1-7$ 発電用原子炉施設の火災防護に關する説明書 6．火災の影響柽減対策 6.2 火災の影響軽減のうち火災防護対象機器等の系統分離	6．火災の影響軽減対策 6.2 火災の影響軽減対策のらち火災防護対象機器等の系統分離
	（b）火災感知設備 中央制御室床下ケーブルピットには，固有の信号を発する異なる2種類の火災感知器として，煙感知器と熱感知器を組み合わせて設置する設計とする。これらの火災感知設備は，アナログ機能を有するものとする。 また，火災感知設備は，外部電源喪失時においても火災の感知が可能となるように，非常用電源から受電 \qquad	VI－1－1－7 発電用原子炉施設の火炏災防蒦しに関する説明書 6．火災の影響軽減対策 6.2 火災の影響輯減のらち火災防護対䍟機器等の系統分離	6．火災の影響軽減対策 6.2 火災の影響埾減対策のらち火災防護对象機器等の系統分離

基本設計方針		設計結果の記載箇所	様式－1 へ 反映結果
変更前	変更後		
	時監視できる設計とする。火災受信機盤は，作動した火災感知器を1つずつ特定できる機能を有する設計と する。【11条97】		
	（c）消火設備 中央制御室床下ケーブルピットには，系統分離の観点から自動消火設備であるハロンガス消火設備（局所） を設置する設計とする。 この消火設備は，故障警報及び作動前の警報を中央制御室に発するとともに，時間遅れをもってハロンガ スを放出する設計とする。また，外部電源喪失時にお いても消火が可能となるように，非常用電源から受電 する。【11条98】	要目表 VI－1－1－4－8－2 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（火災防護設備） VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 6．火災の影響軽減対策 6．2 火災の影響軽減のうち火災防護対象機器等の系統分離 火災防護設備に係る機器の配置を明示した図面及び系統図 9．3．2．2 ハロンガス消火設備	6．火災の影響軽減対策 6．2 火災の影響軽減対策のうち火纼防護対象機器等の系統分離
	（3）原子炉格納容器内の火災の影響軽減対策 原子炉格納容器内は，プラント運転中は窒素が封入 され，火災の発生は想定されない。窒素が封入されて いない期間のほとんどは原子炉が低温停止期間である が，わずかに低温停止に到達していない期間もあるこ とを踏まえ，上記（1）と同等の火災の影響軽減対策を講 じる設計とする。【11条99】	－	（冒頭宣言）
	また，原子炉格納容器内への持込み可燃物は，持込 み期間，可燃物量等，運用について保安規定に定めて，管理する。【11条100】	運用に関する記載であり，保安規定にて対応	－
	a．原子炉格納容器内の火災防護対象機器等の系統分離は以下のとおり対策を行ら設計とする。【11条101】	－	（冒頭宣言）
	（a）火災防護対象機器等は，難燃ケーブルを使用する とともに，電線管及び蓋付ケーブルトレイの使用等に より火災の影響軽減対策を行ら設計とする。【11条101】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 6．火災の影響軽減対策 6．2 火災の影響軽減のうち火災防護対象機器等の系統分離	6．火災の影響軽減対策 6.2 火災の影響軽減対策のうち火纼防護対象機器等の系統分離
	（b）原子炬格納容器内の火災防護対象機器は，系統分離の観点から安全系区分I と安全系区分II機器の水平距離を 6 m 以上確保し，異なる安全系区分の機器間にあ る介在物（ケーブル，電磁弁）については，金属製の筐体に収納することで延焼防止対策を行ら設計とす る。【11条102】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 6．火災の影響軽減対策 6．2 火災の影響軽減のうち火炎防護対象機器等の系統分離	6．火災の影響軽減対策 6.2 火災の影響軽減対策のうち火纼防護対象機器等の系統分離
	（c）原子炉格納容器内の火災防護対象ケーブルは，可能な限り位置的分散を図る設計とする。【11条103】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 6．火災の影響軽減対策 6．2 火災の影響軽減のうち火災防護対象機器等の系統分離	6．火災の影響軽減対策 6.2 火災の影響軽減対策のうち火災防護対象機器等の系統分離
	（d）原子炉圧力容器下部においては，火災防護対象機器である起動領域モニタの核計装ケーブルを露出して敷設するが，火災の影響軽減の観点から，起動領域モ	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 6．火災の影響軽減対策 6.2 火災の影響軽減のうち火災防護対象機器等の系統分	6．火災の影響軽減対策 6.2 火災の影響軽減対策のうち火纼防護対象機器等の系統分離

基本設計方針		設計結果の記載箇所	様式 $-1 \sim$ の反映結果
変更前	変更後		
	ニタはチャンネルごとに位置的分散を図って設置する設計とする。【11条104】	離	
	b．火災感知設備については，アナログ式の異なる2種類の火災感知器（煙感知器及び熱感知器）を設置する設計とする。【11条105】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 6．火災の影響軽減対策 6．2 火災の影響軽減のうち火災防護対象機器等の系統分離	6．火災の影響軽減対策 6.2 火災の影響軽減対策のうち火災防護対象機器等の系統分離
	c．原子炉格納容器内の消火については，運転員及び初期消火要員による消火器又は消火栓を用いた速やか な消火活動により消火ができる設計とする。 起動中又は停止過程の空気環境において，原子炬格納容器内が広範囲な火災となり原子炬格納容器内への入域が困難な場合には，原子炉格納容器内を密閉状態 とし内部の窒息消火を行う設計とする。 なお，原子炉格納容器内点検終了後から窒素置換完了までの間で原子炉格納容器内の火災が発生した場合 には，火災による延焼防止の観点から窒素封入作業の継続による窒息消火又は窒素封入作業を中止し，早期 の消火活動を実施する。【11条106】	運用に関する記載であり，保安規定にて対応	－
	（4）換気設備に対する火災の影響軽減対策 火災防護上重要な機器等を設置する火災区域又は火災区画に設置する換気設備には，他の火災区域又は火災区画の境界となる箇所に3時間耐火性能を有する防火ダンパを設置する設計とする。【11条107】 換気設備のフィルタは，チャコールフィルタを除き難燃性のものを使用する設計とする。【11条108】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 6．火災の影響軽減対策 6.3 その他の影響軽減対策	6．火災の影響軽減対策 6.3 換気空調設備に対する火災の影響軽減対策
4.3 その他の軽減対策 （1）中央制御室で煙が発生した場合には，中央制御室空調設備で排煙できるようにする。	（5）火災発生時の煙に対する火災の影響軽減対策運転員が常駐する中央制御室には，火災発生時の煙 を排気するため，「建築基準法」に準拠した容量の排煙設備を設置する設計とする。【11条109】 火災防護上重要な機器等を設置する火災区域又は火災区画のうち，電気ケーブルや引火性液体が密集する火災区域又は火災区画については，ハロンガス消火設備による早期の消火により火災発生時の煙の発生が抑制されることから，煙の排気は不要である。【11条110】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 6．火災の影響軽減対策 6.4 煙に対する火災の影響軽減対策	6．火災の影響軽減対策 6．4煙に対する火災の影響軽減対策
（2）油タンクには，火災に起因した爆発を防ぐために ベント管を設け，屋外に排気できるようにする。	（6）油タンクに対する火災の影響軽減対策 火災区域又は火災区画に設置される油タンクは，換気空調設備による排気又はベント管により屋外に排気 する設計とする。【11条111】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 6．火災の影響軽減対策 6.5 油タンクに対する影響軽減対策	6．火災の影響軽減対策 6.5 油タンクに対する火災の影響軽減対策
	（7）ケーブル処理室に対する火災の影響軽減対策 ケーブル処理室のケーブルトレイ間は，互いに相違 する系列間を水平方向 0.9 m ，垂直方向 1.5 m の最小離隔距離を確保する設計とする。最小分離距離を確保でき ない場合は，隔壁等で分離する設計とする。【11条112】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 6．火災の影響軽減対策 6．6 ケーブル処理室に対する影響軽減対策	6．火災の影響軽減対策 6．6 ケーブル処理室に対する火災の影響軽減対策
	1．3．2 原子炉の安全確保 （1）原子炉の安全停止対策	－	（冒頭宣言）

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
	a．火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失を想定した設計 発電用原子炉施設内の火災によって，安全保護系及 び原子炉停止系の作動が要求される場合には，当該火災区域又は火災区画に設置される不燃性材料で構成さ れる構築物，系統及び機器を除く全機器の機能喪失を想定しても，火災の影響軽減のための系統分離対策に よって，多重化されたそれぞれの系統が同時に機能を失うことなく，原子炉の高温停止及び低温停止が達成 できる設計とする。【11条113】		
	b．設計基準事故等に対処するための機器に単一故障 を想定した設計 発電用原子炉施設内の火災によって運転時の異常な過渡変化又は設計基準事故が発生した場合に，「発電用軽水型原子炉施設の安全評価に関する審査指針」に基 づき，連転時の異常な過渡変化又は設計基準事故に対処するための機器に単一故障を想定しても，制御盤間 の離隔距帥離，艦内の延湾防止対策又は現場操作によっ て，多重化されたそれぞれの系統が同時に機能を失ら ことなく，原子炉の高温停止及び低温停止を達成でき る設計とする。【11条114】	－	$\begin{gathered} - \\ \left(冃_{⿱ ㇒ 日 勺}^{\text {頭宣言) }}\right) \end{gathered}$
	（2）火災の影響評伍 a．火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失を想定した設計に対する評価 設備等の設置状況を踏まえた可燃性物質の量等を基 に想定される発電用原子炬施設内の火災によって，安全保萲系及び原子炬停止系の作動が要求される場合に は，火災による影響を考慮しても，多重化されたそれ ぞれの系統が同時に機能を失うことなく，原子炉の高温停止及び低温停止を達成し，維持できることを，以下に示す火災影響評価により確認する。【11条115】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 7．原子炉の安全確保について 7.1 火災に対する原子炉の安全停止対策 7.2 火災の影響評価	7．原子炉の安全碓保 7.1 原子炉の安全停止対策 7.2 火災の影響話価
	（a）隣接する火災区域又は火災区画に影響を与えな い場合 当該火災区域又は火災区画に設置される不燃性材料 で構成される構築物，系統及び機器を除く全機器の機能喪失を想定しても，原子炉の高温停止及び低温停止 の達成，維持が可能であることを確認する。【11条116】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 7．原子炉の安全確保について 7.1 火災に対する原子炉の安全停止対策 7.2 火災の影響評価	7．原子炉の安全確保 7.1 原子炉の安全停止対策 7.2 火災の影響評価
	（b）隣接する火災区域又は火災区画に影響を与える場合 当該火災区域又は火災区画と隣接火災区域又は火災区画の 2 区画内の火災防護対象機器等の有無の組み合 わせに応じて，火災区域又は火災区画内に設置される不燃性材料で構成される構築物，系統及び機器を除く	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 7．原子炉の安全確保について 7.1 火災に対する原子炉の安全停止対策 7.2 火災の影響評価	7．原子炉の安全確保 7.1 原子炉の安全停止対策 7.2 火災の影響評価

基本設計方針		設計結果の記載笽所	様式－1への反映結果
変更前	変更後		
	全機器の機能喪失を想定しても，原子炉の高温停止及 び低温停止の達成，維持が可能であることを確認する。 ［11条117】		
	b．設計基準事故等に対処するための機器に単一故障 を想定した設計に対する評価 内部火災により原子炉に外乱が及び，かつ，安全保護系及び原子炉停止系の作動が要求される運転時の異常な過渡変化又は設計基準事故が発生する可能性があ るため，「発電用軽水型原子炉施設の安全評価に関す る審査指針」に基づき，運転時の異常な過渡変化又は設計基準事故に対処するための機器に対し単一故障を想定しても，多重化されたそれぞれの系統が同時に機能を失らことなく，原子炉の高温停止及び低温停止を達成できることを火災影響評価により確認する。【11条118】	VI－1－1－7 発電用原子炉施設の火災防護に関する説明書 7．原子炉の安全確保について 7.1 火災に対する原子炉の安全停止対策 7.2 火災の影響評価	7．原子炉の安全碓保 7.1 原子炉の安全停止対策 7.2 火災の影響評価
5．設備の共用 屋内水消火系の電動機駆動消火ポンプ及び消火水槽 は，第 1 号機と共用するが，各号機に必要な容量を確保 するとともに，接続部の弁を閉操作することにより隔離できる設計とすることで，共用により安全性を損な わない設計とする。	1.4 設備の共用 屋内水消火系の電動機駆動消火ポンプ及び消火水槽 は，第1号機と共用するが，各号機に必要な容量を碓保 するとともに，接続部の弁を閉操作することにより隔離できる設計とすることで，共用により安全性を損な わない設計とする。【15条23】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3.6 その他発電用原子炉の附属施設 3．6．2 火災防護設備	1．共通的に適用される設計 VI－1－10－4 「原子炉冷却采統施設」の様式－1 11．健全性に係る設計
6．主要対象設備 火災防謢設備の対象となる主要な設備について，「表 1 火災防護設備の主要設備リスト」に示す。	2．主要対象設備 火災防護設備の対象となる主要な設備について，「表 1 火災防護設備の主要設備リスト」に示す。	－	（「主要設備リスト」による）

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －補－E－18－0510－12＿改1

補足－510－12 基本設計方針から設工認添付書類及び様式 -1 への展開表 （浸水防護施設）

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【浸水防護施設】

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	（用語の定義のみ）
	第1章 共通項目 浸水防護施設の共通項目である「1．地盤等， 2 ．自然現象（2．2 津波による損傷の防止を除く。），3．火災，5．設備に対する要求（5．3 使用中の亀裂等 による破壊の防止，5．4 耐圧試験等， 5.5 安全弁等， 5.6 逆止め弁， 5.7 内燃機関及びガスタービン の設計条件， 5.8 電気設備の設計条件を除く。）， 6. その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
	第2章 個別項目 1．津波による損傷の防止 1.1 耐津波設計の基本方針 設計基準対象施設及び重大事故等対処施設が設置 （変更）許可を受けた基準津波によりその安全性又は重大事故等に対処するために必要な機能が損なわれる おそれがないよう，遡上への影響要因及び流入経路等 を考慮して，設計時にそれぞれの施設に対して入力津波を設定するとともに津波防護対象設備に対する入力津波の影響を評価し，影響に応じた津波防護対策を講 じる設計とする。【6条1】【51条1】	－	（冒頭宣言）
	なお，「1．津波による損傷の防止」の耐津波設計 においては，平成23年3月11日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計と し，地盤沈下量を考慮した敷地高さや施設高さ等を記載する。【6条2】【51条2】	－	（冒頭宣言）
	1．1．1 津波防護対象設備 設計基準対象施設が，基準津波により，その安全性 が損なわれるおそれがないよう，津波から防護を検討 する対象となる設備は，クラス 1 ，クラス 2 及びクラ ス 3 設備並びに耐震Sクラスに属する設備（津波防護施設，浸水防止設備及び津波監視設備を除く。）とす る。このうち，クラス 3 設備については，安全評価上 その機能を期待する設備は，津波に対してその機能を維持できる設計とし，その他の設備は損傷した場合を考慮して，代替設備により必要な機能を確保する等の対応を行ら設計とする。これより，津波から防護すべ き施設は，設計基準対象施設のうち「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．1 津波防護対象設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.2 津波防護対象設備の選定

基本設計方針		設計結果の記載箇所	様式－1 への反映結果
変更前	変更後		
	で規定されているクラス 1 及びクラス 2 仁該当する構築物，采統及び機器（以下「津波防護対象設備」とい ら。）とする。【6条3】		
	津波防護対象設備の防護設計においては，津波によ り津波防護対象設備に波及的影響を及ぼすおそれのあ る津波防護対象設備以外の施設についても考慮する。【6条4】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．1 津波防護対象設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.2 津波防護対象設備の選定
	また，重大事故等対処施設及び可搬型重大事故等対処設備についても，設計基準対象施設と同時に必要な機能が損なわれるおそれがないよう，津波防護対象設備に含める。【51条3】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．1 津波防護対象設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.2 津波防護対象設備の選定
	さらに，津波が地震の随伴事象であることを踏ま え，耐震Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）を含めて津波防護対象設備とする。【6条5】	VI－1－1－2 発電用原子炬施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．1 津波防護対象設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.2 津波防護対象設備の選定
	なおふ，津波防護施設，浸水防止設備及び津波監視設備は，入力津波に対して機能を十分に保持できる設計 とする。【6条49】	VI－1－1－2 発電用原子炉施設の自然現象等による損㑨の防止に関する説明書 $\mathrm{VI}-1-1-2-2-1$ 耐建波設計の基本方針 2．耐聿波設計の基本方針 2.1 基本方針 2．1．1 津波防護対象設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.2 津波防護対象設備の選定
	1．2 入力津波の設定 各施設•設備の設計又は評価に用いる入力津波とし て，敷地への遡上に伴ら津波（以下「遡上波」とい う。）による入力津波と取水路，放水路等の経路から の流入に伴う津波（以下「経路からの津波」とい ら。）による入力津波を設定する。【6条6】【51条4】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．2 入力津波の設定	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.3 入力津波の設定
	入力津波の設定の諸条件の変更により，評価結果が影響を受けないことを確認するために，評価条件変更 の都度，津波評価を実施する運用を保安規定に定めて管理する。【6条7】【51条5】	運用に関する記載であり，保安規定にて対応	－
	1．2．1 遡上波による入力津波 遡上波による入力津波については，遡上への影響要因として，敷地及び敷地周辺の地形及びその標高，河	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止汇関する説明書	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.3 入力津波の設定

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	川等の存在，設備等の設置状涀並びに地震による広域的な隆起•沈降を考慮して，遡上波の回り込みを含め敷地への遡上の可能性を評価する。【6条8】【51条6】	$\mathrm{VI}-1-1-2-2-1$ 耐津波設計の基本方針 2．耐聿波設計の基本方針 2.1 基本方針 2．1．2 入力津波の設定	
	遡上する場合は，基準津波の波源から各施設•設備 の設置位置において算定される津波高さとして設定す る。【6条8】【51条6】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．2 入力津波の設定	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.3 入力津波の設定
	また，地震による変状又は繰返し来襲する津波によ る洗掘•堆積により地形又は河川流路の変化等が考え られる場合は，敷地への遡上経路に及ぼす影響を評価 する。【6条8】【51条6】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．2 入力津波の設定	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.3 入力津波の設定
	1．2．2 経路からの津波による入力津波 経路からの津波による入力津波については，流入経路を特定し，基準津波の波源から各施設•設備の設置位置において算定される時刻歴波形及び津波高さとし て設定する。【6条9】【51条7】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．2 入力津波の設定	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.3 入力津波の設定
	1．2．3 水位変動 「1．2．1 遡上波による入力津波」及び「1．2．2 経路からの津波による入力津波」においては，水位変動 として，朔望平均満潮位 $0 . P .+1.43 \mathrm{~m}$ ，朔望平均干潮位 0．P．－0．14mを考慮する。【6条10】【51条8】	VI－1－1－2 発電用原子炉施設の自然現象等による損馥の防止汇関する説明書 VI－1－1－2－2－1 而津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．2 入力津波の設定	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.3 入力津波の設定
	上昇側の水位変動に対しては，潮位のばらつきとし て0．16mを考慮して設定する。下降側の水位変動に対 しては，潮位のばらつきとして0．10mを考慮して設定 する。【6条10】【51条8】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．2 入力津波の設定	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.3 入力津波の設定
	地款変動については，基漼津波の波源である東北地方太平洋沖型の地震による広域的な地暉変動及び平成 23年（2011年）東北地方太平洋沖地震による広域的な地款変動を考慮する。 東北地方太平洋沖型の地震による広域的な地款変動 については，基準津波の波源モデルを踏まえて，	$\mathrm{VI}-1-1-2$ 発電用原子师施設の自然現象等による損傷の防止江関する説明書 $\mathrm{VI}-1-1-2-2-1$ 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.3 入力津波の設定

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
	Mansinha and Smylie（1971）の方法により算定し，水位上昇側で考慮する波源で0．72mの沈降，水位下降側で考慮する波源で0． 77 m の沈降を考慮する。また，平成23年（2011年）東北地方太平洋油地震による地殻変動については，発電所構内の水準点を用いた水準測量結果から 1 m と設定する。なお，平成23年（2011年）東北地方太平洋沖地震後の余効変動として平成 29年 4 月時点で約 0.3 m隆起していることを碓認してい る。 上昇側及び下降側の水位変動に対する安全性評価を実施する際には，平成23年（2011年）東北地方太平洋沖地震による1mの沈降を考慮する。【6条11】【51条9】	2．1．2 入力津波の設定	
	以上のことから，上昇側の水位変動に対して安全性評価を実施する際には，水位上昇側で考慮する波源に よる 0.72 m の沈降を考慮する。 一方，下降側の水位変動に対して安全性評価を実施 する際には，水位下降側で考慮する波源による 0.77 m の沈降は考慮しない。 ただし，下降側の水位変動に対する安全性評価を実施する際には，平成29年4月までと碓認された余効変動による約0．3mの隆起の影響を考慮する。【6条12】 ［51条10］	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．2 入力津波の設定	2． 侕津波設計 2． 1 罱津波設計の基本方針の設定 2． 3 入力津波の設定
	また，今後も余効変動が継続することを想定し，平成23年（2011年）東北地方太平洋沖地震による広域的 な地殻変動の解消により約1m隆起した場合の影響も考慮する。【6条12】【51条10】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．2 入力津波の設定	2．罱津波設計 2． 1 鴯津波設計の基本方針の設定 2.3 入力津波の設定
	また，基準津波による入力津波が有する数值計算上 の不確かさを考慮することを基本とする。【6条12】 ［51条10】	$\mathrm{VI}-1-1-2$ 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．2 入力津波の設定	
	なお，防潮壁の詳細設計に伴う平面配置等の変更及 び2011年東北地方太平洋沖地震に伴い被災した地域に おける復旧•改修工事に伴う地形改変による影響も考慮し，変更前後のそれぞれについて算定された数値を安全側に評価する。【6条12】【51条10】	$\mathrm{VI}-1-1-2$ 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．2 入力津波の設定	2．耐津波設計 2.1 而津波設計の基本方針の設定 2.3 入力津波の設定
	1.3 津波防護対策	－	－

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	「1．2 入力津波の設定」で設定した入力津波によ る津波防護対象設備への影響を，津波の敷地への流入 の可能性の有無，漏水による重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無，津波の流入等による重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無並びに水位変動泮ら取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するため氾必要 な機能への影響の有無の観点から評価することによ り，津波防謢対策が必要となる箇所を特定して必要な津波防護対策を実施する設計とする。【6条13】【51条 11】		（㽬宣言）
	入力津波の変更が津波防護対策に影響を与えないこ とを碓認することとし，定期的な評価及び改善に関す る手順を保安規定に定めて管理する。【6条14】【51条 12】	運用に関する記載であり，保安規定にて対応	－
	1．3．1 敷地への流入防止（外郭防護1） （1）遡上波の地上部からの到達，流入の防止 遡上波による敷地周辺の遡上の状況を加味した浸水高さの分布を基に，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地において，遡上波の地上部からの到達，流入の可能性の有無を評価する。【6条15】【51条13】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐建波設計の基本方針 2．耐冿波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響平価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.2 敷地への浸水防止（外郭防護1）に係る評価 （3）評価結果	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施
	流入の可能性に対する裕度評価において，高潮ハザ ードの再現期間 100 年に対する期待値と，入力津波で考慮した朔望平均満潮位及び潮位のばらつきを踏まえ た水位の合計との差を参照する裕度として，設計上の裕度の判断の際に考慮する。【6条15】【51条13】	VI－1－1－2 発電用原子炬施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.2 敷地への浸水防止（外郭方護1）に係る評価 （3）評価結果	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施
	評価の結果，遡上波が地上部から到達し流入するた め，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画（緊急用電気品建屋，可搬型重	VI－1－1－2 発電用原子炬施設の自然現象等による損傷の防止に関する説明書	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
	大事故等対処設備保管場所である第 1 保管エリア，第 2保管エリア及び第 4 保管エリア，緊急時対策建屋並び にガスタービン発電設備軽油タンク室を除く。）の設置された敷地に，遡上波の流入を防止するための津波防護施設として，防潮堤を設置する設計とする。【6条 16】【51条14】	VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.2 敷地への浸水防止（外郭防護1）に係る評価 （3）評価結果	施
	また，津波防謢対象設備（非常用取水設備を除 く。）を内包する建屋及び区画のらち，緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1保管エリア，第2保管エリア及び第4保管エリア，緊急時対策建屋並びにガスタービン発電設備軽油タンク室 は，津波による遡上波が地上部から到達，流入しない十分高い場所に設置する設計とする。【51条15】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響平価 3.2 敷地への浸水防止（外郭方護1）に係る評価 （3）評価結果	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施
	（2）取水路，放水路等の経路からの津波の流入防止津波の流入の可能性のある経路につながる循環水系，海水系及び屋外排水路の標高に基づき，許容され る津波高さと経路からの津波高さを比較することによ り，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地への津波の流入の可能性の有無を評価する。【6条17】【51条16】	VI－1－1－2 発電用原子炬施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響平価 3.2 敷地への浸水防止（外郭方護1）に係る評価 （3）評価結果 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響平価の実施
	流入の可能性に対する裕度評価において，高潮入ザ ードの再現期間 100 年に対する期待值と，入力津波で考慮した朔望平均満潮位及び潮位のばらつきを踏まえ た水位の合計との差を参照する裕度とし，設計上の裕度の判断の際に考慮する。【6条17】【51条16】	$\mathrm{VI}-1-1-2$ 発電用原子师施設の自然現象等による損傷の防止汅関する説明書 VI－1－1－2－2－1 耐建波設計の基本方針 2．侕津波設計の基本方針 2.1 基本方針	2．耐冿波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対急設備への影響評価の実施

基本設計方針		設計結果の記載箘所	様式 -1 への反映結果
変更前	変更後		
		2．1．3 入力津波による津波防護対象設備への影響評価	
	評価の結果，流入する可能性のある経路が特定され たことから，津波防護対象設備（非常用取水設備を除 く。）を内包する建屋及び区画の設置された敷地並び に建屋及び区画への流入を防止するため，津波防護施設として防潮壁及び取放水路流路縮小工を設置する設計とする。【6条18】【51条17】	要目表 VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響平価 3.2 敷地への浸水防止（外郭方護1）に係る評価 （3）評価結果 （4）津波防護対策 浸水防護施設に係る機器の配置を明示した図面 9．4．1 外郭浸水防護設備	2．耐津波設計 2． 1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施 2.5 津波防護に関する施設の設計方針の設定
	また，浸水防止設備として逆流防止設備，水密扉，浸水防止蓋及び逆止弁付ファンネルを設置並びに貫通部止水処置を実施する設計とする。【6条18】【51条 17】	要目表 VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐建波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影乡響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.2 敷地への浸水防止（外郭方護1）に係る評価 （3）評価結果 （4）津波防護対策 浸水防護施設に係る機器の配置を明示した図面 9．4．1 外郭浸水防護設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施 2.5 津波防護に関する施設の設計方針の設定
	防潮壁鋼製扉，水密扉及び浸水防止蓋については，原則閉運用とすることを保安規定に定めて管理する。 また，取放水路流路縮小工については，津波防護機能及び第1号機の取水•放水機能を維持する運用を保安規定に定めて管理する。【6条19】【51条18】	運用に関する記載であり，保安規定にて対応	－
	上記（1）及び（2）において，外郭訪護として設置する	要目表	2．耐津波設計

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	津波防護施設及び浸水防止設備については，各地点の入力津波に対し，設計上の裕度を考慮する。【6条20】 ［51条19］	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.2 敷地への浸水防止（外郭方護1）に係る評価 （4）津波防護対策 VI－1－1－2－2－5 津波防護に関する施設の設計方針 4．機能設計 4.2 浸水防止設備 構造図 9．4．1 外郭浸水防護設備	2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実 施 2.5 津波防護に関する施設の設計方針の設定
	1．3．2 漏水による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止（外郭防護 2） （1）漏水対策 経路からの津波が流入する可能性のある取水•放水設備の構造上の特徴を考慮し，取水•放水施設，地下部等において，津波による漏水が継続することによる浸水範囲を想定（以下「浸水想定範囲」という。）す るとともに，当該範囲の境界における浸水想定範囲外 に流出する可能性のある経路（扉，開口部，貫通口等）について，浸水防止設備を設置することにより，浸水範囲を限定する設計とする。【6条21】【51条20】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.3 漏水による重要な安全機能及び重大事故等に対処す るために必要な機能への影響方止（外郭方護2）に係る評価 （1）評価方針	2．耐津波設 2． 1 耐建波設計の基本方針の設定 2． 4 入力津波による津波防諳対象設備への影響評価の実 施
	さらに，浸水想定範囲及びその周辺にある津波防護対象設備（非常用取水設備を除く。）に対しては，浸水防止設備として，防水区画化するための設備を設置 するとともに，防水区画内への浸水による重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無を評価する。【6条21】【51条20】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
		評価 3．入力津波による津波防護対象設備への影響平価 3.3 漏水による重要な安全機能及び重大事故等に対処す るために必要な機能への影響方止（外郭方護2）に係る評価 （1）評価方針	
	評価の結果，浸水想定範囲における長期間の浸水が想定される場合は，重要な安全機能及び重大事故等に対処するために必要な機能への影響がないよう，排水設備を設置する設計とする。【6 6 条22】【51条21】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響平価 3.3 漏水による重要な安全機能及び重大事故等に対処す るために必要な機能への影響方止（外郭方護2）に係る評価 （1）評価方針	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施
	1．3．3 津波の流入等による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止（内郭防護） （1）浸水防護重点化筺囲の設定 津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画を浸水防護重点化範囲として設定 する。【6条23】【51条22】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.4 津波による溢水の重要な安全機能及び重大事故等に対処するために必要な機能への影響方止（内郭方護）に係る評価 （1）評価方針	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施
	（2）浸水防護重点化範囲の境界における浸水対策経路からの津波の流入を考慮した浸水範囲及び浸水量を基に，浸水防護重点化範囲に流入する可能性の有無を評価する。浸水範囲及び浸水量については，地震 による溢水の影響も含めて確認する。【6条24】【51条 23】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
		評価 3．入力津波による津波防蒦対象設備への影響評伍 3.4 津波による溢水の重要な安全機能及び重大事故等に対処するために必要な機能への影響防止（内郭方護）に係る評価 （3）評侕結果 （4）津波防護対策	
	地震による溢水については，「2．発電用原子炬施設内における溢水等による損傷の防止」に示す内部溢水にて評価している溢水事象を考慮する。【6 条24】 ［51条23］	－	(冒頭宣言)
	評価の結果，浸水防護重点化範囲への流入の可能性 のある経路が特定されたことから，地震による設備の損傷箇所からの津波の流入を防止するための浸水防止設備として，浸水防止壁，水密扉及び浸水防止蒠の設置並びに貫通部止水処置を実施する設計とする。【6条 25】【51条24】	要目表 $\mathrm{VI}-1-1-2$ 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.4 津波による溢水の重要な安全機能及び重大事故等に対処するために必要な機能への影響方止（内郭防護）に係る評価 （4）津波防護対策 $\mathrm{VI}-1-1-2-2-5$ 津波防謢に関する施設の設計方針 4．機能設計 4.2 浸水防止設備 浸水防護施設に係る機器の配置を明示した図面 9．4．2 内郭浸水防護設備 構造図 9．4．2 内郭浸水防護設備	
	また，浸水防止設備として設置する水密扉及び浸水防止䒸については，津波の流入を防止するため，扉及 び蓋の閉止運用を保安規定に定めて管理する。【6条 26】【51条25】	運用に関する記載であり，保安規定にて対応	\square^{-}
	内郭防護として設置及び実施する浸水防止設備につ いては，貫通口，開口部等の一部分のみが浸水範囲と なる場合においても貫通口，開口部等の全体を浸水防	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書	```2. 2. 1 而耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実```

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	護することにより，浸水評価に対して裕度を確保する設計とする。【6条27】【51条26】	VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.4 津波による溢水の重要な安全機能及び重大事故等に対処するために必要な機能への影響方止（内郭防護）に係る評価 （4）津波防護対策	施
	1．3．4 水位変動に伴ら取水性低下及び津波の二次的 な影響による重要な安全機能及び重大事故等に対処す るために必要な機能への影響防止 （1）非常用海水ポンプ，大容量送水ポンプ（タイプ I）及び大容量送水ポンプ（タイプII）の取水性原子炬補機洽却海水ポンプ及び高圧炬心スプレイ補機泠却海水ポンプ（以下「非常用海水ポンプ」とい ら。）については，評価水位としての海水ポンプ室で の下降側水位と非常用海水ポンプの取水可能水位を比較し，評価水位が非常用海水ポンプ取水可能水位を下回る可能性の有無を評価する。【66条28】【51条27】	VI－1－1－2 発電用原子炬施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.5 水位変動に伴ら取水性低下及び津波の二次的な影響 による重要な安全機能及び重大事故等に対処するため に必要な機能への影響方止に係る評価 （3）評価結果	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施
	評価の結果，海水ポンプ室の下降側の評価水位が非常用海水ポンプの取水可能水位を下回ることから，津波防護施設として，海水を貯留するための貯留堰を設置することで，取水性を碓保する設計とする。【6 条 29【【51条28】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.5 水位変動に伴ら取水性低下及び津波の二次的な影響 による重要な安全機能及び重大事故等に対処するため に必要な機能への影響方止に係る評価 （3）評価結果 （4）津波防護対策 VI－1－1－2－2－5 津波防護に関する施設の設計方針	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施 2.5 津波防護に関する施設の設計方針の設定

基本設計方針		設計結果の記載箇所	様式一1への反映結果
変更前	変更後		
		4．機能設計 4.2 浸水防止設備 浸水防護施設に係る機器の配置を明示した図面 9．4．1 外郭浸水防護設備	
	なお，大津波警報が発表された場合又は引き波によ る水位低下が碓認された場合に，非常用海水ポンプの取水性を碓保するため，循環水ポンプを停止する運用 を保安規定に定めて管理する。【6条48】【51条47】	運用に関する記載であり，保安規定にて対応	－
	非常用海水ポンプについては，津波による上昇側の水位変動に対しても，取水機能が保持できる設計とす る。【6条30】【51条29】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.5 水位変動に伴ら取水性低下及び津波の二次的な影響 による重要な安全機能及び重大事故等に対処する ために必要な機能への影響方止に係る評価 （3）評価結果	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響平価の実施
	大容量送水ポンプ（タイプI）及び大容量送水ポン プ（タイプII）についても，入力津波の水位に対し て，取水性を碓保できるものを用いる設計とする。【51条30】	VI－1－1－2 発電用原子炬施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐建波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護对象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.5 水位変動に伴ら取水性低下及び津波の二次的な影響 による重要な安全機能及び重大事故等に対処する ために必要な機能への影響方止に係る評価 （3）評価結果	2．耐冿波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施
	（2）津波の二次的な影響による非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ （タイプII）の機能保持確認 基準津波による水位変動に伴ら海底の砂移動•堆積 に対して，取水口，取水路及び海水ポンプ室が閉塞す ることなく取水口，取水路及び海水ポンプ室の通水性	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
	が碓保できる設計とする。【6条31】【51条31】	2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響平価 3.5 水位変動に伴ら取水性低下及び津波の二次的な影響 による重要な安全機能及び重大事故等に対処するため に必要な機能への影響方止に係る評価 （3）評価結果	
	非常用海水ポンプは，取水時に浮遊砂が軸受に混入 した場合においても，軸受部の異物逃がし溝から浮遊砂を排出することで，機能を保持できる設計とする。【6条32】［51条32】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.5 水位変動に伴ら取水性低下及び津波の二次的な影響 による重要な安全機能及び重大事故等に対処する ために必要な機能への影響方止に係る評価 （3）評価結果	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施
	大容量送水ポンプ（タイプ I ）及び大容量送水ポン プ（タイプII）は，浮遊砂の混入に対して，取水性能 が保持できるものを用いる設計とする。【51条33】	VI－1－1－2 発電用原子炬施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響平価 3.5 水位変動に伴ら取水性低下及び津波の二次的な影響 による重要な安全機能及び重大事故等に対処する ために必要な機能への影響方止に係る評価 （3）評価結果	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施
	漂流物に対しては，発電所敷地内及び敷地外で漂流物となる可能性のある施設•設備を抽出し，抽出され た漂流物となる可能性のある施設•設備が漂流した場合に，非常用海水ポンプへの衝突並びに取水口，取水路及び海水ポンプ室の閉塞が生じることがなく，非常用海水ポンプの取水性碓保並びに取水口，取水路及び	$\mathrm{VI}-1-1-2$ 発電用原子师施設の自然現象等による損傷の防止汅関する説明書 VI－1－1－2－2－1 耐建波設計の基本方針 2．侕津波設計の基本方針 2.1 基本方針	2．耐冿波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対急設備への影響評価の実施

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	海水ポンプ室の通水性が碓保できる設計とする。【6 条 33】【51条34】	2．1．3 入力津波による津波防護対象設備への影響評価 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.5 水位変動に伴ら取水性低下及び津波の二次的な影響 による重要な安全機能及び重大事故等に対処するため に必要な機能への影響方止に係る評価 （3）評価結果	
	また，漂流物化させない運用を行ら施設•設備につ いては，漂流物化防止対策の運用を保安規定に定めて管理する。【6条34】	運用に関する記載であり，保安規定にて対応	－
	発電所敷地内及び敷地外の人工構造物については，設置状況を定期的に確認し評価する運用を保安規定に定めて管理する。【6条34】	運用に関する記載であり，保安規定にて対応	－
	さらに，従前の評侕結果に包絡されない場合は，漂流物となる可能性，非常用海水ポンプ等の取水性及び浸水防護施設の健全性への影響評価を行い，影響があ る場合は漂流物対策を実施する。【6 条34】【51条48】	運用に関する記載であり，保安規定にて対応	－
	1．3．5 津波監視 津波監視設備として，敷地への津波の繰返しの来襲 を察知し，津波防護施設及び浸水防止設備の機能を確実に確保するため，津波監視カメラ（計測制御系統施設の中央制御室機能と兼用（以下同じ。））及び取水ピ ット水位計を設置する。【6条35】【51条35】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．3 入力津波による津波防護対象設備への影響評価 2．1．4 津波防護対策に必要な浸水防護施設の設計方針 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響評価 3.1 入力津波による津波防護対象設備への影響評価の基本方針 $\mathrm{VI}-1-1-2-2-5$ 津波防護に関する施設の設計方針 4．機能設計 4.3 津波監視設備 環境測定装置の取付箇所を明示した図面 1.5 津波監視設備 構造図 1.5 津波監視設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.4 入力津波による津波防護対象設備への影響評価の実施 2.5 津波防護に関する施設の設計方針の設定
	1．4 津波防護対策に必要な浸水防護施設の設計 1．4．1 設計方針	－	（昌頭宣言）

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
	津波防護施設，浸水防止設備及び津波監視設備につ いては，「1．2 入力津波の設定」で設定している繰返 しの来襲を想定した入力津波に対して，津波防護対象設備の要求される機能を損ならおそれがないよう以下 の機能を満足する設計とする。【6条36】【51条36】		
	（1）津波防護施設 津波防護施設は，津波の流入による浸水及び漏水を防止する設計とする。【6条37】【51条37】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 VI－1－1－2－2－5 津波防護に関する施設の設計方針 3．要求機能及び性能目標 3.1 津波防護施設 浸水防護施設に係る機器の配置を明示した図面 9．4．1 外郭浸水防護設備 9．4．2 内郭浸水防護設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定
	津波防護施設のらち防潮堤及び防潮壁については，入力津波高さを上回る高さで設置し，止水性を保持す る設計とする。【6条37】【51条37】	VI－1－1－2 発電用原子炬施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 VI－1－1－2－2－5 津波防護に関する施設の設計方針 3．要求機能及び性能目標 3.1 津波防護施設 浸水防護施設に係る機器の配置を明示した図面 9．4．1 外郭浸水防護設備 9．4．2 内郭浸水防護設備	2．耐津波設計 2.1 耐建波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定
	津波防護施設のらち取放水路流路縮小工について は，第1号機の取水路及び放水路からの津波の流入を抑制し，入力津波に対して浸水を防止する設計とす る。また，第1号機の廃止措置期間中に性能を維持す べき施設（以下「性能維持施設」という）に影響を与 えない設計とする。【6条37】【51条37】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 VI－1－1－2－2－5 津波防護に関する施設の設計方針 3．要求機能及び性能目標	2．耐冿波設計 2.1 耐津波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
		3.1 津波防護施設	
	津波防護施設のらち貯留堰については，津波による水位低下に対して，非常用海水ポンプの取水可能水位 を保持し，かつ，泠却に必要な海水を確保する設計と する。【6条37】【51条37】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価 3．入力津波による津波防護対象設備への影響平価 3.5 水位変動に伴方取水性低下及び津波の二次的な影響 による重要な安全機能及び重大事故等に対処するため に必要な機能への影響乃方止に係る評価 （3）評価結果 VI－1－1－2－2－5 津波防護に関する施設の設計方針 3．要求機能及び性能目標 3.1 津波防護施設 浸水防護施設に係る機器の配置を明示した図面 9．4．1 外郭浸水防誩設備 9．4．2 内郭浸水防護設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定
	主要な構造体の境界部には，想定される荷重の作用及び相対変位を考慮し，試験等にて止水性を確認した止水ジョイント等を設置し，止水処置を講じる設計と する。【6条38】【51条38】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 VI－1－1－2－2－5 津波防護に関する施設の設計方針 3．要求機能及び性能目標 3.1 津波防護施設 浸水防護施設に係る機器の配置を明示した図面 9．4．1 外郭浸水防誩設備 9．4．2 内郭浸水防護設備	2．而妻聿波設計 2.1 耐津波設計の基本方針の設定 2.5 津波防護し関する施設の設計方針の設定
	（2）浸水防止設備 浸水防止設備は，浸水想定範囲等における浸水時及 び浸水後の波圧等に対する耐性を評価し，津波の流入 による浸水及び漏水を防止する設計とする。【6条39】【51条39】	要目表 VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 $\mathrm{VI}-1-1-2-2-1$ 而津波設計の基本方針	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
		2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 $\mathrm{VI}-1-1-2-2-5$ 津波防謢に関する施設の設計方針 4．機能設計 4.2 浸水防止設備 構造図 9．4．1 外郭浸水防護設備 9．4．2 内郭浸水防護設備	
	また，津波防護対象設備を内包する建屋及び区画に浸水時及び浸水後に津波が流入することを防止するた め，当該区画への流入経路となる開口部に浸水防止設備を設置し，止水性を保持する設計とする。【6条39】【51条39】	要目表 VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 VI－1－1－2－2－5 津波防護に関する施設の設計方針 4．機能設計 4.2 浸水防止設備 浸水防護施設に係る機器の配置を明示した図面 9．4．1 外郭浸水防護設備 9．4．2 内郭浸水防誩設備 構造図 9．4．1 外郭浸水防誩設備 9．4．2 内郭浸水防誩設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定
	浸水防止設備として，逆流防止設備，水密扉，浸水防止蓋，浸水防止壁，逆止弁付ファンネルを設置する とともに，貫通部止水処置を実施する設計とする。 軽油タンクエリアの浸水に対する浸水防止設備につ いては，内郭方護として流入経路となる開口部に設置 する設計とする。 浸水防止設備は，耐性を評価又は試験等により止水性を碓認した方法により，止水性を保持する設計とす る。【6条40】【51条40】	要目表 VI－1－1－2 発電用原子炬施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐建波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 VI－1－1－2－2－5 津波防護に関する施設の設計方針 4．機能設計 4.2 浸水防止設備	1．共通的に適用される設計 2．耐津波設計 2.1 而津波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定 VI－1－10－4 「原子炉冷却系統施設」の様式－1 4．地震による損傷防止に関する設計 4.11 耐震設計の基本方針を準用して行ら耐震評価 12．材料及び構造に係る設計 12.4 津波又は溢水への配慮が必要な施設の強度評価

変更前 基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
		VI－2－1－9 機能維持の基本方針 VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方 針 浸水防護施設に係る機器の配置を明示した図面 9．4．1 外郭浸水防護設備 9．4．2 内郭浸水防誩設備 構造図 9．4．1 外郭浸水防㟷設備 9．4．2 内郭浸水防敛設備	
	（3）津波監視設備津波監視設備は，津波の来襲状況を監視可能な設計 とする。【6条41】【51条41】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 VI－1－1－2－2－5 津波防護に関する施設の設計方針 4．機能設計 4.3 津波監視設備 構造図 1.5 津波監視設備	2．耐津波設計 2.1 耐建波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定
	津波監視カメラは，波力及び漂流物の影響を受けな い位置，取水ピット水位計は波力及び漂流物の影響を受けにくい位置に設置し，津波監視機能が十分に保持 できる設計とする。また，基準地震動 S s に対して，機能を喪失しない設計とする。設計に当たつては，自然条件（積雪，風荷重）との組合せを適切に考慮す る。【6条41】【51条41】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐建波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 VI－1－1－2－2－5 津波防護に関する施設の設計方針 3．要求機能及び性能目標 3.3 津波監視設備 構造図 1.5 津波監視設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定
	津波監視設備のうち津波監視カメラは，非常用電源 から給電し，赤外線撮像機能を有したカメラにより，昼夜にわたり中央制御室から監視可能な設計とする。 ［6条42］［51条42】	$\mathrm{VI}-1-1-2$ 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐建波設計の基本方針	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
		2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 VI－1－1－2－2－5 津波防護に関する施設の設計方針 4．機能設計 4.3 津波監視設備 構造図 1.5 津波監視設備	
	津波監視設備のらち取水ピット水位計は，非常用電源から給電し，0．P．$-11.25 \mathrm{~m} \sim 0$. P．+19.00 m を測定範囲 として，非常用海水ポンプが設置された海水ポンプ室補機ポンプエリアの上昇側及び下降側の水位を中央制御室から監視可能な設計とする。【6条43】【51条43】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針 VI－1－1－2－2－5 津波防護に関する施設の設計方針 4．機能設計 4.3 津波監視設備 構造図 1.5 津波監視設備	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定
	1．4．2 荷重の組合せ及び許容限界 津波防護施設，浸水防止設備及び津波監視設備の設計に当たっては，津波による荷重及び津波以外の荷重 を適切に設定し，それらの組合せを考慮する。【 6 条 44】【51条44】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.5 津波防護に関する施設の設計方針の設定
	また，想定される荷重に対する部材の健全性や構造安定性について適切な許容限界を設定する。【6条44】【51条44】	VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 $\mathrm{VI}-1-1-2-2-1$ 耐建波設計の基本方針 2．耐聿波設計の基本方針 2.1 基本方針 2．1．4 津波防護対策に必要な浸水防護の設計方針	2．耐津波設計 2.1 耐津波設計の基本方針の設定 2.5 津波防護し関する施設の設計方針の設定
	（1）荷重の組合せ 津波と組み合わせる荷重については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」のらち $「 2.3$ 外部からの衝撃による損傷の防止」で設定し ている自然条件（積雪，風荷重）及び余震として考え られる地震に加え，漂流物による荷重を考慮する。【6条45】【51条45】	要目表 VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書 VI－1－1－2－2－1 耐津波設計の基本方針 2．耐津波設計の基本方針	

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	設備」という。）として溢水防護対象設備及び重大事故等対処設備を設定する。【12条5】	VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.1 防護すべき設備の設定 VI－1－1－8－2 防護すべき設備の設定 2．防護すべき設備の設定 2.1 防護すべき設備の設定方針 2.2 防護すべき設備の抽出	3.1 基本方針の設定 3.2 防護すべき設備の設定
	発電用原子炉施設内の放射性物質を含む液体を内包 する容器，配管その他の設備（ポンプ，弁，使用済燃料プール，原子炉ウェル，蒸気乾燥器•気水分離器ピ ット）加ら放射性物質を含む液体があふれ出るおそれ がある場合において，当該液体が管理区域外へ漏えい することを防止する設計とする。【12条6】	$\mathrm{VI}-1-1-8$ 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.3 溢水評価及び防護設計方針 2．3．4 放射性物質を含んだ液体の管理区域外いの漏えい 防止に関する溢水評価及ひ防護設計方針	3．溢水防護に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施
	溢水評価条件の変更により評価結果が影響を受けな いことを碓認するために，評価条件変更の都度，溢水評価を実施することとし保安規定に定めて管理する。 ［12条7］	運用に関する記載であり，保安規定にて対応	－
	2.2 防護すべき設備の抽出 溢水によってその安全機能が損なわれないことを確認する必要がある施設を，「発電用軽水型原子炉施設 の安全機能の重要度分類に関する審査指針」（以下 「重要度分類審査指針」という。）における分類のク ラス 1 ，クラス 2 及びクラス 3 に属する構築物，系統及 び機器とする。【12条8】	$\mathrm{VI}-1-1-8$ 発電用原子炬施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.1 防護すべき設備の設定 VI－1－1－8－2 防護すべき設備の設定 2．防護すべき設備の設定 2.2 防護すべき設備の抽出	3．溢水防護に関する設計 3.1 基本方針の設定 3.2 防護すべき設備の設定
	この中から，溢水防護上必要な機能を有する構築物，系統及び機器を選定する。 具体的には，運転状態にある場合には発電用原子炉 を高温停止，引き続き低温停止することができ，並び に放射性物質の閉じ込め機能を維持するため，停止状態にある場合は引き続きその状態を維持するため，及 び使用済燃料プールの椧却機能及び給水機能を維持す るために必要となる，重要度分類審査指針における分類のクラス1，2に属する構築物，系統及び機器に加 え，安全評価上その機能を期待するクラス3に属する構築物，采統及び機器を抽出する。【12条8】	$\mathrm{VI}-1-1-8$ 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.1 防護すべき設備の設定 VI－1－1－8－2 防護すべき設備の設定 2．防護すべき設備の設定 2.2 防護すべき設備の抽出	3．溢水防護に関する設計 3.1 基本方針設定 3.2 防護すべき設備の設定
	以上を踏まえ，防護すべき設備のうち溢水防護対象設備として，重要度の特に高い安全機能を有する構築物，系統及び機器，並びに，使用済燃料プールの椧却機能及び給水機能を維持するために必要な構築物，系統及び機器を抽出する。【12条8】	VI－1－1－8 発電用原子炬施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.1 防護すべき設備の設定	3．溢水防護し関する設計 3.1 基本方針設定 3.2 防護すべき設備の設定

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
		VI－1－1－8－2 防護すべき設備の設定 2．防護すべき設備の設定 2.2 防護すべき設備の抽出	
	また，重大事故等対処設備は，重大事故に至るおそ れがある事故が発生した場合において，炬心，使用済燃料プール内の燃料体等，及び，運転停止中における原子炉の燃料体の著しい損傷を防止するために，ま た，重大事故が発生した場合においても，原子炉格納容器の破損及び発電所外への放射性物質の異常な放出 を防止するために必要な設備を防護すべき設備として抽出する。【12条9】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.1 防護すべき設備の設定 VI－1－1－8－2 防護すべき設備の設定 2．防護すべき設備の設定 2.2 防護すべき設備の抽出	3．溢水防護に関する設計 3.1 基本方針の設定 3.2 防護すべき設備の設定
	2.3 溢水源及び溢水量の設定 溢水影響を評価するために想定する機器の破損等に より生じる溢水（以下「想定破損による溢水」とい う。），発電所内で生じる異常状態（火災を含む。）の拡大防止のために設置される系統からの放水による溢水（以下「消火水の放水による溢水」という。）並び に地震に起因する機器の破損及び使用済燃料プール等 のスロッシングにより生じる溢水（以下「地震起因に よる溢水」という。）を踏まえ，溢水源及び溢水量を設定する。【12条10】	－	$\begin{gathered} - \\ (\text { (冒頭宣言 }) \end{gathered}$
	また，その他の要因による溢水として，地下水の流入，地震以外の自然現象，機器の誤作動等により生じ る溢水（以下「その他の溢水」という。）の影響も評価する。【12条10】	運用に関する記載であり，保安規定にて対応	－
	想定破損による溢水では，単一の配管の破損による溢水を想定して，配管の破損箇所を溢水源として設定 する。【12条11】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.1 想定破損による溢水	3．溢水防護に関する設計 3.3 溢水評価の実施
	また，破損を想定する配管は，内包する流体のエネ ルギに応じて，高エネルギ配管又は低エネルギ配管に分類する。【12条11】	VI－1－1－8 発電用原子炬施設の溢水防護に関する説明書 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.1 想定破損による溢水	3．溢水防護に関する設計 3.3 溢水評価の実施
	高エネルギ配管は，「完全全周破断」，低エネルギ配管は，「配管内径の $1 / 2$ の長さと配管肉厚の $1 / 2$ の幅を有する貫通クラック」（以下「貫通クラック」とい う。）を想定した溢水量とし，想定する破損箅所は溢水影響が最も大きくなる位置とする。【12条11】	$\mathrm{VI}-1-1-8$ 発電用原子炉施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.2 溢水評価条件の設定 $\mathrm{VI}-1-1-8-3$ 溢水評価条件の設定	3．溢水防護に関する設計 3.1 基本方針や設定 3.3 溢水評価の実施

基本設計方針		設計結果の記載䈏所	様式 -1 への反映結果
変更前	変更後		
		2．溢水源及び溢水量の設定 2.1 想定破損による溢水	
	ただし，高エネルギ配管についてはターミナルエン ド部を除き応力評価の結果により，原子炉泠却材圧力 バウンダリ及び原子炉格納容器バウンダリの配管であ れば発生応力が許容応力の 0.8 倍以下であれば破損を想定せず，原子炉冷却村圧カバウンダリ及び原子炉格納容器バウンダリ以外の配管であれば発生応力が許容応力の0．4倍を超え0．8倍以下であれば「貫通クラッ ク」による溢水を想定した評価とし，0．4倍以下であ れば破損は想定しない。【12条11】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.2 溢水評価条件の設定 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.1 想定破損による溢水	3．溢水防護に関する設計 3.1 基本方針定 3.3 溢水評価の実施
	また，低エネルギ配管については，発生応力が許容応力の 0.4 倍以下であれはば破損は想定しない。【12条 11］	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.2 溢水評価条件の設定 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.1 想定破損による溢水	3．溢水防護に関する設計 3.1 基本方針設定 3.3 溢水評価の実施
	発生応力と許容応力の比較により破損形状の想定を行ら場合は，評価結果に影響するような減肉がないこ とを確認するために継続的な肉厚管理を実施すること とし保安規定に定めて管理する。【12条11】	運用に関する記載であり，保安規定にて対応	－
	高エネルギ配管のうち，高エネルギ配管として運転 している割合が当該系統の運転している時間の 2% 又 はプラント運転期間の 1% より小さいことから低エネ ルギ配管とする系統については，運転時間実績管理を実施することとし保安規定に定めて管理する。【12条 11］	運用に関する記載であり，保安規定にて対応	－
	消火水の放水による溢水では，消火活動に伴ら消火栓からの放水を溢水量として設定する。発電所内で生 じる異常状態（火災を含む。）の拡大防止のために設置されるスプリンクラ及び格納容器スプレイ椧却系か らの溢水については，防護すべき設備が溢水影響を受 けない設計とする。【12条12】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.2 溢水評価条件の設定 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.2 消火水の放水による溢水	3．溢水防護に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施
	地震起因による溢水では，流体を内包することで溢水源となり得る機器のらち，基準地震動S s による地震力により破損するおうそれがある機器及び使用済燃料 プール等のスロッシングによる漏えい水を溢水源とし て設定する。【12条13】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.3 地震に起因による溢水	3．溢水防護に関する設計 3.3 溢水評価の実施
	耐震Sクラス機器については，基準地震動S s によ	$\mathrm{VI}-1-1-8$ 発電用原子炉施設の溢水防護に関する説明書	3．溢水防護に関する設計

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	$\begin{aligned} & \text { る地震力によって破損は生じないことから溢水源とし } \\ & \text { て想定しない。【1条 } 13 \text { (} \end{aligned}$	VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.2 溢水評価条件の設定 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2． 3 地震に起因による溢水	3.1 基本方針の設定 3.3 溢水評価の実施
	また，耐震B及びCクラス機器のうち耐震対策工事の実施又は設計上の裕度の考慮により，基準地震動S s による地震力に対して耐震性が確保されているものに ついては溢水源として想定しない。【12条13】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.2 溢水評価条件の設定 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2．3 地震に起因による溢水	3．溢水防護し関する設計 3.1 基本方針の設定 3.3 溢水評価の実施
	溢水源となる配管については破断形状を完全全周破断を考慮した溢水量とし，溢水源となる容器について は全保有水量を考慮した溢水量とする。【12条13】	VI－1－1－8 発電用原子炬施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-3$ 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.3 地震に起因による溢水	3．溢水防護に関する設計 3.3 溢水評価の実施
	また，使用済然料プールのスロッシングによる溢水量の算出に当たつては，基準地震動 S s により発生す る使用済燃料プールのスロッシングにて使用済燃料プ ール外へ漏えいする溢水量を算出する。【12条13】	VI－1－1－8 発電用原子炬施設の溢水防護に関する説明書 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.3 地震に起因による溢水	3．溢水防護に関する設計 3.3 溢水評価の実施
	また，施設定期検査中においては，使用済燃料プー ル，原子炉ウェル及び蒸気乾燥器•気水分離器ピット のスロッシングによる漏えい水を溢水源とし溢水量を算出する。【12条13】	VI－1－1－8 発電用原子炬施設の溢水防護に関する説明書 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.3 地震に起因による溢水	3．溢水防護に関する設計 3.3 溢水評価の実施
	その他の溢水については，地下水の流入，降水，屋外タンクの竜巻による飛来物の衝突による破損に伴う漏えい等の地震以外の自然現象に伴ら溢水，機器の誤作動，弁グランド部及び配管フランジ部からの漏えい事象等を想定する。【12条14】	$\mathrm{VI}-1-1-8$ 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.2 溢水評価条件の設定 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.4 その他の溢水	3．溢水防護し関する設計 3.1 基本方針の設定 3.3 溢水評価の実施
	溢水量の算出に当たつては，漏水が生じるとした機器のらち防護すべき設備への溢水の影響が最も大きく なる位置で漏水が生じるものとして評価する。【12条 14］	$\mathrm{VI}-1-1-8$ 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針	3．溢水防護じ関する設計 3.1 基本方針の設定 3.3 溢水評価の実施

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		2.2 溢水評価条件の設定 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.1 想定破損による溢水 2.3 地震に起因による溢水	
	また，溢水量の算出において，漏えい検知による漏 えい停止を期待する場合には，漏えい停止までの適切 な隔離時間を考慮し，配管の破損箇所から流出した漏水量と隔離後の溢水量として隔離範囲内の系統の保有水量を合算して設定する。【12条14】	VI－1－1－8 発電用原子炬施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.2 溢水評価条件の設定 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.1 想定破損による溢水 2.3 地震に起因による溢水 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	3．溢水防護に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施 ＜下線部＞
	なお，手動による漏えい停止の手順は，保安規定に定めて管理する。【12条14】	運用に関する記載であり，保安規定にて対応	－
	2.4 溢水防護区画及び溢水経路の設定溢水影響を評価するために，溢水防謢区画及び溢水経路を設定する。【12条15】	VI－1－1－8 発電用原子灲施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	3．溢水防護に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施 ＜下線部＞
	溢水防護区画は，防護すべき設備が設置されている全ての区画並びに中央制御室及び現場操作が必要な設備へのアクセス通路について設定する。【12条15】	VI－1－1－8 発電用原子炉施設の；溢水防護に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.2 溢水評価条件の設定 $\mathrm{VI}-1-1-8-3$ 溢水評価条件の設定 3．溢水防護区画及び益水経路の設定	3．溢水防護に関する設計 3.1 基本方針設定 3.3 溢水評価の実施
	溢水防謢区画は壁，屝，堰，床段差等，又はそれら の組み合わせによって他の区画と分離される区画とし て設定し，溢水防護区画内外で発生を想定する溢水に対して，当該区画内の溢水水位が最も高くなるように保守的江溢水経路を設定する。【12条15】	VI－1－1－8 発電用原子灲施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.2 溢水評価条件の設定 VI－1－1－8－3 溢水評価条件の設定 3．溢水防護区画及び溢水経路の設定	3．溢水防謢に関する設計 3.1 基本方錐設定 3.3 溢水評価の実施

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
		＜下線部 連用に関する記載であり，保安規定にて対応	＜下線部＞
	また，消火活動により区画の扉を開放する場合は，開放した扉からの消火水の伝播を考慮した溢水経路と する。【12条15】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－3 溢水評価条件の設定 2．溢水源及び溢水量の設定 2.2 消火水の放水による溢水 3．溢水防護区画及び溢水経路の設定 3.3 溢水防護区画外漏えいでの溢水経路	3．溢水防護に関する設計 3.3 溢水評価の実施
	溢水経路を構成する水密扉に関しては，扉の閉止運用を保安規定に定めて管理する。【12条16】	運用に関する記載であり，保安規定にて対応	－
	常設している殹の取り外し及びハツッを開放する場合の運用を保安規定に定めて管理する。【12条16】	運用に関する記載であり，保安規定にて対応	－
		VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－4 溢水影響に関する評価 2．溢水評価 2.1 没水影響に対する評価 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	3．溢水防護に関する設計 3.3 溢水評価の実施 ＜下線部＞
	また，溢水の流入状態，溢水源からの距離，人員の アクセス等による一時的な水位変動を考慮し，機能雷失高さは溢水による水位に対して裕度を碓保する設計 とする。【12条17】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.3 溢水評価及び防護設計方針 VI－1－1－8－4 溢水影響に関する評価 2．溢水評価 2.1 没水影響に対する評価	3．溢水防謢に関する設計 3.1 基本方鈝の設定 3.3 溢水評価の実施
	没水の影響により，防護すべき設備が溢水による水位に対し機能傩失高さを碓保できないおそれがある場合は，溢水水位を上回る高さまで，溢水により発生す る水圧に対して止水性（以下「止水性」という。）を維持する壁，扉，堰，逆流防止装置及び貫通部止水処置により溢水伝播を防止するための対策を実施する。【12条18】	要目表 VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－5 溢水防護施設の詳細設計 4．機能設計 4． 1 機能設計 4．1．1 水密扉の設計方針 4．1．2 浸水防止蓋の設計方針 4．1．3 浸水防止堰の設計方針 4．1．5 逆流防止装置の設計方針	3．溢水防護に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施 3.4 溢水防護施設の詳細設計

基本設計方針		設計結果の記載䈏所	様式－1への反映結果
変更前	変更後		
		4．1．6 貫通部止水処置の設計方針 浸水防護施設に係る機器の配置を明示した図面 9．4．2 内郭浸水防誩設備	
	止水性を維持する浸水防護施設については，試験又 は構造健全性評価にて止水性を碓認する設計とする。【12条18】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－5 溢水防護施設の詳細設計 4．機能設計 4． 1 機能設計 4．1．1 水密扉の設計方針 4．1．2 浸水防止蓋の設計方針 4．1．3 浸水防止堰の設計方針 4．1．5 逆流防止装置の設計方針 4．1．6 貫通部止水処置の設計方針 構造図 9．4．2 内郭浸水防護設備	3． 溢水防護に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施 3.4 溢水防護施設の詳細設計
	2．5．2 被水の影響に対する評価及び防護設計方針発生を想定する溢水源からの直線軌道及び放物線軌道の飛散による被水及び天井面の開口部若しくは貫通部からの被水が，防護すべき設備に与える影響を評価 し，防護すべき設備が要求される機能を損ならおそれ がない設計とする。【12条19】	－	$\stackrel{-}{\left(⿱_{1}\right.} \stackrel{\text { 頭宣言 }}{ }$
	防謢すべき設備は，浸水に対する保護構造（以下「保護構造」という。）を有し，被水影響を受けても要求される機能を損ならおそれがない設計とする。【12条19】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.3 溢水評価及び防護設計方針 VI－1－1－8－4 溢水影響に関する評価 2．溢水評価 2.2 被水影響に対する評価 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	3．溢水防護して関する設計 3.1 基本方針の設定 3.3 溢水評価の実施 ＜下線部〉
	保護構造を有さない場合は，機能を損ならおそれが ない配置設計又は被水の影響が発生しないよう当該設備が設置される溢水防護区画において水消火を行わな い消火手段（ハロンガス消火設備による消火，ケーブ ルトレイ消火設備による消火又は消火器による消火） を採用する設計とする。【12条19】	VI－1－1－8 発電用原子炉施設の；溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.2 溢水評価条件の設定 2.3 溢水評価及び防護設計方針	3．溢水防謢に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
		VI－1－1－8－5 溢水防護施設の詳細設計 4．機能設計 4.2 蒸気影響を緩和する設備 ＜下線部＞ 運用に関する記載であり，保安規定にて対応	＜下線部＞
	保護構造により要求される機能を損ならおそれがな い設計とする設備については，評価された被水条件を考慮しても要求される機能を損ならおそれがないこと を設計時に碓認する。【12条19】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.2 溢水評価条件の設定 2.3 溢水評価及び防護設計方針 VI－1－1－8－4 溢水影響に関する評価 2．溢水評価	3．溢水防護し関する設計 3.1 基本方針の設定 3.3 溢水評価の実施
	消火対象以外の設備への䛊放水がないよう，消火水放水時に不用意な放水を行わない運用とすることとし保安規定に定めて管理する。【12条20】	運用に関する記載であり，保安規定にて対応	－
	2．5．3 蒸気影響に対する評価及び防護設計方針発生を想定する漏えい蒸気，区画間を拡散する漏え い蒸気及び破損想定箇所近傍での漏えい蒸気の直接噴出による影響について，設定した空調条件や解析区画条件により防護すべき設備に与える影響を評価し，防護すべき設備が要求される機能を損ならおうそれがない設計とする。【12条21】	－	$\begin{gathered} - \\ \left(\text { 旦頭宣言) }^{\text {an }}\right. \end{gathered}$
	また，漏えい蒸気による環境条件（温度，湿度及び圧力）を想定した試験又は机上評価により，防護すべ き設備が要求される機能を損ならおそれがない設計又 は配置とする。【12条21】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.3 溢水評価及び防護設計方針	3．溢水防護に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施
	漏えい蒸気の影響により，防護すべき設備が要求さ れる機能を損ならおそれがある場合は，漏えい蒸気影響を緩和するための対策を実施する。 具体的には，漏えい蒸気による機器への影響を考慮 した試験で性能を確認した保護カバーを設置し，蒸気影響を緩和することにより防護すべき設備が要求され る機能を損ならおそれがない設計とする。【12条22】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損暴防止の基本方針 2.3 溢水評価及び防護設計方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－5 溢水防護施設の詳細設計 4．機能設計 4.2 蒸気影響を緩和する設備	3． 溢水防護に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施 3.4 溢水防護施設の詳細設計
	また，主蒸気管破断事故時等には，原子炬建屋原子炉棟内外の差圧による原子炉建屋ブローアウトパネル （設置枚数1枚，開放差圧4．4kPa以下）（原子炉格納施設の設備を浸水防境施設の設備として兼用）の開放に	VI－1－1－6－別添4 ブローアウトパネル関連設備の設計方針	VI－1－10－8 「原子师格納施設」の様式 -1 4．その他原子炉格納施設に係る設計 4.3 原子炬建屋ブローアウトパネルル関連設備の設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	より，溢水防護区画内において蒸気影響を軽減する設計とする。【12条23】		
	2．5．4 使用済燃料プールのスロッシング後の機能維持に関する溢水評価及び防護設計方針 使用済燃料プールのスロッシングによる溢水量の算出に当たっては，基準地震動 S s による地震力によっ て生じるスロッシング現象を三次元流動解析により評価し，使用済燃料プール外に漏えいする水量を考慮す る。【12条24】	$\mathrm{VI}-1-1-8-4$ 溢水影響に関する評価 2．溢水評価 2.4 使用済然料プールの機能維持に関する溢水評価	3．溢水防護に関する設計 3.3 溢水評価の実施
	その際，使用済燃料プールの初期水位は，スキマサ ージタンクーのオーバーフロー水位として評価する。【12条24】	$\mathrm{VI}-1-1-8$ 発電用原子炉施設の溢水队方謢に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．泬水等による損傷防止の基本方針 2.3 溢水評価及び防護設計方針	3．溢水防護に関する設計 3.1 基本方錐設定 3.3 溢水評価の実施
	算出した溢水量からスロッシング後の使用済燃料プ一ルの水位低下を考慮しても，使用斎燃料プールの冷却機能及び使用済燃料プールいの給水機能を碓保し， それらを用いることにより適切な水温及び遮蔽水位を維持できる設計とする。【12条24】	$\mathrm{VI}-1-1-8$ 発電用原子炉施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-4$ 溢水影響に関する評価 2．溢水評価 2.4 使用済燃料プールの機能維持に関する溢水評価	3．溢水防護に関する設計 3.3 溢水評価の実施
	2.6 防護すべき設備を内包する建屋外及びエリア外 で発生する溢水に関する溢水評価及び防護設計方針防護すべき設備を内包する建屋外及びエリア外で発生を想定する溢水である循環水采配管等の破損による溢水，屋外タンクで発生を想定する溢水，地下水等に よる影響を評価し，防護すべき設備を内包する建屋内及びエリア内へ溢水が流入し伝播しない設計とする。【12条25】	要目表 VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.3 溢水評価及び防護設計方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－4 溢水影響に関する評価 2．溢水評価 3．溢水防護区画を内包する建屋外からの流入防止 3.1 タービン建屋からの流入防止 3.2 原子炉建屋付属棟（廃安物処理エリア）（管理区域） からの流入防止 3.3 補助ボイラー建屋からの流入防止 3.4 海水ポンプ室循環水ポンプエリアからの流入防止 3.5 第 1 号機制御建屋からの流入防止 3.6 屋外タンク等からの流入防止 浸水防護施設に係る機器の配置を明示した図面 9．4．2 内郭浸水防護設備	3．溢水防護に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施 3.4 溢水防護施設の詳細設計
	具体的には，溢水水位に対して止水性を維持する壁，扉，蓋の設置及び貫通部止水処置を実施し，溢水 の伝播を防止する設計とする。【12条25】	VI－1－1－8 発電用原子炬施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針	3．溢水防護に関する設計 3.3 溢水評価の実施

基本設計方針		設計結果の記載箘所	様式－1への反映結果
変更前	変更後		
		2.3 溢水評価及び防護設計方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－4 溢水影響に関する評価 2．溢水評価 3．溢水防護区画を内包する建屋外からの流入防止 VI－1－1－8－5 溢水防護施設の詳細設計 2．設計の基本方針 3．要求機能及び性能目標 4．機能設計	
	タービン建屋内における循睘水系配管の破損による溢水量低澸については，破損箇所からの溢水を早期に自動検知し，自動隔離を行うために，循睘水系隔離シ ステム（漏えい検出器，復水器水室出入口弁並びに漏 えい検出制御盤及び監視盤）を設置する。 循環水系隔離システムは，隔熣信号発信後，紬30秒 で循睘水ポンプを停止するとともに，約3分で復水器水室出入口并を自動閉止する設計とする。【12条26】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.3 溢水評価及び防護設計方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－5 溢水防護施設の詳細設計 4．機能設計 4．1．7 循環水采隔離システムの設計方針	3．溢水防護に関する設計 3.1 基本方針設定 3.3 溢水評価の実施 3.4 溢水防護施設の詳細設計
	タービン建屋内におけるタービン補機冷却海水系配管の破損による溢水量低減については，破損箅所から の溢水を早期に自動検知し，隔離を行らために，ター ビン補機冷却海水采隔離システム（漏えい検出器，夕 ービン補機泠却海水ポンプ出口弁並びに漏えい検出制御盤及び監視盤）を設置する。タービン補機冷却海水系隔離システムは，隔離信号発生後，約30秒でタービ ン補機冷却海水ポンプを停止するとともに，タービン補機洽却海水ポンプ出口弁を自動閉止する設計とす る。【12条27】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.3 溢水評価及び防護設計方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－5 溢水防護施設の詳細設計 4．機能設計 4．1．8 タービン補機冷却海水系隔離システムの設計方針	3．溢水防護に関する設計 3.1 基本方針設定 3.3 溢水評価の実施 3.4 溢水防護施設の詳細設計
	また，地下水に対しては，地下水位低下設備のらち揚水ポンプの故障等より建屋周囲の水位が地表面まで上昇することを想定し，建屋外周部における壁，屝，堰等により溢水防護区画を内包する建屋内への流入を防止するとともに，地震による建屋外周部からの地下水の流入の可能性を安全側に考慮しても，防護すべき設備が要求される機能を損なわない設計とする。【12条28】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.3 溢水評価及び防護設計方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－5 溢水防護施設の詳細設計 4．機能設計 4．1． 6 貫通部止水処置の設計方針	3．溢水防護に関する設計 3.1 基本方針設定 3.3 溢水評価の実施
	止水性を維持する浸水防護施設については，試験又 は机上評価にて止水性を確認する設計とする。【12条 291	要目表 VI－1－1－8 発電用原子炉施設の淟水防護に関する説明書	3．溢水防護に関する設計 3.1 基本方針設定 3.3 溢水評価の実施 3.4 溢水防護施設の詳細設計

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
		VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－5 溢水防護施設の詳細設計 4．機能設計 4.1 溢水伝播を防止する設備 4．1．1 水密扉の設計方針 4．1．2 浸水防止蓋の設計方針 4．1． 6 貫通部止水処置の設計方針 構造図 9．4．2 内郭浸水防謢設備	
	2.7 管理区域外への漏えい防止に関する溢水評価及 び防護設計方針 放射性物質を含む液体を内包する容器，配管その他 の設備（ポンプ，弁，使用済燃料プール，原子炉ウェ ル及び蒸気乾燥器•気水分離器ピット）からあふれ出 る放射性物質を含む液体の溢水量，溢水防護区画及び溢水経路により溢水水位を評価し，放射性物質を内包 する液体が管理区域外汇漏えいすることを防止し伝播 しない設計とする。【12条30】	要目表 VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 $\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.3 溢水評価及び防護設計方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－4 溢水影響に関する評価 2．溢水評価 4．管理区域外への漏えい防止に関する溢水評価 VI－1－1－8－5 溢水防護施設の詳細設計 4．機能設計 4.1 溢水伝播を防止する設備 4．1． 4 管理区域外伝播防止水密扉及び管理区域外伝播防止堰の設計方針	3．溢水防護に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施 3.4 溢水防護施設の㒒細設計
	なお，地震時における放射性物質を含む液体の溢水量の算出については，要求される地震力を用いて設定 する。【12条30】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.3 溢水評価及び防護設計方針 2.4 溢水防護に関する施設の設計方針	3．溢水防護に開する設計 3.1 基本方針の設定 3.3 溢水評価の実施
	放射性物質を含む液体かか管理区域外伝伝播するおそ れがある場合には，溢水水位を上回る高さまで，止水性を維持する堰及び水密扉により管理区域外への溢水伝播を防止するための対策を実施する。【12条31】	要目表 VI－1－1－8 発電用原子灲施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.4 溢水防護に関する施設の設計方針	1．共通的に適用される設計 3．溢水防護に関する設計 3.1 基本方鈝の設定 3.4 溢水防護施設の詳細設計 VI－1－10－4 「原子炬泠却采統施設」の様式－1 12．材料及び構造に係る設計 12.4 津波又は溢水への配慮が必要な施設の強度識価

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
		VI－1－1－8－5 溢水防護施設の詳細設計 3．要求機能及び性能目標 3.1 溢水伝播を防止する設備 4．機能設計 4.1 溢水伝播を防止する設備 4．1．4 管理区域外伝播防止水密扉及び管理区域外伝播防止堰の設計方針 VI－3－別添3 津波又は溢水への配慮が必要な施設の強度に関する説明書 構造図 8.2 原子炉建屋 9．4．2 内郭浸水防護設備	VI－1－10－8 「原子炬格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計
	2.8 溢水防護上期待する浸水防護施設の構造強度設計 溢水防護区画及び溢水経路の設定並びに溢水評価に おいて期待する浸水防護施設の構造強度設計は，以下 のとおりとする。【12条32】	－	（冒頭宣言）
	浸水防護施設が要求される機能を維持するため，計画的に保守管理，点検を実施するとともに必要に応じ補修を実施する。【12条32】	運用に関する記載であり，保安規定にて対応	－
	止水に期待する壁，堰，扉，监，逆流防止装置及び貫通部止水処置のらち，地震に起因する機器の破損等 により生じる溢水（使用斎燃料プール等のスロッシン グにより発生する溢水を含む。）から防護する設備につ いては，基準地震動 S に による地震力に対し，地震時及び地震後においても，溢水伝播を防止する機能を損 ならおそれがない設計とする。【12条33】	要目表 VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－5 溢水防護施設の詳細設計 3．要求機能及び性能目標 VI－2－10－2 浸水防護施設の耐震性についての計算書 VI－3－別添3 津波又は溢水への配慮が必要な施設の強度に関する説明書 構造図 8.2 原子炉建屋 9．4．2 内郭浸水防護設備	1．共通的に適用される設計 3．溢水防護に関する設計 3.1 基本方針の設定 3.4 溢水防護施設の詳細設計 VI－1－10－4 「原子炉泠却系統施設」の様式－1 4．地震による損傷防止に関する設計 4． 11 耐震設計の基本方針を準用して行う耐震評価 12．材料及び構造に係る設計 12.4 津波又は溢水への配慮が必要な施設の強度評価 VI－1－10－8 「原子炬格納施設」の様式－1 2．原子炉格納施設の兼用に関する設計 2.2 機能を兼用する機器を含む設備に係る設計
	ただし，放射性物質を含む液体が管理区域外に伝播 することを防止するために設置する堰については，要求される地震力に対し，地震時及び地震後においても，溢水伝播を防止する機能を損ならおそれがない設計と	要目表 VI－1－1－8 発電用原子炉施設の淟水防護し関する説明書	1．共通的に適用される設計 3．淟水防護じ関する設計 3.1 基本方針や設定 3.4 溢水防護施設の訮細設計

基本設計方針		設計結果の記載䈏所	様式－1 への反映結果
変更前	変更後		
	する。【12条33】	VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷防止の基本方針 2.4 溢水防護に関する施設の設計方針 $\mathrm{VI}-1-1-8-5$ 溢水防護施設の詳細設計 3．要求機能及び性能目標 3.1 溢水伝播を防止する設備 4．機能設計 4．1．4 管理区域外伝播防止水密扉及び管理区域外伝播防止堰の設計方針 $\mathrm{VI}-2$－別添 2 溢水防護に係る施設の耐震性に関する説明書 VI－3－別添3 津波又は溢水への配慮が必要な施設の強度に関する説明書 構造図 9．4．2 内郭浸水防護設備	VI－1－10－4 「原子炉冷却系統施設」の様式－1 4．地震による損傷防止に関する設計 4.11 耐震設計の基本方針を準用して行ら耐震評価 12．材料及び構造に係る設計 12.4 津波又は溢水への配慮が必要な施設の強度評価
	排水に期待する床ドレン配管の設計については，発生を想定する泬水に対する排水機能を損ならおうそれが ない設計とする。【12条34】	運用に関する記載であり，保安規定にて対応	－
	漏えい蒸気影響を緩和する保護カバーの設計におい ては，配管の破断により発生する荷重に対し，蒸気影響を緩和する機能を損ならおそれがない設計とする。【12条34】	VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－5 溢水防護施設の詳細設計 4．機能設計 4.2 蒸気影響を緩和する設備	3． 溢水防護に関する設計 3.1 基本方針の設定 3.3 溢水評価の実施 3.4 溢水防護施設の詳細設計
	循環水系配管及びタービン補機浍却海水系配管の破損䈯所からの溢水量を低減する循環水采隔離システム及びタービン袖機冷却海水系隔雄システムの設計におう いては，基準地震動 $\mathrm{S} s$ による地震力に対し，地震時及び地震後においても，溢水量を低減する機能を損な らおそれがない設計とする。【12条35】	VI－1－1－8 発電用原子炬施設の溢水防護に関する説明書 VI－1－1－8－1 溢水等による損傷防止の基本方針 2．溢水等による損傷乃方止の基本方針 2.3 溢水評価及び防護設計方針 2.4 溢水防護に関する施設の設計方針 VI－1－1－8－5 溢水防護施設の詳細設計 4．機能設計 4．1．7 循環水系隔離システムの設計方針 4．1．8 タービン補機冷却海水系隔離システムの設計方針 VI－2－別添2溢水防護に係る施設の耐震性に関する説明書	1．共通的に適用される設計 3．淟水防護し関する設計 3.1 基本方針の設定 3.3 泬水評価の実施 3.4 溢水防護施設の詳兹明設計 VI－1－10－4 「原子炬冷却采統施設」の様式－1 4．地震による損傷防止汇関する設計 4.11 耐震設計の基本方針を準用して行う耐震評価
	3．主要対象設備浸水防護施設の対象となる主要な設備について，「表	－	(「主要設備リスト」による)

	基本設計方針	変更後	設計結果の記載箇所

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－510－13 基本設計方針から設工認添付書類及び様式—1～の展開表 （補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。））

「基本設計方針から設工認添付書類及び様式—1～の展開表」【補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）】

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	(用語の定義のみ)
	第1章 共通項目 補機駆動用燃料設備の共通項目である「1．地盤等， 2．自然現象， 3 ．火災，5．設備に対する要求（5．3使用中の亀裂等による破壊の防止，5．5 安全弁等， 5.6逆止め弁，5．8 電気設備の設計条件を除く。），6．そ の他（6．4 放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
	第2章 個別項目 1．補機駆動用燃料設備 大容量送水ポンプ（タイプ I ）のポンプ駆動用燃料 は，大容量送水ポンプ（タイプI）（燃料タンク）に貯蔵する。【62条14】62条23】【62条32】【62条44】62条 55】【63条21】【63条40】【64条11】【64条24】【64条36】【65条11】【65条33】【66条15】【66条29】【66条41】【66条56】【67条19】【69条11】【69条22】【69条32】【69条41】【69条47】69条61】【70条3】【70条11】【71条17】	要目表 VI－1－1－4－8－4 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（補機駆動用設備） 補機駆動用燃料設備に係る機器の配置を明示した図面 9.5 補機駆動用燃料設備	3．補機駆動用燃料設備の設計 3.1 大容量送水ポンプ（タイプI）（燃料タンク）
	大容量送水ポンプ（タイプII）のポンプ駆動用燃料 は，大容量送水ポンプ（タイプII）（燃料タンク）に貯蔵する。【62条14】【62条23】【62条32】【62条44】62条 55】【63条21】【63条40】【64条11】【64条24】【64条36】【65条11】【65条33】【66条15】【66条29】【66条41】【66条56】【67条19】【69条11】【69条22】【69条32】【69条41】【69条47】69条61】70条3】【70条11】【71条17】	要目表 VI－1－1－4－8－4 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（補機駆動用設備） 補機駆動用燃料設備に係る機器の配置を明示した図面 9.5 補機駆動用燃料設備	3．補機駆動用燃料設備の設計 3.2 大容量送水ポンプ（タイプII）（燃料タンク）
	原子炉補機代替冷却水系熱交換器ユニットのポンプ駆動用燃料は，原子炉補機代替冷却水系熱交換器ユニ ット（燃料タンク）に貯蔵する。【62条14】【62条23】【62条32】【62条44】【62条55】【63条21】【63条40】【64条11】64条24】【64条36】【65条11】【65条33】【66条15】【66条29】【66条41】【66条56】【67条19】【69条11】【69条22】【69条32】【69条41】【69条47】【69条61】【70条3】【70条11】【71条17】	要目表 VI－1－1－4－8－4 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（補機駆動用設備） 補機駆動用燃料設備に係る機器の配置を明示した図面 9.5 補機駆動用燃料設備	3．補機駆動用燃料設備の設計 3.3 原子炉補機代替泠却水系熱交換器ユニット（燃料タン ク）
	非常用ディーゼル発電設備軽油タンク，高圧炉心ス プレイ系ディーゼル発電設備軽油タンク又はガスター ビン発電設備軽油タンクは，大容量送水ポンプ（タイ プII），大容量送水ポンプ（タイプII）及び原子炉補機代替冷却水系熱交換器ユニットの燃料を貯蔵できる設計とする。【62条14】62条23】【62条32】【62条44】【62条55】【63条21】【63条40】【64条11】【64条24】【64条36】	VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用電源設備） VI－1－1－4－8－4 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（補機駆動用設備）	2．補機駆動用燃料設備の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 3．補機駆動用燃料設備の設計 3.1 大容量送水ポンプ（タイプI）（燃料タンク） 3.2 大容量送水ポンプ（タイプII）（燃料タンク）

基本設計方針		設計結果の記載䈏所	様式一1 への反映結果
変更前	変更後		
	【65条11】【65条33】【66条15】【66条29】【66条41】【66条56】【67条19】【69条11】【69条22】【69条32】【69条41】【69条47】【69条61】［70条3】【70条11】【71条17】	$\mathrm{VI}-1-1-6$ 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3．6．その他発電用原子炉の附属施設 3．6．1 非常用電源設備 補機駆動用燃料設備に係る機器の配置を明示した図面 9．5 補機駆動用燃料設備	3.3 原子炉補機代替椧却水系熱交換器ユニット（燃料タン ク） 3.4 軽油タンク VI－1－10－4 「原子炉冷却采統施設」の様式 -1 11．健全性に係る設計 VI－1－10－9 「非常用電源設備」の様式－1 1．共通的に適用される設計 2．非常用電源設備の設計 2.4 燃料設備 2．4．1 軽油タンク （2）機能を兼用する機器を含む設備に係る設計
	大容量送水ポンプ（タイプ I ），大容量送水ポンプ（タ プII）及び原子炉補機代替冷却水系熱交換器ユニッ トの燃料は，燃料補給設備である非常用ディーゼル発電設備軽油タンク，高圧炬心スプレイ系ディーゼル発電設備軽油タンク又はガスタービン発電設備軽油タン クよりタンクローリを用いて補給できる設計とする。【62条14】【62条23】【62条32】【62条44】【62条55】【63条21】【63条40】【64条11】【64条24】【64条36】【65条11】【65条33】【66条15】【66条29】【66条41】【66条56】【67条19】【69条11】【69条22】【69条32】【69条41】【69条47】【69条61】【70条3】【70条11】【71条17】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他）発電用原子炉の附属施設（非常用電源設備） VI－1－1－4－8－4 設備別記載事項の設定根拠に関する説明書 （その他）発電用原子炉の附属施設（補機駆動用設備） VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3．6．その他発電用原子炉の附属施設 3．6．1 非常用電源設備 補機駆動用燃料設備に係る系統図 9.5 補機駆動用燃料設備 構造図 9.5 補機駆動用燃料設備	2．補機駆䡃用燃料設備の兼用に関する設計 2.1 設備に係る設計のための系統の明碓化及び兼用する機能の確認 2.2 機能を兼用する機器を含を設借して係る設計 3．補機駆動用燃料設備つ設計 3.1 大容量送水ポンプ（タイプI）（㜣料タンク） 3.2 大容量送水ポンプ（タイプII）（㒄料タンク） 3.3 原子炉補機代替洽却水系熱交換器ユニット（燃料タン ク） 3.4 軽油タンク VI－1－10－4 「原子炬冷却系統施設」の様式－1 11．健全性に係る設計 VI－1－10－9 「非常用電䝠設備」の様式－1 1．共通的に適用される設計 2．非常用電源設備の設計 2.4 燃料設備 2．4．1 軽油タンク （2）機能を兼用する機器を含む設備に係る設計
	非常用ディーゼル発電設備軽油タンク，高圧炬心ス プレイ系ディーゼル発電設備軽油タンク又はガスター ビン発電設備軽油タンクからタンクローリへの燃料の補給は，ホースを用いる設計とする。【62条14】 62 条 23】【62条32】【62条44】【62条55】【63条21】【63条40】【64条11】【64条24】【64条36】【65条11】【65条33】【66条15】【66条29】【66条41】【66条56】【67条19】【69条11】【69条22】【69条32】69条41】【69条47】【69条61】【70条3】【70条11】 71 条 17 】	要目表 VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書 （その他）発電用原子炉の附属施設（非常用電源設備） VI－1－1－4－8－4 設備別記載事項の設定根拠に関する説明書 （その他）発電用原子炉の附属施設（補機駆動用設備） VI－1－1－6 安全設備及び重大事故等対処設備が使用される	```2. 補機駆動用燃料設備の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する 機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 3. 補機駆動用燃料設備の設計 3.1 大容量送水ポンプ (タイプ I) (燃料タンク) 3.2 大容量送水ポンプ (タイプII) (燃料タンク) 3.3 原子炬補機代替冷却水系熱交換器ユニット (燃料タン ク) 3.4 軽油タンク```

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
		条件の下における健全性に関する説明書 3．系統施設ごとの設計上の考慮 3．6．その他発電用原子炉の附属施設 3．6．1 非常用電源設備 補機駆動用燃料設備に係る系統図 9.5 補機駆動用燃料設備 構造図 9． 5 補機駆動用燃料設備	VI－1－10－4 「原子炉冷却系統施設」の様式 -1 11．健全性に係る設計 VI－1－10－9 「非常用電源設備」の様式－1 1．共通的に適用される設計 2．非常用電源設備の設計 2.4 燃料設備 2．4．1 軽油タンク （2）機能を兼用する機器を含む設備に係る設計
	2．主要対象設備 補機駆動用燃料設備（非常用電源設備及び補助ボイ ラーに係るものを除く。）の対象となる主要な設備につ いて，「表1 補機駆動用燃料設備（非常用電源設備及 び補助ボイラーに係るものを除く。）の主要設備リス ト」に示す。	－	（「主要設備リスト」による）

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－510－14 基本設計方針から設工認添付書類及び様式—1～の展開表 （非常用取水設備）

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【非常用取水設備】

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子灲及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	(用語の定義のみ)
第1章 共通項目 非常用取水設備の共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．設備に対する要求（4．2 材料及び構造等，4．3 使用中の亀裂等による破壊の防止， 4.4 耐圧試験等， 4.5 安全弁等， 4.6 逆止め弁， 4．7 内燃機関の設計条件， 4.8 電気設備の設計条件 を除く。），5．その他（5．3 安全避難通路等，5．4 放射性物質による汚染の防止を除く。）」の基本設計方針 については，原子炉冷却系統の基本設計方針「第1章共通項目」に基づく設計とする。	第1章 共通項目 非常用取水設備の共通項目である「1．地盤等， 2 ．自然現象，3．火災，5．設備に対する要求（5．2 材料及び構造等，5．3 使用中の亀裂等による破壊の防止，5．4 耐圧試験等，5．5 安全弁等，5．6 逆止め弁， 5.7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他（6．3 安全避難通路等，6．4 放射性物質による汚染の防止を除 く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計と する。	－	1．共通的に適用される設計
第2章 個別項目 1．非常用取水設備の基本設計方針 設計基準事故に対処するために必要となる原子炉補機泠却海水系及び高圧炉心スプレイ補機冷却海水系に使用する海水を取水し，導水するための流路を構築す るため，取水口，取水路及び海水ポンプ室から構成さ れる取水設備を設置することにより泠却に必要な海水 を確保できる設計とする。なお，取水設備は，海と接続しており容量に制限がなく必要な取水容量を十分に有している。	第2章 個別項目 1．非常用取水設備の基本設計方針 設計基準事故に対処するために必要となる原子炉補機泠却海水系及び高圧炉心スプレイ補機冷却海水系に使用する海水を取水し，導水するための流路を構築す るため，取水口，取水路及び海水ポンプ室から構成さ れる取水設備を設置することにより冷却に必要な海水 を確保できる設計とする。なお，取水設備は，海と接続しており容量に制限がなく必要な取水容量を十分に有している。【33条21】	－	（変更なし）
	また，基準津波に対して，原子炉補機冷却海水ポン プ及び高圧炬心スプレイ補機泠却海水ポンプが引き波時においても機能保持できるよう，貯留堰を設置する ことにより泠却に必要な十分な容量の海水が確保でき る設計とする。【33条22】	要目表 VI－1－1－3 取水口及び放水口に関する説明書 2．基本方針 3．取水口，取水路，海水ポンプ室及び貯留堰 VI－1－1－4－8－5 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用取水設備） 非常用取水設備の配置を明示した図面 9.6 非常用取水設備 構造図 9． 6 非常用取水設備	2．非常用取水設備の兼用に関する設計 2.1 設備に係る設計のための兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 3．泠却水を確保するための設計
	非常用取水設備の貯留堰，取水口，取水路及び海水 ポンプ室は，想定される重大事故等時において，設計基準事故対処設備の一部を流路として使用することか	要目表 VI－1－1－3 取水口及び放水口に関する説明書	2．非常用取水設備の兼用に関する設計 2.1 設備に係る設計のための兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計

基本設計方針		設計結果の記載䈏所	様式一1への反映結果
変更前	変更後		
	ら，流路に係る機能について重大事故等対処設備とし ての設計を行ら。【62条17］【62条20】【62条5】【62条 29】【62条34】【62条41】［62条46】【62条52】【62条57】【63条3】【63条43】64条16】【64条21】【64条26】【64条33】【64条38】【65条4】【65条13】【66条20】【66条34】【66条37】【66条43】【66条59】【69条15】【69条26】【69条35】【69条44】 69 条50】【69条63】【70条6】【70条14】【71条12】【71条20】	2．基本方針 3．取水口，取水路，海水ポンプ室及び貯留堰 VI－1－1－4－8－5 設備別記載事項の設定根拠に関する説明書 （その他発電用原子炉の附属施設（非常用取水設備） 非常用取水設備の配置を明示した図面 9.6 非常用取水設備 構造図 9.6 非常用取水設備	3．洽却水を礶保するための設計
2．主要対象設備非常用取水設備の対象となる主要な設備について，「表1 非常用取水設備の主要設備リスト」に示す。	2．主要対象設備非常用取水設備の対象となる主要な設備について，「表1 非常用取水設備の主要設備リスト」に示す。	－	（「主要設備リスト」による）

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －補－E－18－0510－15＿改1

補足－510－15 基本設計方針から設工認添付書類及び様式—1～の展開表 （緊急時対策所）

「基本設計方針から設工認添付書類及び様式 -1 への展開表」【緊急時対策所】

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
用語の定義は「発電用原子力設備に関する技術基準 を定める省令」，「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設 の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	－	（用語の定義のみ）
第1章 共通項目 緊急時対策所の共通項目のうち「1．地盤等， 2 ．自然現象，3．火災，4．設備に対する要求（4．2 材料及び構造等，4．3 使用中の亀裂等による破壊の防止， 4．4耐圧試験等， 4.5 安全弁等， 4.6 逆止め弁， 4.7内燃機関の設計条件，4．8 電気設備の設計条件を除 く。），5．その他（5．4 放射性物質による汚染の防止 を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 緊急時対策所の共通項目のうち「1。地盤等， 2 。自然現象，3．火災，4．溢水等5．設備に対する要求 （5．2 材料及び構造等，5．3 使用中の亀裂等による破壊の防止，5．4 耐圧試験等，5．5 安全弁等，5．6 逆止め弁，5．7 内燃機関及びガスタービンの設計条件， 5.8 電気設備の設計条件を除く。），6．その他（6．4放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉泠却奚統施設の基本設計方針「第 1章 共通項目」に基づく設計とする。	－	1．共通的に適用される設計
第2章 個別項目 1．緊急時対策所 1．1 緊急時対策所の設置等 1．1．1 緊急時対策所の設置 発電用原子炉施設には，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合に適切な措置をとるため，緊急時対策所を中央制御室以外 の場所に設置する。	第2章 個別項目 1．緊急時対策所 1．1 緊急時対策所の設置等 1．1．1 緊急時対策所の設置 発電用原子炉施設には，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合に適切な措置をとるため，緊急時対策所を中央制御室以外 の場所に設置する。【46条1】	緊急時対策所の設置場所を明示した図面 9.7 緊急時対策所	（基本設計方針に変更はないが，設工認で必要な設計） 2．緊急時対策所の設置等に関する設計 2.1 設置場所等に関する設計
1．1．2 設計方針	1．1．2 設計方針 緊急時対策所は，重大事故等が発生した場合におい ても，当該事故等に対処するための適切な措置が講じ ることができるよう，緊急時対策所機能に係る設備を含め，以下の設計とする。【76条1】	－	（冒頭宣言）
	なお，緊急時対策所は，緊急対策室及びSPDS室から構成され，緊急時対策建屋に設置する設計とする。【76条2】	－	（冒頭宣言）
	（1）耐震性及び耐津波性 緊急時対策所は，重大事故等が発生した場合におい ても，当該事故等に対処するための適切な措置が講じ られるよう，その機能に係る設備を含め，基準地震動 S s による地震力に対し，機能を喪失しないよう設計 するとともに，基準津波の影響を受けない設計とする。 【76条3】	VI－1－9－3－1 緊急時対策所の機能に関する説明書 3．緊急時対策所の機能に係る詳細設計	2．緊急時対策所の設置等に関する設計 2.1 設置場所等に関する設計
	（2）中央制御室に対する独立性 緊急時対策所の機能に係る設備は，共通要因により中央制御室と同時に機能喪失しないよう，中央制御室 に対して独立性を有する設計とするとともに，中央制御室とは離れた位置に設置又は保管する設計とする。 【76条4】	VI－1－9－3－1 緊急時対策所の機能に関する説明書 3．緊急時対策所の機能に係る詳細設計	2．緊急時対策所の設置等に関する設計 2.1 設置場所等に関する設計

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
	（3）代替交流電源の確保 緊急時対策所は，全交流動力電源が喪失した場合に，代替電源設備からの給電が可能な設計とする。【76条5】	VI－1－9－3－1 緊急時対策所の機能に関する説明書 3．緊急時対策所の機能に係る詳細設計	2．緊急時対策所の設置等に関する設計 2.2 代替電源設備に関する設計
	常設の代替電源設備は，常設代替交流電源設備であ るガスタービン発電機2台で緊急時対策所を含む重大事故等発生時に想定される負荷へ給電するために必要 な容量を有する設計とする。【76条6】	VI－1－9－3－1 緊急時対策所の機能に関する説明書 3．緊急時対策所の機能に係る詳細設計	2．緊急時対策所の設置等に関する設計 2.2 代替電源設備に関する設計
	なお，放射性雲通過中には給油を必要とせずに必要負荷に対して7日間（168時間）以上連続給電が可能な設計とする。【76条7】	VI－1－9－3－1 緊急時対策所の機能に関する説明書 3．緊急時対策所の機能に係る詳細設計	2．緊急時対策所の設置等に関する設計 2.2 代替電源設備に関する設計
	可搬の代替電源設備は，緊急時対策所用代替交流電源設備である電源車（緊急時対策所用）1台で緊急時対策所に電源供給するために必要な容量を有する設計と する。【76条8】	VI－1－9－3－1 緊急時対策所の機能に関する説明書 3．緊急時対策所の機能に係る詳細設計	2．緊急時対策所の設置等に関する設計 2.2 代替電源設備に関する設計
	電源車（緊急時対策所用）使用時には電源車（緊急時対策所用）1台が必要負荷に対して7日間（168時間）以上連続運転が可能な容量を有する緊急時対策所軽油 タンクへ接続するため，放射性雲通過時において，燃料を補給せずに運転できる設計とする。【76条9】	VI－1－9－3－1 緊急時対策所の機能に関する説明書 3．緊急時対策所の機能に係る詳細設計	2．緊急時対策所の設置等に関する設計 2.2 代替電源設備に関する設計
	緊急時対策所の代替電源設備は，常設設備としてガ スタービン駆動であるガスタービン発電機及び可搬型設備としてディーゼル駆動である電源車（緊急時対策所用）を設置することにより，電源の多様性を有する設計とする。【76条11】	VI－1－9－3－1 緊急時対策所の機能に関する説明書 3．緊急時対策所の機能に係る詳細設計	2．緊急時対策所の設置等に関する設計 2.2 代替電源設備に関する設計
（1）緊急時対策所機能の確保 緊急時対策所は，以下の措置を講じること又は設備 を備えることにより緊急時対策所機能を確保する。	（4）緊急時対策所機能の確保 緊急時対策所は，以下の措置を講じること又は設備 を備えることにより緊急時対策所機能を確保する。	－	（冒頭宣言）
a．居住性の確保 緊急時対策所は，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合に適切な措置をとるために必要な要員を収容できるとともに，そ れら要員が必要な期間にわたり滞在できる設計とす る。	a．居住性の確保 緊急時対策所は，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合に適切な措置をとるために必要な要員を収容できるとともに，そ れら要員が必要な期間にわたり滞在できる設計とす る。【46条2】	要目表 VI－1－9－3－1 緊急時対策所の機能に関する説明書 3．緊急時対策所の機能に係る詳細設計 3.1 居住性の確保 VI－1－9－3－2 緊急時対策所の居住性に関する説明書 3．緊急時対策所の居住性を確保するための防護措置 3.1 換気設備等	（基本設計方針に変更はないが，設工認で必要な設計） 3．緊急時対策所機能に係る設計 3.1 居住性の確保に関する設計
	緊急時対策所は，重大事故等が発生した場合におい ても，重大事故等に対処するために必要な指示を行ら要員に加え，原子炉格納容器の破損等による発電所外 への放射性物質の拡散を抑制するための対策に対処す るために必要な数の要員を含め，重大事故等に対処す るために必要な数の要員を収容することができるとと もに，重大事故等に対処するために必要な指示を行ら要員がとどまることができるよう，適切な遮蔽設計及 び換気設計を行い緊急時対策所の居住性を確保する。	要目表 VI－1－9－3－1 緊急時対策所の機能に関する説明書 3．緊急時対策所の機能に係る詳細設計 3.1 居住性の確保 VI－1－9－3－2 緊急時対策所の居住性に関する説明書 3．緊急時対策所の居住性を確保するための防護措置 3.1 換気設備等	3．緊急時対策所機能に係る設計 3.1 居住性の確保に関する設計

基本設計方針		設計結果の記載箇所	様式－1への反映結果
変更前	変更後		
	【76条12】	3．1．1 緊急時対策所換気空調系換気空調系及び緊急時対策所加圧空気供給系 4．緊急時対策所の居住性評価 4.2 酸素濃度及び二酸化炭素濃度評価 4．2．1 評価方針	
	重大事故等が発生した場合における緊急時対策所の居住性については，想定する放射性物質の放出量等を東京電力株式会社福島第一原子力発電所事故と同等と し，かつ緊急時対策所内でのマスクの着用，交替要員体制，安定よう素剤の服用及び仮設設備を考慮しない条件においても，「原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規）」の手法を参考と した被ばく評価において，緊急時対策所にとどまる要員の実効線量が事故後7日間で 100 mSv を超えない設計 とする。【76条14】	要目表 VI－1－9－3－2 緊急時対策所の居住性に関する説明書 4．緊急時対策所の居住性評価 4.1 線量評価 4．1．2 線量計算	3．緊急時対策所機能に係る設計 3.1 居住性の確保に関する設計
	緊急時対策所には，酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあることを把握できるよう酸素濃度計（緊急時対策所用）（個数1（予備1））及び二酸化炭素濃度計（緊急時対策所用）（個数1（予備1）） を保管する設計とするとともに，室内への希ガス等の放射性物質の侵入を低減又は防止するための確実な判断ができるよう放射線量を監視，測定するため，さら に緊急時対策所加圧空気供給系による加圧判断のため に使用する緊急時対策所可搬型エリアモニタ及び可搬型モニタリングポストを保管する設計とする。【46条7】 【76条22】	要目表 VI－1－9－3－1 緊急時対策所の機能に関する説明書 3．緊急時対策所の機能に係る詳細設計 3.1 居住性の確保 3．1．3 酸素濃度計及び二酸化炭素濃度計 VI－1－9－3－2 緊急時対策所の居住性に関する説明書 3．緊急時対策所の居住性を確保するための防護措置 3.1 換気設備等 3．1．1 緊急時対策所換気空調系換気空調系及び緊急時対策所加圧空気供給系	3．緊急時対策所機能に係る設計 3.1 居住性の確保に関する設計
	緊急時対策所は，重大事故等が発生し，緊急時対策所の外側が放射性物質により汚染したような状況下に おいて，対策要員が緊急時対策所内に放射性物質によ る汚染を持込むことを防止するため，身体サーベイ及 び作業服の着替え等を行らための区画を設置する設計 とする。【76条26】	運用に関する記載であり，保安規定にて対応	－
	身体サーベイの結果，対策要員の汚染が確認された場合は，対策要員の除染を行うことができる区画を，身体サーベイを行ら区画に隣接して設置することがで きるよう考慮する。【76条26】	運用に関する記載であり，保安規定にて対応	－
b．情報の把握 緊急時対策所には，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常に対処するために必要な情報を，中央制御室内の運転員を介さずに正確かつ速 やかに把握するための設備を設置する。	b．情報の把握 緊急時対策所には，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常に対処するために必要な情報及び重大事故等が発生した場合においても当該事故等に対処するために必要な指示ができるよう，重大事故等に対処するために必要な情報を，中央制御室内 の運転員を介さずに正確かつ速やかに把握できる設備 として，安全パラメータ表示システム（SPDS）を設置	要目表 VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．7 安全パラメータ表示システム（SPDS） 3.2 通信連絡設備（発電所外） 3．2．7 データ伝送設備	3．緊急時対策所機能に係る設計 3.2 情報の把握に関する設計 VI－1－10－5 「計測制御系統施設」の様式 -1 7．通信連絡設備に関する設計

基本設計方針		設計結果の記載笽所	様式－1 への反映結果
変更前	変更後		
	する。【46条3】［76条24】		
	安全パラメータ表示システム（SPDS）として，事故状態等の必要な情報を把握するために必要なパラメー夕等を収集し，緊急時対策所内で表示できるよう，デ ータ収集装置，SPDS伝送装置及びSPDS表示装置を設置 する設計とする。【46条4】	要目表 VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．7 安全パラメータ表示システム（SPDS） 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	3．緊急時対策所機能に係る設計 3.2 情報の把握に関する設計 $\mathrm{VI}-1-10-5$ 「計測制御系統施設」の栐式－1 7．通信連絡設備に関する設計
	c．通信連絡 原子炉冷却采統汇係る発電用原子炬施設の損壊その他の異常が発生した場合において，当該事故等に対処 するため，発電所内の関係要員氾指示を行らため㲹必要な通信連絡設備及び発電所外関係箇所と專用であっ て多㥞性を備えた通信回線にて通信連絡できる設計と する。【46条5】	要目表 VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．1 送受話器（ページング）（警報装置を含む。） 3．1．2 電力保安通信用電話設備（固定電話機，PHS端末及 びFAX） 3．1．3 移動無線設備（固定型）及び移動無線設備（車載型） 3．1．4 無線連絡設備（固定型）及び無線連絡設備（携帯型） 3．1．5 携行型通話装置 3．1．6 衛星電話設備（固定型）及び衛星電話設備（携帯型） 3.2 通信連絡設備（発電所外） 3．2．1 電力保安通信用電話設備（固定電話機，PHS端末， FAX及び衛星保安電話（固定型） 3．2．2 社内テレビ会議システム 3．2．3 局線加入電話設備（加入電話機及ひ加入FAX） 3．2．4 専用電話設備（地方公共団体向ホットライン） 3．2．5 衛星電話設備（固定型）及び衛星電話設備（携帯型） 3．2．6 統合原子力防災ネットワークを用いた通信連絡設 備（テレビ会議システム，IP電話及びIP－FAX） 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	3．緊急時対策所機能に係る設計 3.3 通信連絡に関する設計 VI－1－10－5 「計測制御系統施設」の様式－1 7．通信連絡設備に関する設計
	緊急時対策所には，重大事故等が発生した場合にお いても発電所の内外の通信連絡をする必要のある場所 と通信連絡できる設計とする。【76条25】	要目表 VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．4 無線連絡設備（固定型）及び無線連絡設備（携帯型） 3．1．5 携行型通話装置 3．1．6 衛星電話設備（固定型）及び衛星電話設備（携帯型） 3.2 通信連絡設備（発電所外） 3．2．5 衛星電話設備（固定型）及び衛星電話設備（携帯型） 3．2．6 統合原子力防災ネットワークを用いた通信連絡設	3．緊急時対策所機能に係る設計 3.3 通信連絡に関する設計 VI－1－10－5 「計惻制御系統施設」の様式－1 7．通信連絡設備に関する設計

基本設計方針		設計結果の記載箇所	様式 -1 への反映結果
変更前	変更後		
		備（テレビ会議システム，IP電話及びIP－FAX） 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	
	原子炉冷却系統に係る発電用原子炬施設の損壊その他の異常が発生した場合において，通信連絡設備によ り，発電所内から発電所外の緊急時対策支援システム （ERSS）～必要なデータを伝送できるデー夕伝送設備 として，SPDS伝送装置を設置する設計とする。 データ伝送設備については，通信方式の多様性を確保した專用通信回線にて伝送できる設計とする。【46条 6】	要目表 VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．7 安全パラメータ表示システム（SPDS） 3.2 通信連絡設備（発電所外） 3．2．7 データ伝送設備 通信連絡設備の取付箇所を明示した図面 1.6 通信連絡設備の取付箇所を明示した図面	3．緊急時対策所機能に係る設計 3.3 通信連絡に関する設計 VI－1－10－5 「計測制御采統他設」の様式 -1 7．通信連絡設備に関する設計
	緊急時対策支援システム（ERSS）へ必要なデータを伝送できるSPDS伝送装置で構成するデータ伝送設備に ついては，重大事故等が発生した場合においても必要 なデータを伝送できる設計とする。【76条27】	要目表 VI－1－1－10 通信連絡設備に関する説明書 3．施設の詳細設計方針 3.1 通信連絡設備（発電所内） 3．1．7 安全パラメータ表示システム（SPDS） 3.2 通信連絡設備（発電所外） 3．2．7 データ伝送設備	3．緊急時対策所機能に係る設計 3.3 通信連絡に関する設計 VI－1－10－5 「計測制御系統施設」の様式－1 7．通信連絡設備に関する設計
2．主要対象設備 緊急時対策所の対象となる主要な設備について，「表 1 緊急時対策所の主要設備リスト」に示す。	2．主要対象設備 緊急時対策所の対象となる主要な設備について，「表 1 緊急時対策所の主要設備リスト」に示す。	－	(「主要設備リスト」による)

