本資料のうち，枠囲みの内容は商業機密の観点から公開できま
せん。

| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

補足－160 工事計画に係る補足説明資料（火山への配慮に関する説明書）

東北電力株式会社

工事計画添付書類に係る補足説明資料

添付書類の記載内容を補足するための資料を以下に示す。

工認添付書類	補足説明資料
$\mathrm{VI}-1-1-2-4$	補足－160－1
火山への配慮に関する説明書	火山への配慮に関する説明書の補足説明資料

女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －補－E－01－0160－1＿改 5

補足－160－1 火山への配慮に関する説明書の補足説明資料

1．降下火砕物の影響を考慮する施設の選定について
2．降下火砕物の凝集による閉塞の影響について
3．降下火砕物の影響を考慮する施設の影響評価について

1．降下火砕物の影響を考慮する施設の選定について

1．降下火砕物の影響を考慮する施設の選定について
降下火砕物より防護すべき施設は，発電用原子炉施設の安全性を碓保するため「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規定されている安全重要度分類のクラ ス 1 ，クラス 2 及び安全評価上その機能に期待するクラス 3 に属する構築物，系統及び機器（以下「外部事象防護対象施設」という。）並びに重大事故等対処設備とする。

降下火砕物より防護すべき施設のうち，外部事象防護対象施設は図 1－1 のフローに従い選定す る。
降下火砕物の影響について評価を行ら施設（以下「降下火砕物の影響を考慮する施設」という。） は，その設置状況や構造等を踏まえて選定する。

外部事象防護対象施設に係る降下火砕物の影響を考慮する施設は，図 1－2 のフローに従い選定 し，選定結果を表 1－1 及び表 1－2 に示す。なお，降下火砕物の影響を考慮する施設には，外部事象防護対象施設を内包する建屋及び波及的影響を及ぼし得る施設を含めている。

重大事故等対処設備に係る降下火砕物の影響を考慮する施設は，直接降下火砕物と接触する屋外に設置している重大事故等対処設備とする。屋内に設置している重大事故等対処施設備は，建屋にて防護されることから，重大事故等対処設備の代わりに重大事故等対処設備を内包する建屋 を降下火砕物の影響を考慮する施設として選定する。

また，降下火砕物の間接的影響を考慮し，原子炉の高温停止，泠温停止に必要となる機能を達成するために必要となる設備を選定した結果，上記の機能を達成するために必要な設備は，表 1－ 1 の降下火砕物の影響を考慮する施設に含まれていることを確認した。

図 1－1 外部事象防護対象施設 選定フロー

図 1－2 降下火砕物の影響を考慮する施設（外部事象防護対象施設，外部事象防護対象施設を内包する建屋及び波及的影響を及ぼし得る施設）選定フロー

		表 1－1 降	下火砕物の影響を考内包する建屋	慮する施設（外部事象防護対象施設，外部事象防及び波及的影響を及ぼし得る施設）（ $1 / 7$ ）	護					\bigcirc ：	Yes	$x:$ No	－：該	
重要度分類指針				女川原子力発電所第2号機	抽出の観点＊1							設置 場所 ＊ 2	降下火砕物の影響を考慮す る施設	
				STEP1	STEP2					STEP3	備考			
分類	定義	機能	構築物，系統又は機器		構築物，系統又は機器	（1）	（2）	（3）	（4）		（5）			
PS－1	その損傷又は故障 により発生する事象によって，（a）炉心の著しい損傷，又 は（b）燃料の大量の破損を引き起こす おそれのある構築物，系統及び機器	1）原子炉冷却材圧力 バウンダリ機能	原子炉冷却材圧力バウ ンダリを構成する機器•配管系（計装等の小口径配管•機器は除 く。）	原子炉圧力容器	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				原子炬再循環ポンプ	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				原子炉冷却材圧力バウンダリ隔離弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				制御棒駆動機構ハウジング	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				中性子束計装ハウジング	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
		2）過剰反応度の印加	制御棒カップリング	制御棒カップリング	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
		防止機能	制御棒カップリング	制御棒駆動機構カップリング	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
		3）炉心形状の維持機能	炉心支持構造物（炉心 シュラウド，シュラウ ドサポート，上部格子板，炉心支持板，制御棒案内管），燃料集合体 （ただし，燃料を除 く。）	炉心シュラウド	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				シュラウドサポート	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				上部格子板	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				炉心支持板	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				燃料支持金具	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				制御棒案内管	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				制御棒駆動機構八ウジング	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				燃料集合体（上部タイプレート）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				燃料集合体（下部タイプレート）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				燃料集合体（スペーサ）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 燃料集合体）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
MS－1	1）異常状態発生時 に原子炉を緊急 に停止し，残留熱 を除去し，原子炉冷却材圧力バウ ンダリの過圧を防止し，敷地周辺公衆への過度の放射線の影響を防止する構築物，系統及び機器	1）原子炉の緊急停止機能	原子炉停止系の制御棒 による系（制御棒及び制御棒駆動系（スクラ ム機能））	制御棒	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				制御棒案内管	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				制御棒駆動機構	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				制御棒駆動機構カップリング	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				水圧制御ユニット（スクラ 直接関連系 （制御棒駆動水圧系） ムパイロット弁，スクラム 弁，アキュムレータ，窒素 容器，配管，弁）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
		2）未臨界維持機能	原子炉停止系（制御棒 による系，ほう酸水注入系）	制御棒	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				制御棒カップリング	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 \quad 制御棒駆動機構	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （制御棒駆動水圧系）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				ほう酸水注入系（ポンプ，注入弁，タンク出口弁，貯蔵タン ク，ポンプ吸込配管及び弁，注入配管及び弁）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
		3）原子炉冷却材圧力 バウンダリの過圧防止機能	逃がし安全弁（安全弁 としての開機能）	主蒸気逃がし安全弁（安全弁としての開機能）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	

○：Yes $\times:$ No $-:$ 該当せず表 1－1 降下火砕物の影響を考慮する施設（外部事象防護対象施設，外部事象防護対象施設を

女川原子力発電所第2号機		抽出の観点＊1							$\begin{gathered} \text { 設置 } \\ \text { 場所 } \\ * 2 \end{gathered}$	降下火砕物の影響を考慮す る施設	備考	
構築物，系統又は機器		STEP1	STEP2					STEP3				
		（1）	（2）	（3）	（4）	（5）						
残留熱除去系（ポンプ，熱交換器，原子炉停止時冷却モードのルート となる配管及び弁）			\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
直接関連系 （残留熱除去系）	熱交換器バイパス配管及び弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
原子炉隔離時冷却系（ポンプ，サプレッションチェンバ，タービン， サプレッションチェンバから注水先までの配管，弁）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
直接関連系 （原子炉隔離時冷却系）	タービンへの蒸気供給配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
	ポンプミニマムフローラインの配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
	```サプレッションチェンバ内のストレー ナ```	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	R	－		
	復水貯蔵タンク	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	屋外	$\bigcirc$		
	ポンプの復水貯蔵タンクからの吸込弁	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	R	－		
	ポンプの復水貯蔵タンクからの吸込配管，弁	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	R	－		
	潤滑油冷却器及びその冷却器までの冷却水供給配管	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	R	－		
高圧炉心スプレイ系（ポンプ，サプレッションチェンバ，サプレッシ ョンチェンバからスプレイ先までの配管，弁，スプレイスパージャ）		$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	R	－		
直接関連系   （高圧炉心スプレイ系）	ポンプミニマムフローラインの配管，弁	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	R	－		
	```サプレッションチェンバ内のストレー ナ```	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	R	－		
	復水貯蔵タンク	\bigcirc	\times	\bigcirc	\times	\times	\times	\times	屋外	\bigcirc		
	ポンプの復水貯蔵タンクからの吸込弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
	ポンプの復水貯蔵タンクからの吸込配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
主蒸気逃がし安全弁（手動逃がし機能）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
直接関連系 （主蒸気逃がし安全弁（手動逃がし機能））	原子炉圧力容器から主蒸気逃がし安全弁までの主蒸気配管	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
	駆動用窒素源（アキュムレータ，アキ ユムレータから主蒸気逃がし安全弁ま での配管，弁）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
自動減圧系（手動逃が 機能）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
直接関連系 （自動減圧系（手動逃がし機能））	原子炉圧力容器から主蒸気逃がし安全弁までの主蒸気配管	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
	駆動用窒素源（アキュムレータ，アキ ユムレータから主蒸気逃がし安全弁ま での配管，弁）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		

| - Yes $\times:$ No $-: ~$ 該当せず |
| :--- |表 1－1 降下火砕物の影響を考慮する施設（外部事象防護対象施設，外部事象防護対象施設を

重要度分類指針						抽出の観点＊1							設置場所 ＊2	降下火砕物の影響を考慮す る施設	備考
分類	定義	機能	構築物，系統又 は機器			STEP1	STEP2					STEP3			
				構築物，系統又は機器			（1）	（2）	（3）	（4）	（5）				
MS－1	1）異常状態発生時 に原子炉を緊急 に停止し，残留熱を除去し，原子炉冷却材圧力 バウンダリの過圧を防止し，敷地周辺公衆への過度の放射線の影響を防止する構築物，系統及 び機器	5）炉心冷却機能	非常用炉心冷却系（低圧炉心スプ レイ系，低圧注水系，高圧炬心スプ レイ系，自動減圧系）	残留熱除去系（低圧注水モード）（ポンプ，サプレッションチェン バ，サプレッションチェンバから注水先までの配管，弁（熱交換器 バイパスライン含む），注水ヘッダ）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （残留熱除去系（低圧注水モード））	ポンプミニマムフローラインの配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
					サプレッションチェンバ内のストレーナ	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				低圧炬心スプレイ系（ポンプ，サプレッションチェンバ，サプレッシ ョンチェンバからスプレイ先までの配管，弁，スプレイスパージャ）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （低圧炉心スプレイ系）	ポンプミニマムフローラインの配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
					サプレッションチェンバ内のストレーナ	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				高圧炉心スプレイ系（ポンプ，サプレッションチェンバ，サプレッシ ョンチェンバからスプレイ先までの配管，弁，スプレイスパージャ）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （高圧炉心スプレイ系）	ポンプミニマムフローラインの配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
					サプレッションチェンバ内のストレーナ	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
					復水貯蔵タンク	\bigcirc	\times	\bigcirc	\times	\times	\times	\times	屋外	\bigcirc	
					ポンプの復水貯蔵タンクからの吸込弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
					ポンプの復水貯蔵タンクからの吸込配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				自動減圧系（主蒸気逃がし安全弁）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （自動減圧系（主蒸気逃 がし安全弁））	原子炉圧力容器から主蒸気逃がし安全弁 までの主蒸気配管	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
					駆動用窒素源（アキュムレータ，アキュム レータから主蒸気逃がし安全弁までの配管，弁）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
		6）放射性物質の閉じ込め機能，放射線の遮へい及び放出低減機能	原子炉格納容器，原子炉格納容器隔離弁，原子炉格納容器スプレイ泠却系，原子炉建屋，非常用ガス処理系，非常用再循環ガス処理系，可燃性ガス濃度制御系	原子炉格納容器（格納容器本体，貫通部，所員用エアロック，機器搬出入用ハッチ）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （原子炉格納容器）	ベント管	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
					スプレイ管	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
					真空破懐弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
					主蒸気逃がし安全弁排気管のクエンチャ	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				原子炉建屋（原子炉建屋原子炉棟）（ブローアウトパネル付き）直接閏連系		\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	外殻施設
				直接関連系 （原子炉建屋（原子炉建屋原子炉棟））	原子炉棟給排気隔離弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				原子炉格納容器隔離弁及び原子炉格納容器バウンダリ配管		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （原子炉格納容器隔離弁及び原子炉格納容器バウ ンダリ配管）	主蒸気隔離弁駆動用空気又は窒素源（ア キュムレータ，アキュムレータから主蒸気隔離弁までの配管，弁）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				主蒸気流量制限器		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	

表 1－1 降下火砕物の影響を考慮する施設（外部事象防護対象施設，外部事象防護対象施設を
○：Yes $\times:$ No $-:$ 該当せず

$\begin{aligned} & \text { 种 } \\ & \text { 把 } \end{aligned}$																			
	1	।	1	।	\bigcirc	1	1	1	।	\bigcirc	1	\bigcirc	\times	।	\bigcirc	।	\times	\times	\times
	\simeq	\approx	\simeq	\simeq	$\stackrel{大}{\circ}$	\simeq	\simeq	\simeq	\simeq		0	\simeq		\sim	$\begin{aligned} & \frac{1}{8} \\ & \frac{8 p+1}{2} \\ & 2 \end{aligned}$	\simeq	$\begin{aligned} & \text { 冎 } \\ & \text { a } \end{aligned}$		
$\begin{aligned} & \stackrel{\sim}{m} \\ & \stackrel{y}{n} \end{aligned}$	\times	\bigcirc	\times	\times	\times	\times													

＊ $2: ~ \mathrm{R}=$ 原子炉建屋， $\mathrm{C}=$ 制御建屋， $\mathrm{T}=$ タービン建屋， $\mathrm{L} O=$ 軽油タンク室， $\mathrm{L} O H=$ 軽油タンク室 (H) ， $\mathrm{D}=$ 固体廃棄物貯蔵所， $\mathrm{HB}=$ 補助ボイラー建屋， $\mathrm{TSC}=$ 緊急時対策所
抽出の観点＊1

表1－1 要度分類指針				る施設（外部事象防 び波及的影響を及ぼ	j護対象施設，外部事 し得る施設）（6／7）	方護						\bigcirc ：Y	S \times	No－	当せず	
				女川原子力	発電所第2号機			抽出	の観	点＊1			設置場所	降下火砕物の影響 を考慮す る施設	備考	
		機能	構築物，系統又は機器	構築物，系統又は機器		STEP1	STEP2					STEP3				
分類	定義					（1）	（2）	（3）	（4）	（5）						
PS－2	1）その損傷又は故障により発生する事象によって，炉心の著しい損傷又は燃料の大量の破損を直ちに引き起こすおそれはない が，敷地外への過度の放射性物質の放出のおそれ のある構築物，系統及び機器	2）原子炉冷却材圧 カバウンダリに直接接続されて いないものであ って，放射性物質 を貯蔵する機能	放射性廃棄物処理施設 （放射能インベントリ の大きいもの），使用済燃料プール（使用済燃料貯蔵ラックを含む。）	気体廃棄物処理系（活装置）	炭式希ガスホールドアップ		\bigcirc	\times	\times	\times	\times	\times	\times	T	－	
				使用済燃料プール（使	済燃料貯蔵ラックを含む。）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				新燃料貯蔵庫（臨界を防 ック）	止する機能）（新燃料貯蔵ラ	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
		3）燃料を安全に取 り扱う機能	燃料取扱設備	燃料交換機		\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				原子炉建屋クレーン		\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				直接関連系 （燃料取扱設備）	原子炉ウェル	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
	2）通常運転時及び運転時の異常な過渡変化時に作動 を要求されるものであっ て，その故障により，炉心冷却が損なわれる可能性の高い構築物，系統及 び機器	1）安全弁及び逃が し弁の吹き止ま り機能	逃がし安全弁（吹き止 まり機能に関連する部分）	主蒸気逃がし安全弁（吹	き止まり機能）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
MS－2	1）PS－2 の構築物，系統及び機器の損傷又は故障によ り敷地周辺公衆に与える放射線の影響を十分小さ くするようにする構築物，系統及び機器	1）燃料プール水の補給機能	非常用補給水系	残留熱除去系（ポンプ，サプレッションチェンバ，サ プレッションチェンバ内のストレーナから燃料プー ルまでの配管，弁）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				直接関連系 （残留熱除去系）	ポンプミニマムフローライ ンの配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
					$\begin{aligned} & \text { サプレッションチェンバ内 } \\ & \text { のストレーナ } \end{aligned}$	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
		2）放射性物質放出 の防止機能	放射性気体廃棄物処理系の隔離弁，排気筒（非常用ガス処理系排気管 の支持機能以外）	気体廃棄物処理系の隔離弁		\bigcirc	\times	\times	\times	\times	\times	\times	T	－		
				排気筒		\bigcirc	\times	\bigcirc	\times	\bigcirc	\times	\times	屋外	\bigcirc		
				燃料プール泠却浄化系の燃料プール注入逆止弁		\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
			燃料集合体落下事故時放射能放出を低減する系	原子炉建屋（原子炉建屋原子炉棟（ブローアウトパネ ル付き））		\bigcirc	\times	\times	\times	\times	\times	\times		\bigcirc	外殻施設	
				直接関連系 （原子炉建屋原子炉棟）	原子炉棟給排気隔離弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				非常用ガス処理系（乾燥装置，排風機，フィルタ装置，原子炉建屋原子炉棟吸込口から排気筒までの配管，弁）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
						\bigcirc	\times	\bigcirc	\times	\bigcirc	\times	\times	屋外	\bigcirc	$\begin{aligned} & \text { 一部の屋外 } \\ & \text { 配管 } \end{aligned}$	
				直接関連系 （非常用ガス処理系）	乾燥装置（乾燥機能部分）	\bigcirc	\times	\times	×	\times	\times	\times	R	－		

となる施設，（5）＝外気から取り入れた屋内の空気を機器内に取り込む機構を有する施設，STEP3＝外部事象防護対象施設等に波及的影響を及ぼし得る施設

重要度分類指針				設（外部事象防護対象施設，外部事及的影響を及ぼし得る施設）（7／7）	方護						\bigcirc ：Yes \times ：N		No－：該当せず	
				女川原子力発電所第2号機	抽出の観点＊1							$\begin{aligned} & \text { 設置 } \\ & \text { 場所 } \\ & * 22 \end{aligned}$	降下火砕物の影響を考慮す る施設	備考
分類	定義	機能	構築物，系統又は機器	構築物，系統又は機器	STEP1	STEP2					STEP3			
						（1）	（2）	（3）	（4）	（5）				
MS－2	2）異常状態への対応上特に重要な構築物，系統及び機器	1）事故時のプラント状態 の把握機能	事故時監視計器の一部	- 中性子束（起動領域モニタ） - 原子炉スクラム用電磁接触器の状態 - 制御棒位置	\bigcirc	\times	\times	\times	\times	\times	\times	R，C	る	
				- 原子炉水位（広帯域） - 原子炉水位（燃料域） - 原子炉圧力	\bigcirc	\times	\times	\times	\times	\times	\times	R，C	－	
				- 圧力抑制室圧力 - ドライウェル圧力 - サプレッションプール水温度 - 格納容器内雰囲気放射線モニタ	\bigcirc	\times	\times	\times	\times	\times	\times	R，C	－	
				［低温停止への移行］ - 原子炉圧力 - 原子炉水位（広帯域）	\bigcirc	\times	\times	\times	\times	\times	\times	R，C	－	
				［ドライウェルスプレイ］ - 原子炉水位（広帯域） - 原子炉水位（燃料域） - 圧力抑制室圧力 - ドライウェル圧力	\bigcirc	\times	\times	\times	\times	\times	\times	R，C	－	
				［サプレッションチェンバ冷却］ - 原子炉水位（広帯域） - 原子炉水位（燃料域） - サプレッションプール水温度	\bigcirc	\times	\times	\times	\times	\times	\times	R，C	－	
				［可燃性ガス濃度制御系起動］ - 格納容器内雰囲気水素濃度 - 格納容器内雰囲気酸素濃度	\bigcirc	\times	\times	\times	\times	\times	\times	R，C	－	
		2）異常状態の緩和機能	BWR には対象機能なし	（対象外）	－	－	－	，	，		\bigcirc	－	C^{-}	
		3）制御室外からの安全停 止機能	制御室外原子炬停止装置（安全停止に関連するもの）	中央制御室外原子炉停止装置	\bigcirc	\times	\times	\times	\times	\times	\times	C	－	
MS－3	2）異常状態への対応上必要な構築物，系統及び機器	1）緊急時対策上重要なも の及び異常状態の把握機能	原子力発電所緊急時対策所，試料採取系，通信連絡設備，放射能監視設備，事故時監視計器の一部，消火系，安全避難通路，非常用照明	放射線監視設備（気体廃棄物処理設備エリア排気放射線モニタ）	\bigcirc	\times	\times	\times	\times	\times	\times	T	－	
外殻となる施設				制御建屋	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	外殻施設
				タービン建屋	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	外殻施設
				軽油タンク室	\bigcirc	\times	\times	\times	\times	\times	\times	－	\bigcirc	外殻施設
				軽油タンク室（H）	\bigcirc	\times	\times	\times	\times	\times	\times	－	\bigcirc	外殼施設

表 1－2 降下火砕物の影響を考慮する施設の抽出結果

設備区分	降下火砕物の影響を考慮する施設	
	建屋	•原子炉建屋 ・タービン建屋
	•制御建屋	

2．降下火砕物の凝集による閉塞の影響について

2．降下火砕物の凝集による閉塞の影響について

2.1 概要

降下火砕物は，水分を含んで湿ることによって粒子が集合し凝集する場合がある。そのため，降下火砕物の凝集によって閉塞への影響が発生しないことを以下のとおり確認した。

2.2 水循環系の閉塞への影響

降下火砕物は水中等過剰な水分がある場合は凝集しないため，閉塞への影響はない。なお，水循環系における狭隘部は（1），（2）及び（3）に示すとおり，降下火砕物の粒径に対し十分な流水部及び流速があり，仮に凝集を考慮しても閉塞することはない。
（1）原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプの狭隘部
a．流水部の閉塞
原子炉補機冷却海水ポンプ流水部及び高圧炉心スプレイ補機冷却海水ポンプ流水部の狭隘部の寸法は，図 2．2－1 及び図 2．2－2 に示すように原子炉補機冷却海水ポンプが約 55 mm で あり，高圧炉心スプレイ補機冷却海水ポンプが約 29 mm である。想定する降下火砕物の粒径 は約 2 mm 以下であるため，閉塞には至らない。
b．軸受部への影響
原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプの軸受の隙間はそ れぞれ， $1.2 \mathrm{~mm}, ~ 0.7 \mathrm{~mm}$ の許容値以下で管理されている。想定する粒径は約 2 mm 以下であり，一部の降下火砕物は軸受の隙間より，軸受内部に入り込む可能性があるが，異物逃がし溝 （約 $2.5 \mathrm{~mm} ~$ 約 5.5 mm ）が設けられており，軸受部の閉塞には至らない。また，異物逃がし溝より粒径の大きな降下火砕物は軸受部隙間に入り込まずポンプ揚水とともに吐出口へ流 されるため閉塞することはない。原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプの構造図を図 2．2－1 及び図 2．2－2 に示す。

図 2．2－1 原子炉補機泠却海水ポンプ 構造図

図 2．2－2 高圧炉心スプレイ補機冷却海水ポンプ 構造図
（2）原子炉補機冷却海水系ストレーナ及び高圧炉心スプレイ補機冷却海水系ストレーナの狭隘部

想定する降下火砕物の粒径は 2 mm 以下であり原子炉補機冷却海水系ストレーナ及び高圧炉心スプレイ補機冷却海水系ストレーナのフィルタ穴径は8mm であることから，フィルタ穴径に対して十分小さい。また，降下火砕物には粘性を生じさせる粘土鉱物等は含まれていな いことから，原子炉補機冷却海水系ストレーナ及び高圧炉心スプレイ補機泠却海水系ストレ ーナが閉塞することはない。

なお，原子炉補機冷却海水系ストレーナはフィルタが閉塞することがないよう差圧管理さ れており，一定の差圧（約 20% 目詰まり時の差圧： 15.2 kPa ）で自動洗浄される。高圧炉心ス プレイ補機泠却海水系ストレーナはフィルタが閉塞することがないよう，ストレーナ差圧が上昇した場合には切替•洗浄が可能である。

また，原子炉補機冷却海水系ストレーナ及び高圧炉心スプレイ補機冷却海水系ストレーナ のフィルタを通過した降下火砕物の粒子は，表2．2－1 に示す下流設備である原子炉補機冷却水系熱交換器及び高圧炉心スプレイ補機冷却水系熱交換器の伝熱管内径に対して，降下火砕

物の粒径が十分小さく，伝熱管等の閉塞により，下流設備に影響を及ぼすことはない。 さらに，原子炉補機冷却海水ポンプ定格流量は 1 台あたり $1900 \mathrm{~m}^{3} / \mathrm{h}$ ，高圧炉心スプレイ補機冷却海水ポンプの定格流量は 1 台あたり $250 \mathrm{~m}^{3} / \mathrm{h}$ であり，ストレーナ内の流速が確保され ることから，降下火砕物がストレーナ内に堆積し，閉塞する可能性は低い。

表 2．2－1 原子炉補機冷却海水系ストレーナ及び高圧炉心スプレイ補機冷却海水系ストレーナ
の下流設備の主な狭隘部

機器 名	伝熱管内径	材 質
原子炉補機冷却水系熱交換器	23 mm	アルミニウム黄銅管
高圧炉心スプレイ補機冷却水系熱交換器	23 mm	アルミニウム黄銅管

（3）海水取水設備（除塵装置）
海水取水設備（トラベリングスクリーンメッシュ幅 12 mm ）への降下火砕物の影響を想定し ても，想定する降下火砕物の粒径はスクリーンメッシュ幅に対して十分小さく，また，降下火砕物には粘性を生じさせる粘土鉱物等は含まれていないことから，海水取水設備が閉塞す ることはない。

2.3 機械系，電気系及び計測制御系の機械的影響（閉塞）への影響

（1）非常用換気空調系（中央制御室換気空調系，原子炉補機室換気空調系，計測制御電源室換気空調系）
非常用換気空調系の外気取入口には，ルーバが取り付けられており，下方から吸い込む構造となっていることから，上方より降下してくる降下火砕物に対し，取り込み難い構造となっ ている。また，外気取入口にはバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕獲する性能） が設置されており，想定する降下火砕物は十分除去されるため，給気を供給する系統及び機器に対して降下火砕物が及ぼす影響は少ない。

なお，バグフィルタには差圧計が設置されており，必要に応じて清掃及び取替えすること が可能である。よって，非常用換気空調系の閉塞により機器の機能に影響を及ぼすことはな い。換気空調系の外気取入ロイメージ図を図 2．3－1 に，原子炉補機（A）室換気空調系の外気取入口を図2．3－2に示す。

図 2．3－1 換気空調系の外気取入口イメージ図

図 2．3－2 原子炉補機（A）室換気空調系の外気取入口
（2）原子炉補機冷却海水ポンプ電動機及び高圧炉心スプレイ補機冷却海水ポンプ電動機 a．電動機への泠却空気侵入による地絡•短絡

原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプの電動機は，図 2．3－3 及び図 2．3－4 に示すように外気を直接電動機内部に取り込まない冷却方式であり，電動機内部に降下火砕物の侵入はない。したがって，地絡•短絡への影響はない。
b．空気冷却器冷却管への侵入による閉塞
原子炉補機冷却海水ポンプ電動機については，空冷式空気冷却器の冷却管があり，降下火砕物に空気中の水分が混ざり，凝集することによる影響が考えられる。

外気の取込口は下向きに設置され外気を取込む構造であり，吸込部には金網が設置され ているため，降下火砕物が侵入し難い構造であること，また水分を含み重くなった降下火砕物はより侵入し難いこと，仮に侵入しても冷却管の内径（約 29 mm ）に対して降下火砕物 の粒径が十分小さく，運転中はファンからの通風（管内風速：約 $15 \mathrm{~m} / \mathrm{s}$ ）により外部に排出されると考えられる。したがって，空気冷却器冷却管への降下火砕物の侵入による閉塞 の可能性は小さく，機器へ影響を及ぼすことはない。

図 2．3－3 原子炉補機冷却海水ポンプ電動機の冷却方式

$\longrightarrow: ~$ 外気（冷却流）

図 2．3－4 高圧炉心スプレイ補機冷却海水ポンプ電動機の冷却方式
（4）非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）
a．ディーゼル発電機機関への影響評価
非常用ディーゼル発電設備吸気系は，原子炉補機室換気空調系の外気取入口より上流側 に，バグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕捉する性能）が設置されており，降下火砕物の大半は捕捉される。実際に使用しているバグフィルタの粒径別捕集効率を図 2．3－5に示す。また，バグフィルタは取替え又は清掃が可能である。

粒径が $2 \mu \mathrm{~m}$ 程度の微細な粒子については，図2．3－6に示すように過給器，空気冷却器 （空気側）に侵入する可能性はあるが，機器の間隙は十分大きく閉塞に至らない。
また，機関シリンダ内に降下火砕物が混入した場合，シリンダライナー／ピストンリン グ間隔と同程度のものが当該間隙内に侵入し，摩耗が発生することが懸念されるが，主要 な降下火砕物は，砂と比較しても破砕し易く＊1，硬度は同等又は低い＊2，3 こと，加えて，現在までの保守点検において有意な摩耗は確認されていないことから，降下火砕物の摩耗 による影響は小さいと考えられる。

降下火砕物の溶融による影響については，降下火砕物の融点が約 $850^{\circ} \mathrm{C}$ 以上であること に対して，シリンダから排出される排気ガスの温度が，約 $500^{\circ} \mathrm{C}$ であり，シリンダ内の金属表面近傍はシリンダ冷却水及びピストン冷却用潤滑油の効果により冷却されていること を踏まえると，火山灰は溶融には至らないと考えられる。よって，短期的な非常用ディー ゼル発電機（機関）の閉塞•摩耗により，機器の機能に影響を及ぼすことはない。

長期的な影響についても，シリンダライナー及びピストンの間隙内に侵入した降下火砕物は，シリンダとピストン双方の往復運動が繰り返されるごとに，さらに細かい粒子に破砕され，破砕された粒子はシリンダライナーとピストンリング間隙に付着している潤滑油 により機関外へ除去されると考える。潤滑油系には機関付フィルタが設置されているが， フィルタのメッシュ寸法が $30 \mu \mathrm{~m}$ 程度であることから，潤滑油に含まれる降下火砕物によ つて閉塞する可能性は小さい。さらに，バグフィルタを通過した降下火砕物が潤滑油へ混入した場合を想定し，降下火砕物に付着した火山性ガスによる影響を確認するため，潤滑油に降下火砕物を混入させた状態における潤滑油の成分分析を実施した結果，潤滑油の性状に影響がないことを確認した。非常用ディーゼル発電機（機関）は定期的に分解点検を実施しており，長期的な影響については保守点検において適切に対応を行うこととする。
注記＊1：武若耕司（2004）：シラスコンクリートの特徴とその実用化の現状，コンクリート工学，Vol．42，No．3， P38－47
＊2：恒松修二ほか（1976）：シラスを主原料とする結晶化ガラス，窯業協会誌，84［6］，P32－40
＊ 3 ：Properties of volcanic ash：volcanic ash hazards and ways to minimize them＂，USGS（米国地質調査所）

図 2．3－5 バグフィルタの粒径別捕集効率

図 2．3－6 非常用ディーゼル発電設備給気系系統構造図
b．空気冷却器への影響評価
非常用ディーゼル機関の吸気系統の構造は図 2．3－7 のとおりであり，給気ルーバから給気された大気中の降下火砕物がフィルタや過給機を経て一部空気冷却器に侵入し，空気冷却器を通過する際に，仮に冷却器内が結露していた場合，伝熱管に降下火砕物が付着し冷却機能へ影響を及ぼす可能性があるが，空気冷却器出口温度は，吸入空気の温度（外気温度）より常に高い状態で運転されるため冷却器は結露することはなく，降下火砕物の付着 による冷却機能への影響はない。

図 2．3－7 非常用ディーゼル機関吸気系概略系統図
c．排気管への影響評価
排気管は図 2．3－8に示すとおり，横方向を向いており降下火砕物が侵入し難い構造とな っている。また，運転中は排気していること，待機中であっても外気を吸い込む構造では ないため，降下火砕物が侵入することはない。

図 2．3－8 ディーゼル発電機 排気管
d．降下火砕物による非常用ディーゼル発電機の吸気に係るバグフィルタの影響評価につい て

非常用ディーゼル発電機の吸気は換気空調系のバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80%以上を捕捉する性能）を介した換気空気を吸入しているため，降下火砕物の侵入による非常用ディーゼル発電機への影響は小さいと考えられる。なお，バグフィルタの手前には，

外気取入口に下向き羽根のついたルーバが設置されており，降下火砕物により容易に閉塞 しないと考えられるが，閉塞までの灰捕集容量について，以下のとおり評価する。
（a）降下火砕物によるバグフィルタ閉塞試験
バグフィルタの閉塞試験は，実機で使用しているバグフィルタを用い，実際の火山灰 を用いて実施した。
i ．試験装置の構成
試験装置は図 2．3－9に示すように，下流側にブロアを設置し，フィルタ通過風量が非常用ディーゼル発電機運転時と同様となるように流量調整が可能な設計とする。上流には粉塵発生装置を設置し，規定の火山灰を供給する。

図 2．3－9 試験装置の構成
ii ．試験条件及び試験方法
（i）試験条件
－降下火砕物の濃度
降下火砕物の大気中濃度には，評価対象火山のうち堆積層厚の最大値を与える鳴子カルデラに対して，「原子力発電所の火山影響評価ガイド」に示される数値シ ミュレーション（Tephra2）により気中降下火砕物濃度を推定する手法に基づき，算出される値 $2.7 \mathrm{~g} / \mathrm{m}^{3}$（以下「参考濃度」という。）を用いた。
－降下火砕物の粒径

降下火砕物の粒径は，参考濃度の算出で用いる数値シミュレーション（Tephra2） によって得られた粒径分布を基に表2．3－1 のとおり設定した。

表 2．3－1 試験にて噴霧する降下火砕物の粒径
－試験風量
非常用ディーゼル発電機の吸気に係わるバグフィルタの定格風量 \square とした。
－試験方法
フィルタの差圧を連続的に測定し，差圧が設定値（系統要求値）に到達するまで の火山灰の供給量を測定する。
iii．判定基準
バグフィルタ差圧（圧力損失）の判定基準は，設計値（系統要求値） \qquad Pa と した。
iv．試験結果
バグフィルタの差圧と捕集重量の関係を図 2．3－10に示す。図2．3－10より，バグフ イルタの差圧が設定値である $\square \mathrm{Pa}$ に到達したときの灰捕集量は約 $\square \mathrm{g} /$ 枚で あった。

図 2．3－10 バグフィルタ閉塞試験の結果

表 2．3－2に吸気バグフィルタ閉塞までの保持容量の比較を示す。吸気バグフィルタの閉塞までの灰捕集容量は設計値である粉塵保持容量 $\square \mathrm{g} /$ 枚に対し \square 倍程度となっ た。

表 2．3－2 吸気バグフィルタ閉塞までの保持容量の比較

	粉塵保持容量＊ 1	降下火砕物による試験結果に基づく灰捕集容量
（1）バグフィルタ ダスト保持容量（g／枚）	\square	
（2）バグフィルタ1枚あたりの定格風量 （ $\mathrm{m}^{3} / \mathrm{h}$ ）		
（3）降下火砕物の大気中濃度（ $\left.\mathrm{g} / \mathrm{m}^{3}\right)$		7

注記＊1 ：定格風量で最終圧力損失に達した時点においてバグフィルタが保持している粉塵量の設計値。（試験用粉体は換気用エアフィルタユニットの性能試験方法（JIS B 9908）で用いられる，JIS Z 8901 の試験粉体 1 － 15 種を使用）
（b）バグフィルタの閉塞に対する対応
非常用ディーゼル発電機の吸気バグフィルタは1系統あたり最大で 48 枚で構成され ており，バグフィルタの取替え又は清掃に複雑な作業の必要はない。

ただし，参考濃度を想定した場合には取替え又は清掃時のバグフィルタの重量が通常時よりも重くなることで，時間や要員が多く必要になると考えられるため，取替え又は清掃に要する要員及び手順については，これらの結果を踏まえて今後検討を行うことと する。非常用ディーゼル発電機のバグフィルタの写真を図2．3－11 に示す。

（バグフィルタ入口側）

（バグフィルタ出口側）

図 2．3－11 非常用ディーゼル発電機のバグフィルタ
（5）排気筒及び非常用ガス処理系（屋外配管）
排気筒は常時排気があり，その排気速度（約 $22 \mathrm{~m} / \mathrm{s}^{* 1}$ ）は降下火砕物の終端速度（ $3.5 \mathrm{~m} / \mathrm{s}^{* 2}$ ） を上回っており，降下火砕物が排気筒及び非常用ガス処理系（屋外配管）内に侵入することはな いことから，降下火砕物により流路が閉塞することはなく，機器の機能に影響を及ぼすことはな い。排気筒及び非常用ガス処理系（屋外配管）の概要図を図 2．3－13に示す。

注記＊1：発電用原子炉設置変更許可申請書「添付書類九 変更後における発電用原子炉施設の放射線の管理に関する説明書」のらち，「5．平常運転時における一般公衆の受ける線量評価」（以下「許可申請書添付書類九」という。）に示す 2 号炉排気筒の吹き出し速度
＊2：女川原子力発電所における降下火砕物の設計条件である粒径 2 mm 以下の降下火砕物に対して，「Suzuki＂A Theoretical Model for Dispersion of Tephra＂Arc Volcanism，95－113（1983）」に示される降下火砕物の粒径と終端速度の関係より求 めた最大の終端速度

図 2．3－13 排気筒及び非常用ガス処理系（屋外配管）の概要図

3．降下火砕物の影響を考慮する施設の影響評価について

3．降下火砕物の影響を考慮する施設の影響評価について

3.1 概要

本資料は，添付書類「VI－1－1－2－4－2 降下火砕物の影響を考慮する施設の選定」及び添付書類「VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針」に示す降下火砕物の影響を考慮する施設について，影響因子を考慮した施設分類ごとに，影響評価結果を示すものである。

3.2 影響因子を考慮した施設分類

影響因子を考慮した施設分類を（1）～（8）に示す。降下火砕物の影響を考慮する施設（屋外の重大事故等対象施設及び間接的影響を考慮する施設を除く）と影響因子の組合せ及び評価結果 を表 3－1 及び別紙－1～別紙－9 に示す。また，間接的影響の評価結果を別紙－10に示す。
（1）構造物への荷重を考慮する施設
a．原子炉補機泠却海水ポンプ
b．高圧炉心スプレイ補機泠却海水ポンプ
c．高圧炉心スプレイ補機冷却海水系ストレーナ
d．復水貯蔵タンク
e．軽油タンク室
f．軽油タンク室（H）
g．非常用ディーゼル発電設備（高圧炉心スプレイ系ディーゼル発電設備を含む。）排気消音器及び排気管
h．原子炉建屋
i．タービン建屋
j．制御建屋
これらの施設のらち，a．～b．，d．～f．及びh．～j．の施設への荷重に対する評価は添付書類
「VI－3－別添 2 火山への配慮が必要な施設の強度に関する説明書」に示す。
なお，高圧炉心スプレイ補機冷却海水系ストレーナ並びに非常用ディーゼル発電設備（高圧炉心スプレイ系ディーゼル発電設備を含む。）排気消音器及び排気管は，降下火砕物が堆積 しにくい構造とすることで，荷重の影響を受け難い設計とすることから，強度評価は行わな い。
（2）水循環系の閉塞を考慮する施設
a．原子炉補機冷却海水ポンプ
b．原子炉補機冷却海水系ストレーナ
c．高圧炉心スプレイ補機泠却海水ポンプ
d．高圧炉心スプレイ補機冷却海水系ストレーナ
e．海水系下流設備（原子炉補機冷却水系熱交換器，高圧炉心スプレイ補機冷却水系熱交換器）
f．海水取水設備（除塵装置）
（3）換気系，電気系及び計測制御系における閉塞を考慮する施設
a．原子炉補機冷却海水ポンプ
b．高圧炉心スプレイ補機冷却海水ポンプ
c．非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）
d．非常用換気空調系（外気取入口）
e．非常用ガス処理系（屋外配管）
f．排気筒
（4）水循環系，換気系，電気系及び計測制御系における摩耗を考慮する施設
a．原子炉補機冷却海水ポンプ
b．原子炉補機冷却海水系ストレーナ
c．高圧炉心スプレイ補機冷却海水ポンプ
d．高圧炉心スプレイ補機冷却海水系ストレーナ
e．海水系下流設備（原子炉補機冷却水系熱交換器，高圧炉心スプレイ補機冷却水系熱交換器）
f．非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）
g．海水取水設備（除塵装置）
（5）構造物，水循環系，換気系，電気系及び計測制御系における腐食を考慮する施設
a．原子炉補機冷却海水ポンプ
b．原子炉補機冷却海水系ストレーナ
c．高圧炉心スプレイ補機冷却海水ポンプ
d．高圧炉心スプレイ補機冷却海水系ストレーナ
e．海水系下流設備（原子炉補機冷却水系熱交換器，高圧炉心スプレイ補機冷却水系熱交換器）
f．非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）
g．非常用換気空調系（外気取入口）
h．非常用ガス処理系（屋外配管）
i．排気筒
j．計測制御用電源設備（無停電電源装置）
k．非常用所内電気設備（所内低圧系統）
1．復水貯蔵タンク
m．軽油タンク室
n．軽油タンク室（H）
o．非常用ディーゼル発電設備（高圧炉心スプレイ系ディーゼル発電設備を含む。）排気消音器及び排気管
p．海水取水設備（除塵装置）
q．原子炉建屋
r．タービン建屋
S．制御建屋
（6）発電所周辺の大気汚染を考慮する施設
a．非常用換気空調系（中央制御室換気空調系）
（7）絶縁低下を考慮する施設
a．計測制御用電源設備（無停電電源装置）
b．非常用所内電気設備（所内低圧系統）
（8）間接的影響を考慮する施設
a．非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）
b．軽油タンク
c．非常用ディーゼル発電設備（高圧炉心スプレイ系ディーゼル発電設備を含む。）燃料移送ポンプ
表 3－1 降下火磼物の影響を考慮する施設（屋外の重大事故等対処設備及び間接的影響を考慮する施設を除く。）と影響因子の組合せ及び評価結果（ $1 / 2$ ）

降下火砕物の影響を考慮する施設	直接的影響の要因						
	構造物への荷重	水循環系 の閉塞	換気系，電気系及び計測制御系 における閉塞	水循環系，換気系，電気系及び計測制御系にお ける摩耗	構造物，水循環系，換気系，電気系及び計測制御系における腐食	発電所周辺の大気污染	絶縁低下
原子炉補機冷却海水ポンプ，高圧炬心スプレイ補機冷却海水ポンプ	$\begin{gathered} \bigcirc \\ (*) \end{gathered}$	$\begin{gathered} \bigcirc \\ (\text { 別紙一2) } \end{gathered}$		$\begin{gathered} \bigcirc \\ (\text { 別紙 }-2 \text {) } \end{gathered}$	$\begin{gathered} \bigcirc \\ (\text { 別紙-2) } \end{gathered}$	（2）	（2）
原子炉補機冷却海水系ストレ ーナ	（1）	（別紙－3）	（2）	(別紙一3)	$\begin{gathered} \bigcirc \\ (\text { 別紙一3) } \end{gathered}$	（2）	（2）
高圧炉ふスプレイ補機冷却海水系ストレーナ	O （別紙一3）	(別紙一3)	（2）	(別紙-3)	$\begin{gathered} \bigcirc \\ (\text { 別紙一3) } \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & (2) \\ & \hline \end{aligned}$	（2）
海水系下流設備（原子炬補機冷却水系熱交換器，高圧炉心 スプレイ補機冷却水系熱交換器）	（1）	$\begin{gathered} \bigcirc \\ (\text { 別紙 }-3 \text {) } \end{gathered}$	（2）	$\text { (別紙 }-3 \text {) }$	$\stackrel{\bigcirc}{(\text { 別紙一3) }}$	（2）	（2）
非常用ディーゼル発電機（高圧炬心スプレイ系ディーゼル発電機を含む。）	(1)	（2）	$\stackrel{\bigcirc}{(\text { 別紙 }-7)}$	(別紙-7)	$\stackrel{\bigcirc}{\text { (別紙一7) }}$	（2）	（2）
非常用換気空調系（外気取入口）［中央制御室換気空調系，原子炬補機室換気空調系，計測制御電源室換気空調系］	(1)	（2）	（別紙－6）	（2）	$\stackrel{\bigcirc}{(\text { 別紙一6) }}$	$\stackrel{\bigcirc}{(\text { 別紙 }-6 \text {) }}$	（2）

表 3－1 降下火碑物の影響を考慮する施設（屋外の重大事故等対処設備及び間接的影響を考慮する施設を除く。）と影響因子の組合せ及び評価結果（2／2）

	直接的影響の要因						
	構造物への荷重	水循環系 の閉塞	換気系，電気系及び計測制御系 における閉塞	水循環系，換気系，電気系及び計測制御系にお ける摩耗	構造物，水循環系，換気系，電気系及び計測制御系における腐 \qquad	発電所周辺の大気汚染	絶縁低下
非常用ガス処理系（屋外配管）	$\begin{aligned} & \hline- \\ & \text { (1) } \\ & \hline \end{aligned}$	（2）	(別紙 - 8)	（2）	○ （別紙－8）	（2）	（2）
排気筒	（1）	（2）	（別紙－8）	（2）	(別紙一8)	（2）	（2）
計測制御用電源設備（無停電電源装置），非常用所内電気設備（所内低圧系統）	(1)	（2）	（2）	（2）	$\begin{gathered} \bigcirc \\ (\text { 別紙 }-5 \text {) } \end{gathered}$	（2）	(別紙 - 5)
復水貯蔵タンク	$\begin{gathered} \bigcirc \\ (*) \\ \hline \end{gathered}$	（2）	（2）	（2）	(別紙-9)	（2）	（2）
軽油タンク室，軽油タンク室 （H）	$\begin{gathered} \bigcirc \\ (*) \\ \hline \end{gathered}$	（2）	（2）	（2）	$\begin{gathered} \bigcirc \\ (\text { 別紙 }-1 \text {) } \end{gathered}$	（2）	（2）
非常用ディーゼル発電設備 （高圧炉心スプレイ系ディー ゼル発電設備を含む。）排気消音器及び排気管	\bigcirc （別紙－7）	（2）	（2）	（2）	\bigcirc （別紙－7）	（2）	（2）
海水取水設備（除塵装置）	$\begin{aligned} & - \\ & \hline 2 \\ & \hline \end{aligned}$	$\begin{gathered} \bigcirc \\ (\text { 別紙-4) } \end{gathered}$	$\overline{-}$	(別紙 - 4)	(別紙一4)	(2)	$\begin{aligned} & - \\ & \text { (2) } \\ & \hline \end{aligned}$
原子炉建屋，タービン建屋，制御建屋	$\begin{gathered} \bigcirc \\ (*) \\ \hline \end{gathered}$	(2)	（2）	（2）	\bigcirc （別紙－1）	(2)	（2）

建屋及び構造物に係る影響評価

降下火砕物による原子炉建屋，タービン建屋，制御建屋，軽油タンク室及び軽油タンク室（H） への影響について，以下のとおり評価する。

1．評価項目
（1）構造物への荷重
降下火砕物の堆積荷重（降雨の影響含む）により原子炉建屋，制御建屋，タービン建屋，軽油タンク室及び軽油タンク室（H）の健全性に影響がないことを評価する。なお，堆積荷重は，積雪及び風（台風）の荷重を考慮し，適切に組み合わせる。
（2）構造物への化学的影響（腐食）
降下火砕物の構造物への付着や堆積による化学的腐食により，構造物へ影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
a．堆積量 $: 15 \mathrm{~cm}$
b．密度 ： $1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤状態）
c．堆積荷重： $2,207 \mathrm{~N} / \mathrm{m}^{2}$
（2）積雪条件
a．積雪量 $: 43 \mathrm{~cm}$（石巻地域における月最深積雪の最大値）
b．単位荷重：堆積量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$（建築基準法施行令に基づく積雪の単位荷重）
c．積雪荷重： $860 \mathrm{~N} / \mathrm{m}^{2}$

3．評価結果
（1）構造物への荷重
評価結果については，添付書類「VI－3－別添2 火山への配慮が必要な施設の強度に関する説明書」に示す。
（2）構造物への化学的影響（腐食）
原子炉建屋，タービン建屋及び制御建屋への化学的影響については，外壁塗装を施してい ることから，降下火砕物による短期での腐食により機能に影響を及ぼすことはない。軽油夕 ンク室及び軽油タンク室（H）への化学的影響（腐食）については，軽油タンク室及び軽油 タンク室（H）の頂版はコンクリート構造物であること，また，ハッチ部については金属材料（ステンレス鋼）を用いていることから，降下火砕物に含まれる腐食性ガスによる金属腐食の影響を考慮し，外装塗装＊を実施することで降下火砕物による短期での腐食により機能 に影響を及ぼすことはない。

注記＊：ハッチ（ステンレス鋼）部は酸，アルカリなどに水分の加わった強度腐食環境で の塗装としてエポキシ樹脂系の塗装を実施

原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプに係る影響評価

降下火砕物による原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機泠却海水ポンプ（以下「海水ポンプ」という。）に係る影響評価について以下のとおり評価した。

1．評価項目
（1）構造物への荷重
降下火砕物の堆積荷重により海水ポンプの機能に影響がないことを評価する。なお，堆積荷重は，積雪及び風（台風）の荷重を考慮し，適切に組み合わせる。
（2）構造物への化学的影響（腐食）
降下火砕物のポンプ及び電動機への付着や堆積による化学的影響（腐食）により，機器の機能に影響がないことを評価する。
（3）水循環系の閉塞•摩耗
降下火砕物が混入した海水を海水ポンプにより取水した場合でも，流水部，軸受部等が閉塞し，又は，内部構造物との摩耗により機器の機能に影響がないことを評価する。
（4）水循環系の化学的影響（腐食）
降下火砕物が混入した海水を海水ポンプにより取水した場合に，内部構造物に対する化学的影響（腐食）により機器の機能に影響がないことを評価する。
（5）換気系，電気系及び計測制御系に対する機械的影響（閉塞•摩耗）
降下火砕物の海水ポンプ電動機冷却空気への侵入による地絡•短絡，電動機軸受部の摩耗及び空気冷却器冷却管への侵入による閉塞によって，機器の機能に影響がないことを評価す る。
（6）換気系，電気系及び計測制御系に対する化学的影響（腐食）
降下火砕物の海水ポンプ電動機冷却空気への侵入による内部の腐食及び外装への接触によ る腐食によって，機器の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
a．粒径 ： 2 mm 以下
b．堆積量 $: 15 \mathrm{~cm}$
c．密度 $: 1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤状態）
d．堆積荷重：2， $207 \mathrm{~N} / \mathrm{m}^{2}$
（2）積雪条件
a．積雪量 ： 43 cm （石巻地域における月最深積雪の最大値）
b．単位荷重：堆積量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$（建築基準法施行令に基づく積雪の単位荷重）
c．積雪荷重： $860 \mathrm{~N} / \mathrm{m}^{2}$

3．評価結果
（1）構造物への荷重
評価内容については，添付書類「VI－3－別添2 火山への配慮が必要な施設の強度に関する説明書」に示す。
（2）構造物への化学的影響（腐食）
海水ポンプ及び電動機は外面塗装が施されており，降下火砕物による短期での腐食により，機器の機能に影響を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。
（参考資料－1）
（3）水循環系の閉塞•摩耗
閉塞の評価内容については，「2．降下火研物の凝集による閉塞の影響について」に示す。摩耗については，降下火砕物は破砕しやすく，砂と同等又は砂より硬度が低くもろいことか ら，降下火砕物による摩耗が海水ポンプに与える影響は小さい。
（参考資料 $-3,4$ ）
（4）水循環系の化学的影響（腐食）
海水ポンプの主要部は，内面ゴムライニングや塗装等の対応を実施していることから，降下火砕物による短期での腐食により機器の機能に影響を及ぼすことはない。
（参考資料－1）
（5）換気系，電気系及び計測制御系に対する機械的影響（閉塞•摩耗）
閉塞の評価内容については，「2．降下火砕物の凝集による閉塞の影響について」に示す。
（6）換気系，電気系及び計測制御系に対する化学的影響（腐食）
海水ポンプ電動機は外気を直接電動機内部に取り込まない冷却方式であり，電動機内部に降下火砕物の侵入がない。また，電動機が冷却流に接する部分には金属材料を用いているが，防錆塗装が施されていることから，降下火砕物による短期での腐食により機器の機能に影響 を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。
（参考資料 -1 ）

原子炉補機冷却海水系ストレーナ及び高圧炉心スプレイ補機冷却海水系ストレーナに係る影響評価

降下火砕物による原子炉補機冷却海水系ストレーナ及び高圧炉心スプレイ補機冷却海水系ストレ ーナ（以下「海水ストレーナ」という。）に係る影響評価について以下のとおり評価した。

1．評価項目
（1）構造物への荷重
降下火砕物の堆積荷重により屋外に設置している高圧炉心スプレイ補機冷却海水系ストレ ーナの機能に影響がないことを評価する。
（2）水循環系の閉塞
降下火砕物による海水ストレーナの閉塞により，機器の機能に影響がないことを評価する。
（3）水循環系の摩耗
降下火砕物による海水ストレーナの摩耗により，機器の機能に影響がないことを評価する。
（4）水循環系の化学的影響（腐食）
降下火砕物による海水ストレーナの内部構造物の化学的影響（腐食）により，機器の機能 に影響がないことを評価する。また，海水を供給している下流の設備への影響についても同様に評価する。
（5）構造物への化学的影響（腐食）
降下火砕物の高圧炉心スプレイ補機冷却海水系ストレーナへの付着や堆積による化学的影響（腐食）により，機器の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
a．粒径 ： 2 mm 以下

3．評価結果
（1）構造物への荷重
高圧炉心スプレイ補機冷却海水系ストレーナは降下火砕物が堆積しにくい形状をしている ため，荷重の影響を受けることはない。
（2）水循環系の閉塞
評価内容については，「2．降下火砕物の凝集による閉塞の影響について」に示す。
（3）水循環系の摩耗
降下火砕物は破砕し易く，砂と同等又は砂より硬度が低くもろいことから降下火砕物によ る摩耗が設備に与える影響は小さく，機器の機能に影響を及ぼすことはない。
（参考資料 $-3,4$ ）
（4）水循環系の化学的影響（腐食）
海水ストレーナの内面は，ライニングが施工されていることから，短期での腐食により海

水ストレーナの機能に影響を及ぼすことはない。
また，海水ストレーナの下流設備の熱交換器（伝熱管）には，耐食性の高い材料（アルミ ニウム黄銅管）を使用していること，さらに鉄イオン注入による管内内面の保護被膜により腐食対策を実施していることから短期での腐食により下流設備の機能に影響を及ぼすことは ない。
（参考資料 -1 ）
（5）構造物への化学的影響（腐食）
高圧炉心スプレイ補機冷却海水系ストレーナは外装塗装が施されており，降下火砕物によ る短期での腐食により，機器の機能に影響を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。
（参考資料 -1 ）

降下火砕物による海水取水設備（除塵装置）への影響について，以下のとおり評価した。

1．評価項目
（1）水循環系の閉塞
降下火砕物が混入した海水を取水することに伴う，海水取水設備が閉塞しないことを評価 する。
（2）水循環系の内部における摩耗
降下火砕物が混入した海水を取水することに伴う，海水取水設備の摩耗により，機器の機能に影響がないことを評価する。
（3）水循環系の化学的影響（腐食）
降下火砕物が混入した海水を取水することによる構造物内部の化学的影響（腐食）により，機器の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
a．粒 径： 2 mm 以下

3．評価結果
（1）水循環系の閉塞
評価内容については，「2．降下火砕物の凝集による閉塞の影響について」に示す。
（2）水循環系の内部における摩耗
主要な降下火砕物は破砕し易く，砂と同等又は硬度が低いことから，降下火砕物による摩耗が，設備に影響を与える影響は小さい。
（参考資料 $-3, ~ 4$ ）
（3）水循環系の化学的影響（腐食）
海水系の化学的腐食については，海水取水設備は塗装等を実施しており，海水と金属が直接接することはないため，降下火砕物による短期での腐食により海水取水設備の機能に影響 を及ぼすことはない。
（参考資料 -1 ）

計測制御用電源設備（無停電電源装置）及び非常用所内電気設備（所内低圧系統）に係る影響評価

降下火砕物による電気系及び計測制御系の盤への影響について，外気から取り込んだ屋内の空気 を取込む機構を有するもの（計測制御用電源設備（無停電電源装置）及び非常用所内電気設備（所内低圧系統））への影響について，以下のとおり評価した。

1．評価項目
（1）絶縁低下
降下火砕物が盤内に侵入する可能性及び侵入における，絶縁低下の影響について評価する。
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
降下火砕物による計測制御用電源設備及び非常用所内電気設備に対する化学的影響（腐食） により，機器の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
a．粒径： 2 mm 以下

3．評価結果
（1）絶縁低下
屋内の電気系及び計測制御系の盤については，その発熱量に応じて盤内に換気ファンを設置している場合があるため，降下火砕物が盤内に侵入する可能性がある。計測制御用電源設備及び非常用所内電気設備が設置されているエリアは，原子炉補機室換気空調系又は計測制御電源室換気空調系にて空調管理されており，外気取入口に設置されているバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕捉する性能）を介した換気空気を吸入している。したがっ て，降下火砕物が大量に盤内に侵入する可能性は少なく，その付着により短絡を発生させる可能性はないため，計測制御用電源設備及び非常用所内電気設備の安全機能が損なわれるこ とはない。
(別紙-5 (補足))
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
計測制御用電源設備及び非常用所内電気設備が設置されているエリアは，原子炉補機室換気空調系又は計測制御電源室換気空調系にて空調管理されており，外気取入口に設置されて いるバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕捉する性能）を介した換気空気を吸入している。したがって，降下火砕物が大量に盤内に侵入する可能性は少ないことから，短期での腐食により，計測制御用電源設備及び非常用所内電気設備の安全機能が損なわれるこ とはない。
別紙 - 5 (補足)

計測制御用電源設備及び非常用所内電気設備への降下火砕物の影響について

降下火砕物の建屋内侵入については，非常用換気空調系（外気取入口）からの侵入が考えられる が，バグフィルタは，粒径 $2 \mu \mathrm{~m}$ 以上に対して 80% 以上を捕獲する性能を有していることから，系統内へ侵入する降下火砕物の影響は小さいと考えられるものの，ここでは降下火砕物の粒子が一部侵入した場合を想定し，その影響を確認する。

屋内の電気系及び計測制御系の盤の設置されるエリアは空調管理されており，外気取入口にバグ フィルタが設置されており，降下火砕物の侵入を防止することができる。

しかしながら，屋内の電気系及び計測制御系の盤についてはその発生熱量に応じて盤内に換気フ アンを設置している場合があり，強制的に盤内に室内空気を取り込むことから，仮に，降下火砕物 が侵入することを考慮し，以下のとおり検討した。

1．侵入する降下火砕物の粒径
外気を取り込む屋内の電気系及び計測制御系の盤の設置されるエリアの換気空調系である，原子炉補機室換気空調系及び計測制御電源室換気空調系の外気取入口にはバグフィルタ（粒径 2μ m 以上に対して 80% 以上を捕獲する性能）が設置されている。

このため，仮に室内に侵入したとしても，降下火砕物の粒径は， $2 \mu \mathrm{~m}$ 以下の細かな粒子である と推定される。

2．計測制御用電源設備及び非常用所内電気設備に対する降下火砕物の影響
計測制御用電源設備及び非常用所内電気設備において，数 $\mu \mathrm{m}$ 程度の線間距離となるのは，集積回路（I C など）の内部であり，これら部品はモールド（樹脂）で保護されているため，降下火砕物が侵入することはない。また，端子台等の充電部が露出している箇所については，端子間 の距離は数 mm 程度あることから，降下火砕物が付着しても，短絡等を発生させることはない。

したがって，万が一，細かな粒子の降下火砕物が盤内に侵入した場合においても，降下火砕物 の付着等により短絡等を発生させる可能性はない。

非常用換気空調系に係る影響評価

降下火砕物による非常用換気空調系（中央制御室換気空調系，原子炉補機室換気空調系，計測制御電源室換気空調系）への影響について以下のとおり評価した。

1．評価項目
（1）換気系，電気系及び計測制御系に対する機械的影響（閉塞，摩耗）
降下火砕物による非常用換気空調系に対する機械的影響（閉塞，摩耗）により，機器の機能に影響がないことを評価する。
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
降下火砕物による非常用換気空調系に対する化学的影響（腐食）により，機器の機能に影響がないことを評価する。
（3）発電所周辺の大気汚染
降下火砕物により汚染された原子力発電所周辺の大気が換気空調系を経て運転員が駐在し ている中央制御室の居住性に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
a．粒 径： 2 mm 以下

3．評価結果
（1）換気系，電気系及び計測制御系に対する機械的影響（閉塞，摩耗）
評価内容については，「2．降下火砕物の凝集による閉塞の影響について」に示す。
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
非常用換気空調系の外気取入口はアクリル樹脂塗装を実施したアルミニウム合金を使用し ているため，金属腐食研究の結果より，降下火砕物に含まれる腐食性ガスによる短期的な金属腐食の影響は小さいことから，金属材料を用いることで短期での腐食により非常用換気空調系（外気取入口）の機能に影響を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。
（参考資料 $-1, ~ 2$ ）
（3）発電所周辺の大気汚染
運転員が常駐している中央制御室は，中央制御室換気空調系によって空調管理されてお り，他の空調設備と同様，外気取入口には，ルーバが取り付けられており，下方から吸い込 む構造となっていることから，上方より降下してくる降下火砕物に対し，取り込み難い構造と なっている。また，外気取入口にはバグフィルタ（粒径 $2 \mu \mathrm{~m}$ 以上に対して約 80% を捕獲す

る性能）が設置されており，想定する降下火砕物は十分除去されるから，降下火砕物が与え る影響は少ない。中央制御室換気空調系の外気取入口を図 1 に示す。

なお，大気汚染による人に対する居住性の観点から，運転員が常駐する中央制御室につい ては，外気取入ダンパの閉止を行い事故時運転モードとすることにより，中央制御室の居住環境を維持できる。以下に，外気取入ダンパを閉止した状態の酸素濃度及び二酸化炭素濃度 について評価した結果を示す。

図1 中央制御室換気空調系の外気取入口
a．酸素濃度
「空気調和•衛生工学便覧 空調設備編」に基づき，酸素濃度について評価した。
【評価条件】

- 在室人数 7 名
- 中央制御室バウンダリ内体積 $8,800 \mathrm{~m}^{3}$
- 空気流入はないものとする。
- 初期酸素濃度 20.95%（「空気調和•衛生工学便覧」成人呼吸気の酸素量）
- 酸素消費量 $0.066 \mathrm{~m}^{3} / \mathrm{h} \cdot$ 人（「空気調和•衛生工学便覧」の歩行（中等作業相当）での酸素消費量）
－許容酸素濃度 18% 以上（酸素欠乏症等防止規則）
【評価結果】
表1 中央制御室再循環運転における酸素濃度の時間変化

時間	12 時間	24 時間	36 時間	565 時間
酸素濃度	20.8%	20.8%	20.7%	18.0%

b．二酸化炭素濃度
「空気調和•衛生工学便覧 空調設備編」に基づき，二酸化炭素濃度について評価した。【評価条件】
－在室人数 7 名

- 中央制御室バウンダリ内体積 $8,800 \mathrm{~m}^{3}$
- 空気流入はないものとする。
- 初期二酸化炭素濃度 0.03%（原子力発電所中央制御室運転員の事故時被ばくに関する規程（J E A C 4 6 2 2－2009））
－二酸化炭素排出量 $0.046 \mathrm{~m}^{3} / \mathrm{h}$ •人（「空気調和•衛生工学便覧」の中等作業での二酸化炭素排出量）
－許容二酸化炭素濃度 1.0% 以下（「労働安全衛生規則」の許容二酸化炭素濃度 1.5% に余裕を見た値）

【評価結果】

表2 中央制御室再循環運転における二酸化炭素濃度の時間変化

時間	12 時間	24 時間	36 時間	266 時間
二酸化炭素濃度	0.08%	0.12%	0.17%	1.0%

表1， 2 の結果から， 265 時間外気取入れを遮断したままでも，中央制御室内に滞在する運転員の操作環境に影響を与えない。

非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む）に係る影響評価

降下火砕物による非常用ディーゼル発電機に係る影響評価について以下のとおり評価した。

1．評価項目
（1）構造物への荷重
降下火砕物の堆積荷重により屋外に設置されている排気消音器及び排気管の機能に影響が ないことを評価する。
（2）換気系，電気系及び計測制御系に対する機械的影響（閉塞，摩耗）
降下火砕物の非常用ディーゼル発電機（機関）への侵入等による閉塞•摩耗により，機器 の機能に影響がないことを評価する。
（3）構造物への化学的影響（腐食）
降下火砕物の非常用ディーゼル発電設備排気消音器及び排気管への付着による化学的影響 （腐食）について，機器の機能に影響がないことを評価する。
（4）換気系，電気系及び計測制御系に対する化学的影響（腐食）
降下火砕物の非常用ディーゼル発電機（機関）への侵入等による化学的影響（腐食）によ り，機器の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
a．粒径： 2 mm 以下

3．評価結果
（1）構造物への荷重
屋外に設置されている非常用ディーゼル発電設備排気消音器及び排気管は，図 1 に示すよ うに降下火砕物が堆積しにくい形状をしているため，荷重の影響を受けることはない。
（2）換気系，電気系及び計測制御系に対する機械的影響（閉塞，摩耗）
評価内容については，「2．降下火砕物の凝集による閉塞の影響について」に示す。
（3）構造物への化学的影響（腐食）
非常用ディーゼル発電設備排気消音器及び排気管は外装塗装が施されており，降下火砕物 による短期での腐食により，機器の機能に影響を及ぼすことはない。また，非常用ディーゼ ル発電設備排気消音器及び排気管の腐食により非常用ディーゼル発電機の機能に影響を与え ることはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修を実施する。

図 1 ディーゼル発電機 排気管
（4）換気系，電気系及び計測制御系に対する化学的影響（腐食）
金属腐食研究の結果より，降下火砕物に含まれる腐食性ガスによる短期的な金属腐食の影響は小さいことから，金属材料を用いることで，短期での腐食により非常用ディーゼル発電機の機能に影響を及ぼすことはない。なお，降灰後の長期的な腐食の影響については，日常 の保守管理等により，状況に応じて補修が可能な設計とする。
（参考資料 -4 ）

排気筒及び非常用ガス処理系（屋外配管）に係る影響評価

降下火砕物による排気筒及び非常用ガス処理系（屋外配管）への影響について以下のとおり評価 した。図 1 に非常用ガス処理系（屋外配管）の概要図に示す。

1．評価項目及び内容
（1）換気系，電気系及び計測制御系に対する機械的影響（閉塞）
降下火砕物の排気筒及び非常用ガス処理系（屋外配管）への侵入により，機器の機能に影響がないことを評価する。具体的には，排気筒の排気速度が降下火砕物の終端速度よりも大 きく，降下火砕物は排気筒及び排気筒内に設置している非常用ガス処理系（屋外配管）に侵入しないことを確認する。また，降下火砕物が侵入したとしても流路が閉塞しないことを確認する。
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
排気筒及び非常用ガス処理系（屋外配管）内面への降下火砕物の付着に伴う化学的影響（腐食）により，機器の機能に影響がないことを評価する。
（3）構造物への化学的影響（腐食）
排気筒及び非常用ガス処理系（屋外配管）外面への降下火砕物の付着に伴う化学的影響（腐食）により，機器の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物の条件
a．粒径 ： 2 mm 以下
b．密度 ： $1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤状態）
c．終端速度： $3.5 \mathrm{~m} / \mathrm{s}$（単粒子が静止した気体中を自由落下し，粒子の流体抗力，重力及び浮力の間につり合いの状態が生じたときの速度）

3．評価結果
（1）換気系，電気系及び計測制御系に対する機械的影響（閉塞）
排気筒は常時排気があり，その排気速度（約 $22 \mathrm{~m} / \mathrm{s}^{* 1}$ ）は降下火砕物の終端速度（ $3.5 \mathrm{~m} / \mathrm{s}^{* 2}$ ） を上回っており，降下火砕物が排気筒及び非常用ガス処理系（屋外配管）内に侵入すること はないことから，降下火砕物により流路が閉塞することはなく，機器の機能に影響を及ぼす ことはない。
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
排気筒は常時排気があり，その排気速度（約 $22 \mathrm{~m} / \mathrm{s}$ ）は降下火砕物の終端速度（ $3.5 \mathrm{~m} / \mathrm{s}$ ）を上回っており，降下火砕物が排気筒及び非常用ガス処理系（屋外配管）内に侵入することは ない。

また，侵入した場合であっても，金属腐食研究の結果より，降下火砕物に含まれる腐食性 ガスによる短期的な金属腐食の影響は小さいことから，金属材料を用いることで，短期での腐食により機能に影響を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。
（参考資料 -2 ）
（3）構造物への化学的影響（腐食）
排気筒及び非常用ガス処理系（屋外配管）は外面塗装が施されており，降下火砕物による短期での腐食により，機器の機能に影響を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。
（参考資料 -1 ）

注記＊1：許可申請書添付書類九に示す 2 号炉排気筒の吹き出し速度
＊2：女川原子力発電所における降下火砕物の設計条件である粒径 2 mm 以下の降下火砕物に対して，「Suzuki＂A Theoretical Model for Dispersion of Tephra＂Arc Volcanism，95－113（1983）」に示される降下火砕物の粒径と終端速度の関係より求 めた最大の終端速度

図 1 非常用ガス処理系（屋外配管）概要図

復水貯蔵タンクに係る影響評価

降下火砤物による復水貯蔵タンクへの影響について，以下のとおり評価した。

1．評価項目及び内容
（1）構造物への荷重
降下火砕物の堆積荷重により復水貯蔵タンクの健全性に影響がないことを評価する。なお，堆積荷重は積雪との重畳を考慮する。
（2）構造物への化学的影響（腐食）
降下火砕物の構造物への付着や堆積による化学的影響（腐食）により構造物の機能に影響 がないことを評価する。

2．評価条件
（1）降下火砕物条件
a．堆積量 $: 15 \mathrm{~cm}$
b．密度 ： $1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿㵎状態）
c．堆積荷重： $2,207 \mathrm{~N} / \mathrm{m}^{2}$
（2）積雪条件
a．積雪量 ： 43 cm （石巻地域における月最深積雪の最大値）
b．単位荷重：堆積量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$（建築基準法施行令に基づく積雪の単位荷重）
c．積雪荷重： $860 \mathrm{~N} / \mathrm{m}^{2}$

3．評価結果
（1）構造物への荷重
評価結果については，添付書類「VI－3－別添2 火山への配慮が必要な施設の強度に関する説明書」に示す。
（2）構造物への化学的影響（腐食）
復水貯蔵タンクは外面塗装が施されており，降下火研物による短期での腐食により復水貯蔵タンクの機能に影響を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。

間接的影響の評価結果

間接的影響について，以下のとおり評価する。

1．評価項目及び内容

降下火砕物による間接的影響は，広範囲にわたる送電網の損傷による 7 日間の外部電源喪失及 び発電所外の交通の途絶によるアクセス制限に対する評価を行う。

2．評価結果

広範囲にわたる送電網の損傷による7日間の外部電源喪失及び発電所外での交通の途絶による アクセス制限事象に対し，発電用原子炉の停止並びに停止後の発電用原子炉及び使用済燃料プー ルの泠却に係る機能を担うために必要となる電源の供給が非常用ディーゼル発電機（高圧灲心ス プレイ系ディーゼル発電機を含む。）及びそれぞれに必要な耐震Sクラスの軽油タンク A系（110 $\mathrm{m}^{3} \times 3$ 基），軽油タンク B 系（ $110 \mathrm{~m}^{3} \times 3$ 基）及び軽油タンク H P C S 系（ $170 \mathrm{~m}^{3} \times 1$ 基）（以下
「軽油タンク」という。）により継続できる設計とすることにより，安全機能を損なわない設計と する。

軽油タンク，非常用ディーゼル発電設備（高圧炉心スプレイ系ディーゼル発電設備を含む。）燃料移送ポンプは降下火砕物の影響を受けない地中に埋設された軽油タンク室に設置する設計とす る。軽油タンクベント配管は屋外に設定されているが，開口部が下向きに取り付けられているこ と及び開口部は地上約 4.2 m の高さに取り付けられていることから，想定する降下火砕物の堆積量により閉塞することはない。降下火砕物による荷重の影響に対しては，軽油タンクベント配管 は，降下火砕物が堆積しにくい形状であるため，有意な降下火砕物による荷重の影響を受けるこ とはない。また，軽油タンクベント配管は金属材料を用いており，更に外装塗装を施しているこ とから，降下火砕物に含まれる腐食性ガスによる短期な腐食の影響は小さい。軽油タンクの概略構造図を図 1 に示す。

これにより，7日間の外部電源喪失及び外部との交通の途絶に対して，発電用原子炉の停止，停止後の発電用原子炉及び使用済燃料プールの冷却に係る機能を担らために必要となる電源の供給が継続できることから影響はない。

図1 軽油タンクの概略構造図
（参考資料 $-1,4,5$ ）

降下火硨物の化学的影響（腐食）について

女川原子力発電所第 2 号機の降下火砕物による化学的影響（腐食）については，「構造物への化学的影響（腐食）」，「水循環系への化学的影響（腐食）」又は「換気系•電気系及び計測制御系に対す る化学的影響（腐食）」を影響因子として，評価対象施設等に対する評価を行い，評価対象施設等が耐食性のある金属材料の使用や防食塗装，ライニングの実施による短期的な腐食により安全機能へ の影響がないことを評価している。影響因子と評価対象施設等について整理した。詳細について以下に示す。

1．構造物への化学的影響（腐食）
降下火砕物には腐食性ガス（ SO_{2} ）が付着しており，水に濡れると硫酸イオン $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ が流出す ることから，建屋及び屋外施設の外面を腐食させることで設備に影響を与える可能性がある。

評価対象施設等について評価を行った結果，原子炉建屋，制御建屋，タービン建屋，海水ポン プ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機泠却海水ポンプ），海水ストレーナ（高圧炉心スプレイ補機冷却海水系ストレーナ），排気筒，非常用ガス処理系（屋外配管），復水貯蔵夕 ンク，軽油タンク室，軽油タンク室（H），非常用ディーゼル発電設備（高圧炬心スプレイディー ゼル発電設備含む。）排気消音器及び排気管については，強度腐食環境に対する塗料であるエポキ シ樹脂系の塗装を外面に実施していることで，直ちに金属表面等の腐食が進むことはないことを確認した。

2．水循環系の化学的影響（腐食）
海水中には元々多量の腐食性成分が含まれているが，降下火砕物が海水に接触して腐食性成分 （硫酸イオン $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ ）が溶出することにより，設備に影響を与える可能性がある。
評価対象施設等について評価を行った結果，海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ），海水ストレーナ（原子炉補機冷却海水系ストレーナ，高圧炉心 スプレイ補機冷却海水系ストレーナ）及びその下流設備，海水取水設備（除塵装置）については エポキシ樹脂系，タールエポキシ樹脂系の塗装やゴムライニング等を実施していることで，直ち に金属表面等の腐食が進むことはないことを碓認した。また，海水ストレーナの下流設備である熱交換器の伝熱管については，耐食性に優れたアルミニウム黄銅を使用していること，鉄イオン注入による管内内面の保護被膜により腐食対策を実施していることから，短期での腐食により設備の健全性に影響を与えるものではないと考える。

3．換気系，電気系及び計測制御系に対する化学的影響（腐食）
降下火砕物を含む空気が流路等を腐食させることで設備に影響を与える可能性がある。評価対象施設等について評価を行った結果，海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレ イ補機冷却海水ポンプ）の電動機冷却器については，エポキシ樹脂系の塗装，非常用換気空調系
（外気取入口）には耐食性のあるアルミニウム合金にアクリル塗装による塗装を実施しているの で，直ちに金属表面等の腐食が進むことはないことを確認した。
表1 降下火磼物による化学的影響（腐食）に対する影響対策（1／2）

影響因子	評価対象施設等	評価対象部位		腐食対策	仕様＊1
構造部への化学的影響 （腐食）	－原子炉建屋，制御建屋，タービン建屋			塗装	エポキシ樹脂系塗料による防食塗装
	－海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ）	ポンプ	ケーシング	塗装	
		モータ	外面	塗装	
	－海水ストレーナ （高圧炉心スプレイ補機冷却海水系ストレーナ）		ナ外面	塗装	
	－非常用ガス処理系（屋外配管）		寺構造物	塗装	
	－排気筒		持構造物	塗装	
	－復水貯蔵タンク			塗装	
	－軽油タンク室，軽油タンク室（H）			塗装	
	－非常用ディーゼル発電設備（高圧炉心スプレイ系ディーゼル発電設備含む。）排気消音器及び排気管		音器	塗装	

注記＊1 ：塗装ハンドブックによると，プラントの塗装として，酸，アルカリなどに水分の加わった強度腐食環境での塗装には耐薬品性のある塗料として，エポキシ樹脂塗料，ター ルエポキシ樹脂涂料などが使用されるとの記載がある。
〔参考文献〕：石塚末豊•中道敏彦，塗装ハンドブック，1996，朝倉書店，P312
注：評価対象施設等のうち，屋内設備（非常用ディーゼル発電機（屋内設備），計測制御用電源設備（無停電電源装置）及び非常用所内電気設備（所内低圧系統）は，外気取入
口に設置されているバグフィタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 上上を捕捉する性能）を介した換気空気を吸入することから，降下火砕物が大量に侵入する可能性は少なく，短期での腐食により安全機能が損なわれることはない。
表1 降下火碑物による化学的影響（腐食）に対する影響対策（2／2）

影響因子	評価対象施設等	評価対象部位		腐食対策	仕様＊1	
水循環系への化学的影響（腐食）	－海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ）	ポンプ	コラムパイプ	ライニング	ゴムライニング	
			インペラ, 主軸	塗装	エポキシ樹脂系塗料による防食塗装	
	－海水ストレーナ（原子炉補機冷却海水系ストレ ーナ，高圧炉心スプレイ補機冷却海水系ストレ ーナ）及び下流設備	ストレーナ内面		ライニング	樹脂ライニング（原子炉補機冷却海水系ストレーナ）	
				ゴムライニング（高圧炉心スプ レイ補機冷却海水系ストレー ナ）		
		配管			ライニング	$\begin{aligned} & \text { 樹脂ライニング, ゴムライニン } \\ & \text { グ } \end{aligned}$
		熱交換器水室		ライニング	ゴムライニング	
		伝熱管		金属材料，保護被膜＊2	アルミニウム黄銅	
	－海水取水設備（除塵装置）	スクリーン		塗装	タールエポキシ樹脂系塗料によ る防食塗装	
換気系，電気系及び計測制御系に対する化学的影響（腐食）	－海水ポンプ（原子炉補機泠却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ）	モータ	空気冷却器	塗装	エポキシ樹脂系塗料による防食塗装	
	－非常用換気空調系（外気取入口）	外気取入口	ルーバ	$\begin{aligned} & \text { 金属 } \\ & \text { (塗装) } \end{aligned}$	アルミニウム合金にアクリル樹脂系塗料による塗装	

注記＊1：塗装ハンドブックによると，プラントの塗装として，酸，アルカリなどに水分の加わった強度腐食環境での塗装には耐薬品性のある塗料として，エポキシ樹脂塗料，タール エポキシ樹脂塗料などが使用されるとの記載がある。

腐食対策を実施している。
注：評価対象施設等のらち，屋内設備（非常用ディーゼル発電機（屋内設備），計測制御用電源設備（無停電電源装置）及び非常用所内電気設備（所内低圧系統）は，外気取人口 に設置されているバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕捉する性能）を介した換気空気を吸入することから，降下火砕物が大量に侵入する可能性は少なく，短期 での腐食により安全機能が損なわれることはない。

降下火砕物の金属腐食研究について

火山灰を用いた火山ガス $\left(\mathrm{SO}_{2}\right)$ による金属腐食研究結果を女川原子力発電所における降下火砕物 （火山灰）による金属腐食の影響評価に適用する考え方について以下に示す。

1．適用の考え方

降下火砕物による金属腐食については，主として火山ガス（ SO_{2} ）が付着した降下火砕物の影響 によるものである。

降下火砕物による腐食影響において引用した研究文献「火山環境における金属材料の腐食」で は，桜島の降下火砕物を用いて，実際の火山環境に近い状態を模擬するため，高濃度の亜硫酸が ス（ SO_{2} ）雰囲気を保った状態で金属腐食試験を行なったものである。

火山ガスの成分は亜硫酸ガス，硫化水素，フッ化水素などが挙げられ，成分構成は各火山，同一火山でも噴火ごとに異なるとされている＊1 が，硫酸イオンが金属腐食の原因となることを踏ま えた，降下火砕物の主要な腐食成分である亜硫酸がスを高濃度で模擬した腐食試験結果であるこ とから，特定の火山によらず，女川原子力発電所で考慮する火山についても本研究結果が十分適用可能である。

2．研究文献「火山環境における金属材料の腐食」の概要
（1）試験概要
「火山環境における金属材料の腐食（出雲茂人，末吉秀一ほか），防食技術 Vol．39，pp．247－ 253，1990」によると，降下火砕物を水で洗浄し，可溶性の成分を除去した後，金属試験片
（SS41，Cu，A1， Zn めっき鋼板）に堆積させ，高濃度の SO_{2} ガス雰囲気（ $150 ~ 200 \mathrm{ppm}$ ）で，加熱（温度 $40^{\circ} \mathrm{C}$ ，湿度 95% を 4 時間），泠却（温度 $20^{\circ} \mathrm{C}$ ，湿度 80% を 2 時間）を最大 18 回繰り返すことにより，結露，蒸発を繰り返し金属試験片の腐食を観察している。
（2）試験結果
図1に例としてSS41の腐食による質量変化を示す。降下火砕物の堆積量が多い場合は，降下火砕物の堆積なし，又は堆積量が少ない場合と比較して，金属試験片の腐食が促進される。腐食量は表面厚さにして数十 $\mu \mathrm{m}$ 程度との結果が得られた。

これは火山灰が金属表面に堆積していると結露しやすいこと，並びに保水効果が大きいこ とにより腐食が促進されると結論づけられている。同様に，降下火砕物の堆積の影響は， Cu ， Al, Zn めっき鋼板とも降下火砕物の堆積量が多い場合のほうが，腐食が促進される傾向であ る。腐食量も表面厚さにして十数～数十 $\mu \mathrm{m}$ 程度である。
（3）試験結果からの考察
降下火砕物による腐食については，主として火山ガスが付着した降下火砕物の影響による ものであり，本研究においては，金属試験片の表面に降下火砕物を置き，実際の火山環境を模擬して高濃度の SO_{2} 雰囲気中で暴露し，腐食実験を行っているものである。

腐食の要因となる火山ガスを高濃度の雰囲気を常に保った状態で行っている試験であり，

自然環境に存在する火山灰よりも高い腐食条件＊2で金属腐食量を求めている。女川原子力発電所の評価対象施設等のらち，軽油タンク室及び軽油タンク室（H）のハッチ（ステンレス鋼）については，降下火砕物に付着した火山性ガスが水に濡れたときに生ずる硫酸イオン等 により腐食が発生する可能性がある。このため，ハッチについては，外装塗装＊3を施すこと によって，降下火砕物による短期での腐食により機能に影響を及ぼすことはない設計とする。

注記＊1：「火山噴火等から電気設備を守るには（河内清高），電気設備学会誌 33 巻（2013） 3 号」 ＊2：•三宅島火山の噴火口付近の観測記録：20～30ppm（「三宅火山ガスに関する検討会報告書」より）
－桜島火山上空の噴煙中火山ガスの観測記録：17～68ppm（「京大防災研究所年報」よ り）
＊ 3 ：ハッチ（ステンレス鋼）部は酸，アルカリなどに水分の加わった強度腐食環境での塗装としてエポキシ樹脂系の塗装を実施

Ash－0：降下火砕物のない状態
Ash－1：表面が見える程度に積もった状態
Ash－2：表面が見えなくなる程度に積もった状態
Ash－3：約 0.8 mm の厚さに積もった状態

図1 SS41の腐食による質量変化

降下火砕物による摩耗について

水循環系において最も摩耗の影響を受けやすい箇所はライニングが施されていない各冷却器の伝熱管と考えられるが，発電所の運用期間中において海水取水中に含まれる砂等の摩耗によるトラブ ルは発生していないこと，及び主要な降下火砕物は，砂と同等又は砂より硬度が低くもろいことか ら，降下火砕物による摩耗が設備に影響を与える可能性はないと評価している。

1．降下火砕物と砂の破砕しやすさの違いについて
降下火砕物と砂の破砕しやすさの違いについては，「武若耕司（2004）：シラスコンクリートの特徴とその実用化の現状，コンクリート工学，vol．42，No．3，P38－47．」による調查報告があり，図 1 に示すとおり，「シラスは川砂などに比べて極めて脆弱な材料である」とされており，シラス と同様，火山ガラスを主成分とする降下火砕物は，砂と比較して破砕しやすいと考えられる。

図 1 シラスの破砕試験結果

2．降下火砕物と砂及び設備材料の硬度の比較について
鉱物の硬度は掻傷硬度で表されており，ここではモース硬度による比較を行う。以下のとおり，主要な降下火砕物の硬度は砂と同等又は砂より低いため，設備への影響は軽微と考える。
－降下火砕物の主成分は，火山ガラスであり，「恒松修二•井上耕三•松田応作（1976）：シラス を主原料とする結晶化ガラス，窯業協会誌 84 ［6］，P32－40．」によると，火山ガラスのモース硬度は5 と記載されている。
－女川原子力発電所で想定する降下火砕物の成分である鉱物結晶片は石英，（斜方•単斜）輝石，角閃石，カミントン閃石，黒雲母，磁鉄鉱であり，これらのモース硬度の最大値は 7 である（参考資料 -4 参照）。
－砂の主成分は石英，長石類，雲母類であり，モース硬度の最大値は石英の 7 である。
また，発電所運用期間中において海水取水中に含まれる砂等による摩耗によるトラブルは経験 していないことから，設備材料は砂に対して耐性を有すると考える。また，東北地方太平洋沖地震に伴う津波による海水中の砂に対しても，海水ポンプの運転が継続している実績があることか ら，摩耗による設備への影響は軽微と考える。

降下火砕物による摩耗や融解の影響について

降下火碑物はマグマを起源とする火山ガラス，鉱物結晶片にて構成されるものであり，想定する火山により，主成分組成が異なることから，女川原子力発電所第 2 号機で想定する火山の主成分組成を整理し，降下火砕物による摩耗や融解の影響について確認した。

1．降下火砕物の組成
（1）火山ガラス
降下火砕物の主成分である火山ガラスは，地下深部の高温高圧のマグマが噴火時大気中に噴出されることによる急激な減圧•冷却によって結晶化できずに非晶質化したものである。東北地方の主要なテフラの火山ガラスの主成分組成を表 1 に示す。

表1 宮城県中•北部のテフラ（火山ガラス）の主成分組成について＊1（赤枠は追記）

示標テフラ	武料採取地		SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	FeO	MnO	MgO	CaO	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{Na}_{2} \mathrm{O}$	Total
愛島軽石(K-MD)	川崎町安達	M	76.94	0.12	14.47	1.01	\cdots	0.61	1.79	1.27	3.88	100.00
		SD	0.53	0.02	0.44	0.03	．．．．	0.06	0.07	0.04	0.22	
时折軽石 （ Hj ）	宮崎町台の原	M	77.79	0.16	12.76	1.05	．．．．	0.44	1.09	3.10	3.61	100.00
		SD	0.77	0.05	0.38	0.01	．	0.20	0.11	0.12	0.85	
$\begin{aligned} & \text { 鳴子潟沼-上原 } \\ & \text { テフラ(NK-U) } \end{aligned}$	鳴子町上ノ原	M	77.98	0.22	12.28	1.22	\ldots	1.01	1.59	1.47	4.23	100.00
		SD	0.30	0.01	0.12	0.04	．．．．	0.01	0.01	0.10	0.13	
$\begin{aligned} & \text { 鳴子-柳沢テ } \\ & フ ラ(\mathrm{~N}-\mathrm{Y}) \end{aligned}$	岩出山町安沢	M	78.11	0.17	12.98	1.28	\ldots	0.43	1.52	1.93	3.57	99.99
		SD	0.40	0.03	0.41	0.07	\ldots	0.08	0.05	0.04	0.12	
鳴子－荷坂テ フラ（ $\mathrm{N}-\mathrm{N}$ ）	岩出山町安沢	M	78.01	0.12	12.93	1.29	\ldots	37.0	1.28	1.88	4.12	100.00
		SD	0.33	0.01	0.15	0.02		0.03	0.03	0.04	0.34	
北原火山灰 （Kt）	一迫町十文字	M	77.61	0.07	13.37	0.61	\ldots	0.32	0.70	3.89	3.43	100.00
		SD	0.32	0.02	0.14	0.03	\ldots	0.05	0.03	0.05	0.33	
一迫軽石 （IcP）	一迫町十文	M	76.99	0.15	13.07	1.93	\ldots	0.53	1.86	1.21	4.26	100.00
		SD	0.41	0.02	0.15	0.05	．．．．	0.07	0.04	0.02	0.40	

東北地方の主要なテフラの火山ガラスの主成分組成は， SiO_{2} が約 $77 \sim 78 \%, \mathrm{Al}_{2} \mathrm{O}_{3}$ が約 $12 \sim$ 14% ， $\mathrm{K}_{2} 0$ が約 $1 \sim 4 \%$ 程度の範囲であることを確認した。
（2）鉱物結晶片
鉱物結晶片は，地下深部のマグマが徐々に泠却される過程で結晶化した造岩鉱物である。東北地域の主要なテフラに対する鉱物組成は表 2 に示すように石英，（斜方•単斜）輝石，角閃石，カミントン閃石，磁鉄鉱及び黒雲母が含まれていることを確認した。

また，女川原子力発電所の降下火砕物の調查 ${ }^{* 2}$ では主な鉱物として（斜方•単斜）輝石，角閃石，黒雲母，磁鉄鉱を確認した。

表2 宮城県中•北部のテフラの岩相について＊1（赤枠•赤字は追記）

示標テフラ	鉱物組成	$\begin{aligned} & \text { 火山がラ } \\ & \text { スの形態 } \end{aligned}$	屈 折 率
川崎スコリア（Z－K）愛島軽石（K－MD）	$\begin{aligned} & \mathrm{opx}>\mathrm{cpx} \\ & \text { cum ; qt } \end{aligned}$	pm	$\begin{aligned} & \text { opx }(\gamma): 1.700-1.704 \\ & \mathrm{gl}: 1.504-1.507(1.505-1.506) \\ & \operatorname{cum}\left(\mathrm{n}_{2}\right): 1.660-1.665 \end{aligned}$
鳴子潟沼－上原テフラ （NK－U）	$\mathrm{opx}>\mathrm{cpx}=\mathrm{mt}$	pm	$\begin{aligned} & \mathrm{gl}: 1.492-1.500 \\ & \mathrm{opx}(\gamma): 1.711-1.715 \end{aligned}$
时折軽石（ Hj ）	opx $>$ ho；qt	pm	$\begin{aligned} & \mathrm{gl}: 1.499-1.501 \\ & \text { opx }(\gamma): 1.712-1.714 \\ & \text { ho }\left(\mathrm{n}_{2}\right): 1.668-1.671 \end{aligned}$
鳴子－柳沢テフラ $(\mathrm{N}-\mathrm{Y})$	opx $>$ ho，mt（bi，cpx）；qt	$\mathrm{pm}>\mathrm{bw}$	$\begin{aligned} & \mathrm{gl}: 1.501-1.503 \\ & \text { opx }(\gamma): 1.717-1.722(1.719) \\ & \text { ho }\left(\mathrm{n}_{2}\right): 1.673-1.676 \end{aligned}$
鳴子－荷坂テフラ $(\mathrm{N}-\mathrm{N})$	$\mathrm{opx}>\mathrm{mt}: \mathrm{qt}$	pm	$\begin{aligned} & \mathrm{gl}: 1.500-1.502 \\ & \mathrm{opx}(\gamma): 1.501) \\ & \hline 1.724-1.728 \end{aligned}$
北原火山灰（Kt）	poor（mt＞opx，cum）	pm	gl ：1．499－1．502
一迫埾石（IcP）	opx $>\mathrm{mt}$	pm	opx（ γ ）：1．728－1．733

鉱物組成の凡例

•opx：斜方輝石	•qt：石英
•ho：角閃石	•cum：カミントン閃石
$\cdot \mathrm{mt}:$ 磁鉄鉱	•bi ：黒雲母

2．降下火砕物の影響について
（1）摩耗
降下火砕物中に酸化アルミニウムの鉱物相が存在する可能性は極めて低い（参考資料－4 （補足）参照）。一方，摩耗の影響は降下火砕物の硬度の影響を受けることから，女川原子力発電所で想定する降下火砕物の硬度について確認を実施した。
a．火山ガラス
火山ガラスの硬度については，鹿児島県垂水市における火山ガラスについて調査を実施 しており，表 3 に示す主元素組成（ SiO_{2} ：約 $73 \%, \mathrm{Al}_{2} \mathrm{O}_{3}$ ：約 $14 \%, \mathrm{~K}_{2} 0$ ：約 3% ）の火山ガラ スは表4に示すようにモース硬度5 であることを確認した。

これは東北地方の主要なテフラの火山ガラスの主成分組成（ SiO_{2} ：約 $77 \sim 78 \%, \mathrm{Al}_{2} \mathrm{O}_{3}$ ：約 $12 ~ 14 \%, K_{2} 0$ ：約 $1 \sim 4 \%$ 程度）と比較しても大きな差異がないことから，女川原子力発電所 で想定する火山ガラスのモース硬度も同様に 5 程度と考えられる。

表3 火山ガラスの主成分組成＊3（赤枠は追記）

Chemical composition（wt\％）											
SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	CaO	MgO	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	TiO_{2}	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	MnO	ig．loss	Total
72.73	13.69	1.44	0.23	1.82	0.18	3.46	3.42	0.01	0.06	3.16	100.2

表4 火山ガラスの特性＊3（赤枠は追記）

	Shirasu glass			
	No． 1	No． 2	No． 3	No． 4
Specific gravity	2.70	2.77	2.75	2.76
Hardness （mohrs）	5	5	5	5
Softening point $\left({ }^{\circ} \mathrm{C}\right)$	873	868	875	870

b．鉱物結晶片
東北地方の主要なテフラに対する文献＊1 及び発電所敷地内及び敷地周辺の地質調査 ${ }^{* 2}$ の結果から確認された造岩鉱物は，石英，（斜方•単斜）輝石，角閃石，カミントン閃石，黒雲母，磁鉄鉱である。各造岩鉱物のモース硬度は表 5，6 に示すとおりであり，最大値は石英のモース硬度 7 である。

表5 造岩鉱物の特徴及び硬度＊4（赤枠は追記）

造岩鉱物名	色調•透明度•光沢など	自形結晶の形	割れ口	モース 硬度菓	比重
碤	無色透明，白色半透明，ガラス光沢	複六方䬺。六角柱状	不視則	7	2.65
カリ長石	ガラス光沢	四角柱状	直方体の㰹開	6	2.57
斜長石	無色透明，白色半透明，ガラス光沢	四角柱状	直方体の愑開	6－6．5	2．6－2．8
白雲母	無急迢明，真珠光沢	六角板状	－方向に哞開	2．5－3	2.9
黒雲且		六角板状		2．5－3	2．7－3．3
角閦石	黑色不透明，暗緑～褐色半透明， ガラス光沢	長柱状	$60^{\circ} / 120^{\circ}$ に斜交する勆開	3	2.8
輝石	$\begin{aligned} & \text { 黒色不透明. 緑色~棈色半透明, } \\ & \text { ガラス光沢 } \end{aligned}$	長柱状		5－6	3．2－3．5
かんらん石		短柱状	不規則	6．5－7	3．2－4．4
磁鉄鎕	黒甾不透明，亜金属光沢，強㷋性	八面体	不視則	5．5－6	5.2
方解石	無色透明，白色半透明，ガラス顽沢	要面侉，六角板～柱狱，犬牙状	斜交する三方向に舉開	3	2.7
柘榴石	赤色，黄裼色，绿色半透明． ガラス光沢	$\begin{aligned} & \text { 二十四面体, } \\ & \text { +二面体 } \end{aligned}$	不矣則	6．5－7	3．2－4．2

表6 造岩鉱物の硬度（抜粋）＊5（赤枠は追記）

和 名（英名）	晶系	理想化学組成式	色	条 痕	光 沢	䢃 開	硬 度
カミングトン閉石（cummingtonite）	単	$(\mathrm{Mg}, \mathrm{Fe})_{7} \mathrm{Si}_{8} \mathrm{O}_{22}(\mathrm{OH})_{2}$	褐，緑	白	ガラス	\｛110\}	6

以上のことから，女川原子力発電所で想定する降下火砕物のモース硬度の最大値は 7 程度である。また，一般的な砂は石英，長石類，雲母類を主成分＊6としており，砂のモース硬度も石英が最大で 7 程度であることから，設備への影響は砂と同等であると考える。
（2）融解
降下火砕物中に酸化カリウムの鉱物相が存在する可能性は極めて低い（参考資料 -4 （補足）参照）。一方，融解の影響は降下火砕物の融点の影響を受けることから，女川原子力発電所で想定する降下火砕物の融解について確認を実施した。
a．火山ガラス
火山ガラスの融解については，鹿児島県垂水市における火山ガラスについて分析＊3を実施しており，表 3 に示す主元素組成（ SiO_{2} ：約 $73 \%, \mathrm{Al}_{2} \mathrm{O}_{3}$ ：約 $14 \%, \mathrm{~K}_{2} 0$ ：約 3% ）の火山ガ ラスは約 $700^{\circ} \mathrm{C}$ からガラスが転移し，軟化温度は表 4 に示すように $868 \sim 875^{\circ} \mathrm{C}$ であること が認められた。これは東北地方の主要なテフラの火山ガラスの主成分組成（ SiO_{2} ：約 77 ～ $78 \%, \mathrm{Al}_{2} \mathrm{O}_{3}$ ：約 $12 \sim 14 \%, \mathrm{~K}_{2} 0$ ：約 $1 \sim 4 \%$ 程度）と比較しても大きな差異がないことから，女川原子力発電所で想定する火山ガラスの軟化温度は同様に約 $860 \sim 880^{\circ} \mathrm{C}$ 程度と考えられ る。よって火山ガラスの融解温度は $860^{\circ} \mathrm{C}$ 以上であると推定される。
b．鉱物結晶片
鉱物結晶片は火成岩の構成鉱物であることから，火成岩（マグマ）の融点と同等と考え られる。火成岩の融点は表6のとおり $850 \sim 1125^{\circ} \mathrm{C}{ }^{* 7}$ であることを確認した。

表6 実測された溶岩の温度と粘性係数＊7（赤枠は追記）

＊山	坦大単	早面名	星盛（1）		
	1546	壴政管	100	$\begin{aligned} & 58 \times 10^{1} \\ & 1.8=v^{4} \\ & 7.1 \times \mathbb{N}^{4} \\ & 81 \times 0^{4} \end{aligned}$	Minalaniond Shurral｜ise
	190		$\begin{gathered} 20-1100 \\ 118 \\ 1108 \\ 106 \\ 106 \end{gathered}$		
	1961	域年			
	150	家或管			
	180	效需			
	1661	真政爰			
娦	1246	晏山类	（6at－1000	－	
	1000		1000	－	
	1548	F1＋1？	mom－		
	186	就號	而	4×0	1）Marderailicisu
	1 ECO	京砤等	940	7×10	¢ Massanh
	156		110		$\int \frac{\text { Moctrald and }}{}$
	Lge	就塂	1100	2x ${ }^{5}$	
	16Es	3咅童	10×1	255010	
	1345－45		100	wivid	
	19\％		1000－8030	$-518 \times d^{-1}$	Tangerand Hiquast（That
	1806		－	$\therefore 15 \times 0^{01}$	Walerrliame\％
	194		－		Emanamalay
－axdaldtyp）	1006	＋7ッ4	－	7 F	Ints 1105010
	168：	デサイト	－		Priedran of at（tisk

以上のことから，女川原子力発電所で想定する降下火砕物の融点は $850^{\circ} \mathrm{C}$ 以上であると考えられる。火山灰の融解の影響について，非常用ディーゼル発電機のシリンダから排出 される排気ガス温度が約 $500^{\circ} \mathrm{C}$ であり，シリンダ内の金属表面付近はシリンダ冷却水及び ピストン冷却用潤滑油の効果により冷却されていることを踏まえると，火山灰は融解に至 らないと考える。

以 上

［参考文献］

＊1：八木浩司•早田勉，宮城県中部及び北部に分布する後期更新世広域テフラとその層位，地学雑誌，1989，P48
＊2：第446回 審査会合資料（女川原子力発電所 2 号炉 火山影響評価について（コメント回答），（補足説明資料）），2017．2．24，P67
＊3：恒松修二•井上耕三•松田応作，シラスを主原料とする結晶化ガラス，窯業協会誌 84［6］，1976，P32－ 40
＊4：青木正博•目代邦康，増補改訂版 地層の見方がわかるフィールド図鑑，誠文堂新光社，2017，P200
＊5：理科年表，国立天文台編 第 91 冊，平成 30 年，P668
＊6：小田匡寛•榎本文勇ほか，砂粒子の形状•組成が砂の土質工学的性質に及ぼす影響に関する研究，土 と基礎，19－2，1971，P7
＊7：下鶴大輔•荒牧重雄ほか，火山の事典 第2版，朝倉書店，2008，P147

降下火砕物中の主元素組成が示す影響について

降下火硨物の主元素組成については，酸化物（ $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2} \mathrm{O}$ 等）の重量\％として示されている ことが多い。これらの主元素組成が及ぼす影響について，以下の確認を実施した。

1．降下火砕物の組成に関する調査
東北地方のテフラを調査している文献＊1において，表1に示すようにテフラ（火山ガラス）の主元素組成を示している。本論文の著者である山形大学の八木浩司教授に主元素組成が示す酸化物の影響について確認した結果を以下に示す。
＞火山ガラスの主元素組成を示しているのは，非晶質の火山ガラスの主要元素の割合を把握す ることでテフラの同定もしくは，マグマ組成を推定するために非晶質の火山ガラスの主成分 を分析したものであり，酸化物（二酸化珪素，酸化アルミニウム，酸化カリウム等）の鉱物相 が存在していることを示しているものではない。
＞降下火砕物は酸素に飽和しているため，成分分析の際に構成元素を酸化物として表示し，量比を求めているに過ぎない。

表1 宮城県中•北部のテフラ（火山ガラス）の主成分組成について＊1（赤枠は追記）

示標テフラ	試料採取地		SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	FeO	MnO	MgO	CaO	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{Na}_{2} \mathrm{O}$	Total
愛島軽石 （K－MD）	川崎町安達	M	76.94	0.12	14.47	1.01	．．．	0.61	1.79	1.27	3.88	100.00
		SD	0.53	0.02	0.44	0.03	．．．．	0.06	0.07	0.04	0.22	
时折軽石 （ Hj ）	宮崎町台の原	M	77.79	0.16	12.76	1.05	．．．．	0.44	1.09	3.10	3.61	100.00
		SD	0.77	0.05	0.38	0.01		0.20	0.11	0.12	0.85	
$\begin{aligned} & \text { 鳴子潟沼-上原 } \\ & \text { テフラ(NK-U) } \end{aligned}$	嗎子町上ノ原	M	77.98	0.22	12.28	1.22	．．．．	1.01	1.59	1.47	4.23	100.00
		SD	0.30	0.01	0.12	0.04	．\cdot ．	0.01	0.01	0.10	0.13	
$\begin{aligned} & \text { 鳴子-柳沢テ } \\ & \text { フラ (N-Y) } \end{aligned}$	岩出山町安沢	M	78.11	0.17	12.98	1.28	．．．．	0.43	1.52	1.93	3.57	99.99
		SD	0.40	0.03	0.41	0.07		0.08	0.05	0.04	0.12	
鳴子－荷坂テ フラ（ $\mathrm{N}-\mathrm{N}$ ）	岩出山町安沢	M	78.01	0.12	12.93	1.29	．．．．	37.0	1.28	1.88	4.12	100.00
		SD	0.33	0.01	0.15	0.02		0.03	0.03	0.04	0.34	
北原火山灰 （Kt）	一迫町十文字	M	77.61	0.07	13.37	0.61		0.32	0.70	3.89	3.43	100.00
		SD	0.32	0.02	0.14	0.03	．．．．	0.05	0.03	0.05	0.33	
$\begin{aligned} & \text { 一迫軽石 } \\ & \text { (IcP) } \end{aligned}$	一迫町十文	M	76.99	0.15	13.07	1.93	．．．	0.53	1.86	1.21	4.26	100.00
		SD	0.41	0.02	0.15	0.05		0.07	0.04	0.02	0.40	

また，文献＊2においても，マグマによる火成岩をつくる珪酸塩鉱物（表 2 参照）を示しており，鉱物の多くはアルミニウムやカリウム等を含む化学組成を示している。これらに関してマグマの代表的な化学組成（表3参照）を示しており，文献では，以下のような記載がある。
＞火山岩の組成は酸化物の形で示したからといって，岩石中において個々の酸化物が必ずしも そのままの状態で入っていることを意味しているわけではない。また，液体（マグマ）におい ても各々の酸化物がそのまま入り混じってはいない。
＞酸化物の形で示したのは，たんなる分析技術上の制約からくる便宜的なものである。

表2 火成岩をつくる珪酸塩鉱物の代表例 ${ }^{*} 2$

鉱物族名	鉱 物 名	化 学 組 成
シリカ族	石英 クリストバル石	$\begin{aligned} & \mathrm{SiO}_{2} \\ & \mathrm{SiO}_{2} \end{aligned}$
長石族	斜長石 カリ長石	$\begin{aligned} & \mathrm{Ca}_{1-0} \mathrm{Na}_{0-1} \mathrm{Al}_{2-1} \mathrm{Si}_{2-3} \mathrm{O}_{8} \\ & (\mathrm{~K}, \mathrm{Na}) \mathrm{AlSi}_{3} \mathrm{O}_{8} \end{aligned}$
準長石族	ネフェリン	$\mathrm{NaAlSiO}_{4}$
雲母族	黒雲母 白雲母	$\begin{aligned} & \mathrm{K}(\mathrm{Mg}, \mathrm{Fe})_{3}\left(\mathrm{AlSi}_{3} \mathrm{O}_{10}\right)(\mathrm{OH})_{2} \\ & \mathrm{KAl}_{2}\left(\mathrm{AlSis}_{3} \mathrm{O}_{10}\right)(\mathrm{OH})_{2} \end{aligned}$
角閏石族	普通角関石	$\mathrm{NaCa}_{2}\left(\mathrm{Mg}, \mathrm{Fe}^{2+}, \mathrm{Al}\right)_{5}(\mathrm{Si}, \mathrm{Al})_{8} \mathrm{O}_{22}(\mathrm{OH})_{2}$
牌石族	斜方輝石単斜辉石	$\begin{aligned} & \left(\mathrm{Mg}, \mathrm{Fe}^{2+}\right) \mathrm{SiO}_{3} \\ & \left(\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}^{2+}\right) \mathrm{SiO}_{3} \end{aligned}$
ざくろ石族	アルマンデイン	$\mathrm{Fe}^{2+}{ }_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$
かんらん石族	かんらん石	$\left(\mathrm{Mg}, \mathrm{Fe}^{2+}\right)_{2} \mathrm{SiO}_{4}$

表3マグマ（火山岩）の代表的な化学組成（単位は重量 \％）＊2

	船形山 玄武岩	桜島 安山岩	昭和新山 ディサイト	神津島 流紋岩
SiO_{2}	49.56	57.11	69.74	76.06
TiO_{2}	0.72	0.82	0.45	0.22
$\mathrm{Al}_{2} \mathrm{O}_{3}$	17.88	16.94	15.59	13.62
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	2.82	1.91	1.52	0.21
FeO	7.54	6.09	2.59	0.57
MnO	0.16	0.13	0.08	0.08
MgO	7.03	3.87	0.85	0.08
CaO	10.92	8.42	3.63	0.73
$\mathrm{Na}_{2} \mathrm{O}$	1.50	3.09	3.43	4.25
$\mathrm{~K}_{2} \mathrm{O}$	0.22	1.37	1.36	3.29
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.06	0.15	0.22	0.02
$\mathrm{H}_{2} \mathrm{O}^{+}$	1.16	0.14	0.67	0.81
$\mathrm{H}_{2} \mathrm{O}^{-}$	0.86			0.23
合計 2	100.43	100.04	100.36	0.38

よって，降下火砕物の主元素組成においては，酸化アルミニウム，酸化カリウム等を重量 $\%$ と して示すことが通例であるが，これらが鉱物相として存在することを示すものではない。

2．東北地方のテフラに対する調査
降下火砕物内に鉱物相として，酸化アルミニウムや酸化カリウムが存在する可能性を確認する ため，文献調査を実施した。

文献＊3の，東北地方のテフラを構成する主な鉱物は，石英，（斜方•単斜）輝石，角閃石，カミ ントン閃石，緑簾石，カンラン石，黒雲母，黒曜石，アルカリ長石であり，構成する鉱物中に，酸化アルミニウム及び酸化カリウムの鉱物相の存在は確認されなかった。

また，女川原子力発電所の降下火砕物の調査 ${ }^{4}$ では主な鉱物として（斜方•単斜）輝石，角閃石，黒雲母，磁鉄鉱を確認しており，酸化アルミニウム及び酸化カリウムの鉱物相は確認されな かつた。

3．まとめ
降下火砕物の主元素組成については，酸化物（ $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, ~ \mathrm{~K}_{2} \mathrm{O}$ 等）の重量 $\%$ として示されてい ることが多いが，これらの主元素組成が及ぼす影響について確認した結果を以下に示す。
＞降下火砕物の成分を示す場合には，構成元素を酸化物の重量 \％として示すことが通例である が，酸化物の鉱物相の存在を示すものではないことを確認した。
＞東北地方のテフラを調査した結果，降下火砕物中に鉱物相として，酸化アルミニウムや酸化 カリウムが存在する可能性は極めて低いことから，摩耗や融解の影響も極めて小さいと考え られる。

> 以 上

［参考文献］

＊ 1 ：八木浩司•早田勉，宮城県中部及び北部に分布する後期更新世広域テフラとその層位，地学雑誌，1989，P48
＊2：谷口宏充，マグマ科学への招待，裳華房，2001，P28－30
＊3：町田洋•新井房夫，新編 火山灰アトラス［日本列島とその周辺］東京大学出版会，2011，P144－153
＊ 4 ：第 446 回 審査会合資料（女川原子力発電所 2 号炉 火山影響評価について（コメント回答），（補足説明資料）），2017．2．24，P67

降灰時の外部支援及び開閉所の除灰の成立性検討について

女川原子力発電所第 2 号機における降灰時の間接的影響（長期間の外部電源喪失及び交通の途絶） に対して，外部からの支援については，事象発生後 6 日間までに発電所外からの支援を受けられる よう支援計画を定め，体制を整備する。また，支援を受けるまでの7日間については，設置許可基準規則解釈第 33 条第 7 項の要求として 7 日間分の非常用交流電源設備の燃料を有しており，軽油 タンクへの燃料補給なしで運転が継続できる。その後は外部からの軽油タンクへの燃料補給や開閉所の除灰を実施し，外部電源の受電を行うことで，継続して電源を確保することとしているが，外部からの支援を受け入れるために開閉所の除灰，及び所内の燃料補給ルート確保が必要であること から，これらの成立性について検討を行った。

1．開閉所の降灰除去
降灰後に外部電源を受電するため，開閉所の除灰の成立性検討を行った。ガス絶縁開閉装置は筐体内に母線が内蔵されており降灰の影響を受けない構造となっているが，外部電源を受電する送電線引込部の碍子（ブッシング）は，降灰の影響を受ける可能性がある。ただし，降灰による汚損碍子は清掃により機能回復が可能であることから，図1 のとおり足場を構築し，碍子（ブッ シング）の清掃（洗浄，乾拭き）を実施する。検討の結果，開閉所の清掃作業のタイムチャート は図 2 のとおりである。女川原子力発電所の開閉所（5回線）については，平行作業が可能であ ることから，外部電源の復旧状況に合わせて清掃作業を実施する。

図 1 碍子（ブッシング）清掃のイメージ

注記＊ 1 写真出典：産業構造審議会 保安分科会 電力安全小委員会 電気設備自然災害等対策ワーキンググル ープ－中間報告書（平成 26 年 6 月 24 日 経済産業省 商務流通保安グループ 電力安全課）

図 2 碍子（ブッシング）の清掃•復旧のタイムチャート

2．燃料補給ルートの除灰
燃料補給ルートの確保については，敷地内に設計層厚である 15 cm の降下火砕物が堆積した場合において，タンクローリ等による燃料の陸送を想定し，正門ゲートから軽油タンクまでの燃料補給ルートの除灰成立性検討を行った。
（1）除灰方法の概要
図 3 に示す正門ゲートから軽油タンクまでの燃料補給ルートに降り積もった灰を当社所有 のブルドーザで道路脇へ押土する。なお，正門ゲートから軽油タンクまでの燃料補給ルート は2 ルートあるが，距離が長いルート①（約 1.7 km ）で評価を行うこととする。

図 3 燃料補給ルート
（2）評価条件
a．降下火砕物条件
－堆積量： 15 cm ，密度： $1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤密度）
b．ブルドーザの仕様

- ブレード幅：約 3.7 m
- 速度（1速）：前進 $3.3 \mathrm{~km} / \mathrm{h}$ ，後進 $4.4 \mathrm{~km} / \mathrm{h}$

$$
3-42
$$

c．除灰距離
－正門ゲートから軽油タンクまでの燃料補給ルート：1．7km
d．除灰時間の算出方法
ブルドーザが降下火砕物を道路脇に押し出す作業を1サイクルとして，ブルドーザの除灰能力から，除灰速度を算出し，燃料補給ルートの除灰時間を算出する。
（3）算出結果

作業内容			備考
（1）	ブルドーザの 1 サイクル当たりの最大押し出し可能重量	9.12 （t）	土砂撤去実証試験により確認済み
（2）	ブルドーザの単位長さ当たりの除灰可能重量	0．83（t／m）	ブレードの形状及び火山灰 の条件により算定
（3）	1 サイクルで除灰できる距離	10 （m）	（1）／（2）を切捨て
（4）	1 サイクル当たりの除灰時間	0.5 （min）	注 1 参照
（5）	1 サイクル当たりの除灰速度	$1.3(\mathrm{~km} / \mathrm{h})$	③／4）を切上げ
（6）	燃料補給ルートの距離	1．7（km）	
（7）	燃料補給ルートの除去時間	80 （min）	（6）／5 を切上げ

注1：1サイクルの除灰時間の考え方
－1 サイクル当りの作業時間は，作業速度（前進 $3.3 \mathrm{~km} / \mathrm{h}$ ，後進 $4.4 \mathrm{~km} / \mathrm{h}$ ）で作業すると仮定して
A：押し出し（ A ）\rightarrow（B）\rightarrow（C）$: ~(10 \mathrm{~m}+6 \mathrm{~m}) ~ \div 3.3 \mathrm{~km} / \mathrm{h}=0.3 \mathrm{~min}$
B：ギア切り替え
： 0.1 min
$\mathrm{C}: ~$ 後進（ \quad C \rightarrow（B）
$: 6 \mathrm{~m} \div 4.4 \mathrm{~km} / \mathrm{h}=0.09 \mathrm{~min}$

1 サイクル当りの作業時間 $(\mathrm{A}+\mathrm{B}+\mathrm{C})=0.3+0.1+0.09 \fallingdotseq 0.5 \mathrm{~min}$

（4）燃料補給ルートの除灰成立性検討結果
除灰作業に関する作業のタイムチャートを図4に示す。記載のとおり約5時間で除灰が可能 であることを確認した。

図4 除灰作業のタイムチャート

