東北電原設第9号令和3年12月10日

原子力規制委員会 殿

仙台市青葉区本町一丁目7番1号 東 北 電 力 株 式 会 社 取締役社長 社長執行役員 樋口 康二郎

工事計画認可申請書の一部補正について

平成25年12月27日付け東北電原設第9号をもって申請いたしました 女川原子力発電所第2号機の工事計画認可申請書(令和2年5月29日付 け東北電原設第1号,令和2年9月30日付け東北電原設第3号,令和2年 11月30日付け東北電原設第5号,令和3年2月19日付け東北電原設第6 号,令和3年3月31日付け東北電原設第7号及び令和3年11月24日付 け東北電原設第5号にて一部補正)について,別紙のとおり一部補正いた します。 本資料のうち、枠囲みの内容は、 商業機密あるいは防護上の観点 から公開できません。 別 紙

目 次

- 1. 補正項目
- 2. 補正を必要とする理由を記載した書類
- 3. 補正前後比較表
- 4. 補正内容を反映した書類

1. 補正項目

補正項目

補正項目は下表のとおり。

補正項目	補正箇所
Ⅱ 工事計画	
3. 原子炉冷却系統施設 3.11 原子炉冷却系統施設 (蒸気タービンを除く。) の基本設計 方針, 適用基準及び適用規格	「3. 補正前後比較表」による。
4. 計測制御系統施設 4.10 計測制御系統施設(発電用原子炉の運転を管理するための制御装置を除く。)の基本設計方針,適用基準及び適用規格	「3. 補正前後比較表」による。
8. その他発電用原子炉の附属施設 8.4 火災防護設備 8.4.3 火災防護設備の基本設計方針,適用基準及び適用規格	「3. 補正前後比較表」による。

14-r	[_D kok
補正項目	補正箇所
VI 添付書類	
VI-1-1-1-1 発電用原子炉設置変更許可申請書「本文(五号)」 との整合性	「3. 補正前後比較表」による。
VI-1-1-4-8-3-1-1 取放水路流路縮小工(第1号機取水路)	「3. 補正前後比較表」による。
VI-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	「3. 補正前後比較表」による。
VI-1-1-7 発電用原子炉施設の火災防護に関する説明書	「3. 補正前後比較表」による。
VI-1-1-8-1 溢水等による損傷防止の基本方針	「3. 補正前後比較表」による。
VI-2-1-1 耐震設計の基本方針	「3. 補正前後比較表」による。
VI-2-1-3 地盤の支持性能に係る基本方針	 「3. 補正前後比較表」による。
VI-2-1-12-1 配管及び支持構造物の耐震計算について	「3. 補正前後比較表」による。
VI-2-1-13-2 横置一胴円筒形容器の耐震性についての計算書 作成の基本方針	「3. 補正前後比較表」による。
VI-2-1-13-3 平底たて置円筒形容器の耐震性についての計算 書作成の基本方針	「3. 補正前後比較表」による。
VI-2-2-1 原子炉建屋の地震応答計算書	 「3. 補正前後比較表」による。
VI-2-2-3 制御建屋の地震応答計算書	「3. 補正前後比較表」による。
VI-2-2-4 制御建屋の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-2-5 復水貯蔵タンク基礎の地震応答計算書	 「3. 補正前後比較表」による。
VI-2-2-6 復水貯蔵タンク基礎の耐震性についての計算書	 「3. 補正前後比較表」による。
VI-2-2-8 海水ポンプ室の耐震性についての計算書	「3. 補正前後比較表」による。

補正項目	補正箇所
VI-2-2-10 第3号機海水ポンプ室の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-2-12-1 原子炉機器冷却海水配管ダクト(水平部)の耐震	「3. 補正前後比較表」による。
性についての計算書	
VI-2-2-14 軽油タンク室の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-2-16 軽油タンク室 (H) の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-2-18 ガスタービン発電設備軽油タンク室の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-2-20 軽油タンク連絡ダクトの耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-2-21 緊急用電気品建屋の地震応答計算書	「3. 補正前後比較表」による。
VI-2-2-23 緊急時対策建屋の地震応答計算書	「3. 補正前後比較表」による。
VI-2-2-25 排気筒基礎の地震応答計算書	「3. 補正前後比較表」による。
VI-2-2-26 排気筒基礎の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-2-28 排気筒連絡ダクトの耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-2-29 第 3 号機海水熱交換器建屋の地震応答計算書	「3. 補正前後比較表」による。
VI-2-2-30 第 3 号機海水熱交換器建屋の耐震性についての計 算書	「3. 補正前後比較表」による。
VI-2-3-4-2-4 差圧検出・ほう酸水注入系配管(ティーより N11 ノズルまでの外管)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-3-4-3-10 差圧検出・ほう酸水注入系配管(原子炉圧力容 器内部)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-4-3-1-2 燃料プール冷却浄化系ポンプの耐震性につい ての計算書	「3. 補正前後比較表」による。

	補正項目	補正箇所
VI-2-5-4-1-3	残留熱除去系ストレーナの耐震性についての 計算書	「3. 補正前後比較表」による。
VI-2-5-5-1-1	高圧炉心スプレイ系ポンプの耐震性について の計算書	「3. 補正前後比較表」による。
VI-2-5-5-2-1	低圧炉心スプレイ系ポンプの耐震性について の計算書	「3. 補正前後比較表」による。
VI-2-5-6-2-2	復水貯蔵タンクの耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-5-7-1-3	原子炉補機冷却海水ポンプの耐震性について の計算書	「3. 補正前後比較表」による。
VI-2-5-7-2-3	高圧炉心スプレイ補機冷却海水ポンプの耐震 性についての計算書	「3. 補正前後比較表」による。
VI-2-6-4-1-1	ほう酸水注入系ポンプの耐震性についての計 算書	「3. 補正前後比較表」による。
VI-2-6-5-2-1-	9 復水移送ポンプ出口圧力の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-6-5-2-3-	3 残留熱除去系洗浄ライン流量(残留熱除去系 ヘッドスプレイライン洗浄流量)の耐震性に ついての計算書	「3. 補正前後比較表」による。
VI-2-6-5-2-3-4	4 残留熱除去系洗浄ライン流量(残留熱除去系 B 系格納容器冷却ライン洗浄流量)の耐震性 についての計算書	「3. 補正前後比較表」による。
VI-2-6-5-4-1-	2 圧力抑制室圧力の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-6-5-4-2-	1 ドライウェル温度の耐震性についての計算書	「3. 補正前後比較表」による。

補正項目	補正箇所
VI-2-6-5-4-2-3 サプレッションプール水温度の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-6-5-4-2-4 原子炉格納容器下部温度の耐震性について の計算書	「3. 補正前後比較表」による。
VI-2-6-5-4-4-1 格納容器内水素濃度 (D/W) の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-6-5-8-1 圧力抑制室水位の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-6-5-8-2 原子炉格納容器下部水位の耐震性についての 計算書	「3. 補正前後比較表」による。
VI-2-6-7-2-1 衛星電話設備(固定型)(中央制御室)の耐震性についての計算書	: 「3. 補正前後比較表」による。
VI-2-6-7-2-3 衛星電話設備(固定型)(緊急時対策所)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-6-7-3-1 無線連絡設備(固定型)(中央制御室)の耐震性 についての計算書	: 「3. 補正前後比較表」による。
VI-2-6-7-3-3 無線連絡設備(固定型)(緊急時対策所)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-6-7-6 統合原子力防災ネットワークを用いた通信連絡 設備の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-6-7-9 代替原子炉再循環ポンプトリップ遮断器の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-6-7-13 フィルタ装置出口圧力(広帯域)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-6-7-15 フィルタ装置出口水素濃度の耐震性についての 計算書	「3. 補正前後比較表」による。

補正項目	補正箇所
VI-2-6-7-17 残留熱除去系熱交換器冷却水入口流量の耐震性 についての計算書	「3. 補正前後比較表」による。
VI-2-7-3-1-1 管の耐震性についての計算書(放射性ドレン移 送系)	「3. 補正前後比較表」による。
VI-2-8-2-1-2-2 格納容器内雰囲気放射線モニタ(S/C)の耐震 性についての計算書	「3. 補正前後比較表」による。
VI-2-9-2-1-2 サプレッションチェンバの耐震性についての 計算書	「3. 補正前後比較表」による。
VI-2-9-4-4-1-2 管の耐震性についての計算書(非常用ガス処理系)	「3. 補正前後比較表」による。
VI-2-9-4-4-2-1 管の耐震性についての計算書(可燃性ガス濃度制御系)	「3. 補正前後比較表」による。
VI-2-9-4-5-1-1 管の耐震性についての計算書(原子炉格納容 器調気系)	「3. 補正前後比較表」による。
VI-2-10-1-2-1-1 非常用ディーゼル発電設備 機関・発電機の 耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-2-1-3 非常用ディーゼル発電設備 燃料デイタン クの耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-2-1-4 非常用ディーゼル発電設備 燃料移送ポンプの耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-2-1-7 非常用ディーゼル発電設備 制御盤の耐震 性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-2-2-1 高圧炉心スプレイ系ディーゼル発電設備 機関・発電機の耐震性についての計算書	「3. 補正前後比較表」による。

	補正項目	補正箇所
VI-2-10-1-2-2-3	高圧炉心スプレイ系ディーゼル発電設備 燃料デイタンクの耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-2-2-4	高圧炉心スプレイ系ディーゼル発電設備 燃料移送ポンプの耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-2-2-7	高圧炉心スプレイ系ディーゼル発電設備 制御盤の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-2-3-2	ガスタービン発電設備 燃料移送ポンプの耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-2-3-4	ガスタービン発電設備 燃料小出槽の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-2-3-6	ガスタービン発電設備 制御盤の耐震性に ついての計算書	「3. 補正前後比較表」による。
VI-2-10-1-3-1-1	無停電交流電源用静止形無停電電源装置の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-3-2-1	125V 蓄電池の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-3-2-2	125V 代替蓄電池の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-3-2-3	250V 蓄電池の耐震性についての計算書	「3. 補正前後比較表」による。
	メタルクラッドスイッチギア (非常用)の耐 髪性についての計算書	「3. 補正前後比較表」による。
	メタルクラッドスイッチギア(高圧炉心スプレイ系用)の耐震性についての計算書	「3. 補正前後比較表」による。
	ペワーセンタ (非常用) の耐震性についての計 算書	「3. 補正前後比較表」による。

		補正箇所
VI-2-10-1-4-4	モータコントロールセンタ (非常用) の耐震性 についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-5	モータコントロールセンタ (高圧炉心スプレ イ系用) の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-8	460V 原子炉建屋交流電源切替盤(非常用)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-9	中央制御室 120V 交流分電盤 (非常用) の耐震 性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-10	ガスタービン発電機接続盤の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-11	メタルクラッドスイッチギア (緊急用) の耐 震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-12	動力変圧器 (緊急用) の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-13	パワーセンタ (緊急用) の耐震性についての 計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-14	モータコントロールセンタ (緊急用) の耐震 性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-16	460V 原子炉建屋交流電源切替盤 (緊急用) の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-17	120V 原子炉建屋交流電源切替盤 (緊急用) の 耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-18	中央制御室 120V 交流分電盤 (緊急用) の耐震 性についての計算書	「3. 補正前後比較表」による。

	補正項目	補正箇所
VI-2-10-1-4-19	メタルクラッドスイッチギア(緊急時対策所	「3. 補正前後比較表」による。
	用)の耐震性についての計算書	
VI-2-10-1-4-20	動力変圧器(緊急時対策所用)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-21	モータコントロールセンタ (緊急時対策所用) の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-22	105V 交流電源切替盤 (緊急時対策所用) の耐 震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-23	105V 交流分電盤 (緊急時対策所用) の耐震性 についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-24	120V 交流分電盤 (緊急時対策所用) の耐震性 についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-25	210V 交流分電盤 (緊急時対策所用) の耐震性 についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-26	125V 直流主母線盤 (緊急時対策所用)の耐震 性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-27	125V 充電器 2A 及び 2B の耐震性についての 計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-28	125V 直流主母線盤 2A 及び 2B の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-29	125V 直流主母線盤 2A-1 及び 2B-1 の耐震性 についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-30	125V 直流分電盤 2A-1, 2A-2, 2A-3, 2B-1, 2B-2 及び 2B-3 の耐震性についての計算書	「3. 補正前後比較表」による。

VI-2-10-1-4-31		「3. 補正前後比較表」による。
VI-2-10-1-4-32	125V 直流 RCIC モータコントロールセンタの 耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-33	125V 充電器 2H の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-34	125V 直流主母線盤 2H の耐震性についての計 算書	「3. 補正前後比較表」による。
VI-2-10-1-4-35	125V 直流分電盤 2H の耐震性についての計算 書	「3. 補正前後比較表」による。
VI-2-10-1-4-36	125V 代替充電器の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-37	250V 充電器の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-1-4-38	250V 直流主母線盤の耐震性についての計算 書	「3. 補正前後比較表」による。
VI-2-10-2-2-1	防潮堤(鋼管式鉛直壁)の耐震性についての計 算書	「3. 補正前後比較表」による。
VI-2-10-2-3-1	杭基礎構造防潮壁 鋼製遮水壁(鋼板)の耐震 性についての計算書	「3. 補正前後比較表」による。
VI-2-10-2-3-2	杭基礎構造防潮壁 鋼製遮水壁 (鋼桁) の耐震 性についての計算書	「3. 補正前後比較表」による。
VI-2-10-2-3-3	杭基礎構造防潮壁 鋼製扉の耐震性について の計算書	「3. 補正前後比較表」による。
VI-2-10-2-4-1	取放水路流路縮小工 (第1号機取水路)の耐震性についての計算書	「3. 補正前後比較表」による。

補正項目	補正箇所
VI-2-10-2-4-2 取放水路流路縮小工(第1号機放水路)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-2-6-1-1 屋外排水路逆流防止設備(防潮堤南側)の耐 震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-2-6-1-2 屋外排水路逆流防止設備(防潮堤北側)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-2-8-4 浸水防止蓋(第3号機補機冷却海水系放水ピット)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-4-3 取水口の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-4-4-1 取水路(漸拡部)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-10-4-4-2 取水路(標準部)の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-11-2-2 竜巻防護ネットの耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-11-2-3 タービン建屋の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-11-2-5 第1号機制御建屋の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-11-2-15 第1号機排気筒の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-11-2-17 第1号機取水路の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-11-2-18 第 3 号機取水路の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-11-2-22 防護設備(防潮堤(鋼管式鉛直壁))の耐震性についての計算書	「3. 補正前後比較表」による。
VI-2-12-1 水平2方向及び鉛直方向地震力の組合せに関する 影響評価結果	「3. 補正前後比較表」による。

	補正箇所
VI-2-13-1 地下水位低下設備の耐震計算の方針	「3. 補正前後比較表」による。
VI-2-13-2 地下水位低下設備ドレーンの耐震性についての計 算書	「3. 補正前後比較表」による。
VI-2-13-3 地下水位低下設備接続桝の耐震性についての計算 書	「3. 補正前後比較表」による。
VI-2-13-4 地下水位低下設備揚水井戸の耐震性についての計 算書	「3. 補正前後比較表」による。
VI-2-13-5 地下水位低下設備揚水井戸の地震応答計算書	「3. 補正前後比較表」による。
VI-2-13-10 地下水位低下設備電源盤の耐震性についての計 算書	「3. 補正前後比較表」による。
VI-2-別添 3-5 可搬型重大事故等対処設備のうちその他設備 の耐震計算書	「3. 補正前後比較表」による。
VI-3-1-7 原子炉格納容器の強度計算の基本方針	「3. 補正前後比較表」による。
VI-3-2-7 クラス3管の強度計算方法	 「3. 補正前後比較表」による。
VI-3-2-9 重大事故等クラス2管の強度計算方法	「3. 補正前後比較表」による。
VI-3-3-1-1-2-1-1 差圧検出・ほう酸水注入系配管(ティーより N11 ノズルまでの外管)の基本板厚計算書	「3. 補正前後比較表」による。
VI-3-3-1-1-2-1-2 差圧検出・ほう酸水注入系配管(ティーより N11 ノズルまでの外管)の応力計算書	「3. 補正前後比較表」による。
VI-3-3-3-3-1-3 残留熱除去系ストレーナの強度計算書	 「3. 補正前後比較表」による。
VI-3-3-3-6-1-6-1 管の基本板厚計算書(原子炉補機冷却水系 及び原子炉補機冷却海水系)	「3. 補正前後比較表」による。

補正項目	補正箇所
VI-3-別添 1-1-7 排気筒の強度計算書	「3. 補正前後比較表」による。
VI-3-別添 1-2-1-1 竜巻防護ネットの強度計算書	「3. 補正前後比較表」による。
VI-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針	「3. 補正前後比較表」による。
VI-3-別添 3-2-1-1 防潮堤(鋼管式鉛直壁)の強度計算書	「3. 補正前後比較表」による。
VI-3-別添 3-2-2-1 杭基礎構造防潮壁 鋼製遮水壁 (鋼板)の 強度計算書	「3. 補正前後比較表」による。
VI-3-別添 3-2-2-2 杭基礎構造防潮壁 鋼製遮水壁 (鋼桁)の 強度計算書	「3. 補正前後比較表」による。
VI-3-別添 3-2-2-3 杭基礎構造防潮壁 鋼製扉の強度計算書	「3. 補正前後比較表」による。
VI-3-別添 3-2-5-1-1 屋外排水路逆流防止設備(防潮堤南側) の強度計算書	「3. 補正前後比較表」による。
VI-3-別添 3-2-5-1-2 屋外排水路逆流防止設備(防潮堤北側) の強度計算書	「3. 補正前後比較表」による。
VI-3-別添 7-6 差圧検出・ほう酸水注入系配管(原子炉圧力容器内部)の強度計算書	「3. 補正前後比較表」による。

2. 補正を必要とする理由を記載した書類

補正を必要とする理由

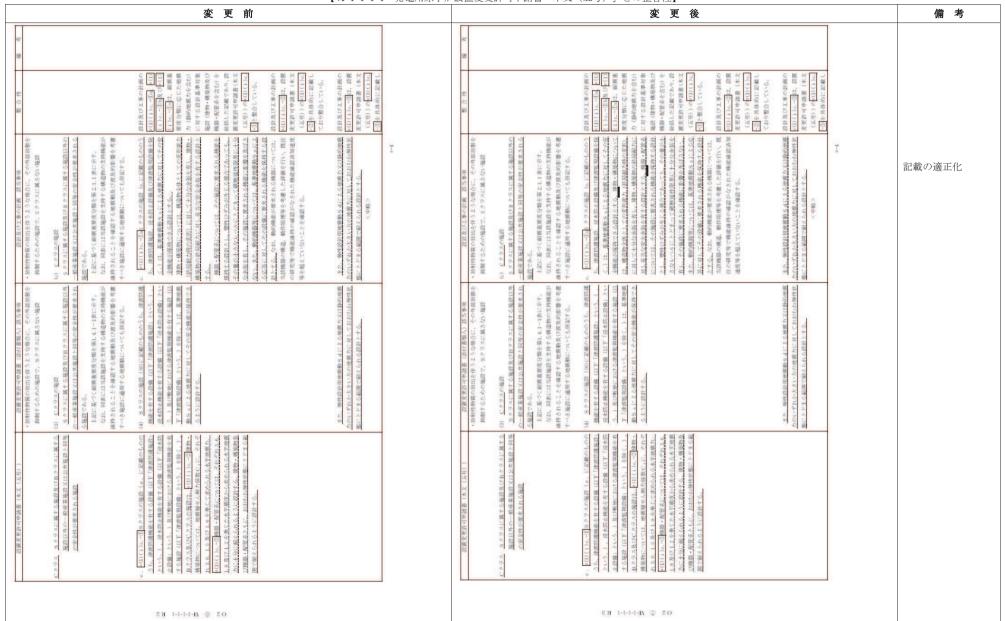
平成 25 年 12 月 27 日付け東北電原設第 9 号にて申請した工事計画認可申請書(令和 2 年 5 月 29 日付け東北電原設第 1 号,令和 2 年 9 月 30 日付け東北電原設第 3 号,令和 2 年 11 月 30 日付け東北電原設第 5 号,令和 3 年 2 月 19 日付け東北電原設第 6 号,令和 3 年 3 月 31 日付け東北電原設第 7 号及び令和 3 年 11 月 24 日付け東北電原設第 5 号にて一部補正)について,記載の適正化を行うことから,「II 工事計画」及び「VI 添付書類」を補正する。

3. 補正前後比較表

変 更 前	(蒸気タービンを除く。) の基本設計方針,適用基準及び適用規格】 変 更 後	備考
发 煛 則		_
変更後 和設備(設計基準拡張)が設置される重大事故等対処施設の両方 に属する重大事故等対処施設については、基準地震動Ssによる 地震力を適用するものとする。 なお、特定重大事故等対処施設に該当する施設は本申請の対象 外である。 建物・構築物については、構造物全体としての変形能力(終局 耐力に対し交当な安全機能が保持できる設計とする。 種物・構築物については、構造物全体としての変形能力(終局 耐力に対し妥当な安全後電が保持を有し、建物・構築物の終局 耐力に対し妥当な安全後を有する設計とする。 機器・配管系については、保造物全体としての変形能力(終局 耐力に対しととまって破断延性限界に十分な合格を有し、をの量が小さ なレベルにとどまって破断延性限界に十分な合格を有し、その 設に要求される機能に影響を及ぼさない、また、動的機能等については、 5機能を保持する設計とする。なお、動的機能が要求される機能と保持する設計とし、 なレベルにととまって破断延性限界に十分な合格さ有し、その施 設に要求される機能に影響を及ぼさない、また、動的機能等については、 5機能を保持する設計とする。なお、動的機能が要求される機能を については、当該機器の構造、動作原理等を考慮した評価を行い、 更往の研究等で機能維持の確認がなされた機能確認済加速度等 既在の研究等で機能維維的確認がなされた機能確認済加速度等	m ⋈	● おいしいがいつ 米服や作 気質間を発生が変にいませない。● おいしいがいつ 米服や作 気質間を発生がある。
金枚・構築物とは、建物、構築物及び土水構造物(屋外重要土木構造物及びその他の土水構造物)の総称とする。 また、屋外重要土木構造物とは、耐震安全上重要な機器・配管系の間接支持機能又は非常時における海水の通水機能を求められる土木構造物をいう。 よ タラスの施設は、基準地震動による地震力に対してその安全機能が保持できる設計とする。 種称・構築物については、構造物全体としての変形能力(終局耐力時の変形)に対して十分な余格を有し、建物・構築物の終局耐力に対し、型性のすみがよじる場合であっても、その量が小さなレベルにとどまって破断延生限界に十分な余格を有し、その量が小さなレベルにとどまって破断延性限界に十分な余格を有し、その量が小さなレベルにとどまって破断延生度がにあ場合であっても、その量が小さなレベルにとまって破断延生度がにない、また、動的機器等については、基準地震動による応答に対してその設備に要求される機能を保持する設計とする。	2. 建物・構築物とは、建物、構築物及び七本構造物(居外重要土本構造物及び七本構造物(居外重要土土、	
3-11-7	3-11-7	_

【Ⅱ 3.11 原子炉冷却系統施設(蒸気タービンを除く。)の基本設計方針,適用基準及び適用規格】

変 更 前	変 更 後	備考
変更後 を超えていないことを確認する。 また、弾性設計用地震動S d による地震力又は静的地震力のい ずれか大きい力の地震力に対しておおむね弾性状態にとどまる 範囲で耐えられる設計とする。 建物・構築物については、発生する応力に対して、「健築基準 法1等の安全上適切と認められる規格及び基準による許容応力度 を許容限界とする。 機器・配管系については、応答が全体的におおむ和弾性状態に ととまる設計とする。 常設耐震重要重大事故防止設備、常設重大事故緩和設備、常設 重大事故防止設備(設計基準拡張)(当該設備が属する耐撲重要 度分類がSクラスのもの)又は常設重大事故緩和設備(設計基準 拡張力に対して、重大事故等に対処するために必要な機能が損 なわれるおそれがないように設計する。 極物・構築物については、都造物全体としての変形能力(終局 耐力時の変形)について十分な余格を有し、建物・構築物の終局 耐力に対し妥当な安全余格を有する設計とする。機器・配管系に ついては、その施設に要求される機能を保持する設計とし、塑性 ひずみが生じる場合であっても、その最が小さなレベルにとどま って破断延性限界に十分な余格を有し、その施設に要求される機能を保持す る設計とする。なお、動的機能が要求される機能を保持す る設計とする。なお、動的機能が要求される機能を保持す	変更後 認する。 また、弾性設計用地震動S d による地震力又は静的地震力のい ずれか大きい方の地震力に対しておおむな弾性状態にとどまる 範囲で耐えられる設計とする。整物・構築物については、発生する る応力に対して、「建築基準は」等の安全上適切と認められる規 格及び基準による許容応力度を許容限界とする。機器・配管系に ついては、応答が全体的に設備、常設重大事故緩和設備、常設 重大事故防止設備(設計基準近張)(当該設備が属する耐震重要 度分類が S クラスのもの)又は常設重大事故緩和設備(設計基準 近張)が設置される重大事故等に対処権に設備が高する耐震重要 度分類が S クラスのもの)又は常設値が属する耐震重要 度分類が S クラスのもの)又は常設値が属する耐震重要 度分類が S クラスのもの)及は常設値が超により が設置される重大事故等に対してがないる耐震が関する耐震重要 がわれるおされがないように設計する。建物・構築物に必要な機能が損 なわれるおぞれがないように設計する。建物・構築物については、 構造物全体としての変形能力(終局耐力時の変形)については、 存を有し、建物・構築物の終局耐力に対し変当な安全余裕を 有する設計とする。機器・配管系については、その施設に要求される機能を保持する設計とし、塑性のずみが生じる場合であって も、その量がかさなレベルにとどまって破断延性限界に十分な余 裕を有し、その施設に要求される機能を保持する設計とする。なお、動的機能 が要求される機能を保持する設計とする。なお、動的機能 が要求される機能を保持する設計とする。なお、動的機能 が要求される機能を保持する設計とする。なお、動的機能 が要求される機能を保持する設計とする。なお、動的機能 が要求される機能を保持する設計とする。なお、動的機能 が要求される機能を保持する設計とする。なお、動的機能 が要求される機器については、当該機器の構造、動作原理等を考 成した評価を行い、既往の研究等で機能維持の確認がなされた、後	記載の適正化
変更前 また、設置(変更) 許可を受けた弾性設計用地震動(以下「弾 性設計用地震動」という。)による地震力に静的地震力のいず れか大きい方の地震力に対しておおむね弾性状態にとどまる範 田で耐えられる設計とする。	変更前 また, 設置(変更) 許可を受けた弾性設計用地震動(以下「弾 性設計用地震動」という。)による地震力又は静的地震力のいず れか大きい方の地震力に対しておおむね弾性状態にとどまる範 用で耐えられる設計とする。	
3-11-8	3-11-8	


【Ⅱ 3.11 原子炉冷却系統施設(蒸気タービンを除く。)の基本設計方針,適用基準及び適用規格】

## 1980 (1997年) 1980 と 1982 (1993年) 1982 と 1982 (1993年) 1982 (1993年) 1982 (1993年) 1982 (1993年) 1982 (1993年) 1982 (1993年) 1983年 (1993年 (1993年) 1983年 (1993年) 1983年 (1993年 (1993年 (1993年) 1983年 (1993年 (1993年 (1993年) 1983年 (1993年 (1993年 (1993年) 1983年 (1993年 (1993	変 更 前	(ターヒンを除く。) の基本設計方針,適用基準及い適用規格】 変 更 後	備考
	後 としげた地下水を仮設ホース等を通じ たいて、2 out of 3 論理により揚水ボ 止を行うことで、揚水井戸の水位を自 にを行うことで、場水井戸の水位を自 に本行うことで、場水井戸の水位を自 にする。 に本行うことで、場水井戸の水位を自 にする。 たいちを確実に検出して自動的に中 は高、水位高高、電源度失、揚水ボン 費けるとともに、表示ランプの点灯、 が関係を1系統当たり現場及び中央 様子存盤と まる、全交流動力電源度 を決験できる設計とする。 た設備を1系統当たり現場及び中央 様子存盤を 1系統当たり現場及び中央 なったれてかる。また、全交流動力電源度 を技術できる設計とする。 た設備を1系統当たり1面等の設備 でのそれぞれ 1系統の設備ごとに、 る。 が電路を設備 に対している。また、全交流動力電源度 を対称できる設計とする。 た設備を1系統当たり1面すつ設備 に対す及び第3号機構本熱交器を展立 備ごとに電力を供給できる設計とす	変更後 地下水位低下設備は、1系統当たり3個(計12個)設置した 水位計からの水位信号を用いて、2 out of 3論理により揚水ボ ンプの自動起動及び自動停止を行うことで、揚水井戸の水位を自 動で制御室さる設計とする。また、各系統の水位を、原子炉建屋 及び中央制御室に設置した制御鑑から監視可能な設計とする。水 位や設備の異常時には、これらを確実に検出して自動的に中央制 御室に警報(水位低又は高,水位高高,電源美失、揚水ボンブ数 腐)を発信する装置を設けるとともに、表示ランプの点灯,ブザ 一鳴動により運転員に通報できる設計とする。 制御室に1面ずつ設置し、原子停建壁・制御建度エリア及び第3 号機箱本校放保設計とする。 地下水位低下設備は、環液艦(容量 296k/M)、及び電路を設置 し、非常用交流電源設備である非常用ディーゼル発電機から設備 に必要な電力を供給できる設計とする。また、全交流動力電源膜 たとなった場合は常設体音をあま常用ディーゼル発電機から設備 に必要な電力を供給できる設計とする。また、全交流動力電源膜 たとなった場合は常設体音を設計とする。また、4交流動力電源膜 に必要な電力を供給できる設計とする。また、4交流動力電源膜 に必要な電力を供給できる設計とする。また、4交流動力電源膜 し、原子炉進盤・制御建屋エリア及び第3号機構水熱交器建屋エ 1万のそれぞれ1系統の独立した設備を1系統当たり1面ずつ設置 ものがボンブ、配管及び水位計は揚水井戸内に設置し、揚水井戸によっまともに、揚水井戸によっまで、1000年ともに、揚水井戸上部に蓋を設置することで、	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		0	

		変 更 前				変 更 後		備
炎見後	用語の定義は「実用発電用原子炉及びその附属施設の位置、構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。	第1章 共通項目 計測制御系統施設の共通項目である「1. 地盤等, 2. 自然現象, 3. 水 災, 4. 溢水等, 5. 設備に対する要求 (5.7 内燃機関及びガスターピン の設計条件, 5.8 電気設備の設計条件を除く。), 6. その他」の基本設計 方針については,原子炉冷却系統施設の基本設計方針「第1章 共通項目」 に基づく設計とする。	第2章 個別項目 1. 計測制線系統施設 1.1 反応度削削系統施設 1.1 反応度削削系統及び原子炉停止系統共通 2.2 反応度削削系数及び原子炉停止系統共通 2.2 で反応度を削削する原子炉再構築が量削削することによって反 によって反応度を削削する原子炉再構築が重削削系へ独立した原理の 異なる反応度制御系統を施設し、計画的な出力変化に伴う反応度変化を 燃料要素の許容積傷展界を超えることなく制御できる能力を有する設 計とする。 計とする。 通常運転時の高温状態において、独立した原子炉停止系統である制御	除く。)の基本設計方針,適用基準及び適用規格 変更後用語の定義は「実用発電用原子炉及びその附属施設の位置、構造及び設備	の基準に関する規則」及び「実用発電用原子炉及びその階属施設の技術基準に関する規則」並びにこれらの解釈による。	第1章 共通項目 計測制御系統施設の共通項目である「1. 地盤等, 2. 自然現象, 3. 水 災, 4. 淦水等, 5. 設備に対する要求 (5.7 内燃機関及びガスタービン の設計条件, 5.8 電気設備の設計条件を除く。), 6. その他」の基本設計 方針については,原子炉冷却系統施設の基本設計方針「第1章 共通項目」 に基づく設計とする。	第2章 個別項目 1. 計測制御系統施設 1.1 反応度制御系統施設 2.1 反応度制御系統及び原子炉停止系統共通 2.2 交配 (1) (1) (1) (1) (1) (1) (1) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
(1) 基本設計方針 変更前	用語の定義は「発電用原子力設備に関する技術基準を定める省合」、「実用発電用原子が及びその時属施設の位置、構造及び設備の基準に関する規則」 及び「実用発電用原子炉及びその時属施設の技術基準に関する規則」並びに これらの解釈による。	第1章 共通項目 計測制御系統施設の共通項目である「1. 地盤等, 2. 自然現象, 3. 水 災, 4. 設備に対する要求 (4.7 内燃機関の設計条件, 4.8 電気設備の設 計条件を除く。), 5. その他」の基本設計方針については、原子炉冷却系統 施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第2章 協別項目 1. 計測制御系結施設 1.1 反応度制御系結施設 1.1 反応度制御系統及び原子炉停止系統共通 2.2 反応度制御する開御棒及び順御棒撃の将入位置を調節することによって反応度を制御する開御棒及び順御棒撃動系と, 再循環流量を調整することによって反応度を制御する原子存再循環減量制御系の独立した原理の異なる反応度制御系統を施設し, 計画的な出力変化に伴う反応度変化を 燃料要素の許容損傷限界を超えることなく制御できる能力を有する設計とする。 計とする。 1. 2 対立にた原子炉停止系統である制御	 4.10 計測制御系統施設(発電用原子炉の運転を管理するための制御装置を除く。) (1) 基本設計方針 変更前 財語の定義は「発電用原子力設備に関する技術基準を定める省令」,「実用用語 	発電用原子炉及びその路属施設の位置、構造及び設備の基準に関する規則」 及び「実用発電用原子炉及びその路属施設の技術基準に関する規則」並びに これらの解釈による。	第1章 共通項目 計測制御系統施設の共通項目である「1. 地盤等, 2. 自然現象, 3. 水 災, 4. 設備に対する要求 (4.7 内燃機関の設計条件, 4.8 電気設備の設 計条件を除く。), 5. その他」の基本設計方針については,原子炉冷均系統 施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第2章 個別項目 1. 計測制御系統施設 1.1 反応度制御系統施設 2.1 反応度制御系統及び原子炉停止系統共通 2.2 で反応度を制御する原子炉停止系統共通 応度を制御する制御棒及び制御棒駆動系と, 再循環流量を調整すること によって反応度を制御する原子炉再循環流量制御系の独立した原理の 異なる反応度を制御する原子が再循環流量制御系の独立した原理の 異なる反応度は制御系統を施設し, 計画的な出力変化に伴う反応度変化を 燃料要素の許容損傷限界を超えることなく制御できる能力を有する設計とする。 計とする。 通常運転時の高温状態において,独立した原子炉停止系統である制御	記載の適正

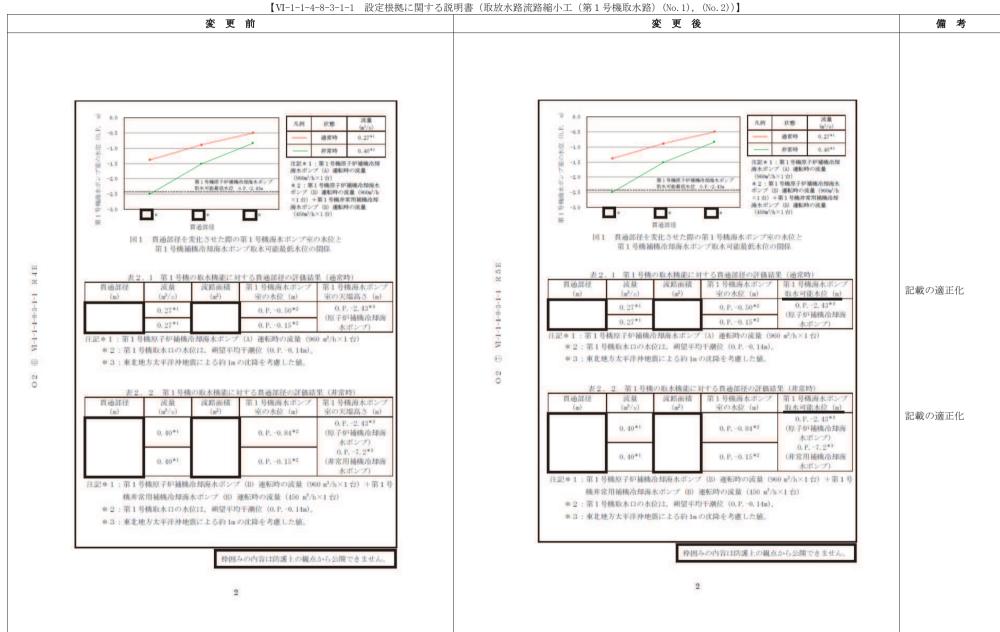
★川原子力発電所第9号機 丁東計画認可由詩書の一部補正 補正前後比較表

	変 更 後	備力
変更後 み合わせて設置する設計とする。 ただし、発火性又は引火性の雰囲気を形成するおそれのある場所 及び監外等は、環境条件や火災の性質を考慮し、非アナログ式の屋 原知器、アナログ式の屋外仕様の熱慮知カメラ、非アナログ式の屋 外仕様の炎感知器、非アナログ式の防爆型の煙感知器及び非アナロ が式の防爆型の熱感知器も含めた組み合わせで設置する設計とする。 水災感知器については、消防法施行規則等に従い設置する設計とする。 水災医域内の感知器の網羅性及び水災機知設備の感知器及び発信 機に係る技術上する設計とする。 非アナログ式の必災感知器は、環境条件等を考慮することにより 器件動を防止する設計とする。 また、発水源となるようなものがない水災医域又は水災区画は、 可然小管理により可燃物を持ち込まない適用として保安規定に定 めて、管理することから、水災感知器を設置しない設計とする。 水災感知設備のうち水災受信機盤は中央制御室に設置し、水災感 知設備の行動状況を常時監視できる設計とする。また、水災受信機 盤は、構成されるアナログ式の受信機により作動した水災感知器を 1つずつ特定できる設計とする。屋外の海水ボンブ室(補機ボンブ エリア)及びガスタービン発電設備燃料移送ボンブを監視するアナ	変更後 み合わせて設置する設計とする。 ただし、発火性又は引火性の雰囲気を形成するおそれのある場所 及び屋外等は、環境条件や火災の性質を考慮し、非ブナログ式の登 感知器、アナログ式の屋外仕様の熱感知カメラ、非ブナログ式の登 水は緩の後處知器、非アナログ式の防爆型の煙感知器及び非アナロ ガ式の防爆型の熱感知器も含めた組み合わせで設置する設計とする。 火災感知器については、消防法施行規則に従い設置する設計とする。 水災感知器については、消防法施行規則に従い設置する設計とする。 がは大災度域の器は、虚視範囲になび、機知設備の感知器及び発信機 に係る技術上の設計とする。 非サンログ式の水災感知器は、環境条件等を考慮することにより 誤作動を防止する設計とする。 また、発火源となるようなものがない水災医域又は水災区画は、 可燃物管理により可燃物を持ち込まない運用として保安規定に定 がないように設置する設計とする。 なお、アナログ式の最外は修の機感は中央制御室に設置し、火災感知設備の作動状況を常時監視できる設計とする。 また、発火源となるようなものがない水災区域又は水災区画は、 可燃物を理により可燃物を持ち込まない運用として保安規定に定 がないように設置する設計とする。 ないで発力を含まされるアイログ式の受信機能は中央制御室に設置し、水災感知器を 1つずつ特定できる設計とする。 屋外の液水ボンブ室 (補機ボンブ エリア)及びガスタービン発電設備燃料移送ボンブを監視するアナ	記載の適正化
変更前 するに必要な系結及び機器並びにそれらが機能する必要な計測制 御系、電源系及び冷却系等の関連系の設置区域に設置する,ただし、 これら区域に設置される系結及び機器が火災による態影響を受け る可能好ない場等は, 火災感知器を設置しない。 (1) 火災感知器は、消防法施行規則に準じて、煙感知器又は熱感知器 を設置する。 (2) 火災感知器の電源は、通常時は常用低圧段線から給電するが, 交 流電源度失時には, 火災受信機の蓄電池から給電することにより, その機能を失わないようにする。 大災受信機は単独御室に設置し, 火災発生時には警報を発信す あとともに, 火災発生区域を表示できるようにする。	変更前 するに必要な系統及び機器並びにそれらが機能する必要な計測制 御系、電源系及び冷却系等の関連系の設置区域に設置する,ただし、 これら区域に設置される系統及び機器が火災による悪影響を受け る可能性がない場合等は、火災感知器を設置しない。 3.1.2 人災感知器社で関連で (1) 人災感知器社で関連領 (2) 人災感知器とでは、水災感知器を設置しない。 を設置する。 液電源度失時には、水災受信機の蓄電池から給電することにより, その機能を失わないようにする。 水災受信機設置要領 人災受信機設置要領 人災受信機設置要領 人災受信機設置要領 人災受信機設置要領 人災受信機設置要領 人災受信機設置要領	

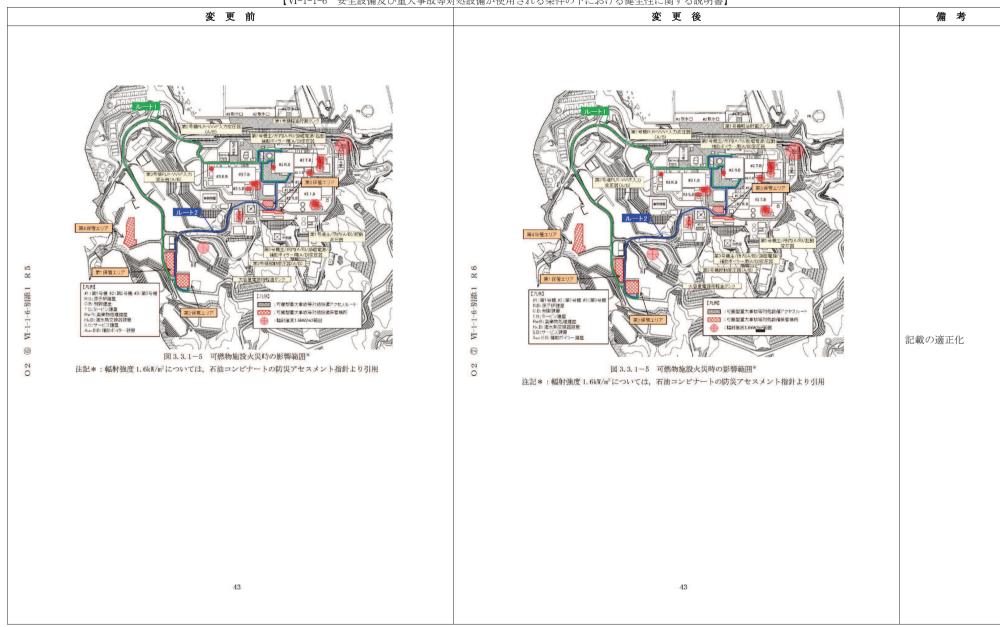
	変 更 前			変更後			備考
が 個 位 (4)			(4) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4				
記事をひまるが制 部当者の 制能記録の基本分析 ララスの地間には一型能のもののうち、連動的 別本的なの機関では中型能の関連を確く、)は 別本的なの機関では存储を設定機を経く、)は と記録と、よる機関が、対してその第二を機関が と記録とする。	(新年) 服务的工作工程,现得完全体与工厂的资格等的 (新年) 12 以工工工作公众全部全体,建物、建物、建物、建物、企业企业、企业企业的企业工作。 13 以工工工作公众全部企业工作员设计。 14 元.	機能・配置品については、その施的に要求される機能を 保険も必要とし、解析ですなが年でも場合であっても、 かかかられるないとなってが無性が同じよう なんなを育し、その機能であるまたを確定に関係を対し、 ない、また、動が機能等については、基準性機能をよびま ない、また、動が機能等については、基準性機能をよびま	(1) 耐能度対応基の対向 試合等項 (2) 20 ラスの実際 (4,172歳のもののうち、単連的関係 (2) 20 本の人で発展して下ができた。 13、私事 連続的とよったと使作力に対してその定を指定の保険 (2) なる設計とする。	建物・構築物については、構造物を体としての変形能力 (終 原展力能の変形) に対して十分なを確な者は、理能・構造 物の体料制力に対し異年な金金能を有する設計とする。	(株式 かんだい こういては、その権力に要求される権能を指 作する変数とし、他のですが必ずとの場合であっても、 の権力を力してもにきとかって被訴責任的によりな を係を行し、その施力に関するよれる機能に対象を見ばると い、また、他が維持等については、基準維維的とによる。	Ī	記載の適正化
高度を見りる中国語 (成付書館の) 部当を用 (1.4.1.1. 設計版事対象協定の前面記録の基大的 (1.8.2.2.2.4.2.2.2.2.1.1.1.1.1.2.2.2.2.2.2.2	1×7十分な金額を定し、建物・機能的の共同制度の表現。 1×7十分な金額を定し、建物・機能的の利用が同じまして 1×20~を取るのがあった。「なって機能の目はないをいった。 1×20~を取るのがあった。」なって機能の目はないをいった。 1×20~を取るのがあった。「なって機能の目はないをして を構成していくと。」での第多文はロケチの第一人 加するに三名の様の様と面かと、初期側をの近下の原因 等する機能のエクリートの機能を配ったるので移れ等 等等の整像コンタリートの機能を開こよるので移れる が存在コンタリートを機能を回じていることから、既存の実験 が参加さないことを構想していることから、既存の実験 式等に基づき適切に定めるものとする。	(4) 89ラスの機能・保管を 3. 基本機能的 8 による機能力との銀行性に対する評論 選出いてのは、となって機能性限に十分化金額を引、その には、となって機能性解説に十分化金額を削し、その 無等を開発する機能で発展を対し、としなり、 無等を開発する機能で発展します。 主た、機能時又は機能はご動が機能に関すまれる機能等。	正正し、政府定形中が改善(1847年307) 部の事項 1. にし、政府基準が参展的の制度はのある。 (4) ミルラスの第四(1017年度のたののうち、特殊的選 を始めばいる。 大性に指導を行うの報じは下降を防止で加したいう。 及び動地に対ける存在を関係を行う。 変が開始。という。 変が開始。という。 変が開始。という。 変が開始。という。 変が開始。という。 変が開始。という。 変が開始。という。 変が開始。という。 変が開始。という。 変が出れる。 変が出れる。 変が出れる。 変が出れる。 変が出れる。 変が出れる。 変が出れる。 変が出れる。 変が出れる。 変が出れる。 変が出れる。 変が出れる。 変が出る。 変が出れる。 変が出る。 変がまたいに、 を 変がまたい。 変がまたいに、 変がまたいに、 変がまたいに、 変がまたいに、 変がまたいに、 変がまたいに、 変がまたいに、 変がまたいに、 変がまたいに、 変がまたいに、 変がまたい、 変がまたい、 変がまたい、 変がまたい、 変がまたい、 変がまたい、 変がな、 変がな を 変がな	1.4.1.4 解析の組合せと評論限 4. 整体・循接の場合せと評論限 (a) 8ヶ9 かの建物・構築的 5. 基準機能的 5. 正立心能力との組合性に対する評別 構造を仕上しての変形を力 1. 経験・機能の評別力に対す。 (A) 8ヶ9 かの建物・機能的 (A) 第2 かの建物・機能的 (A) 第2 がの 2. できる。そのであるが (A) 第2 がの 2. できる。そのであるが (A) 第2 がの 3. できる。そのであるが (A) 第2 がの 3. できる。そのであるが (A) 第2 がの 3. できるが (A) 第2 がの 3. できるが (A) 第2 がの 4. できるが (A) がの 3. できるが (A) が、 (A) できるが (A) できるが	b ・ 解題・配音系(に、に定載のものを除く。) (a) Sタラスの機能・配音系 用。基本機能能 S またまる地域カとの組合せに対する許等 研練 T を T を T を T を T を T を T を T を T を T		
設備を予約の申請者(本文(上号)) - SF9 3 のが設置(な、上記権のもののうち、建度問題 単記 活め付か上的権政の確認に確定を(、)は、基準的 整数ないよことを確定がは対して定金機能が保持できる。 うに設計する。	業件・機能のこのである。 動力的の変形、エコンス十分なる部分を有し、維維・機能 動型力的の変形、エコンス十分なる部分を有し、維維・機能 中の外の関力に対し業年を安全の係を有するように設計 する。	機関・N型品については、その機能に要求される機能を依 特するように設計し、関体にするが生じる場合であって も、その場合ものもなったようともで変数は対象によって なないように、また、動作機能能については、基準的機能 まないように、また、動作機能能については、基準的機能	高部単単原 中中部語(4文(五号)) 4、3クラスの案件(6、1一記載のものからも、連邦計画 集化、2人の上の第次が対応、2012年(2012年) 2012年)とこととが増加して第5億額の保持である。 うに記述する。	発物・構築物については、構築物を体としての変形能力(部 国間が確か変形) についてよりな影響を有し、維動・機製 物の熱が削りに対しる当が変を命能を有するように設計 する。	機関・監管系については、その場談に要求される機能を提 作するように設計し、単れの予めでもどの値かかって も、その権力も不ないをいまって整確を付削率に かりを指する作う。その施設に要求される機能で開発に まだいように、また、動的機能等については、基準維維金		
-i M2	OS @ W-1-1-1-	57		O3 ⊈ AF-1-1-1 K3			

	変更前		, = =,,			捐青「 <u>华</u> 人(五万)」		変更後			備考
· · · · · · · · · · · · · · · · · · ·			3	整合性 備 考							
部計算び上本の影響に需要される機能を保持する設 とないます。 対するない。 対するない。 対していては、 対していては、 がは、 を行うがあり、 を行うがあります。 を行うがあります。 を行うがあります。 を行うがあります。 を行うがあります。 を発表する。 を表した をまた をまた をまた をまた をまた をまた をまた をま	また、単年記り用金額を 4による機能力は特別的機能 近のとどする網面で耐えられる部分とす。 難にとどする網面で耐えられる部分とする。 理体・展場をついては、単年するのかに対して、「他 施工会は、単のから上面の上面のもれる単移及は基準によ 機能・配置をしいては、変数が発展とする。 機能・配置をしいては、変数が発展しました。 を関連・配置をしいては、変数が発展しました。 を関連・配置をしいては、変数が発展しました。 を関連・配置をしいては、変数が発展しました。 を関連・配置をしいては、変数が多数的におから機能 対象にとどまる設計とする。	4.8ヶラスの施育(6.1.記載のもののうち、溶液防薬物 (2. 読水が北記職及の学業製設施を除く。) について、 物的地域力は、本下地域とも高点地域がお同時に不得な 方向の前台で下的するものとす。 また、基準維維的と、東アの特別が出版機能を出てて とは、工業を維維的と、東アの特別が出版機能を出てて とはて選ばするものとする。 <中級)>	7	設計及び工事の計画 該当事項 中がでから、かまかの場合・正本とよる。対応本の成本とのの1	シャン、大の大学、単小学の大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大	また。 場内部が用地産船を右による機能が対機 わらいずにかなるもありが開催が対機	集にとどよる範囲で開えられる設計とする。 非効・構築物については、原年する広力に対して、「非路	連動の 物の金を上がりません。機能、保証品である。 育選な力能を再発展をする。機能、保証系については、 交際が全体的におおりる時性地にとどまる部をレーム。 <仲格>	1.8 タラスの施設(6.12製作もののうち、非複的機能 現、浸水的な企業を取りが発電が設備を係る。」について、 粉の地質力は、水平地能力と指揮を終力が抑制され得な また。工事を開発したが上する。 また、工事を開発します。 また、工事を開発します。 また、工事を対象を設け、水平が に対け、水平が に対するのとする。 に対するようとする。 に対するようとする。 に対するようとする。	6-8	記載の適正化
野瀬州東町工会政権・「総合物語と) 部の参会 たついくは、 納等を施書き sitt の心がに対して、光道学、 整体に たる書館をおている書音書館が音像所等を寄作等 等とその。	(1) または、設計基本対象協図の耐能設計の基本分割 (1) まちずスの機能 ((1)に重要をものからも、非常防 機能を有する設備 (以下「律性防護施設」という。) 技术的生態能を有する設備 (以下「存在防護施設」という。) 技术的生態に対する存在影響能を全有する施設(は 動き。またる地質がは対してその定立機能が保険でき ない。はないまする。 をは、たいまする。 直によりまる。 直によりたる。 直になる。 直になる。 直になる。 直になる。 直になる。 直になる。 直になる。 直になる。 直になる。 直になる。 直になる。 直になる。	(5) 8993×の地段 ((6)に定義のもののうち、神様的議 施設、液水が止産施及び神道型器を確く。) につい ては、静何世報がは、水平地域が上海直域が対理に 不同なが内の面積でで指すするのとする。 また、北西地域も、及び神経の計画は 連貫がは、水平立り両及の指面が同じないで通りに組み合 といて置注するよのとする。 たね、米平立が自然の発面が同じないで通りに組み合 た。本下立が内域が変形が向の地域がお同様にある た。本下立が内域が変形が向の地域がお同様にある た。本下立が内域が変形が向の地域がお同様に		設置変更許可申請書(信付書類ハ)該当事項	が、大井宮のでは、大井宮の海道の海道の海道の海道の海道の海道の海道の海道の海道の海道の海道の海道のボールが、大井宮の東京のボールが、大井宮のボールが、大井宮のボールが、大井宮のボールが、大井宮のボールが	(4) ますの製造体が整備設の顕版設計の基本分析 (4) まりまたの数((4)に記載さらののうち。詳報的議 機能を行うな対象(以下「存款的議場」という。)、 機能を行うな評価(以下「存款的議場を行う。)。 5、 2の形態における情報は機能を行うる機能(以下 下 1年的場別に対している。)。 6所く。) は、基準的 新 5 による地能がは対してその空空機能が指すでき たまりに対する。 地位別は「ことが成立」とは対すできました。 からいですれるよるものの機能が開発でき たまりに表する。 地位別は「ことが確認」とは即行機能	単に シアまる機能で耐えられる原針とする		(6) 8クラスの総容(16)に記載のもののうち、維整的議 地記、読水防止を開及の非常限記録を分く。) 12-21v ては、静が地震力は、水平地断力と認必能力が影響に また、最早地震動き。及び神性診り出地である。12-2-2-2 主た、展生を開かる。及び神性診り出いを動き、12-2-2 主な、新生力の数に対応が同じ、3-x を切りに加入力 とは、新生力の数に対応が対応について他のに加入力 とは、新生力がある。となる。 は、新生力のような。 は、新生力ともする。 は、新生力ともする。 は、新生力ともうな。 は関われたととまることを確認する。 は関われたととまることを確認する。 は関われたととまることを確認する。 は関われたととまることを確認する。		
別原金型の内の関係(本文(広号)) S B による企業に対して、その設備に要求される機能を保 報するように設計する。	また、単性改計回避難等3.4ごよる推進力以は約00億億 力のいでれる大きながの確認力に対しておおなる解析 難にとどまる範囲で割らられるように設計する。 要権・職等格については、第4年も広力に対して、「申等 基準は、第5年を1 編むと認められる機能が延れます。 再等配力後を非常にあるよう。機器・配置系については 正常の合きが高における機能を提出して、 正常の金を指摘における時はが関にとどまるように認計 する。	など、基準的解析と。及び9年程2日用的解析と4による 種類力は、本で2万度及び8度が10について高切に関わら 20年で選定するものとする。		設置変更許可申請書(本文(正号))	2.61.4.6.5.2.1.2.4.4.5.4.4.5.4.4.5.4.5.2.1.2.2.3.1.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4	また、WREEJ用機関係をおことの機関がは関 力のAで行ったからがの機関力に対しておけば関係	第14とどえる範囲で耐えられるように設計する。 課金・最繁都については、等年するだけに対して、「除薬	2条件に第一条の字を主題がと思められる場体及び運転よる 計算な力度を計算器とする。機器・配管系については、 定能な低的におおける物件状態にとどまるように設計 する。	などの、基準関係的な。及び操作設計開展であるによる 機能がは、水中などの以及が同時について適切に関い合 ともて関金するものとする。		
	O3 © AF-1-1-1 B3					ся	[-]-]-[-]A (© 20			

変 更 前	設置変更許可申請書「本文(五号)」との整合性 】 変 更 後	備考
数 今 本 (2017年5年2月 - 1017年10日 -	勝 ウ 森	
	 無大量格等技術展示多って可能型のもの。 第大量格等対域機能のもの。網算評価を行う主要技術の設備の同じのは、まとうスの施算(に記載のもののもの。複数防護施展、及分の施算(に記載のもののもの。複数防護施備、配置を対して、こので全角機能が発展します。 (1) 解析の対しのは、第212表に示す。 (2) クラスの施算(に記載のもののもの。複数防護施備、配置を対して、この確認と解析の設置を指して、この確認を解析とは、する機能が発展して、この確認とは、また機能が発展して、2012年を、2012年を、2012年を、2012年を、2012年を、2012年を、2012年を、2012年を、2012年を、2012年を、2012年を、2012年を、2012年を、2012年を、2012年を対して、2012年を、2012年を、2012年を対して、2012年を、2012年を、2012年を対して、2012年を、	記載の適正化
	武政条単四・中国書 (前付書類の) 試当事項 電大量依等対域に関心をついて、関連のもの 量大量依等対域に関いる。 顕新評価を行う主要設備の 設備を関していて、第1.4.2-1費に示す。 監理的機能で、第1.4.2-1費に示す。 監理的機能で、第1.4.2-1費に示す。 基本を経済対域に対象が対象域でを行う。 基本を経済が対象域が対象域でを行う。 基本を経済が関係であり、 なったは、第2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	
②変形を影響を作ってまる。 電大事故等対称の確認を表現的は登場式は空間大事的的 型像、定計量等を対しては空間が展光を記載が対する。 単位を出来る。 単位を出来る。 ではまる。 ではまる。 は、変が変がを対している。 では、一直には、 には、 は、変が変がをがある。 は、変が変がをできる。 では、 では、 では、 では、 では、 では、 では、 では、	意大家が発射性影響であって可能型のもの の (2000年度要素を動力に対象とは変更大量的な の (2000年度要素を動力に対象とは、 の (2000年度要素を動力に対する。 の (2000年度要素を動力に対する。 では、 (2000年度要素を動力に対する。 では、 (2000年度要素を動力に対する。 の (2000年度要素を動力に対する。) (2000年度 の (2000年度要素) (2000年度。) (2000年度 の (2000年度を動力を対する。) (2000年度を対象を の (2000年度を対象を対す、 (2000年度を対象を 対象を対象を対象を対する。) (2000年度を対象を の (2000年度を対象を対す、 2000年度を対象を の (2000年度)、 (2000年度を対象を対象を の (2000年度) (2000年度	
OZ @ W-1-1-1 R3	OZ ② A-1-1-1-1 K4	


変 更 前	変 更 後	備考
第合体 編 8 6 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	第 合 中 毎 も 毎 も 毎 も 毎 も	
する。 (4) 新年度大学経営対抗協議には「2014年で1923 の 2015年である。 (5) 新年度 大学経営対抗協議には「2015年で1923 で 2323722349年である。	する。 毎日までは「日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	記載の適正化
111 年 1 年 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1	17 17 17 17 17 17 17 17	
O 3 @ AI-1-1-1 K 3	O3 \$\psi M-1-1-1-1 B4	

変 更 前	放直及史計刊中請者「本义(五方)」との発力はJ 変更後	備考
なな ない はない はない はない はない はない はない はない はない はな	数の存在の対策の対策の対策の	
本語がなどがある。 ・ 本の とうえの情報 については、なながからおいておいなが と、 と タラスの情報 (に記載からのつうち、存在が課題 取、 表表的上記載及び存在電影と確立して、 ・ 本の とのできますとする。 ・ 本の といました。 ・ まの といました。 ・ 本の はまました。 ・ 本の はまました。 ・ 本の はまます。 ・ 本の はます。 ・ 本の はまます。 ・ 本の はまます。 ・ 本の はまます。 ・ 本の はまます。 ・ 本の はまます。 ・ 本の はままます。 ・ 本の はまます。 ・ 本の はました。 ・ 本の はまました。 ・ 本の はまました。 ・ 本の はまました。 ・ 本の はまました。 ・ ました。 ・ ました。	が対象なりますが、	記載の適正化
(3) 宣音 電子 生産性 (2) (2) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(3) 監控業を経過和設備又は発売人事が開発の (17年度を展出の 17年度 17年度 大事政権政治 (17年度を展出の 17年度 17年度 17年度 17年度 17年度 17年度 17年度 17年度	
の展展集界可能商品 1本文 (14分) 1 ないのでは、	政策を責当が申請を 体文 (上号)) 野田など他を告定限をする。 機器 心管部については を関するとものできます。 他器 心管部については 計画を知っては、 (大型) といて、 (大型) とのようとに設立 大型 (大型) にいては、 (大型) といて、 (大型) には、 (大型) には、 (大型) にいて、 (大型) には、 (大型)	
O 2 (4-1-1-1-1 R 3)	FM 1-1-1-4-W © ±O	


変 更 前	変 更 後	備考
40°		
 整合性 (2) (1) a. (23)· (23)	数合 株 (10) (1) A (40)	
国に最大保険日を食業するの計画 語言事項	は、	記載の適正化
2 また、前かが面は、部件、評価に対していません。 1 によって、	2年 (1965年) 1961年8日 (1961年8日) 1963年9日 (1965年8日	
2年 出入監督は 原田 副作動では近場にお扱った場合 こまかでも、顕子が学会を全に停止させらかの内部を全 (マラ1) 火災等地設備 火災等地設備 と 11 a (エコー) 関係なが、電影を中心集の中質を発展して「コ (11 a (エコー) 関係なるのでは、現代で信号を発生して「コ (11 a (エコー) 関係なるのでは、 (11 a (エコー) 関係なるのでは、 (12 a (エコー) 関係なるのでは、 (13 a (エコー) 関係なるのでは、 (14 a (エコー) 関係なるのでは、 (15 a (エコー) 関係なるのでは、 (16 a (エコー) を対象を (17 a (エコー) を対象を (17 a (エコー) を対象を (18 a (エコー) を対象を (18 a (エコー) を対象を (19 a (エコー) を (19 a (エコー	定義を取り申請者(本文(上号)) また。前を記憶は、避難・悪性難以は指揮化が起きと響な これれでも、新するを安全に考えませるかの機能も「□□ (1) A (G-2) - 動気とはない理算・する。 (1) A (G-2) - 動気とはない理算・する。 (1) A (G-2) - 動気とはない理算・する。 (1) A (G-2) - 動気とはない理算・する。 (4) A (G-2) - 動気とはない理算・する。	
O2 (V-1-1-1-1 R3	ESI 1-1-1-1-1V ◎ 2.O	

変 更 前	設置変更許可申請書「本文(五号)」との整合性 】 変更後	備考
章	第 4 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	記載の適正化
数 合 (工度) 10 (工度) 10 (12 2) 11 (12 2) 12 (13 2) 12 (13 12 2) 13 (13 12 2) 13 (13 12 2) 13 (13 12 2) 13 (14 12 2) 13 (15 12 2) 13 (15 12 2) 13 (16 12 2) 13 (17 1	(2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	記事以 V ノ)適 J 二 1 亿
(2) (2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	は、	
政策を定する中の政策 (16日番組入) 部等等 運行業能が開発: 1.5、29元23号がで共用するが 各分が下海が、電信・単位・20元24代を指文とかない関連 は 20分とと用するが、支替組をする機能をとない設計 とすることで、共用により安全性を相互とない設計 の	議員を表出する計画 (銀行資明の) 第3事項 通信業務が開上 145、2 9.9.0.3 時空間でお出するが、 6.9年で23時に通信、進済するために定置な付着を建設し とすることで、単一により変合体を指立がは2001年20 2. 3 9.9.2 光用するが、2 5. 最美国の生物構造的 2. 3 9.9.2 光用するが、2 5. 最美国の生物構造的 2. 1 8.2 によりが2 5. 第4 5. 第4 5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	
設置保護的報告 1 年、2年8129 号号で出出するが 適信電影響は 1 年、2年8129 号号で出出するが 年か中になる面、 2011 つか。4年812 号号で出出するが 24、2 号号に表出するが、2年802 号号で出出するが とすることで、東州により家会体を組入されて発展できる設計する。 とすることで、東州により家会体を組入されたが設計とする。 と1011 2011 1 年、2月812 号号で出出している。 を即行 第2年8 日本のよりを対している。4年811 によりを学生を組入 25.5、46村40 電池の上では、2月11 によりますを組入 25.5、46村40 電池の上では、2月11 によりを学生を組行しているが、46村40 電池の上で 25.5、46村40 電池の上では、2月11 によりを学生を組行しているが、46村40 電池の上で 25.5、46村40 電池の下側を発展で対してがまります。1011 によりを学生を組行しているが、46村40 電池の上では、2月11 によりを学生を組行 と1011 1 によっている。4月11 によっている。2011 1 によってい	直接来表的可用的 (4.又 (4.以)) 高信金的設備は、1.以、2.以及12.34分で作用するが、 み分に、ほう通信・単元により定される。 (4.以)によりました。 (4.) (4.) (4.) (4.) (4.) (4.) (4.) (4.)	
2 M 1-1-1-1-1X ⊕ 2 O	EM 1-1-1-IV ⊕ 2.O	

	変 更 前		直変史計可申請書「本义(五号)」との整合性 』 変 更 後	備考
御か		4	e R	
整合体	高計及び工金の計画の (TOTITIA - G) は、設施 東東町 中部 唐 (本文 (広号) か(DOTITIA (広号) か(DOTITIA (広号) が(DOTITIA (大利) 離介している。	3 4 4	第12年 第12年 同20年11年3月 東東許可申請書 休文 (国内) 6位31年 (国内) 6位31年 (日内) 6位31年 (国内) 6位31年 (日内) 6位31年 (国内) 6位31年 (国内) 6位31年 (国内) 6位31年 (国内) 6位31年 (国内) 6位31年 (国内) 6位31年 (国内) 6位31年 (国内) 6位31年 (日内)	
設計及び工事の計画、該当事項	等のの関係が高くのでは、2004年に2011年の日本の関係が高くにより、2014年に関係が関係に関係を指する。2014年に関係が関係に関係を指する。2014年により、2014年により		立る。	記載の適正化
政置変更許可申請書(添付書籍人)該当事項	6.6. (44%)	THE RESEARCH CONTRACTOR OF THE PROPERTY OF THE	ある。 4年までよりが出来 1001日 2017日 20	
設置表更許可申請書(本文(五号))	また、中央出版学で名字を担く的なみ。日本の日本を全部を (3) 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Contract of the contract of th	文本 中央開催文・空神監視・電井 部件を全信機等を設置する。 中央 新聞 第一 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	2.8 1-1-1-14 (D. 2.0)		O	

【VI-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書】

	変 更 後	備考
c. 一次元有効応力解析による過剰間隙水圧比の確認 (a) 評価方針 トンネル標準示方書に基づく評価により、浮上りに対する安全率が評価基準値を上回る構造物について、一次元有効応力解析により構造物底面周辺の過剰間隙水圧比を確認する。 構造物周辺の地壁においては、構造物の影響により地壁の変位が抑制され、せん断ひずみが小さくなることから、過剰間隙水圧比も小さくなると考えられるが、保守的に構造物を考慮しない、次元有効応力解析により過剰間隙水圧比を確認する。 過剰間隙水圧比は過剰間隙水圧と有効・塩圧との比であり、過剰間隙水圧比が 1.0 未満の場合は、過剰間の状圧を有効上複圧が上回っており、浮上りに対する抵抗力を有していると考えられるが、地壁材料試験の方法と解説(地盤工学会、2009)では、液状化子測に用いる土の液状化強度特性を求めるための器をしま排水三軸試験において、過剰固隙水圧の最大値が有効均取圧の55となったときの接近し複句回数を求める。」と記載されていることから、過剰間隙水圧比が 0.95 以上となる場合は、保守的に浮上りに対する抵抗力を有していない状態と想定する。 構造物底面周辺の過剰間隙水圧比が 0.95 未満となる場合は、保守的に浮上りに対する抵抗力を有していない状態と想定する。 構造物底面周辺の過剰間隙水圧比が 0.95 未満となる場合は、トンネル標準示方書に示される式 (3.2) に基づき、構造物底面に作用する過剰間隙水圧による場圧力切っの類定に過剰間隙水圧比を考慮してトンネル標準示力計による活用に力しいの類定に過剰間隙水圧比を考慮してトンネル標準示力計をに対きる場合は、トンネル標準示力書に示される式 (3.2) に基づきを確認する。 Up Lu の : 構造物底面に作用する過剰間隙水圧による揚圧力 (kN/m) Lu : 過剰間隙水圧比	2 (a) 評価方針 トンネル標準示方書に基づく評価により、浮上りに対する安全率が評価基準値を上回る構造物について、一次元有効応力解析により構造物に面周辺の過剰開除水圧比を確認する。 構造物周辺の地盤においては、構造物の影響により地盤の変化が抑制され、せん断ひずかかいさくなることから、過剰間除水圧比もが直線上であると考定しない一次元有効応力解析により過剰間除水圧比を可能とする。 透剤関除水圧比は過剰関除水圧を有効・動圧板圧との比であり、過剰関除水圧比が 1.0 末満の場合は、過剰関除水圧と有効・転圧が上回っており、浮上りに対する抵抗力を有していると考えられるが、地盤材料試験の方法と解説(地盤工学会、2009)では、被状化予測に用いる上の被状化強度特性を求めるための繰返し非排水三軸試験において、「過剰開除水圧の最大低が有効拘束正の95%となったときの繰返し軟存回数を求める。」と記載されでいることから、過剰間除水圧が 0.95 以上となった場合は、保守的に浮上りに対する抵抗力を有していない状態と想定し、事前の浮上りを3 場合に浮上りに対する抵抗力を有していない状態と想定し、事前の浮上りが東を実施することにより東南の通行性を確保する。 構造物底面周辺の過剰関除水圧比が 0.95 未満となる場合は、保守的に浮上りに対する抵抗力を有していない状態と想定し、事前の浮上の対策を実施することにより東南の通行性を確保する。 構造物底面周辺の過剰関除水圧比が 0.95 未満となる場合は、トンネル標準示力書に示される式 (3.2) に基づき、構造物底面に作用する過剰間除水圧による場所しい。の算定に過剰開除水圧比を考慮してトンネル標準示方書に基づく浮上り評価を実施し、浮上りに対する安全率が評価基準値以下となることを確認する。 Upー Lu σ、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	記載の適正化

【VI-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書】

	変 更 前	» () <u> </u>		で 更後		備考
		枠組みの内容は距離上の製点から公開できません。			枠囲みの均割は防灘上の観点から公開できません。	記載の適正化
O2 ⑥ VI-1-1-6-别添1 R5		図4.3-1 屋内アクセスルート図 (1/7)	O2 ① VI-1-1-6-別添1 R6		図 4.3-1 屋内アクセスルート図 (1/7)	
				105		
	105					

【VI-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書】

	変 更 前			変 更 後		備考
	変更前	种国分の内容は防護上の製点から公開できません。		変更後	仲間みの内容は50職上の製点から公開できません。	備考記載の適正化
O2 ⑥ VI-I-I-6-别煞1 R5		図4.3-1 屋内アクセスルート図 (2/7)	O2 ① VI-1-1-6-別務1 R6		図4.3-1 屋内アシセスルート図 (2/7)	
	106			106	th may orbida is littlett I or	

【VI-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書】

	変 更 前			変 更 後		備考
	交 欠 則	点から公開できません。		发 又 该	外帯は約第上の視点から公開できません。	記載の適正化
		特団みの内容は助像上の規			強の丁葉信仰を担合する。	
O2 ⑥ W-1-1-6-别添1 R5		図4.3-1 屋内アクセスルート図 (3/7)	O2 ③ VI-I-I-6-別終1 R6		図4.3-1 屋内アクセスルート図 (3/7)	
0		图 4.3—1	0		区 4.3-1	
	107			107		

【VI-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書】

	変 更 前			変 更 後		備考
O2 ⑥ W-1-1-6-99繇1 R5	変 更 前	図 4.3-1 屋内アクセスルート図 (4/7)	O2 ⑤ VI-I-I-6-別談1 R6	変 更 後	図 4.3-1 屋内アクセスルート図 (4/7)	備考記載の適正化
	108			108		
				ſ	th III 7 or the Parist I or	

【VI-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書】

	変 更 前			北つ米計の下における使主性に関する説明者』 変 更 後	備考
		仲国みの内容は跨議上の観点から公開できません。			記載の適正化
O2 ⑥ VI-I-I-6-別際 1 R 5		図4.3-1 屋内アクセスルート図 (5/7)	O2 ⑦ VI-1-1-6-別談 1 R 6		区 4.3-11 所分 7.9-7-12 (5.7.7)
	109			109	

【VI-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書】

	変 更 前			変 更 後		備考
	変 更 前	9条は防灘上の観点から公開できません。		変 更 後	万勝 上の観点から公開できません。	(備) 考
⑥ VI-1-1-6-别繇1 R 5		2の空間砂	⑦ VI-1-1-6-别滁 1 R 6		スルート図 (6/7)	
O2 @ W-1		図4.3-1 騒内アクセスルート図 (6/7)	O.2 (f) VI-I-		図 4.3-1 屋内アクセスルート図 (6/7)	
	110			110	払用 7. の古 家 戸門第 上の	

【VI-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書】

	変 更 前			##の子におりる歴生性に関する説明音】 変 更 後		備考
		枠間みの吟客は紡績上の視点から公開できません。			枠間みの吟寄は紡績上の視点から公開できません。	記載の適正化
O2 ⑥ W-1-1-6-别蘇1 R5		図4.3-1 屋内アクセスルート図 (7/7)	O2 ⑦ W-1-1-6-別添1 R6		図 4.3-1 屋内アクセスルート図 (7/7)	
	111			111		

【VI-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書】

	変 更 前	変 更 後	備考
	表 4.3.2-1 各エリアの溢水水位	表 4.3.2 ―1 各エリアの溢水水位	
	原子が建展 原子が建展 が高棟 が高棟 が音型は、 が高棟 が高棟 が高柱 が変型とが が が変型とが が が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が変型とが が が が が が が が が が が が が が	D.P. 原子炉建屋 原子炉建屋 原子炉建屋 付高被 付高被 付高被 付高被 (原業物処理 管理区域) (音重区域) (音速区域) (音速EEDEGEDEGEDEGEDEGEDEGEDEGEDEGEDEGEDEGED	記載の適正化
	33200 カーブ高さ	33200 カーブ高さ	
	27800 緑水なし	27800 総永なし	
	24800	24800	
	23500 溢水なし	23500 溢水なし	
	22500 溢水なし 溢水なし	22500 淮水なし	
	19500 沿水なし	19500 溢水なし	
	15000 カーブ高さ 溢水なし カーブ高さ 溢水なし 溢水なし 洗水なし カーブ高さ	15000 カーブ高さ 溢水なし カーブ高さ 溢水なし 溢水なし 溢水なし カーブ高さ	
	10700 溢水なし	10700 液水なし	
	8000 溢水なし	8000 溢水なし	
五百五	7600	7600 — — —	
2	6000 カーブ高さ 溢水なし 一	22 6000 カーブ高さ 盗水なし —	
巡	1500 盗水なし	1500 溢水なし 1500	
VI-1-1-6-別終 1	800 — —	800	
Ŧ	-800 カーブ高さ	-800 カーフ高さ <u></u>	
	-8100 💠 — —		
O2 @	【凡例】 「カーブ高さ」: 床隅口部のカーブ高さ (約 13cm) 「竜水なし」: 当該・リアでの排水又は他エリアからの澄水流人なし - : 通行しないフロア ◇ : 水深 20cm 以上となる場合があるエリア : 建屋ごとの対象外フロア	(A) [八例] 「カーブ高さ」: 床開口部のカーブ高さ (約 13cm) 「治水なし」 : 当該エリアでの呼水又は他エリアからの治水流人なし : 当ボールないフロア	
	120	120	

変更前	変更後	備
		記載の適正化
火災感知設備は、火災区域又は火災区画の火災に対し、火災防護上重要な機器等及	火災感知設備は、火災区域又は火災区画の火災に対し、火災防護上重要な機器等及	
び重大事故等対処施設に対する火災の影響を限定し、早期に火災を感知する機能を維	び重大事故等対処施設に対する火災の影響を限定し、早期に火災を感知する機能を維	
持できることを構造設計上の性能目標とする。	持できることを構造設計上の性能目標とする。	
火災感知設備のうち耐震Sクラス機器及び重大事故等対処施設を設置する火災区	火災感知設備のうち耐震Sクラス機器及び重大事故等対処施設を設置する火災区	
域又は火災区画の火災感知設備は、基準地震動Ssによる地震力に対し、耐震性を有	域又は火災区画の火災感知設備は、基準地震動Ssによる地震力に対し、耐震性を有	
する原子炉建屋等にボルトで固定し, 主要な構造部材が火災を早期に感知する機能を	する原子炉建屋等にボルトで固定し、主要な構造部材が火災を早期に感知する機能を	
維持可能な構造強度を有する設計とし、基準地震動Ssによる地震力に対し、電気的	維持可能な構造強度を有する設計とし、基準地震動 S s による地震力に対し、電気的	
機能を維持できることを構造強度上の性能目標とする。	機能を維持できることを構造強度上の性能目標とする。	
耐震Sクラス機器及び重大事故等対処施設を設置する火災区域又は火災区画の火	耐震Sクラス機器及び重大事故等対処施設を設置する火災区域又は火災区画の火	
災を感知する火災感知設備の電源は、非常用電源から受電する。非常用電源は、耐震	災を感知する火災感知設備の電源は、非常用電源から受電する。非常用電源は、耐震	
Sクラスであるため、その耐震計算の方法及び結果については、添付書類「VI-2-10-	Sクラスであるため、その耐震計算の方法及び結果については、添付書類「VI-2-10-	
1-4 その他の非常用電源設備の耐震性についての計算書」のうち添付書類「VI-2-10-	1-4 その他の非常用電源設備の耐震性についての計算書」のうち添付書類「VI-2-10-	
1-4-4 モータコントロールセンタ (非常用) の耐震性についての計算書」に示す。	1-4-4 モータコントロールセンタ (非常用) の耐震性についての計算書」に示す。	
5.1.2 機能設計	5.1.2 機能設計	
本項では、「5.1.1 要求機能及び性能目標」で設定している火災感知設備の機能設	本項では、「5.1.1 要求機能及び性能目標」で設定している火災感知設備の機能設	
計上の性能目標を達成するために、火災感知設備の機能設計の方針を定める。	計上の性能目標を達成するために、火災感知設備の機能設計の方針を定める。	
(1) 火災感知器	(1) 火災感知器	
a. 設置条件	a. 設置条件	
火災感知設備のうち火災感知器は、早期に火災を感知するため、火災区域又は火災	火災感知設備のうち火災感知器は、早期に火災を感知するため、火災区域又は火災	
区画における放射線、取付面高さ、温度、湿度、空気流等の環境条件及び炎が生じる	区画における放射線、取付面高さ、温度、湿度、空気流等の環境条件及び炎が生じる	
前に発煙する等の予想される火災の性質を考慮して選定する。	前に発煙する等の予想される火災の性質を考慮して選定する。	
火災感知器の選定においては, 設置場所に対応する適切な火災感知器の種類を以下,	火災感知器の選定においては、設置場所に対応する適切な火災感知器の種類を以下、	
b. 項に示すとおり、消防法に準じて選定する設計とする。また、火災感知器の取付方	b. 項に示すとおり、消防法に準じて選定する設計とする。また、火災感知器の取付方	
法,火災感知器の設置個数の考え方等の技術的な部分については,消防法施行規則等	法、火災感知器の設置個数の考え方等の技術的な部分については、消防法施行規則に	
に基づき設置する設計とする。	基づき設置する設計とする。	

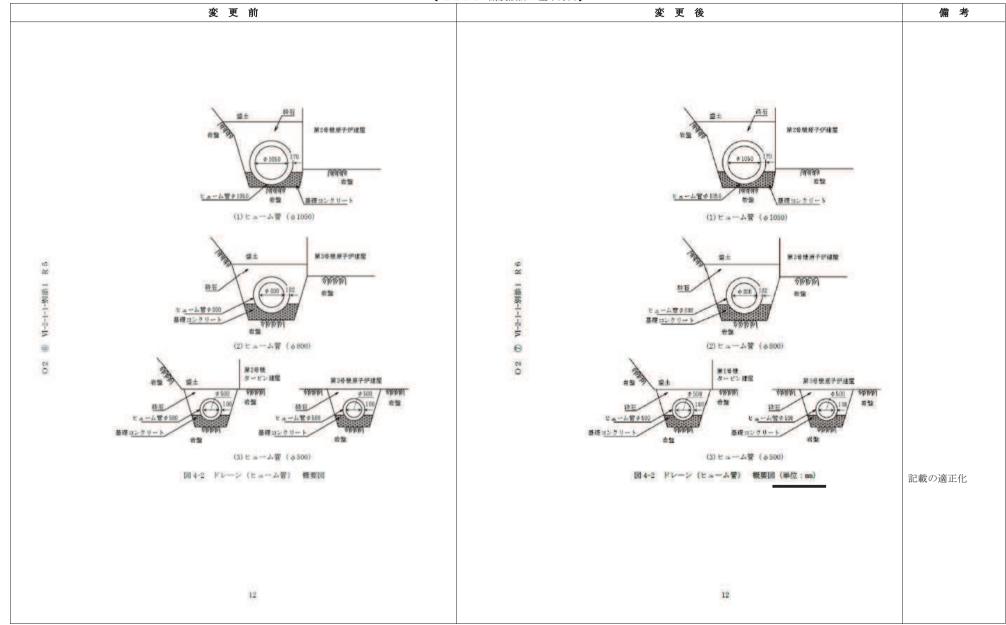
b. 火災感知器の種類

(a) 煙感知器, 熱感知器を設置する火災区域又は火災区画 (表5-1)

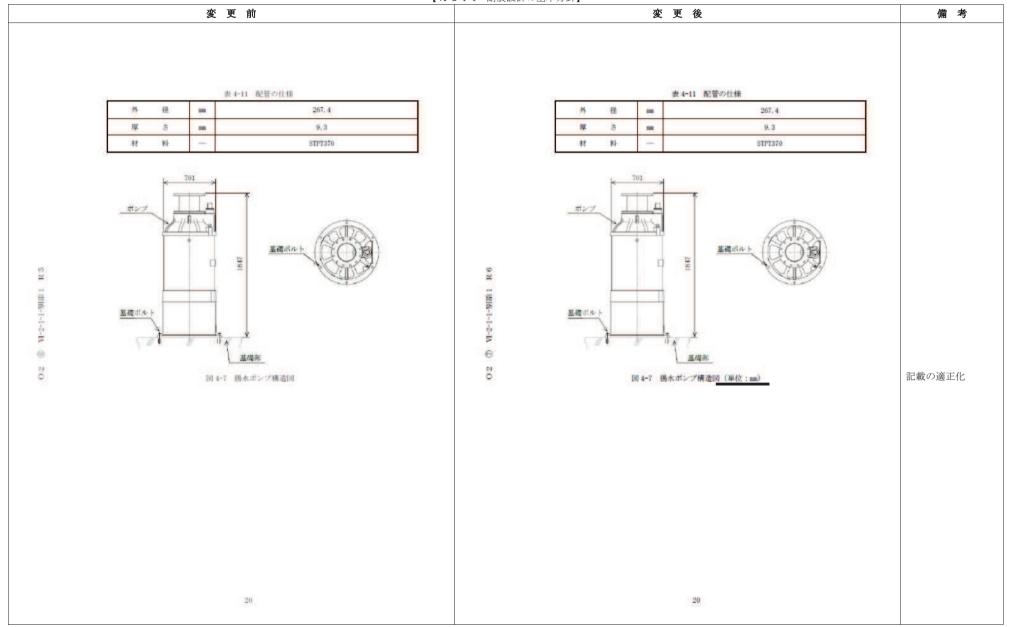
火災感知設備の火災感知器は,平常時の状況 (温度,煙濃度)を監視し,火災現 象 (急激な温度や煙濃度の上昇) を把握することができるアナログ式の煙感知器, アナログ式の熱感知器の異なる種類の感知器を組み合わせて火災を早期に感知す ることを基本として、火災区域又は火災区画に設置する設計とする。

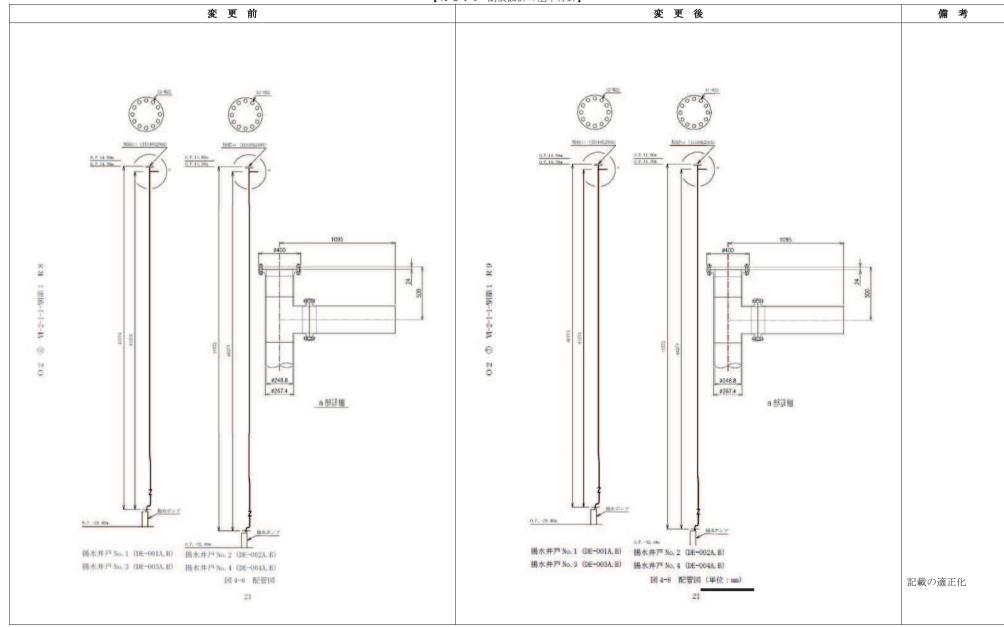
また, 異なる種類の火災感知器の設置に加え, 盤内で火災が発生した場合に早期 に火災発生を感知できるよう、「6.2.4(1) 中央制御室制御盤の火災の系統分離対 策」の(b)項に基づき、中央制御室制御盤内に高感度煙検出設備を設置する設計と

b. 火災感知器の種類


火災感知設備の火災感知器は,平常時の状況(温度,煙濃度)を監視し,火災現 象 (急激な温度や煙濃度の上昇) を把握することができるアナログ式の煙感知器, アナログ式の熱感知器の異なる種類の感知器を組み合わせて火災を早期に感知す ることを基本として、火災区域又は火災区画に設置する設計とする。

また,異なる種類の火災感知器の設置に加え,盤内で火災が発生した場合に早期 に火災発生を感知できるよう、「6.2.4(1) 中央制御室制御盤の火災の系統分離対 策」の(b)項に基づき、中央制御室制御盤内に高感度煙検出設備を設置する設計と


(a) 煙感知器, 熱感知器を設置する火災区域又は火災区画 (表5-1)


65

変 更 前	変 更 後	備考
保護構造により要求される機能を損なうおそれがない設計とする設備について は、評価された被水条件を考慮しても要求される機能を損なうおそれがないこと を設計時に確認し、保護構造を維持するための保守管理を実施する。 また、素油火を行う場合には、消火対象以外の設備への認故ががないよう、消火放水時に確認し、保護構造を維持するための保守管理を実施する。 表本影響が用意な放水を行わない運用とすることとし保安規定に定めて管理する。 被水影響評価の具体的な内容を掛付書類「VI-1-8-4 温水影響に関する評価」のうち「2.2 液水影響に対する評価」に示す。 (3) 蒸気影響を対する評価及び内護設計方針 温水防護に面内で発生を想定する温水源からの耐えい蒸気の直接噴出及び拡散による影響を受ける範囲内にある防護すべきが備が、蒸気が出め影響により要求される機能を損なうまれがない設計とする。 防護すべき設備は、温水需からの耐えい蒸気を考慮した耐蒸気仕様を有し、蒸気影響を受ける地の機と自体なうおそれがないような制度が、高気、大き設備を提及される状态を引度である。 所憲気仕様を有さない場合は、要求される機能を損なうおそれがないようを単位である機能を同時に損なうことのない設計又に重保整度試験により設備の機全性が確認されている耐えい深気影響を受けないような別様を実施する。から機能を開始には、端よい高度において要求される機能を損なりおそれがある。重な問題が表現による環境において要求される機能を損なりない。上上を設備の機能としている過去といる機能を損なわない。上を設備の機能としている。大きに、対策を確認と関心を対象に、端よい高度に関する人とだし、実施する。ただし、実施を加速により、温水の護に関するに、場合と関連に対しているのでは、第十の場合に対している。 また、防護するとを構造することとし、保安規定に定めて管理する。素性に対する制性を使しまれる場合に続けることを機能に対しているに、原子が建設でローアウトパネルに関する具体的な設計が対象に対している。 原子が建立するでは、ボード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	保護構造により要求される機能を損なうおそれがない設計とする設備については、評価された複大条件を考慮しても要求される機能を損なうおそれがないことを設計的に確認し、保護構造を維持するための保守管理を実施する。 また、水油火を行う場合には、消火対象以外の設備の必然放水がないよう、消火放水的に不用意な放水を行わない運用とすることとし保安規定に定めて管理する。 一般水影響評価の具体的な内容を配付書類「VI-1-1-8-4 溢水影響に関する評価」のうち「2.2 被水影響に対する評価及び防護設計が自動を開発して原来の必要を設ける影響に対する評価及び防護設計が自動を損ながあるの選えい要気の直接傾出及び拡散による影響を受ける範囲内にある防護すべき設備が、高気放出の影響により要求される機能を損なうおそれがないことを評価する。 一般素を損ならおされがないことを評価する。 一般素を損ならおされがないことを評価する。 一般素を損ならおされがないことを評価する。 一般素を損ならおされがないことを評価する。 一般素を損ならおされる機能を損なうおされがない設計とする。 一般素とは多様性を有し、同時に最本の影響を受けないような別区側に設度され、要求される機能を開から指数によるの対策を実施する。 一般表にお選えい悪気による環境条件(超度)により対象設備が要求される機能を損なわないとめの対策を設備する。 また、防護すると関係というかの対策を設備する。 また、防護すると関係により、資本財産の関係により、資本財産と関係として、対象数値が要求される機能を損なわれていないことを確定することとし、保安規定に定めて管理する。 重な影響が低の場体的な内容を断付書類「VI-1-8-1 溢水影響に関する評価」のうち「2.3 無気影響と対する評価」に示す。 「以下・1-1-6 安全設備及び重大事故等対処設備が使用される条件の下における機全性に関する説明書」に示す。	記載の適正化
7	7	

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-1-1 耐震設計の基本方針】

変更前 変更後 備考 d. 水位計及び制御盤の電源構成 4. 水位計及び制御盤の電源構成 水位計及び制御盤は非常用母線より受電しているが、重大事故等時で非常用交流電源 水位計及び制御盤は非常用母線より受電しているが、重大事故等時で非常用交流電源 設備から受電できない場合には、常設代替交流電源設備であるガスタービン発電機から 設備から受電できない場合には、常設代替交流電源設備であるガスタービン発電機から 給電可能な構成とする。 給電可能な構成とする。 表 4-13 水位計の仕様 表 4-13 水位計の仕様 揚水井戸 No. 2, No. 4 揚水井戸 No. 1, No. 3 揚水井戸 No. 2, No. 4 提水井戸 No. 1, No. 3 0. P. -28. 8~0. P. -26. 1 0. P. -31, 8~0. P. -29, 1 0, P. -28, 8~0, P. -26, 1 0. P. -31. 8~0. P. -29. 1 計測範囲 計測範囲 (2700mm) (2700mm) (2700mm) (2700mm) 個數 各3個 各3個 個数 各3個 各3個 種類 圧力式水位検出器 種類 圧力式水位検出器 正面 (水平方向) 例面 (鉛直方向) 正面 (水平方向) 側面 (鉛直方向) 未位計樂台 水位計製台 理込金物 図 4-9 水位計の構造図 図 4-9 水位計の構造図 (単位:mm) 記載の適正化 25

変更前 変更後 備考 6.2.2 可搬ポンプユニットの配備 6.2.2 可搬ポンプユニットの配備 地下水位低下設備の機能喪失時に揚水井戸内の排水を実施するための資機材として、図 地下水位低下設備の機能喪失時に揚水井戸内の排水を実施するための資機材として、図 6-1 に示す可機ポンプユニットを配備する。可機ポンプユニットは、揚水井戸への最大流 6-1 に示す可機ポンプユニットを配備する。可搬ポンプユニットは、揚水井戸への最大流 入量(8078 m³/d)を排水可能な可機ポンプ(個数3,容量114m³/h/個(計342m³/h(8208m³/d)))。 入量(8078 m³/d)を排水可能な可搬ポンプ(個数3,容量114m³/h/個(計342m³/h(8208m³/d)))。 可搬ポンプ運転等に必要な電力を供給する発電機、可搬ポンプ発停を管理する制御盤、ホ 可搬ポンプ運転等に必要な電力を供給する発電機、可搬ポンプ発停を管理する制御盤、ホ ース等資機材及びクレーン類を車両に搭載し構成する。 ース等資機材及びクレーン類を車両に搭載し構成する。 可搬ポンプユニットは、揚水井戸内の機器の交換が必要となった場合において、速やか 可搬ポンプユニットは、揚水井戸内の機器の交換が必要となった場合において、速やか に復旧作業が可能となる水位まで地下水を排水することに加え。原子炉建屋・制御建屋エ に復旧作業が可能となる水位まで地下水を排水することに加え、原子炉建屋・制御建屋エ リア及び第3号機海水熱交換器建屋エリアにおける全ての地下水位低下設備の機能喪失を リア及び第3号機海水熱交換器建屋エリアにおける全ての地下水位低下設備の機能喪失を 考慮し、各エリアの排水機能の維持を可能とするため、各エリアに1個、計2個配備する。 考慮し、各エリアの排水機能の維持を可能とするため、各エリアに1個、計2個配備する。 また、可搬ポンプユニットは、高台の堅固な地盤に配備し、外部事象を考慮して分散配 また、可搬ポンプユニットは、高台の堅固な地盤に配備し、外部事象を考慮して分散配 置する。 置する。 LH430x3 LH430x3 150Am - 2 電影響板機 0 電線各取機 配管部科 元電機 Design II 02 ジブクレーン ジブクレーン 図 6-1 可搬ポンプユニット 図 6-1 可搬ポンプユニット (単位:mm) 記載の適正化 34 34

VI-2-1-3

変更前

モデルの妥当性確認に使用する広域モデルにおいては、検証期間(2006~2007年及 び 2013~2014 年) に対応した地盤・構造物の配置をモデル化に反映し、試験データに 基づき水理特性(透水係数)を設定した。透水係数の設定値と設定根拠を表 5-2 に示

表 5-2 透水係数の設定値と設定根拠 (広域モデル)

H	也層	設定値 (m/s)	設定根拠
盛土・旧表土		3. 0×10 ⁻⁵	粒度試験に基づくクレーガーらの方法に より求めた値の平均値に基づき設定
狐崎	岩盤I	2.0×10^{-6}	
部層	岩盤Ⅱ	5. 0×10^{-7}	泽山外脉外用 为亚柏皮皮 建含为弧点
牧の浜	岩盤I	1.0×10^{-6}	透水試験結果の平均値に基づき設定
部層	岩盤Ⅱ	1.0×10^{-7}	
	ト改良 文良地盤	- (設定なし)	Ψ:
透水層	(砕石)	- (設定なし)	<u>u</u>
コンクリート 構造物 (MMR 含む)		(不透水)	-

予測解析に使用する水位評価モデルにおいては、揚圧力・地下水位が高めに評価さ れるよう、建屋に生じる揚圧力への影響が最も大きい地盤(地盤1)の透水係数を試 験結果の平均値-1σに設定した。透水係数の設定値と設定根拠を表 5-3 に示す。

表 5-3 透水係数の設定値と設定根拠(水位評価モデル)

地層盛土・旧表土		設定値 (m/s)	設定根拠
		3. 0×10^{-5}	粒度試験に基づくクレーガーらの方法に より求めた値の平均値に基づき設定
狐崎	岩盤I	7. 0×10^{-6}	
部層	岩盤Ⅱ	5. 0×10^{-7}	透水試験結果の平均値に基づき設定
牧の浜	岩盤I	2.0×10^{-7}	透水試験結果の平均値に基づさ設定
部層	岩盤Ⅱ	1.0×10^{-7}	
	ト改良 (良地盤	2. 0×10 ⁻⁷	透水試験結果の平均値に基づき設定
透水層 (砕石)		1.0×10^{-2}	透水試験結果の平均値に基づき設定
コンクリート 構造物 (MMR 含む)		- (不透水)	-

モデルの妥当性確認に使用する広域モデルにおいては、検証期間(2006~2007年及 び2013~2014年)に対応した地盤・構造物の配置をモデル化に反映し、試験データに

基づき水理特性 (透水係数)を設定した。透水係数の設定値と設定根拠を表 5-2 に示

備考

記載の適正化

表 5-2 透水係数の設定値と設定根拠 (広域モデル)

変更後

地	地層 設定値 (m/s)		設定根拠						
盛士•	旧表土	3. 0×10^{-5}	粒度試験に基づくクレーガーらの方法 より求めた値の平均値に基づき設定						
狐崎	岩盤I	2.0×10^{-6}							
部層 岩盤 II 5.0×10 ⁻⁷ 枚の浜 岩盤 I 1.0×10 ⁻⁶		5. 0×10^{-7}	透水試験結果の平均値に基づき設定						
牧の浜	岩盤I	1.0×10^{-6}	20小門歌和木の下の間に落つる故た						
部層	岩盤Ⅱ	1.0×10^{-7}							
セメント改良 土・改良地盤		_ (設定なし)	-						
透水層 (砕石)		- (設定なし)	-						
コンクリート 構造物 (MMR 含む)		(不透水)	-						

予測解析に使用する水位評価モデルにおいては、 揚圧力・地下水位が高めに評価さ れるよう、建屋に生じる揚圧力への影響が最も大きい地盤(岩盤1)の透水係数を試 験結果の平均値-1σに設定した。透水係数の設定値と設定根拠を表 5-3 に示す。

表 5-3 透水係数の設定値と設定根拠 (水位評価モデル)

封	也層	設定値 (m/s)	設定根拠					
盛土・	旧表土	3. 0×10^{-5}	粒度試験に基づくクレーガーらの方法に より求めた値の平均値に基づき設定					
狐崎	岩盤I	7. 0×10^{-6}						
部層	岩盤Ⅱ	5. 0×10^{-7}	透水試験結果の平均値に基づき設定					
牧の浜	岩盤I	2.0×10^{-7}						
部層	岩盤Ⅱ	1.0×10^{-7}						
セメント改良 土・改良地盤		2. 0×10^{-7}	透水試験結果の平均値に基づき設定					
透水層 (砕石) コンクリート 構造物 (MMR 含む)		1.0×10^{-2}	透水試験結果の平均値に基づき設定					
		- (不透水)	Ψ.					

変 更 前	変 更 後	備考
ロ. 各部材の計算式 (イ) クレビス (本体) (①) i 引張応力評価 引張応力が、許容引張応力以下であることを確認する。	2. 各部材の計算式 (イ) クレビス (本体) (①) i 引張応力評価 引張応力が、許容引張応力以下であることを確認する。	
# せん断応力評価 せん断応力が、許容せん断応力以下であることを確認する。	ii せん断応力評価 せん断応力が、許容せん断応力以下であることを確認する。	記載の適正化
Ⅲ 曲げ応力評価 曲げ応力が、許容曲げ応力以下であることを確認する。 ☆	曲げ応力評価曲げ応力が、許容曲げ応力以下であることを確認する。∞∞	
ix 組合せ応力評価 組合せ応力が、許容組合せ応力以下であることを確認する。 (2) (3) (4) (- - - - - - - - - - - - -	
枠団みの内容は療養機密の観点から公開できません。 28	仲囲みの内容は商業機密の観点から公開できません。 28	

K

M

(-)

0 2

変更前

2. 一般事項

N

1

9

2.1 評価方針

横置一胴円筒形容器の応力評価は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6. 耐震計算書のフォーマット」に示す。

横置一胴円筒形容器の耐震評価フローを図 2-1 に示す。

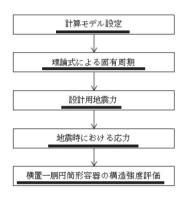


図 2-1 横置一胴円筒形容器の耐震評価フロー

2.2 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- (1) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 (JEAG 4 6 0 1・ 補-1984)
- (2) 原子力発電所耐震設計技術指針 (JEAG 4 6 0 1-1987)
- (3) 原子力発電所耐震設計技術指針(JEAG4601-1991 追補版)
- (4) JSME S NC1-2005/2007 発電用原子力設備規格 設計・建設規格 (以下 「設計・建設規格」という。)

2. 一般事項

2.1 評価方針

横置一胴円筒形容器の応力評価は、添付書類「VI-2-1-9 機能維持の基本方針」に て設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定 する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による 応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認する ことで実施する。確認結果を「6. 耐震計算書のフォーマット」に示す。 備考

記載の適正化

変 更 後

横置一胴円筒形容器の耐震評価フローを図 2-1 に示す。

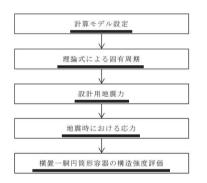


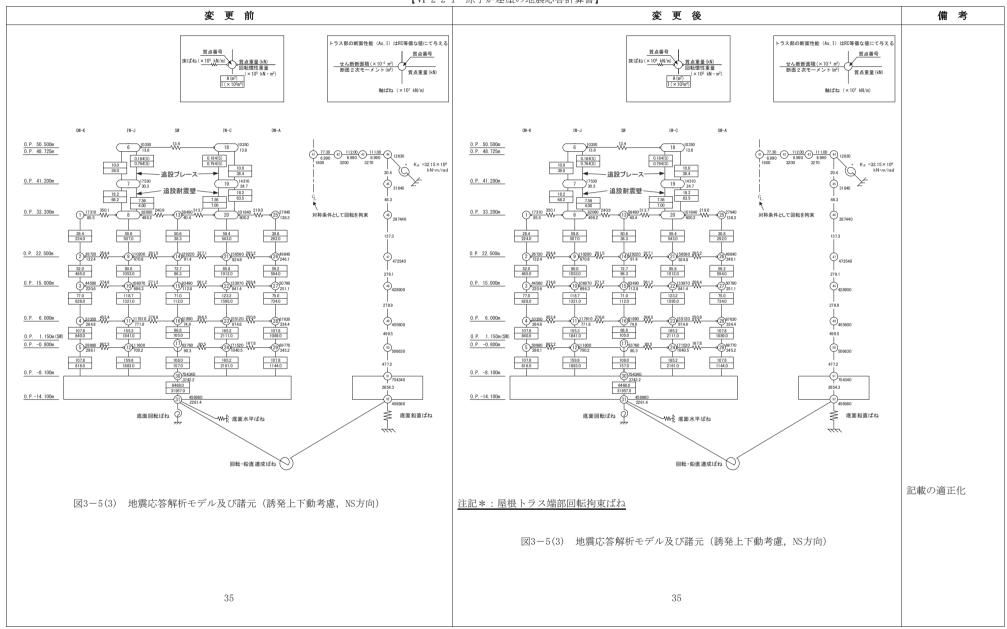
図 2-1 横置一胴円筒形容器の耐震評価フロー

2.2 適用規格・基準等

本評価において適用する規格・基準等を以下に示す。

- (1) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 (JEAG 4 6 0 1· 補-1984)
- (2) 原子力発電所耐震設計技術指針 (JEAG 4 6 0 1-1987)
- (3) 原子力発電所耐震設計技術指針(JEAG4601-1991 追補版)
- (4) JSME S NC1-2005/2007 発電用原子力設備規格 設計・建設規格 (以下 「設計・建設規格」という。)

6


2

変更前 変 更 後 備考 2. 一般事項 2. 一般事項 2.1 評価方針 2.1 評価方針 平底たて置円筒形容器の応力評価は、添付書類「VI-2-1-9 機能維持の基本方針」 平底たて置円筒形容器の応力評価は、添付書類「VI-2-1-9 機能維持の基本方針」 にて設定した荷重及び荷重の組合せ並びに許容限界に基づき,「3. 評価部位」にて設 にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設 定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力によ 定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力によ る応力等が許容限界内に収まることを,「5. 構造強度評価」にて示す方法にて確認す る応力等が許容限界内に収まることを,「5. 構造強度評価」にて示す方法にて確認す ることで実施する。確認結果を「6. 耐震計算書のフォーマット」に示す。 ることで実施する。確認結果を「6. 耐震計算書のフォーマット」に示す。 平底たて置円筒形容器の耐震評価フローを図 2-1 に示す。 平底たて置円筒形容器の耐震評価フローを図 2-1 に示す。 計算モデル設定 記載の適正化 計算モデル設定 理論式による固有周期 理論式による固有周期 K 2 -2-1-13-3設計用地震力 設計用地震力 地震時における応力 地震時における応力 Ī M 9 (P) 平底たて置円筒形容器の構造強度評価 平底たて置円筒形容器の構造強度評価 0 0 図 2-1 平底たて置円筒形容器の耐震評価フロー 図 2-1 平底たて置円筒形容器の耐震評価フロー 2.2 適用規格·基準等 2.2 適用規格·基準等 本評価において適用する規格・基準等を以下に示す。 本評価において適用する規格・基準等を以下に示す。 (1) 原子力発電所耐震設計技術指針(JEAG4601-1987) (1) 原子力発電所耐震設計技術指針(JEAG4601-1987) (2) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 (JEAG4601・ (2) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 (JEAG 4 6 0 1 · 補-1984) 補-1984) (3) 原子力発電所耐震設計技術指針(JEAG 4 6 0 1 - 1991 追補版) (3) 原子力発電所耐震設計技術指針(JEAG4601-1991 追補版) (4) JSME S NC 1-2005/2007 発電用原子力設備規格 設計·建設規格 (以下 (4) JSME S NC1-2005/2007 発電用原子力設備規格 設計·建設規格 (以下 「設計・建設規格」という。) 「設計・建設規格」という。) 2 2

【VI-2-2-1 原子炉建屋の地震応答計算書】 麥更前 変 更 後 備考 3.2.1 水平方向 3.2.1 水平方向 (1) 地震応答解析モデル (1) 地震応答解析モデル 水平方向の地震応答解析モデルは、建屋を曲げ変形とせん断変形をするシェル壁、耐震壁 水平方向の地震応答解析モデルは、建屋を曲げ変形とせん断変形をするシェル壁、耐震壁 部、鉄骨ブレース部及び面内せん断変形をする床スラブ部からなる質点系モデルとし、地盤を 部. 鉄骨ブレース部及び面内せん断変形をする床スラブ部からなる質点系モデルとし、地盤を 等価なばねで評価した建屋-地盤連成モデルとする。 等価なばねで評価した建屋-地盤連成モデルとする。 水平方向の地震応答解析モデル及び諸元を図3-5に示す。図3-5(3)及び図3-5(4)に示す誘 水平方向の地震応答解析モデル及び諸元を図3-5に示す。図3-5(3)及び図3-5(4)に示す誘 発上下動を考慮する場合の地震応答解析モデルについては、「原子力発電所耐震設計技術指針 発上下動を考慮する場合の地震応答解析モデルについては、「原子力発電所耐震設計技術指針 IEAC4601-2015((社)日本雷気協会)」を参考に、水平加振により励起される上下応 (JEAC4601-2015)」を参考に、水平加振により励起される上下応答を評価するため □記載の適正化 答を評価するために、後述の鉛直方向の地震応答解析モデルの諸元(図3-11)及び接地率に に、後述の鉛直方向の地震応答解析モデルの諸元(図3-11)及び接地率に応じて変化する回 応じて変化する回転・鉛直連成ばねについても考慮している。なお、平成23年(2011年)東北 転・鉛直連成ばねについても考慮している。なお、平成23年(2011年)東北地方太平洋沖地震 地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下 等の地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下について、観測記 について、観測記録を用いた検討により確認したことから解析モデルに考慮する。復元力特性 録を用いた検討により確認したことから解析モデルに考慮する。復元力特性の設定にあたって の設定にあたっては、地震やコンクリートの乾燥収縮によるひび割れ等の要因は初期剛性及び は、地震やコンクリートの乾燥収縮によるひび割れ等は初期剛性及びその後の剛性を低下させ その後の剛性を低下させるが、機能維持限界耐力及び終局耐力は既工認の復元力特性の各耐力 る要因となるが、機能維持限界耐力及び終局耐力は既工認の復元力特性の各耐力を上回ってい│記載の適正化 ることを試験等により確認したことから、この復元力特性に初期剛性低下を反映して適用す を上回っていることを試験等により確認したことから、この復元力特性に初期剛性低下を反映 して適用する。耐震壁の初期剛性の設計値に対する補正係数を表3-3に示す。 る。耐震壁の初期剛性の設計値に対する補正係数を表3-3に示す。 また、せん断耐力の向上を目的とした耐震補強工事において追設した部材として、内部ボッ また、せん断耐力の向上を目的とした耐震補強工事において追設した部材として、内部ボッ クス壁と同じ構面において 3 階 (0.P. 33. 2m~0.P. 41. 2m) には耐震壁を, クレーン階 クス壁と同じ構面において 3 階 (0.P. 33. 2m~0.P. 41. 2m) には耐震壁を, クレーン階 (0, P, 41, 2m~0, P, 50, 5m) には鉄骨ブレースを地震応答解析モデルに反映している。 (0, P. 41, 2m~0, P. 50, 5m) には鉄骨ブレースを地震応答解析モデルに反映している。なお、追|記載の適正化 設した耐震壁は構面内の既存の耐震壁と一体で曲げ変形するように、構面内の柱とクレーン階 レベルに追設した梁で構成されるフレーム内に配置することで、曲げモーメントはフレームで 負担する設計としている。

31

31

大数	(a) NS方向 (b) 固有周期 固有振動数 刺激係数* 備考 (c) UHz) 刺激係数* 備考 0.237 4.21 2.203 全体1次 0.123 8.12 2.718 全体2次 0.116 8.61 1.167 0.097 10.33 2.095 全体3次 0.093 10.76 1.110 0.089 11.21 0.270 0.082 12.27 0.002 0.074 13.46 0.347 0.072 13.90 0.487 0.068 14.68 0.339
次数 固有周期 (s) 固有振動数 (Hz) 刺激係数 (Hz) 本体1次 (Az) 次数 (Bz) 固有振動数 (Hz) 刺激係数 (Hz) 備考 刺激係数 (Hz) 配名 (Hz) 開養係数 (Hz) 備考 刺激係数 (Hz) 配名 (Hz) 開養係数 (Hz) 工作 <	固有周期 固有振動数
1 0.237 4.21 2.203 全体1次 2 0.123 8.12 2.718 全体2次 3 0.116 8.61 1.167 4 0.097 10.33 2.095 全体3次 5 0.093 10.76 1.110 6 0.089 11.21 0.270 7 0.082 12.27 0.002 8 0.074 13.46 0.347 9 0.072 13.90 0.487 10 0.068 14.68 0.339 11 0.066 15.18 0.730 11 0.066 15.18 0.730 12 0.064 15.70 0.261 13 0.060 16.55 0.212 14 0.059 17.01 0.187 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	0.237 4.21 2.203 全体1次 0.123 8.12 2.718 全体2次 0.116 8.61 1.167 0.097 10.33 2.095 全体3次 0.093 10.76 1.110 0.089 11.21 0.270 0.082 12.27 0.002 0.074 13.46 0.347 0.072 13.90 0.487 0.068 14.68 0.339
3 0.116 8.61 1.167 4 0.097 10.33 2.095 全体3次 4 0.097 10.33 2.095 全体3次 5 0.093 10.76 1.110 5 0.089 11.21 0.270 6 0.089 11.21 0.270 6 0.089 11.21 0.270 7 0.082 12.27 0.002 7 0.082 12.27 0.002 7 0.082 12.27 0.002 8 0.074 13.46 0.347 8 0.074 13.46 0.347 9 0.072 13.90 0.487 9 0.072 13.90 0.487 9 0.072 13.90 0.487 9 0.072 13.90 0.487 9 0.072 13.90 0.487 10 0.066 15.18 0.730 11 0.066 15.1	0.116 8.61 1.167 0.097 10.33 2.095 全体3次 0.093 10.76 1.110 0.089 11.21 0.270 0.082 12.27 0.002 0.074 13.46 0.347 0.072 13.90 0.487 0.068 14.68 0.339
4 0.097 10.33 2.095 全体3次 5 0.093 10.76 1.110 5 0.093 10.76 1.110 6 0.089 11.21 0.270 6 0.089 11.21 0.270 7 0.082 12.27 0.002 7 0.082 12.27 0.002 8 0.074 13.46 0.347 8 0.074 13.46 0.347 9 0.072 13.90 0.487 9 0.072 13.90 0.487 10 0.068 14.68 0.339 10 0.068 14.68 0.339 11 0.066 15.18 0.730 11 0.066 15.18 0.730 12 0.064 15.70 0.261 12 13 0.060 16.55 0.212 14 0.059 17.01 0.187 14 0.059 17.01 0.187 15 0.054 18.63 0.218 15 0.054 18.63 0.218 16 0.052 19.27 0.691	0.097 10.33 2.095 全体3次 0.093 10.76 1.110 0.089 11.21 0.270 0.082 12.27 0.002 0.074 13.46 0.347 0.072 13.90 0.487 0.068 14.68 0.339
5 0.093 10.76 1.110 6 0.089 11.21 0.270 7 0.082 12.27 0.002 8 0.074 13.46 0.347 9 0.072 13.90 0.487 10 0.068 14.68 0.339 11 0.066 15.18 0.730 12 0.064 15.70 0.261 13 0.060 16.55 0.212 14 0.059 17.01 0.187 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	0.093 10.76 1.110 0.089 11.21 0.270 0.082 12.27 0.002 0.074 13.46 0.347 0.072 13.90 0.487 0.068 14.68 0.339
6 0.089 11.21 0.270 7 0.082 12.27 0.002 8 0.074 13.46 0.347 9 0.072 13.90 0.487 10 0.068 14.68 0.339 11 0.066 15.18 0.730 12 0.064 15.70 0.261 13 0.060 16.55 0.212 14 0.059 17.01 0.187 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	0. 089 11. 21 0. 270 0. 082 12. 27 0. 002 0. 074 13. 46 0. 347 0. 072 13. 90 0. 487 0. 068 14. 68 0. 339
7 0.082 12.27 0.002 8 0.074 13.46 0.347 9 0.072 13.90 0.487 10 0.068 14.68 0.339 11 0.066 15.18 0.730 12 0.064 15.70 0.261 13 0.060 16.55 0.212 14 0.059 17.01 0.187 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	0.082 12.27 0.002 0.074 13.46 0.347 0.072 13.90 0.487 0.068 14.68 0.339
8 0.074 13.46 0.347 9 0.072 13.90 0.487 10 0.068 14.68 0.339 11 0.066 15.18 0.730 12 0.064 15.70 0.261 13 0.060 16.55 0.212 14 0.059 17.01 0.187 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	0.074 13.46 0.347 0.072 13.90 0.487 0.068 14.68 0.339
9 0.072 13.90 0.487 10 0.068 14.68 0.339 11 0.066 15.18 0.730 12 0.064 15.70 0.261 13 0.060 16.55 0.212 14 0.059 17.01 0.187 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	0.072 13.90 0.487 0.068 14.68 0.339
10 0.068 14.68 0.339 11 0.066 15.18 0.730 12 0.064 15.70 0.261 13 0.060 16.55 0.212 14 0.059 17.01 0.187 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	0.068 14.68 0.339
11 0.066 15.18 0.730 12 0.064 15.70 0.261 13 0.060 16.55 0.212 14 0.059 17.01 0.187 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	
12 0.064 15.70 0.261 13 0.060 16.55 0.212 14 0.059 17.01 0.187 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	0.066 15.19 0.720
13 0.060 16.55 0.212 14 0.059 17.01 0.187 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	0.000
14 0.059 17.01 0.187 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	0.064 15.70 0.261
15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396 15 0.054 18.63 0.218 16 0.052 19.27 0.691 17 0.051 19.65 0.396	0.060 16.55 0.212
16 0.052 19.27 0.691 17 0.051 19.65 0.396 18 0.052 19.27 0.691 17 0.051 19.65 0.396	0. 059 17. 01 0. 187
17 0.051 19.65 0.396 17 0.051 19.65 0.396	0. 054 18. 63 0. 218
	0. 052 19. 27 0. 691
18 0.050 19.88 0.283	0. 051 19. 65 0. 396
	0.050 19.88 0.283
	0. 050 19. 88 0. 283

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震片祭計算書】

備 :		邓析結果 (2/2)	変 更 -1(2) 固有値解 (b)EW方	表4			犀析結果 (2/2)	変 更 4-1(2) 固有値解 (b)EW方	表4	
記載の適	備考	刺激係数*	固有振動数 (Hz)	固有周期 (s)	次数	備考	刺激係数	固有振動数 (Hz)	固有周期 (s)	次数
	全体1次	2. 179	4. 36	0. 230	1	全体1次	2. 179	4. 36	0. 230	1
	全体2次	1. 925	8. 01	0. 125	2	全体2次	1. 925	8. 01	0. 125	2
		0.074	8. 64	0.116	3		0.074	8. 64	0. 116	3
		0.651	10. 15	0.098	4		0.651	10. 15	0.098	4
		0.835	10. 93	0.091	5		0.835	10. 93	0.091	5
	全体3次	2. 442	11. 46	0.087	6	全体3次	2. 442	11. 46	0. 087	6
		0.662	12.80	0.078	7		0.662	12.80	0.078	7
		0.500	13. 45	0.074	8		0.500	13. 45	0.074	8
		0.164	14. 30	0.070	9		0. 164	14. 30	0.070	9
		0. 444	14. 69	0.068	10		0. 444	14. 69	0.068	10
		0. 292	15.55	0.064	11		0. 292	15. 55	0.064	11
		0. 245	16.11	0.062	12		0. 245	16. 11	0.062	12
		0. 957	16.68	0.060	13		0. 957	16. 68	0.060	13
		0.087	17.05	0.059	14		0. 087	17.05	0.059	14
		0. 102	18.06	0.055	15		0. 102	18.06	0.055	15
		0.376	18.54	0.054	16		0. 376	18. 54	0.054	16
		0.324	19.96	0.050	17		0. 324	19. 96	0.050	17
		向	(c)UD方				·向	(c)UD方		
記載の適	備考	刺激係数*	固有振動数 (Hz)	固有周期 (s)	次数	備考	刺激係数	固有振動数 (Hz)	固有周期 (s)	次数
	量根トラス1次	1.458	2.95	0.339	1	屋根トラス1次	1. 458	2. 95	0. 339	1
	建屋1次	1.586	9.96	0.100	2	建屋1次	1.586	9. 96	0. 100	2
	屋根トラス2次	1.361	12.59	0.079	3	屋根トラス2次	1. 361	12. 59	0.079	3
		0.367	19.61	0.051	4		0.367	19. 61	0.051	4
	建屋2次	0.797	23. 10	0.043	5	建屋2次	0. 797	23. 10	0.043	5
		0.511	36.66	0.027	6		0. 511	36. 66	0.027	6
	建屋3次	0.443	48. 24	0.021	7	建屋3次	0. 443	48. 24	0.021	7
を記載の適	 0となるように規準化した値を	,最大振幅が	ベクトル {u} に対し	, 各次の固有^	: 刺激係数は示す。	0となるように規準化した値を示 注語	最大振幅が1.	クトル{u}に対し,	各次の固有べ	数係数は,

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

変 更 前		アナル 産産の 地 展 心 合 計 昇 音 】 変 更 後	備考
1. 概要 · · · · · · · · · · · · · · · · · ·	別紙- 1	1. 概要	
2. 基本方針 · · · · · · · · · · · · · · · · · · ·	別紙- 2	2. 基本方針	
2.1 解析方針 · · · · · · · · · · · · · · · · · · ·	別紙- 2	2.1 解析方針	
2.2 適用規格・基準等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙- 4	2.2 適用規格・基準等・・・・・・・別紙- 4	
3. 解析方法 · · · · · · · · · · · · · · · · · · ·	別紙- 5	3. 解析方法	
3.1 設計に用いる地震波・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙- 5	3.1 設計に用いる地震波・・・・・ 別紙- 5	
3.2 地震応答解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙- 6	3.2 地震応答解析モデル・・・・・・ 別紙- 6	
3.2.1 補強等に伴う増加重量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙- 7	3.2.1 補強等に伴う増加重量・・・・・・・・・・・・・・・・ 別紙- 7	
3. 2. 2 水平方向 · · · · · · · · · · · · · · · · · · ·	⋯ 別紙- 14	3.2.2 水平方向・・・・・・別紙- 14	
3. 2. 3 鉛直方向 · · · · · · · · · · · · · · · · · · ·	⋯ 別紙- 23	3.2.3 鉛直方向・・・・・・別紙-23	
3.3 解析方法 · · · · · · · · · · · · · · · · · · ·	⋯ 別紙- 26	3.3 解析方法 別紙- 26	
3.3.1 動的解析	⋯ 別紙- 26	3.3.1 動的解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.4 解析条件 · · · · · · · · · · · · · · · · · · ·	⋯ 別紙- 27	3.4 解析条件 別紙- 27	
3.4.1 建物・構築物の復元力特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	… 別紙- 27	3.4.1 建物・構築物の復元力特性・・・・・・・・・・・・・ 別紙- 27	
3.4.2 地盤の回転ばねの復元力特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	⋯ 別紙- 36	3.4.2 地盤の回転ばねの復元力特性・・・・・・・・・・・・ 別紙- 36	
4. 解析結果 · · · · · · · · · · · · · · · · · · ·	⋯ 別紙- 37	4. 解析結果・・・・・・別紙-37	
4.1 動的解析 · · · · · · · · · · · · · · · · · · ·	⋯ 別紙- 37	4.1 動的解析 別紙-37	
4.1.1 固有値解析結果 · · · · · · · · · · · · · · · · · · ·	⋯ 別紙- 37	4.1.1 固有値解析結果・・・・・・別紙-37	
4.1.2 地震応答解析結果	⋯ 別紙- 37	4.1.2 地震応答解析結果・・・・・・別紙-37	
4.2 応答比率の算定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙- 83	4.2 応答比率の算定・・・・・・別紙-83	
4.3 <u>原子炉建屋</u> の地震応答解析による評価に与える影響·····	… 別紙-114	4.3 <u>建物・構築物</u> の地震応答解析による評価に与える影響・・・・・・・・ 別紙-114	記載の適正化
4.3.1 最大応答せん断ひずみ	… 別紙-114	4.3.1 最大応答せん断ひずみ・・・・・・別紙-114	
4.3.2 最大接地圧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		4.3.2 最大接地圧・・・・・・別紙-121	
4.4 機器・配管系の耐震性への影響		4.3.3 原子炉建屋内に設置される各施設の耐震性への影響····· 別紙-122	記載の適正化
4.4.1 影響検討方法		4.4 機器・配管系の耐震性への影響・・・・・・・・別紙-133	
4.4.2 応答比率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		4.4.1 影響検討方法・・・・・・・別紙-133	
4.4.3 補強反映耐震条件 · · · · · · · · · · · · · · · · · · ·		4.4.2 応答比率 <u>の算定方法</u> ····· 別紙-135	記載の適正化
4.4.4 影響検討結果		4.4.3 補強反映耐震条件 <u>の作成方法</u> ····································	記載の適正化
5. まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙-187	<u>4.4.4 応答比率の算定結果</u> ・・・・・・・・・・・・・・・・・・・・ 別紙-139	記載の適正化
		<u>4.4.5 補強反映耐震条件の作成結果</u> ・・・・・・・・・・・・・・・・別紙-175	記載の適正化
		4. 4. <u>6</u> 影響検討結果・・・・・・別紙-197	記載の適正化
		5. まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

変 更 前	変 更 後	備考
3.2.2 水平方向 :	3.2.2 水平方向	
(1) 地震応答解析モデル	(1) 地震応答解析モデル	
水平方向の地震応答解析モデルは、建屋を曲げ変形とせん断変形をするシェル壁、耐震壁	水平方向の地震応答解析モデルは、建屋を曲げ変形とせん断変形をするシェル壁、耐震壁	
部、鉄骨ブレース部及び面内せん断変形をする床スラブ部からなる質点系モデルとし、地盤を	部,鉄骨ブレース部及び面内せん断変形をする床スラブ部からなる質点系モデルとし,地盤を	
等価なばねで評価した建屋-地盤連成モデルとする。	等価なばねで評価した建屋-地盤連成モデルとする。	
水平方向の地震応答解析モデル及び諸元を図3-1に示す。なお、平成23年(2011年)東北地	水平方向の地震応答解析モデル及び諸元を図3-1に示す。なお、平成23年(2011年)東北地	
方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下に	方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下に	
ついて、観測記録を用いた検討により確認したことから解析モデルに考慮する。復元力特性の	ついて、観測記録を用いた検討により確認したことから解析モデルに考慮する。復元力特性の	
設定にあたっては、地震やコンクリートの乾燥収縮によるひび割れ等 <u>の要因</u> は初期剛性及びそ	設定にあたっては、地震やコンクリートの乾燥収縮によるひび割れ等は初期剛性及びその後の	
の後の剛性を低下させるが,機能維持限界耐力及び終局耐力は既工認の復元力特性の各耐力を	剛性を低下させる要因となるが、機能維持限界耐力及び終局耐力は既工認の復元力特性の各耐	記載の適正化
上回っていることを試験等により確認したことから、この復元力特性に初期剛性低下を反映し	力を上回っていることを試験等により確認したことから、この復元力特性に初期剛性低下を反	
て適用する。耐震壁の初期剛性の設計値に対する補正係数を表3-6に示す。	沈答解析モデル 方向の地震応答解析モデルは、建屋を曲げ変形とせん断変形をするシェル壁、耐震壁	
別紙-14	別紙-14	

【VI-2-2-1 原子炉建屋の地震応答計算書】

変 更 前	変 更 後	備考
4. 解析結果	4. 解析結果	
4.1 動的解析	4.1 動的解析	
4.1.1 固有値解析結果	4.1.1 固有值解析結果	
補強反映モデルの固有値解析結果(固有周期及び固有振動数)を表4-1,刺激関数図を	補強反映モデルの固有値解析結果(固有周期及び固有振動数)を表4-1,刺激関数図を	
図4-1~図4-3に示す。また,「補強反映モデル」と「今回工認モデル」の固有値解析結	図4-1~図4-3に示す。また、補強反映モデルと今回工認モデルの固有値解析結果(固有	記載の適正化
果(固有周期及び固有振動数)の比較を表4-2に示す。	周期及び固有振動数)の比較を表4-2に示す。	
なお、刺激係数は、モードごとに固有ベクトルの最大値を1に規準化して得られる値を	なお、刺激係数は、モードごとに固有ベクトルの最大値を1に規準化して得られる値を	
示す。	示す。	
別紙-37	別紙-37	

【VI-2-2-1 原子炉建屋の地震応答計算書】

	変更	前	
表4-1(1)	固有値解析結果	(補強反映モデル)	(1/3)

(a) NS方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数*	備考
1	0. 240	4. 16	2. 220	建屋全体1次
2	0. 126	7. 94	2. 703	建屋全体2次
3	0. 118	8. 48	1.022	
4	0.098	10. 18	1. 993	建屋全体3次
5	0.094	10.60	1. 352	
6	0.090	11.06	0.375	
7	0. 083	12. 02	0.002	
8	0.075	13. 36	0.312	
9	0.072	13. 81	0.489	
10	0.069	14. 53	0. 339	
11	0.066	15. 04	0. 638	
12	0.064	15. 58	0. 289	
13	0.061	16. 34	0. 196	
14	0.059	16.83	0. 196	
15	0.054	18. 50	0.320	
16	0.052	19. 16	0.606	
17	0.051	19. 50	0.450	
18	0.051	19.65	0. 103	

注記*: モードごとに固有ベクトルの最大値を1に規準化して得られる刺激係数を示す。

変更後 表4-1(1) 固有値解析結果(補強反映モデル)(1/3)

(a) NS方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数*	備考
1	0. 240	4. 16	2. 220	建屋全体1次
2	0. 126	7. 94	2. 703	建屋全体2次
3	0.118	8.48	1.022	
4	0.098	10. 18	1. 993	建屋全体3次
5	0.094	10.60	1. 352	
6	0.090	11.06	0. 375	
7	0.083	12.02	0.002	
8	0.075	13. 36	0.312	
9	0.072	13. 81	0. 489	
10	0.069	14. 53	0. 339	
11	0.066	15.04	0.638	
12	0.064	15. 58	0. 289	
13	0.061	16. 34	0. 196	
14	0. 059	16. 83	0. 196	
15	0.054	18. 50	0.320	
16	0.052	19. 16	0.606	
17	0.051	19. 50	0. 450	
18	0.051	19. 65	0. 103	

注記*:刺激係数は、各次の固有ベクトル{u}に対し、最大振幅が1.0となるように規準化した値を 示す。

記載の適正化

備考

別紙-38

		変更	前		変 更 後						備	
	表4-1(2)	固有値解析結果	(補強反映モデ	· ル) (2/3)			表4-1(2)	固有値解析結果	(補強反映モテ	· ハレ) (2/3)		
		(b) EW	方向			(b) EW方向						
次娄	固有周期 (s)	固有振動数 (Hz)	刺激係数*	備考		次数	固有周期 (s)	固有振動数 (Hz)	刺激係数*	備考		
1	0. 232	4. 31	2. 190	建屋全体1次		1	0. 232	4. 31	2. 190	建屋全体1次		
2	0. 127	7. 91	1. 955	建屋全体2次		2	0. 127	7. 91	1. 955	建屋全体2次		
3	0. 117	8. 52	0. 085			3	0. 117	8. 52	0. 085			
4	0. 100	10.02	0.645			4	0.100	10.02	0. 645			
5	0.093	10.77	0. 559			5	0.093	10.77	0. 559			
6	0. 088	11. 30	2. 280	建屋全体3次		6	0.088	11.30	2. 280	建屋全体3次		
7	0.079	12. 63	0.680			7	0.079	12.63	0.680			
8	0.076	13. 24	0.502			8	0.076	13. 24	0. 502			
9	0.071	14. 15	0. 176			9	0.071	14. 15	0. 176			
10	0.069	14. 45	0. 485			10	0.069	14. 45	0. 485			
11	0.065	15. 39	0. 201			11	0.065	15. 39	0. 201			
12	0.063	15. 93	0. 289			12	0.063	15. 93	0. 289			
13	0.061	16. 50	0.904			13	0.061	16. 50	0. 904			
14	0.060	16. 67	0. 295			14	0.060	16. 67	0. 295			
15	0.056	17. 84	0.100			15	0.056	17.84	0. 100			
16	0. 055	18. 32	0.408			16	0.055	18. 32	0.408			
17	0.050	19. 81	0. 259			17	0.050	19.81	0. 259			
: モード	ごとに固有ベクト	ルの最大値を1に丼	- 見準化して得ら	のれる刺激係数を示す。	注記*:	刺激係数は	,各次の固有	ベクトル{u}に対	し,最大振幅が	- ĭ1.0となるように規準	 <u> 化した値を</u>	記載の適正化
						<u>示す。</u>						104% -> 10411

【VI-2-2-1 原子炉建屋の地震応答計算書】

			変更	前		V1-2-2-1)	原子炉建屋の地震	《 心谷計算書】	変更	後			備考
		表4-1(3)	固有値解析結果		(3/3)			表4-1(3)	固有値解析結果		デル) (3/3)		DIS 3
		2(1 1(0)	(c) 鉛直		,,, (6, 6)			3(1 1(0)	(c) 鉛i		,, (0,0)		
	次数	固有周期 (s)	固有振動数 (Hz)	刺激係数*	備考		次数	固有周期 (s)	固有振動数 (Hz)	刺激係数*	備考		
-	1	0. 362	2. 76	1. 436	屋根トラス1次		1	0. 362	2. 76	1. 436	屋根トラス1次		
	2	0. 101	9. 86	1. 917	建屋全体1次		2	0. 101	9.86	1. 917	建屋全体1次		
	3	0.084	11.84	1. 708	屋根トラス2次		3	0.084	11.84	1.708	屋根トラス2次		
	4	0.054	18. 39	0.302			4	0.054	18. 39	0.302			
	5	0.044	22. 98	0.801	建屋全体2次		5	0.044	22. 98	0.801	建屋全体2次		
	6	0.028	36. 32	0.518			6	0.028	36. 32	0.518			
	7	0.021	47. 79	0. 447	建屋全体3次		7	0.021	47. 79	0. 447	建屋全体3次		
注記*:	モードごと	に固有ベクト	ルの最大値を1に規	見準化して得ら	れる刺激係数を示す。	注	記*: <u>刺激係数</u> /	は,各次の固有	ベクトル{u}に対し	,最大振幅か	₹1.0となるように規準化	とした値を	記載の適正化

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

変 更 前	·1 原子炉建屋の地震応答計算書】 変 更 後	備考
4.2 応答比率の算定	4.2 応答比率の算定	
基準地震動Ss-D2による補強反映モデルと添付書類「VI-2-2-1 原子炉建屋の地震応答計算	基準地震動 S s - D 2 による補強反映モデルと添付書類「VI-2-2-1 原子炉建屋の地震応答計算	
書」の「4.1.2 地震応答解析結果」に示した今回工認モデルの応答の比率(補強反映モデル/今	書」の「4.1.2 地震応答解析結果」に示した今回工認モデルの応答の比率(補強反映モデル/今	
回工認モデル)を算出する。なお、ここでの応答比率を算出する応答結果は、補強反映モデル及び	回工認モデル)を算出する。なお、ここでの応答比率を算出する応答結果は、補強反映モデル及び	
今回工認モデルともに、基準地震動Ss-D2の基本ケースである。表4-4~表4-17に最大応答	今回工認モデルともに、基準地震動Ss-D2の基本ケースである。表4-4~表4-17に最大応答	
加速度、最大応答変位、最大応答せん断力、最大応答曲げモーメント、最大応答軸力、最大応答せ	加速度、最大応答変位、最大応答せん断力、最大応答曲げモーメント、最大応答軸力、最大応答せ	
ん断ひずみ及び最大接地圧の応答比率を示す。	ん断ひずみ及び最大接地圧の応答比率を示す。	
	応答比較の結果、補強反映モデルの応答が今回工認モデルの応答を一部上回る部分があることか	記載の適正化
	ら,「4.3 建物・構築物 の地震応答解析による評価に与える影響」及び「4.4 機器・配管系の耐	
	震性への影響」において耐震性への影響を検討する。	
別紙-83	別紙-83	
AND THE STATE OF T	77111	

【VI-2-2-1 原子炉建屋の地震応答計算書】

変更前 表4-6 最大応答加速度の応答比率(基準地震動 Ss-D2,基本ケース,鉛直方向)

	座標(m)	19.0	12.7	6. 4	0.0
ĵ	質点番号	1	2	3	4
最大応答加速度	① 今回工認モデル (Ss-D2)	3767	1362	3165	1546
(cm/s ²)	② 補強反映モデル (Ss-D2)	3575	1334	3018	1578
J.	②/①* 芯答比率	1.00	1.00	1.00	1.03

標高		最大応答加達	速度 (cm/s ²)		
0. P. (m)	質点 番号	① ② 今回工認モデル 補強反映モデル (Ss-D2) (Ss-D2)		②/①* 応答比率	
48.725	4	1546	1578	1.03	
41.2	5	1429	1427	1.00	
33.2	6	1353	1371	1.02	
22.5	7	1188	1198	1.01	
15	8	969	973	1.01	
6	9	734	727	1.00	
-0.8	10	601	593	1.00	
-8.1	11	538	533	1, 00	

表4-6 最大応答加速度の応答比率(基準地震動 Ss-D2,基本ケース,鉛直方向)

変更後

	座標(m)	19.0	12.7	6.4	0.0
ĵ	質点番号	1	2	3	4
最大応答加速度	① 今回工認モデル (Ss-D2)	3767	1362	3165	1546
(cm/s ²)	② 補強反映モデル (Ss-D2)	3575	1334	3018	1578
J.	②/①* 芯答比率	1.00	1.00	1.00	1.03

標高		最大応答加遠		
0. P.	質点	1	2	2/1)*
(m)	番号	今回工認モデル	補強反映モデル	応答比率
(111)		(Ss-D2)	(Ss-D2)	
48.725	4	1546	1578	1.03
41.2	5	1429	1427	1.00
33. 2	6	1353	1371	1.02
22.5	7	1188	1198	1.01
15	8	969	973	1.01
6	9	734	727	1.00
-0.8	10	601	593	1.00
-8.1	11	538	533	1.00

注記*:応答比率が1.00を下回る場合は1.00とする

記載の適正化

備考

別紙-88

変更前

表4-9 最大応答変位の応答比率(基準地震動 Ss-D2,基本ケース,鉛直方向)

	座標(m)	19.0	12.7	6. 4	0.0
ĵ	質点番号	1	2	3	4
最大応答変位	① 今回工認モデル (Ss-D2)	3.74	3.06	1. 67	0. 28
(cm)	② 補強反映モデル (Ss-D2)	4. 11	3. 21	1. 72	0. 29
ŗ	②/①* 芯答比率	1.10	1.05	1. 03	1. 04

標高		最大応答	変位 (cm)	
係向 0. P. (m)	質点 番号	① 今回工認モデル (Ss-D2)	② 補強反映モデル (Ss-D2)	②/①* 応答比率
48.725	4	0.28	0.29	1.04
41.2	5	0.27	0.28	1.04
33. 2	6	0.26	0.26	1.00
22.5	7	0.22	0.23	1.05
15	8	0.18	0.19	1.06
6	9	0.13	0.14	1.08
-0.8	10	0.10	0.10	1.00
-8.1	11	0.07	0.07	1.00

表4-9 最大応答変位の応答比率(基準地震動 Ss-D2,基本ケース,鉛直方向)

	座標(m)	19.0	12.7	6.4	0.0
ĵ	質点番号	1	2	3	4
最大応答変位	① 今回工認モデル (Ss-D2)	3. 74	3. 06	1.67	0.28
(cm)	② 補強反映モデル (Ss-D2)	4. 11	3. 21	1.72	0.29
J.	②/①* 芯答比率	1. 10	1.05	1.03	1.04

変更後

標高		最大応答	変位 (cm)	Į l
(示向 0. P.	質点	1	2	2/1)*
(m)	番号	今回工認モデル	補強反映モデル	応答比率
(III)		(Ss-D2)	(Ss-D2)	
48.725	4	0.28	0.29	1.04
41.2	5	0.27	0.28	1.04
33.2	6	0.26	0.26	1.00
22.5	7	0.22	0.23	1.05
15	8	0.18	0.19	1.06
6	9	0.13	0.14	1.08
-0.8	10	0.10	0.10	1.00
-8.1	11	0.07	0.07	1.00

注記*:応答比率が1.00を下回る場合は1.00とする

記載の適正化

備考

別紙-93

	前

表4-13(4) 最大応答曲げモーメントの応答比率 (基準地震動Ss-D2, 基本ケース, EW方向) (4/4)

(g) OW-11

標高 0.P. (m)	要素番号	最大応答曲げモーメ ① 今回工認モデル (Ss-D2)	ント (×10 ⁶ kN·m) ② 補強反映モデル (Ss-D2)	②/①* 応答比率
00.0		(55 1/2)	(55 1/2)	
33. 2	(26)	0.252	0.243	1.00
22. 5	(20)	1.02	1.03	1.01
44. 5	(27)	1.30	1.37	1.06
15. 0	(21)	2.37	2.41	1.02
	(28)	2.73	2.85	1.05

4.61

4.93

6.62

6.86

9.02

1.01

1.00

1.01

1.00

1.00

9.05 注記*:応答比率が1.00を下回る場合は1.00とする

4.57

4.93

6.61

6.87

6.0

-0.8

(30)

表4-14 最大応答軸力の応答比率

(基準地震動 S s - D 2, 基本ケース, 鉛直方向)

標高		最大応答軸ス			
0. P. (m)	要素番号	① 今回工認モデル (Ss-D2)	② 補強反映モデル (Ss-D2)	②/①* 応答比率	
48.725	(.)	0.10	0.05		
41.2	(4)	2.12	2. 37	1. 12	
33. 2	(5)	6.63	7.01	1.06	
22. 5	(6)	46.3	47. 7	1.04	
	(7)	103	106	1.03	
15. 0	(8)	144	148	1.03	
6.0	(9)	171	175	1.03	
-0.8	(10)	193	197	1.03	
-8.1					

変更後

表4-13(4) 最大応答曲げモーメントの応答比率

(基準地震動Ss-D2, 基本ケース, EW方向) (4/4)

(g) OW-11

標高 0.P. (m)	要素番号	最大応答曲げモーメ ① 今回工認モデル (Ss-D2)	ント (×10 ⁶ kN·m) ② 補強反映モデル (Ss-D2)	②/①* 応答比率		
33. 2						
33. 4	(26)	0. 252	0. 243	1.00		
22. 5	(20)	1.02	1.03	1.01		
22.0	(27)	1.30	1.37	1.06		
15. 0	(21)	2.37	2.41	1.02		
10.0	(28)	2.73	2.85	1.05		
6. 0	(20)	4. 57	4.61	1.01		
0.0	(29)	4. 93	4. 93	1.00		
-0.8	(23)	6.61	6.62	1.01		
0.0	(30)	6.87	6.86	1.00		
-8. 1	(30)	9.05	9.02	1.00		
0.1			·			

注記*:応答比率が1.00を下回る場合は1.00とする

表4-14 最大応答軸力の応答比率

(基準地震動Ss-D2, 基本ケース, 鉛直方向)

標高		最大応答軸ス				
(m)	要素番号	① 今回工認モデル (Ss-D2)	② 補強反映モデル (Ss-D2)	②/①* 応答比率		
48.725	(4)	2. 12	2. 37	1.12		
41.2	(5)	6. 63	7. 01	1. 12		
33. 2	` '					
22. 5	(6)	46. 3	47. 7	1.04		
	(7)	103	106	1.03		
15. 0	(8)	144	148	1.03		
6. 0	(9)	171	175	1.03		
-0.8	(10)	193	197	1.03		
-8. 1						

注記*:応答比率が1.00を下回る場合は1.00とする

別紙-107

記載の適正化

備考

【VI-2-2-1 原子炉建屋の地震応答計算書】

変 更 前	変 更 後	備考
4.3 <u>原子炉建屋</u> の地震応答解析による評価に与える影響	4.3 建物・構築物の地震応答解析による評価に与える影響	記載の適正化
原子炉建屋の設備の補強や追加等の改造工事に伴い重量が増加する影響を考慮した地震応答解析	原子炉建屋の設備の補強や追加等の改造工事に伴い重量が増加する影響を考慮した地震応答解析	
結果を踏まえ、原子炉建屋の地震応答解析による評価に与える影響として、最大せん断ひずみ及び	結果を踏まえ、原子炉建屋の地震応答解析による評価に与える影響として、最大せん断ひずみ及び	
最大接地圧を算出する。	最大接地圧を算出する。 また、原子炉建屋内に設置される各施設の耐震性への影響を検討する。	記載の適正化
別紙-114	別紙-114	

【VI-2-2-1 原子炉建屋の地震応答計算書】

変 更 前	アナが一種性の地震心合計界音』 変 更 後	備考
	4.3.3 原子炉建屋内に設置される各施設の耐震性への影響	記載の適正化
	(1) 算出方法	
	原子炉建屋内に設置される各施設の耐震性への影響検討として、材料物性の不確かさを考慮した	
	最大応答(基準地震動 S s - D 1 , S s - D 2 , S s - D 3 , S s - F 1 , S s - F 2 , S s - F	
	3 及び S s $ N$ 1 に対する包絡値)に,基準地震動 S s $ D$ 2 に対する補強反映モデルと今回工認	
	モデルの水平及び鉛直方向の応答比率(補強反映モデル/今回工認モデル)の最大値を割増係数と	
	して設定し、各施設の応力評価結果の発生値に応答比率を乗じた結果が、各許容値を超えないこと	
	<u>を確認する。</u>	
	(2) 算出結果	
	重量増加を考慮した各施設の影響検討結果を表4-21~表4-24に示す。	
	重量増加を考慮した割増係数を乗じた結果においても各許容値を超えないため、重量増加を考慮	
	した場合においても、耐震評価に及ぼす影響がないことを確認した。	
	別紙−122	

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

変 更 前	2-1 原子炉建屋の地震応答計算書】 変 更 後								備考		
22 23 111	表4-21(1) 重量増加を考慮した各施設の影響検討結果									記載の適正化	
	(使用済燃料プール及びキャスクピット) (1/2) (a) S d 地震時								1044,17221212		
	部位		評価項目	方向 要素 番号 組合せ ケース 発生値 ①*¹ 割増係数 ② ①×② 許容値			許容値				
		軸力 + + + + + + + + + + + + + + + + + + +	コンクリート圧縮応力度 (N/mm²)	水平	210	1-1	4. 79	1. 04	4. 98	24. 3	
		曲げモーメント + 面内せん断力	鉄筋引張応力度 (N/mm²)	鉛直	6	1-9	196	1. 04	204	345	
	北側壁	面内せん断力	面内せん断応力度 (N/mm ²)	_	51	1-4	1. 59	1. 04	1. 65	4. 53	
		面外せん断力	面外せん断応力度 (N/mm ²)	水平	241	1-1	0. 890	1. 04	0. 926	1.52	
		軸力 +	コンクリート圧縮応力度 (N/mm ²)	鉛直	386	1-11	7. 42	1. 04	7. 72	21. 6	
		曲げモーメント + 面内せん断力	鉄筋引張応力度 (N/mm ²)	鉛直	389	1-3	190	1. 04	198	345	
	西側壁	面内せん断力	面内せん断応力度 (N/mm ²)	_	390	1-9	1. 02	1. 04	1.06	3.02	
		面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	386	1-11	0. 576	1. 04	0.599	1.06	
		軸力	コンクリート圧縮応力度 (N/mm ²)	EW	340	1-12	9. 30	1. 04	9. 67	24. 3	
	底面 スラブ	+ 曲げモーメント	鉄筋引張応力度 (N/mm²)	EW	340	1-11	184	1. 04	191	345	
		面外せん断力	面外せん断応力度 (N/mm ²)	EW	338	1-11	1. 38*2	1. 04	1. 44	2. 59	
		の耐震性につい	-2-4-2-1 使用済燃料 ハての計算書」による 等を考慮して,応力平	0			トを含む	t) (第	1,2号村	& 共用)	
			,	引紙-12	3						

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

	1 原于炉	建屋の地震応答		; III	244						備考	
发				更		B - B/2	* I A = I · · ·					
	表4-21(2) 重量増加を考慮した各施設の影響検討結果 (使用済燃料プール及びキャスクピット)(2/2)										記載の適正化	
	4		(b) S s 地震時			震時						
	部位		評価項目	方向	番号	ケース	1	2	(1)×(2)	許容値		
		軸力 + 曲げモーメント	コンクリート圧縮ひずみ (×10 ⁻³)	鉛直	7	2-9	0. 269	1.04	0. 280	3.00		
		+ 面内せん断力	鉄筋引張ひずみ (×10 ⁻³)	鉛直	6	2-9	1. 28	1.04	1. 33	5. 00		
	北側壁	軸力	圧縮応力度 (N/mm²)	鉛直	3	2-10	2. 40	1. 04	2. 50	21. 6		
		面内せん断力	面内せん断応力度 (N/mm ²)	_	3	2-11	2. 21	1. 04	2. 30	5. 99		
		面外せん断力	面外せん断応力度 (N/mm ²)	水平	241	2-1	0. 892	1. 04	0. 928	2.08		
		軸力	コンクリート圧縮ひずみ (×10 ⁻³)	鉛直	386	2-11	0. 502	1. 04	0. 522	3.00		
	西側壁	曲げモーメント + 面内せん断力	鉄筋引張ひずみ (×10 ⁻³)	水平	425	2-1	1.30	1. 04	1. 35	5. 00		
		西側壁	軸力	圧縮応力度 (N/mm²)	鉛直	390	2-12	2. 40	1. 04	2. 50	21. 6	
		面内せん断力	面内せん断応力度 (N/mm ²)	_	388	2-10	1. 14	1. 04	1. 19	4. 02		
			面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	386	2-11	0.808	1. 04	0.840	1.44	
		軸力	コンクリート圧縮ひずみ (×10 ⁻³)	EW	340	2-12	0. 409	1. 04	0. 425	3.00		
	底面 スラブ	+ 曲げモーメント	鉄筋引張ひずみ (×10 ⁻³)	EW	341	2-11	0. 964	1. 04	1.00	5. 00		
		面外せん断力	面外せん断応力度 (N/mm ²)	EW	338	2-11	1.89*2	1. 04	1. 97	2. 59		
	注記*1	 : 添付書類「VI-	-2-4-2-1 使用済燃料	プール	(キャン	スクピッ	トを含む	ー む)(第	1, 2号标	上 幾共用)		
		の耐震性につ	いての計算書」による	0								
	*2:応力の再分配等を考慮して、応力平均化を行った結果											
	別紙-124											

変更前				十算書】	変更後				備考	
			<u>表</u> 4	-22(1) 重量増 力			検討結果		記載の適正化	
				(原子炉建屋原子	子炉棟 (二次	格納施設))((1/3)			
				<u>(a)</u>	屋根トラス		T			
		草	部位	評価項目	検定比 ①*	割増係数②	①×②	許容限界		
			1.7+++	$\frac{\sigma_{t}}{f_{t}} + \frac{\sigma_{b}}{f_{b}}$	0. 28	1. 02	0. 29	1.0		
			上弦材	$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$	0. 17	1. 02	0. 17	1.0		
			7-7-1-1-1	$\frac{\sigma_{t}}{f_{t}} + \frac{\sigma_{b}}{f_{b}}$	0.79	1. 02	0.81	1.0		
		主 ト ラ	下弦材	$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$	0. 29	1. 02	0.30	1.0		
		- ラ ス	\$1.TT	$\frac{\sigma_{t}}{f_{t}}$	0.03	1. 02	0.03	1.0		
			斜材	σ _c f _c	0.61	1. 02	0. 62	1.0		
			-to to to	σ _t f _t	0.06	1.02	0.06	1.0		
			束材	σ _c f _c	0. 18	1.02	0.18	1.0		
			1.74.1.1	$\frac{\sigma_{t}}{f_{t}} + \frac{\sigma_{b}}{f_{b}}$	0.55	1. 02	0. 56	1.0		
			上弦材	$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$	0.61	1.02	0. 62	1.0		
		サブ	サブ	7-7-1-1-1	$\frac{\sigma_{t}}{f_{t}} + \frac{\sigma_{b}}{f_{b}}$	0.75	1. 02	0.77	1.0	
				下弦材	$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$	0.44	1. 02	0.45	1.0	
		ブトラス	A) I. I.	σ t f t	0. 21	1. 02	0. 21	1.0		
			斜材	σ _c f _c	0.80	1. 02	0.82	1.0		
				$\frac{\sigma_{t}}{f_{t}}$	0. 11	1. 02	0. 11	1.0		
			東材	σ _c f	0. 23	1. 02	0. 23	1.0		
	注記*	: 添付	- 書類「VI-2-	-9-3-1 原子炉建	屋原子炉棟	(二次格納施記	- 役)の耐震性	についての計算		
		書」(こよる。		別紙-125					

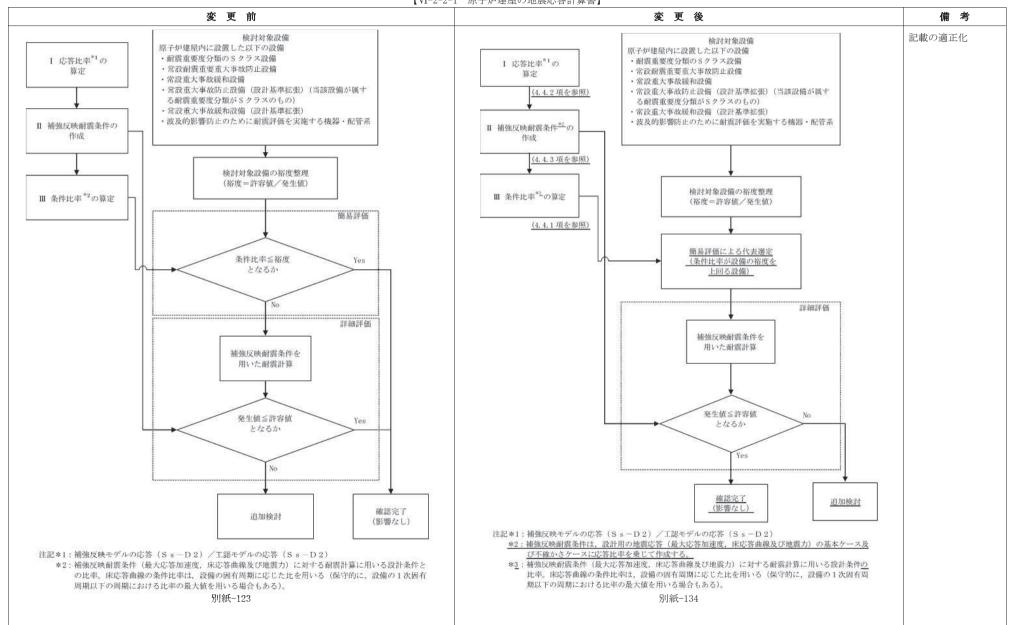
変 更 前	1 /示 1 / / / / / / / / / / / / / / / / /		変更後				備考
		表4-22(2) 重量増加	『を考慮した	各施設の影響	検討結果		記載の適正化
		(原子炉建屋原子	- 炉棟(二次	格納施設))((2/3)		
		<u>(a)</u>	屋根トラス				
	部位	評価項目	検定比 ①*	割増係数	①×②	許容限界	
	母屋	$\frac{\sigma_{t}}{f_{t}} + \frac{\sigma_{b}}{f_{b}}$	0.71	1. 02	0.72	1.0	
	F	$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$	0.72	1. 02	0.73	1.0	
	++++	$\frac{\sigma}{f}$	0. 24	1.02	0. 24	1.0	
	方杖	σ _c f _c	0. 67	1.02	0.68	1.0	
	注記*:添付書類「	VI-2-9-3-1 原子炉建	屋原子炉棟 ((二次格納施討	と) の耐震性	上についての計算	
	書」による。						
			別紙-126				

変 更 前	-1 原于炉建座の地展心合計昇青』	変更後			備考
	表4-22(3) 重量	記載の適正化			
	(原子炉建屋				
		<u>(b) 屋根スラブ</u>		T	
	評価項目	発生値 割増 ①* ②	係数 ①×②	許容限界*	
	曲げモーメント 鉄筋応力度 (N/mm ²)	272 1.	03 280	345	
	面外せん断力 発生せん断力 (kN/m)	42.6 1.	03 43.9	112. 2	
	注記*:添付書類「VI-2-9-3-1 原子炉書」による。	戸建屋原子炉棟(二次格	納施設)の耐震性に	ついての計算	
		() +			記載の適正化
	評価項目	(c) 床スラブ 発生値 割増 ①* ②	係数 ①×②	許容限界*	HP494 - NG TF F
	曲げモーメント 鉄筋応力度 (N/mm ²)	244 1.		345	
	面外せん断力 発生せん断力 (kN/m)	322 1.	01 325	912	
	注記*:添付書類「VI-2-9-3-1 原子炉	戸建屋原子炉棟(二次格	納施設)の耐震性に	ついての計算	
	書」による。				
		(d) 耐震壁			記載の適正化
	評価項目 発生①	値割地反粉の	①×② 組合せ σ _t + _s σ _t	許容限界*	
	曲げモーメント 鉄筋応力度 に対する検討 (N/mm²) σ _t	135 1.04	140 335	345	
	せん断力 鉄筋応力度 (N/mm²) s σ t	195 1.00	195	040	
	注記*:添付書類「VI-2-9-3-1 原子炉	戸建屋原子炉棟(二次格	納施設)の耐震性に	ついての計算	
	書」による。				
		別紙-127			

変 更 前	【VI-2-2-1 原十炉建産の地展応名	F121 H 2	変更後			備考				
	表4-23 重量増力	表4-23 重量増加を考慮した各施設の影響検討結果(原子炉建屋ブローアウトパネル)								
		<u>(a)</u>	S d 閉機能維持							
	項目	地震荷重(kN) ①*1	割増係数	①×②	許容値 開放荷重* ² (kN)					
	開放時	59. 9	1. 02	61.1	80. 1					
	注記*1:添付書類「	VI-2-9-3-1-1 原子	-炉建屋ブローアウ	トパネルの耐震	性についての計算					
	書」による									
	*2:実機大モッ	クアップ試験結果。								
		(b)	S s 閉機能維持							
	層間変位(mm) 割増係数			容値					
	*	2		间阴	其 (mm) *					
	8.4	1. 15	9. 7		50					
		書類「VI-2-9-3-1-		ーアウトパネル	の耐震性に					
	つい	ての計算書」による	0.							
			別紙-128							
			刀1/4八-140							

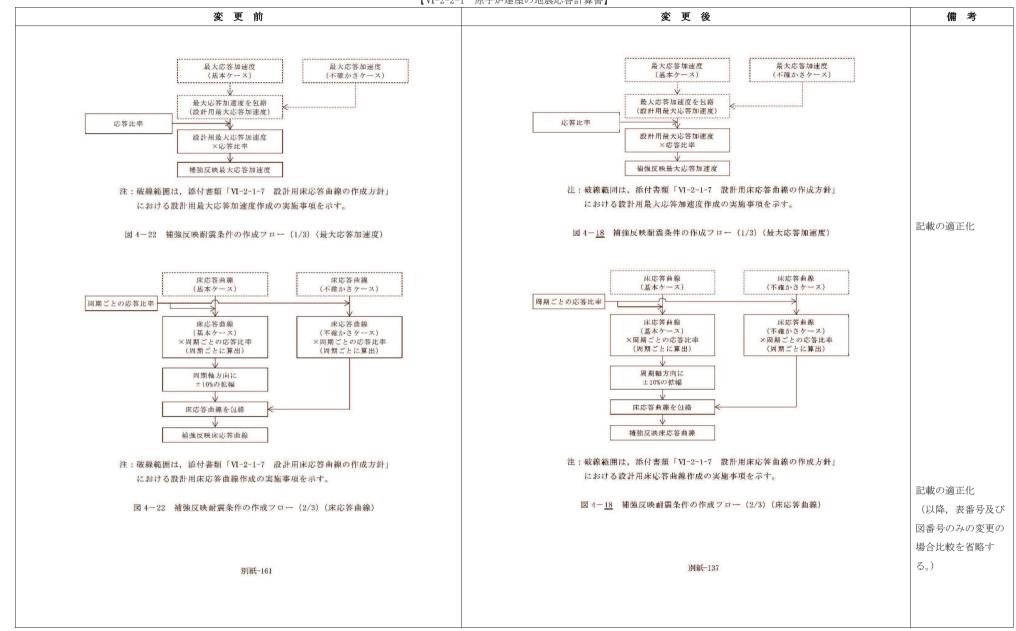
安川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 「VI-9-9-1 原子恒建屋の地震庁欠計算ま」

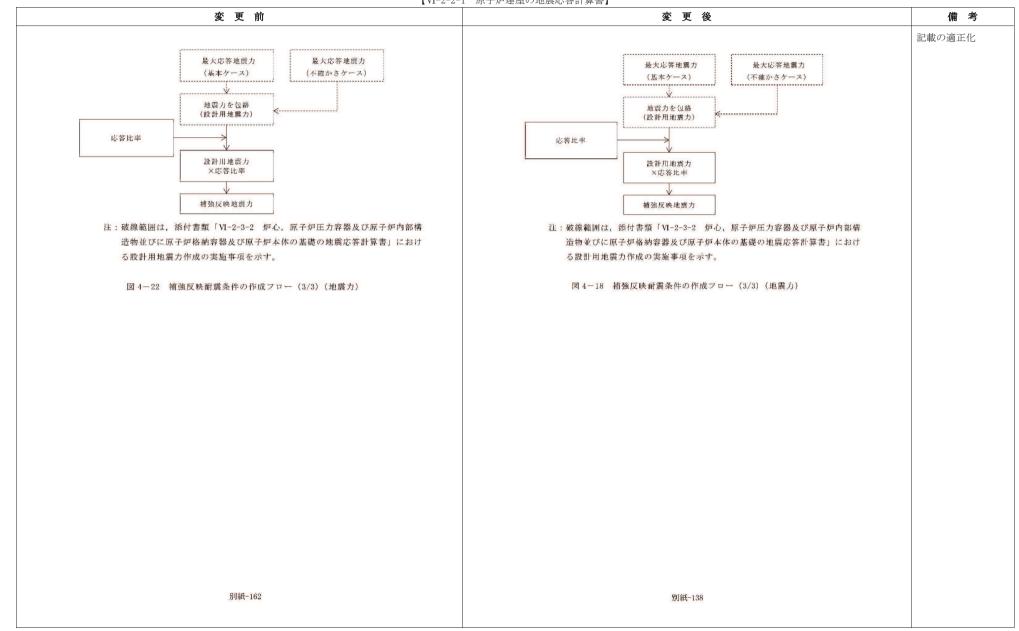
変 更 前	変 更 後								
		表4-24	重量増加を考慮した名			アロック)		記載の適正化	
		評価部位	分類	発生値 ①*	割増係数	①×2	許容限界*		
		ヒンジ	曲げ(N/mm²)	28	1.03	29	215		
		アーム	せん断 (N/mm²)	3	1. 03	3	124		
	E		組合せ (N/mm ²)	28	1. 03	29	215		
	ン	ヒンジ	曲げ (N/mm²)	182	1. 03	187	345		
	ジ	ピン	せん断 (N/mm²)	17	1. 03	18	199		
	部		組合せ (N/mm²)	184	1. 03	190	345		
		ヒンジ	引張(N/mm²)	39	1. 03	40	651		
		ボルト	せん断 (N/mm²)	39	1. 03	40	375		
	力	41,72	曲げ (N/mm²)	7	1.03	7	205		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	カンヌキ	せん断 (N/mm²) 組合せ (N/mm²)	7	1. 03 1. 03	7	118 205		
	ヌ	よい フェボル	組合せ(N/mm²) 曲げ(N/mm²)	42	1. 03	43	205		
	+	カンヌキ受け ピン	世ん断 (N/mm²)	42	1. 03	43	118		
	部	カンヌキ受け ボルト	引張 (N/mm²)	19	1. 03	20	651		
			另	川紙-129					


変 更 前	71.1772	室の地震心容計算			変更	後				備考
		表4-25 重量堆	加を考慮	慮したイ	各施設の影	響検討結果		屋基礎版)		記載の適正化
	評	価項目	方向	要素番号	組合せ ケース	発生値 ①* ¹	割増 係数 ②	①×②	許容値*1	
	軸力 +	コンクリート 圧縮ひずみ (×10 ⁻³)	EW	1123	1-6	0.766	1. 03	0.789	3. 00	
	曲げ モーメント	鉄筋 圧縮ひずみ (×10 ⁻³)	放射	169	1-2	0. 488	1. 03	0. 503	5. 00	
	面外 せん断力	面外 せん断応力度 (N/mm²)	NS	1158	1-4	1. 52*2	1. 03	1. 57*2	2. 42	
		付書類「VI-2-9 力の再配分等を:						· 算書」による	5.	
					Dilást 100					
					別紙-130)				

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

変 更 前	1 /示 1 /	備考									
		表4-26(1) 重量増	加を考慮した名	予施設の影響検	計結果 (水	密扉) (1/2)		記載の適正化			
	水 密 扉 No.	評価対象部位	発生値①*1 (応力度, 荷重) (N/mm², N)	割増係数②	①×②	許容 限界値* ¹ (N/mm ² , N)	備考				
		ヒンジ板*2	67	1.02	68	235	組合せ				
		ヒンジ部 ヒンジピン*2	173	1.02	176	345	組合せ				
		ヒンジボルト	46	1.02	47	420	せん断				
	1	カンヌキ*2	13	1.02	13	205	組合せ				
		カン ヌキ部 ランヌキ 受けピン*3	12	1.02	12	345	曲げ				
		受けボルト	5	1.02	5	728	引張				
		アンカーボルト*4	3497	1.02	3567	12824	せん断				
		ヒンジ板*2	106	1.03	109	215	組合せ				
		部 ピンシピン*2	48	1.03	49	686	組合せ				
		ピンジボルト カンヌキ*2	42 99	1. 03 1. 03	43 102	420 205	世ん断組合せ				
	9	カンヌキ カンヌキ 受けピン*3	123	1.03	102	345	曲げ				
		ヌキ部 タンヌキ 受けボルト	34	1.03	35	854	引張				
		アンカーボルト*4	12290	1.03	12659	40302	せん断				
		ヒンジ板*2	62	1. 03	64	215	組合せ				
	10		ヒンジ ヒンジピン*2	93	1.03	96	345	組合せ			
		部ピンジボルト	199	1.03	205	420	せん断				
		カンヌキ*2	143	1.03	147	345	組合せ				
		10	10	10	10	カン ヌキ部	75	1.03	77	345	曲げ
		受けボルト	_	_	_	_	_				
		アンカーボルト*4	46030	1.03	47411	92284	せん断				
	*	1:添付書類「VI-2-10-2-7 る。 2:曲げ,せん断及び組合せ 3:曲げ及びせん断のうち, 4:引張,せん断及び組合・	でのうち,評価約 評価結果が厳	吉果が最も厳し :しい方の値を	ンい値を記載 記載する。	する。	書」によ				
			別	紙-131							


変 更 前	1 /示 1 .	備考							
		3	表4-26(2) 重量	は増加を考慮した	た各施設の影響	検討結果(水	密扉) (2/2)		記載の適正化
	水 密 扉 No.	評	価対象部位	発生値①*1 (応力度, 荷重) (N/mm², N)	割増係数	①×②	許容 限界値* ¹ (N/mm ² , N)	備考	
		ヒンジ	ピンジ板*2	65	1.03	67	215	組合せ	
		部	ヒンジピン*2	64	1.03	66	686	組合せ	
		디디	ヒンジボルト	33	1.03	34	493	せん断	
			カンヌキ*2	29	1.03	30	205	組合せ	
	12	カン ヌキ部	, 受けピン*3	44	1. 03	45	345	曲げ	
	12	У (П	, カンヌキ 受けボルト	12	1.03	12	854	引張	
		パネ	ル取付ボルト	3	1.03	3	854	引張	
			方立	40	1.03	41	235	曲げ	
			マグサ	22	1. 03	23	235	曲げ	
		アン	カーボルト*4	6012	1.03	6192	25826	せん断	
			長,せん断及び組						
				,	別紙-132				


変 更 前	1 原子炉建屋の地震応答計算書】 変 更 後	備考
4.4 機器・配管系の耐震性への影響	4.4 機器・配管系の耐震性への影響	
原子炉建屋の設備の補強や追加等の改造工事に伴い重量が増加する影響を考慮した地震応答解析	原子炉建屋の設備の補強や追加等の改造工事に伴い重量が増加する影響を考慮した地震応答解析	
結果を踏まえ、原子炉建屋内に設置される機器・配管系*の耐震性への影響を検討する。	結果を踏まえ,原子炉建屋内に設置される機器・配管系*の耐震性への影響を検討する。	
注記*:添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容	注記*:添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容	
器及び原子炉本体の基礎の地震応答計算書」に示す大型機器系地震応答解析モデル(以	器及び原子炉本体の基礎の地震応答計算書」に示す大型機器系地震応答解析モデル(以	
下「大型機器系」という。)及び炉内構造物地震応答解析モデル(以下「炉内構造物	下「大型機器系」という。)及び炉内構造物地震応答解析モデル(以下「炉内構造物	
系」という。)の地震応答解析結果を用いる機器・配管系を含む。	系」という。)の地震応答解析結果を用いる機器・配管系を含む。	
4. 4. 1 影響検討方法	4.4.1 影響検討方法	
4.1項における地震応答解析結果を用いて算定した応答比率(補強反映モデル/今回工認モデ	4.1項における地震応答解析結果を用いて算定した応答比率(補強反映モデル/今回工認モデ	
ル) を考慮した耐震条件(以下「補強反映耐震条件」という。) を用いて,以下の手順により影響	ル) <u>(詳細は4.4.2項を参照。)</u> を考慮した耐震条件(以下「補強反映耐震条件」という。) <u>(詳細は</u>	記載の適正化
検討を行う。また、影響検討フローを図4-17に示す。	4.4.3項を参照。)を用いて、以下の手順により影響検討を行う。また、影響検討フローを図4-17	
	に示す。	
(1) 簡易評価	(1) 簡易評価による検討対象設備の代表選定	記載の適正化
補強反映耐震条件(最大応答加速度,床応答曲線及び地震力)に対する耐震計算に用いる設計条件	検討対象設備に対する裕度(許容値/発生値)を整理の上、補強反映耐震条件(最大応答加速度、	
との比率(条件比率)と設備の裕度(許容値/発生値)の比較により、条件比率が設備の裕度以下	床応答曲線及び地震力) に対する耐震計算に用いる設計条件の比率 (以下「条件比率」という。)	
となることを確認する。	と設備の裕度(許容値/発生値)の比較(以下「簡易評価」という。)を行い、簡易評価により条	
	件比率が設備の裕度を上回る設備を検討対象設備の代表として選定する。	
(2) 詳細評価	(2) 詳細評価	
<u>簡易評価で条件比率が設備の裕度を上回った</u> 設備について、補強反映耐震条件を用いて、当該設備	<u>検討対象設備の代表として選定した</u> 設備について、補強反映耐震条件を用いて、当該設備の耐震計	記載の適正化
の耐震計算書で適用している評価手法と同等の手法による評価を行い,発生値が許容値以下となる	算書で適用している評価手法と同等の手法による評価を行い,発生値が許容値以下となることを確	
ことを確認する。	認する。	
(3) 追加検討	(3) 追加検討	
詳細評価で発生値が許容値を上回った設備について、評価条件等の精緻化を行い、発生値が許容値	詳細評価で発生値が許容値を上回った設備について、設備の評価結果等に応じて個別に評価の精緻	記載の適正化
以下となることを確認する。	<u>化、設備対策等を行う。</u>	
DIÉT 100	Ellétt 100	
別紙-122	別紙-133	

変 更 前	アナル 産産の 地展 心合 計算者 と 変 更 後	備考
4. 4. 2 応答比率	4.4.2 応答比率の算定方法	記載の適正化
最大応答加速度の応答比率を表4-2 <u>1</u> , 今回工認モデルと補強反映モデルの床応答曲線を図4-18	応答比率は,最大応答加速度,床応答曲線及び地震力に対して以下のとおり算定する。	
(水平方向)及び図4-19(鉛直方向),床応答曲線の応答比率を図4-20(水平方向)及び図4-21		
(鉛直方向)並びに地震力の応答比率を表4-2 <u>2</u> に示す。なお、床応答曲線の減衰定数は、耐震裕		
度の比較的小さい配管系の主要な減衰定数である2.0%を代表として、設備評価に用いた標高の床応		
答曲線を記載している。		
(1) 最大応答加速度の応答比率	(1) 最大応答加速度の応答比率	
各標高について, 基準地震動Ss-D2による今回工認モデル(基本ケース)と補強反映モデル	各標高について, 基準地震動Ss-D2による今回工認モデル(基本ケース)と補強反映モデルの	
(基本ケース) の最大応答加速度を比較し、補強反映モデルの最大応答加速度/今回工認モデルの	最大応答加速度を比較し、補強反映モデルの最大応答加速度/今回工認モデル <u>(基本ケース)</u> の最	記載の適正化
最大応答加速度により応答比率を算定する。なお、水平方向の最大応答加速度の応答比率算定にあ	大応答加速度により応答比率を算定する。なお、水平方向の最大応答加速度の応答比率算定にあた	記載の適正化
たっては,NS方向とEW方向の包絡値(以下,「NS/EW包絡」という。)を用いる。	っては、NS方向とEW方向の包絡値(以下、「NS/EW包絡」という。)を用いる。	
(2) 床応答曲線の応答比率	(2) 床応答曲線の応答比率	
今回工認モデルと補強反映モデルにおける基準地震動Ss-D2による床応答曲線を比較し、各標	今回工認モデル <u>(基本ケース)</u> と補強反映モデルにおける基準地震動Ss-D2による床応答曲線	記載の適正化
高・各減衰について、補強反映モデルの震度/今回工認モデルの震度により周期毎の応答比率を算	を比較し、各標高・各減衰について、補強反映モデルの震度/今回工認モデル <u>(基本ケース)</u> の震	記載の適正化
定する。なお,水平方向の床応答曲線の応答比率算定にあたっては,「NS/EW包絡」を用いる。	度により周期毎の応答比率を算定する。なお、水平方向の床応答曲線の応答比率算定にあたって	
	は,「NS/EW包絡」を用いる。	
(3) 地震力の応答比率	(3) 地震力の応答比率	
建屋-機器連成地震応答解析モデルの各標高・要素について、今回工認モデルと補強反映モデルに	建屋-機器連成地震応答解析モデルの各標高・要素について、今回工認モデル <u>(基本ケース)</u> と補	記載の適正化
おける基準地震動 $Ss-D2$ による地震力(せん断力、モーメント、軸力等)を比較し、補強反映	強反映モデルにおける基準地震動 $Ss-D2$ による地震力(せん断力、モーメント、軸力等)を比	
モデルの地震力/今回工認モデルの地震力により応答比率を算定する。なお、水平方向の応答比率	較し、補強反映モデルの地震力/今回工認モデル <u>(基本ケース)</u> の地震力により応答比率を算定す	記載の適正化
算定にあたっては,「NS/EW包絡」を用いる。	る。なお,水平方向の応答比率算定にあたっては,「NS/EW包絡」を用いる。	
別紙-124	別紙-135	

変 更 前	1 原子炉建屋の地震応答計算書】 変 更 後	備考
4.4.3 補強反映耐震条件	4.4.3 補強反映耐震条件の作成方法	記載の適正化
補強反映耐震条件の作成フローを図4-22 に示す。また、補強反映耐震条件のうち、補強反映最	補強反映耐震条件は、設計用の地震応答(最大応答加速度、床応答曲線及び地震力)の基本ケー	
大応答加速度を表4-23、補強反映床応答曲線を図4-23(水平方向)及び図4-24(鉛直方向)並	ス及び不確かさケースに応答比率を乗じ、最大応答加速度、床応答曲線及び地震力に対して以下の	
びに補強反映地震力を表4-24 に示す。なお,床応答曲線の減衰定数は,耐震裕度の比較的小さい	とおり作成する。また,最大応答加速度,床応答曲線及び地震力に対する補強反映耐震条件の作成	
配管系の主要な減衰定数である2.0%を代表として、設備評価に用いた標高の床応答曲線を記載して	フローを図4-18に示す。_	
いる。また,同図表には添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に示される設計用最		
大応答加速度及び設計用床応答曲線並びに添付書類「VI-2-3-2 炉心, 原子炉圧力容器及び原子炉		
内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示される設計用地震		
力を併記して示す。ここで、補強反映耐震条件は以下のとおり算定する。		
(1) 補強反映最大応答加速度	(1) 補強反映最大応答加速度	
添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に示される設計用最大応答加速度に応答比率	添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に示される設計用最大応答加速度に応答比率	
を乗じて <u>算定</u> する。	を乗じて <u>作成</u> する。	記載の適正化
(2) 補強反映床応答曲線	(2) 補強反映床応答曲線	
添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に示される設計用床応答曲線の作成に用いる	添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に示される設計用床応答曲線の作成に用いる	
基本ケース及び材料物性の不確かさ等を考慮した解析ケースの床応答曲線にそれぞれ応答比率を乗	基本ケース及び材料物性の不確かさ等を考慮した解析ケースの床応答曲線にそれぞれ応答比率を乗	
じた上で、設計用床応答曲線と同様の方法で作成する。	じた上で、設計用床応答曲線と同様の方法で作成する。	
(3) 補強反映地震力	(3) 補強反映地震力	
添付書類「VI-2-3-2 炉心, 原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子	添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子	
炉本体の基礎の地震応答計算書」に示される設計用地震力に応答比率を乗じて <u>算定</u> する。	炉本体の基礎の地震応答計算書」に示される設計用地震力に応答比率を乗じて <u>作成</u> する。	記載の適正化
別紙-160	別紙-136	

変 更 前	変 更 後	備考
	4.4.4 応答比率の算定結果	記載の適正化
	最大応答加速度の応答比率を表4-27, 今回工認モデル(基本ケース)と補強反映モデルの床応	
	答曲線を図4-19(水平方向)及び図4-20(鉛直方向),床応答曲線の応答比率を図4-21(水平方	
	向)及び図4-22(鉛直方向)並びに地震力の応答比率を表4-28に示す。なお,床応答曲線の減衰	
	定数は、耐震裕度の比較的小さい配管系の主要な減衰定数である2.0%を代表として、設備評価に用	
	いた標高の床応答曲線を記載している。	
	別紙-139	

	変]	更前		変 更 後				
	表4-2 <u>1</u> 最大応答加速	速度の応答比率(1/14)	表4-2 <u>7</u> 最大応答加速度の応答比率 (1/14)					
(基準地震動 S s - D 2, 1.0ZPA, 水平方向(NS/EW包絡):原子炉建屋)				(基準地)	震動Ss-D2, 1.0ZPA,	水平方向(NS/EW包絡):原	子炉建屋)	
最大応答加速度 標高 (×9.80665 m/s²) ×1.0			応答比率	標高		答加速度 5 m/s²) ×1.0	応答比率	
0. P. (m)	①今回工認モデル	②補強反映モデル	(2/1)	O. P. (m)	①今回工認モデル	②補強反映モデル	(2/1)	
50. 500	4.71	4. 37	0. 93	50. 500	4. 71	4. 37	0.93	
41. 200	2. 56	2. 48	0. 97	41. 200	2. 56	2. 48	0.97	
33. 200	2.03	1. 98	0. 98	33. 200	2. 03	1. 98	0.98	
22.500	1.74	1.76	1.02	22. 500	1.74	1.76	1.02	
15. 000	1. 39	1.35	0. 98	15. 000	1.39	1. 35	0.98	
6.000	1. 30	1. 28	0. 99	6. 000	1.30	1. 28	0.99	
-0.800	0.99	1.00	1. 02	-0.800	0. 99	1.00	1.02	
-8. 100	0.66 表4-2 <u>1</u> 最大応答加速		0.99	-8. 100	0.66 表4-2 <u>7</u> 最大応答加速		0.99	記載の適正化
	表4-2 <u>1</u> 最大応答加返 基準地震動Ss-D2,1.(速度の応答比率(2/14))ZPA, 鉛直方向:原子炉建)			表4-2 <u>7</u> 最大応答加速 基準地震動Ss-D2,1.(速度の応答比率(2/14) DZPA, 鉛直方向:原子炉建		記載の適正化
	表4-2 <u>1</u> 最大応答加速 基準地震動Ss-D2,1.(最大応名	恵度の応答比率(2/14) DZPA, 鉛直方向:原子炉建) 答加速度			表4-2 <u>7</u> 最大応答加速 基準地震動Ss-D2,1.0 最大応名	速度の応答比率(2/14) DZPA, 鉛直方向:原子炉建 ទ加速度		記載の適正化
(2	表4-2 <u>1</u> 最大応答加達 基準地震動Ss-D2,1.6 最大応 ² (×9.80665	速度の応答比率(2/14))ZPA, 鉛直方向:原子炉建) 芩加速度 m/s²)×1.0	屋)	(1/2)	表4-2 <u>7</u> 最大応答加速 基準地震動 S s - D 2, 1.(最大応名 (×9.80665	速度の応答比率(2/14))ZPA, 鉛直方向:原子炉建 ^{客加速度} m/s²)×1.0	屋)	記載の適正化
標高 0. P. (m)	表4-2 <u>1</u> 最大応答加速 基準地震動Ss-D2,1.(最大応 ² (×9.80665 ①今回工認モデル	態度の応答比率 (2/14) DZPA, 鉛直方向:原子炉建) SP加速度 m/s²) ×1.0 ②補強反映モデル	屋) 応答比率 (②/①)	標高 0. P. (m)	表4-2 <u>7</u> 最大応答加速 基準地震動 S s - D 2 , 1.0 最大応名 (×9.80665 ①今回工認モデル	速度の応答比率 (2/14) DZPA, 鉛直方向:原子炉建 S加速度 m/s²) ×1.0 ②補強反映モデル	屋) 応答比率 (②/①)	記載の適正化
標高 0. P. (m) 48. 725	表4-2 <u>1</u> 最大応答加達 基準地震動Ss-D2,1.(最大応な (×9.80665 ①今回工認モデル 1.58	態度の応答比率(2/14) DZPA, 鉛直方向:原子炉建 啓加速度 m/s²)×1.0 ②補強反映モデル 1.61	屋) 応答比率 (②/①) 1.02	標高 0. P. (m) 48. 725	表4-2 <u>7</u> 最大応答加達 基準地震動 S s - D 2, 1.(最大応名 (×9.80665 ①今回工認モデル 1.58	速度の応答比率(2/14) DZPA, 鉛直方向:原子炉建 SM速度 m/s²) ×1.0 ②補強反映モデル 1.61	応答比率 (②/①) 1.02	記載の適正化
標高 0. P. (m) 48. 725 41. 200	表4-2 <u>1</u> 最大応答加速 基準地震動Ss-D2,1.(最大応 ² (×9.80665 ①今回工認モデル 1.58 1.46	速度の応答比率 (2/14) DZPA, 鉛直方向:原子炉建) SP加速度 m/s²) ×1.0 ②補強反映モデル 1.61 1.46	屋) 応答比率 (②/①) 1.02 1.00	標高 0. P. (m) 48. 725 41. 200	表4-2 <u>7</u> 最大応答加速 基準地震動 S s - D 2 , 1.0 最大応名 (×9.80665 ①今回工認モデル 1.58 1.46	速度の応答比率 (2/14) DZPA, 鉛直方向:原子炉建 SP加速度 m/s²) ×1.0 ②補強反映モデル 1.61 1.46	応答比率 (②/①) 1.02 1.00	記載の適正化
標高 0. P. (m) 48. 725 41. 200 33. 200	表4-2 <u>1</u> 最大応答加速 基準地震動 S s - D 2 , 1.0 最大応名 (×9.80665 ①今回工認モデル 1.58 1.46 1.38	速度の応答比率 (2/14) DZPA, 鉛直方向:原子炉建) SP加速度 m/s²) ×1.0 ②補強反映モデル 1.61 1.46 1.40	屋) 応答比率 (②/①) 1.02 1.00 1.02	標高 0. P. (m) 48. 725 41. 200 33. 200	表4-2 <u>7</u> 最大応答加速 基準地震動 S s - D 2, 1.0 最大応名 (×9.80665 ①今回工認モデル 1.58 1.46 1.38	速度の応答比率 (2/14) DZPA, 鉛直方向:原子炉建 Mink M	応答比率 (②/①) 1.02 1.00 1.02	記載の適正化
標高 0. P. (m) 48. 725 41. 200 33. 200 22. 500	表4-2 <u>1</u> 最大応答加達 基準地震動 S s - D 2 , 1.(最大応 ² (×9.80665 ①今回工認モデル 1.58 1.46 1.38 1.22	速度の応答比率(2/14))ZPA,鉛直方向:原子炉建)	屋) 応答比率 (②/①) 1.02 1.00 1.02 1.01	標高 0. P. (m) 48. 725 41. 200 33. 200 22. 500	表4-2 <u>7</u> 最大応答加速 基準地震動 S s - D 2, 1.(最大応名 (×9.80665 ①今回工認モデル 1.58 1.46 1.38 1.22	速度の応答比率 (2/14) DZPA, 鉛直方向:原子炉建 SP加速度 m/s²) ×1.0 ②補強反映モデル 1.61 1.46 1.40 1.23	応答比率 (②/①) 1.02 1.00 1.02 1.01	記載の適正化
標高 0. P. (m) 48. 725 41. 200 33. 200 22. 500 15. 000	表4-2 <u>1</u> 最大応答加速 基準地震動 S s - D 2 , 1.(最大応 ² (×9.80665 ①今回工認モデル 1.58 1.46 1.38 1.22 0.99	速度の応答比率 (2/14) OZPA, 鉛直方向:原子炉建 Mos ²) ×1.0 ②補強反映モデル 1.61 1.46 1.40 1.23 1.00	屋) 応答比率 (②/①) 1.02 1.00 1.02 1.01 1.02	標高 0. P. (m) 48. 725 41. 200 33. 200 22. 500 15. 000	表4-27 最大応答加速 基準地震動 S s - D 2 , 1.(最大応名 (×9.80665 ①今回工認モデル 1.58 1.46 1.38 1.22 0.99	速度の応答比率 (2/14) DZPA, 鉛直方向:原子炉建 Mrs²) ×1.0 ②補強反映モデル 1.61 1.46 1.40 1.23 1.00	応答比率 (②/①) 1.02 1.00 1.02 1.01 1.02	記載の適正化
標高 0. P. (m) 48. 725 41. 200 33. 200 22. 500 15. 000 6. 000	表4-2 <u>1</u> 最大応答加達 基準地震動Ss-D2,1.(最大応 (×9.80665 ①今回工認モデル 1.58 1.46 1.38 1.22 0.99 0.75	速度の応答比率 (2/14) DZPA, 鉛直方向:原子炉建 SP加速度 m/s²) ×1.0 ②補強反映モデル 1.61 1.46 1.40 1.23 1.00 0.75	屋) 応答比率 (②/①) 1.02 1.00 1.02 1.01 1.02 1.00	標高 0. P. (m) 48. 725 41. 200 33. 200 22. 500 15. 000 6. 000	表4-27 最大応答加速 基準地震動 S s - D 2, 1.6 最大応名 (×9.80665 ①今回工認モデル 1.58 1.46 1.38 1.22 0.99 0.75	速度の応答比率 (2/14) DZPA, 鉛直方向:原子炉建 SP加速度 m/s²) ×1.0 ②補強反映モデル 1.61 1.46 1.40 1.23 1.00 0.75	応答比率 (②/①) 1.02 1.00 1.02 1.01 1.02 1.00	記載の適正化
標高 0. P. (m) 48. 725 41. 200 33. 200 22. 500 15. 000	表4-2 <u>1</u> 最大応答加速 基準地震動 S s - D 2 , 1.(最大応 ² (×9.80665 ①今回工認モデル 1.58 1.46 1.38 1.22 0.99	速度の応答比率 (2/14) OZPA, 鉛直方向:原子炉建 Mos ²) ×1.0 ②補強反映モデル 1.61 1.46 1.40 1.23 1.00	屋) 応答比率 (②/①) 1.02 1.00 1.02 1.01 1.02	標高 0. P. (m) 48. 725 41. 200 33. 200 22. 500 15. 000	表4-27 最大応答加速 基準地震動 S s - D 2 , 1.(最大応名 (×9.80665 ①今回工認モデル 1.58 1.46 1.38 1.22 0.99	速度の応答比率 (2/14) DZPA, 鉛直方向:原子炉建 Mrs²) ×1.0 ②補強反映モデル 1.61 1.46 1.40 1.23 1.00	応答比率 (②/①) 1.02 1.00 1.02 1.01 1.02	記載の適正化

1. 22PA、水平方向(NS/FFQ協計):原子好建屋)	備		変 更 前 変 更 後								
次名 次名 次名 次名 次名 次名 次名 次名	記載の適う	〔子炉建屋)		-	(基準地震	(子炉建屋)	表4-2 <u>1</u> 最大応答加速度の応答比率 (3/14) (基準地震動 S s - D 2, 1.2ZPA, 水平方向 (NS/EW包絡):原子炉建屋)				
(大応答加速度の応答比率 (4/14) - D 2 、1. 1 22PA、鉛直方向:原子炉建屋) 最大応答加速度 ※9、9.0065 m/s³) × 1. 2 2. 27 (2/①) - 1. 94		応答比率	答加速度	最大応答 (×9.80665	標高		最大応答加速度 高 (×9.80665 m/s²) ×1.2		標高 最大		
1 2.98 0.98 0.98 1 41.200 3.07 2.98 0.98 1 33.200 2.44 2.38 0.98 1 33.200 2.44 2.38 0.98 1 1.01 1.01 1.01 1.01 1.02 1.02 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.19 1.20 1.01 1.01 1.00 1.00 1.00 1.00 1.00	_		②補強反映モデル	①今回工認モデル			②補強反映モデル	①今回工認モデル			
1		0. 93	5. 24	5. 66	50. 500	0. 93	5. 24	5. 66	50. 500		
ウ 2.11 1.01 7 1.62 0.98 5 1.54 1.00 3 1.19 1.01 9 0.78 0.99 大応答加速度の応答比率(4/14) -0.800 1.18 1.19 1.01 -0.78 0.99 大応答加速度 応答比率(2/4) (2/4) (2/4) (基準地震動S s - D 2, 1.2ZPA, 鉛直方向:原子炉建屋) 最大応答加速度 (2/4) (2/4) (2/4) (2/4) (2年デル (2)(1) (3/4) (3/4) (3/4) (3/4) (3/4) (3 1.75 1.00 1.75 1.75 1.00 48.725 1.90 1.94 1.03 41.200 1.75 1.75 1.00 33.200 1.66 1.68 1.02 31.200 1.46 1.47 1.01 31.000 1.90 1.90 1.91 31.200 1.16 1.20 1.01 31.000 1.90 0.90 1.00		0. 98	2. 98	3. 07	41. 200	0. 98	2. 98	3. 07	41. 200		
15.000 1.67 1.62 0.98 15.000 1.57 1.62 0.98 15.000 1.55 1.54 1.00 1.18 1.19 1.01 1.01 -0.800 1.18 1.19 1.01 1.02 0.78 0.99 大応答加速度の応答比率 (4/14) ・D 2, 1.2ZPA, 鉛直方向:原子炉建屋) 最大応答加速度 ×9.80665 m/s²) ×1.2 (②/①) 2・サージー 2・東子ル ②補強反映モデル 2・神強反映モデル 2・神強反映モデル 3・1.94 1.03 1.94 1.03 1.95 1.75 1.00 1.68 1.02 1.68 1.02 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10		0. 98	2. 38	2.44	33. 200	0. 98	2. 38	2. 44	33. 200		
1.54		1.01	2. 11	2. 09	22. 500	1.01	2. 11	2. 09	22. 500		
1.19		0. 98	1. 62	1. 67	15. 000	0. 98	1. 62	1. 67	15.000		
-8.100		1.00	1.54	1.55	6.000	1.00	1. 54	1. 55	6.000		
表4-27 最大応答加速度の応答比率 (4/14) (基準地震動S s - D 2 , 1.2ZPA, 鉛直方向:原子炉建屋) 最大応答加速度 ※9.80665 m/s²) ×1.2 (②/①) 3モデル ②補強反映モデル 0 1.94 1.03 5 1.75 1.00 6 1.68 1.02 6 1.47 1.01 9 1.20 1.01 0 0.90 1.00 0 0.90 1.00		1.01	1. 19	1. 18	-0.800	1.01	1. 19	1. 18	-0.800		
大応各加速度の応各比率 (4/14)		0. 99	0.78	0.79	-8. 100	0. 99	0.78	0. 79	-8.100		
記士デル ②補強反映モデル 0 1.94 1.75 1.00 3.200 1.75 1.68 1.02 3.200 1.66 1.47 1.01 1.20 1.01 1.5000 1.19 1.20 1.01 1.00 1.19 1.20 1.01 1.00 0.90 0.90 0.90 1.00		応答比率	 ទ 加速度	最大応答	標高	応答比率	答加速度	最大応答	標高		
5 1.75 1.00 6 1.68 1.02 6 1.47 1.01 9 1.20 1.01 15.000 1.19 1.20 1.01 1.01 15.000 1.19 1.20 1.01 1.01 6.000 0.90 0.90		((2)/(1))	②補強反映モデル	①今回工認モデル	O. P. (m)	((2)/(1))	②補強反映モデル	①今回工認モデル	0. P. (m)		
33.200 1.66 1.68 1.02 1.47 1.01 22.500 1.46 1.47 1.01 1.20 1.01 15.000 1.19 1.20 1.01 0 0.90 1.00 0.90 0.90 1.00		1.03	1.94	1.90	48. 725	1.03	1. 94	1. 90	48. 725		
5 1. 47 1. 01 22. 500 1. 46 1. 47 1. 01 9 1. 20 1. 01 15. 000 1. 19 1. 20 1. 01 0 0. 90 1. 00 0. 90 0. 90 1. 00		1. 00	1. 75	1. 75	41. 200	1.00	1. 75	1. 75	41.200		
1. 20 1. 01 15. 000 1. 19 1. 20 1. 01 0 0. 90 1. 00 6. 000 0. 90 0. 90 1. 00		1. 02	1. 68	1. 66	33. 200	1. 02	1. 68	1.66	33. 200		
0.90 1.00 6.000 0.90 0.90 1.00		1. 01	1. 47	1.46	22. 500	1.01	1. 47	1. 46	22. 500		
		1. 01	1. 20	1. 19	15. 000	1. 01	1. 20	1. 19	15.000		
4 0.73 0.99 -0.800 0.74 0.73 0.99		1.00	0.90	0. 90	6. 000	1.00	0.90	0.90	6.000		
		0. 99	0.73	0. 74		0.99	0.73	0.74	-0.800		
0.66 1.00 -8.100 0.66 0.66 1.00				01.12	-0.800	0.00			-8. 100		
		1.01	1. 47	1.46	22. 500	1.01	1. 47	1. 46	22. 500		
		0. 99		U. 14		() 99	0.73	0.74			

_		20
721	BB	丽

表4-21 最大応答加速度の応答比率 (5/14)

(基準地震動 S s - D 2, 1.0ZPA, 水平方向: 大型機器系)

(25)	一一人人人人人人人		1 23 11 1 2 7 1 1 2 1 1 2 1 1	1717
		最大応答		
構造物	標高		m/s ²) ×1.0	応答比率
mæ10	0. P. (m)	①今回工認	②補強反映	(2/1)
		モデル	モデル	
		0.89	0.89	1.00
医フレナルの		0.95	0.95	1.00
原子炉本体の 基礎		0. 99	1.00	1.02
21,00		1. 02	1.03	1.01
		1. 02	1.04	1.02
原子炉		1. 08	1.08	1.00
圧力容器		3. 23	3.00	0.93
		1. 24	1. 30	1.05
臣 フ 唇		1. 42	1. 49	1.05
原子炉 しゃへい壁		1.49	1. 56	1.05
0 (, ±		1.58	1.54	0. 98
		1.70	1.63	0.96
		0.90	0.91	1.02
		0.88	0.89	1.02
医乙层		0.84	0.87	1. 04
原子炉 格納容器		1.10	1.06	0. 97
THIN 17 THE		1. 26	1. 22	0. 97
		1.51	1.52	1. 01
		1.73	1. 75	1.02

注:設備評価に用いる質点に対する応答比率を記載。

枠囲みの内容は商業機密の観点から公開できません。

別紙-127

変更後

表4-2<u>7</u> 最大応答加速度の応答比率(5/14)

備考

記載の適正化

記載の適正化

(基準地震動Ss-D2, 1.0ZPA, 水平方向:大型機器系)

	1 m²		答加速度	
構造物	標高 O.P.(m)		m/s²) ×1.0	応答比率
	U. P. (m)	①今回工認モデル	②補強反映 モデル	(2/1)
		0.89	0.89	1.00
		0.95	0. 95	1.00
原子炉本体の 基礎		0. 99	1.00	1.02
25 1/16		1.02	1.03	1.01
		1.02	1.04	1.02
原子炉		1.08	1.08	1.00
圧力容器		3. 23	3. 00	0. 93
		1. 24	1. 30	1.05
医乙烷		1.42	1. 49	1.05
原子炉 しゃへい壁		1.49	1. 56	1.05
0 (, ±		1.58	1. 54	0. 98
		1.70	1.63	0.96
		0.90	0. 91	1.02
		0.88	0.89	1.02
医乙烷		0.84	0.87	1.04
原子炉 格納容器		1. 10	1.06	0. 97
LITH WAI 15 CHILDER		1. 26	1. 22	0. 97
		1.51	1. 52	1.01
		1. 73	1. 75	1.02

注:設備評価に用いる質点 (標高) に対する応答比率を記載。

枠囲みの内容は商業機密の観点から公開できません。

別紙-142

_		
721	BB	- 1
200	- T	BI

表4-21 最大応答加速度の応答比率 (6/14)

(基準地震動 S s - D 2, 1.0ZPA, 水平方向: 炉内構造物系)

	42000000000000000000000000000000000000		27 PJ - W L 1 HAZE.	1/2 / 1 ()
	1 m		答加速度 ())))) () () () () () () ()	-l-a ferfer -l-a
構造物	標高	· ·	m/s ²) ×1.0	応答比率
	0. P. (m)	①今回工認	②補強反映	(2/1)
		モデル	モデル	
気水分離器		7. 73	7. 03	0.91
及びスタン		3. 71	3.00	0.81
ドパイプ		2. 31	2. 19	0. 95
		2. 07	2.01	0. 98
		1. 93	1.89	0. 98
		1.83	1.79	0. 98
		1.71	1.69	0. 99
		1. 58	1.58	1.00
炉心		1. 45	1.50	1.04
シュラウド		1.40	1.44	1.03
		1. 37	1.42	1.04
		1. 33	1.38	1.04
		1. 22	1. 27	1.05
		1. 12	1. 14	1.02
		1.55	1.38	0. 90
制御棒		1.81	2. 98	1.65
案内管		2. 35	3.84	1.64
		2. 15	1.91	0.89
		1. 98	1.91	0. 97
Col Man Laborator of L		1. 12	1. 19	1.07
制御棒駆動		1. 48	1.56	1.06
機構 ハウジング		2. 30	2. 22	0. 97
ハソンノク		2. 90	2.05	0.71
		1. 55	1. 27	0.82
		1. 83	1.79	0. 98
		2. 68	2. 97	1. 11
		3. 60	4. 03	1. 12
然料集合体		4. 02	4. 32	1. 08
		3. 74	3. 93	1.06
		2. 75	2. 91	1.06
		1. 33	1.38	1.04

注:設備評価に用いる質点に対する応答比率を記載。

枠囲みの内容は商業機密の観点から公開できません。

別紙-127

変	重	徭	

表4-27 最大応答加速度の応答比率(6/14)

(基準地震動Ss-D2, 1.0ZPA, 水平方向:炉内構造物系)

		最大応答	ទ加速度	
構造物	標高	$(\times 9.80665)$	応答比率	
1400	0. P. (m)	①今回工認	②補強反映	(2/1)
		モデル	モデル	
		7. 73	7.03	0. 91
		3. 71	3.00	0.81
		2. 31	2. 19	0. 95
		2. 07	2.01	0. 98
		1. 93	1.89	0. 98
		1.83	1. 79	0. 98
炉心		1.71	1.69	0. 99
シュラウド		1. 58	1.58	1.00
		1. 45	1.50	1. 04
		1.40	1. 44	1. 03
		1. 37	1.42	1.04
		1. 33	1. 38	1. 04
		1. 22	1. 27	1. 05
		1. 12	1. 14	1. 02
		1.55	1.38	0.90
制御棒		1.81	2. 98	1. 65
案内管		2. 35	3.84	1.64
		2. 15	1. 91	0.89
		1. 98	1. 91	0. 97
制御棒駆動		1. 12	1. 19	1. 07
刑御悴恥期 機構		1.48	1.56	1.06
ハウジング		2.30	2. 22	0. 97
,,,,,,,		2. 90	2.05	0.71
		1. 55	1. 27	0.82
		1.83	1. 79	0. 98
		2. 68	2. 97	1. 11
		3.60	4.03	1.12
燃料集合体		4. 02	4. 32	1.08
		3. 74	3. 93	1.06
		2. 75	2. 91	1.06
		1. 33	1.38	1.04

枠囲みの内容は商業機密の観点から公開できません。

別紙-143

備考

記載の適正化

記載の適正化

記載の適正化

	変更前			変 更 後					備
表4-2 <u>1</u> 最大応答加速度の応答比率 (7/14) 表4-2 <u>7</u> 最大応答加速度の応答比率 (7/14) (基準地震動Ss-D2, 1.2ZPA, 水平方向:大型機器系) (基準地震動Ss-D2, 1.2ZPA, 水平方向:大型機器系)							記載の適正化		
(基準地震動 S	s - D 2 , 1. 2ZPA,水 具十六	: 平方向: 大型機器 答加速度	()	基	準地震動S s −		平方向:大型機制 答加速度	3	
標高		台加速度 5 m/s ²) ×1.2	応答比率		標高		台加速度 m/s²) ×1.2	応答比率	
構造物	①今回工認 モデル	②補強反映モデル	(2/1)	構造物	0. P. (m)	①今回工認 モデル	②補強反映モデル	(2/1)	
	1. 07	1. 07	1.00			1. 07	1. 07	1. 00	
E 7 IC L L	1. 13	1. 14	1.01	医乙烷七件		1. 13	1. 14	1.01	
原子炉本体 の基礎	1. 19	1.20	1.01	原子炉本体の基礎		1. 19	1.20	1.01	
V / 25 PC	1. 22	1.23	1.01	V) 25 HE		1.22	1. 23	1.01	
	1. 23	1.24	1.01			1. 23	1. 24	1. 01	
原子炉	1. 29	1.30	1.01	原子炉		1. 29	1.30	1. 01	
圧力容器	3. 88	3.60	0. 93	圧力容器		3.88	3.60	0. 93	
	1. 48	1.56	1.06			1.48	1.56	1.06	
F 7 F	1.70	1. 79	1.06	F 7 F		1. 70	1. 79	1. 06	
原子炉 しゃへい壁	1.79	1.87	1.05	原子炉 しゃへい壁		1. 79	1. 87	1. 05	
した。(V.重	1.90	1. 84	0. 97			1. 90	1. 84	0. 97	
	2.04	1. 95	0.96			2.04	1. 95	0.96	
	1.08	1. 09	1.01			1. 08	1. 09	1. 01	
	1.06	1.06	1.00			1.06	1.06	1.00	
	1.01	1.05	1.04			1. 01	1.05	1. 04	
原子炉 格納容器	1. 32	1. 27	0. 97	原子炉格納容器		1. 32	1. 27	0. 97	
1.12.14.1.41.41.41.41.41.41.41.41.41.41.41.4	1.51	1.46	0. 97	7日7477日4日		1. 51	1. 46	0. 97	
	1.81	1.82	1.01			1. 81	1.82	1. 01	
	2. 08	2. 09	1.01			2. 08	2. 09	1. 01	
: 設備評価に用いる質点に	対する応答比率を記載	 		注:設備評価に月	引いる質点 <u>(標</u> 語	高) に対する応答比	- 上率を記載。		記載の適正化
									µ□-₹X, ∨ / 从型-11[1
枠囲みの内:		みの内容は商業機密の	見点から公開できません。			枠囲み	ょの内容は商業機密の	見点から公開できません。	
				_					_
	別紙-129					別紙-144			

		変更前					変更後			備:
	表4-21 最大応答加速度の応答比率 (8/14) 表4-27 最大応答加速度の応答比率 (8/14)					表4-2 <u>7</u> 最大応答加速度の応答比率 (8/14)				記載の適正化
(基	準地震動 S s - D		P方向:炉内構造物	勿系)	(基	(基準地震動Ss-D2,1.2ZPA,水平方向:炉内構造物系)				
	177	最大応答加速度 (×9.80665 m/s²) ×1.2					答加速度			
構造物	標高			応答比率 (②/①)	構造物	標高		m/s ²) ×1.2	応答比率 (②/①)	
	0. P. (m) ①今回工認 ②補強反映 モデル モデル	(2)/ (1)		0. P. (m)	①今回工認 モデル	②補強反映 モデル	(2)/ (I)			
		9. 27	8. 44	0. 92			9. 27	8. 44	0. 92	
気水分離器		4. 45	3. 59	0.81			4. 45	3. 59	0.81	
<u>及びスタン</u> ドパイプ		2. 77	2. 62	0.95			2.77	2.62	0. 95	
<u> </u>		2. 49	2. 41	0. 97			2. 49	2. 41	0. 97	
		2. 31	2. 27	0.99			2. 31	2. 27	0. 99	
		2. 19	2. 15	0. 99			2. 19	2. 15	0. 99	記載の適正位
		2. 05	2. 03	1.00	炉心		2.05	2.03	1.00	
		1.90 1.89 1.00 シュラウド		1. 90	1.89	1.00				
炉心	1.74 1.80 1.04		1.74	1.80	1.04					
シュラウド		1. 68	1.73	1.03			1.68	1.73	1.03	
		1. 64	1.70	1.04			1.64	1.70	1.04	
		1.60	1.66	1.04			1.60	1.66	1.04	
		1.46	1.52	1.05			1.46	1.52	1.05	
		1. 35	1. 37	1.02			1. 35	1. 37	1.02	
		1.86	1.66	0.90			1.86	1.66	0.90	
制御棒		2. 17	3. 58	1.65	制御棒		2. 17	3. 58	1.65	
案内管		2. 82	4.61	1.64	案内管		2.82	4.61	1.64	
		2. 58	2. 29	0.89			2. 58	2. 29	0.89	
		2. 38	2. 29	0.97			2. 38	2. 29	0. 97	
that then had seem on a		1. 34	1. 43	1. 07	#H (An Hais 1917 25)		1. 34	1. 43	1.07	
制御棒駆動		1.78	1.87	1.06	制御棒駆動機構		1. 78	1.87	1.06	
機構 ハウジング		2.75	2.67	0. 98	ハウジング		2. 75	2. 67	0. 98	
· · · · · · · · · · · · · · · · · · ·		3. 48	2. 46	0.71			3. 48	2. 46	0.71	
		1.86	1.52	0.82			1.86	1. 52	0.82	
		2. 19	2. 15	0. 99			2. 19	2. 15	0. 99	
		3. 21	3. 56	1. 11			3. 21	3. 56	1. 11	
		4. 32	4.83	1. 12			4. 32	4. 83	1. 12	
燃料集合体		4. 82	5. 19	1. 08	燃料集合体		4.82	5. 19	1. 08	
		4. 48	4.72	1.06			4. 48	4. 72	1.06	
		3. 29	3. 49	1. 07			3. 29	3. 49	1. 07	
		1.60	1.66	1.04			1.60	1.66	1.04	

枠囲みの内容は商業機密の観点から公開できません。

別紙-130

別紙-145

	変 更 前			変 更 後					
	大応答加速度の応		1-5)	× ***		大応答加速度の応		11 -r\	記載の適正化
(基準地震動 S s	-D2, 1.2ZPA, 水		(糸)	(基準地震動 S s - D 2, 1.2ZPA, 水平方向:炉内構造物系) 最大応答加速度					
標高		最大応答加速度 (×9.80665 m/s²) ×1.2		I Head at	標高		東大心合加速度 (×9.80665 m/s²) ×1.2		
構造物 (Find O. P. (m)	①今回工認 ②補強反映 モデル モデル	応答比率 (②/①)	構造物	0. P. (m)	①今回工認 モデル	②補強反映 モデル	応答比率 (②/①)		
	4. 08	3. 82	0.94			4. 08	3. 82	0. 94	
	3. 36	3. 14	0. 94			3. 36	3. 14	0. 94	
	2. 85	2. 75	0. 97			2.85	2. 75	0. 97	
	2. 47	2. 43	0.99			2. 47	2. 43	0.99	
	2. 25	2. 23	1.00			2. 25	2. 23	1.00	
	2.02	2.02	1.00			2. 02	2.02	1.00	
	1. 93	1.91	0.99			1. 93	1.91	0.99	
	1.88	1.83	0.98			1.88	1.83	0.98	
原子炉	1.83	1.74	0.96	原子炉圧力容器		1.83	1.74	0.96	
圧力容器	1.78	1.68	0.95			1. 78	1.68	0.95	
	1.72	1.62	0.95			1.72	1.62	0.95	
	1.66	1.57	0.95			1.66	1. 57	0.95	
	1.60	1.51	0.95			1.60	1.51	0.95	
	1.53	1.44	0.95			1. 53	1. 44	0.95	
	1.42	1.40	0. 99			1.42	1.40	0.99	
	1.35	1. 37	1.02			1. 35	1. 37	1.02	
	1. 29	1.33	1.04			1. 29	1. 33	1.04	
	1.34	1.43	1.07			1. 34	1. 43	1. 07	
: 設備評価に用いる質点に対	する応答比率を記	餀。		注:設備評価に	用いる質点 <u>(標</u> 語	<u>高)</u> に対する応答は	比率を記載。		記載の適正化
	松田五	の内容は商業機密の観	点から公開できません。]		枠囲	みの内容は商業機密の	観点から公開できません。	
	14/2007	マンド 1七年4年四米1成仏・ア戦	жи-9Дm се д ело,	J					_

【VI-2-2-1 原子炉建屋の地震応答計算書】

変 更 前 表4-2<u>1</u> 最大応答加速度の応答比率(10/14)

(基準地震動Ss-D2, 1.0ZPA, 鉛直方向:大型機器系)

構造物	標高 0.P.(m)		答加速度 m/s²) ×1.0 ②補強反映 モデル	応答比率 (②/①)
		0. 57	0. 56	0.99
		0.61	0.61	1.00
原子炉本体 の基礎		0.68	0.68	1.00
07 左啶		0.74	0.74	1.00
		0.77	0.77	1.00
		0. 98	0. 98	1.00
原子炉 圧力容器		1.01	1.01	1.00
压 刀谷硷		1. 13	1. 15	1.02
		1.08	1.07	1.00
		1. 28	1. 28	1. 00
原子炉 しゃへい壁		1. 44	1. 44	1.00
しや、(**・**		1.53	1.53	1.00
		1.56	1.57	1. 01
		0.61	0.62	1. 02
		0.65	0.65	1.00
		0.72	0.72	1.00
原子炉		0.78	0.78	1.00
格納容器		0.83	0.82	0. 99
		0.88	0.89	1. 02
		0. 93	0. 93	1.00
		0.96	0. 94	0. 98

変 更 後 表4-2<u>7</u> 最大応答加速度の応答比率(10/14) (基準地震動 S s - D 2 , 1.02PA, 鉛直方向:大型機器系)

	標高		答加速度 m/s²) ×1.0	応答比率
構造物	伝向 0. P. (m)	①今回工認 モデル	11.0 ②補強反映 モデル	(②/①)
		0. 57	0. 56	0. 99
		0.61	0.61	1. 00
原子炉本体 の基礎		0.68	0.68	1.00
V) A IVE		0.74	0.74	1.00
		0.77	0. 77	1.00
		0.98	0. 98	1.00
原子炉 圧力容器		1.01	1.01	1.00
1二/5/11/11		1. 13	1. 15	1.02
		1.08	1.07	1.00
		1. 28	1. 28	1.00
原子炉 しゃへい壁		1. 44	1. 44	1.00
		1.53	1. 53	1.00
		1.56	1. 57	1.01
		0.61	0.62	1.02
		0.65	0.65	1.00
		0.72	0.72	1.00
原子炉		0.78	0. 78	1.00
格納容器		0.83	0.82	0. 99
		0.88	0.89	1. 02
		0.93	0. 93	1.00
		0.96	0. 94	0. 98
注:設備評価	に用いる質点(標	高) に対する応答	ド比率を記載。	

注:設備評価に用いる質点(標高)に対する応答比率を記載。

記載の適正化

備考

記載の適正化

枠囲みの内容は商業機密の観点から公開できません。

別紙-132

枠囲みの内容は商業機密の観点から公開できません。

別紙-147

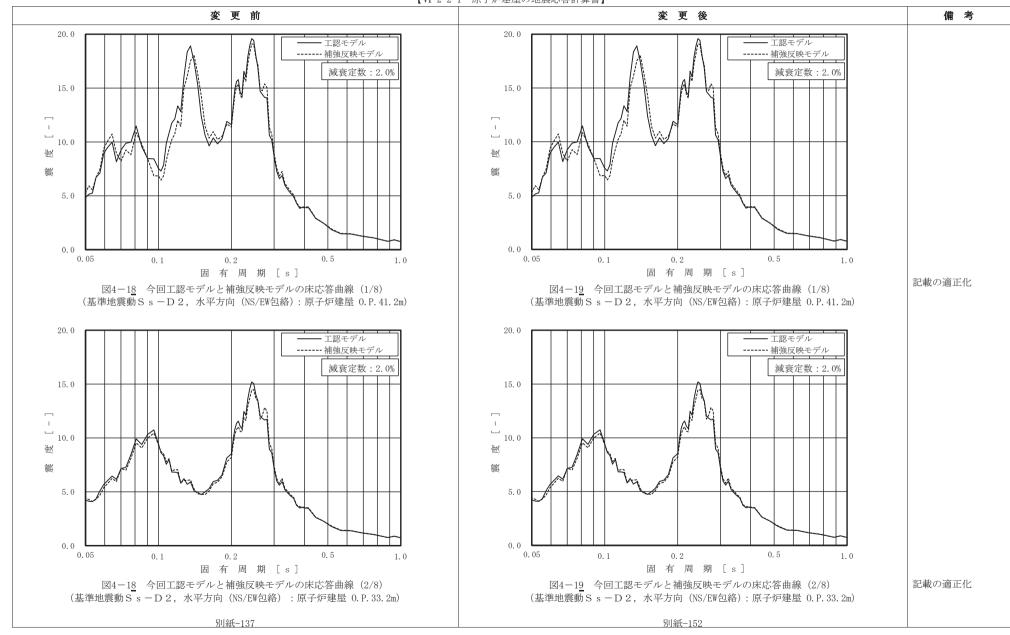
女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

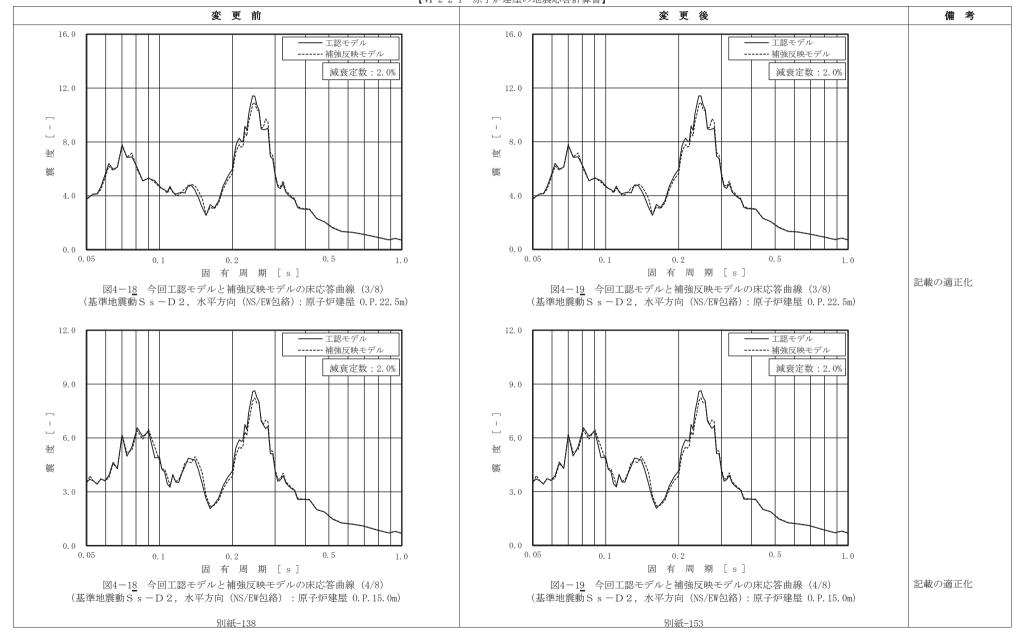
		変更前				変 更 後					
		応答加速度の応答		() T)		表4-27 最大応答加速度の応答比率(11/14)					
(基	準地震動Ss−D	2, 1.0ZPA, 鉛直 最大応答	1万向:炉内構造物 2000年度	勿糸)	基	(基準地震動 S s - D 2 , 1.0ZPA, 鉛直方向: 炉内構造物系) 最大応答加速度					
I Market 11	標高		予加速度 m/s ²) ×1.0	応答比率		標高		予加速度 m/s²) ×1.0	応答比率		
構造物	0. P. (m)	①今回工認 モデル	②補強反映モデル	(2/1)	構造物	0. P. (m)	①今回工認 モデル	②補強反映 モデル	(2/1)		
		1. 33	1. 32	1. 00			1. 33	1. 32	1.00		
気水分離器		1. 33	1. 32	1.00			1. 33	1. 32	1.00		
<u>及びスタン</u> ドパイプ		1. 32	1. 32	1.00			1. 32	1. 32	1. 00		
		1. 31	1. 30	1.00			1. 31	1. 30	1. 00		
		1.20	1. 19	1.00			1. 20	1. 19	1.00		
		1. 19	1. 18	1.00			1. 19	1. 18	1.00		
		1. 17	1. 16	1.00	<u>炉心</u>		1. 17	1. 16	1.00	記載の適正化	
炉心 シュラウド		1. 15	1. 14	1.00	シュラウド		1. 15	1. 14	1.00		
		1. 13	1. 12	1.00			1. 13	1. 12	1.00		
		1. 11	1. 10	1.00			1. 11	1. 10	1.00		
		1.09	1.08	1.00			1. 09	1.08	1.00		
		1.07	1.06	1.00			1.07	1.06	1.00		
		1.04	1. 03	1.00			1. 04	1.03	1.00		
		1.00	0. 99	0. 99			1.00	0.99	0.99		
		1.32	1. 31	1.00			1. 32	1.31	1.00		
制御棒		1.24	1. 23	1.00	制御棒		1. 24	1. 23	1.00		
案内管		1. 17	1. 15	0. 99	案内管		1. 17	1. 15	0.99		
		1.06	1. 05	1.00			1.06	1.05	1.00		
		1.06	1. 05	1.00			1.06	1.05	1.00		
dul the laborator		1.03	1.02	1.00			1.03	1.02	1.00		
制御棒駆動機構		1.04	1.03	1.00	制御棒駆動機構		1.04	1.03	1.00		
7段件 ハウジング		1.04	1.03	1.00	一		1.04	1.03	1.00		
		1.05	1.04	1.00			1.05	1.04	1.00		
		1.06	1.05	1.00			1.06	1.05	1.00		

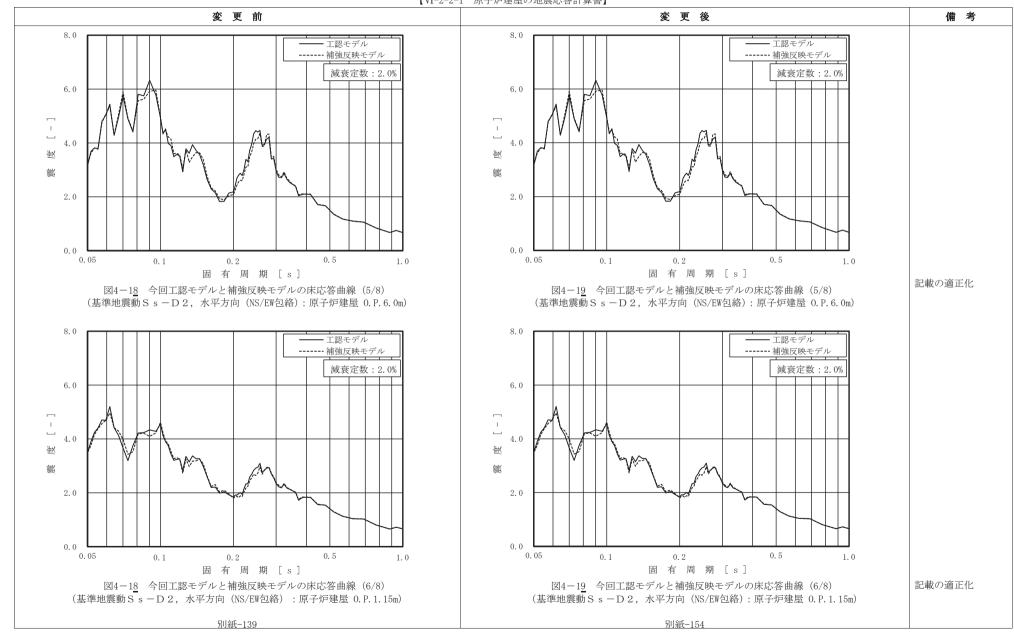
表4-21 最大応答加速度の応答比率 (12/14) (基準地震動S s - D 2 , 1.2ZPA, 鉛直方向: 大型機器系) 最大応答加速度 最大応答加速度 (×9.80665 m/s²) ×1.2 ①今回工認 モデル モデル 応答比率 (②/①) の. P. (m) ①今回工認 モデル モデル ②補強反映 モデル ロ・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・	表4-2 <u>7</u> 最大 準地震動S s - D 標高 0. P. (m)	最大応答	答比率(12/14) 直方向:大型機器 答加速度 m/s²)×1.2 ②補強反映 モデル 0.68 0.73 0.81	応答比率 (②/①) 1.00 0.99	記載の適正
構造物 標高 0. P. (m) 最大応答加速度 (×9.80665 m/s²) ×1.2 ①神強反映 モデル 応答比率 (②/①) 原子炉本体 の基礎 0. 68 0. 68 0. 74 0. 73 0. 81 0. 81 0. 81 0. 81 0. 89 0. 88 0. 99 0. 92 0. 92 0. 92 1. 00 1. 18 1. 18 1. 10 0. 89 0. 92 0. 9	標高	最大応名 (×9.80665 ①今回工認 モデル 0.68 0.74 0.81	答加速度 m/s²) ×1.2 ②補強反映 モデル 0.68 0.73	応答比率 (②/①) 1.00	
構造物 標高 0. P. (m) (×9.80665 m/s²) ×1.2 ①今回工認 モデル 応答比率 (②/①) 0. P. (m) ①今回工認 モデル ②補強反映 モデル 0. 68 0. 68 1. 00 0. 74 0. 73 0. 99 0. 81 0. 81 1. 00 0. 89 0. 88 0. 99 0. 92 0. 92 1. 00 原子炉 圧力容器 1. 21 1. 21 1. 00 原子炉 圧力容器 原子炉 圧力容器		(×9.80665 ①今回工認 モデル 0.68 0.74 0.81	m/s²) ×1.2 ②補強反映 モデル 0.68 0.73	1.00	
0. P. (m) ①今回工設 モデル ②補強反映 モデル (②/①) 0. 68 0. 68 1. 00 0. 74 0. 73 0. 99 0. 81 0. 81 1. 00 0. 89 0. 88 0. 99 0. 92 0. 92 1. 00 原子炉 圧力容器 1. 21 1. 21 1. 00 原子炉 圧力容器 原子炉 圧力容器	0. P. (m)	モデル 0.68 0.74 0.81	モデル 0.68 0.73	1.00	
原子炉本体 の基礎 0.74 0.73 0.99 0.81 0.81 1.00 0.89 0.88 0.99 0.92 0.92 1.00 1.18 1.18 1.00 原子炉 圧力容器 原子炉 圧力容器		0. 74 0. 81	0.73		
原子炉本体 の基礎 0.81 0.81 1.00 0.89 0.88 0.99 0.92 0.92 1.00 1.18 1.18 1.00 原子炉 圧力容器 原子炉 圧力容器		0.81		0. 99	
の基礎 0.81 0.81 1.00 0.89 0.88 0.99 0.92 0.92 1.00 原子炉 1.18 1.18 1.00 原子炉 1.21 1.21 1.00 原子炉 圧力容器			0, 81		
0.89 0.88 0.99 0.92 0.92 1.00 原子炉 1.18 1.18 1.00 原子炉 1.21 1.21 1.00 原子炉 圧力容器		0.89		1.00	
原子炉 1. 18 1. 18 1. 00 原子炉 1. 21 1. 00 原子炉 圧力容器 圧力容器			0.88	0. 99	
原子炉 圧力容器 1.21 1.20 原子炉 圧力容器		0. 92	0. 92	1.00	
圧力容器 L.21 1.20 圧力容器		1. 18	1. 18	1.00	
1 26 1 29 1 09		1.21	1. 21	1.00	
1. 30 1. 38 1. 02		1. 36	1. 38	1.02	
1. 29 1. 28 1. 00		1. 29	1. 28	1.00	
1.54 1.53 1.00		1. 54	1.53	1.00	
原子炉 しゃへい壁 1.73 1.70 原子炉 しゃへい壁 しゃへい壁		1. 73	1.73	1.00	
1.84 1.84 1.00		1.84	1.84	1.00	
1. 88 1. 88 1. 00		1.88	1. 88	1.00	
0.73 0.74 1.02		0.73	0.74	1.02	
0.77 0.78 1.02		0.77	0. 78	1.02	
0. 86 0. 86 1. 00		0.86	0.86	1.00	
原子炉 0.94 0.93 0.99 原子炉		0. 94	0. 93	0. 99	
格納容器 0.99 0.99 1.00 格納容器		0. 99	0. 99	1.00	
1.06 1.06 1.00		1.06	1.06	1.00	
1. 12 1. 11 1. 00		1. 12	1. 11	1.00	
1. 15 1. 13 0. 99		1. 15	1. 13	0. 99	

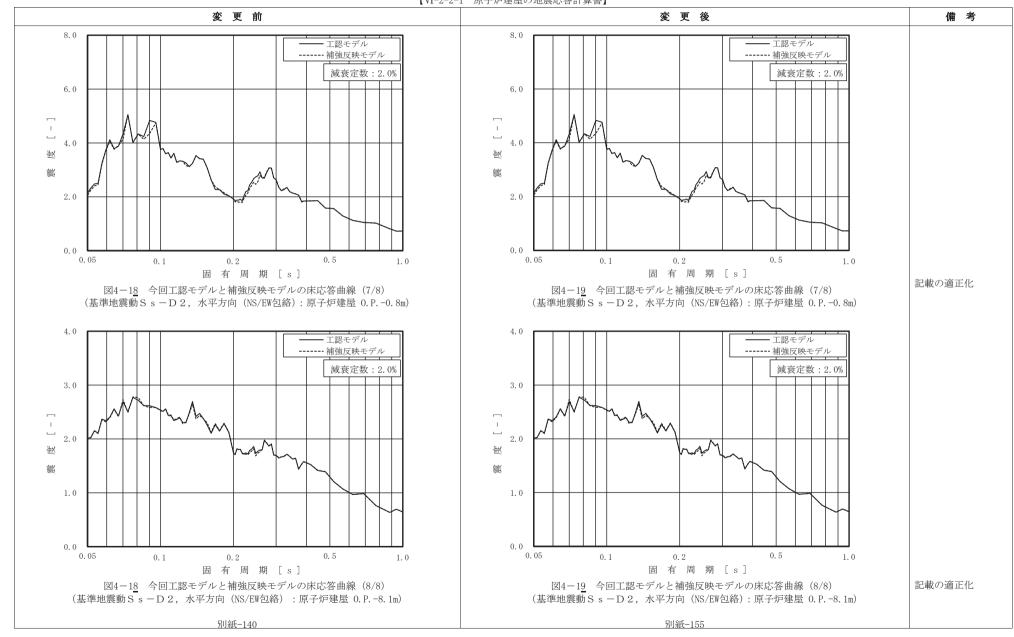
枠囲みの内容は商業機密の観点から公開できません。

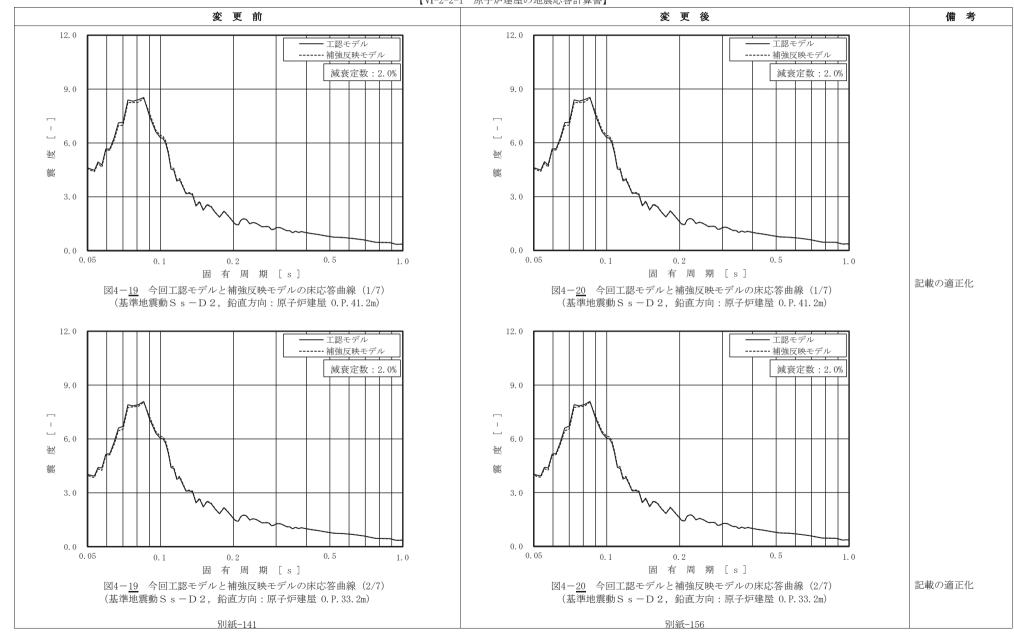
別紙-134

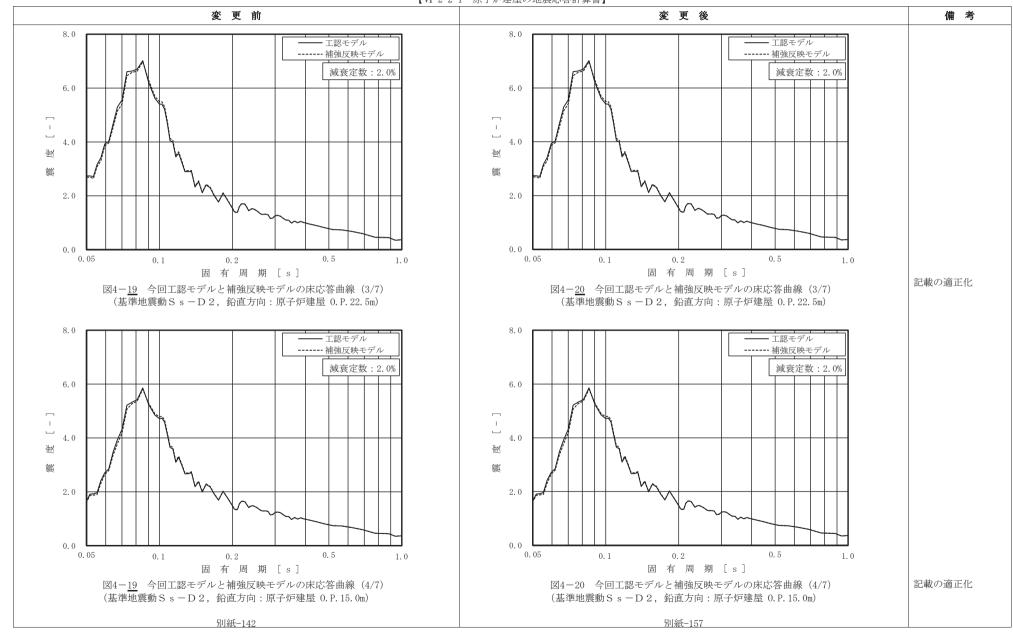

別紙-149

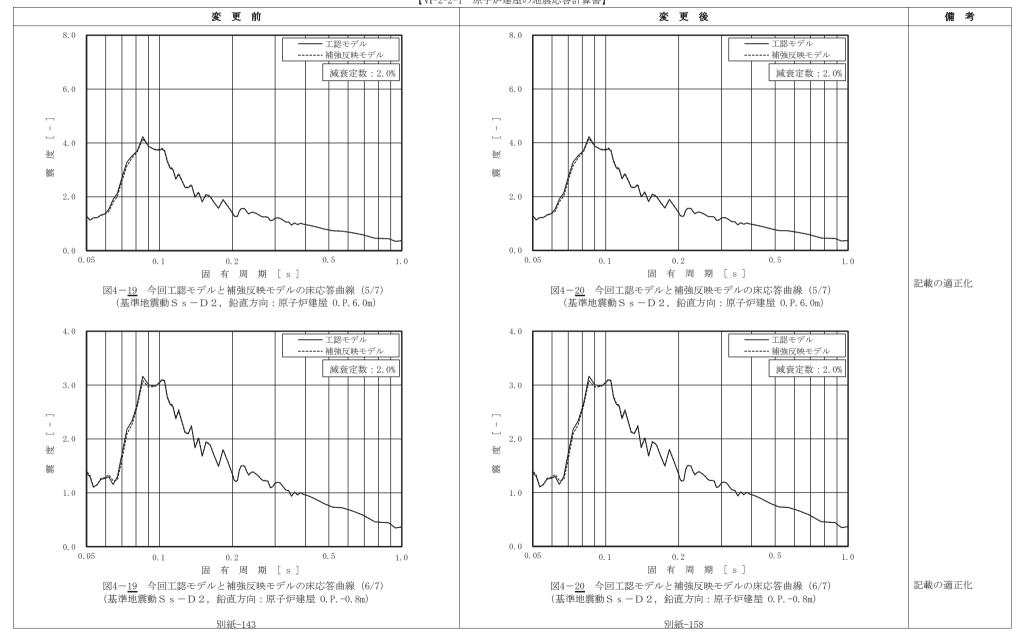

枠囲みの内容は商業機密の観点から公開できません。

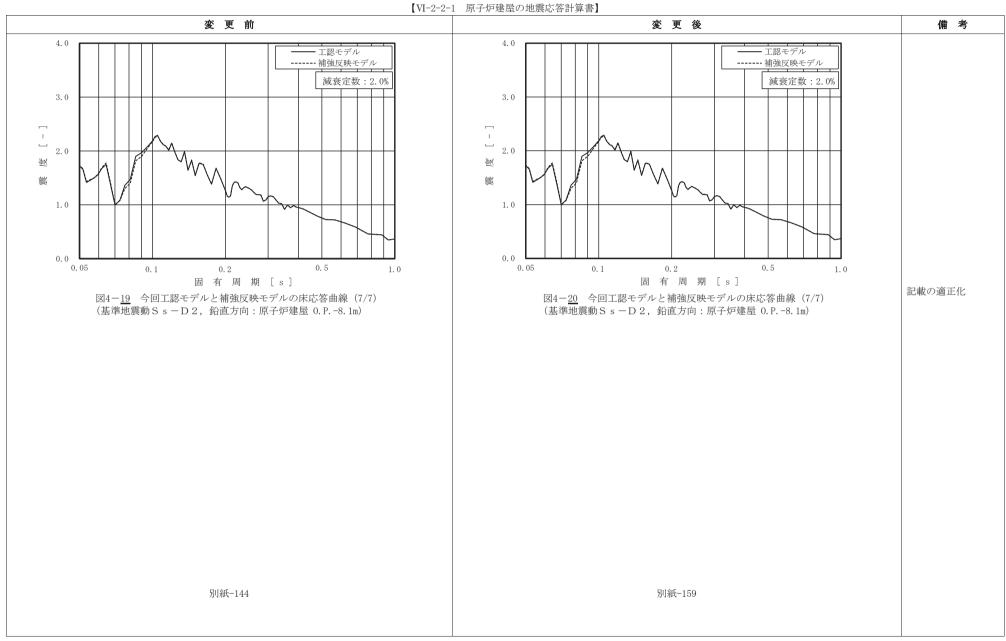

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

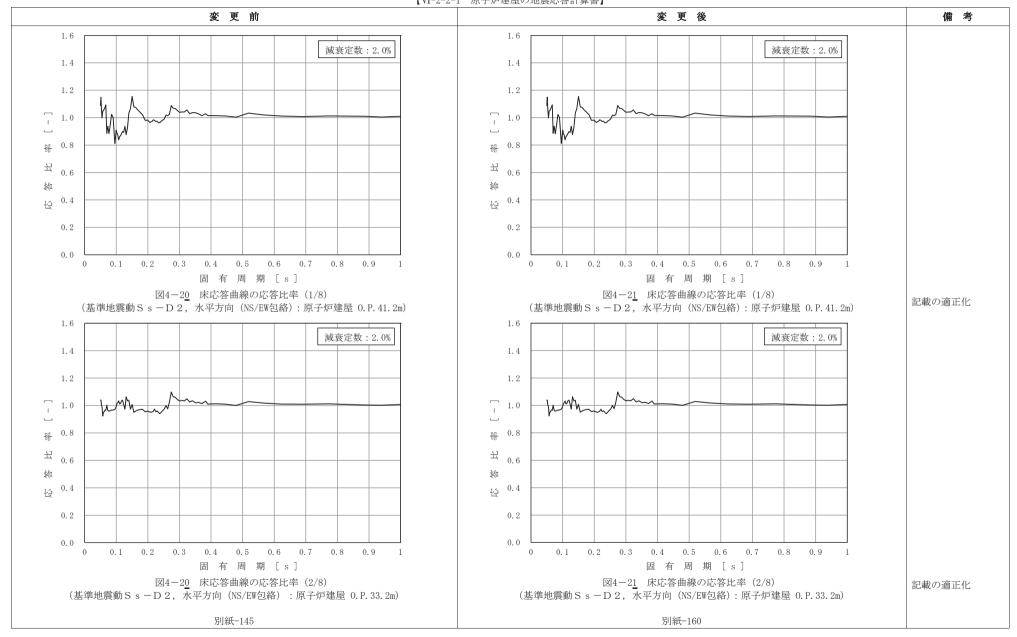

		変更前						変更後			備考
表4-2 <u>1</u> 最大応答加速度の応答比率 (13/14) (基準地震動 S s - D 2 , 1.2ZPA, 鉛直方向: 炉内構造物系)						表4-2 <u>7</u> 最大応答加速度の応答比率(13/14)					
(基注	準地震動Ss−D		直方向:炉内構造 答加速度	物系)	(基準地震動 S s - D 2 , 1.27PA, 鉛直方向:炉内構造物系) 最大応答加速度						記載の適正化
構造物	標高 O.P.(m)		音加速度 i m/s²) ×1.2 ②補強反映 モデル	応答比率 (②/①)		構造物	標高 O.P.(m)		音加速度 m/s²) ×1.2 ②補強反映 モデル	応答比率 (②/①)	
		1.60	1. 59	1.00				1.60	1. 59	1.00	
気水分離器		1. 60	1. 59	1.00				1. 60	1. 59	1. 00	
<u>及びスタン</u> ドパイプ		1. 59	1. 58	1.00				1. 59	1. 58	1.00	
<u> </u>		1. 57	1. 56	1.00				1. 57	1. 56	1. 00	
		1. 44	1. 43	1.00				1. 44	1. 43	1.00	
		1. 42	1.41	1.00				1. 42	1.41	1.00	
		1.40	1. 39	1.00		炉心		1.40	1. 39	1.00	記載の適正化
		1. 38	1. 37	1.00		シュラウド	<u> </u>	1. 38	1. 37	1.00	
炉心		1. 36	1. 34	0. 99				1. 36	1. 34	0. 99	
シュラウド		1. 33	1. 32	1.00				1.33	1. 32	1.00	
		1. 31	1. 30	1.00				1.31	1. 30	1.00	
		1. 29	1. 28	1.00				1. 29	1. 28	1.00	
		1. 24	1.23	1.00				1. 24	1. 23	1.00	
		1. 20	1. 19	1.00				1. 20	1. 19	1.00	
		1. 58	1. 57	1.00				1.58	1. 57	1.00	
制御棒		1. 49	1. 48	1.00		制御棒		1. 49	1. 48	1.00	
案内管		1.40	1. 38	0. 99	案内管	案内管		1.40	1. 38	0. 99	
		1. 28	1. 26	0. 99				1. 28	1. 26	0. 99	
		1. 28	1. 26	0. 99				1. 28	1. 26	0. 99	
#11/bn 1-t- EE 41		1. 24	1. 23	1.00		thul/tru be mer sel		1. 24	1. 23	1. 00	
制御棒駆動機構		1. 24	1. 23	1.00		制御棒駆動機構		1. 24	1. 23	1.00	
ハウジング		1. 25	1. 24	1.00		ハウジング		1. 25	1. 24	1.00	
		1. 26	1. 25	1.00				1. 26	1. 25	1.00	
		1. 27	1. 26	1.00				1. 27	1. 26	1.00	

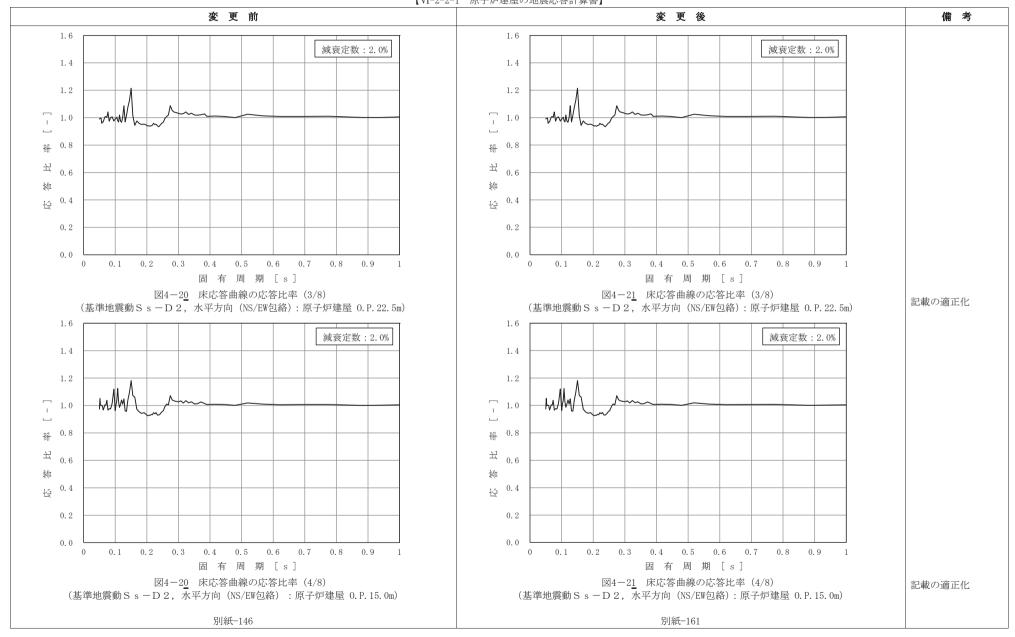

(基		変更前						変更後			備:
(基,		応答加速度の応答		>		表4-27 最大応答加速度の応答比率 (14/14)					
(基準地震動S s - D 2 , 1.2ZPA, 鉛直方向: 大型機器系) 最大応答加速度				系)		(基準地震動Ss-D2, 1.2ZPA, 鉛直方向:大型機器系) 最大応答加速度					
144.571.41	標高	取入心名 (×9.80665			上率		標高	取入心合加述及 (×9.80665 m/s ²) ×1.2		応答比率	
構造物	0. P. (m)	①今回工認	②補強反映	(2/1)		構造物	0. P. (m)	①今回工認	②補強反映	(2/1)	
		モデル	モデル					モデル	モデル		
		1. 45	1. 44	1.00				1. 45	1. 44	1.00	
		1. 45	1. 44	1.00				1. 45	1. 44	1.00	
		1. 43	1. 42	1.00				1. 43	1. 42	1.00	
		1. 39	1. 38	1.00				1. 39	1. 38	1.00	
		1. 36	1. 35	1.00				1. 36	1. 35	1.00	
原子炉		1. 32	1. 31	1.00				1.32	1. 31	1.00	
	1. 29	1. 29	1.00	原子炉		1. 29	1. 29	1.00			
	1. 28	1. 27	1.00			1. 28	1. 27	1.00			
圧力容器		1. 27	1. 26	1.00	圧力容器		1. 27	1. 26	1.00		
		1. 25	1. 24	1.00				1. 25	1. 24	1.00	
		1. 23	1. 22	1.00				1. 23	1. 22	1.00	
		1. 22	1. 21	1.00				1. 22	1. 21	1.00	
		1. 20	1. 19	1.00				1. 20	1. 19	1.00	
		1. 18	1. 18	1.00				1. 18	1. 18	1.00	
		1. 16	1. 15	1.00				1. 16	1. 15	1.00	
		1. 13	1. 12	1.00				1. 13	1. 12	1.00	
		1. 11	1. 10	1.00				1. 11	1. 10	1.00	
					<u> </u>	主:設備評価に月	目いる標高に対す	る応答比率を記載	<u> </u>		記載の適正

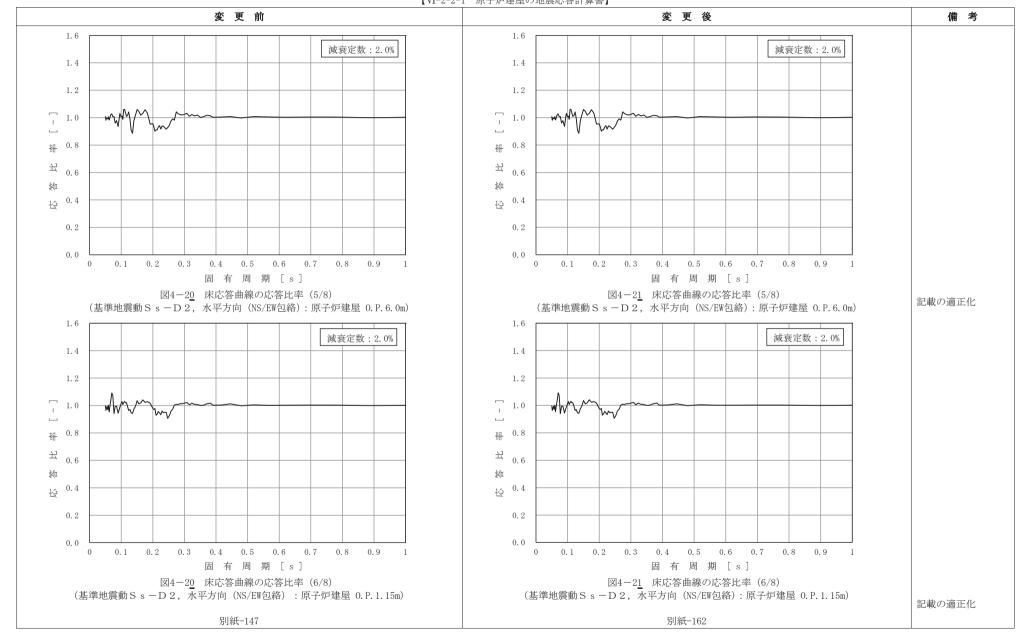


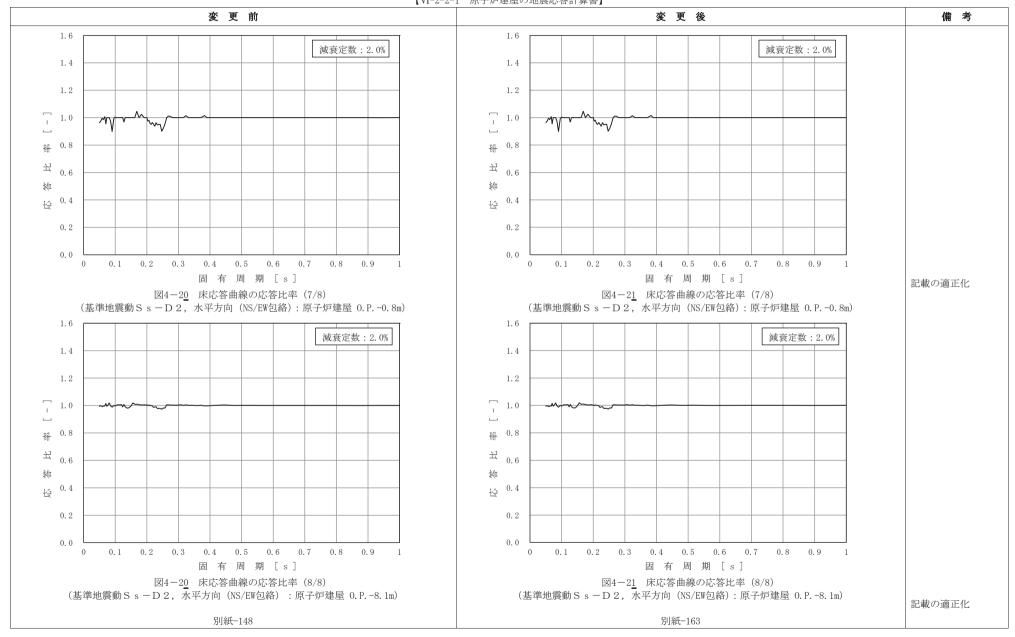


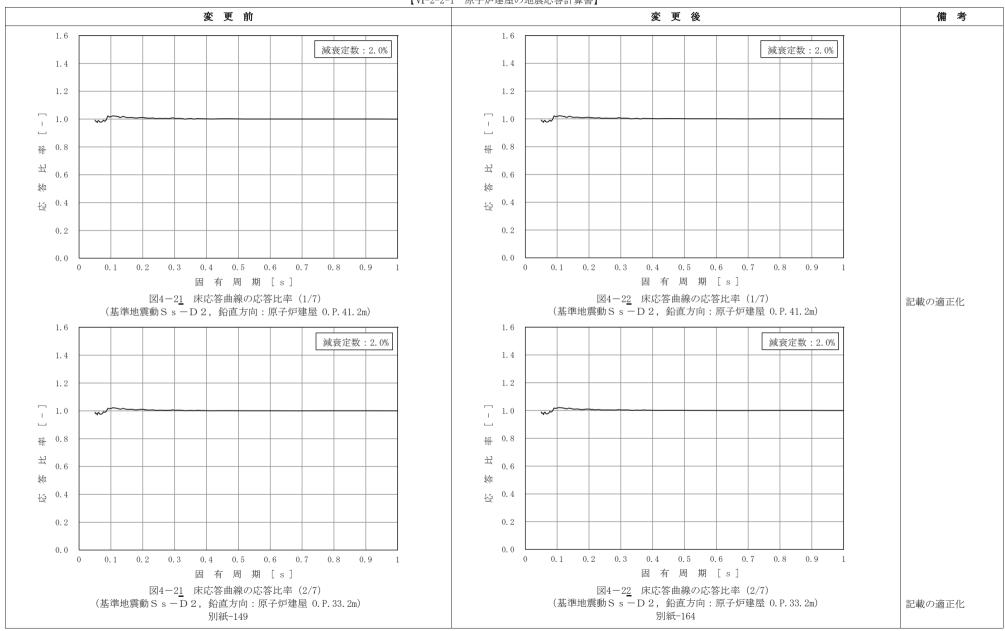


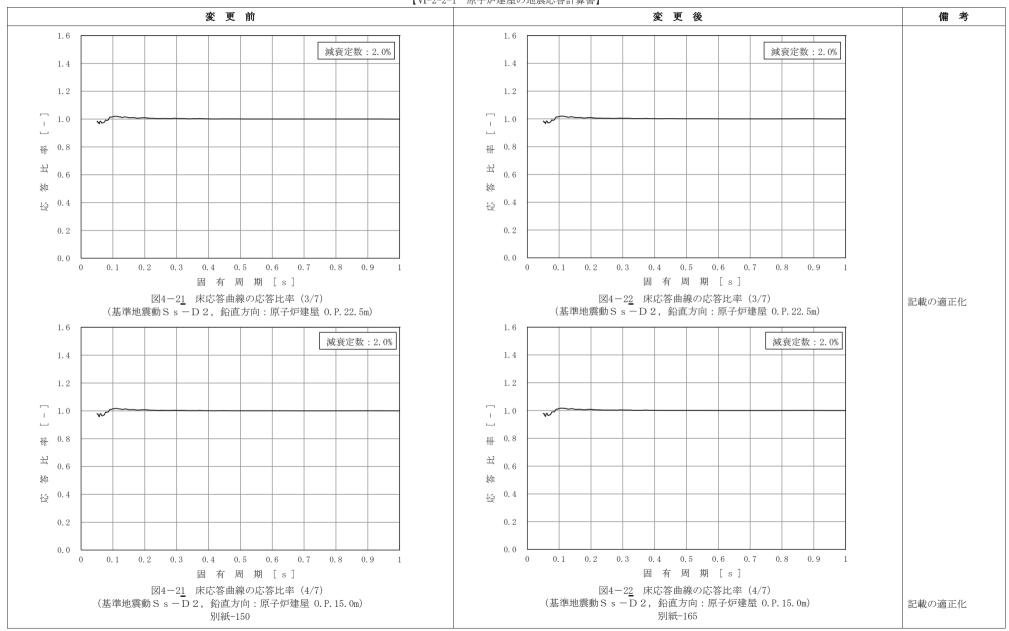


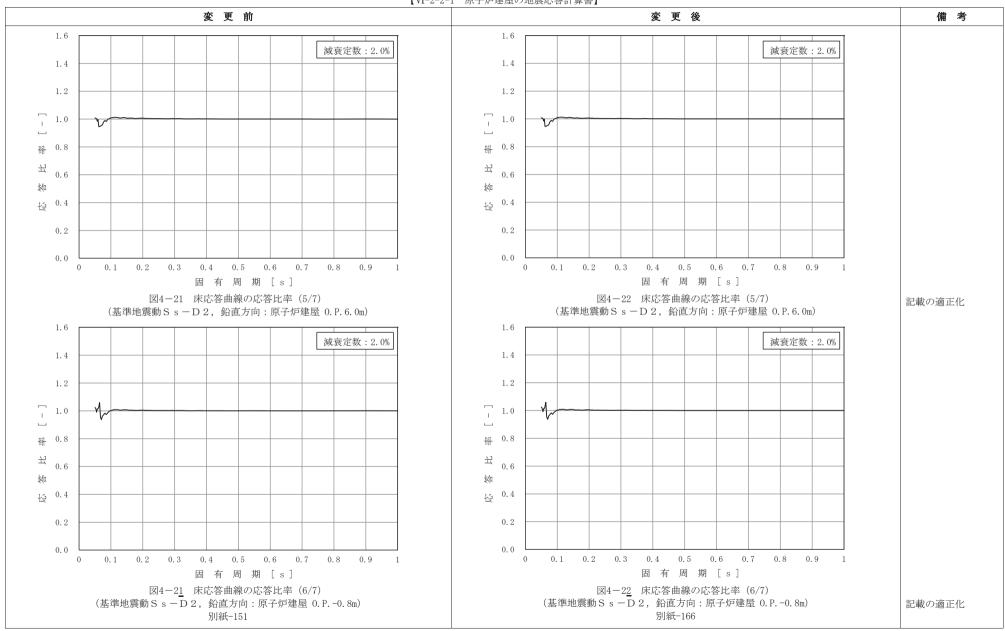


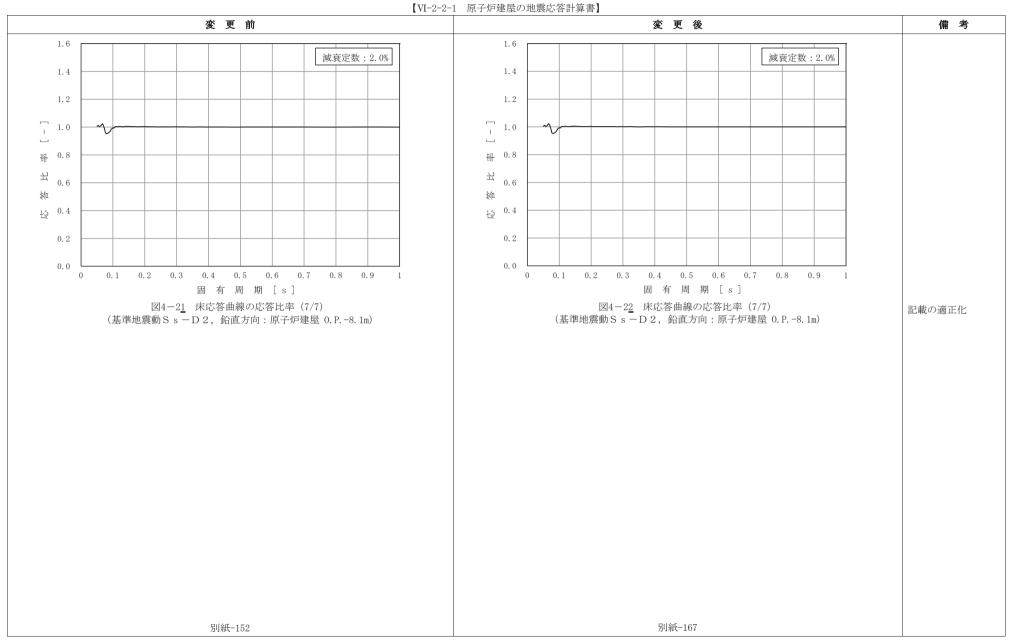












女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

	de c	Interest I	uda keka za ada	変更		41: Mb to test	est o		-			14.02	1.46	変更		44.2%				備考
	表4-22	地震力の	心答比率	(1/8) (t			CONTRACTOR OF THE PARTY OF THE	D2)			表4-28	地震力の	応答比率	(1/8) (-				D2)		記載の適正化
				and Intell	Mar.	せん断力(k		m	応答比率						-13	た断力(1	KN)		応答比率	
部位	質点	標高	今	回工認モラ	デル	補引	歯反映モラ	デル	(②/①)	部位	質点	標高	今	可工認モラ	デル	補	強反映モラ	デル	(②/①)	
	备万	O. P. (m)	NS	EW	① 包絡値	NS	EW	② 包絡値			番号	O. P. (m)	NS	EW	① 包絡値	NS	EW	② 包絡値		
	15		510	536	536	474	510	510	0.96		15		510	536	536	474	510	510	0.96	
	14	-	1890	2130	2130	1930	2150	2150	1.01		14		1890	2130	2130	1930	2150	2150	1.01	
	13	ł	3960	4210	4210	3900	4180	4180	1.00		13 12		3960	4210	4210	3900	4180	4180	1.00	
原子炉	11	1	3050	2550	3050	3390	2510	3390	1.12	原子炉	11		3050	2550	3050	3390	2510	3390	1. 12	
圧力容器	10	1	3270	3200	3270	3340	3280	3340	1.03	圧力容器	10		3270	3200	3270	3340	3280	3340	1.03	
	9	1	6150	6480	6480	6040	6460	6460	1.00		9		6150	6480	6480	6040	6460	6460	1.00	
	8	1	8260	8930	8930	8110	8860	8860	1.00	1	8		8260	8930	8930	8110	8860	8860	1.00	
	7	1	10200	11100	11100	9970	10900	10900	0. 99		7		10200	11100	11100	9970	10900	10900	0. 99	
	7	1	28300	27000	28300	27100	27100	27100	0.96		7		28300	27000	28300	27100	27100	27100	0. 96	
原子炉	6	-	30200	29100	30200	28900	29300	29300	0.98	原子炉	6		30200	29100	30200	28900	29300	29300	0.98	
本体の基礎	5 4	ł	32200	31200	32200	30800	31500	31500	0.98	本体の基礎	5		32200	31200	32200	30800	31500	31500	0.98	
	3	ł	34100	32800	34100	32500	33300	33300	0. 98		3		34100	32800	34100	32500	33300	33300	0.98	
	20]	6840	6040	6840	6370	5590	6370	0. 94		20		6840	6040	6840	6370	5590	6370	0. 94	
	19	ł	6190	6640	6640	6470	6360	6470	0. 98		19		6190	6640	6640	6470	6360	6470	0. 98	
原子炉しゃへい壁	18	1	8560	8610	8610	8660	8540	8660	1.01	原子炉	18		8560	8610	8610	8660	8540	8660	1.01	
しや、い・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17	ł	12500	11700	12500	12100	11600	12100	0. 97	しゃへい壁	17		12500	11700	12500	12100	11600	12100	0.97	
	7	1	16600	14900	16600	15800	15100	15800	0.96		16 7		16600	14900	16600	15800	15100	15800	0. 96	
	30]	286	269	286	286	264	286	1.00		30		286	269	286	286	264	286	1.00	
	29	-	556	522	556	556	512	556	1.00	,	29		556	522	556	556	512	556	1.00	
	28	-	3100	3220	3220	3120	3010	3120	0. 97		28		3100	3220	3220	3120	3010	3120	0. 97	
	27	-	3920	3980	3980	3940	3750	3940	0. 99	1	27		3920	3980	3980	3940	3750	3940	0. 99	
原子炉	26 25	ł	25100	26200	26200	25600	26100	26100	1.00	原子炉	26 25		25100	26200	26200	25600	26100	26100	1.00	
格納容器	24	1	26500	27300	27300	27000	27200	27200	1.00	格納容器	25		26500	27300	27300	27000	27200	27200	1.00	
	23	1	27400	28100	28100	27900	28000	28000	1.00		23		27400	28100	28100	27900	28000	28000	1.00	
	22	1	28700	29400	29400	29200	29400	29400	1.00		22		28700	29400	29400	29200	29400	29400	1.00	
	21	1	29200	29800	29800	29700	30000	30000	1.01	1	21		29200	29800	29800	29700	30000	30000	1.01	
	3		30200	31400	31400	30700	32000	32000	1.02		3		30200	31400	31400	30700	32000	32000	1. 02	
				別紙一	10 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /	の内容は商業権	機密の観点が	ら公開でき	ません。					別紙-	200,000,000	内容は商業	機密の観点が	いら公開でき	ません。	

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

				変更										変更	後					
表	4-22	地震力の	応答比率	(2/8) (せん断力,		Control of the Contro	-D2)			表4-28	地震力の	応答比率	(2/8) (せん断力,	9 00000 00 000	1	D 2)		記載の
	100 H.00	標高		可工認モ		とん断力()	(N) 鱼反映モラ	デル				標高	Δ1	司で数する		た断力(1	total and a second and a second			
部位	質点 番号	0. P. (m)	NS	EW	① 包絡値	NS	EW	② 包絡値	比率 (①/②)	部位	質点 番号	0. P. (m)	NS	可工認モデ EW	①包絡値	NS NS	歯反映モラ EW	2 包 絡値	比率 (①/②)	
	37 36		443	603	603	398	548	548	0.91		37		443	603	603	398	548	548	0, 91	
-	35		909	1190	1190	842	1020	1020	0.86	1	36		909	1190	1190	842	1020	1020	0.86	
-	34		1350	1420	1420	1480	1170	1480	1.05		35 34		1350	1420	1420	1480	1170	1480	1.05	
-	33		1690	1820	1820	1910	1420	1910	1.05		33		1690	1820	1820	1910	1420	1910	1.05	
-	32		2120	2350	2350	2450	1780	2450	1.05		32		2120	2350	2350	2450	1780	2450	1.05	
炉心	31		2990	2690	2990	2880	3520	3520	1.18	炉心	31		2990	2690	2990	2880	3520	3520	1.18	
ノュラウド	30		2790	2480	2790	2870	3210	3210	1. 16	シュラウド	30		2790	2480	2790	2870	3210	3210	1. 16	
	29		2520	2650	2650	2940	2660	2940	1.11		29		2520	2650	2650	2940	2660	2940	1.11	
-	28		2850	3030	3030	3180	2850	3180	1.05		28		2850	3030	3030	3180	2850	3180	1.05	
	27		3110	3350	3350	3390	3060	3390	1. 02	1	27		3110	3350	3350	3390	3060	3390	1.02	
	26		3330	3590	3590	3570	3220	3570	1.00		26		3330	3590	3590	3570	3220	3570	1.00	
	25		4810	4330	4810	4930	5150	5150	1.08		25		4810	4330	4810	4930	5150	5150	1.08	
	51		4730	4480	4730	4820	5180	5180	1. 10		51		4730	4480	4730	4820	5180	5180	1.10	
Had Sten Edit	53 45		688	633	688	1050	693	1050	1.53	0.17/m14	53		688	633	688	1050	693	1050	1.53	
制御棒案内管	44		178	170	178	282	188	282	1.59	制御棒案内管	45 44		178	170	178	282	188	282	1. 59	
	52		587	546	587	902	597	902	1. 54	X176	52		587	546	587	902	597	902	1.54	
-	43 38		900	807	900	1320	888	1320	1. 47		43 38		900	807	900	1320	888	1320	1. 47	
御棒駆動機	39		454	437	454	468	447	468	1.04	制御棒駆動機			454	437	454	468	447	468	1.04	
構	40		261	253	261	273	257	273	1.05	構	0.50		261	253	261	273	257	273	1.05	
·ウジング -	41		20. 5	18.8	20. 5	21.2	20.0	21. 2	1.04	ハウジング	40		20. 5	18.8	20. 5	21.2	20.0	21. 2	1.04	
	42		255	236	255	264	241	264	1.04		41		255	236	255	264	241	264	1.04	
	55		3180	2750	3180	2820	3520	3520	1. 11		55		3180	2750	3180	2820	3520	3520	1.11	
-	50		2240	2020	2240	1990	2510	2510	1. 13		50		2240	2020	2240	1990	2510	2510	1. 13	
bylet the A. L.	49		809	783	809	711	885	885	1.10		49		809	783	809	711	885	885	1. 10	
然料集合体	48		832	736	832	745	966	966	1. 17	燃料集合体	48		832	736	832	745	966	966	1. 17	
-	47		2230	2020	2230	1990	2510	2510	1.13		47		2230	2020	2230	1990	2510	2510	1. 13	
-	54		3130	2840	3130	2770	3410	3410	1.09	:	46 54		3130	2840	3130	2770	3410	3410	1.09	
	0.00000			別紙一	Similar	の内容は商業	機密の観点	から公開でき	ません。	Ĺ				別紙-		の内容は商業		から公開でき	ません。	

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

				変更										変更						備考
表	4-22	地震力の応答	学比率(3)	(8) (曲げ				s -D2)		基	4-28	也震力の応急	答比率(3)	/8) (曲け	(6V) (3V			s-D2)	1	記載の適正化
	66 b	標高		1 30		ーメント						標高				ーメント	No. of the case			1312
部位	質点 番号	0. P.	今	可工認モラ I		佣5	鱼反映モラ	(2)	比率	部位	質点 番号	0. P.	今[可工認モラ		補力	鱼反映モラ		比率	
	шу	(m)	NS	EW	① 包絡値	NS	EW	包絡値	(2/1)		留方	(m)	NS	EW	① 包絡値	NS	EW	② 包絡値	(2/1)	
	15		0	0	0	0	0	0	-		15		0	0	0	0	0	0		
	14	l	1400	1470	1470	1300	1400	1400	0.96		14		1400	1470	1470	1300	1400	1400	0.96	
	13		5400	6120	6120	5500	6090	6090	1.00		13		5400	6120	6120	5500	6090	6090	1.00	
原子炉	12	l	12700	14100	14100	12900	14100	14100	1.00	原子炉	12		12700	14100	14100	12900	14100	14100	1.00	
圧力容器	11		16100	16900	16900	16200	18200	18200	1.08	圧力容器	11		16100	16900	16900	16200	18200	18200	1.08	
	10		27500	27900	27900	27700	30100	30100	1.08	7.1.7.7.11 1111	10		27500	27900	27900	27700	30100	30100	1.08	
	9	l	46700	45000	46700	47400	48300	48300	1.04		9		46700	45000	46700	47400	48300	48300	1.04	
	8		59500	57500	59500	60600	59800	60600	1.02		8		59500	57500	59500	60600	59800	60600	1.02	
	7		77800	77800	77800	77500	77100	77500	1.00		7		77800	77800	77800	77500	77100	77500	1.00	
	7		199000	195000	199000	197000	195000	197000	0.99		7		199000	195000	199000	197000	195000	197000	0.99	
原子炉	6	1	222000	214000	222000	219000	214000	219000	0.99	EE - 7 1-	6		222000	214000	222000	219000	214000	219000	0.99	
本体の基礎	5	1	261000	246000	261000	256000	245000	256000	0.99	原子炉本体の基礎	5		261000	246000	261000	256000	245000	256000	0.99	
1 11 azwe	4	1	321000	298000	321000	314000	298000	314000	0.98	440万五510	4		321000	298000	321000	314000	298000	314000	0.98	
	3	1	385000	360000	385000	375000	362000	375000	0.98		3		385000	360000	385000	375000	362000	375000	0.98	
	20	1	0	0	0	0	0	0	-		20		0	0	0	0	0	0	-	
	19	1	18900	16700	18900	17600	15500	17600	0.94		19		18900	16700	18900	17600	15500	17600	0.94	
原子炉	18	1	32200	35300	35300	32200	33000	33000	0.94	原子炉	18		32200	35300	35300	32200	33000	33000	0.94	
しゃへい壁	17		50900	53300	53300	52900	51600	52900	1.00	しゃへい壁	17		50900	53300	53300	52900	51600	52900	1.00	
	16	l	76800	75300	76800	78100	75400	78100	1.02		16		76800	75300	76800	78100	75400	78100	1.02	
	7	1	122000	121000	122000	121000	121000	121000	1.00		7		122000	121000	122000	121000	121000	121000	1.00	
	30		0	0	0	0	0	0	_		30		0	0	0	0	0	0	-	
	29	1	657	619	657	658	607	658	1.01		29		657	619	657	658	607	658	1.01	
	28		1850	1740	1850	1850	1700	1850	1.00		28		1850	1740	1850	1850	1700	1850	1.00	
	27		6160	6210	6210	6190	5890	6190	1.00		27		6160	6210	6210	6190	5890	6190	1.00	
度フレ	26		17600	17800	17800	17700	16800	17700	1.00		26		17600	17800	17800	17700	16800	17700	1.00	
原子炉 格納容器	25		124000	129000	129000	126000	128000	128000	1.00	原子炉	25		124000	129000	129000	126000	128000	128000	1.00	
ताम गरा सात	24		200000	207000	207000	203000	206000	206000	1.00	格納容器	24		200000	207000	207000	203000	206000	206000	1.00	
	23		332000	343000	343000	338000	341000	341000	1.00		23		332000	343000	343000	338000	341000	341000	1.00	
	22		471000	484000	484000	479000	482000	482000	1.00		22		471000	484000	484000	479000	482000	482000	1.00	
	21		529000	543000	543000	538000	541000	541000	1.00		21		529000	543000	543000	538000	541000	541000	1.00	
	3		573000	587000	587000	580000	586000	586000	1.00		3		573000	587000	587000	580000	586000	586000	1.00	
				別紙一	100000000000000000000000000000000000000	の内容は商業	機密の観点	から公開でき	ません。		0		-0	別紙-	0.000	の内容は商業	美機密の観点	から公開でき	きません。	

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

	20 10	edi la parte	en eta 7	変更		1 11 27	un as all a	-				u. as 1 1 -		変更		11.20				備考
表4-	-22 地	也震力の応答	比率 (4/	(8) (曲)		ト、基準		s-D2)	表4	-28	地震力の応答	≤比率(4	/8) (曲に				s – D 2)	記載の適正化
	質点番	標高	<u></u>	可工認モ			強反映モラ	デル			質点番	標高		可工認モラ		ーメント	(KN・m) 強反映モー	デル		
部位	号	0. P. (m)	NS	EW	① 包絡値	NS	EW	② 包絡値	比率 (②/①)	部位	号	0. P. (m)	NS	EW	① 包絡値	NS NS	EW	② 包絡値	比率 (②/①)	
	37		0	0	0	0	0	0	-		37		0	0	0	0	0	0	-	
	36		567	773	773	510	702	702	0.91		36		567	773	773	510	702	702	0, 91	
	35		1740	2300	2300	1580	2010	2010	0.88		35		1740	2300	2300	1580	2010	2010	0.88	
	34		3990	4660	4660	3930	3670	3930	0.85		34		3990	4660	4660	3930	3670	3930	0.85	
	33		5380	5980	5980	5600	4620	5600	0.94		33		5380	5980	5980	5600	4620	5600	0.94	
			4630	5460	5460	4680	4270	4680	0.86		33		4630	5460	5460	4680	4270	4680	0.86	
炉心	32		5870	6480	6480	6250	5090	6250	0.97	de⇒ S	32		5870	6480	6480	6250	5090	6250	0.97	
シュラウド	31		7550	7120	7550	8030	6630	8030	1.07	炉心 シュラウド	31		7550	7120	7550	8030	6630	8030	1.07	
//	30		9230	8660	9230	9970	8200	9970	1.09	2 - 1 - 1 -	30		9230	8660	9230	9970	8200	9970	1.09	
	29		10800	10300	10800	12000	9980	12000	1. 12		29		10800	10300	10800	12000	9980	12000	1. 12	
	28		12200	12000	12200	14000	11300	14000	1. 15		28		12200	12000	12200	14000	11300	14000	1. 15	
	27		13600	13600	13600	16100	12200	16100	1. 19		27		13600	13600	13600	16100	12200	16100	1. 19	
	26		15100	15700	15700	18100	14400	18100	1. 16		26		15100	15700	15700	18100	14400	18100	1. 16	
	25		19300	20800	20800	22400	19600	22400	1.08		25		19300	20800	20800	22400	19600	22400	1.08	
	51		23800	26000	26000	27200	24900	27200	1.05		51		23800	26000	26000	27200	24900	27200	1. 05	
	53		0	0	0	0	0	0	1-		53		0	0	0	0	0	0	=	
制御棒	45		805	742	805	1230	811	1230	1. 53	制御棒	45		805	742	805	1230	811	1230	1. 53	
案内管	44		1020	941	1020	1560	1030	1560	1. 53	案内管	44		1020	941	1020	1560	1030	1560	1. 53	
	52		0	0	0	0	0	0	· · · ·		52		0	0	0	0	0	0	-	
	43		0	0	0	0	0	0	- 47		43		0	0	0	0	0	0	-	
to the laborators to to the	38		989 479	886 479	989 479	1450 498	976 489	1450 498	1. 47		38		989 479	886 479	989 479	1450 498	976 489	1450 498	1. 47	
制御棒駆動機 構	39		59. 1	59.8	59.8	59. 5	61. 0	61. 0	1.03	制御棒駆動機	39		59. 1	59.8	59.8	59. 5	61.0	61.0	1.04	
ハウジング	40		279	253	279	287	258	287	1, 03	構ハウジング	40		279	253	279	287	258	287	1.03	
, , , ,	41		271	251	271	281	256	281	1.04	,,,,,	41		271	251	271	281	256	281	1.04	
	42		0	0	0	0	0	0	_		42		0	0	0	0	0	0	-	
	55		0	0	0	0	0	0	-		55		0	0	0	0	0	0	2	
	50		2240	1930	2240	1980	2480	2480	1. 11		50		2240	1930	2240	1980	2480	2480	1. 11	
	49		3810	3350	3810	3380	4230	4230	1. 12		49		3810	3350	3810	3380	4230	4230	1. 12	
燃料集合体	48		4350	3900	4350	3860	4840	4840	1. 12	燃料集合体	48		4350	3900	4350	3860	4840	4840	1. 12	
	47		3770	3410	3770	3340	4160	4160	1. 11		47		3770	3410	3770	3340	4160	4160	1. 11	
	46		2200	2000	2200	1950	2400	2400	1.10		46		2200	2000	2200	1950	2400	2400	1.10	
	54		0	0	0	0	0	0	-		54		0	0	0	0	0	0	-	
			•	別紙一	Market .	の内容は商業	機密の観点が	いら公開でき	ません。					別紙-		の内容は商業	英機密の観点	から公開でき	きません。	

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

			変更前	ti		1 冰1%是座			変更後	É		備考
	1	22 地震力	の応答比率(5/8)(軸	力,基準地震動Ss-	D 2)		1	_	の応答比率 (5/8) (軸	a力,基準地震動Ss-	D2)	記載の適正化
部位	質点番 号	標高 0.P. (m)	軸力 ①今回工認モデル	J(kN) ②補強反映モデル	比率 (②/①)	部位	質点番 号	標高 0. P. (m)	軸力 ①今回工認モデル	J (kN) ②補強反映モデル	比率 (②/①)	HOTA VELLE
	31		193	193	1. 00		31		193	193	1.00	
	30	l	1410	1410	1.00		30	-	1410	1410	1.00	
	29		2430	2440	1.01		29	-	2430	2440	1. 01	
原子炉	28		3100	3130	1.01	原子炉	28	-	3100	3130	1. 01	
圧力容器	27	1	4000	4040	1. 01	圧力容器	27		4000	4040	1. 01	
	26	1	4810	4850	1. 01		26		4810	4850	1. 01	
	25		5640	5670	1. 01		25		5640	5670	1.01	
	24 18		11800	11800	1. 00		24 18		11800	11800	1.00	
	18		32200	32400	1. 01		18		32200	32400	1.01	
原子炉	17		34000	34200	1.01	原子炉	17	-	34000	34200	1. 01	
本体の基礎	16		35800	36000	1.01	本体の基礎		-	35800	36000	1. 01	
	15 14	l	37400	37600	1. 01		15 14	-	37400	37600	1.01	
	23		2580	2630	1.02		23		2580	2630	1. 02	
	22		5790	5880	1.02		22	-	5790	5880	1. 02	
原子炉	21		11300	11400	1.01	原子炉	21	-	11300	11400	1. 01	
しゃへい壁	20		15300	15400	1.01	しゃへい壁	20		15300	15400	1. 01	
	19 18		19100	19200	1. 01		19 18		19100	19200	1. 01	
	41		140	138	0. 99		41		140	138	0. 99	
	40		278	274	0.99		40	-	278	274	0. 99	
	39		1070	1070	1.00		39		1070	1070	1.00	
	38	l	1510	1510	1.00		38		1510	1510	1.00	
原子炉	37		2900	2890	1.00	原子炉	37	1	2900	2890	1.00	
格納容器	36 35		3900	3880	1.00	格納容器	36 35	1	3900	3880	1. 00	
	35		4640	4610	1.00		34	1	4640	4610	1.00	
	33		5930	5890	1.00		33	1	5930	5890	1.00	
	32	l	6500	6460	1.00		32	-	6500	6460	1. 00	
	14		7760	8220	1.06		14		7760	8220	1.06	
	枠囲みの内容は商業機密の観点から公開できません。									枠囲みの内容は商業機密の観	点から公開できません。	
	別紙-157								別紙-172			

			変更前	Ţ		-1 原于炉建座の地	202 11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	変更後	ŧ		備考
表	1-2 <u>2</u> :	地震力の)応答比率 (6/8) (軸	ı力,基準地震動Ss-	D2)	表	4-2 <u>8</u>	地震力	の応答比率 (6/8) (軸	力,基準地震動 S s -	D2)	記載の適正化
	質点番	標高	軸力	J (kN)	比率		質点番	標高	軸力	J (kN)	比率	旧典ペン旭五日
部位	号	0. P. (m)	①今回工認モデル	②補強反映モデル	(2/1)	部位	号	0. P. (m)	①今回工認モデル	②補強反映モデル	(2/1)	
	55		103	103	1.00		55		103	103	1.00	
	54		309	308	1.00		54	ł	309	308	1.00	
	53		476	474	1.00		53		476	474	1.00	
	52		673	670	1.00		52		673	670	1.00	
	51		977	968	1.00		51	ł	977	968	1.00	
	50		1150	1140	1.00		50		1150	1140	1.00	
炉心	49		1180	1170	1.00	炉心	49		1180	1170	1.00	
シュラウド	48		1220	1210	1.00	シュラウド	48	-	1220	1210	1.00	
	47		1250	1240	1.00		47	ł	1250	1240	1.00	
	46 45		1280	1270	1.00		45	ł	1280	1270	1.00	
			1320	1300	0.99		_	ł	1320	1300	0.99	
	44		1630	1610	0.99		44	-	1630	1610	0.99	
	43		1650	1640	1.00		43	-	1650	1640	1.00	
	42		1670	1650	0.99		42		1670	1650	0.99	
	64		2440	2420	1.00		64		2440	2420	1.00	
制御棒	63		2510	2490	1.00	制御棒	63	-	2510	2490	1.00	
案内管	62		2570	2540	0.99	案内管	62		2570	2540	0.99	
	61		2640	2620	1.00		61		2640	2620	1.00	
制御棒駆動	60		662	661	1.00	制御棒駆動	60	-	662	661	1.00	
機構	59		605	604	1.00	機構	59	ł	605	604	1.00	
ハウジング	58		546	546	1.00	ハウジング	58	-	546	546	1.00	
	57 56		488	487	1.00		57 56		488	487	1.00	
炉心シュラウド 支持ロッド	51 25		15. 7	15. 6	1.00	炉心シュラウド 支持ロッド	51 25		15. 7	15. 6	1.00	
			料 —158	囲みの内容は商業機密の観点:	から公開できません。				別紙-173	中囲みの内容は商業機密の観.	点から公開できません。	

			変更	前						1 原于炉建屋の.			変更	後						備考
表4-22	地震力の応答比				及び軸力	, 基準地	震動S:	s-D2)	表4-28	地震力の応答は	七率(7/8)(ば			及び軸力	J, 基準地	也震動S	s - D2)	
		11.00 × 10.00 Anna 1 - 10.00		91 1000 PP 11	ずね反力			V 20 V							ずね反力					記載の適正化
部	位	応答種別	今回	可工認モ	- Control of	補引	鱼反映モ		応答		部位	応答種別	今回	可工認モ	デル	補	鱼反映モ	5000000	応答	
700-00-00-00-00-00-00-00-00-00-00-00-00-		及び単位	NS	EW	① 包絡値	NS	EW	② 包絡値	比率 (②/①)			及び単位	NS	EW	① 包絡値	NS	EW	② 包絡値	比率 (②/①)	
原子炉日 スタビ		ばね反力 (kN)	7700	7350	7700	7300	7710	7710	1.01		戸圧力容器 ビライザ	ばね反力 (kN)	7700	7350	7700	7300	7710	7710	1.01	
原子炉格 スタビ	200000000000000000000000000000000000000	ばね反力 (kN)	13300	12800	13300	14300	12300	14300	1.08		F格納容器 ビライザ	ばね反力 (kN)	13300	12800	13300	14300	12300	14300	1.08	
原子炉格シヤ		ばね反力 (kN)	24200	25800	25800	25000	25000	25000	0. 97		F格納容器 ヤラグ	ばね反力 (kN)	24200	25800	25800	25000	25000	25000	0.97	
ベン	ト管	ばね反力 (kN)	1630	1820	1820	4600	5160	5160	2.84	ベ	ント管	ばね反力 (kN)	1630	1820	1820	4600	5160	5160	2.84	
燃料ベロ		ばね反力 (kN)	1660	1500	1660	1580	1380	1580	0.96		料交換 ローズ	ばね反力 (kN)	1660	1500	1660	1580	1380	1580	0.96	
所員 エアロ		ばね反力 (kN)	261	281	281	260	281	281	1.00		所員用 プロック	ばね反力 (kN)	261	281	281	260	281	281	1.00	
制御棒駅 ハウシ レスト ビー	シング レント	ばね反力 (kN)	350	327	350	360	337	360	1. 03	ハウレス	を駆動機構 フジング トレント ビーム	ばね反力 (kN)	350	327	350	360	337	360	1. 03	
炉心ショ 回転		ばね反力 (kN·m)	23800	26000	26000	27200	24900	27200	1.05		/ュラウド 転ばね	ばね反力 (kN·m)	23800	26000	26000	27200	24900	27200	1.05	
上部格	各子板	せん断力 (kN)	3320	2900	3320	2960	3670	3670	1.11	上音	邓格子板	せん断力 (kN)	3320	2900	3320	2960	3670	3670	1. 11	
炉心支	W.D. W. C. C.	せん断力 (kN)	4110	3750	4110	4110	4410	4410	1.08	炉心	心支持板	せん断力 (kN)	4110	3750	4110	4110	4410	4410	1.08	
上 サポ	- k	ばね反力 (kN)	1680	1720	1720	1760	1540	1760	1.03		上部 ポート	ばね反力 (kN)	1680	1720	1720	1760	1540	1760	1.03	
下 スタビ	ライザ	ばね反力 (kN)	453	441	453	446	428	446	0.99	スタ	下部 ビライザ	ばね反力 (kN)	453	441	453	446	428	446	0.99	
P心シュラウド あた	支持ロッド(1体 り)	軸力 (kN)	164	168	168	187	158	187	1.12		ド支持ロッド(1体 たり)	軸力 (kN)	164	168	168	187	158	187	1.12	
ā	表4-22 地震力	の応答比率	(8/8) (相	対変位,				8			表4-28 地震力	力の応答比率	(8/8) (‡	目対変位,	基準地	震動Ss	-D2))		記載の適正化
		Last orbin	A 1-	1-1-311-	T	対変位(-r .							7.00	対変位(510070 8 7			
部位	質点番号	標高 0. P. (m)	NS	I工認モ・ EW	1	相强 NS	i反映モラ EW	2	比率 (②/①)	部位	質点番号	標高 O. P. (m)	今E NS	可工認モ・ EW	デル	補的 NS	自反映モラ EW	2	比率 (②/①)	
	55		0.0	0. 0	包絡値 0.0	0.0	0.0	包絡値 0.0			55	7	0.0	0. 0	包絡値 0.0	0.0	0. 0	包絡値 0.0	-	
	50		23. 2	20, 6	23. 2	20, 6	25. 7	25, 7	1. 11		50	1	23. 2	20.6	23. 2	20.6	25. 7	25. 7	1.11	
}	49		40. 1	35. 6	40. 1	35. 5	44. 4	44. 4	1.11		49		40. 1	35. 6	40. 1	35. 5	44. 4	44. 4	1.11	
燃料集合体	48		46. 2	41. 2	46. 2	40. 9	51. 2	51. 2	1.11	燃料集合体	48	1	46. 2	41. 2	46. 2	40. 9	51. 2	51. 2	1.11	
WALLY IT IL	47		40. 0	35. 8	40. 0	35. 4	44. 2	44. 2	1. 11	松杆朱口平	47	1	40. 2	35.8		-7555			3777575	
}	46		23. 1	20. 7	23. 1	20. 5	25. 5	25, 5	1. 11						40. 0	35. 4	44. 2	44. 2	1.11	
-	54		0. 0	0.0	0. 0	0.0	0.0	0.0	-		46	-	23. 1	20.7	23. 1	20. 5	25. 5	25. 5	1.11	
	54		0.0	100000	100(100)	100000	2000024	1000000	$\overline{}$		54		0.0	0.0	0.0	0.0	0.0	0.0		
				枠囲み	今の内容は	商業機密の	観点からな	公開できま	せん。					枠囲	みの内容は	商業機密の	り観点から	公開できま	せん。	
			別紙-1	59									別紙-1	174						

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表

【VI-2-2-1 原子炉建屋の地震応答計算書】

変 更 前	変 更 後	備考
	4.4.5 補強反映耐震条件の作成結果	記載の適正化
	補強反映最大応答加速度を表4-29,補強反映床応答曲線を図4-23(水平方向)及び図4-24(鉛	
	直方向)並びに補強反映地震力を表4-30に示す。なお,床応答曲線の減衰定数は,耐震裕度の比	
	較的小さい配管系の主要な減衰定数である2.0%を代表として、設備評価に用いた標高の床応答曲線	
	を記載している。	
	また、同図表には添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に示される設計用最大応答	
	加速度及び設計用床応答曲線並びに添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構	
	造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示される設計用地震力を併	
	記して示す。	
	別紙-175	

_		30.
721	BB	- कत
		AII

表4-23 最大応答加速度 (1/7) (基準地震動 S s . 1,07PA .: 原子炉建屋)

AT 20	大人(小い日 //日/大正/文 (1/1/ (坐午地反對	0 0, 1.02111, . ///	(1 // (上)
	最	大応答加速度(×	9.80665 m/s²) ×1	. 0
標高	設計用最大	応答加速度	補強反映	耐震条件
0. P. (m)	水平方向(NS/EW	An	水平方向(NS/EW	A1 + 1 - 4
	包絡)	鉛直方向	包絡)	鉛直方向
50. 500	6. 07	_	5. 65	-
48. 725	_	1.74	_	1.78
41. 200	2. 86	1. 58	2. 78	1. 58
33. 200	2. 21	1. 47	2. 17	1.50
22. 500	1.77	1.30	1.81	1. 32
15. 000	1.65	1. 15	1.62	1. 18
6.000	1.31	0. 91	1.30	0. 91
-0.800	1. 11	0.73	1. 14	0.73
-8. 100	0.82	0. 57	0.82	0. 57

注:地震応答解析モデルにない標高に対しては「一」を記載。

表4-23 最大応答加速度 (2/7) (基準地震動 S s, 1.2ZPA:原子炉建屋)

3X4-23	取八心合加还反	(4/1) (盔毕地辰男	J 5 5 , 1. 22I A . /示	1 炉建座/
	最	大応答加速度(×	9.80665 m/s²) ×1	. 2
標高	設計用最大	応答加速度	補強反映	耐震条件
0. P. (m)	水平方向(NS/EW	No -t- Look	水平方向(NS/EW	NO
	包絡)	鉛直方向	包絡)	鉛直方向
50. 500	7. 28	_	6.77	_
48. 725	_	2. 09	_	2. 16
41. 200	3. 43	1.89	3. 37	1.89
33. 200	2.65	1.77	2.60	1.81
22. 500	2. 12	1. 56	2. 15	1. 58
15. 000	1.97	1. 37	1.93	1.39
6. 000	1. 57	1.09	1. 57	1.09
-0.800	1. 34	0.88	1. 36	0.88
-8. 100	0.99	0.69	0. 98	0.69

注:地震応答解析モデルにない標高に対しては「一」を記載。

変 更 後

表4-29 最大応答加速度 (1/7) (基準地震動 S s , 1.0ZPA, : 原子炉建屋)

	最	大応答加速度(×	9.80665 m/s²) ×1.	. 0
標高	設計用最大	応答加速度	補強反映	耐震条件
O. P. (m)	水平方向(NS/EW	外末七点	水平方向(NS/EW	W. * + + +
	包絡)	鉛直方向	包絡)	鉛直方向
50. 500	6.07	_	5. 65	_
48. 725	_	1.74	_	1. 78
41. 200	2.86	1.58	2.78	1. 58
33. 200	2. 21	1. 47	2. 17	1. 50
22. 500	1.77	1.30	1.81	1. 32
15. 000	1.65	1. 15	1.62	1. 18
6. 000	1. 31	0. 91	1.30	0. 91
-0.800	1. 11	0.73	1. 14	0. 73
-8. 100	0.82	0. 57	0.82	0. 57

注:地震応答解析モデルにない標高に対しては「一」を記載。

表4-29 最大応答加速度 (2/7) (基準地震動 S s , 1,2ZPA:原子炉建屋)

1X4-29	取八心台加述及	(4/1) (左毕地辰男	J S S , 1. 42FA . 床	丁炉建座)
	最	大応答加速度(×	9.80665 m/s²) ×1	. 2
標高	設計用最大	応答加速度	補強反映	耐震条件
0. P. (m)	水平方向(NS/EW	^\ + + + +	水平方向(NS/EW	^\ + + + +
	包絡)	鉛直方向	包絡)	鉛直方向
50. 500	7. 28	-	6. 77	-
48. 725	_	2.09	_	2. 16
41. 200	3. 43	1.89	3. 37	1.89
33. 200	2.65	1.77	2.60	1.81
22. 500	2. 12	1.56	2. 15	1.58
15.000	1. 97	1. 37	1. 93	1.39
6.000	1. 57	1.09	1.57	1.09
-0.800	1. 34	0.88	1. 36	0.88
-8. 100	0. 99	0.69	0. 98	0.69
汁,排電片效椒垢	エデルにおい舞声に	マ対しては「ニ」は	: : : : : : : : : : : : : : : : : : : 	

注:地震応答解析モデルにない標高に対しては「一」を記載。

別紙-163

別紙-176

記載の適正化

備考

記載の適正化

		変更						変更				備考
表4-2	23 最大応答力	巾速度 (3/7) (基				表4-	29 最大応答力			1. 0ZPA: 大型機		記載の適正化
	無古			(9.80665 m/s²)			+## 			9.80665 m/s ²)		
構造物	標高 0. P. (m)	水平方向	応答加速度	水平方向	耐震条件	構造物	標高 0. P. (m)	水平方向	応答加速度	補強反映 水平方向		
	0.1. (m)	(NS/EW包絡)	鉛直方向	(NS/EW包絡)	鉛直方向		0.1. (m)	(NS/EW包絡)	鉛直方向	(NS/EW包絡)	鉛直方向	
		1. 15	0. 59	1. 15	0. 59			1. 15	0. 59	1. 15	0. 59	
z → = ./ 		1. 19	0.63	1. 19	0.63	F 7 F 1.71.		1. 19	0.63	1. 19	0. 63	
原子炉本体の 基礎		1. 33	0.70	1.36	0.70	原子炉本体の基礎		1. 33	0.70	1. 36	0.70	
25 WE		1. 33	0.76	1.35	0.76	ZE WE		1. 33	0.76	1. 35	0. 76	
		1. 36	0.79	1.39	0.79			1. 36	0. 79	1. 39	0.79	
		1. 57	1.02	1.57	1. 02		1	1. 57	1. 02	1. 57	1. 02	
原子炉 圧力容器		_	1.05	_	1. 05	原子炉 圧力容器		_	1. 05	_	1.05	
ルノノイロロロ		3. 36	1.20	3. 13	1. 23	ルンノイで有許		3. 36	1. 20	3. 13	1. 23	
		1.51	1. 11	1.59	1. 11			1. 51	1. 11	1. 59	1. 11	
		1. 57	1. 32	1.65	1. 32			1. 57	1. 32	1.65	1. 32	
原子炉 しゃへい壁		1.66	1. 49	1.75	1. 49	原子炉 しゃへい壁		1.66	1. 49	1. 75	1. 49	
		1.71	1.58	1.68	1. 58			1. 71	1. 58	1.68	1. 58	
		1. 95	1.61	1.88	1. 63			1. 95	1. 61	1.88	1. 63	
		1. 13	0.63	1. 16	0.65		1	1. 13	0.63	1. 16	0.65	
		1.09	0.67	1. 12	0. 67			1. 09	0. 67	1. 12	0. 67	
		1.05	0.74	1.10	0.74			1.05	0.74	1. 10	0.74	
EZE		1.17	0.81	1.14	0.81	FZE		1. 17	0.81	1. 14	0.81	
原子炉 格納容器		1.37	0.85	1. 33	0.85	原子炉 格納容器		1. 37	0.85	1. 33	0.85	
111/11/11/11		1.68	0.91	1.70	0.93	10 /4 3/11 100		1.68	0.91	1.70	0.93	
		1.84	_	1.88	_			1.84	_	1.88	_	
		_	0. 95	_	0.95			_	0.95	_	0.95	
		_	0.98	_	0.96			_	0.98	_	0.96	
:設備評価に	使用しない <u>質</u>	<u>点</u> に対しては「-	」を記載。				用いる質点 (標 対しては「-」		大応答加速度を	記載。ただし <u>,</u> 記	設備評価に使用し	記載の適正化
		Г	枠囲みの内容は	商業機密の観点から公	開できません。			_				
								L	枠囲みの内容は商	業機密の観点から公開	できません。	
		別紙-	-164					別紙-	-177			

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

		変り	毛前					変り	更後			備考
表4-23	3 最大応答加			l.0ZPA:炉内構造		表4-2	29 最大応答加			1.0ZPA:炉内構造		記載の適正化
				(9.80665 m/s^2)						(9.80665 m/s^2)		
構造物	標高		応答加速度	補強反映	耐震条件	構造物	標高		応答加速度		耐震条件	
	0. P. (m)	水平方向 (NS/EW包絡)	鉛直方向	水平方向 (NS/EW包絡)	鉛直方向		0. P. (m)	水平方向 (NS/EW包絡)	鉛直方向	水平方向 (NS/EW包絡)	鉛直方向	
→ ↓ ∧ ☆// □□ →		8.46	1.40	7. 70	1.40			8.46	1.40	7. 70	1.40	
<u>気水分離器及</u> びスタンドパ		5.04	1.40	4. 09	1.40			5.04	1.40	4. 09	1.40	
<u>イプ</u>		3. 47	1.39	3. 30	1.39			3. 47	1.39	3. 30	1.39	
12		2.94	1. 37	2.89	1. 37			2. 94	1. 37	2. 89	1. 37	
		2.74	1.25	2. 69	1. 25			2.74	1. 25	2. 69	1. 25	
		2.57	1.24	2. 52	1.24			2. 57	1. 24	2. 52	1. 24	
		2.40	1. 22	2. 38	1.22	<u>炉心</u>		2.40	1. 22	2. 38	1. 22	記載の適正化
		2. 22	1.20	2. 22	1.20	<u>シュラウド</u>		2. 22	1.20	2. 22	1.20	
炉心		2.04	1. 18	2. 13	1. 18			2. 04	1. 18	2. 13	1. 18	
シュラウド		1.87	1. 15	1. 93	1. 15			1. 87	1. 15	1. 93	1. 15	
		1.70	1. 13	1. 77	1. 13			1.70	1. 13	1. 77	1. 13	
		1.64	1. 11	1. 71	1. 11			1.64	1. 11	1. 71	1. 11	
		1. 63	1. 07	1.72	1. 07			1. 63	1.07	1. 72	1.07	
		1. 59	1.03	1.63	1.02			1. 59	1.03	1. 63	1.02	
		1.64	1.38	1.48	1. 38			1. 64	1. 38	1. 48	1.38	
制御棒		4. 88	1.30	8.06	1. 30	制御棒		4. 88	1. 30	8. 06	1.30	
案内管		6. 30	1. 22	10. 34	1.21	案内管		6. 30	1. 22	10. 34	1. 21	
		3. 24	1. 10	2.89	1. 10			3. 24	1. 10	2. 89	1. 10	
		3. 24	1. 10	3. 15	1. 10			3. 24	1. 10	3. 15	1. 10	
to the table present of the table		1.60	1. 07	1.72	1. 07	that the late represent Little		1.60	1.07	1. 72	1.07	
引御棒駆動機 ##		2. 11	1.08	2. 24	1. 08	制御棒駆動機		2. 11	1.08	2. 24	1.08	
構 ハウジング		2. 78	1.09	2.70	1. 09			2. 78	1.09	2. 70	1.09	
, , , ,		2. 59	1.09	1.84	1.09			2. 59	1.09	1.84	1.09	
		1.64	1.10	1. 35	1. 10			1.64	1. 10	1. 35	1. 10	
		2. 57	_	2. 52	_			2. 57	_	2. 52	_]
		3. 38	_	3. 76	_			3. 38		3. 76	_	
		4. 55	_	5. 10	_			4. 55	_	5. 10	_	
燃料集合体		4. 79	_	5. 18	_	燃料集合体		4. 79	_	5. 18	_	
		4. 21	_	4. 47	_			4. 21	_	4. 47	_]
		3. 01	_	3. 19	_			3. 01	_	3. 19	_	
		1. 64	_	1.71	_			1. 64	_	1.71	_]
E:設備評価に	使用しない <u>質</u>	点に対しては「-	-」を記載。			注:設備評価に	使用しない <u>方</u> 向	<u>可</u> に対しては「-	」を記載。			記載の適正化
			枠囲みの内容は	は商業機密の観点から公	く開できません。				枠囲みの内容は	は商業機密の観点から	公開できません。	
		put to				'		P-1 /-				
		別紙	-165					別紙	-178			

		変 更	前					変り	更 後			備考
表4-2	23 最大応答			1.2ZPA:大型機器		表4-	29 最大応答力			1.2ZPA:大型機器		記載の適正化
				×9.80665 m/s ²) ×						< 9.80665 m/s ²) ×		101/2 - 22-12
構造物	標高	設計用最大	応答加速度	補強反映	耐震条件	構造物	標高	設計用最大	応答加速度	補強反映	耐震条件	
	0. P. (m)	水平方向 (NS/EW包絡)	鉛直方向	水平方向(NS/EW 包絡)	鉛直方向		0. P. (m)	水平方向 (NS/EW包絡)	鉛直方向	水平方向(NS/EW 包絡)	鉛直方向	
		1.38	0.70	1. 38	0.70			1.38	0.70	1. 38	0.70	
医フレナルの		1.43	0.76	1. 45	0.76	原 フ に ナ け の		1. 43	0.76	1. 45	0.76	
原子炉本体の 基礎		1.59	0.83	1.61	0.83	原子炉本体の 基礎		1.59	0.83	1. 61	0.83	
AS WE		1.60	0.91	1.62	0.90	AS INC		1.60	0.91	1. 62	0.90	
		1.64	0.95	1.66	0.95			1.64	0. 95	1. 66	0.95	
FF 7 15		1.88	1. 22	1.90	1. 22			1.88	1. 22	1. 90	1.22	
原子炉 圧力容器		_	1. 26	_	1. 26	原子炉 圧力容器		_	1. 26	_	1.26	
11.7月1日前		4. 03	1.44	3. 75	1. 47	11.77行前		4.03	1. 44	3. 75	1.47	
		1.82	1.33	1.93	1. 33			1.82	1. 33	1. 93	1.33	
		1.89	1.59	2.01	1. 59			1.89	1. 59	2. 01	1.59	
原子炉 しゃへい壁		1. 99	1.78	2.09	1. 78	原子炉 しゃへい壁		1. 99	1. 78	2. 09	1.78	
しや***		2.05	1.89	1.99	1.89	しゃ、(産		2.05	1.89	1. 99	1.89	
		2.33	1.93	2. 24	1. 93			2. 33	1. 93	2. 24	1.93	
		1.35	0.75	1. 37	0.77			1. 35	0.75	1. 37	0.77	
		1.30	0.80	1.30	0.82			1.30	0.80	1. 30	0.82	
		1.26	0.89	1.31	0.89			1. 26	0.89	1. 31	0.89	
		1.40	0. 97	1. 36	0.96			1.40	0. 97	1. 36	0.96	
原子炉 格納容器		1.64	1.02	1. 59	1.02	原子炉 格納容器		1.64	1. 02	1. 59	1.02	
伦州谷岙		2.01	1.09	2. 03	1.09	哈州谷 裔		2.01	1.09	2. 03	1.09	
		2.21	_	2. 24	_			2. 21	_	2. 24	_	
		_	1.14	_	1. 14			_	1. 14	_	1.14	
		_	1.18	_	1. 17			_	1. 18	_	1. 17	
注:設備評価に	使用しない <u>質</u>	<u>点</u> に対しては「-	・」を記載。				用いる質点 (模 対しては「一」		大応答加速度を	<u> 記載。</u> ただし,該	紫備評価に使用し	記載の適正化
		ĺ	枠囲みの内容に	は商業機密の観点から公	開できません。			1	枠囲みの内容は	t商業機密の観点から公開	昇できません。	
		,						'				
		別紙	-166					別紙	-179			

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

		変 更							更 後			備考
表4-2	23 最大応答力	中速度 (6/7) (基準				表4-	29 最大応答力	加速度 (6/7) (基				記載の適正化
	lere ala			9.80665 m/s ²)			I TOTAL AND A			9.80665 m/s ²) ×		
構造物	標高	設計用最大			2耐震条件	構造物	標高	設計用最大	心答加速度	補強反映	付震条件	
	0. P. (m)	水平方向(NS/EW 包絡)	鉛直方向	水平方向(NS/EW 包絡)	鉛直方向		0. P. (m)	水平方向 (NS/EW包絡)	鉛直方向	水平方向 (NS/EW包絡)	鉛直方向	
三小八放火四五		10. 20	1. 68	9. 39	1.68			10. 20	1.68	9. 39	1.68	
<u> </u>		6.05	1. 67	4. 90	1.67			6. 05	1.67	4. 90	1.67	
<u>イプ</u>		4. 16	1. 67	3. 96	1.67			4. 16	1.67	3. 96	1. 67	
		3. 53	1.65	3. 43	1.65			3. 53	1.65	3. 43	1.65	
		3. 29	1. 50	3. 26	1.50			3. 29	1.50	3. 26	1.50	
		3.08	1.48	3. 05	1.48			3. 08	1.48	3.05	1.48	
		2.88	1.46	2.88	1.46	<u>炉心</u>		2. 88	1.46	2.88	1.46	
		2. 67	1.43	2. 67	1.43	シュラウド		2. 67	1.43	2.67	1.43	
炉心		2. 45	1.41	2. 55	1.40			2. 45	1.41	2. 55	1.40	
シュラウド		2. 24	1. 38	2. 31	1. 38			2. 24	1.38	2. 31	1.38	
		2. 04	1. 36	2. 13	1. 36			2.04	1.36	2. 13	1.36	
		1. 96	1. 33	2.04	1. 33			1. 96	1. 33	2.04	1. 33	
		1. 96	1. 28	2.06	1. 28			1.96	1. 28	2.06	1. 28	
		1. 91	1. 24	1. 95	1. 24			1. 91	1.24	1.95	1. 24	
		1. 96	1. 65	1.77	1.65		1	1. 96	1.65	1.77	1.65	
制御棒		5. 85	1. 56	9.66	1.56	制御棒		5. 85	1.56	9.66	1.56	
案内管		7. 56	1. 46	12.40	1. 45	案内管		7. 56	1.46	12.40	1. 45	
		3. 89	1. 32	3. 47	1. 31			3. 89	1. 32	3. 47	1. 31	
		3.89	1. 32	3. 78	1.31		1	3. 89	1.32	3. 78	1. 31	
		1.92	1. 28	2.06	1. 28			1. 92	1. 28	2.06	1.28	
制御棒駆動		2. 53	1. 29	2. 69	1. 29	制御棒駆動		2. 53	1. 29	2.69	1. 29	
機構 ハウジング		3. 33	1.30	3. 27	1.30	機構 ハウジング		3. 33	1.30	3. 27	1. 30	
19229		3. 11	1. 31	2. 21	1. 31			3. 11	1.31	2. 21	1. 31	
		1. 96	1. 32	1.61	1.32			1. 96	1.32	1.61	1. 32	
		3. 08	_	3. 05	_		1	3. 08	_	3.05	_	
		4. 06	_	4. 51	_			4. 06	_	4.51	_	
		5. 45	_	6. 11	_			5. 45	_	6. 11	_	
然料集合体		5. 74	_	6. 20	_	燃料集合体		5. 74	_	6. 20	_	
		5. 05	_	5. 36	_			5. 05	_	5. 36	_	
		3. 61	_	3. 87	_			3. 61	_	3. 87	_	
		1.96	_	2.04	_			1. 96	_	2.04	_	
: 設備評価に	使用しない質点	点に対しては「一」	を記載。			注:設備評価/	こ使用しない方	· <u>向</u> に対しては「-	」を記載。			記載の適正化
				は商業機密の観点から	公開できません。			• • • • • • • • • • • • • • • • • • • •		ま商業機密の観点から2	関できません	
										S 回来版山 ∨/戦ホル*り2	ADII CC & E/Vo	
		別組	-167					別系	氏-180			

		変更	前			-1 原子炉建屋の地		変更	. 後			備考
表4-2	23 最大応答力	中速度(7/7)(基準		1.2ZPA:炉内構造	物系)	表4-	29 最大応答力			1.2ZPA:炉内構造物	勿系)	記載の適正化
		最大风	芯答加速度(×	$(9.80665 \text{ m/s}^2) \times$				最大	応答加速度(>	$\times 9.80665 \text{ m/s}^2) \times 10^{-1}$		
構造物	標高	設計用最大局	芯答加速度	補強反映		構造物	標高	設計用最大	芯答加速度	補強反映而	付震条件	
	O. P. (m)	水平方向(NS/EW 包絡)	鉛直方向	水平方向(NS/EW 包絡)	鉛直方向		0. P. (m)	水平方向(NS/EW 包絡)	鉛直方向	水平方向(NS/EW 包絡)	鉛直方向	
		4. 33	1.51	4. 07	1.51			4. 33	1.51	4. 07	1.51	
		3. 61	1.50	3. 40	1.50			3. 61	1.50	3. 40	1.50	
		3. 18	1.48	3. 09	1.48			3. 18	1. 48	3. 09	1.48	
		2. 83	1. 44	2.81	1.44			2.83	1. 44	2.81	1. 44	
		2. 61	1. 41	2.61	1.41			2.61	1. 41	2.61	1. 41	
		2. 43	1. 36	2.43	1.36			2. 43	1. 36	2. 43	1. 36	
		2. 33	1. 34	2.31	1.34			2. 33	1. 34	2. 31	1. 34	
原子炉		2. 25	1. 32	2.21	1.32	原子炉		2. 25	1. 32	2. 21	1. 32	
圧力容器		2. 18	1. 30	2.10	1.30	圧力容器		2. 18	1. 30	2. 10	1. 30	
		2. 11	1. 28	2.01	1.28			2. 11	1. 28	2.01	1. 28	
		2. 03	1. 26	1.93	1.26			2.03	1. 26	1. 93	1. 26	
		1. 99	1. 24	1.89	1.24	-		1. 99	1. 24	1.89	1. 24	
		1. 98	1. 23	1.89	1.23			1.98	1. 23	1.89	1. 23	
		1. 97	1. 21	1.88	1.21			1. 97	1. 21	1.88	1. 21	
		1. 94	1. 19	1. 92	1. 19			1. 94	1. 19	1. 92	1. 19	
		1. 91	1. 16	1.95	1. 16			1. 91	1. 16	1. 95	1. 16	
		1.87	1. 13	1.95	1.13			1.87	1. 13	1. 95	1. 13	記載の適正化
		点に対しては「一」	_	新業機密の観点から公開	できません。			<u>標高)</u> に <u>対する最</u>		は商業機密の観点から公	開できません。	

			変更前					変更後		備考
,	表	4-24 地震力	(1/8) (せん断力,基準地			表	4-30 地震力	J (1/8) (せん断力,基準地		記載の適正化
部位	質点 番号	標高 0.P. (m)	世ん! 設計用地震力 (NS/EW包絡)	所力(kN) 補強反映耐震条件 (NS/EW包絡)	部位	質点 番号	標高 0.P. (m)	世んB 設計用地震力 (NS/EW包絡)	新力(kN) 補強反映耐震条件 (NS/EW包絡)	
	15		559	537		15		559	537	
	14	<u> </u>	2.22×10^{3}	2.25×10^{3}	-	14		2.22×10^3	2.25×10^{3}	_
	13	l 1	4.40×10^{3}	4.40×10^{3}		13		4.40×10^{3}	4.40×10^{3}	_
原子炉	12		3.69×10^{3}	4. 14×10³	原子炉	12		3.69×10^{3}	4. 14×10 ³	
圧力容器	11		3.90×10^3	4.02×10^3	圧力容器	11		3.90×10^3	4.02×10^3	
	10		6.74×10^3	6.74×10 ³		9		6.74×10^3	6. 74×10 ³	
	8	[9.30×10^3	9.30×10^{3}		8		9.30×10^{3}	9.30×10^{3}	
	7	1	1.15×10^4	1.14×10^4		7		1. 15×10^4	1. 14×10 ⁴	
	7] [3.06×10^4	2.94×10^4		7		3.06×10^4	2.94×10^4	
原子炉	6		3.33×10^4	3.27×10^4	原子炉	6		3.33×10^{4}	3.27×10^4	
本体の基礎	5		3.64×10^4	3.57×10^4	本体の基礎	5		3.64×10^4	3.57×10^4	
	3		3.93×10^4	3.86×10^4		3		3.93×10^4	3.86×10^4	-
	20	1	7. 41×10^3	6. 97×10 ³		20		7.41×10^{3}	6.97×10^3	
	19	<u> </u>	7.84×10^{3}	7.69×10^{3}		19		7.84×10^{3}	7.69×10^{3}	1
原子炉 しゃへい壁	18	l 1	1.02×10^4	1.03×10 ⁴	原子炉	18		1.02×10^4	1. 03×10 ⁴	_
しやハバ壁	17	!	1.35×10^{4}	1. 31×10 ⁴	しゃへい壁	17		1.35×10^{4}	1.31×10^{4}	
	16 7		1.75×10^4	1.68×10^4		16 7		1.75×10^4	1.68×10 ⁴	
	30	1	312	312		30		312	312	
	29	l 1	609	609		29		609	609	
	28		3.46×10^3	3.36×10^{3}		28		3.46×10^{3}	3.36×10^{3}	
	27		4. 17×10^3	4.13×10^3		27		4.17×10^3	4. 13×10 ³	
原子炉	26 25	[3.45×10^4	3.45×10^4	原子炉	26 25		3.45×10^4	3.45×10^4	
格納容器	24	{	3.57×10^4	3.57×10^4	格納容器	24		3.57×10^4	3.57×10^4	
	23	· [3.65×10^4	3.65×10^4		23		3.65×10^4	3.65×10^4	
	22	[3.79×10^4	3.79×10^4		22		3.79×10^4	3.79×10^4	
	21		3.85×10^4	3.89×10^4		21		3.85×10^4	3.89×10^4	
	3		3.99×10^4	4.07×10^4		3		3.99×10^4	4.07×10^4	
			枠囲みの内容は商	 業機密の観点から公開できません。				枠囲みの内容は商	業機密の観点から公開できません。]
			別紙-177					別紙-190		

			変 更 前					変 更 後		備考
	表4-		(2/8) (せん断力, 基準地	1震動 S s) ff力 (kN)		表4		(2/8)(せん断力, 基準地	/震動Ss) 新力(kN)	記載の適正化
部位	質点番 号	標高 O.P. (m)	設計用地震力 (NS/EW包絡)	補強反映耐震条件 (NS/EW包絡)	部位	質点番 号	標高 0.P. (m)	設計用地震力 (NS/EW包絡)	補強反映耐震条件 (NS/EW包絡)	
	37		665	606		37		665	606	-
	36	ľ	1.47×10^{3}	1.27×10^{3}		36	l t	1.47×10^{3}	1.27×10^{3}	-
	35		2.43×10^{3}	2.56×10^{3}		35		2.43×10^3	2.56×10^{3}	-
	34		3.01×10^3	3.16×10^3		34		3.01×10^{3}	3.16×10^{3}	
	33		3.88×10^{3}	4.08×10^3		33		3.88×10^{3}	4.08×10^3	-
.l= >	32		3.75×10^3	4.43×10^3	<i>i</i> ∈ >	32		3.75×10^{3}	4.43×10^{3}	-
炉心 シュラウド	31		4.08×10^3	4.74×10^3	炉心 シュラウド	31		4.08×10^3	4.74×10^3	
V — / / /	29		4.39×10^3	4.88×10^3		29		4. 39×10^3	4.88×10^3	
	28		4.69×10^3	4.93×10^3		28	l [4.69×10^3	4.93×10^3	
	27		5.15×10^3	5.26×10^3		27	i	5.15×10^3	5.26×10^3	_
	26		5.72×10^3	5.72×10^3		26	i	5.72×10^3	5.72×10^3	_
	25		6.34×10^3	6.85×10^3		25	i	6.34×10^3	6.85×10^3	_
	51		6. 46×10^3	7. 11×10^3		51	1	6. 46×10^3	7. 11×10^3	
	53		1.54×10^{3}	2.36×10^{3}		53	l [1.54×10^{3}	2.36×10^{3}	
制御棒	45		406	646	制御棒	45	l 1	406	646	-
案内管	44		1.32×10^{3}	2.04×10^{3}	案内管	44		1.32×10^{3}	2.04×10^{3}	-
	52 43	ŀ	2.00×10^{3}	2.94×10^{3}		52 43		2.00×10^{3}	2.94×10^{3}	_
	38					38	l ⊦			-
制御棒	39		608	633	制御棒	39	l ⊦	608	633	-
駆動機構 ハウジング	40	ŀ	345	363	駆動機構ハウジング	40		345	363	-
,,,,,,,	41	-	27. 4	28. 5		41	l	27. 4	28. 5	_
	42		328	341		42		328	341	
	55		3.81×10^3	4.23×10^3		55		3.81×10^3	4.23×10^3	
	50		2.62×10^{3}	2.96×10^{3}		50	l i	2.62×10^{3}	2.96×10^{3}	-
I the stort 64- A 22	49	ľ	981	1.08×10^{3}	IAN JOI 44- A **	49		981	1.08×10^{3}	1
燃料集合体	48	ľ	1.05×10^3	1.23×10^3	燃料集合体	48		1.05×10^3	1.23×10^3	1
	47	ľ	2.63×10^3	2.98×10^{3}		47		2.63×10^3	2.98×10^3	1
	46 54	Ī	3.62×10^3	3.95×10^3		54		3.62×10^3	3.95×10^{3}	
			枠囲みの内容は商3 別紙-178	養機密の観点から公開できません。				枠囲みの内容は商3 別紙-191	 	

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

	表4-24	地震力 (3 /	変 更 前 8) (曲げモーメント, 基	作协震動 S e)		表4-30	抽震力 (3	変 更 後 /8) (曲げモーメント, 基準	作物雲動 S c)	備
		標高					標高		产地展動のS S / ント(kN・m)	記載の適正化
部位	質点 番号	0. P. (m)	設計用地震力 (NS/EW包絡)	補強反映耐震条件 (NS/EW包絡)	部位	質点 番号	0. P. (m)	設計用地震力 (NS/EW包絡)	補強反映耐震条件 (NS/EW包絡)	
	15		0	0		15		0	0	
	14	1	1.54×10^{6}	1.48×10^{6}		14	1	1.54×10^{6}	1.48×10^{6}	
	13	ı	6.38×10^{6}	6.38×10^{6}		13	1	6.38×10^{6}	6. 38×10 ⁶	
	12		1. 48×10^7	1.48×10^{7}		12	1	1.48×10^7	1.48×10^{7}	
原子炉 圧力容器	11		1.97×10^7	2. 13×10 ⁷	原子炉圧力容器	11		1.97×10^7	2.13×10^{7}	
工月存命	10		3.26×10^7	3.52×10^7	江川台前	10		3.26×10^7	3.52×10^7	
	9		5.21×10^7	5.42×10^7		9		5. 21×10^7	5.42×10^7	
	8		6.59×10^7	6.73×10^7		8		6.59×10^7	6. 73×10 ⁷	
	7		8.91×10^7	8.91×10^{7}		7		8.91×10^7	8.91×10^7	
	7		2.34×10^{8}	2.32×10^{8}		7		2.34×10^{8}	2.32×10^{8}	
	6		2.57×10^{8}	2.55×10^{8}	PR - 1 1-2	6		2.57×10^{8}	2.55×10^{8}	
原子炉 本体の基礎	5		2.96×10^{8}	2.93×10^{8}	原子炉 本体の基礎	5		2.96×10^{8}	2.93×10^{8}	
一下十十八五五	4		3.60×10^{8}	3.53×10^{8}	子中ツる地	4		3.60×10^{8}	3.53×10^{8}	
	3		4.28×10^{8}	4.20×10^{8}		3		4.28×10^{8}	4.20×10^{8}	
	20		0	0		20		0	0	
	19		2.05×10^7	1.93×10^{7}		19		2.05×10^7	1.93×10^{7}	
原子炉	18		4.16×10^7	3.91×10^7	原子炉	18		4. 16×10^7	3.91×10^7	
しゃへい壁	17		6.37×10^7	6.37×10^7	しゃへい壁	17		6. 37×10^7	6. 37×10^7	
	16		9. 11×10^7	9.30×10^7		16		9. 11×10^7	9. 30×10^7	
	7		1.45×10^{8}	1. 45×10 ⁸		7		1. 45×10^8	1.45×10^{8}	
	30		0	0		30		0	0	
	29		7.20×10^5	7.28×10^{5}		29		7. 20×10^5	7. 28×10^5	
	28		2.02×10^6	2.02×10^6		28		2.02×10^6	2.02×10^{6}	
	27		6.57×10^6	6.57×10^6		27		6. 57×10^6	6. 57×10 ⁶	
医乙烷	26		1.87×10^7	1.87×10^7	原子炉	26		1. 87×10^7	1.87×10^7	
原子炉 格納容器	25		1.64×10^{8}	1.64×10^{8}	原子炉格納容器	25		1. 64×10^8	1.64×10^{8}	
IT WALL DIL	24		2.65×10^{8}	2.65×10^{8}	114 45 2-17 118	24		2.65×10^{8}	2.65×10^{8}	
	23		4.42×10^{8}	4.42×10^{8}		23	[4.42×10^{8}	4. 42×10 ⁸	
	22		6. 25×10^8	6.25×10^8		22		6, 25×10^8	6. 25×10 ⁸	
	21		7. 02×10^8	7.02×10^{8}		21		7. 02×10^8	7.02×10^{8}	
	3		7.59×10^{8}	7.59×10^{8}	-	3		7. 59×10^8	7. 59×10^8	
			枠囲みの内容は商業 別紙-179	2機密の観点から公開できません。				枠囲みの内容は商業 別紙−192	核機密の観点から公開できません。	

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

			変更前					変更後		備る
	表4-24	地震力(4	1/8) (曲げモーメント, 3			表4-30) 地震力(4/8) (曲げモーメント, 基	The second secon	記載の適正化
		標高		ペント(kN・m)	1 ng ==	200	標高		ント(kN・m)	ロレ事人・ヘンプロコエー」に
部位	質点番号	0. P. (m)	設計用地震力 (NS/EW包絡)	補強反映耐震条件 (NS/EW包絡)	部位	質点番号	0. P. (m)	設計用地震力 (NS/EW包絡)	補強反映耐震条件 (NS/EW包絡)	
	37		0	0		37		0	0	
	36		8.53×10^5	7.77×10^{5}		36		8. 53×10^5	7.77×10^{5}	
	35		2.73×10^{6}	2.41×10^{6}		35		2.73×10^{6}	2.41×10^{6}	
	34		6. 72×10^6	5.72×10^{6}		34		6. 72×10^6	5.72×10^6	
	33		9.34×10^{6}	8.78×10^{6}		33		9.34×10^{6}	8.78×10^{6}	
	- 55		8.24×10^6	7.09×10^{6}		- 55		8.24×10^6	7.09×10^{6}	
let s	32		1.07×10^7	1.04×10^{7}	Act N	32		1.07×10^7	1.04×10^7	
炉心 シュラウド	31		1.21×10^7	1.30×10^{7}	炉心 シュラウド	31		1.21×10^{7}	1.30×10^{7}	
7 1 7 7 1	30		1.49×10^7	1.63×10^{7}	V - 2 / 1	30		1.49×10^7	1.63×10^{7}	
	29		1.79×10^7	2.01×10^{7}		29		1.79×10^7	2.01×10^7	
	28		2.10×10^7	2.42×10^7		28		2.10×10^7	2.42×10^7	
	27		2.43×10^7	2.90×10^{7}		27		2.43×10^7	2.90×10^7	
	26		2.77×10^7	3.22×10^7		26		2.77×10^7	3.22×10^7	
	25		3. 48×10^7	3.76×10^7		25		3.48×10^7	3.76×10^7	
	51		4.21×10^7	4.42×10^7		51		4.21×10^7	4.42×10^7	
	53		0	0		53		0	0	
制御棒	45		1.81×10^{6}	2.77×10^{6}	制御棒	45		1.81×10^{6}	2.77×10^6	
案内管	44		2.28×10^{6}	3.49×10^{6}	案内管	44		2.28×10^6	3.49×10^{6}	
	52		0	0		52		0	0	
	43		0	0		43		0	0	
	38		2.19×10^{6}	3.22×10^{6}		38		2.19×10^{6}	3.22×10^{6}	
制御棒駆動	30		6.60×10^{5}	6.87×10^{5}	制御棒駆動	(000)		6. 60×10 ⁵	6. 87×10 ⁵	
機構	39		7.90×10^4	8.14×10^4	機構	39		7. 90×10 ⁴	8. 14×10 ⁴	
ハウジング	40		3.51×10^{5}	3.62×10^{5}	ハウジング	40		3.51×10^{5}	3.62×10^{5}	
	41		3.49×10^{5}	3.63×10^{5}		41		3.49×10^{5}	3. 63×10 ⁵	
	42		0	0	_	42		0	0	
	55		0	0		55		0	0	
	50		2.68×10^{6}	2.98×10^{6}		50		2.68×10^6	2.98×10^{6}	
	49		4.52×10^{6}	5.07×10^{6}		49		4.52×10^6	5.07×10^6	
燃料集合体	48		5. 11×10^6	5.73×10^6	燃料集合体	48		5.11×10^{6}	5.73×10^{6}	
	47		4.38×10^{6}	4.87×10^{6}		47		4.38×10^{6}	4.87×10^{6}	
	46		2.54×10^{6}	2.80×10^{6}		46		2.54×10^{6}	2.80×10^{6}	
	54		0	0		54		0	0	
			枠囲みの内容は値 別紙-180	新業機密の観点から公開できません。				枠囲みの内容は商業 別紙-193	機密の観点から公開できません。	

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-1 原子炉建屋の地震応答計算書】

	-12.1		更前	91.6		-12.4		更後		備す
	表4-24		(軸力,基準地震)			表4-30		8) (軸力, 基準地震重		記載の適正化
部位	質点番号	標高 0. P. (m)	設計用地震力	i (kN) 補強反映耐震条件	部位	質点番号	標高 0. P. (m)	設計用地震力	i (kN) 補強反映耐震条件	
	31		204	204		31		204	204	
	30	l h	1.49×10^{3}	1.49×10^{3}		30		1.49×10^{3}	1.49×10^{3}	
	29	F	2.58×10^{3}	2.61×10^{3}		29		2.58×10^{3}	2.61×10^{3}	
原子炉	28		3.30×10^{3}	3.34×10^{3}	原子炉	28		3.30×10^{3}	3.34×10^{3}	
圧力容器	27	l	4.25×10^{3}	4.30×10^{3}	圧力容器	27		4.25×10^{3}	4.30×10^{3}	
	26	l 1	5.10×10^{3}	5.16×10^{3}		26		5.10×10^3	5.16×10^{3}	
	25		5.96×10^{3}	6.02×10^3		25		5.96×10^3	6.02×10^3	
	24		1. 23×10 ⁴	1. 23×10 ⁴		24 18		1. 23×10 ⁴	1. 23×10 ⁴	
	18 18		3.38×10^{4}	3. 42×10 ⁴		18		3.38×10^{4}	3. 42×10 ⁴	
原子炉	17	-	3.57×10^4	3. 61×10 ⁴	原子炉	17		3.57×10^4	3.61×10^4	
本体の基礎	16		3.76×10^4	3. 80×10 ⁴	本体の基礎	16		3.76×10^4	3.80×10^4	
	15		3.92×10^4	3. 96×10 ⁴		15 14		3.92×10 ⁴	3.96×10 ⁴	
	14 23		2.64×10^{3}	2.70×10^{3}		23		2.64×10^{3}	2. 70×10 ³	
	22	-	5.92×10^{3}	6.04×10^{3}	AND THE STREET	22		5.92×10^3	6.04×10^{3}	
原子炉	21		1. 16×10 ⁴	1. 18×10 ⁴	原子炉	21		1.16×10 ⁴	1. 18×10 ⁴	
しゃへい壁	20	-	1. 57×10 ⁴	1. 59×10 ⁴	しゃへい壁	20		1.57×10^4	1.59×10 ⁴	
	19 18		1.98×10^4	2. 00×10 ⁴		19 18		1.98×10^4	2.00×10 ⁴	
	41		143	142		41		143	142	
	40	-	285	5715158 E-56-558		40		285	283	
	39		1.10×10^{3}	283 1.10×10^{3}		39		1.10×10^{3}	1.10×10^{3}	
	38	-	1.55×10^{3}	1. 10×10 ³		38		1.55×10^{3}	1.55×10^{3}	
原子炉	37	H	2.97×10^{3}	2.97×10^{3}	原子炉	37		2.97×10^{3}	2.97×10^{3}	
格納容器	36		4.01×10^{3}	4.01×10^{3}	格納容器	36		4.01×10^{3}	4.01×10^3	
	35		4.77×10^{3}	4.77×10^{3}		35		4.77×10^3	4.77×10^3	
	34		6.10×10^{3}	6.10×10^{3}		34		6. 10×10^3	6.10×10^3	
	33		6.69×10^3	6.69×10^{3}		33 32		6.69×10^3	6.69×10^3	
	32 14		7.99×10^{3}	8. 47×10 ³		14		7.99×10^3	8. 47×10^3	
			枠囲みの内容は商業	機密の観点から公開できません。	160			枠囲みの内容は商業機	密の観点から公開できません。	
		別	紙-181				5	川紙-194		

			更 前					更後		備考
	表4- <u>24</u> 地	2震力 (6/8)	(軸力,基準地震動			表4-30		(軸力,基準地震動		記載の適正化
部位	質点番号	標高 O.P. (m)	設計用地震力	力(kN) 補強反映耐震条件	部位	質点番号	標高 0.P. (m)	設計用地震力	力(kN) 補強反映耐震条件	
	55		108	108		55		108	108	
	54		324	324		54		324	324	
	53		498	498		53		498	498	
	52		704	704		52		704	704	
	51		1.02×10^{3}	1.02×10^3		51		1.02×10^{3}	1.02×10^{3}	
	50		1.20×10^{3}	1.20×10^{3}		50		1.20×10^{3}	1.20×10^{3}	
炉心	49		1.23×10^{3}	1.23×10^3	炉心	49	-	1. 23×10 ³	1. 23×10 ³	
シュラウド	48		1.27×10^{3}	1.27×10^{3}	シュラウド	48		1.27×10^{3}	1.27×10^{3}	
	47		1.30×10^3	1.30×10^{3}		47	-	1.30×10^{3}	1.30×10^{3}	
	46 45		1.34×10^{3}	1.34×10^{3}		46	1	1.34×10^{3}	1.34×10^3	
	44		1.37×10^3	1.36×10^{3}		45		1.37×10^{3}	1.36×10^{3}	
	43		1.70×10^{3}	1.69×10^{3}		43		1.70×10^{3}	1.69×10^{3}	
	42		1.72×10^3	1.72×10^3		42		1.72×10^3	1.72×10^3	
	41		1.74×10^3	1.73×10^{3}		41	-	1.74×10^{3}	1.73×10^3	
	64		2.55×10^{3}	2.55×10^{3}		64		2.55×10^{3}	2.55×10^{3}	
制御棒	63		2.62×10^{3}	2.62×10^{3}	制御棒	63		2.62×10^{3}	2.62×10^{3}	
案内管	62 61		2.68×10^{3}	2.66×10^{3}	案内管	62		2.68×10^{3}	2.66×10^{3}	
	61		2.76×10^{3}	2.76×10^{3}		61	-	2.76×10^{3}	2.76×10^{3}	
	60		693	693		60		693	693	
制御棒駆動	59		633	633	制御棒駆動機構	59		633	633	
機構 ハウジング	58		572	572	一	58		572	572	
, , , ,	57					57				
	56		511	511		56		511	511	
炉心シュラウド	51		16. 4	16. 4	炉心シュラウド	51		16. 4	16. 4	
支持ロッド	25		10. 1	10.1	支持ロッド	25		10.1	10. 1	
			枠囲みの内容は商業機密の	観点から公開できません。				枠囲みの内容は商業機密の	D観点から公開できません。	
		別系	紙-182				別系	 —195		

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表

			変 更 前					変更後		備考
表4	- <u>24</u> 地震	カ (7/8) (は	(ね反力, せん断力及び軸)		表4	<u>-30</u> 地景	《力(7/8)(ずね反力、せん断力及び軸力		21半の英工ル
	rt	答種別	ばね反力, せ	ん断力及び軸力	000000		rt-At-secon	ばね反力, せん	い断力及び軸力 アルファイン	記載の適正化
部位		が単位	設計用地震力 (NS/EW包絡)	補強反映耐震条件 (NS/EW包絡)	部位		応答種別 及び単位	設計用地震力 (NS/EW包絡)	補強反映耐震条件 (NS/EW包絡)	
原子炉圧力 スタビライ	· ザ	だね反力 (kN)	8.25×10^3	8. 34×10 ³	原子炉圧力 スタビラ	イザ	ばね反力 (kN)	8.25×10^3	8.34×10^{3}	
原子炉格納 スタビライ	゙ ザ	『ね反力 (kN)	1.58×10^4	1.71×10 ⁴	原子炉格納スタビラ		ばね反力 (kN)	1.58×10^4	1.71×10 ⁴	
原子炉格納シヤラク	1	ばね反力 (kN)	3.41×10^4	3. 31×10 ⁴	原子炉格納シヤラ		ばね反力 (kN)	3. 41×10^4	3. 31×10 ⁴	
ベント管	0	fね反力 (kN)	2.06×10^3	5.85×10^3	ベント行		ばね反力 (kN)	2.06×10^3	5.85×10^{3}	
燃料交換	(*	だね反力 (kN)	1.71×10^3	1. 65×10 ³	燃料交換	ズ	ばね反力 (kN)	1.71×10^{3}	1.65×10^{3}	
所員用 エアロッ	ク	『ね反力 (kN)	304	304	所員用エアロッ	2	ばね反力 (kN)	304	304	
制御棒駆動 ハウジン レストレン ビーム	グト	ぱね反力 (kN)	473	488	制御棒駆動 ハウジン レストレ: ビーム	グノト	ばね反力 (kN)	473	488	
炉心シュラ 回転ばれ	2	ばね反力 (kN·m)	4.21×10^7	4. 42×10 ⁷	炉心シュラ 回転ばれ	ウド	ばね反力 (kN·m)	4.21×10^{7}	4. 42×10 ⁷	
上部格子板 せん断力 (kN)		(kN)	3.96×10^3	4.40×10^3	上部格子	板	せん断力 (kN)	3.96×10^3	4.40×10^3	
炉心支持	仅	た断力 (kN)	4.52×10^3	4.89×10^{3}	炉心支持	板	せん断力 (kN)	4.52×10^3	4.89×10^{3}	
上部サポート		tね反力 (kN)	5.91×10^3	6. 09×10 ³	上部サポー		ばね反力 (kN)	5.91×10^3	6.09×10^3	
下部スタビライ	ナザ	ばね反力 (kN)	1. 61×10^3 1. 60×10^3		下部スタビラ	イザ	ばね反力 (kN)	1.61×10^{3}	1.60×10^{3}	
炉心シュラ 支持ロッ (1体あた)	k	軸力 (kN)	1.36×10^3	1.53×10^3	炉心シュラ 支持ロッ (1体あた	K	軸力 (kN)	1.36×10^{3}	1.53×10^3	
	表4-	24 地震力	(8/8) (相対変位,基準出	也震動Ss)		表4	- <u>30</u> 地震力	1 (8/8) (相対変位, 基準地	震動Ss)	
		標高	相対	変位 (mm)			(mr sta	相対	変位 (mm)	記載の適正化
部位	質点番号	0, P. (m)	設計用地震力 (NS/EW包絡)	補強反映耐震条件 (NS/EW包絡)	部位	質点番号	標高 0. P. (m)	設計用地震力 (NS/EW包絡)	補強反映耐震条件 (NS/EW包絡)	
	55	\Box	0	0		55		0	0	
	50	l l	27. 4	30, 5		50		27. 4	30. 5	
	49	l l	47. 2	52. 4		49		47. 2	52. 4	
燃料集合体	48] [54. 2	60. 2	燃料集合体	48		54. 2	60, 2	
	47] [46.8	52. 0		47		46. 8	52. 0	
	46] [27.0	30. 0		46		27.0	30. 0	
	54	ldot	0	0		54		0	0	
			枠囲みの内容はii	新業機密の観点から公開できません。				枠囲みの内容は商 別紙-196	業機密の観点から公開できません。	

変更前	変 更 後	備考
4.4.4 影響検討結果	4.4.6 影響検討結果	
「4.4.1 影響検討方法」に示す原子炉建屋における改造工事に伴う重量増加を反映した影響	- 「4.4.1 影響検討方法」に示す原子炉建屋における改造工事に伴う重量増加を反映した影響	
検討フロー(図4-17)に従い、簡易評価、詳細評価及び追加検討を以下のとおり実施した。	検討フロー(図4-17)に従い,簡易評価による検討対象設備の代表選定,詳細評価及び追加検	記載の適正化
	計を以下のとおり実施した。	
【簡易評価】	【簡易評価 <u>による検討対象設備の代表選定</u> 】	記載の適正化
簡易評価の結果、一部の設備(25設備)を除き、条件比率が設備の裕度以下となることを	簡易評価により、条件比率が設備の裕度を上回った25設備を検討対象設備の代表として選定	記載の適正化
<u>確認した。</u>	<u>した。</u>	
【詳細評価】	【詳細評価】	
簡易評価において条件比率が設備の裕度を上回った25設備に対して補強反映耐震条件を用	簡易評価において条件比率が設備の裕度を上回った25設備に対して補強反映耐震条件を用い	
いた詳細評価を行い、制御棒(挿入性評価)を除く24設備については、発生値が許容値以下	た詳細評価を行い、制御棒(挿入性評価)を除く24設備については、発生値が許容値以下とな	
となることを確認した。	ることを確認した。	
制御棒 (挿入性評価) については、詳細評価において発生値 (燃料集合体相対変位) が許	制御棒(挿入性評価)については、詳細評価において発生値(燃料集合体相対変位)が許容	
容値(確認済相対変位)を上回ったため、以下のとおり追加検討を行った。	値(確認済相対変位)を上回ったため,以下のとおり追加検討を行った。	
【追加検討】	【追加検討】	
制御棒(挿入性評価)に対する追加検討は、以下の手順のとおり、耐震計算書と同様に炉	制御棒(挿入性評価)に対する追加検討は、以下の手順のとおり、耐震計算書と同様に炉内	
内構造物系の地震応答解析により発生値(燃料集合体相対変位)を算出し、発生値(燃料集	構造物系の地震応答解析により発生値(燃料集合体相対変位)を算出し、発生値(燃料集合体	
合体相対変位)が許容値(確認済相対変位)以下となることを確認した。なお、検討に用い	相対変位)が許容値(確認済相対変位)以下となることを確認した。なお,検討に用いる地震	
る地震動は、燃料集合体相対変位が最大となる基準地震動Ss-D2を用いた。	動は,燃料集合体相対変位が最大となる基準地震動Ss-D2を用いた。	
① 今回工認モデルによる材料物性の不確かさを考慮する検討ケース*1ごとに応答比率を考	① 今回工認モデルによる材料物性の不確かさを考慮する検討ケース*1ごとに応答比率を考	
慮した燃料集合体相対変位(各検討ケースの燃料集合体相対変位×応答比率(1.11)*	慮した燃料集合体相対変位(各検討ケースの燃料集合体相対変位×応答比率(1.11)*	
²)を確認し,確認済相対変位を上回る検討ケース(ケース3)を抽出(表4- <u>25</u> 参照)。	²)を確認し,確認済相対変位を上回る検討ケース(ケース3)を抽出(表4-3 <u>1</u> 参照)。	
② 抽出した検討ケースの地震応答解析モデルに改造工事に伴う重量増加を反映した地震応	② 抽出した検討ケースの地震応答解析モデルに改造工事に伴う重量増加を反映した地震応答	
答解析モデルを作成。	解析モデルを作成。	
③ 作成した地震応答解析モデルを用いて地震応答解析を行い、燃料集合体相対変位 (55.2)	③ 作成した地震応答解析モデルを用いて地震応答解析を行い、燃料集合体相対変位(55.2	
mm)が確認済相対変位(60mm)以下となることを確認。	mm)が確認済相対変位(60mm)以下となることを確認。	
上記のとおり、簡易評価を踏まえて詳細評価対象となった25設備に対する詳細評価及び追加検		記載の適正化
討の結果 <u>、</u> いずれの設備(25設備)においても発生値が許容値以下		記載の適正化
別紙-184	別紙-197	

変 更 前

となることを確認した。そのうち、発生値が当該設備の耐震計算書に記載の発生値を上回った設 備(9設備)の評価結果を表4-26に示す。

以上のことから、原子炉建屋の設備の補強や追加等の改造工事に伴う重量増加による影響を考 慮しても原子炉建屋内に設置される機器・配管系の耐震性への影響がないことを確認した。

器及び原子炉本体の基礎の地震応答計算書」に示す検討ケース。

*2:基準地震動Ss-D2による、補強反映モデルの燃料集合体相対変位/今回工認モデル の相対変位により算出 (表4-22 (8/8) 参照)。

表4-25 追加検討を行う検討ケースの抽出結果

今回工認モデル による材料物性 の不確かさを考 慮する検討ケー ス	相対変位(mm)	応答比率を考慮した 燃料集合体相対変位 (燃料集合体相対変 位 × 応 答 比 率 (1.11))	確認済 相対変位 (mm)	追加検討 ケース*
ケース 1 (基本ケース)	47.7	53. 0		_
ケース 2	50. 5	56. 1		_
ケース3	54. 2	<u>60. 2</u>		0
ケース 4	39. 9	44. 3	60	_
ケース 5	40.6	45. 1		_
ケース 6	39. 0	43. 3		_
ケース7	48. 0	53. 3		_

注記*: 応答比率を考慮した燃料集合体相対変位が確認済相対変位60mmを上回る場合を追加検討 ケースとする。

検討対象設備の代表として選定した25設備に対する詳細評価及び追加検討の結果を表4-32に 示す。いずれの設備(25設備)においても発生値が許容値以下となることを確認した。なお、詳│記載の適正化 細評価及び追加検討による発生値が当該設備の耐震計算書に記載の発生値を上回った設備は9設 記載の適正化 備である。

変更後

以上のことから、原子炉建屋の設備の補強や追加等の改造工事に伴う重量増加による影響を考 慮しても原子炉建屋内に設置される機器・配管系の耐震性への影響がないことを確認した。

注記*1:添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容」注記*1:添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容 器及び原子炉本体の基礎の地震応答計算書」に示す検討ケース。

> *2:基準地震動Ss-D2による、補強反映モデルの燃料集合体相対変位/今回工認モデル (基本ケース)の相対変位により算出(表4-28(8/8)参照)。

表4-31 追加検討を行う検討ケースの抽出結果

	25 <u>51</u>	.11 7 (英計グ : 一个 (7)1田山)柏		
今回工認モデル による材料物性 の不確かさを考 慮する検討ケー ス	燃料集合体 相対変位(mm) (NS/EW包絡)	応答比率を考慮した 燃料集合体相対変位 (燃料集合体相対変 位 × 応 答 比 率 (1.11))	確認済 相対変位 (mm)	追加検討 ケース*
ケース 1 (基本ケース)	47.7	53. 0		_
ケース 2	50. 5	56. 1		_
ケース 3	54. 2	<u>60. 2</u>		0
ケース 4	39. 9	44. 3	60	_
ケース 5	40.6	45. 1		_
ケース 6	39. 0	43. 3		_
ケース 7	48. 0	53. 3		_

注記*: 応答比率を考慮した燃料集合体相対変位が確認済相対変位60mmを上回る場合を追加検討 ケースとする。

別紙-185

別紙-198

3-14-84

備考

記載の適正化

記載の適正化

						変	更	前													変	更	後					備考
																											記載の	適正化
1	計細評価及び追加検討の結果	209	386	458	501	264	1	264	393	393	150	240	1 60	加検討の結果。		耐線計算書に記載の 第4倍 (Nba) **2	(大台市歌号SS)	675	0.31	0.0034	663	657	684	0.614	0.3706	468 7 *3	0. 8529	
	詳細評価及 (基準 発生債 (MPa)	204	0,9135*	442	445	255	0.317	261	382	444	201	278	0.4072	回を適用。 3)における迅			0		-	376	354	354	375	-	1	386	-	
	応力分類	軸圧縮・一多にも	一伙十二伙応刀 被労*2	: 依応力		· 茨応力 (新合社) 	疲労**2	一次応力(組合せ) 一次十二次応力	数方"。 一次十二次応力	- 次十二次応力 被分*2	·次十:次応力 疲労*3	一次十二次応力	疲労**2和好安你**	F [SA] と記載。 する等価繰返し回数 181 回る検討ケース (ケース	来 ①	詳細評価及び追加検料の結果 (基準地減動Ss)	発生値(MPa)*3 許等	199	0.30	426 0,0025	626	629	633	0, 4641	0.2885	484	0. 9135**	
26 詳細暦価及び追加検討の結果	华仙等位.	LY	配管本体	配管本体	アイウェルベント国口部	ドプレー	トヘッダ(一般部以外)	ンドブレート(上側)トヘッダ(一般部以外)		ベント額 (一般部以外)	配管本体	配管本体		事故等対処設備の評価条件を)最大値として、個別に設定 	詳細評価及び追加検討の結			1		(交) (数)	1		×	被劣"。	3 8		被分。 前衛を対策を18A1と記載。 前衛を対策かる。 記載の発生度が上回ったり設備。 変型に設備する等面構造し三数	
表	評価条件*1	DB	SA	DB	DB FF		イング	NS AS	DB		DB	SA	DB	(件を「DB」, 重人等価線返し回数の合体相対変(い)が割	及 4-32			¥ #		配管本体	配管本体	配管本体	9	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	配管木体	配符本体	- 村大学校等な名詞語 一村大学校等な名詞語 一村大学校等な名詞 銀灯 銀灯 電灯 電灯 電灯 電灯 電灯 電灯	
	設備名称	シュラウドサポート	七. 然気 ※配. 音 (MS-004)	原子炉補機冷却水系配管 (KRCW-205)	ドライウェルベント国口部		ダウンカマ			ディング	可燃性ガス濃度制御系配管 (PcS-006)	原子炉格袖容器フィルタベント系配金	(FCVS-004) 制御榛(插入性製価)	注記※1:設計基準対象施設の評価条件を「DB」,重大事故等対処設備の評価条件を「SA」と記載。 ※3:時代は無次元。 ※3:時代は「mm」。 ※4:設備の左歯付周期に応じた等価繰返し回敷の最大値として、個別に設定する等価繰返し回数 181 回を適用。 ※4:設備の左歯付周期に応じた等価繰返し回敷の最大値として、個別に設定する等価繰返し回数 181 回を適用。 ※5:詳細評価で発生値(燃料集合作相対変化)が許容値(確認済相対変化)を上回る検討ケース(ケース 3)における迫加検討の結果。		\$P\$	2	インドンボート	感交替器	燃料ブール冷却浄化系配管 DB (FPC-002)	原子炉再精農系配管 (PLR-001)	原子が中衛職系配告 DH (PLR-002)		(MS-001)	上蒸気系配管 (MS-003)	工蒸気系配管 (MS-004)	施及の評価条件を ・ のある。 ・ のからは ・ のから ・ のがら ・ のがら ・ のから ・ のがら ・	
						5	川紙	186						*M						24		別紙	-199				190 And	

 1 原子炉建屋の地震	ла д н	17-6	_		强	更多	Į ê	髮						備考
														記載の適正化
	画版計算者に記載の 発生値(MPa) *2 (現策地震劇Ss)	783	680	370	0.0887	0, 6667	122	410 0.3	292	0.8674	211	432 7 = 3	1480	
	后後型の指果 動Ss) 群外値 (MPa)	197	366	366	1 366	1	414	458	318	1	206	501	109	
果(2/3)	詳細評価及び追加検討の結果 (基準地震動Ss) 発生値(MPa) **2	776	664	338	0.0647	0, 5037	106	412	292	0.7312	195	445	888	
詳細評価及び追加検討の結果(2/3)	心力分類	·次十二次応力 疲力**	一次十二次応力	数另*** · 後十二次応力	★ 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	板劣**	+	一次十二次応力	- 74 - 1 74 5 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- ペトーペルン 疲労**	一次十二次松力	一次—二次応力	- 次十一次のJ - 次十一次のJ - 次十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	
-	評価部位	胴板	配管本体	配管本体		配管本体	配管本体	配管本体	配管本体	配管本体	配管本体	ドルイウェル	等公司 2011年10日 10日 10日 10日 10日 10日 10日 10日 10日 10日	
#8 -	評価条件。1	DB	DB	DB		DB	VS	DB	DB	DB	VS	DB	SA 発件が「BB」 加入事例 が開発値を上回った地 お取びょる発生値が重さ	
	设籍仝称	我留熟除去系熱交換器	後留熟除去系配管 (RHR-003)	改化热除力系配管	(KIIK-004)	發揮熱除去系配管 (RHR-005)	發射熱除去系配管 (RIIR 010)	原十扩重聚化基外水型的 (KRCW-205) 普通和医电头用冰槽線	(CRD-005-1)	制御棒駆動水压系配管 (CRD-017-3)	ほう酸水注入系配管 (SLC-003)	ドライヴェルベント国口部	28. 在1995年1. 68計算事分會議員の課價条件が「BB」無人事務等等の可能等。 8.2.一次一二次在7.300条件對次部等資本上回った動金は、數分評価を共働する。 8.3. 非難等地方の可用能力が開発する上回った動金は、数分評価を共働する。 8.4. 单位は無次元。	
L						別希	I{−200	0					—J <u>ā</u>	

変 更 前								3	变	更	後						備考
																	記載の適正化
		会後計算者に記載の 発生値(NPa)*2 (基準地震動Ss)	218	516	0.284 - ***	592	0,547	418 + *3	0.489	200 - +3	302	0.3819	274 ***	439	0.4011	2016	
		A加校計の結果 (動Ss) 許容質 (MPa)	264	158	264	473	1 393	393	1	150	240	1	240	398	- 09	00 합의 02 結 果.	
	64 (3/3)	詳細評価及び近 (基準地額 36年値(MPa)*2	255	530	0.317	628	0.771	444	0,635	20483	294	0.3510	278	439	0.3983	50.6 方便参選用。 F	
	平価及び追加検討の	詳細評価及び追加値割の結果 (E有通額動 S s) (E有通額動 S s) (E を担分機 (NPs) s を生質(NPs) s 音楽体質(NPs) s 音术体質(NPs) s 音术体育	· 次応力 (組合せ)	一次一二次応力	被分*** 一次応力 (**) (**)	- ※一二次応力	数3.**	- 次一二次応力	被穷**	一次一二次応力 前分**	· 秋一二秋応力	1200	一次一二次応力 被分**	一次一二次応力	数分**	12 N N N H N N N N N N N N N N N N N N N	
	表 4-32 詳細書	250	ドンアンフート (上意)	スントヘッグ	ドンドンフート	イントイング	(一般部以外)	ムント部(一巻地以外)		直管本体		配管本体	配管本体	配答本体		《春秋等本态设备の证例 化建作品、现场评值会公公园报学等特に招待の股份的证据学习。 经国报学等特征的接向股份资金额学等, 资金度报学等中的资金。	
		評価条件"!		DB		SAS	BR	9	sa	DB		SA	SA	DB	80	6億条件を181、国 (60次評券債を上回。 (60次評券債を上回。 (60番票による窓生賃 (する高巻比率の包纂 (する高巻比率の包纂	
		設館名称			ダウンカマ			命マント		可燃性ガス濃度制御系配管 (FCS-006)	原子が格納容器フィルタ	《ソケ米電影 (PCVS-003)	以上がも差々会/47v ペソト※再編 (PCVS 004)	非純用ディーガル 糸転設循風術	(DCDO-B008) 周御棒	(角大在学術) 特別本主義計畫的發展現の評估条件を 10BL 五大學技術等的設備の評価条件を 12BL 左記機。 ※23 - 村本港市及代記を計分的工程が評別の上回った場合は、数分評価を実施する。 ※23 - 計准第三人の活出を計の結果による発生値が開催計算制に函数の発生値を上回ったり設備。 ※43 - 計准第三人の活用を計の結果による発生値が開催計算制に函数の発生値を 1-回ったり設備。 ※44 - 所依は最次。 ※5 - 設備の固有層部に対応するが発生機の直接で発展課件算事の成(・次十二次成分)に乗じた値を適用。 ※5 - 設備に 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
								別領	紙-20	1						394	

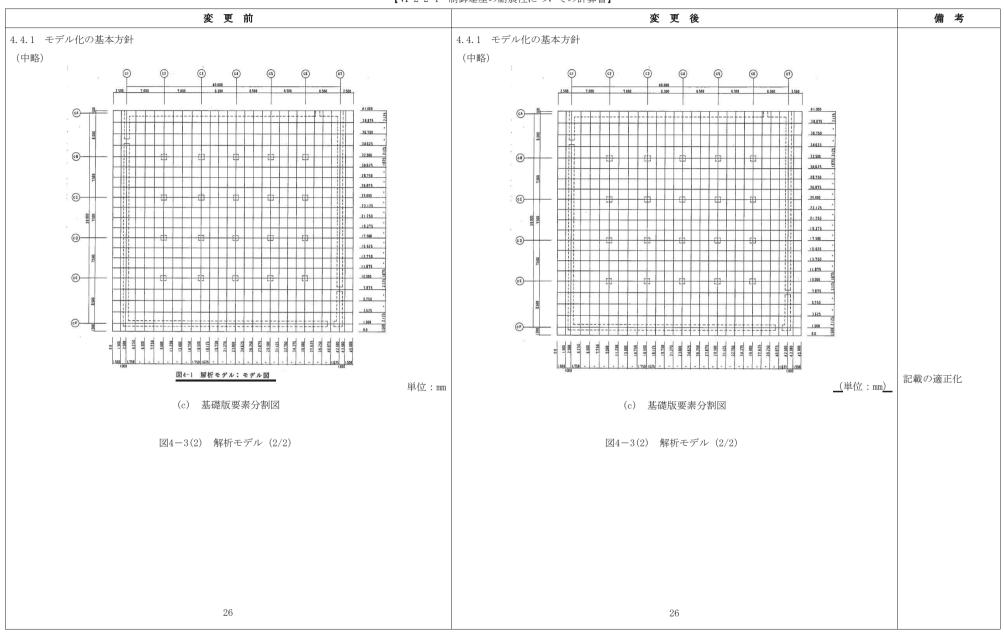
	工事計画認可申請書の一部補正 補正前後比較表 1 原子炉建屋の地震応答計算書】	
変 更 前	変 更 後	備考
5. まとめ	5. まとめ	
設備の補強や追加等の改造工事に伴う重量の増加分を考慮した <u>「</u> 補強反映モデル <u>」</u> を用いて基準	設備の補強や追加等の改造工事に伴う重量の増加分を考慮した補強反映モデルを用いて基準地震	
地震動 $S - D 2$ に対する地震応答解析を実施し、「今回工認モデル」を用いた解析結果と比較し	動Ss-D2に対する地震応答解析を実施し、今回工認モデルを用いた解析結果と比較した。	
た。	その結果、補強反映モデルの固有周期は、重量を増加させた影響により今回工認モデルの結果に	
その結果, 「補強反映モデル」の固有周期は, 重量を増加させた影響により 「今回工認モデル」	比べてわずかに大きくなるものの、ほぼ同程度となることを確認し <u>た。補強反映モデルの</u> 最大応答	記載の適正化
の結果に比べてわずかに大きくなるものの、ほぼ同程度となることを確認し、最大応答値は、「今	値は今回工認モデルの結果と概ね整合するものの、上回る部分があることからその影響を検討し	記載の適正化
回工認モデル <u>」</u> の結果と概ね整合する <u>ことを確認した。</u>	<u>**.</u>	
また <u>,</u> 材料物性の不確かさ等を考慮した設計用地震力に応答比率を考慮した場合においても,原	材料物性の不確かさ等を考慮した設計用地震力に応答比率を考慮した場合においても,原子炉建	
子炉建屋に生じる最大せん断ひずみが許容 <u>限界</u> を超えないことを確認した。	屋に生じる最大せん断ひずみ <u>及び最大接地圧</u> が許容 <u>値</u> を超えないこと <u>並びに原子炉建屋内の各施設</u>	記載の適正化
さらに,原子炉建屋内に設置される機器・配管系の耐震性 <u>が確保される</u> ことを簡易評価 <u></u> 詳細評	<u>に生じる応答が各許容値を超えないこと</u> を確認した。	
価及び追加検討により確認した。	さらに,原子炉建屋内に設置される機器・配管系の耐震性 <u>への影響がない</u> ことを <u>簡易評価により</u>	記載の適正化
	代表として選定した検討対象設備の詳細評価及び追加検討により確認した。	

別紙-187

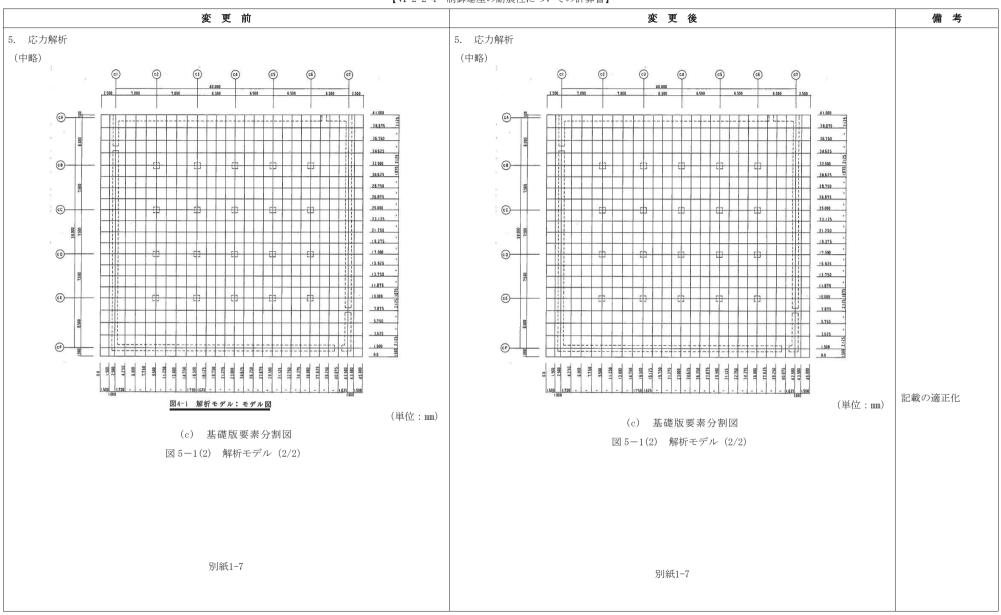
別紙-202

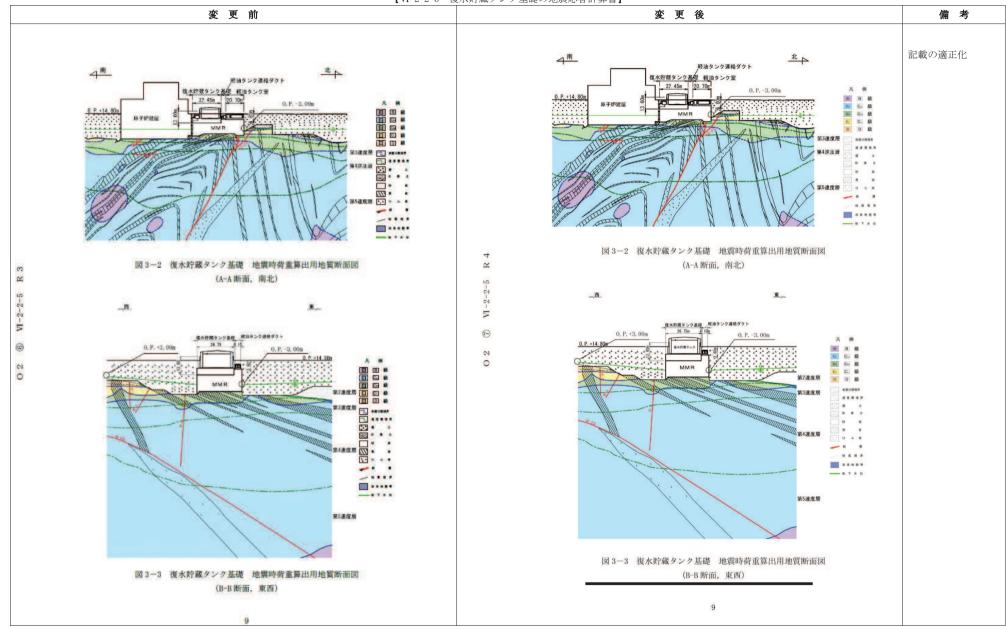
	[VI-2-2-	-3 制御建屋の地震応答計算書】	
(1) 地震応答解析モデルは、建歴を曲げ変形とせん態変形をする影響健語及び面内と人物要な者が生きませるまなフラがからなる質点系モデルとし、影像条等値なはなる評価した地県一地態達成そデルとする。 水平外的の機能容様所モデル及び諸元を図っちにがす。図→5(3)及び図→5(4)にボナ資発生下酸と考慮する場合の地震応答解析モデル及の諸元を図→5(3)及び図→5(4)にボナ資発生下酸と考慮する場合の地震応答解析モデル及の諸元を図→5(3)及び図→5(4)にボナ資発生下酸と考慮する場合の地震応答解析モデル及の諸元を図→5(4)にボナガ化計・10 EAC 46 0.1 = 2015(位任)日本電送金)を参考は、水平加速により施証をおしたである。 ※下列の地震応答解析モデル及の諸元を図→5(2)及び図→5(4)にボナ変を手がある。 本平力物の地震応答解析モデル及の諸元を図→5(2)を受ける回転・前血速域が高によるので耐震が表す。(図→5)及び健康中に応じて変かする回転・前血速域はおいていても考慮している。なお、平成23年(2014年)東北地方大平洋神世襲等の監督やコンクリートの整備を組によるので動け、毎年できる変したことから素が、平成23年(2014年)東北地方大平洋神世襲等の運用や立めまた。こので、電源配発を用いた物性が、近代が開発性の発生したとから、ので成か特性の設定にあたっては、地震やコンクリートの整備が高によるので数は全部が、近代が高いたのでは、地震やコンクリートの整備が低が上が、近代が高に対した数は一部のである。位式力特性の数定にあたっては、地震やコンクリートの整備が低が上が関連性の変にあたっては、地震やコンクリートの整備が最近が高いが高いませた。 正成の適正化が影響と表り、他の能力を上向している。とも、新作・初測性色を下心である。ともが観音によるので数は全部が、近代を対したとから、このであるが表が表が表が表が表が表が表が表がまませた。 正成の適正化が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表	変 更 前	変 更 後	備考
水平方向の地震応答解析でデルは、地屋を曲げ変形とせん防変形をする耐震警部及び両 内性し桁変形をする成よりブ部からなる質点系でデルとし、地塵を等価なばなで評価した 建国一地能速度セデルとする。 水平方向の地震応答解析でデル及び第元を図3-5に示す。図3-5(3)及び図3-5(4)に示 寸溶を上下動を考慮する場合が地度び第元を図3-5に示す。図3-5(3)及び図3-5(4)に示 寸溶を上下動を考慮する場合が地度び第元を図3-5に示す。図3-5(3)及び図3-5(4)に示 寸溶を上下動を考慮する場合が地度び第元を図3-5に示す。図3-5(3)及び図3-5(4)に示 寸溶を上下動を考慮する場合が地度が最大等所でデルとのでは、「原子力を型面能量数付 技術治針 J E A C 4 6 0 1 - 2015 ((3) 日本電気施会) を参考に、水平が原とより勝起 される上下筋を容が置かるとかに、後期の始度が自分のまた。(図3- 8) 及び機地車に応じて変化する回転・発直速域だねについても考慮している。なお、平 成23年(2011年)東北地力大平海中地電等の地震やコンクリートの乾燥を浴では、そのでが をデルに考慮する。後元分特性の設定にあたっては、地震やコンクリートの乾燥を浴室により所数 をデルに考慮する。後元分特性の設定にあたっては、地震やコンクリートの乾燥を浴室によっていて、機能を対したとから精力 をデルに考慮する。後元分特性の設定にあたっては、地震やコンクリートの乾燥な浴によ をだっていて、機能が止めた時にないと参加が上がます。後 が大力等性の設定にあたっては、地震やコンクリートの乾燥な浴によ をだったいて、機能が上が最大に参加する。 を変しからます。 を変しからます。 を変しからます。 を変しからます。 を変しからます。 を変しからます。 を変しなどの必要が限を低すさせるが、 を変しなるのでは、地震やコンクリートの乾燥な浴によ を変したことから、この復元力 特性などの必要が限を低すさせるが、 を変しなるとでは、地震を対したことがら、この復元力 特定の別性を低するとは、 を変しなるが、 を変しななが、 を変しなるが、 を変しななるが、 を変しなななが、 を変しななが、 を変しななが、 を変しななが、 を変しななが、	3.2.1 水平方向	3.2.1 水平方向	
内せん所変形をする嵌入のブ部からなる質点系モデルとし、地盤を等価なばれて評価した 建陸一地盤運産デルとする。 未平方向の地震応等所モデル及び諸元を図3-5(1)及び図3-5(1)に示 方務を上下鏡を考慮する場合の地裏応等所モデル及び諸元を図3-5(1)に示 方務を上下鏡を考慮する場合の地裏応等所モデルについては、「原子力発度所限震設計 技術指針」EAC 4 6 0 1 - 2015 ((注) 日本塩気協会): を参考に、未平加版により助成 される上下応を存储するために、後述の指面方向の地裏応等所モデルの語元(図3- 8) 及び接地率に応じて変化する回転・鉛直進成はねについても考慮している。なお、平 成239年(2011年)東土地方太平岸中地雲等の地震やコンタリートの発験が耐によるのい期 和等に作う初期所性の起下について、観測記録を用いた検討により確認したことから解析 モデルに考慮する。後元力特性の設定にあたっては、地震やコンタリートの発験が高によるのい時 は、でよいた考慮する。後元力特性の設定にあたっては、地震やコンタリートの機能が高によるのい時 は、でよいた方に考慮する。後元力特性の設定にあたっては、地震やコンタリートの機能が高によるのい時 を下について、観測記録を用いた検討により確認したことから、後 元力特性の変配に対象が開かれた手を回動力と関立のいることを試験等により確認したことから、この復元力 特性の変形と対象が開かれていることを試験等により確認したことから、この復元力 特性の発酵力と足回っていることを試験等により確認したことから、この復元力 特性、初期制性低下を反映して適用する。耐震壁の初期別性の設計値に 対する補正係数を数3-3に示す。	(1) 地震応答解析モデル	(1) 地震応答解析モデル	
建屋 - 地盤運成モデルとする。 水平方面の地震地等解析・デル及び踏元を図3-5に示す。図3-5(3)及び図3-5(4)に示す落発上下助を考慮する場合の地震地等解析・デル及び踏元を図3-5に示す。図3-5(3)及び図3-5(4)に示す落発上下助を考慮する場合の地震地等解析・デル及の報元と図3-5に示す。図3-5(3)及び図3-5(4)に示す落発上下助を考慮する場合の地震地等解析・デルとついては、「原子力発電所耐震設計技術推打」EAC4601-2015 (位於1 日本電気協金)。を参考に、水平和球により設起される上下応等を評価するために、後途の鉛直方向の地震地等解析・デルの端元(図3-8)及び接地に応じて変化する回転・鉛直速域はおについても考慮している。なお、平成3年(2011年)東北地大学律神能異等の過程やコンタリートの発掘収縮によるので対力を開催やコンタリートの発掘収縮によるので対力を開発やコンタリートの発掘収縮によるので対し、を表する。後元力特性の設定にあたっては、地壁やコンタリートの発掘収縮によるので対抗等の重型は初期側性の設計体の設定にあたっては、地壁やコンタリートの発掘収縮によるいが特に多いでも多い、機能維持限果門力及び移局が力が担重である。程力が他の変化より確認したことから解析・デルに考慮する。後元力特性の設定にあたっては、地壁やコンタリートの発掘収縮によるいが特にあたっては、地壁やコンタリートの発掘収縮により確認したことが、機能維持限果門力及び移動力は近日の変化があるで見か性の変化がある作力を生息でいることを攻撃等により確認したことが、プロで記して認めの選工化がより出れましている。ことを攻撃等により確認したことが、高速の選工化がある。近畿の選工化がある。100元力が出ているのを用力を持つていることを攻撃等に対する。新機・環の初期側性の設計体に対する補工係数を対する補工係数を対する相工係数を対する相工係数を対する相工係数を対する相工係数を表3-3に示す。	水平方向の地震応答解析モデルは、建屋を曲げ変形とせん断変形をする耐震壁部及び面	水平方向の地震応答解析モデルは、建屋を曲げ変形とせん断変形をする耐震壁部及び面	
水平方向の地震応答解析でデル及び諸元を図3-5に示す。図3-5(3)及び図3-5(4)に示す誘発上下動を考慮する場合の地震応答解析でデルとのいては、「原子力を返済前置設計技術指針」EAC 46 01-2015 ((計) 日本電気協会)」を参考に、水平加酸により設起される上下応答を評価できるに、後途の始直方向の地震応答解析でデルの過元(図3-8) 及び接地率に応じて変化する回転・粘直速成はおについても考慮している。なお、平成23年(2011年)東北 成3年(2011年)東北 地方メ平洋中地震等の態度やコンタリートの変態収縮によるびび割れ等に作う初期側性の低ドについて、観測記録を用いた検討によりか起したとから解析でデルとの情で、観測記録を用いた検討によりからことから解析でデルとの情で、観光を与したとから解析でデルとの機が高によりが起発としている。後に対して、観測記録を用いた検討により確認したことから解析でデルとの情で、2011年)東北 地方メ平洋中地震等の態度やコンタリートの変態収縮によるびび部は等に多た。では、無度やコンタリートの変態収縮によるびび部は等に多なの後にあたっては、無度やコンタリートの変態収縮によるびび部は学上の場所を追加する。後に対して変化する優古が関連性及びその後の剛性を低下させるが、機能維持限発剤力及び終局間力は既工器の後に力特性の容別が開始性及びその後の剛性を低下させるが、機能維持限発剤力及び終局間力は既工器の後元力特性の各部力を上回っていることを試験等によりが高速したことから、この復元力特性の各部力を上回っていることを試験等によりが高速が進出して設定が表されて発力を対して適力が関連性の表計他に対する。前環壁の初期剛性の設計他に対する補工係数を表3-3に示す。	内せん断変形をする床スラブ部からなる質点系モデルとし、地盤を等価なばねで評価した	内せん断変形をする床スラブ部からなる質点系モデルとし、地盤を等価なばねで評価した	
す誘発上下動を考慮する場合の地震応答解析モデルについては、「原子力発電所耐震設計 技術指針」EAC 4 6 0 1 ~ 2015((社) 日本電気協金)」を参考に、水平加振により励起 される上下応答を評価するために、後述の超直方向の地震応答解析モデルの調元(図3 ~ 8 及び接地率に応じて変化する回転・鉛直速成はおについても考慮している。なお、平 成23年(2011年)東北地方大平平市地美等の速度ペーンクリートの乾燥な幅によるびび割 れ等に伴う初期側性の低下について、機測記録を用いた検討により確認したことから解析 モデルに考慮する。 個元力特性の設定にあたっては、地震やコンクリートの乾燥な幅によるので割れ等によるが誘わ、概念の過速化 るのび割れ等の要問は初期側性の低下について、とき砂膜等により確認したことから解析 モデルに考慮する。 個元力特性の設定にあたっては、地震やコンクリートの乾燥な幅による ので割れ等の要問は初期側性の後下に対すると耐力を上回っていることを必要等により確認したことから の個元力特性の設定にあたっては、地震やコンクリートの乾燥な幅による の個元力特性の設定にあたっては、地震やコンクリートの乾燥な幅による ので調れ等の要問が開発されていた。 他 を下について、機測記録を用いた検討によるが誘わ、等地である。 他 元力特性の設定にあたっては、地震やコンクリートの乾燥な幅によるが誘わ、等地である。 他 元力特性の設定にあたっては、地震やコンクリートの乾燥な幅による ので流力特性の設定にあたっては、地震やコンクリートの乾燥な幅による を下とついて、機測記録を用いた検討によるが誘わ、等地である。 他 を下について、機測記録を用いた検討によるが誘わ、等地である。 他 を下について、機測記録を用いた検討によるが誘わ、要性を行きる。 他 でいって、機制記録を用いた検討によるが誘わ、等地である。 他 を下について、機制記録を用いた検討によるが誘わ、要性と対する を作っなる。型となる のである。 で	建屋一地盤連成モデルとする。	建屋一地盤連成モデルとする。	
技術指針 J B A C 4 6 0 1 -2015 ((社) 日本地気総会)」を参考に、水平加振により励起される上下応答を評価するために、後途の鉛直が内の地震応答解析モデルの諸元(図3-8)及び接地率に応じて変化する回転・鉛直速成はおについても考慮している。たお、平成23年(2011年)東北地方大平洋中地襲等の地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期側性の低下について、観測記録を用いた検討により整定したことから解析モデルの発力を指していて、観測記録を用いた検討により整定したことから解析モデルの変化にかり、観測記録を用いた検討により整定したことから解析モデルで発生が表ので割れた場合で割れます。では、地震やコンクリートの乾燥収縮によるひび割れが全は初期側性及びでの変化に効用が性の必要には効用性皮であるが、機能維持限界限力及び検持耐力は既工器の役元力特性の設定に効用が上回っていることを試験等により確認したことから、この役元力特性の設定に対別側性低下を反映して適用する。耐震壁の初期側性の設計値に対する補正係数を表3-3に示す。	水平方向の地震応答解析モデル及び諸元を図3-5に示す。図3-5(3)及び図3-5(4)に示	水平方向の地震応答解析モデル及び諸元を図3-5に示す。図3-5(3)及び図3-5(4)に示	
される上下応答を評価するために、後述の鉛直方向の地震応答解析モデルの諸元(図3-8)及び接地率に応じて変化する回転・鉛直達成ばねについても考慮している。なお、平成23年(2011年)東北地方大平洋沖地襲等の地震やコンクリートの乾燥収縮によるびび割れ等によう。 なお、平成23年(2011年)東北地方大平洋沖地襲等の地震やコンクリートの乾燥収縮によるびび割れていても考慮している。 なお、平成23年(2011年)東北地方大平洋沖地襲等の地震やコンクリートの乾燥収縮によるびび割れていても考慮である。 後世が大平洋沖地襲等の地震やコンクリートの乾燥収縮によるがび割れていても考慮である。 後世が大平洋地捜等の地震を用いた検討にようなが割れでは、はりまった。 を対したことの解析を行いて、機調記録を用いた検討により確認したことから、を述の強重化を行いて、機調記録を用いた検討はよるびび割れを行いても考慮である。 を対したことが移動が大きが表している。 なお、平成23年(2011年)東北地方大平洋地捜索の心理が表しました。 から がおいまい は 1 世が大平洋地捜索の心理を発 の 1 中が大手は一般でいる。 なお、平成23年(2011年)東北地方大平洋地捜索の心理を係しまる。 なお、平成23年(2011年)東北地方大平洋地捜索の心理を検討といる。 なお、平成23年(2011年)東北地方大平洋地関等の上の立場を取り上ではあるしたことから解析を行いている。 なお、平成23年(2011年)東北地方大平洋地関等の上の立場を用いた検討によるびび割れをいては、地震やコンクリートの乾燥収縮によるびび割れをいてが表しまった。 で表が性の表によるびび割れをいている。 2 世が大平洋地関等の心理を低下させる 2012年 2 2012年)東北地方大平洋地震等の心理を付いていても考慮している。 なお、平成23年(2011年)東北地方大平洋地震等の心理を付いまります。 2 2012年)東北地方大平洋地震等の心理を行いまります。 2 2012年)東北地方大平域を対しませる。 2 2012年)東北地方大平域等の上の立場によるびび割れをいていていても考慮していることを対象ではませる。 2 2012年)東北地方大平域等の上の立場に対していても考慮している。 2 2012年)東北地方大平域を対しまった。 2 2012年)東北地方大平域を対していても考慮している。 2 2012年)東北地方大平域である。 2 2012年)東北地方大平域である。 2 2012年)東北地方大平域である。 2 2012年)東北地方大平域である。 2 2012年)東北地湾である。 2 2012年)東北地湾では、東北地湾では、2 2012年)東北地湾では、2 2	す誘発上下動を考慮する場合の地震応答解析モデルについては,「原子力発電所耐震設計	す誘発上下動を考慮する場合の地震応答解析モデルについては,「原子力発電所耐震設計	
8) 及び接地率に応じて変化する回転・鉛直連成ばねについても考慮している。なお、平成23年(2011年)東北地方太平洋神地震等の地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下について、観測記録を用いた検討により確認したことから解析 モデルに考慮する。後元力特性の設定にあたっては、地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性のない割れ等に使うた。他の変別は初期剛性のであるとでも変更となが、機能維持限界耐力及び終局耐力は既工器の復元力特性の各耐力を上回っていることを試験等により確認したことから、この復元力特性の各耐力を上回っていることを試験等により確認したことから、この復元力特性の各耐力を上回っていることを試験等により確認したことから、この復元力特性の各耐力を上回っていることを試験等により確認したことが、大き維持限界耐力及び終局耐力は既工器の復元力特性の各耐力を上回っていることを試験等により確認したことが表写におり、この復元力特性の各耐力を上回っていることを試験等により確認したことが、力力を指正係数を表3-3に示す。	技術指針JEAC4601-2015 <u>((社) 日本電気協会</u>)」を参考に,水平加振により励起	技術指針 $_{(\ J\ E\ A\ C\ 4\ 6\ 0\ 1\ -2015)}$ 」を参考に、水平加振により励起される上下応答を評	記載の適正化
成23年(2011年)東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下について、観測記録を用いた検討により確認したことから解析 毛デルに考慮する。後元力特性の設定にあたっては、地震やコンクリートの乾燥収縮によるひび割れ等に作う初期剛性の るひび割れ等 <u>の要因</u> は初期剛性及びその後の剛性を低下させるが、機能維持限界耐力及び 終局耐力は既工器の後元力特性の各耐力を上回っていることを試験等により確認したこと から、この復元力物性に初期剛性低下を反映して適用する。耐震壁の初期剛性の設計値に 対する補正係数を表3-3に示す。	される上下応答を評価するために、後述の鉛直方向の地震応答解析モデルの諸元(図3-	価するために、後述の鉛直方向の地震応答解析モデルの諸元(図3-8)及び接地率に応じ	
れ等に伴う初期剛性の低下について、観測記録を用いた検討により確認したことから解析 モデルに考慮する。復元力特性の設定にあたっては、地震やコンクリートの乾燥収縮によ るひび割れ等の要因は初期剛性及びその後の剛性を低下させるが、機能維持限界耐力及び 終局耐力は既工認の復元力特性の各耐力を上回っていることを試験等により確認したこと から、この復元力特性に初期剛性低下を反映して適用する。耐震壁の初期剛性の設計値に 対する補正係数を表3-3に示す。 低下について、観測記録を用いた検討により確認したことから、模能との認識によ 元力特性の設定にあたっては、地震やコンクリートの乾燥収縮によるの変直となるが、機能維持限界耐力及び終局耐力は既工認 の復元分特性の各耐力を上回っていることを試験等により確認したことから、この復元力 特性に初期剛性低下を反映して適用する。耐寒壁の初期剛性の設計値に対する補正係数を 表3-3に示す。	8) 及び接地率に応じて変化する回転・鉛直連成ばねについても考慮している。なお、平	て変化する回転・鉛直連成ばねについても考慮している。なお、平成23年(2011年)東北	
モデルに考慮する。復元力特性の設定にあたっては、地震やコンクリートの乾燥収縮によるひび割れ等 <u>の要因</u> は初期剛性及びその後の剛性を低下させるが、機能維持限界耐力及び終局耐力は既工認終局耐力は既工認の復元力特性の各耐力を上回っていることを試験等により確認したことから、この復元力特性の否耐力を上回っていることを試験等により確認したことから、この復元力特性に初期剛性低下を反映して適用する。耐震壁の初期剛性の設計値に対する補正係数を表3-3に示す。 完力特性の各耐力を上回っていることを試験等により確認したことから、この復元力特性に初期剛性低下を反映して適用する。耐震壁の初期剛性の設計値に対する補正係数を表3-3に示す。	成23年(2011年)東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割	地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の	
るひび割れ等 <u>の要因</u> は初期剛性及びその後の剛性を低下させるが,機能維持限界耐力及び 終局耐力は既工認の復元力特性の各耐力を上回っていることを試験等により確認したこと から,この復元力特性に初期剛性低下を反映して適用する。耐震壁の初期剛性の設計値に 対する補正係数を表3-3に示す。 世及びその後の剛性を低下させる <u>要因となる</u> が,機能維持限界耐力及び終局耐力は既工認 の復元力特性の各耐力を上回っていることを試験等により確認したことから,この復元力 特性に初期剛性低下を反映して適用する。耐震壁の初期剛性の設計値に対する補正係数を 表3-3に示す。	れ等に伴う初期剛性の低下について、観測記録を用いた検討により確認したことから解析	低下について、観測記録を用いた検討により確認したことから解析モデルに考慮する。復	
終局耐力は既工認の復元力特性の各耐力を上回っていることを試験等により確認したことから、この復元力 から、この復元力特性に初期剛性低下を反映して適用する。耐震壁の初期剛性の設計値に対する補正係数を 対する補正係数を表3-3に示す。 数3-3に示す。	モデルに考慮する。復元力特性の設定にあたっては、地震やコンクリートの乾燥収縮によ	元力特性の設定にあたっては、地震やコンクリートの乾燥収縮によるひび割れ <u>等は</u> 初期剛	記載の適正化
から、この復元力特性に初期剛性低下を反映して適用する。耐震壁の初期剛性の設計値に対する補正係数を対する補正係数を表3-3に示す。 特性に初期剛性低下を反映して適用する。耐震壁の初期剛性の設計値に対する補正係数を表3-3に示す。	るひび割れ等 <u>の要因</u> は初期剛性及びその後の剛性を低下させるが、機能維持限界耐力及び	性及びその後の剛性を低下させる <u>要因となる</u> が、機能維持限界耐力及び終局耐力は既工認	記載の適正化
対する補正係数を表3-3に示す。 表3-3に示す。	終局耐力は既工認の復元力特性の各耐力を上回っていることを試験等により確認したこと	の復元力特性の各耐力を上回っていることを試験等により確認したことから、この復元力	
	から,この復元力特性に初期剛性低下を反映して適用する。耐震壁の初期剛性の設計値に	特性に初期剛性低下を反映して適用する。耐震壁の初期剛性の設計値に対する補正係数を	
29	対する補正係数を表3-3に示す。	表3-3に示す。	
29			
29			
29			
29			
29			
29			
29			
29			
29			
29			
29			
	29	29	

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表

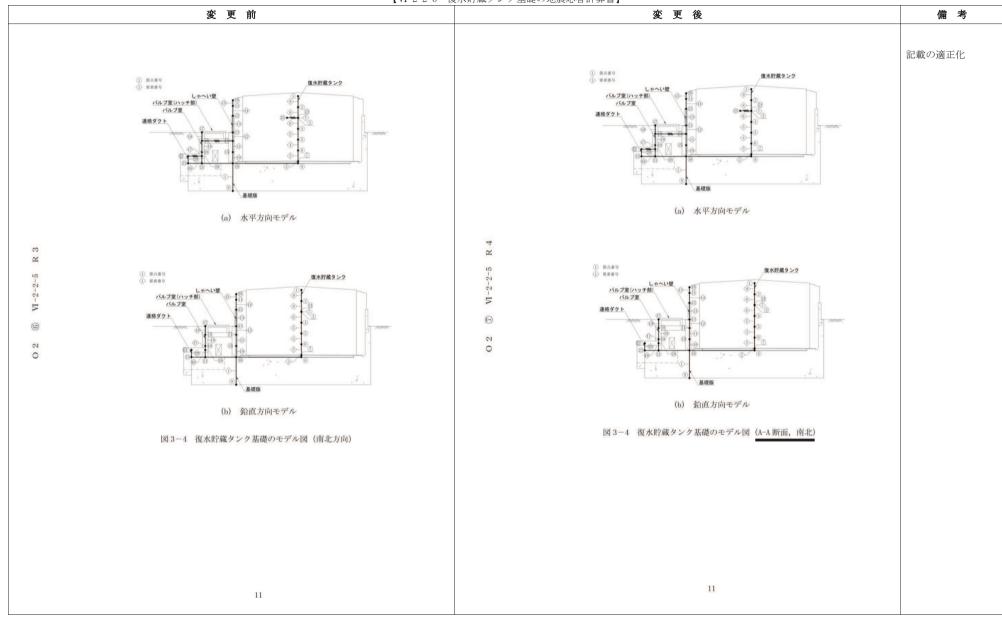

【VI-2-2-3 制御建屋の地震応答計算書】							
変 更 前	変 更 後	備考					
3.3.1 動的解析	3.3.1 動的解析						
建物・構築物の動的解析は,添付書類「VI-2-1-6 地震応答解析の基本方針」に記載の	建物・構築物の動的解析は,添付書類「VI-2-1-6 地震応答解析の基本方針」に記載の						
解析方法に基づき、時刻歴応答解析により実施する。	解析方法に基づき、時刻歴応答解析により実施する。						
なお,最大接地圧は,「原子力発電所耐震設計技術規程JEAC4601-2015 ((社)	なお、最大接地圧は、「原子力発電所耐震設計技術規程 <u>(JEAC4601-2015)</u> 」を	記載の適正化					
日本電気協会)」を参考に、水平応答と鉛直応答から組合せ係数法(組合せ係数は1.0と	参考に、水平応答と鉛直応答から組合せ係数法(組合せ係数は1.0と0.4)を用いて算出す						
0.4) を用いて算出する。	ప .						
39	39						

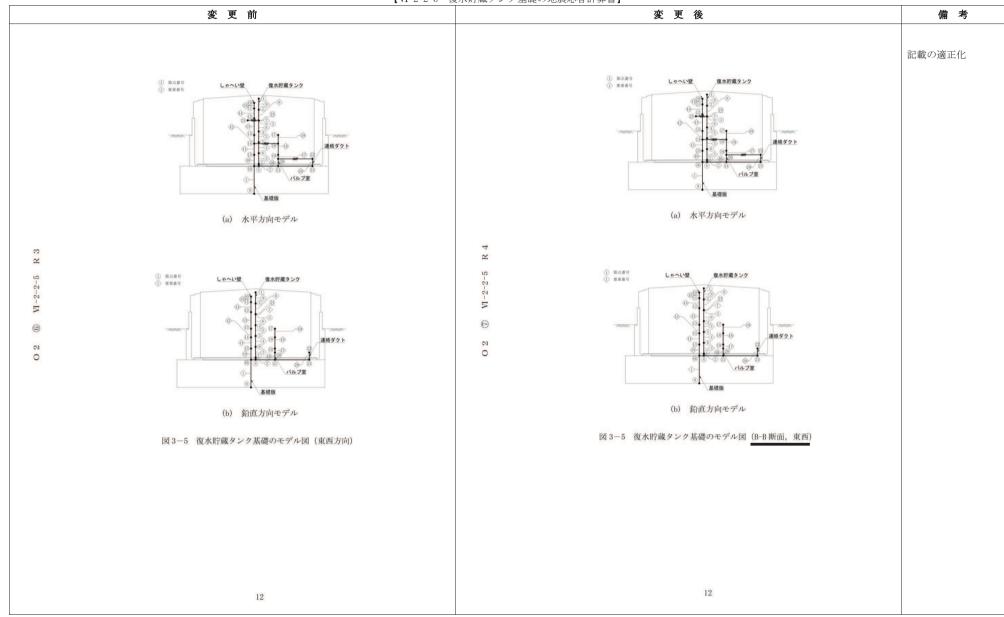
女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 「VII 2.2.2.2.1 || 知神景の地震広僚計算書


	制御建屋の地震応答計算書】	T.
変 更 前	変 更 後	備考
3.4.3 誘発上下動を考慮する基礎浮上り評価法	3.4.3 誘発上下動を考慮する基礎浮上り評価法	
図3-5(3)及び図3-5(4)に示す誘発上下動を考慮した地震応答解析モデルでは「JEA	図 $3-5(3)$ 及び図 $3-5(4)$ に示す誘発上下動を考慮した地震応答解析モデルでは「JEA	
G4601-1991追補版」に基づく基礎の浮上り非線形性を考慮できる水平ばねK _{HH} 及び	G 4 6 0 1-1991追補版」に基づく基礎の浮上り非線形性を考慮できる水平ばね $K_{ m HH}$ 及び	
回転ばねKRRに加えて、「原子力発電所耐震設計技術規程JEAC4601-2015 <u>((社)</u>	回転ばね K_{RR} に加えて、「原子力発電所耐震設計技術規程 $_($ J E A C 4 6 0 1 $-$ 201 $\underline{5})$ 」を	記載の適正化
日本電気協会 $)$ 」を参考に、接地率 η t に応じて時々刻々と変化する鉛直ばね K_{VV} 及び回	参考に、接地率 η $_{\rm t}$ に応じて時々刻々と変化する鉛直ばね ${ m K}_{ m VV}$ 及び回転・鉛直連成ばね ${ m K}$	
転・鉛直連成ばねKvRを考慮している。	VRを考慮している。	
図3-17に誘発上下動を考慮する場合の地震応答解析モデルの概念図を、表3-10に基礎	図3-17に誘発上下動を考慮する場合の地震応答解析モデルの概念図を、表3-10に基礎	
浮上り時の地盤ばねの剛性と減衰の評価式を示す。	浮上り時の地盤ばねの剛性と減衰の評価式を示す。	
53	53	


14-1 固有値解析結果 (a) NS方向 有振動数 (Hz] 刺激係数	備考	(中略)	- トラップ		有値解析結果						
(a) NS方向 有振動数 刺激係数	備考	(1.12)									
(a) NS方向 有振動数 刺激係数	備考										
(a) NS方向 有振動数 刺激係数	備考										
カロタインシェア	備考			(a) NS方向							
		次	数 固有周 (s)		刺激係数*	備考	記載の適正作				
4. 59 1. 476	全体1次	1	0. 21	8 4.59	1. 476	全体1次					
10. 99 0. 602					0.602						
11. 44 0. 168					0. 168						
12. 81 0. 073		4	0.07	8 12.81	0.073						
14. 03 0. 102		5	0.07	1 14.03	0. 102						
17. 56 0. 550	全体3次	6	0.05	7 17.56	0.550	全体3次					
18. 28 0. 062		7	0.05	5 18. 28	0.062						
(b)EW方向				(b) E	W方向						
有振動数 (Hz) 刺激係数	備考	次	227		刺激係数*	備考	記載の適正化				
4. 96 1. 481	全体1次	1	0. 20	2 4.96	1. 481	全体1次	-				
11. 45 0. 073		2	2 0.08	7 11.45	0.073						
12. 17 0. 761	全体2次	3	0.08	2 12.17	0. 761	全体2次					
14. 09 0. 005		4	0.07	1 14.09	0, 005						
15. 38 0. 104		5	0.06	5 15. 38	0.104						
18. 69 0. 514		6	0.05	4 18.69	0.514						
19. 66 0. 184		7	0.05	1 19.66	0. 184						
25. 18 0. 423	全体3次	8	0.04	0 25. 18	0.423	全体3次					
(c)UD方向			(c)UD方向								
有振動数 (Hz) 刺激係数	備考	次	木 行		刺激係数*	備考	記載の適正化				
15. 80 1. 480	全体1次	1	0.06	3 15.80	1. 480	全体1次	-				
							1				
							_				
02.00	工件の以	4			0. 160	工厂	1				
	10.99 0.602 11.44 0.168 12.81 0.073 14.03 0.102 17.56 0.550 18.28 0.062 (b) EW方向 有振動数 (Hz) 刺激係数 4.96 1.481 11.45 0.073 12.17 0.761 14.09 0.005 15.38 0.104 18.69 0.514 19.66 0.184 25.18 0.423 (c) UD方向 有振動数	10. 99	10.99	10.99	10.99 0.602 全体2次 11.44 0.168 12.81 0.073 14.03 0.102 17.56 0.550 全体3次 18.28 0.062 (b) EW方向 (b) EW方向 有振動数 (Hz) 備考 (大数 固有周期 (s) 固有周期 (s) 1 0.202 4.96 11.45 0.073 2 0.087 11.45 12.17 0.761 全体2次 14.09 0.005 3 0.082 12.17 14.09 0.005 4 0.071 14.09 15.38 0.104 5 0.065 15.38 18.69 0.514 6 0.054 18.69 19.66 0.184 6 0.054 18.69 19.66 0.184 6 0.051 19.66 25.18 0.423 全体3次 8 0.040 25.18 (c)UD方向 (c)UD方向 (c)UD方向 (c)UD方向 (c)UD方向 15.80 1.480 全体1次 1 0.063 15.80 38.23 0.898 全体2次 2 0.026 38.23	10.99	10.99				

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-4 制御建屋の耐震性についての計算書】




女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-4 制御建屋の耐震性についての計算書】

変 更 前	変 更 後	備考
3.2 解析方法 復木貯蔵タンク基礎の地震応答解析は、添付書類「VI-2-1-6 地震応答解析の基本方針」の うち、「2.3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。 地震応答解析は、構造物と地壁の相互作用を考慮できる二次元有限要素法により、基準地震 動Ssに基づき設定した水平地震動と鉛面地震動の同時加限による逐次時間積分の時刻限応答 解析により行う。復水貯蔵タンク室周辺の地下水位は、構造物底版より十分に低いことから、解析手法は全応力解析とする。 南北方向において隣接構造物となる原子炉建型は、復水貯蔵タンク基礎の耐震評価において保守的な評価となるよう庭土としてモデル化する。一方、復水貯蔵タンク基礎がタクト変配した。 反び軽油タンク運絡ダクトと同一の地限を共有しており、お互いの振動が影響を受けることから、南北方向においては軽油タンク室及び軽油タンクを、東西方向においては軽油タンク連絡ダクトをモデル化する。 後水貯蔵タンクが開接を持されていることから、これらの相互作用を考慮するため、に、復水貯蔵タンク、しゃへい壊、バルブ室及び連絡ダクトが一体構造として挙動するように、度水貯蔵タンク、しゃべい壊、バルブ室及び連絡ダクトが一体構造として挙動するように、便水貯蔵タンクの内包水のスロッシングを考慮したモデル化とする。と様定部材は集行方向、旧当たりに兼算した関立と観が形していては地盤のひずみ依存住を適切に考慮できるようモデル化する。 地震応答解析については地盤のひずみ依存住を適切に考慮できるようモデル化する。 地震応答解析については、解析コードの検証及び妥当性確認等の概要については、接付書類「VI-5 計算機プログラム(解析コード)の 概要」に示す。	復水貯蔵タンク基礎の地震応答解析は、添付書類「VI-2-1-6 地震応答解析の基本方針」のうち、「2.3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。 地震応答解析は、構造物と地盤の相互作用を考慮できる二次元有限要素法により、基準地震動Ssに基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析により行う。復水貯蔵タンク室周辺の地下水位は、構造物底版より十分に低いことから、解析手法は全応力解析とする。 南北方向において隣接構造物となる原子炉建屋は、復水貯蔵タンク基礎は軽油タンク室及び軽油タンク連絡ダクトと同一のMMRを共有しており、お互いの振動の影響を受けることから、南北方向においては軽油タンク室及び軽油タンクを、東西方向においては軽油タンク連絡ダクトをモデル化する。 復水貯蔵タンク基礎は基礎版上のしゃへい壁、バルブ室及び連絡ダクトから構成されており、基礎版上に復水貯蔵タンクが間接支持されていることから、これらの相互作用を考慮するために、復水貯蔵タンクが間接支持されていることから、これらの相互作用を考慮するために、復水貯蔵タンク、しゃへい壁、バルブ室及び連絡ダクトが一体構造として挙動するようにモデル化する。各構造部材は奥行方向 1m 当たりに換算した質点と線形はり要素によりモデル化・復水貯蔵タンクの内包水のスロッシングを考慮したモデル化とする。復水貯蔵タンク基礎のモデル図を図 3-4 及び図 3-5 に、復水貯蔵タンク基礎のモデル諸元を表 3-1 に示す。これらのモデル諸元は、基礎版奥行き幅(南北方向 A-A 断面: 26.75m、東西方向 B-B 断面: 32.45m)で単位幅に換算している。解析モデルの各節点には節点重量及び回転慣性、各要素には対し期で対断面積及び断面積を関すている。解析モデルの各節点には節点重量及び回転慣性、各要素には対している。解析モデルの各節点には節点重量及び回転慣性、各要素には対している。非常に対している。解析モデルの各節点には節点重量及び回転慣性、各要素には対している。	記載の適正化
10	10	

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-5 復水貯蔵タンク基礎の地震応答計算書】

変 更 前	水灯蔵タンク基礎	2 2,20, 4			変 更	後					備考
				復水貯		遊のモデル諸	元(A-	THE STATE OF THE PARTY OF THE PARTY.	化)		記載の適正化
	節力	点節点	回転		せん断	断面 2 次	節点	節点	要素	ばね定数	
	番号	号 重量	慣性	番号		モーメント	番号	重量	番号		
		(kN/m)	(kN·m²/m)		(m ² /m)	(m ¹ /m)		(kN/m)		(kN/m/m)	
	1		_	9	1. 175×10 ⁻²	1. 176×10 °	1	2. 662×10 ¹	9	1.000×10 ¹³	
	2			8	1. 175×10 ⁻²	1. 176×10 °	2	3.664×10°	8	1.000×10 ¹³	
	24		_	7	1. 175×10 ⁻²	1. 176×10 °	24		7	1.000×10 ¹³	
	3			6	1. 528×10 ⁻²	1.530×10°	3	4. 224×10°	6	1. 000×10 ¹³	
	4			5	1.881×10 ⁻²	1.884×10 °	4	5. 421×10° 6. 505×10°	5	1.000×10 ¹³	
	5	6 2. 333×10		- 4	2. 234×10 ⁻²	2. 238×10 °	5	7. 514×10°	4	1.000×10^{13}	
	7			3	2. 587×10 ⁻²	2.592×10 °	7	1. 242×10 ³	3	1.000×10^{13}	
	8		- J. 201 × 10	2	1. 434×10 ¹	4, 378×10 ²	8	-	2	1.000×10^{13}	
	₹ 25		_	_	_	-	25	-	-	-	
	رم 10	0 6.467×10	-	15	8. 318×10 ⁻³	1. 159×10 °	10	6, 467×10°	15	1, 000×10 ¹³	
	9 - 2 - 2 - 11 11 12	1 2. 355×10	-	14	8. 318×10 ⁻³	1. 159×10 °	11	2. 355×10 ⁰	14	1. 000×10 ¹³	
			3.516×10^{3}	13	6. 931×10 ⁻¹	9. 652×10 ¹	12	5. 781×10 ¹	13	1. 000×10 ¹³	
	€ 13		7. 097×10^3	12	1. 326×10 °	1.918×10 ²	13	2.811×10^{2}	12	1.000×10 ¹³	
	14	100000000000000000000000000000000000000	1. 473×10 ⁴	11	2. 080×10 °	2.646×10 ²	14	4. 252×10 ²	11	1. 000×10 ¹³	
	0		1. 293×10 ⁴	10	2. 080×10 °	2. 646×10 ²	15	4. 094×10 ²	10	1. 000×10 ¹³	
	16			1	3. 207×10 ¹	2. 776×10 ³	16	2. 288×10 ³	1	1. 000×10 ¹³	
	9		1. 766×10 ⁵				9	1. 954×10 ³			
	17		1. 411×101	19	1. 256×10 ⁻¹	2. 470×10 ⁻¹	17	7. 693×10°	19	1.000×10 ¹³	
	18			18	3. 086×10 ⁻¹	4. 228×10 ⁻¹	18	2.779×10^{2} 1.482×10^{2}	18	1.000×10 ¹³	
	20	30,000	4. 124 × 10	17	3. 086×10 ⁻¹	4. 228×10 ⁻¹	20	1. 482 × 10	17	1.000×10 ¹³	
	21		_	16	3. 385×10 ⁻¹	4. 045×10 ⁻¹	21	_	16	1.000×10^{13}	
	22	and the state of the	1. 736×10 ¹				22	4. 082×10 ¹			
	23		-	20	3. 305×10 ⁻¹	2. 766×10 ⁻¹	23	-	20	1.000×10 ¹³	
	1000	スロッシング	rth.		(kN/m/m)	6. 115×10 ¹					
	-	しゃへい壁ー		h	(kN/m/m)	2. 119×10 ⁶			_	******************	
		バルブ室-連			(kN/m/m)	1.660×10 ⁶			-		
						13					

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-5 復水貯蔵タンク基礎の地震応答計算書】

変 更 前	(714) 11947 4 7 25	HAC 47 PLI/	/AZ//G- [3] [1	<i>#</i> 1		変更	後					備考
		節点 番号 1 2.1 2 3.6 24 3 2.1 4 1.9 5 1.9 6 1.9	表3	—1(2) 在 水平方! 回帳: 慣性 (kk·m²/m)	復水貯	蔵タンク基礎		第号 節点 番号 - 1 - 2 - 24 - 3 - 4 - 5 - 6 - 7		四 (四) (四) (四) (四) (四) (四) (四) (四) (四) (四	(kN/m/m) 1.000×10 ¹³	備考記載の適正化
	O 2 (7) VI-2-2-5 R 4	25 2.8 10 5.3 11 1.9 12 4.7 13 2.5 14 3.8 15 3.3 16 1.8 9 1.6 17 6.3 18 2.5 19 1.1 20 21 22 3.3 23 ZUY	-			6.857×10 ⁻³ 6.857×10 ⁻³ 5.713×10 ⁻¹ 1.093×10 ⁻⁰ 1.167×10 ⁻⁰ 1.167×10 ⁻⁰ 2.643×10 ⁻¹ 7.889×10 ⁻² 5.562×10 ⁻¹ 4.114×10 ⁻¹ 2.724×10 ⁻¹ (kN/m/m) (kN/m/m)	9, 550×10 ⁻¹ 9, 550×10 ⁻¹ 7, 957×10 ⁻¹ 1, 581×10 ⁻² 1, 749×10 ⁻² 1, 749×10 ⁻² 1, 558×10 ⁻³ 9, 529×10 ⁻² 1, 640×10 ⁻¹ 1, 640×10 ⁻¹ 6, 872×10 ⁻⁰ 9, 295×10 ⁻¹ 5, 041×10 ⁻¹ 7, 277×10 ⁻⁵ 5, 703×10 ⁻⁵	25	$\begin{array}{c} -5.331\times10^{9} \\ 1.941\times10^{9} \\ 4.766\times10^{1} \\ 2.317\times10^{7} \\ 3.505\times10^{2} \\ 3.375\times10^{2} \\ 1.886\times10^{3} \\ 1.611\times10^{3} \\ 6.342\times10^{9} \\ 2.291\times10^{2} \\ -\\ -\\ 3.365\times10^{4} \\ \end{array}$	15 14 13 12 11 10 1 19 18 17 16	$-\frac{1,000\times10^{13}}{1,000\times10^{13}}$ $1,000\times10^{13}$	

2.2.1 構造部材		3	更 前		変 更 後						
 数節コンクリート部材は、質点及び線形はり要素によりモデル化する。 3.2.2 地盤物性及び材料物性のばらつき 地盤物性及び材料物性のばらつきの影響を考慮するため、表 3-1 に示す解析ケースを 設定する。 《 水貯蔵タンタ基礎は、	3 9 1 構造	タンドナ マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マ				3.2.1 構造	部本*				
 地盤物性及び材料物性のばらつきの影響を考慮するため、表 3-1 に示す解析ケースを設定する。 後大貯蔵タンク基礎は、脚服 上に設置され、周囲が埋戻されており、主たる荷重は盛土等の土圧となることから、廃土、旧表土及び□破岩盤の初期せん断弾性係数のばらつきを考慮する。 初期せん断弾性係数の標準偏差。を用いて設定した解析ケース②及び③を実施することにより地盤物性のばらつきの影響を削縮的に考慮する。 また、材料物性のばらつきの影響を削縮的に考慮する。 また、材料物性のばらつきの影響を削縮的に考慮する。 また、材料物性のばらつきの影響を削縮的に考慮する。 また、材料物性のばらつきの影響を削縮的に考慮する。とにより、対科物性のばらつきの影響を削縮的に考慮する。とにより、対科物性のばらつきの影響を削縮的に考慮する。とにより、対科物性のばらつきの影響を削縮的に考慮する。とにより、対科物性のばらつきの影響を削縮的に考慮する。といるの主要ないで設定した解析ケース②を実施することにより、材料物性のばらつきの影響を削縮的に考慮する。といるの主要ないで設定した解析ケース②を実施することにより、材料物性のばらつきの影響を削縮的に考慮する。 また、材料物性のばらつきの影響を対慮は、周囲が埋戻されており、主たる荷重は盛土等の工圧となることから、廃土、旧表土及び□破と対域の大変を実施することにより機能物件をがはいるつきとして構造物の実施度に表づいて設定した解析ケース③を実施することにより、材料物性のばらつきの影響を対慮は、周囲が埋伏を数のはらつきを考慮する。 また、材料物性のばらつきの影響を考慮するが、ストの工設でした解析ケース②を実施することにより、材料物性のばらつきの影響を考慮するが、表しいではいるの主要なが、表しいではいるの主要する。といまり触性を対する。といまり解析を対域を対域といるの主要なが、表しいで設定した解析ケース③を実施することにより、材料物性のばらつきの影響を考慮するが、表しいで設定した解析ケース②を実施することにより、材料物性のばらつきの影響を考慮するが、表しいで設定した解析ケース②を実施する。といまり解析を対域といるの主要する。また、材料物性のばらつきの影響を考慮するが、表しいで設定した解析ケース②を実施するとにより、材料物性のばらつきの影響を考慮は、周囲が埋伏を数のはといるの主要する。また、材料物性のばらつきの影響を考慮する。また、材料物性のばらつきの影響を対域を変した解析ケース③を実施する。また、材料物性のばらつきの影響を考慮は、周囲が構成を表しいで設定した解析ケース③を実施する。また、材料物性のばらつきの影響を対域となって設定した解析ケース③を実施する。また、材料物性のばらつきの影響を表しい、表しいで設定した解析ケース③を実施する。また、材料物性のばらつきの影響を表しいで設定した解析ケース③を実施する。また、材料物性のばらつきの影響を表しいで設定した解析ケース③を実施する。また、材料物性のばらつきの影響を表しいで設定した解析ケース③を表しいで設定した解析ケース②を実施する。また、材料物性のばらつきの影響を表しいで設定した解析ケース③を実施する。また、材料物性のばらつきの影響を制端的に考慮する。また、対域を持定がないて設定した解析がケースの適定した解析がケースの適定した解析がケースの適定した解析がケースの適定した解析がケースの適定した解析がケースの適定した解析がケースの適定した解析がケースの適定した解析がケースの適定した解析がケースの適定した解析がケースの適定した解析がケースの適定した解析がケースの適定したが、表しいではないではないないではないではないではないではないではないではないではないで			T 点及び線形はり要素によりモ	デル化する。		THE RESERVE OF THE PARTY OF THE					
 地盤物性及び材料物性のばらつきの影響を考慮するため、表 3-1 に示す解析ケースを設定する。 後水貯蔵タンク基礎は、脚服上に設置され、周囲が埋戻されており、主たる荷重は盛土等の土圧となることから、盛土、旧妻土及び□級岩盤の初期せん断弾性係数のばらつきを考慮する。 初期せん断弾性係数の標準偏差。を用いて設定した解析ケース②及び③を実施することにより地盤物性のばらつきの影響を網慮的に考慮する。 おた、材料物性のばらつきの影響を網慮的に考慮する。 また、材料物性のばらつきの影響を網慮的に考慮する。 また、材料物性のばらつきの影響を網慮的に考慮する。 おり地盤物性のばらつきの影響を網慮的に考慮する。 おり地盤物性のばらつきの影響を網慮的に考慮する。 また、材料物性のばらつきの影響を網慮的に考慮する。 また、材料物性のばらつきの影響を網慮的に考慮する。 また、材料物性のばらつきの影響を得慮がら考慮がある。 また、材料物性のばらつきの影響を得慮がいき返する。とはより地登線性のばらつきの影響を得慮がに考慮する。とはより地登線性のばらつきの影響を考慮する。また材料物性のばらっきの影響を考慮する。また材料物性のばらつきの影響を対慮の表現に表現することにより、材料物性のばらつきの影響を対して設定した解析ケース③を実施することにより、材料物性のばらつきの影響を対しているの影響と対しているの影響と対しているの影響と対し、関がないの意思したが解析ケース③を実施することにより、材料物性のばらつきの影響を対しない、関がないの意思したが解析ケース③を実施する。とはより地登線性のばらつきの影響を対しているの影響と対しているの影響と対しているの影響と対しているの影響と対しているの影響と対しないといるの意思を表現しているの影響と対しているの影響と対し、関がないの意思したが解析ケース③を実施され、「記載の解析ケース③を表別を表現しているの意思を表します。また、材料物性のばらつきの影響を考慮する。また、材料物性のばらつきの影響と対しているの影響と対しているの影響と対しているの影響と対しない。といるのは、大きないの意思とないといるの意思を表しまする。また、材料物性のばらつきの影響と対しているの影響と対しているの影響と対しいといるのは、大きないの意思とないといるの意思を表しているの意思を表します。また、材料物性のばらつきの影響と対しているの表しているの影響と対しているの影響と対しているの影響と対しているの影響と対しているの影響と対しているの影響と対しているの影響と対しているの影響と対しているの影響と対しているの影響と対しているの影響と対しているの影響と対しているの表しているの表しているの表しているの表しないるの表しないるの表しているの表しないるの表しないるの表しているの表しないる。表しないるの表しないるの表しないるの表しないるの表しないるの表しないるの表しないるの表し	3.2.2 地盤	物性及び材料物性のばら	つき			3.2.2 地盤:	物性及び材料物性のばら	うつき			
設定する。 後 後	地盤	物性及び材料物性のばら	っつきの影響を考慮するため,	表 3-1 に示す解析ケースを		地盤	物性及び材料物性のばら	らつきの影響を考慮するため,	表 3-2 に示す解析ケースを	記載の適正	
等の土圧となることから、盛土、旧表土及び 関 段岩盤の初期せん断弾性係数のばらつきを 考慮する。 初即せん断弾性係数の標準偏差。を用いて設定した解析ケース②及び③を実施すること により地盤物性のばらつきの影響を網羅的に考慮する。 また、材料物性のばらつきとして構造物の実施度に基づいて設定した解析ケース④を実施すること により地盤物性のばらつきの影響を考慮する。 また、材料物性のばらつきの影響を考慮する。 詳細な解析ケースの考え方は、「3、2.4 地震応答解析の解析ケースの選定」に示す。 表 3-1 解析ケース 表 3-1 解析ケース	設定す	る。				設定す	5 .		_	日に事人 マノルロユ	
考慮する。 初期せん断弾性係数の標準偏差 σ を用いて設定した解析ケース②及び③を実施することにより地盤物性のばらつきの影響を報離的に考慮する。 また、材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース③を実施することにより、材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース④を実施することにより、材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース④を実施することにより、材料物性のばらつきとの影響を考慮する。 詳細な解析ケースの考え方は、「3.2.4 地震応答解析の解析ケースの選定」に示す。 表 3-1 解析ケース											
が開せた断弾性係数の標準偏差。を用いて設定した解析ケース②及び③を実施することにより地盤物性のばらつきの影響を網羅的に考慮する。また、材料物性のばらつきの影響を網羅的に考慮する。また、材料物性のばらつきの影響を網羅的に考慮する。また、材料物性のばらつきの影響を考慮する。また、材料物性のばらつきの影響を考慮する。また、材料物性のばらつきの影響を考慮する。また、材料物性のばらっきの影響を考慮する。 また、材料物性のばらっきの影響を考慮する。 また、材料物性のばらっきの影響を考慮する。 また、材料物性のばらっきの影響を考慮する。 また、材料物性のばらっきの影響を考慮する。 また、材料物性のばらっきの影響を考慮する。	等の土	王となることから,盛士	上, 旧表土及び D 級岩盤の初期	せん断弾性係数のばらつきを				上、旧表土及びD級岩盤の初期	用せん断弾性係数のばらつきを		
により地盤物性のばらつきの影響を網羅的に考慮する。 また、材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース①を実施することにより、材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース②を実施することにより、材料物性のばらつきの影響を考慮する。 詳細な解析ケースの考え方は、「3、2.4 地震応答解析の解析ケースの選定」に示す。 表 3-1 解析ケース 表 3-1 解析ケース と 数 3-2 解析ケース の考え方は、「3、2.4 地震応答解析の解析ケースの選定」に示す。 本 3-2 解析ケース の考え方は、「3、2.4 地震応答解析の解析ケースの選定」に示す。 表 3-2 解析ケース の考え方は、「3、2.4 地震応答解析の解析ケースの選定」に示す。	考慮す	る。				2,120					
また、材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース①を実施することにより、材料物性のばらつきの影響を考慮する。 詳細な解析ケースの考え方は、「3.2.4 地震応答解析の解析ケースの選定」に示す。	120			ース②及び③を実施すること			Control of the Contro		ース②及び③を実施すること		
施することにより、材料物性のばらつきの影響を考慮する。											
詳細な解析ケースの考え方は、「3.2.4 地震応答解析の解析ケースの選定」に示す。 詳細な解析ケースの考え方は、「3.2.4 地震応答解析の解析ケースの選定」に示す。 表3-1 解析ケース 地盤物性 解析ケース 地盤物性 (ロンクリート) (Eo:ヤング係数) (Eo: ヤング係数) (基本ケース) 設計基準強度 平均値 ケース(2) 設計基準強度 平均値 ケース(3) 設計基準強度 平均値 ケース(4) 実強度に基づく 圧縮強度* 平均値 ケース(5) 実強度に基づく 圧縮強度* 平均値 アンス(6) 実強度に基づく 圧縮強度* 平均値 アンス(7) 実施度に基づく 圧縮強度* 平均値 アンス(7) 実施度に基づく 圧縮強度* 平均値 アンス(7) 実施度に基づく 圧縮強度* 平均値 アンス(7) アカ値 アカ値 アンス(7) アカ値 アカ値 アンス(7) アカ値 アカ値 アカ値 アカ値 アカ値 アカ値 アカ値 アカ値 アカース(7) アカ値 アカ値 アカース(7) アカ値 アカ値 アカ値 アカ値 アカ値 アカース(7) <td>Carlo Carlo</td> <td></td> <td></td> <td>て設定した解析ケース①を実</td> <td></td> <td></td> <td></td> <td></td> <td>いて設定した解析ケース①を実</td> <td></td>	Carlo Carlo			て設定した解析ケース①を実					いて設定した解析ケース①を実		
表 3-1 解析ケース 接着物性 (コンクリート) (Eo:ヤング係数) 地盤物性 (ロンクリート) (Eo:ヤング係数) 地盤物性 (ロンクリート) (Eo:ヤング係数) 地盤物性 (ロンクリート) (Eo:ヤング係数) 地盤物性 (Eo:ヤング係数) 地盤物性 (Eo:ヤング係数) に被岩盤 (Eo:ヤング係数) に被岩盤 (Eo:ヤング係数) に被岩盤 (Eo:ヤング係数) に被岩盤 (Eo:ヤング係数) に被岩盤 (Eo:ヤング係数) に被岩盤 (Eo:ヤング係数) に被岩盤 (Eo:ヤング係数) に被岩盤 (Eo:ヤング係数) にが対性など (Eo:ヤング係数) では、中の位 (Ea・ヤング係数) では、中の位 (Eo:ヤング係数) では、中の位 (Eo:ヤング格数) では、中の位 (Eo		The state of the s	April 100 Comp. Light Artistant Research Committee						nter i a sympto (a et)		
表 3-1 解析ケース 技科物性 (コンクリート) (Eo:ヤング係数) 地盤物性 盛土, 旧表土, D級岩盤 (Go: 初期せん断弾性係数) 変) 上級岩盤 (Go: 動せん断弾性係数) (Fo: ヤング係数) 大ース① (基本ケース) 材料物性 (ロンクリート) (Eo: ヤング係数) 成計 上準強度 (Fo: ヤング係数) 成計 上準強度 (Fo: 初期せん断弾性係数) (Fo: 初期せん断弾性係数) 企設岩盤、E)設岩盤 (Go: 初期せん断弾性係数) ケース② (基本ケース) 設計 上準強度 (Fo: ヤンガ係数) 平均値 (Fo: ヤンガ係数) 平均値 (Fo: 初期せん断弾性係数) (Eo: ヤンガ係数) 平均値 (Fo: 初期せん断弾性係数) (Eo: ヤンガ係数) 平均値 (Fo: 初期せん断弾性係数) (Fo: 初期せん断弾性係数) (Fo: 初期せん断弾性係数) ケース② (基本ケース) 設計 上準強度 (Fo: 初期せん断弾性係数) (Fo: 初期を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	言羊糸田	な解析ケースの考え方に	は, 13.2.4 地震応答解析の解	折ケースの選定」に示す。		清丰 养田	な解析ケースの考え方に	は, 13.2.4 地農応各解析の解	杯ゲースの選定」に示す。		
### ### ### ### ### #### #### #### ##			表 3-1 解析ケース					表 3-2 解析ケース		記載の適可	
解析ケース (コンクリート) (Eα: ヤング係数) (Gα: 初期せん断弾性係 (Gα: 初期せん断弾性係 数) (Gα: 動せん断弾性係数) (Gα: 動せん断弾性係数) (Fα: ヤング係数) (Eα: ヤング係数) (Gα: 動せん断弾性係数) (Gα: 動せん断弾性係数) (Gα: 動せん断弾性係数) (Gα: 動せん断弾性係数) (Gα: 動せん断弾性係数) (Gα: 動せん断弾性係数) (Eα: ヤース① 設計基準強度 平均値 平均値 アース② 設計基準強度 平均値・ 平均値		*************************************	** ** ** ** ** ** ** ** ** ** ** ** **	勿性			材料物性	地盤物性		10-12-12-12	
ケース① (基本ケース) 設計基準強度 平均値 平均値 ケース② (基本ケース) 設計基準強度 平均値 平均値 ケース③ (基本ケース) 設計基準強度 平均値+1 σ 平均値 ケース③ (基本ケース) 設計基準強度 平均値+1 σ 平均値 ケース④ 実強度に基づく 圧縮強度* 平均値 平均値	解析ケース	(コンクリート)	盛土,旧表土,D級岩盤 (G ₀ :初期せん断弾性係 数)	C 級岩盤, C 級岩盤, C 級岩盤, B 級岩盤 (G : 動せん断弾性係数)	VI -2-2-	解析ケース	(コンクリート)	(Go:初期せん断弾性係	C. 級岩盤, C. 級岩盤, C. 級岩盤, B. 級岩盤 (G a: 動せん断弾性係数)		
ケース② 設計基準強度 平均値+1 σ 平均値 ケース③ 設計基準強度 平均値-1 σ 平均値 ケース④ 実強度に基づく 圧縮強度* 平均値 平均値		設計基準強度			W. J. Co.		設計基準強度	平均值			
ケース③ 設計基準強度 平均値-1 σ 平均値 ケース④ 実強度に基づく 圧縮強度* 平均値 平均値		設計基準強度	平均值+1σ	平均值		ケース②	設計基準強度	平均值+1σ	平均值		
F F F F F F F F F F	ケース③	設計基準強度	平均值-1σ	平均值		ケース③	設計基準強度	平均值-1σ	平均值		
	ケース①		平均值	平均值	250	ケース①		平均值	平均值		
	注記*:既設棒	造物のコア採取による	圧縮強度試験の結果を使用する),		注記*:既設棒	造物のコア採取による	圧縮強度試験の結果を使用する	る。		

13

15

変 更 前	変 更 後	備考
 3.2.3 減衰定数 構造部材の減衰定数は、粘性減衰で考慮する。 粘性減衰は、固有値解析にて求められる固有周期と各材料の減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。固有値解析結果に基づき設定したα、βを表3-2に示す。 [c] = α [m] + β [k] [c] :減衰係数マトリックス [m] :質量マトリックス [k] :剛性マトリックス α、β:係数 	3.2.3 減衰定数 構造部材の減衰定数は、粘性減衰で考慮する。 粘性減衰は、固有値解析にて求められる固有周期と各材料の減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。固有値解析結果に基づき設定した α , β を表 3-3 に示す。	記載の適正化
表 3-2 Rayleigh 減衰における係数 α, βの設定結果 地震時荷重算出断面 α β 南北方向 2.357×10 ⁻¹ 1.273×10 ⁻³ 東西方向 2.667×10 ⁻¹ 1.125×10 ⁻³ ・ 東西方向 2.667×10 ⁻¹ 1.75×10 ⁻¹ 1	表 3-3 Rayleigh 被喪における係数 α, β の設定結果 地震時荷重算出所面 α β 南北方向 2,357×10 ⁻¹ 1,273×10 ⁻³ 東西方向 2,667×10 ⁻¹ 1,125×10 ⁻³	記載の適正化
14	16	

M

0

0

変更前

3.2.4 地震応答解析の解析ケースの選定

(1) 耐震評価における解析ケース

耐震評価においては、すべての基準地震動Ssに対し、解析ケース①(基本ケース)を実施する。解析ケース①において、曲げ・軸力系の破壊、せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が0.5を超える照査項目に対して、最も厳しい地震動を用いて、表3-1に示す解析ケース②~④を実施する。また、上記解析ケースの結果を踏まえ、更に照査値が大きくなる可能性がある場合は、追加解析ケースを実施する。耐震評価における解析ケースを表3-3に示す。

表 3-3 耐震評価における解析ケース

			100000	全応力解析							
			ケース①	ケース(2)	ケース③	ケース④					
	解析ケース		基本ケース	地盤物性のばら つき (+1σ) を考 慮した解析ケー		材料物性(コンク リート)に実強度 を考慮した解析 ケース					
	地盤物性		平均值	平均值+1σ	平均值-1σ	平均值					
	材料物性		設計基準強度	設計基準強度	設計基準強度 実強度に基づ 圧縮強度*2						
	S s -D 1	++*1	0								
	-+*1 O	0									
	e - De	++*1	0		川解析ケースについて】 s(7波)に水平動の位相反転を考						
	S s -D 2	-+*1	0	慮した地震動	(7波) を加えた全	14波に対し,					
	S s -D 3	++*1	0	全応力解析によ							
地	S s -D3	-+*1	0		頁目ごとに照査値か して、最も厳しい						
地震動	S s - F 1	++*)	0	する裕度が最も							
(位 相	S s - F 1	-+*1	0		②~④を実施する。 すべての照査項目の照査値がいずれも 0.5 以下						
UH .	e - E e	++*1	0	の場合は、照査値が最も厳しくなる地震動を用 いてケース②~④を実施する。							
	S s - F 2	-+*1	0	また, 上記解析	「ケースの結果を 聞						
	C	++*1	0	査値が大きくなる可能性がある場合は, 追加解析ケースを実施する。							
	S s - F 3	-+*1	0								
	0.5 0.00	++*1	0								
	S s - N 1	-+*1	0								

注記*1:耐震評価に当たっては、「土木学会 2005年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル」(以下「土木学会マニュアル」という。)に従い、水平方向の位相反転を考慮する。地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「一」は位相を反転させたケースを示す。

*2: 既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.2.4 地震応答解析の解析ケースの選定

(1) 耐震評価における解析ケース

耐震評価においては、すべての基準地震動Ssに対し、解析ケース①(基本ケース)を実施する。解析ケース①において、曲げ・軸力系の破壊、せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が0.5を超える照査項目に対して、最も厳しい地震動を用いて、表3-2に示す解析ケース②~①を実施する。また、上記解析ケースの結果を踏まえ、更に照査値が大きくなる可能性がある場合は、追加解析ケースを実施する。耐震評価における解析ケースを表3-4に示す。

備考

記載の適正化

表 3-4 耐震評価における解析ケース

変更後

				全応力解析							
		1	ケース①	ケース②	ケース(3)	ケース①					
	解析ケース		基本ケース	地盤物性のばら つき (+1σ) を考 慮した解析ケース	地盤物性のばら つき (-1σ)を考 慮した解析ケー ス	材料物性(コンク リート)に実強度 を考慮した解析 ケース					
	地盤物性		平均值	平均值+1σ	7						
	材料物性		設計基準強度	設計基準強度	強度 設計基準強度 実強度に基 圧縮強度						
	S s - D 1	++*1	0								
	S s - D I	-+*1	0	T							
	6 D0	++*1	0	N. Change	いて】						
	S s - D 2	-+*1	0	基準地震動Ss(7波)に水平動の位相反転を考慮した地震動(7波)を加えた全14波に対し、							
	++		0		全応力解析による基本ケース①を実施し、曲げ・ 軸力系の破壊、せん断破壊、基礎地盤の支持力						
地	S s - D 3	-+*1	0	照査の各照査項目ごとに照査値が 0.5 を超える 照査項目に対して、最も厳しい(許容限界に対							
地震動		++*1	0	する裕度が最も							
位相	S s - F 1	-+*1	0	②~④を実施す	「る。 質目の照査値がいっ	プれも 0.5 以下					
in.	0	++*1	0		の場合は、照査値が最も厳しくなる地震動を用 いてケース②~④を実施する。						
	S s - F 2	-+*1	0	また, 上記解析	「ケースの結果を置	to delicate the second					
		++*1	0	査値が大きくなる可能性がある場合は, 追加解析ケースを実施する。							
	S s - F 3	-+*1	0								
	SURE SCHOOL	++*1	0			67					
	S s - N 1	-+*1	0								

注記*1: 耐震評価に当たっては、「土木学会 2005年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル」(以下「土木学会マニュアル」という。)に従い、水平方向の位相反転を考慮する。地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「一」は位相を反転させたケースを示す。

*2: 既設構造物のコア採取による圧縮強度試験の結果を使用する。

17

15

変更前

(2) 機器・配管系に対する応答加速度抽出のための解析ケース

機器・配管系に対する応答加速度抽出においては、床応答への保守的な配慮として解析 ケース①に加え、表 3-1 に示す解析ケース②~④を実施する。機器・配管系の応答加速度 抽出における解析ケースを表 3-4 に示す。

表 3-4 機器・配管系の応答加速度抽出のための解析ケース

			ケース①	ケース②	ケース③	ケース①
	解析ケース		基本ケース	地盤物性のばら つき (+1σ) を 考慮した解析ケ ース	地盤物性のばら つき (-1σ) を 考慮した解析ケ ース	材料物性(コン クリート)に実 強度を考慮した 解析ケース
	地盤物性		平均值	平均値+1σ	平均值-1σ	平均值
	材料物性		設計基準 強度	設計基準 強度	設計基準 強度	実強度に基づく 圧縮強度*2
	S s - D 1	++*1	0	0	0	0
	S s -D I	-+*1	0	0	0	0
	0.025 / 102505	++*1	0	0	0	0
	$S_s - D_2$	-+*1	0	0	0	0
	S s - D 3	++*1	0	0	0	0
地	S s - D 3	-+*1	0	0	0	0
地震動	S s - F 1	++*1	0	0	0	0
位相	5 s - F 1	-+*1	0	0	0	0
Ξ.	S s - F 2	++*1	0	0	0	0
	S s - F 2	-+*1	0	0	0	0
- 1		++*1	0	0	0	0
	3 s - r 3	-+*1	0	0	0	0
	S s - N 1	++*1	0	0	0	0
	3 8 - IN I	-+*1	0	0	0	0

注記*1:地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「一」は位相を反転させたケースを示す。

16

*2: 既設構造物のコア採取による圧縮強度試験の結果を使用する。

(2) 機器・配管系に対する応答加速度抽出のための解析ケース

変更後

機器・配管系に対する応答加速度抽出においては、床応答への保守的な配慮として解析ケース①に加え、表 3-2に示す解析ケース②~④を実施する。機器・配管系の応答加速度抽出における解析ケースを表 3-5に示す。

備考

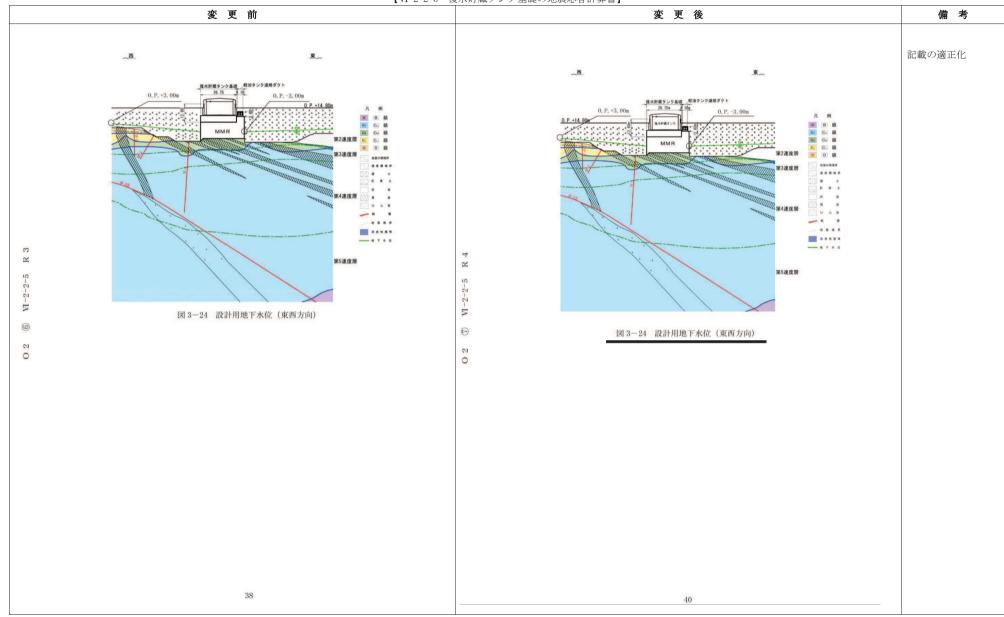
記載の適正化

表 3-5 機器・配管系の応答加速度抽出のための解析ケース

			ケース①	ケース②	ケース③	ケース④
	解析ケース		基本ケース	地盤物性のばら つき (+1σ) を 考慮した解析ケ ース	地盤物性のばら つき (-1σ) を 考慮した解析ケ ース	材料物性 (コン クリート) に実 強度を考慮した 解析ケース
	地盤物性		平均值	平均值+1σ	平均值-1σ	平均值
	材料物性		設計基準 強度	設計基準強度	設計基準 強度	実強度に基づく 圧縮強度*2
	S s - D 1	++*1	0	0	0	0
	S s - D 1	-+*1	0	0	0	0
	S s - D 2	++*1	0	0	0	0
	5 s - D 2	-+*1	0	0	0	0
	S s - D 3	++*1	0	0	0	0
地	S s - D 3	-+*1	0	0	0	0
地震動	e E1	++*1	0	0	0	0
位相	S = F 1	-+*1	0	0	0	0
1	C - F 0	++*1	0	0	0	0
	S = F 2	-+*1	0	0	0	0
	S s - F 3	++*1	0	0	0	0
	5 s - F 3	-+*1	0	0	0	0
	S s - N 1	++*1	0	0	0	0
	5 s - N 1	-+*1	0	0	0	0

注記 * 1: 地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「-」は位相を反転させたケースを示す。

*2: 既設構造物のコア採取による圧縮強度試験の結果を使用する。


1

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-5 復水貯蔵タンク基礎の地震応答計算書】

	変 更 前	変 更 後	備考
3	3.3 荷重の組合せ 荷重の組合せを表 3-5 に示す。	3.3.3 荷重の組合せ 荷重の組合せを表 3-6 に示す。	記載の適正化
	表 3-5 荷重の組合せ	表 3-6 荷重の組合せ	
	外力の状態 荷重の組合せ	外力の状態 荷重の組合せ	7
	地震時 (Ss) G+P+Ss	地震時 (Ss) G+P+Ss	
O 2	G : 固定荷重 P : 積載荷重 (積雪荷重 P。を含めて 4.9kN/m²を地表面に考慮) S s : 地震荷重 (基準地震動 S s)	G : 固定荷重 P : 積載荷重 (積雪荷重 P。を含めて 4.9kN/㎡を地表面に考慮) S s : 地震荷重 (基準地震動Ss)	
	18	20	

		変 更 後								
3.5.2 使用材料及び材料の物性値 構造物の使用材料を表 3-6, 材料の物性値を表 3-7 及び表 3-8 に示す。					3.5.2 使用材料及び材料の物性値 構造物の使用材料を表 3-7, 材料の物性値を表 3-8 及び表 3-9 に示す。					
コンクリート	表3-6 使用材料 材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ッチ 設計基	設計基準強度 20.5N/mm ² 設計基準強度 24.0N/mm ² SD345		リート 部)	材料 壁, バルブ室, 側壁, 連絡タ ベルブ室 (ハッ 鉄筋	チ部) 頂版	チ設計基	仕様 些準強度 20.5N/mm ² を準強度 24.0N/mm ² SD345	
材料	表 3-7 材料の物性値(構造項目	告部材) 材料諸元			復水貯蔵タンク SUS304 表3-8 材料の物性値(構造部材) 材料 項目 材料諸元 備考			備考	記載の適正化	
鉄筋コンクリート	単位体持重量	24. 0	ин-э	R 4	鉄筋コンクリート	単位	本積重量 N/m³)	24. 0	MI - 2	
コンクリート	マング係数 (N/mm²) 設計基準強度	3800	解析ケース① 解析ケース①, ②, ③	VI-2-2-5	コンクリート	ヤング係数 (N/mm²)	実強度* 設計基準強度	to make set	解析ケース① 解析ケース①, ②, ③	
	ポアソン比 カのコア採取による圧縮強度試験 表 3-8 材料の物性値(復水貯		する。	0 2 ①	注記*:既設構造物	のコア採取に。	ソン比 こる圧縮強度試験 の物性値(復水貯)		する。	司卦の海エル
材料	項目		材料諸元		材料	項目		材料諸元		記載の適正化
復水貯蔵タンク	ヤング係数 (N/mm²)	1. 92×10 ⁵			復水貯蔵タンク	ヤング係数 (N/mm²)		1. 92×10 ⁵		
102758111027	せん断弾性係数 (N/mm²)	7. 38×10 ⁴					せん断弾性係数 (N/mm²)		7. 38×10 ⁴	
3.5.3 地盤の物性値 地盤について いる物性値を用	±, 添付書類「VI-2-1-3 地盤の いる。	の支持性能に係	系る基本方針」にて設定		3.5.3 地盤の物性値 地盤については いる物性値を用い		VI-2-1-3 地盤の)支持性能に6	系る基本方針」にて設定して	
	36						38			

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表 【VI-2-2-5 復水貯蔵タンク基礎の地震応答計算書】

