女川原子力発電所第 2 号機 \quad 工事計画審査資料	
資料番号	02 －他－F－24－0024＿改 6
提出年月日	2021 年 11 月 10 日

屋外排水路の機能及び耐震性に係る設計方針について

2021年11月
東北電力株式会社
1．はじめに 1
2．地下水位低下設備について 1
2.1 地下水位低下設備の範囲 1
2.2 地下水位低下設備の設計流量 3
2.3 地下水位低下設備からの排水経路（通常時•地震時） 3
3．設計用地下水位を保持するための屋外排水路の方針 5
3.1 屋外排水路の設備構成と排水能力 5
3.2 屋外排水路の機能低下時における影響と対応の整理 8
3.3 屋外排水路の耐震性確保の方針 12
4．他条文への影響 14
5．工認図書における取扱い 16
6．まとめ 20

別紙1 屋外排水路に係るその他の自主的な対策

参考資料1 既設の屋外排水路の概要

参考資料2 支線排水路の機能喪失の取扱い（流下能力の観点）

参考資料 3 No． 1 揚水井戸から敷地側集水ピット～の排水経路

参考資料 4 地震時における屋外アクセスルートの通行性に対する支線排水路の影響

1．はじめに
地下水位低下設備の機能を考慮した 0. P．+14.8 m 盤の施設等における設計用揚圧力•設計用地下水位は，地下水位低下設備により地下水を汲み上げ，O．P．＋14．8m盤から海へ屋外排水路を通じて排水されることにより保持される。

本書は，設計用揚圧力•設計用地下水位を一定の高さに保持し，技術基準第5条（耐震） に適合した状態を維持することに対する屋外排水路の位置付けと設計方針について整理 するものである。

2．地下水位低下設備について
2.1 地下水位低下設備の範囲

地下水位を一定の高さに保持するための地下水位低下設備の範囲を図1に示す。
ドレーン（ヒューム管•鋼管）により揚水井戸に集水した地下水は，揚水井戸内に設置する揚水ポンプにより配管を通じて0．P．＋ 14.8 m 盤へ汲み上げ，屋外排水路を通じ て海へ排水される。地下水位低下設備の構成を表1，系統構成を図2に示す。

図1 地下水位低下設備の配置

表1 地下水位低下設備の構成

機能		設備構成
集水機能	－地下水を揚水井戸に集水する。	ドレーン
		接続桝
支持•閉塞防止機能	- 揚水井戸内の設備を文持する。 - 揚水井戸内の設備が外部事象の影響を受 けないようにする。	揚水井戸
		盖
排水機能	－揚水井戸に流人する地ド水を排水さる。	揚水ボンプ
		配管
監視•制御機能	－揚水井戸の水位を測定することで揚水ボ ンプの起動及び停止を制御する。 - 擉水井戸水位を監視する。 - 揚水井戸水位及び設備の異常時に中央制御室に警報を発牛させる。	水位計
		制御盤
電源機能	－設備に必要な電力を供給する。	電源 （非常用ディーゼル発電機）
		電源盤
		電路

「VI－2－1－1－別添1地下水位低下設備の設計方針」抜粋

原子炻建屋•制御建屋エリア

図2 地下水位低下設備の系統構成

2.2 地下水位低下設備の設計流量

地下水位低下設備からの排水量は，保守的な解析条件（排水量を多めに評価するよ うな透水係数設定など）を与えた浸透流解析より原子炉建屋•制御建屋エリアで $8078 \mathrm{~m}^{3} / \mathrm{d}$ ，第3号機海水熱交換器建屋エリアで $7046 \mathrm{~m}^{3} / \mathrm{d}$（各エリアの流入量合計 $15124 \mathrm{~m}^{3} / \mathrm{d}$ ）と評価しており，揚水ポンプの排水能力はこれを包絡するよう，設計流量 を各エリアで $9000 \mathrm{~m}^{3} / \mathrm{d}$ ，流量合計 $18000 \mathrm{~m}^{3} / \mathrm{d}\left(0.21 \mathrm{~m}^{3} / \mathrm{s}\right)$ と設定している（詳細は「VI －2－1－1－別添1 地下水位低下設備の設計方針」を参照）。

2.3 地下水位低下設備からの排水経路（通常時•地震時）

（1）通常時
地下水位低下設備から汲み上げた地下水は，地下水位低下設備配管より支線排水路へ流れ，敷地の南北に設置される幹線排水路（北側幹線排水路，南側幹線排水路） を通じて海へ排水される（図3）。

（1）北側幹線排水路への排水経路

（2）南側幹線排水路への排水経路
図3 地下水位低下設備で汲み上げた地下水の排水経路
（2）地震時
屋外排水路の一部が地震により損傷し機能低下した場合，排水経路が寸断され，海 への排出が出来なくなる可能性が否定できない。

このため，地下水位低下設備より汲み上げた地下水を海へ排出可能な経路を確保する必要がある。

3．設計用地下水位を保持するための屋外排水路の方針
3.1 屋外排水路の設備構成と排水能力
（1）設備構成
屋外排水路は，第 1 号機～第 3 号機の主要建屋の北側と南側に設置される北側幹線排水路•南側幹線排水路と，これに接続する支線排水路にて構成され，北側•南側幹線排水路は，いずれも防潮堤横断箇所より上流側に敷地側集水ピット，下流側に出口側集水ピットを設置しており，出口側集水ピットに耐震Sクラスの逆流防止設備を設置している（図4）。

また，北側幹線排水路は岩盤，改良地盤及び置換コンクリート，南側幹線排水路は
 の多くの区間が盛土上に構築される。

注：支線排水路（青点線）は2019年10月段階の配置を記載（今後の安全対策工事等によって変更可能性有）。

図4 屋外排水路の配置（設置変更許可段階）

北側幹線排水路の縦断図

南側幹線排水路の縦断図

図5 北側•南側幹線排水路の縦断面図（設置変更許可段階）

> 「補足 140-1 津波への配慮に関する説明書の補足説明資料」, 「補足 $600-1$ 地盤の支持性能について」から抜粋•—部修正
（2）排水能力
北側•南側幹線排水路の排水能力は表 2 に示すとおりであり，設計基準降水時 （ $91.0 \mathrm{~mm} / \mathrm{h}$ ）における雨水流入量（ $\mathrm{m}^{3} / \mathrm{s}$ ），地下水位低下設備からの排水量（設計流量 $0.21 \mathrm{~m}^{3} / \mathrm{s}$ ）を十分排出可能な設計となっている。

表2 幹線排水路の排水能力

排水路名	設計基準降水時 $(91.0 \mathrm{~mm} / \mathrm{h})$ 雨水流入量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	排水可能流量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$
北側幹線排水路	9.4	51.16
南側幹線排水路	9.5	16.23

3.2 屋外排水路の機能低下時における影響と対応の整理
（1）検討対象とする地下水の排水経路
地下水位低下設備と屋外排水路の平面配置を図 6 に示す。これは通常時の排水経路に相当するが，地震時＊1の検討として，屋外排水路の構成に対応した区間毎に，機能低下時の排水経路への影響と，排水経路確保に必要な対応を検討した。

注：支線排水路（緑点線）は各揚水井戸より敷地側集水ピットへの排水経路として計画（詳細配置は変更可能性有）。

（凡 例）	O	揚水井戸 幹線排水路 支線排水路（各揚水井戸からの排水経路）
	$\cdots \cdots \cdots$	

図6 地下水位低下設備と屋外排水路の平面配置

注記 $* 1$ ：屋外排水路は基準地震動 S s に対する耐震性が確保されていない範囲を含 むこと，参考資料1のとおりがれき等が直接流入しにくい構造であることか ら，排水機能低下が生じうる要因として地震を選定した。

（2）支線排水路の機能喪失の取扱い

a．No． 1 揚水井戸，No． 3 揚水井戸，No． 4 揚水井戸について
地下水位低下設備から汲み上げた地下水は，通常時は揚水井戸出口の配管より支線排水路へ流すこととしているが，地震時は，支線排水路の耐震性がないため，排水経路としての機能は期待しない。

このため，揚水井戸から汲み上げた地下水は支線排水路を期待しないことから地表面に溢れることになるが，この水はポンプにより徐々に押し出され敷地側集水ピ ット（北側•南側）に向かう（図7，図8参照）。到達した水が，耐震性が確保され ているピットの上部の開口から内に落下することでピットへ向から水の流れが生じ る。

また，敷地側集水ピット（北側•南側）から海への通水経路を S s 機能維持する ことで排水経路は保たれるため，海へ自然流下できる状態となる。

このことから，揚水井戸から敷地側集水ピットまでの排水経路が短い No． 1 揚水井戸，No． 3 揚水井戸，No． 4 揚水井戸については，支線排水路に期待せず地表面を通 じて排水可能と整理した。
step1

図7 地表面を通じた排水の考え方（平面図）

また，支線排水路の機能喪失の取扱いについて，流下能力の観点から考察を行い，長方形せきとして評価した場合に必要な越流水深は 8 cm であること，この水深に対

してマニングの式より算出される流量は地下水位低下設備からの排水量を上回るこ とを確認した（参考資料2）。

なお，排水経路の選定の考え方として，No． 1 揚水井戸から敷地側集水ピットへの排水経路の検討例を参考資料 3 に示す。
b．No． 2 揚水井戸について
No． 2 揚水井戸は通常時に幹線排水路を使用している。（No． 2 揚水井戸の排水機能喪失時は運用で考慮する）

また，揚水井戸からの排水は，他の揚水井戸からの排水経路と比べて長いため，支線排水路が機能喪失した場合に 0. P．＋14． 8 m 盤に溢れ滞水するおそれがある。

このため，排水経路が確保できない場合は，揚水井戸内の配管上端に設置した分岐管に仮設ホースを接続することで流路を構成し，地下水を確実に排水する。
（3）幹線排水路流末部の耐震性確保について
地下水を敷地側から海側へ流す経路となる範囲について，閉塞等が生じた場合，排水に影響が生じ設計用地下水位を保持できないおそれがあることから，地震時にお いても排水機能を保持する必要がある。

この範囲に相当する北側幹線排水路流末部（敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット（北側））と南側幹線排水路流末部（敷地側集水ピット（南側），南側排水路（防潮堤横断部），出口側集水ピット（南側））につい て，基準地震動 S s に対する耐震性を確保する。

（4）影響検討まとめ

影響検討結果のまとめを表3に示す。
上記（1）～（3）の検討から，地震時には支線排水路から溢れ自然流下し敷地側集水ピットへ流れるが，滞水のおそれがある場合は仮設ホースを用いた運用にて流路 を構成することにより，敷地側集水ピットまでの排水を確保する。また，敷地側集水 ピットより海側の幹線排水路流末部は，基準地震動 S s に対する機能維持により，排水機能が確保されていることを確認する。

表 3 地下水の排水経路を構成する屋外排水路の機能低下の影響検討まとめ

排水位置	排水位置から海への排水経路上の屋外排水路の区間			地震時の想定	排水経路保持にお ける対策の要否	排水経路確保方法
No． 1 揚水井戸	揚水井戸出口から敷地側集水ピット（南側）ま での区間			支線排水路が機能喪失した場合は 0．P．+14.8 m 盤に溢れるが，地表面を通 じて近傍の敷地側集水ピット（南側） に集水される。	－	－
	南側幹線排水路	流末部	敷地側集水ピット （南側）	閉塞等が生じた場合，排水に影響が生 じ設計用地下水位を保持できないお それがある。	必要	基準地震動 S s に対して排水経路が確保されることを確認する。
			南側排水路 （防潮堤横断部）			
			出口側集水ピット （南側）			
No． 2 揚水井戸	揚水井戸出口から南側幹線排水路までの区間			支線•幹線排水路が機能喪失した場合 は $0 . P .+14.8 \mathrm{~m}$ 盤に溢れる。敷地側集水ピットまでの距離が長いため， $0 . P .+14.8 \mathrm{~m}$ 盤に溢れた水が滞水する可能性がある。	必要	排水経路が確保できない場合は，揚水井戸内の配管上端に設置した分岐管に仮設ホースを接続することで流路を構成 し，地下水を排水する。
	流末部以外					
	南側幹線排水路	流末部	敷地側集水ピット （南側）	流末部に閉塞等が生じた場合，排水に影響が生じ設計用地下水位を保持で きないおそれがある。	必要	No． 1 揚水井戸に同じ。
			南側排水路 （防潮堤横断部）			
			出口側集水ピット （南側）			
No． 3 揚水井戸， No． 4 揚水井戸	揚水井戸出口から敷地側集水ピット（北側）ま での区間			支線排水路が機能喪失した場合は 0. P．+14.8 m 盤に溢れるが，地表面を通 じて近傍の敷地側集水ピット（北側） に集水される。	－	－
	北側幹線排水路	流末部	敷地側集水ピット （北側）	閉塞等が生じた場合，排水に影響が生 じ設計用地下水位を保持できないお それがある。	必要	No． 1 揚水井戸に同じ。
			北側排水路 （防潮堤横断部）			
			出口側集水ピット （北側）			

3.3 屋外排水路の耐震性確保の方針

表3の検討を踏まえ，地下水位低下設備で汲み上げた地下水を確実に海へ排水し，技術基準第5条（耐震）に適合した状態を維持するため，北側幹線排水路流末部 ${ }^{1}$ 及 及南側幹線排水路流末部＊2について基準地震動S s に対し機能維持する設計とし，耐震C クラス＊3に分類する（表4）。

技術基準第5条（耐震）適合上必要な屋外排水路の耐震化範囲を図9に示す。

注記 $* 1$ ：北側幹線排水路流末部は，敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット（北側）を指す。
＊2：南側幹線排水路流末部は，敷地側集水ピット（南側），南側排水路（防潮堤横断部），出口側集水ピット（南側）を指す。
＊3：耐震重要度は，その重要度に応じたクラス分類（S，B，C）と，それらに該当する施設が示されている。表4のとおり，屋外排水路はSクラス設備及び Bクラス設備のいずれにも該当しないため，耐震Cクラスに分類した。

表 4 北側幹線排水路流末部及び南側幹線排水路流末部における耐震設計上の重要度分類

	定義	対象とする施設の例	談当
S	 	－原子衫治却林圧力ハウンタリを構成ける機器•配管系 	\times
B	設	－原子が奇却材年カバウンダりに直㧡接続されていて，一次命却材を内蔵しているか又は内蔵し得る施設 又は㺃蔵方式により，その被强により公缐に与える放射線の 和53年通商童業省今第77另）第2条第2項第6号に规定才 る「周辺藍視×域り外㲹引ける年間の線量限度に比べ十分小さいものは除く。）等	\times
C	Sクラズに属する施設及びBグラスに属する旅設以外の一般座業施設又は公共施設と同等の安全性が要求きれる施哣	－	\bigcirc

（凡 例）
\longrightarrow 地表面を通じて排水
\longrightarrow 幹線排水路流末部を通じて排水
\longrightarrow 運用により排水経路確保
－揚水井戸

注：運用に用いる仮設ホースは，排水経路最長となるNo． 2 揚水井戸（L＝約 650 m ）でも対応できるよう準備

図9 技術基準第5条（耐震）適合上必要な屋外排水路の耐震化範囲

4．他条文への影響

3.3 に示す屋外排水路の設計方針を踏まえた各技術基準適合要求への影響について確認し，いずれも影響がないことを確認した。（詳細は表5参照）

表 5 （1）北側幹線排水路流末部の耐震性確保（技術基準第5条）を踏まえた
各技術基準適合要求への影響

技術基準	設置変更許可時の説明	技術基準適合への影響
第 5 条 （耐震）	（屋外排水路は，設計基準降水量を上回 る排水能力を有する設計としているこ とから，水位保持上の前提としていた が，基準適合上の位置付けに係る説明 は無し）	－北側•南側幹線排水路流末部の耐震性を確保す ることにより，水位保持上の前提である 0．P．+14.8 m 盤から海へ排水される状態が確実に維持される。（設定した設計用揚圧力•設計用地下水位への影響はない。）
第 6 条 （耐津波設計 （内郭防護））	－内郭防護における屋外タンク等の損傷 による溢水影響にて，屋外排水路の機能に期待しない評価を説明。（耐津波設計で考慮する敷地への溢水源の設定 では，屋外排水路による排水を期待せ ず，敷地に滞留した場合であっても，浸水防護重点化範囲に流入しないこと を確認。）	－屋外排水路の機能に期待しない評価を実施して いることから，北側•南側幹線排水路流末部の耐震性を確保した場合においても基準適合への影響はない。なお，屋外タンクの破損等により発生した 0. P．+14.8 m 盤の水は地震随伴事象に より発生するものであり，北側•南側幹線排水路流末部の耐震性を確保することによって，確実に屋外排水路を通じて海へ排水される。
第 7 条 （外部事象（自然現象））	－想定される自然現象（地震，津波を除く） に対し，屋外排水路の機能に期待する個別事象として，降水による浸水の影響評価を実施し，外部事象防護対象施設等がその安全機能を損なわないこと を説明。（屋外排水路は，敷地への降水 を海域に排水するものであり，設計基準降水量を上回る排水能力を有する設計としている。3．1（2）参照。） 自然現象の重畳について，事象（影響 モード）の内容を基に，影響が増長す る事象の組合せを網羅的に検討し，降水を含む事象の組合せにおいて，影響 が増長するものはないことを説明。 （詳細については表5（2）参照。）	－考慮する自然現象は降水であり，北側•南側幹線排水路流末部の耐震性を確保した場合におい ても敷地への降水を海域に排水する機能に影響 はなく，外部事象防護対象施設等の安全機能に影響を及ぼさないことから，基準適合への影響 はない。また，自然現象の組合せの影響に対す る確認結果は表5（2）に示すとおりであり，降水 による浸水影響の個別評価と変わらず，外部事象防護対象施設等の安全機能に影響を及ぼさな いことから，基準適合への影響はない。なお，北側•南側幹線排水路流末部の耐震性を確保す ることによって，地震時においても確実に屋外排水路を通じて海へ排水される。
第 12 条 （内部溢水）	－屋外排水路の機能に期待しない溢水評価を説明。（屋外タンク等の損傷にお ける敷地への溢水源の設定では，屋外排水路による排水を期待せず，敷地に滞留した場合であっても，防護対象設備に対して溢水影響を及ぼさないこと を確認。）	－屋外排水路の機能に期待しない評価を実施して いることから，北側•南側幹線排水路流末部の耐震性を確保した場合においても基準適合への影響はない。なお，屋外タンクの破損等により発生した 0. P．+14.8 m 盤の水は地震随伴事象に より発生するものであり，北•南側幹線排水路流末部の耐震性を確保することによって，確実 に屋外排水路を通じて海へ排水される。
第54条 （アクセスルート）	－敷地への溢水（屋外タンク損傷）は， アクセスルート復旧作業の開始前に排水路から排水可能であり，アクセスル ート復旧作業への影響はない。 －排水を考慮しない場合でも可搬型車両 の通行は可能であり，人員への影響も小さい。	－敷地への溢水（屋外タンク損傷）は，アクセス ルート復旧作業の開始前に耐震性を確保した北側•南側排水路流末部より排水可能であり，ア クセスルート復旧作業への影響はない。 －排水を考慮しない場合，アクセスルートから，側溝やより沈下量の大きな建屋近傍へ流下する ため，可搬型車両の通行は可能であり，人員へ の影響も小さい。

表 5（2）女川原子力発電所において想定される自然現象の組合せがプラントに及ぼす影響の評価結果（影響モード：浸水）（設置変更許可時の説明内容）

影響モード を含む事象	事象の 組合せ	検討結果	備考
降水	$\begin{aligned} & \text { 風 (台風) } \times \\ & \text { 降水 } \end{aligned}$	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで䑤地が浸水することはない。 また，風（台風）による影響（荷重）を組み合わせたとし ても降水による浸水影響の個別評価と変わらない。	女川原子力発電所 2 号炉設置変更許可申請書 02－NP－0272（改 114）外部からの衝撃による損傷 の防止（その他外部事象）別添資料1 第5．3－8表より抜粋
	$\begin{gathered} \text { (風 (台風) } \\ \times \text { 降水) } \times \\ \text { 凍結 } \times \text { 積雪 } \end{gathered}$	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。 また，風（台風）及び積雪による影響（荷重），及び，涷結による影響（温度及び閉塞）を組み合わせたとしても，降水による浸水影響の個別評価と変わらない。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \text { 降水) } \times \\ & \text { 竜巻 } \end{aligned}$	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。 また，風（台風）及び竜巻による影響（荷重）を組み合 わせたとしても，降水による浸水影響の個別評価と変わ らない。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \times \text { 降水) } \times \\ & \text { 落雷 } \end{aligned}$	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで數地が浸水することはない。 また，落雷による影響（電気的影響）を組み合わせたと しても，降水による浸水影響の個別評価と変わらない。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \text { 降水) } \times \\ & \text { 火山の影響 } \end{aligned}$	湿った降下火砕物が乾燥して固結することにより，排水口等を閉塞させ浸水することが考えられるが，固結した降下火砗物は降水により溶解するため浸水は生じない。 また，風（台風）による影響（荷重）及び降水による影響（浸水）を組み合わせたとしても，降水による浸水影響の個別評価と変わらない。	
	（風（台風） \times 降水）\times 生物学的事 象	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで數地が浸水することはない。 また，風（台風）による影響（荷重）及び生物学的事象 による影響（閉塞，電気的影響）を組み合わせたとして も，降水による浸水影響の個別評価と変わらない。	
	$\begin{aligned} & \quad \text { (風 (台風) } \\ & \times \text { 降水) } \times \\ & \text { 森林炎災 } \end{aligned}$	降水による數地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。 また，風（台風）による影響（荷重）及び森林火災によ る影響（温度，閉塞，電気的影響，摩耗）を組み合わせ たとしても，降水による浸水影響の個別評価と変わらな い。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \text { 降水) } \times \\ & \text { 地震 } \end{aligned}$	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。 また，風（台風）及び地震による影響（荷重）を組み合 わせたとしても，降水による浸水影響の個別評価と変わ らない。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \times \text { 降水) } \times \\ & \text { 津波 } \end{aligned}$	降水及び津波による浸水影響が重畳することにより，敷地に対する浸水影響が増長すると考えられるが，構内排水路により排水することで敷地が降水により浸水するこ とはないこと，基準津波は津波防謢施設及び浸水防止設備により敷地内に到達することはないことから，敷地が浸水に至る可能性はない。なお，津波により所内の排水設備が使用できない場合でも，津波の継続時間は短いこ とから，降水により浸水に至る可能性はない。	

5．工認図書における取扱い
3.2 に示す屋外排水路の設計方針について，表 6 のとおり各図書に整理する。

表 6 （1）地下水位低下設備に係る各図書における屋外排水路の記載について（ $1 / 4$ ）

表6（2）地下水位低下設備に係る各図書における屋外排水路の記載について（2／4）

表6（3）地下水位低下設備に係る各図書における屋外排水路の記載について（3／4）

分類	対応箇所	対応内容（ 3.2 に示す対策の反映箇所）
添付資料 （1／2）	VI－2－1－1 耐震設計の基本方針 VI－2－1－1－別添 1 地下水位低下設備の設計方針	なし （地下水位低下設備の設計方針として，地下水を屋外排水路へ排水することで，地下水位を一定の範囲に保持する設計とする旨 を記載）
	VI－2－13－1地下水位低下設備の耐震計算の方針	＞以下の通り，各計算書への紐付情報を記載する。 地下水位低下設備の計算結果は，添付書類「VI－2－13－…（中略）…についての計算書」に示す。 地下水位低下設備にて集水した地下水は，北側幹線排水路， 南側幹線排水路を通じて0．P．＋14．8m盤から海に排水すること から，この排水経路となる北側幹線排水路の流末部（敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット（北側））と，南側幹線排水路の流末部（敷地側集水ピット（南側），出口側集水ピット（南側））における計算結果を示す。南側排水路（防潮堤横断部）については，設置位置周辺のMMRの要素安全係数から，基準地震動 S s に対し通水断面の維持が可能であることを示す。 敷地側集水ピット（北側）については「VI－2－13－4 地下水位低下設備揚水井戸の耐震性についての計算書」に，北側排水路（防潮堤横断部）については「VI－2－11－2－19 北側排水路の耐震性についての計算書」に，出口側集水ピット（北側）に ついては「VI－2－10－2－6－1－2 屋外排水路逆流防止設備（防潮堤北側）の耐震性についての計算書」に示す。 また，敷地側集水ピット（南側）については「VI－2－13－4 地下水位低下設備揚水井戸の耐震性についての計算書」に，出口側集水ピット（南側）については「VI－10－2－6－1－1 屋外排水路逆流防止設備（防潮堤南側）の耐震性についての計算書」に示す。南側排水路（防潮堤横断部）については「VI－2－ 13－4 地下水位低下設備揚水井戸の耐震性についての計算書」 に示す。 なお，これらの各幹線排水路の流末部が排水機能を有するこ との確認においては，各部材が終局状態に至らないことを目標性能とし，各幹線排水路の流末部の設置状況を踏まえ，短期許容応力度，曲げ耐力，圧縮耐力，せん断耐力，引張強度及びせん断強度から許容限界を設定する。耐震重要度分類における取扱いは「VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針」に示す。
	VI－2－1－4耐震重要度分類及び重大事故等対処施設の施設区分の基本方針	＞耐震重要度分類表（耐震Cクラス）に以下を記載する。 －屋外排水路（敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット（北側），敷地側集水ピット （南側），南側排水路（防潮堤横断部），出口側集水ピット （南側））
	VI－2－13－4 地下水位低下設備揚水井戸の耐震性についての計算書	＞以下を記載する。 - 敷地側集水ピット（北側）の計算結果 - 敷地側集水ピット（南側）の計算結果 - 南側排水路（防潮堤横断部）周辺のMMRの要素安全係数か ら基準地震動 S s に対し通水断面の維持が可能であることの説明
	VI－2－11－2－19 北側排水路の耐震性につ いての計算書	北側排水路（防潮堤横断部）の計算結果を記載する。 （防潮堤への波及的影響として評価）
	VI－2－10－2－6－1－2屋外排水路逆流防止設備 （防潮堤北側）の耐震性 についての計算書	＞出口側集水ピット（北側）の計算結果を記載する。 （耐震 S クラスの屋外排水路逆流防止設備＊の支持構造物と して評価）
	VI－10－2－6－1－1屋外排水路逆流防止設備 （防潮堤南側）の耐震性 についての計算書	－出口側集水ピット（南側）の計算結果を記載する。 （耐震 S クラスの屋外排水路逆流防止設備＊の支持構造物と して評価）

注記＊：出口側集水ピットが支持する逆流防止設備（フラップゲート）の開機能維持については，「補足－140－1 津波への配慮に関する説明書の補足説明資料」の「6．5．1．8 屋外排水路逆流防止設備の開閉機能の維持につ いて」に詳細を示す。

表6（4）地下水位低下設備に係る各図書における屋外排水路の記載について（4／4）

分類	対応箇所	対応内容（ 3.2 に示す対策の反映箇所）
$\begin{aligned} & \text { 添付 } \\ & \text { 資料 } \\ & (2 / 2) \end{aligned}$	VI－2－1－3地盤の支持性能に係る基本方針	＞以下の記載とする。 5．耐震評価における地下水位設定方針 5.1 基本方針 建物•構築物及び土木構造物は，地下水位低下設備＊1 の効果が及 ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。なお，地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し，水圧の影響を考慮する。 注記 $* 1$ ：地下水位低下設備と排水経路確保について －防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持するため地下水位低下設備を設置す る。 －地下水位低下設備から汲み上げた地下水は，屋外排水路を通じて海へ排水されることにより地下水位を一定の範囲に保持できる。 屋外排水路は，敷地の北側に設置される北側幹線排水路，敷地の南側に設置される南側幹線排水路及びこれらに接続される支線排水路より構成される。地震時において，地下水の排水経路として支線排水路に期待せず地表面または仮設ホースの運用により確保 し，地下水を敷地側から海側へ流す経路となる北側幹線排水路の流末部（敷地側集水ピット（北側），北側排水路（防潮堤横断部）出口側集水ピット（北側））と，南側幹線排水路の流末部（敷地側集水ピット（南側），南側排水路（防潮堤横断部），出口側集水 ピット（南側））については，閉塞等による設計用地下水位への影響が生じないよう，基準地震動 S s に対し排水機能を維持する設計とする。（地下水位低下設備の詳細は「VI－2－1－1－別添1地下水位低下設備の設計方針」を参照。地下水位低下設備及び地下水の排水経路を構成する屋外排水路の耐震評価方針については「VI－2－13－1 地下水位低下設備の耐震計算の方針」を参照。）
補足 説明 資料	補足 600－1地盤の支持性能に ついて 補足 600－25－1地下水位低下設備 の設計方針に係る補足説明資料	参考資料として「屋外排水路の機能及び耐震性に係る設計方針につい て」を追加する。
	補足 600－25－2地下水位低下設備 の耐震性に係る補足説明資料	敷地側集水ピット（北側）及び敷地側集水ピット（南側）の計算結果 に係る詳細情報を記載する。
	補足－600－4下位クラス施設の波及的影響の検討 について	＞南側排水路（防潮堤横断部） （防潮堤への波及的影響としての評価）

6．まとめ
設計用揚圧力•設計用地下水位を一定の高さに保持し，技術基準第5条（耐震）に適合 した状態を維持することに対する屋外排水路の機能及び耐震性に係る設計方針について，以下のとおり整理した。
－地下水位低下設備の機能を考慮した 0. P．+14.8 m 盤の施設等における設計用揚圧力•設計用地下水位を一定の範囲に保持し，技術基準第 5 条（耐震）に適合した状態を維持する上で，地下水位低下設備で汲み上げた地下水を，屋外排水路を介して海へ排水可能な経路を確保する必要がある。
－地震時における機能低下の影響検討として，屋外排水路の構成に対応した区間毎に，機能低下時の排水経路への影響と，排水経路確保に必要な対応を検討した。この結果，支線排水路に期待しない場合においても地表面を通じて排水経路を形成でき， 0．P．+14.8 m 盤に溢れ滞水するおそれがある場合は，揚水井戸内の配管上端に設置し た分岐管に仮設ホースを接続することで敷地側集水ピットまでの流路を構成し，地下水を確実に排水することができる。
－また，地下水を敷地側から海側へ流す経路となる北側幹線排水路の流末部（敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット（北側）） と，南側幹線排水路の流末部（敷地側集水ピット（南側），南側排水路（防潮堤横断部），出口側集水ピット（南側））については，閉塞等による設計用地下水位へ の影響が生じないよう，基準地震動 S s に対し排水機能を維持する設計とし，耐震 Cクラスに分類する。
－この方針により，地下水位低下設備で汲み上げた地下水が 0. P．＋+14.8 m 盤より海へ確実に排水されることから，技術基準第5条（耐震）に適合した状態を保持できること を確認した。また，関連する各技術基準適合要求への影響がないことを確認した。
－この方針について，技術基準第5条（耐震）適合上必要な設計として，本文（基本設計方針 第 $5 / 50$ 条）並びに関連する添付資料，補足説明資料へ位置付ける。

注記＊：今回整理を踏まえて，設計結果を説明する範囲に追加

また，排水をより確実に行うための自主的な対策について，別紙1に整理した。

屋外排水路に係るその他の自主的な対策

1．支線排水路の設計における揺すり込み沈下影響の考慮
敷地側集水ピットへ支線排水路を接続するNo． 1 揚水井戸，No． 3 揚水井戸，No． 4 揚水井戸については，揚水井戸より汲み上げた地下水が敷地側集水ピットへ自然流下される よう，敷地側集水ピット側壁に設置する通水孔を通じてピット内に排水する設計とする （図10）。

図 10 （1）No．1，3， 4 揚水井戸～敷地側集水ピットの排水経路概念図

図 10 （2）No． 2 揚水井戸～南側幹線排水路の排水経路概念図

南側幹線排水路へ支線排水路を接続する No． 2 揚水井戸においても，揚水井戸より汲 み上げた地下水が南側幹線排水路へ自然流下されるよう，南側幹線排水路側壁に設置す る通水孔を通じて南側幹線排水路内に排水する設計とする。

このとき，水面の高さは，揚水井戸の配管高さと集水ピットの通水孔の設置レベルに より規定されるが，揺すり込み沈下が発生したとしても地下水が支線排水路（側溝）か ら溢れないよう，側溝は十分高さのあるものを据付けておき，地震時における漏水防止 を図る（図11）。

図11 地震時の支線排水路の想定状況

以下，表 7 に各揚水井戸からの排水経路における想定沈下量を示す。なお，この沈下量は図6の支線排水路線形に対応した評価であり，変更となる可能性がある。

表7（1）各揚水井戸からの排水経路における想定沈下量

注記＊：盛土部の沈下率は参考資料 4 の通り 1.4% と設定しており，盛土部の層厚を乗じ て設定した。沈下率設定の詳細は「補足 200－14 可搬型重大事故等対処設備の保管場所及びアクセスルートについて」を参照。

表7（2）各揚水井戸からの排水経路における想定沈下量

注記＊：盛土部の沈下率は参考資料 4 の通り 1.4% と設定しており，盛土部の層厚を乗じ て設定した。沈下率設定の詳細は「補足 200－14 可搬型重大事故等対処設備の保管場所及びアクセスルートについて」を参照。

2．支線排水路の施工上の配慮
No． 1 揚水井戸，No． 3 揚水井戸，No． 4 揚水井戸からの排水は，支線排水路の機能低下時は地表面を介して敷地側集水ピットへ流れるが，この区間の支線排水路は，図 13 地表面より低い位置へ設置し，地表面に支線排水路へ向から勾配を設ける。

この施工上の配慮により，支線排水路付近の地盤が低くなり，支線排水路が機能低下 した場合においても流路として選択されることにより，より確実に揚水井戸から敷地側集水ピットへの排水を行うことが可能となる。

支線排水路（機能喪先）

注：図はイメージであり，排水との関係を示す
ため地表の勾配は大きめに表示している。

図 13 支線排水路の設置例

3．点検•手入れ
アクセスルートについては地震後に点検を行う。この点検において，排水異常による アクセスルート範囲への地下水の流入等が確認された場合は，速やかに土のら等を用い た復旧対応を行う。

1．配置と排水能力
屋外排水路は，図1－1に示すとおり第 1 号機～第 3 号機の主要建屋の北側と南側に設置 される幹線排水路及び幹線排水路に接続する支線排水路にて構成される。揚水井戸から汲み上げた地下水は，降雨の際の表面水と共に支線排水路を通って図1－2に示す北側幹線排水路•南側幹線排水路に流れ，排水勾配により海へ排水される。

北側•南側幹線排水路上には，いずれも防潮堤横断箇所より上流側に敷地側集水ピッ ト，下流側に出口側集水ピットを設置しており，海側の出口にはSクラスの逆流防止設備 を設置している。

幹線排水路は，表1－1に示すとおり，設計基準降水時（ $91.0 \mathrm{~mm} / \mathrm{h}$ ）における雨水流入量 を十分排水可能な排水能力を有している。

図1－1 既設の各幹線排水路の集水エリア

北側幹線排水路（写真 1）

南側幹線排水路（写真 2）

写真撮影位置図
図 1－2 既設の各幹線排水路の設置状況

表1－1 幹線排水路の排水能力（本編 表2再揭）

排水路名	設計基準降水時 $(91.0 \mathrm{~mm} / \mathrm{h})$ 雨水流入量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	排水可能流量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$
北側幹線排水路	9.4	51.16
南側幹線排水路	9.5	16.23

> 「女川原子力発電所 2 号炉設置変更許可申請書$02-N P-0272$ (改 114) 別添資料 1 」より引用

2．構造及び支持の状況
北側•南側幹線排水路の断面図を図1－3に示す。
北側幹線排水路は岩盤，改良地盤及び置換コンクリート，南側幹線排水路は岩盤によ り支持されている。

また，支線排水路は0．P．＋ 14.8 m盤付近に設置され，その多くの区間が盛土上に構築さ れる。

北側幹線排水路の縦断図

南側幹線排水路の縦断図（本編図 3 再掲）

図1－3 北側•南側幹線排水路の断面図

> 「補足 140-1 津波への配慮に関する説明書の補足説明資料」, 「補足 $600-1$ 盤の支持性能について」から抜粋•—部修正

支線排水路の機能喪失の取扱い（流下能力の観点）

1．四角せきと見なした場合の越流量の評価
ピット上部の開口から地下水が落下するが，地震によってピット周辺の埋戻し土が沈下し，側壁の一部が地上に飛び出した形状となり，四角せきのような流れとなるものと考えられる。

ここでは No．1，3，4揚水井戸の内，最も距離の長いNo． 1 揚水井戸からの排水につい て検討を行う。土木学会水理公式集より，長方形せきを越流量として評価する。地下水 は，敷地側集水ピット（南側）の開口から流れ込むことを想定し，以下の式により算出 される。長方形せきの諸元及び波状水面の概要を図2－1に示す。

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{C} \mathrm{~B} \mathrm{~h}^{3 / 2} \\
& 0<\mathrm{h} / \mathrm{L} \leqq 0.1 \quad \text { の時 } \quad \mathrm{C}=1.642(\mathrm{~h} / \mathrm{L})^{0.022}
\end{aligned}
$$

ここで， Q ：越流量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ ，
B：せきの幅（m），
h ：越流水深（m）
C：流量係数（ $\mathrm{m}^{1 / 2} / \mathrm{s}$ ）
L：せき長（m）
W：せき高（m）

長方形せきの諸元

（a）長頂せき流れ
$0<h / L \leqq 0.1$
連続した波状水面

図 2－1 長方形せきの諸元及び波状水面の概要

必要な越流水深をhとすると，越流量は $\mathrm{Q}=0.1 \mathrm{~m}^{3} / \mathrm{s}=1.642 \times(\mathrm{h} / 2)^{0.022 \times 3.2 \times h^{3 / 2}}$ となり，これを計算すると $\mathrm{h}=8 \mathrm{~cm}$ となる。

2．路面の粗度が流量に与える影響
四角せきと見なした場合は，せき背面の地表面の状況によらず越流水深により流量が

規定されるが，井戸から集水ピットまでの流路においては，路面等の粗度の影響を受け ることが想定される。

路面の粗度が流量に与える影響を把握するため，防潮堤背面補強工から防潮壁（第 2号機放水立坑）までを水路と見なして，その距離を流路の幅とした。路面の粗度に関し ては， 0.055 （自然河川，平野の小水路，雑草多，礫河床）を仮定した。

井戸における水深は，四角せきの計算から求まる 8 cm とし，集水ピット（南側）の上面で 0 cm と保守的に仮定した。

以上を踏まえ，マニングの式より流量を算出した。
$\mathrm{v}=1 / \mathrm{n} \times \mathrm{R}^{2 / 3} \times \mathrm{I}^{1 / 2}$
$\mathrm{Q}=\mathrm{v} \mathrm{A}$
ここで， n ：粗度係数
R ：径深（m）
I ：勾配
A：流積 $\left(\mathrm{m}^{2}\right)$
S ：潤辺（m）

流下能力は， $\mathrm{Q}=1 / 0.055 \times(1.50 / 18.92)^{2 / 3} \times\left(6.00 \times 10^{-4}\right)^{1 / 2} \times 1.50=0.123 \mathrm{~m}^{3} / \mathrm{s}$ とな り地下水位低下設備の排水量 $0.1 \mathrm{~m}^{3} / \mathrm{s}$ を上回ることから，敷地側集水ピット（南側） への流下が可能であることを確認した。

No． 1 揚水井戸から敷地側集水ピットへの排水経路

No． 1 揚水井戸から敷地側集水ピットへの排水経路を例に，排水経路の選定の考え方を示 す。

排水経路は周囲の地上構造物を考慮し設定しており，図 3－1 に示すとおり，No． 1 揚水井戸から敷地側集水ピット（南側）までには，防潮堤，防潮壁（第 2 号機放水立坑）が存在 し，南東側には地盤改良，岩盤が地表面付近まで存在していることから，排水経路として は，設置性，距離の短さ，メンテナンス性，及び揺すり込み沈下の影響を極力回避する観点から，防潮堤と防潮壁（第 2 号機放水立坑）の間にある構内道路脇を設定した。

なお，防潮壁（第 2 号機放水立坑）西側には，第 2 号機タービン建屋との間に南側幹線排水路に通じる空間が存在し，そこを通すことも考えられるが，補機放水路等の構造物も あり狭隘で設置性やメンテナンス性に劣るため，除外している。

図3－1 No．1揚水井戸から敷地側集水ピットへの排水経路

なお，No．3，4揚水井戸から敷地側集水ピット（北側）までの区間は，特段障害物 が存在しないことから直線的に排水経路を設定している。

また，No．2揚水井戸からの排水経路は，他の揚水井戸からの排水経路と比べて長い ため，0．P．＋ 14.8 m 盤に溢れた水が滞水する可能性がある。

地震時における屋外アクセスルートの通行性に対する支線排水路の影響

1．はじめに
地下水位低下設備から汲み上げた地下水は，本編 3.2 の屋外排水路の設計方針により， 0．P．+14.8 m 盤から海へ確実に排水されることから，地震時においても屋外アクセスルー トの通行性への影響はない。

以下に，支線排水路が機能喪失した場合における屋外アクセスルートの通行性への影響を説明する。

2．地震時における屋外アクセスルートの通行性
可搬型重大事故等対処設備の屋外アクセスルートについては，添付書類「VI－1－1－6－別添 1 可搬型重大事故等対処設備の保管場所及びアクセスルートについて」において，地震時における盛土及び旧表土の不等沈下による段差を評価し，補強材敷設による事前 の段差緩和対策，若しくは段差発生後の砕石を用いた重機による段差解消作業を実施す ることにより，車両の通行性に影響する急激な段差は発生せず，通行性を確保する設計 としている。

また，想定以上の段差が発生した場合に備えて，段差解消作業用の土のう等を準備し ていることから（図 4－1 及び「補足 200－14 可搬型重大事故等対処設備の保管場所及び アクセスルートについて」），地震により局所的に地表面が沈下し，想定箇所以外におい て通行に支障のある段差が発生した場合は，土のら等を用いた段差解消作業により通行性を維持する。

3．支線排水路が機能喪失した場合の屋外アクセスルートの通行性
地震により支線排水路が機能喪失した場合は，盛土及び旧表土の不等沈下により発生 する段差部に滞水する可能性があるが，補強材敷設による事前の段差緩和対策，若しく は段差発生後の砕石を用いた重機による段差解消作業を実施することとしていることか ら，屋外アクセスルートの通行性に影響を及ぼさない。

なお，図4－2 のとおり，建屋近傍では地震時にくさび崩壊に伴う沈下が発生すること を想定し，建屋近傍の沈下量は屋外アクセスルートの沈下量より大きいと評価している ことから，支線排水路の機能喪失により汲み上げた地下水が支線排水路から溢れた場合 においても，0．P．＋ 14.8 m 盤に溢れた地下水は屋外アクセスルート脇の建屋近傍に流下す るため，屋外アクセスルートの通行性に影響を及ぼさないと考えられる。

アクセスルート上で地震により許容段差量 15 cm ※以上の段差が発生する可能性のあ る箇所については，あらかじめ対策工を施すか，又は段差発生後にブルドーザで砕石 を敷き均す段差解消作業を実施することで対応することから，大型車両の通行に支障 となる段差は発生しない。

万一，許容段差量を超えて通行に支障が生じた場合の対応として，作業員 1 名があ らかじめブルドーザに積載している角材及び土のらを用いて段差を解消することに より，大型車両の通行性を確保できることを実証試験にて確認した。

なお，ブルドーザにより実施することを想定しているがれき撤去作業及び段差解消作業は 2 名 1 組での作業を計画しており，上記の角材及び土のらによる段差解消作業 もこの 2 名 1 組で対応可能であることから，追加人員は不要である。
※ 依藤ら：地震時の段差被害に対する補修と交通開放の管理•運用方法について （平成19年近畿地方整備局研究発表会）

段差復旧作業状沉

大型車両通行状沉
（参考）実証試験において段差 1 箇所の復旧に要した時間：約 20 分
第1図 段差復旧実証試験の状況

第 2 図 角材及び土のらの積載箇所（ブルドーザ）

図 4－1 想定以上の段差が発生した場合の対応について
（1）沈下量の想定
2011年東北地方太平洋沖地震の実績では，明らかなくさび崩壊に伴う建物近傍 の大きな沈下は確認されていないが，本評価においては 2007 年新潟県中越沖地震における東京電力柏崎刈羽原子力発電所の結果を参照して建屋近傍の沈下量 は一般部の 3.5 倍と想定して評伍する。
a．一般部の沈下量
原子炉建屋近傍における沈下評価対象層厚は 28.9 m であり，不飽和盛士及び飽和盛土の沈下率 1.4% を考慮し， 41 cm を想定する。
b．建屋近傍の沈下量
建屋近傍の沈下について，一般部の想定 41 cm の 3.5 倍である 144 cm を想定 する。
c．地震後の想定地盤形状
a．及び b．の想定を踏まえ，地震後の想定形状を第 2 図に示す。

図 4－2 建屋近傍におけるくさび崩壊に伴う沈下量の想定

