> 本資料のうち, 枠囲みの内容は防護上の観点から公開できません。
※なお，本資料は抜粋版のた
め，公開できない箇所はあり
ません。

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －工－B－19－0151＿改 5
提出年月日	2021 年 11 月 8 日

VI－2－9－3－1 原子炉建屋原子炉棟（二次格納施設）の耐震性 についての計算書
1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 14
2.4 適用規格•基準等 17
3．地震応答解析による評価方法 18
4．応力解析による評価方法 20
4．1 評価対象部位及び評価方針 20
4．1．1 屋根スラブ及び床スラブ 20
4．1．2 屋根トラス 23
4．1．3 耐震壁 27
4．2 荷重及び荷重の組合せ 29
4．2．1 屋根スラブ 29
4．2．2 床スラブ 30
4．2．3 屋根トラス 31
4．2．4 耐震壁 40
4．3 許容限界 46
4．3．1 屋根スラブ，床スラブ及び耐震壁 46
4．3．2 屋根トラス 49
4． 4 解析モデル及び諸元 50
4．4．1 屋根スラブ 50
4．4．2 床スラブ 50
4．4．3 屋根トラス 52
4．4．4 耐震壁 58
4．5 応力評価方法 59
4．5．1 屋根スラブ 59
4．5．2 床スラブ 61
4．5．3 屋根トラス 64
4．5．4 耐震壁 65
4． 6 断面の評価方法 69
4．6．1 屋根スラブ 69
4．6．2 床スラブ 70
4．6．3 屋根トラス 72
4．6．4 耐震壁 73
5．地震応答解析による評価結果 75
5.1 耐震壁のせん断ひずみの評価結果 75
6．応力解析による評価結果 79
6.1 屋根スラブの評価結果 79
6．2 床スラブの評価結果 80
6．3 屋根トラスの評価結果 81
6．3．1 固有値解析結果 81
6．3．2 断面の評価結果 85
6． 4 耐震壁の評価結果 91
7．引用文献 93
別紙1 大物搬入口躯体の耐震性についての計算書別紙2 原子炉建屋原子炉棟（二次格納施設）の気密性についての計算書
I別紙3剛性低下を考慮した影響検討

別紙3剛性低下を考慮した影響検討
1．検討概要 別紙3－1
2．建屋剛性の設定 別紙 3－4
3．入力地震動 別紙3－7
4．固有値解析結果 別紙 3－10
5．検討結果 別紙 3－14

1．検討概要
3.11 地震に対する原子炉建屋の質点系モデルを用いたシミュレーション解析では，耐震壁の初期剛性を低下させることにより観測記録との整合性が図られている。これを踏 まえ，地震応答解析モデルの耐震壁の初期剛性を低減している（以下「基本ケースの初期剛性」という。）。

一方，地震応答解析の不確かさケースのうち，建屋剛性の不確かさについて，水平方向については，基準地震動 S s 入力後の建屋全体の平均的な剛性低下を全ての基準地震動 S s について評価し，最も剛性低下するケースの低下後の剛性を初期剛性の不確かさ として考慮することとしている（以下「不確かさケースの初期剛性」という。）。

添付書類「VI－2－9－3－1 原子炉建屋原子炉棟（二次格納施設）の耐震性についての計算書」における屋根トラスの地震応答解析では，解析モデルにおいてモデル化した耐震壁の剛性については，基本ケースの初期剛性として評価を行っている（以下「工認ケー ス」という。）。ここでは，剛性低下を考慮した影響検討として，不確かさケースの初期剛性に基づき評価を実施する（以下「影響検討ケース」という。）。

影響検討ケースにおける屋根スラブの剛性については，添付書類「VI－2－9－3－1 原子炉建屋原子炉棟（二次格納施設）の耐震性についての計算書」における屋根トラスの地震応答解析のらち屋根スラブの応答結果を踏まえて剛性低下量を設定する。地震応答解析モデルの概要を図 $1-1$ に，部材断面を表 $1-1$ ，図 $1-2$ に示す。

図 1－1 解析モデルの概要

表1－1 部材リスト

部位		使用部材	材質	$\begin{gathered} \text { 断面積 } \\ \left(\times 10^{2} \mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{4} \mathrm{~mm}^{4}\right) \end{gathered}$
主トラス	上弦材	H $-350 \times 350 \times 12 \times 19$	$\begin{gathered} \text { SM50A } \\ \text { (SM490A相当) } \end{gathered}$	173.9	40300
	下弦材	$\mathrm{H}-350 \times 350 \times 12 \times 19$	$\begin{gathered} \text { SM50A } \\ \text { (SM490A相当) } \end{gathered}$	173.9	40300
	斜材	$\begin{aligned} & 2 C T s-175 \times 350 \times 12 \times 19 \\ & 2 C T s-150 \times 300 \times 10 \times 15 \end{aligned}$	$\begin{gathered} \text { SM50A } \\ \text { (SM490A相当) } \end{gathered}$	$\begin{aligned} & \hline 173.9 \\ & 119.8 \end{aligned}$	－
	束材	$2 \mathrm{CTs}-100 \times 200 \times 8 \times 12$	$\begin{gathered} \text { SM50A } \\ \text { (SM490A相当) } \end{gathered}$	63.54	－
$\begin{aligned} & \text { サブ } \\ & \text { トラス } \end{aligned}$	上弦材	H－250 $\times 250 \times 9 \times 14$	$\begin{gathered} \text { SS41 } \\ \text { (SS400相当) } \\ \hline \end{gathered}$	92． 18	10800
	下弦材	$\begin{gathered} \hline \text { (d1) PL }-19 \times 601+\text { PL }-25 \times 550 \\ +2 \text { PLs }-16 \times 344 \\ \text { (d2) PL }-19 \times 601+\text { PL }-25 \times 550 \\ +2 \text { PLs }-19 \times 344 \\ \text { (図 } 2-2 \text { 参照) } \end{gathered}$	SN490B	$\begin{aligned} & 361.8 \\ & 382.4 \end{aligned}$	$\begin{aligned} & 94790 \\ & 96860 \end{aligned}$
		$\begin{gathered} \text { (d3) CT }-170 \times 250 \times 9 \times 14 \\ + \text { BT }-280 \times 250 \times 9 \times 12 \\ +2 \text { PLs }-16 \times 350 \\ \text { (図 } 2-2 \text { 参照) } \\ \hline \end{gathered}$	SS41 （SS400相当） SN400B	216.9	48830
	斜材	$\begin{aligned} & 2 \text { Ls }-130 \times 130 \times 9 \\ & \quad+2 \text { Ls }-150 \times 90 \times 12 \\ & 2 \text { Ls }-130 \times 130 \times 9 \\ & \quad+2 \text { Ls }-150 \times 150 \times 15 \\ & 2 \text { Ls }-130 \times 130 \times 9 \\ & \quad+2 \text { Ls }-250 \times 90 \times 12 \times 16 \\ & 2 \text { Ls }-90 \times 90 \times 10 \\ & \quad+2 \text { Ls }-250 \times 90 \times 10 \times 15 \\ & 2 \text { Ls }-90 \times 90 \times 10 \\ & \quad+2 \text { Ls }-300 \times 90 \times 11 \times 16 \end{aligned}$	SS41 （SS400相当） SS400	100． 2 131.0 131.4 108.9 126.4	－
	束材	$4 \mathrm{Ls}-90 \times 90 \times 6$	SS400	42． 20	－
母屋	上弦面	H－390× $300 \times 10 \times 16$	$\begin{gathered} \hline \text { SS41 } \\ \text { (SS400相当) } \end{gathered}$	136.0	38700
方杖	－	$\begin{gathered} 2 \text { Ls }-130 \times 130 \times 9 \\ 2 \text { Ls }-90 \times 90 \times 10 \end{gathered}$	SS400	$\begin{array}{r} 45.48 \\ 34.00 \\ \hline \end{array}$	－

d

d

d 3

図 1－2 サブトラス下弦材断面

2．建屋剛性の設定

影響検討ケースのコンクリートの物性値を表 $2-1$ に，工認ケースのコンクリートの物性値を表2－2に示す。

表 2－1 コンクリートの物性値（影響検討ケース）

部位		ヤング係数 E （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	せん断弹性係数 $\begin{gathered} \mathrm{G} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	剛性補正係数
既設部	屋根スラブ	1.64×10^{4}	7． 02×10^{3}	0.62
	NS 方向壁	6.09×10^{3}	2． 62×10^{3}	0． 23
	EW 方向壁	1． 03×10^{4}	4． 44×10^{3}	0.39
追設耐震壁		1.97×10^{4}	8.19×10^{3}	0.78

表 2－2 コンクリートの物性値（工認ケース）

部位		ヤング係数 E （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	せん断弾性係数 G （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	剛性補正係数
既設部	屋根スラブ	2.65×10^{4}	1． 14×10^{4}	－
	NS 方向壁	7.94×10^{3}	3.41×10^{3}	0.30
	EW 方向壁	1． 32×10^{4}	5.69×10^{3}	0.50
追設耐震壁		2.52×10^{4}	1.05×10^{4}	－

影響検討ケースの屋根スラブの剛性は，図 $2-1$ に示すように，工認ケースの屋根ト ラスの地震応答解析により得られた屋根スラブの面内せん断応力度 τ とせん断ひずみ γ から求まる三角形の面積 E_{0} が，屋根スラブの面内せん断応力度一せん断ひずみ関係を トリリニア型のスケルトンカーブに設定した場合に得られる黒斜線部分（ E_{1} ）と等しく なる $\tau_{e}, \gamma_{\mathrm{e}}$ を算定し，原点と結ぶ直線の勾配とする。

工認ケースの屋根スラブの面内せん断応力度は，屋根トラスの地震応答解析により屋根スラブに発生するせん断応力をスラブのメッシュサイズで重みづけした平均値とし，表2－1に示すケース2で，最大の面内せん断応力度を採用する。

図 2－1 屋根スラブの影響検討ケースにおける剛性の設定方法

屋根スラブの面内せん断応力度—せん断ひずみ関係は，「JEAG4601－ 1991 追補版」によるものとし，以下とする。

第1折点 $\quad\left[\begin{array}{l}\tau_{1}=\sqrt{0.31 \sqrt{F_{c}}\left(0.31 \sqrt{F_{c}}+\sigma_{v}\right)} \\ \gamma_{1}=\tau_{1} / G\end{array}\right.$
第 2 折点 $\quad \square \begin{aligned} & \tau_{2}=1.35 \tau_{1} \\ & \gamma_{2}=3 \gamma_{1}\end{aligned}$

$$
\begin{array}{cr}
\text { 終局点 }
\end{array}\left[\begin{array}{cr}
\tau_{3}=\left(1-\frac{\tau_{s}}{1.4 \sqrt{F_{c}}}\right) \tau_{0}+\tau_{s} \leq 1.4 \sqrt{F_{c}} \\
=1.4 \sqrt{F_{c}} & \tau_{s}>1.4 \sqrt{F_{c}}
\end{array}\right.
$$

$$
\tau_{0}=(0.94-0.56 M /(Q D)) \sqrt{F_{c}}
$$

$$
\text { ただし, M/ (QD) > } 1 \text { のとき } M /(Q D)=1
$$

$$
\tau_{s}=\left(P_{V}+P_{H}\right)_{s} \sigma_{y} / 2+\left(\sigma_{V}+\sigma_{H}\right) / 2
$$

ここに，

$\mathrm{F}_{\mathrm{c}} \quad$ ：コンクリートの圧縮強度 $\left(=32.4 \mathrm{~N} / \mathrm{mm}^{2}\right)$
G ：コンクリートのせん断弾性係数 $\left(=1.14 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}\right)$
$\mathrm{P}_{\mathrm{V}}, \mathrm{P}_{\mathrm{H}}$ ：縦，横筋比（実数）
$\sigma_{\mathrm{v}}, \sigma_{\mathrm{H}}$ ：縦，横軸応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）で「0」（ゼロ）とする
s σ y ：鉄筋降伏応力度 $\left(=345 \mathrm{~N} / \mathrm{mm}^{2}\right)$

```
M/ (QD) : シアスパン比 (0<M/ (QD)\leqq1)
                    安全側に\tau3が最小となるようM/(QD)=1とする。
                    D : 引張•圧縮フランジの芯々間距離(mm)
```

工認ケースでは

$$
\begin{aligned}
\tau & =2.99 \mathrm{~N} / \mathrm{mm}^{2} \\
\gamma & =0.262 \times 10^{-3}
\end{aligned}
$$

となることから，図 2－1 の三角形の面積 E_{0} と等価になるせん断スケルトンカ ーブ上のせん断応力度 τ e，せん断ひずみ γ 。は

$$
\begin{aligned}
& \tau_{\mathrm{e}}=2.03 \mathrm{~N} / \mathrm{mm}^{2} \\
& \gamma \mathrm{e}=0.289 \times 10^{-3}
\end{aligned}
$$

となり，影響検討ケースのせん断弾性係数 $\mathrm{G}=7.02 \times 10^{3}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$ ，剛性補正係数 は 0.62 となる。

3．入力地震動
入力地震動は，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す原子炉建屋全体の地震応答解析から得られる燃料取替床レベル（3F，0．P．33． 2 m ）の時刻歴応答加速度のらち，基準地震動 S s－D 2，ケース 5（建屋剛性の不確かさを考慮，地盤物性 ＋σ ）とする。

図 3－1 及び図 3－2 に燃料取替床レベル（3F，0．P．33．2m）の水平成分，鉛直成分及 び回転成分の加速度時刻歴波形を示す。

図 3－1 燃料取替床レベル（3F，0．P．33． 2 m ）の加速度時刻歴波形 （S s－D 2，ケース 5 ，水平，鉛直成分）

図 3－2 燃料取替床レベル（3F，0．P．33． 2 m ）の加速度時刻歴波形 （ $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，ケース 5 ，回転成分）

4．固有値解析結果

影響検討ケースと工認ケースの屋根トラスの固有値解析結果を比較して，表 4－1 及 び表 4－2に示す。また，ケース5の代表的な固有モード図を図4－1 に示す。

工認ケースに対して，影響検討ケースの固有振動数は，鉛直方向で 2% ，NS 方向で 11% ， EW 方向で 4% 低振動数側にシフトした。

表 4－1 固有値解析結果（影響検討ケース）

表 4－2 固有値解析結果（工認ケース）

次数	振動数 (Hz)	周期 (s)	刺激係数			水平方向 (NS)
1	3.60	0.278	0.011	0.005	1.567	鉛直方向1次
2	5.65	0.177	0.101	-0.148	0.005	
3	6.07	0.165	0.953	-0.008	0.028	
4	6.16	0.162	-0.055	-1.527	0.012	EW方向1次
5	6.40	0.156	-0.150	-0.366	-0.051	
6	6.43	0.156	-0.096	-0.023	0.151	
7	6.58	0.152	0.458	-1.190	-0.016	
8	6.61	0.151	-1.606	-0.733	-0.042	
9	6.64	0.151	-3.310	0.227	-0.036	NS方向1次
10	6.71	0.149	-1.515	-0.121	-0.019	

（a）鳥瞰図

（b）XZ 面

（c） YZ 面

図 4－1（1）固有モード図
（鉛直方向 1 次（影響検討ケース））

（a）鳥瞰図

（b）XZ 面

（c）$Y Z$ 面

図 4－1（2）固有モード図
（EW 方向1次（影響検討ケース））

（a）鳥瞰図

（c） YZ 面

図 $4-1$（3）固有モード図
（NS 方向1次（影響検討ケース））

5．検討結果

影響検討ケースの地震応答解析結果から各部材の断面の評価を実施した。なお，断面 の評価方法については，添付書類「VI－2－9－3－1 原子炉建屋原子炉棟（二次格納施設） の耐震性についての計算書」で示した方法と同じである。

評価対象箇所は，各部材の検定値が最も大きい箇所とする。評価対象箇所を図5－1～図 5－4に示す。また，断面算定結果を工認ケースの結果と合わせて表5－1～表5－4に示す。

屋根トラスの各部材における断面算定の検定比は，影響検討ケースの評価結果が工認 ケースの評価結果を上回る部分があるものの，建屋剛性の不確かさを考慮しても耐震安全性に影響を与えないことを確認した。

○：工認ケースの最大応力発生箇所を示す。
－：影響検討ケースの最大応力発生箇所を示す。
（a）主トラス：RE通り

○：工認ケースの最大応力発生箇所を示す。
○：影響検討ケースの最大応力発生箇所を示す。
（b）主トラス：RF通り

○：工認ケースの最大応力発生箇所を示す。
○：影響検討ケースの最大応力発生箇所を示す。
（c）主トラス：RG通り
図 5－1 評価対象箇所（主トラス）

表 5－1（1）断面算定結果（主トラス）

部材（種類）		上弦材			
ケース		工認ケース		影響検討ケース	
位置		図5－1参照		図5－1参照	
鉄骨断面	部材	H－350×350 $\times 12 \times 19$		$\mathrm{H}-350 \times 350 \times 12 \times 19$	
	種別	SM50A（SM490A 相当）		SM50A（SM490A 相当）	
応力状態		引張	圧縮	引張	圧縮
N（kN）		765	78.7	880	73.1
$\mathrm{M}(\mathrm{kN} \cdot \mathrm{m})$		120	120	147	147
断面算定	$\sigma_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	44.0	－	50.6	－
	$\sigma_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	4.53	－	4.20
	$\sigma_{\mathrm{b}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	52.2	52.2	63.9	63.9
	$\mathrm{f}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	357	－	357	－
	$\mathrm{f}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	357	－	357
	$\mathrm{f}_{\mathrm{b}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	357	357	357	357
	$\frac{\sigma_{t}}{f_{t}}+\frac{\sigma_{b}}{f_{b}}$	0．28（＜1．0）	－	0.33 （＜1．0）	－
	$\frac{\sigma_{c}}{f_{c}}+\frac{\sigma_{b}}{f_{b}}$	－	0.17 （＜1．0）	－	0．20（＜1．0）

表 5－1（2）断面算定結果（主トラス）

部材（種類）		下弦材			
ケース		工認ケース		影響検討ケース	
位置		図5－1参照		図 5－1参照	
鉄骨断面	部材	$\mathrm{H}-350 \times 350 \times 12 \times 19$		$\mathrm{H}-350 \times 350 \times 12 \times 19$	
	種別	SM50A（SM490A 相当）		SM50A（SM490A 相当）	
応力状態		引張	圧縮	引張	圧縮
N（kN）		4350	981	4170	847
$\mathrm{M}(\mathrm{kN} \cdot \mathrm{m})$		58.2	58.2	55.0	55.0
断面算定	$\sigma_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	250	－	240	－
	$\sigma_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	56.4	－	48.7
	$\sigma_{\mathrm{b}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	25.3	25.3	23.9	23.9
	$\mathrm{f}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	357	－	357	－
	$\mathrm{ffo}_{\text {c }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	280	－	280
	$\mathrm{ff}_{\mathrm{b}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	357	357	357	357
	$\frac{\sigma_{t}}{f_{t}}+\frac{\sigma_{b}}{f_{b}}$	$0.79(<1.0)$	－	0.75 （＜1．0）	－
	$\frac{\sigma_{c}}{f_{c}}+\frac{\sigma_{b}}{f_{b}}$	－	0．29（＜1．0）	－	0.25 （＜1．0）

表 5－1（3）断面算定結果（主トラス）

部材（種類）		斜材			
ケース		工認ケース		影響検討ケース	
位置		図5－1参照		図 5－1 参照	
鉄骨断面	部材	2 CTs $-175 \times 350 \times 12 \times 19$		$2 \mathrm{CTs}-175 \times 350 \times 12 \times 19$	
	種別	SM50A（SM490A 相当）		SM50A（SM490A 相当）	
応力状態		引張	圧縮	引張	圧縮
N	（kN）	126	3170	113	3460
断面算定	$\sigma_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	7.25	－	6.50	－
	$\sigma_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	182	－	199
	$\mathrm{f}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	357	－	357	－
	$\mathrm{f}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	300	－	300
	$\frac{\sigma_{t}}{f_{t}}$	0.03 （＜1．0）	－	$0.02(<1.0)$	－
	$\frac{{ }_{\text {o }}{ }_{\text {f }}}{}$	－	$0.61(<1.0)$	－	0.67 （＜1．0）

表 5－1（4）断面算定結果（主トラス）

部材（種類）		束材			
ケース		工認ケース		影響検討ケース	
位置		図5－1参照		図 5－1参照	
鉄骨断面	部材	$2 \mathrm{CTs}-100 \times 200 \times 8 \times 12$		2 CTs－ $100 \times 200 \times 8 \times 12$	
	種別	SM50A（SM490A 相当）		SM50A（SM490A 相当）	
応力状態		引張	圧縮	引張	圧縮
N	kN）	132	290	120	272
断面算定	$\sigma_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	20.8	－	18.9	－
	$\sigma_{\text {c }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	45.6	－	42.8
	$\mathrm{f}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	357	－	357	－
	f_{c}（ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	262	－	262
	$\frac{\sigma_{t}}{f_{t}}$	$0.06(<1.0)$	－	$0.06(<1.0)$	－
	$\frac{{ }_{\text {o }}}{\mathrm{f}_{\mathrm{c}}}$	－	0．18（＜1．0）	－	$0.17(<1.0)$

○：工認ケースの最大応力発生箇所を示す。
○：影響検討ケースの最大応力発生箇所を示す。
（a）サブトラス：R6通りR7通り間

○：工認ケースの最大応力発生箇所を示す。
○：影響検討ケースの最大応力発生箇所を示す。
（b）サブトラス：R9 通りR10通り間

図 5－2 評価対象箇所（サブトラス）

表 5－2（1）断面算定結果（サブトラス）

部材（種類）		上弦材			
ケース		工認ケース		影響検討ケース	
位置		図 5－2 参照		図5－2 参照	
鉄骨断面	部材	H $-250 \times 250 \times 9 \times 14$		H $-250 \times 250 \times 9 \times 14$	
	種別	SS41（SS400 相当）		SS41（SS400 相当）	
応力状態		引張	圧縮	引張	圧縮
N（kN）		35.9	174	199	374
$\mathrm{M}(\mathrm{kN} \cdot \mathrm{m})$		117	117	114	114
断面算定	$\sigma_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	3.89	－	21.6	－
	$\sigma_{\text {c }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	18.9	－	40.6
	$\sigma_{\mathrm{b}} \mathrm{l}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	135	135	131	131
	$\mathrm{f}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	258	－	258	－
	$\mathrm{f}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	258	－	258
	$\mathrm{f}_{\mathrm{b}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	258	258	258	258
	$\frac{\sigma_{t}}{\mathrm{f}_{\mathrm{t}}}+\frac{{ }_{\text {o }}}{\mathrm{f}_{\mathrm{b}}}$	$0.55(<1.0)$	－	$0.60(<1.0)$	－
	$\frac{\sigma^{\text {c }}}{\mathrm{f}_{\mathrm{c}}}+\frac{{ }_{\text {o }}}{\mathrm{f}_{\mathrm{b}}}$	－	$0.61(<1.0)$	－	0.67 （＜1．0）

表5－2（2）断面算定結果（サブトラス）

部材（種類）		下弦材			
ケース		工認ケース		影響検討ケース	
位置		図5－2 参照		図5－2 参照	
鉄骨断面	部材	$\begin{gathered} \mathrm{PL}-19 \times 601+\mathrm{PL}-25 \times 550 \\ +2 \mathrm{PL}-19 \times 344 \end{gathered}$		$\begin{gathered} \mathrm{PL}-19 \times 601+\mathrm{PL}-25 \times 550 \\ +2 \mathrm{PL}-19 \times 344 \end{gathered}$	
	種別	SN490B		SN490B	
応力状態		引張	圧縮	引張	圧縮
N（kN）		6170	2350	6020	2500
M（ $\mathrm{kN} \cdot \mathrm{m}$ ）		341	341	321	321
断面算定	$\sigma \mathrm{t}$（ $\left.\mathrm{N} / \mathrm{mm}^{2}\right)$	180	－	176	－
	$\sigma_{\text {c }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	68.6	－	73.0
	$\sigma_{\mathrm{b}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	84.6	84.6	79.7	79.7
	$\mathrm{fft}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	357	－	357	－
	$\mathrm{f}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	353	－	353
	$\mathrm{ff}_{\mathrm{b}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	357	357	357	357
		$0.75(<1.0)$	－	0.73 （＜1．0）	－
	$\frac{{ }^{\sigma}{ }_{\mathrm{c}}{ }_{\mathrm{c}}{ }_{\mathrm{c}}}{}+\frac{{ }^{\sigma_{\mathrm{b}}}}{\mathrm{f}_{\mathrm{b}}}$	－	0． $44(<1.0)$	－	$0.44(<1.0)$

表 5－2（3）断面算定結果（サブトラス）

部材（種類）		斜材			
ケース		工認ケース		影響検討ケース	
位置		図5－2 参照		図5－2 参照	
鉄骨断面	部材	$\begin{gathered} 2 \mathrm{Ls}-90 \times 90 \times 10 \\ +2 \mathrm{Ls}-250 \times 90 \times 10 \times 15 \end{gathered}$		$\begin{gathered} 2 \mathrm{Ls}-90 \times 90 \times 10 \\ +2 \mathrm{Ls}-250 \times 90 \times 10 \times 15 \end{gathered}$	
	種別	SS41（SS400 相当），SS400		SS41（SS400 相当），SS400	
応力状態		引張	圧縮	引張	圧縮
N		577	1950	501	1740
断面算定	$\sigma_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	53.0	－	46.0	－
	$\sigma \mathrm{c}$（ $\left.\mathrm{N} / \mathrm{mm}^{2}\right)$	－	179	－	160
	$\mathrm{ff}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	258	－	258	－
	f c（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	－	226	－	226
	$\frac{\sigma_{t}}{\mathrm{f}_{\mathrm{t}}}$	$0.21(<1.0)$	－	$0.18(<1.0)$	－
	$\frac{{ }^{\circ}{ }_{\text {c }}}{\mathrm{f}_{\mathrm{c}}}$	－	$0.80(<1.0)$	－	$0.71(<1.0)$

表 5－2（4）断面算定結果（サブトラス）

部材（種類）		束材			
ケース		工認ケース		影響検討ケース	
位置		図 5－2 参照		図5－2 参照	
鉄骨断面	部材	$4 \mathrm{Ls}-90 \times 90 \times 6$		$4 \mathrm{Ls}-90 \times 90 \times 6$	
	種別	SS400		SS400	
応力状態		引張	圧縮	引張	圧縮
N（kN）		117	209	99.5	197
断面算定	$\sigma_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	27.7	－	23.6	－
	$\sigma_{\text {c }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	49.5	－	46.7
	$\mathrm{f}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	258	－	258	－
	$\mathrm{f}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	219	－	219
	$\frac{{ }_{\text {o }}^{\text {t }}}{\text { f }}$	$0.11(<1.0)$	－	$0.10(<1.0)$	－
	$\frac{{ }^{o}{ }_{\text {c }}}{\mathrm{f}_{\mathrm{c}}}$	－	$0.23(<1.0)$	－	$0.22(<1.0)$

○：工認ケースの最大応力発生箇所を示す。
○：影響検討ケースの最大応力発生箇所を示す。
図 5－3 評価対象箇所（母屋）

表 5－3 断面算定結果（母屋）

部材（種類）		母屋			
ケース		工認ケース		影響検討ケース	
位置		図5－3 参照		図5－3 参照	
鉄骨断面	部材	H $-390 \times 300 \times 10 \times 16$		$\mathrm{H}-390 \times 300 \times 10 \times 16$	
	種別	SS41（SS400 相当）		SS41（SS400 相当）	
応力状態		引張	圧縮	引張	圧縮
N（kN）		274	361	482	495
M（ $\mathrm{kN} \cdot \mathrm{m}$ ）		310	310	327	327
断面算定	$\sigma_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	20.1	－	35.4	－
	$\sigma_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	26.5	－	36.4
	$\sigma_{\mathrm{b}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	157	157	165	165
	$\mathrm{f}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	258	－	258	－
	$\mathrm{f}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	258	－	258
	$\mathrm{f}_{\mathrm{b}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	258	258	258	258
		$0.69(<1.0)$	－	$0.78(<1.0)$	－
	$\frac{{ }^{\sigma_{c}}}{\mathrm{f}_{\mathrm{c}}}+\frac{{ }^{\mathrm{o}_{\mathrm{b}}}}{\mathrm{f}_{\mathrm{b}}}$	－	$0.72(<1.0)$	－	$0.79(<1.0)$

○：工認ケースの最大応力発生箇所を示す。
○：影響検討ケースの最大応力発生箇所を示す。

図 5－4 評価対象箇所（方杖：RH 通りRJ 通り間）

表 5－4 断面算定結果（方杖）

部材（種類）		方杖			
ケース		工認ケース		影響検討ケース	
位置		図5－4参照		図5－4 参照	
鉄骨断面	部材	$2 \mathrm{Ls}-130 \times 130 \times 9$		$2 \mathrm{Ls}-130 \times 130 \times 9$	
	種別	SS400		SS400	
応力状態		引張	圧縮	引張	圧縮
N（kN）		274	472	250	451
断面算定	$\sigma_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	60.2	－	55.0	－
	$\sigma_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	104	－	99.2
	$\mathrm{f}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	258	－	258	－
	$\mathrm{f}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	－	156	－	156
	$\frac{{ }^{o}{ }_{t}}{\mathrm{f}_{\mathrm{t}}}$	$0.24(<1.0)$	－	0．22（＜1．0）	－
	$\frac{\sigma_{\text {c }}}{f_{c}}$	－	$0.67(<1.0)$	－	$0.64(<1.0)$

