本資料のらち，枠囲みの内容は商業機密の観点から公開できません。

女川原子力発電所第 2 号機	
工事計画審査資料	
料番号	02 －工－B－19－0184＿改 3
出年月日	2021 年 11 月 4 日

VI－2－別添2－2 溢水源としない耐震B，Cクラス機器の耐震性につい ての計算書

2021年11月

東北電力株式会社

目次

1．概要 1
2．一般事項 1
2． 1 配置概要 1
2.2 構造計画 1
2.3 評価方針 1
2.4 適用基準 2
3．評価部位 2
4．地震応答解析及び構造強度評価 2
4．1 地震応答解析及び構造強度評価方法 2
4．1．1 地震応答解析方法 2
4．1．2 構造強度評価方法 6
4．2 荷重及び荷重の組合せ 6
4．2．1 荷重の種類 6
4．2．2 荷重の組合せ 6
4．3 許容限界 8
4．4 計算方法 16
4.5 計算条件 17
5．評価結果 23

1．概要

本資料は，添付書類「VI－2－別添2－1 溢水防護に係る施設の耐震計算の方針」の「2．耐震評価の基本方針」に基づき，溢水源となり得る流体を内包する機器のらち溢水源と して設定しない機器（以下「耐震 B，Cクラス機器」という。）が，基準地震動 S s によ る地震力に対して，十分な耐震性を有することを説明するものである。その耐震評価は，応力評価により行う。

耐震 B，Cクラス機器は設計基準対象施設においてはBクラス施設又はCクラス施設 に分類される。以下，設計基準対象施設としての構造強度評価を示す。

2．一般事項

2.1 配置概要

耐震 B，Cクラス機器は，原子炉建屋，制御建屋，海水ポンプ室及び復水貯蔵タンク エリアに設置する。各機器の具体的な据付場所及び床面高さは，表4－1に示し，据付場所及び床面高さに応じた評価を行う。
2.3 評価方針

耐震 B，C クラス機器の応力評価は，添付書類「VI－2－別添2－1 溢水防護に係る施設の耐震計算の方針」の「3．1 荷重及び荷重の組合せ」及び「3．2 許容限界」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，耐震 B，Cクラス機器 の評価部位に作用する応力が許容限界内にあることを，本資料の「4．地震応答解析及び構造強度評価」に示す方法により計算し，「5．評価結果」にて確認する。

耐震 B，Cクラス機器の容器類，ポンプ類，配管，弁及び支持構造物については，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」にて示している構造と同様で あることから，添付書類「VI－2－1－9 機能維持の基本方針」に示している各機器，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の荷重の組合せを踏まえて，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」等の評価式及び解析方法を用いて評価する。
2.4 適用基準

適用する規格，指針等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
（2）原子力発電所耐震設計技術指針重要度分類•許容応力編（JEAG46011補－ 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格
（5）日本機械学会 機械工学便覧
（6）日本産業規格（ J I S ）

3．評価部位
耐震 B，Cクラス機器の評価部位は，容器類及びポンプ類については，添付書類「VI－ 2－1－13 機器•配管系の計算書作成の方法」等により，胴板，脚，及びボルト等を評価部位とする。

配管，弁及び支持構造物については，添付書類「VI－2－1－13 機器•配管系の計算書の作成の方法」により配管，弁及び支持構造物を評価部位とする。

評価結果は，算出応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載す る。

4．地震応答解析及び構造強度評価
4．1 地震応答解析及び構造強度評価方法
4．1．1 地震応答解析方法
基準地震動 S s による設計用地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

耐震 B，C クラス機器の地震応答解析は，添付書類「VI－2－別添2－1 溢水防護 に係る施設の耐震計算の方針」の「4．1 地震応答解析」にて設定している評価方針に従い実施する。

表 4－1に耐震B，Cクラス容器類及びポンプ類の設計震度を示す。

表 4－1 耐震 B，Cクラス容器類及びポンプ類の設計震度（ $1 / 3$ ）

	評価対象設備	据付場所	床面高さ 0．P．（m）	設計震度		固有周期（s）	
$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$				水平 方向	鉛直方向	水平方向	鉛直方向
$\begin{aligned} & \text { 容 } \\ & \text { 器 } \end{aligned}$	PLRポンプシールパージ系ろ過器	原子炉建屋	$\begin{gathered} -0.80 * 1 \\ (0.10) \end{gathered}$	1． 37	0.91		
	PLR ポンプシールパージ系ろ過器 （フィルタユニット）	原子炉建屋	－0． 80	1． 34	0.88		
	CRD サクションフィルタ（A）（B）	原子炉建屋	－0． 80	1.34	0.88		
	制御棒駆動水フィルタ（A）（B）	原子炉建屋	－0． 80	1． 34	0． 88		
	CRD スクラム排出容器（A）（B）	原子炉建屋	6.00	解析値	解析値		
	$\begin{aligned} & \text { 制御棒駆動水ポンプ用オイルクー } \\ & \text { ラー(A) (B) } \end{aligned}$	原子炉建屋	－0．80	1． 34	0.88		
	ほう酸水注入系テストタンク	原子炉建屋	22.50	2.12	1． 56		
	CUW 再生熱交換器	原子炉建屋	－0．80	1． 34	0.88		
	CUW 非再生熱交換器（A）（B）	原子炉建屋	－0．80	1.34	0.88		
	CUW プリコートタンク	原子炉建屋	$\begin{aligned} & 6.00^{* 1} \\ & (6.50) \\ & \hline \end{aligned}$	1.60	1． 11		
	CUW 万過脱塩器（A）（B）	原子炉建屋	15.00	1.97	1.37		
	FPCプリコートタンク	原子炉建屋	$\begin{aligned} & 15.00 * 1 \\ & (15.50) \end{aligned}$	1.98	1． 39		
	燃料プール泠却浄化系ろ過脱塩器 （A）（B）	原子炉建屋	22.50	2.12	1． 56		
	R／A LCW サンプ冷却器	原子炉建屋	－8． 10	0.99	0.69		
	HNCW サージタンク	原子炉建屋	$\begin{aligned} & 36.30^{* 1} \\ & (41.20) \end{aligned}$	3.43	1． 89		
	R／A 給 気 冷 却 加 熱 コ イル （A）（B）（C）（D）（E）（F）	原子炉建屋	$\begin{aligned} & 24.80^{* 1} \\ & (33.20) \end{aligned}$	2.65	1.77		
	T／B 給 気 冷 却 加 熱 コイル （A）（B）（C）（D）（E）（F）（G）（H）（I）	原子炉建屋	$\begin{aligned} & 24.80 * 1 \\ & (33.20) \\ & \hline \end{aligned}$	2.65	1． 77		
	送風機室空調機（A）（B）	原子炉建屋	$\begin{gathered} 24.80 * 1 \\ (33.20) \end{gathered}$	2． $65 * 2$	1． 77		
	RW／A 給気冷却加熱コイル （A）（B）（C）	原子炉建屋	$\begin{aligned} & 24.80 * 1 \\ & (33.20) \end{aligned}$	2.65	1． 77		
	燃料交換機制御室空調機	原子炉建屋	$\begin{aligned} & 33.20^{* 1} \\ & (41.20) \end{aligned}$	3.43	1． 89		
	R／A MS トンネル室空調機（A）（B）	原子炉建屋	15.00	1.97	1． 37		
	CRD ポンプ室空調機	原子炉建屋	－0． 80	1.34	0.88		
	PLR 電源装置室空調機	原子炉建屋	－0． 80	1． 34	0.88		
	IA－SA 圧縮機室空調機	原子炉建屋	－0． 80	1．34	0.88		
	常用電気品室給気泠却加熱コイル （A）（B）	制御建屋	1.50	1． 35	0.79		
	入退域エリア（クリーン）空調機	制御建屋	15.00	2． 25 ＊2	1． 39		
	燃料交換床給気加熱コイル（A）（B）	原子炉建屋	$\begin{aligned} & 27.80 * 1 \\ & (33.20) \end{aligned}$	2.65	1． 77		
	燃料交換機制御室給気加熱コイル	原子炉建屋	$\begin{gathered} 27.80 * 1 \\ (33.20) \end{gathered}$	2.65	1． 77		

表 4－1 耐震 B，Cクラス容器類及びポンプ類の設計震度（2／3）

	評価対象設備	据付場所	床面高さ 0．P．（m）	設計震度		固有周期（s）	
$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$				$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \end{aligned}$	鉛直方向	$\begin{gathered} \text { 水平方 } \\ \text { 向 } \end{gathered}$	鉛直方 向
$\begin{aligned} & \text { 容 } \\ & \text { 器 } \end{aligned}$	原子炉補機（A）（B）室給気加熱コイル	原子炉建屋	$\begin{aligned} & \hline 24.80^{* 1} \\ & (33.20) \end{aligned}$	2.65	1． 77		
	原子炉補機（HPCS）室給気加熱コイル （A）（B）	原子炉建屋	$\begin{aligned} & 24.80^{* 1} \\ & (33.20) \end{aligned}$	2.65	1． 77		
	CRD 水圧制御ユニット（A）（B）エリ ア給気加熱コイル	原子炉建屋	$\begin{aligned} & 6.00 * 1 \\ & (15.00) \end{aligned}$	1． 97	1． 37		
	計測制御電源（A）（ ）$^{\text {室給気加熱コイル }}$	制御建屋	1． 50	1． 35	0.79		
	中央制御室給気加熱コイル （A）（B）（C）（D）（E）（F）（G）（H）	制御建屋	1.50	1． 35	0． 79		
	PLR－VVVF 冷却器（A）（B）	原子炉建屋	－0． 80	1．34	0.88		
	IA 後部冷却器（A）（B）	原子炉建屋	－0．80	解析値	解析値		
	SA 後部冷却器（A）（B）	原子炉建屋	－0．80	解析値	解析値		
	所内温水系温水熱交換器（A）（B）	原子炉建屋	15.00	6． $18 * 3$	1.37		
	所内温水系バックアップ 熱交換器	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (15.80) \\ & \hline \end{aligned}$	1.99	1． 39		
	所内温水系サージタンク	原子炉建屋	33.20	2.65	1． 77		
	DG 燃料油ドレンユニット	原子炉建屋	15.00	1.97	1． 37		
	HPCSDG 燃料油ドレンユニット	原子炉建屋	15.00	1.97	1． 37		
	DG 燃料油ドレンタンク（A）（B）	原子炉建屋	15.00	1． 97	1.37		
	HPCSDG 燃料油ドレンタンク	原子炉建屋	15.00	1.97	1.37		
	HPCSDG 潤滑油補給タンク	原子炉建屋	15.00	1.97	1． 37		
	RW 制御室 HVAC 冷水供給設備膨張 タンク	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (22.50) \end{aligned}$	2.12	1.56		
	RW 制御室 給気加熱コイル	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (22.50) \\ & \hline \end{aligned}$	2.12	1.56		
	RW 制御室 給気冷却コイル	原子炉建屋	$\begin{aligned} & 15.00 * 1 \\ & (22.50) \\ & \hline \end{aligned}$	2.12	1.56		
$\begin{aligned} & \text { ポ } \\ & \text { ンo } \\ & \text { 類 } \end{aligned}$	制御棒駆動水ポンプ（A）（B）	原子炉建屋	－0． 80	1． 34	0． 88		
	原子炉冷却材浄化系ポンプ（A）（B） $($ 冷却器を含む）	原子炉建屋	$\begin{aligned} & -8.10^{* 1} \\ & (-6.60) \\ & \hline \end{aligned}$	1． 07	0.73		
	CUW プリコートポンプ	原子炉建屋	6.00	1.57	1.09		
	原子炉冷却材浄化系保持ポンプ （A）（B）	原子炉建屋	6.00	1.57	1.09		
	燃料プール泠却浄化系プリコート ポンプ	原子炉建屋	15.00	1.97	1． 37		
	燃料プール冷却浄化系保持ポンプ （A）（B）	原子炉建屋	22.50	2.12	1.56		
	燃料プール補給水系ポンプ（軸受冷却器を含む）	原子炉建屋	－8． 10	0.99	0.69		
	タービン補機泠却海水ポンプ （A）（B）（C）	海水ポンプ室	3.00	解析値	1.94		
	IA 空気圧縮機（A）（B）（中間冷却器 を含む）	原子炉建屋	－0．80	1． 34	0.88		

表 4－1 耐震 B，C クラス容器類及びポンプ類の設計震度（3／3）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象設備	据付場所	床面高さ 0．P．（m）	設計震度		固有周期（s）	
				水平 方向	鉛直 方向	$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 鉛直 } \\ & \text { 方向 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { ポ } \\ & \text { シフ } \\ & \text { プ } \end{aligned}$	SA 空気圧縮機（A）（B）（中間冷却器 を含む）	原子炉建屋	－0． 80	1． 34	0.88		
	所内温水系ポンプ（A）（B）	原子炉建屋	15.00	1.97	1.37		
	DG 燃料油ドレンポンプ（A）（B）	原子炉建屋	15.00	1． 97	1． 37		
	HPCSDG 潤滑油補給ポンプ	原子炉建屋	15.00	1.97	1.37		
	HPCSDG 燃料油ドレンポンプ	原子炉建屋	15.00	1.97	1.37		
	循環水ポンプ（A）	海水ポンプ室	0． 20	解析値	2.02		
	循環水ポンプ（B）	海水ポンプ室	0． 20	解析値	2.02		

注記 $*^{1}$ ：基準床レベルを示す。
＊2：本設備は水平方向が柔構造であるが，スペクトルモーダル解析による動解析に加 え，設置高さにおける最大応答加速度より定めた震度による静解析も実施し，静解析の方が厳しい結果であったことから，設置高さにおける最大応答加速度よ り定めた震度を示す。
＊ 3 ：本設備は水平方向が柔構造であることから，設置高さである原子炉建屋 1 F （0．P．15．00m）の応答スペクトルを使用し，設計震度を定める。
＊4：入退域エリア（クリーン）空調機と同形状の設備であることから，設計震度の大 きい入退域エリア（クリーン）空調機を代表として耐震評価を実施する。
＊5：送風機室空調機と同形状の設備であることから，設計震度の大きい送風機室空調機を代表として耐震評価を実施する。

4．1．2 構造強度評価方法

耐震 B，C クラス機器の応力評価は，添付書類「VI－2－別添2－1 溢水防護に係 る施設の耐震計算の方針」の「4．2 耐震評価」にて設定している評価方針を踏ま え，応力評価を実施する。

耐震 B，Cクラス機器の応力評価は，本資料の「3．評価部位」に示す評価部位 に対し，「4．2 荷重及び荷重の組合せ」及び「4．3 許容限界」に示す荷重及び荷重の組合せ並びに許容限界を踏まえ，「4．4 計算方法」に示す方法を用いて評価 を行う。

4．2 荷重及び荷重の組合せ

応力評価に用いる荷重及び荷重の組合せは，添付書類「VI－2－別添2－1 溢水防護に係る施設の耐震計算の方針」の「3．1 荷重及び荷重の組合せ」にて示している荷重及 び荷重の組合せを用いる。

4．2．1 荷重の種類

応力評価に用いる荷重は，以下の荷重を用いる。
（1）常時作用する荷重（D）
常時作用する荷重は，持続的に生じる荷重であり，自重とする。
（2）内圧荷重（ P_{D} ）
内圧荷重は，当該設備に設計上定められた最高使用圧力による荷重とする。
（3）機械的荷重（ M_{D} ）
当該設備に設計上定められた機械的荷重
（4）地震荷重（ S s ）
地震荷重は，基準地震動 S s により定まる地震力とする。

4．2．2 荷重の組合せ
応力評価に用いる荷重の組合せは，各機器の評価部位ごとに設定する。荷重の組合せを表 4－2，表 4－3及び表 4－4に示す。なお，ポンプ類の評価部位はボルト のみのため，ポンプ類の荷重の組合せは表 4－4による。

表 4－2 容器類の荷重の組合せ

許容応力状態	荷重の組合せ	評価部位
IV A_{A}	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	胴板

表 4－3 配管の荷重の組合せ

許容応力状態	荷重の組合せ	評価部位
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	配管，弁

表 4－4 支持構造物の荷重の組合せ

許容応力状態	荷重の組合せ	評価部位
IV A_{A}	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	脚，支持構造物，ボルト等

4． 3 許容限界
耐震 B，C クラスの機器の評価の許容限界は，添付書類「VI－2－別添 2－1 溢水防護 に係る施設の耐震計算の方針」の「3．2許容限界」にて設定している許容限界に従っ て，本資料の「3．評価部位」にて設定している評価部位ごとに，許容応力状態IV $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。

各機器の評価部位ごとの許容限界を表 4－5，表 4－6及び表4－7に，使用材料及び使用材料の許容応力評価条件を表4－8に示す。

表 4－5 容器類の許容限界

注記 $~$ 1：座屈に対する評価が必要な場合には，クラス MC容器の座屈に対する評価式に よる
＊2：2•S yを超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300 （PVB－3313を除く。 S_{m} は $2 / 3 \cdot \mathrm{~S}_{\mathrm{y}}$ と読み替える。）の簡易弾塑性解析を用いる。

表 4－6 配管の許容限界

区分	耐震 重要度分類	荷重の組合せ	許容	許容限界			
			応力 状態	一次一般 膜応力	- 次膜応力 + - 次曲げ応力	$\begin{aligned} & \text { 一次 + } \\ & \text { 二次応力 } \end{aligned}$	$\begin{gathered} \hline \text { 一次 + 二次 + } \\ \text { ピーク応力 } \end{gathered}$
配管	B，C	$\begin{gathered} \mathrm{D}+\mathrm{P}_{\mathrm{D}} \\ +\mathrm{M}_{\mathrm{D}}+ \\ \mathrm{S} \mathrm{~s} \end{gathered}$	IV ${ }_{\text {A }} \mathrm{S}$	$0.6 \cdot \mathrm{~S}^{*}{ }^{* 1}$	左欄の 1.5 倍 の値	S s 地震疲労解析積係数か こと。但 による変動値が れば，疲	動のみによる行い，疲労累 ． 0 以下である ，地震動のみ ＋二次応力の －Sy以下であ解析は不要。

注記 $* 1$ ：軸力による全断面平均応力については，許容応力状態 III $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ の一次一般膜応力 の許容値の 0.8 倍の値とする。
＊ $2: 2 \cdot \mathrm{~S}_{\mathrm{y}}$ を超える場合は弾塑性解析を行う。この場合，設計•建設規格PVB－3536（1）， （2），（4）及び（5）（ただし， S_{m} は $2 / 3 \cdot \mathrm{~S}_{\mathrm{y}}$ と読み替える。）の簡易弾塑性解析 を用いる。

表 4－7 支持構造物の許容限界

耐震重要度分類	荷重の組合せ	許容 応力 状態	許容限界 $* 1, * 2, * 3$ （ボルト等以外）										許容限界 $* 2, * 4$ （ボルト等）一次応力		形式試験に よる場合 許容荷重
			一次応力					一次 + 二次応力							
			引張	せん断	圧縮	曲げ	支圧	引張圧縮	せん断	曲げ	支圧	$* 5$ 座屈	引張	せん断	
B，C	$\begin{gathered} \mathrm{D}+\mathrm{P}_{\mathrm{D}}+ \\ \mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{~s} \end{gathered}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$\begin{aligned} & 1.5 \cdot \\ & \mathrm{f}_{\mathrm{t}} * \end{aligned}$	$\begin{aligned} & 1.5 \cdot \\ & \mathrm{f} \text { s } \end{aligned}$	$\begin{aligned} & 1.5 \cdot \\ & \mathrm{f}_{\mathrm{c}} * \end{aligned}$	$\begin{aligned} & 1.5 \cdot \\ & \mathrm{f}_{\mathrm{b}} \text { * } \end{aligned}$	$\begin{aligned} & 1.5 \cdot \\ & \mathrm{f}_{\mathrm{p}} * \end{aligned}$	$3 \cdot \mathrm{f}$ (S s 地 振幅に	$3 \cdot f$ s 動のみに いて評価	$3 \cdot \mathrm{f}$ b よる応力 する。）	$\begin{aligned} & \text { * } \\ & 1.5 \cdot \\ & \mathrm{f}_{\mathrm{p}} * \end{aligned}$	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$ ， $1.5 \cdot \mathrm{f}$ 双 は $1.5 \cdot f$ 。	$\mathrm{fft}_{\text {t }}{ }^{1.5}$	1．5．	$\begin{aligned} & T_{L} \cdot 0.6 \\ & \cdot \frac{S_{y d}}{S_{y t}} \end{aligned}$

注記 $* 1$ ：鋼構造設計規準（日本建築学会 2005 改定）等の幅厚比の制限を満足させる。
＊ 2 ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊ 3 ：耐圧部に溶接等により直接取り付けられる支持構造物であって耐圧部と一体の応力解析を行うものについては，耐圧部と同じ許容応力とする。 ＊4：コンクリートに埋め込まれるアンカボルトで地震応力の占める割合が支配的なものであつて，トルク管理，材料の照合等を行わないものについ ては，材料の品質，据付状態等のゆらぎ等を考慮して，III A S の許容応力を一次引張応力に対しては f t，一次せん断応力に対しては f s として， またIV A S \rightarrow III A S として応力評価を行う。
＊ 5 ：薄肉円筒形状のものの座屈の評価にあっては，クラス MC 容器の座屈に対する評価式による。
＊ $6:$ すみ肉溶接部にあっては最大応力に対して $1.5 \cdot \mathrm{f}$ s とする。
＊7：設計•建設規格 SSB－3121．1（4）により求めたf f とする。
＊ 8 ：自重，熱膨張等により常時作用する荷重に，地震動による荷重を重ね合わせて得られる応力の圧縮最大値について評価する。

表 4－8 使用材料及び使用材料の許容応力評価条件（1／5）

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} S_{y} \\ (\mathrm{MPa}) \end{gathered}$	Su （MPa）
PLR ポンプシールパージ系ろ過器	胴板	SUSF304	66	188	479
	ラグ	SUS304	66	188	479
	基礎ボルト	SUS304	50	198	504
PLR ポンプシールパージ系ろ過器 （フィルタユニット）	基礎ボルト	SS400	50	211	394
CRD サクションフィルタ（A）（B）	胴板	SUS304	66	188	479
	スカート	SUS304	50	198	504
	基礎ボルト	SS400	50	211	394
制御棒駆動水フィルタ（A）（B）	胴板	SUS304TP	66	188	479
	スカート	SUS304TP	50	198	504
	基礎ボルト	SS400	50	211	394
CRD スクラム排出容器（A）（B）	容器	STS410	138	215	404
	サポート	STKR400	50	234	394
制御棒駆動水ポンプ用オイルクーラー （A）（B）	取付ボルト	SS400	50	211	394
ほう酸水注入系テストタンク	胴板	SUS304	66	188	479
	脚	SUS304	50	198	504
	基礎ボルト	SS400	50	211	394
CUW 再生熱交換器	胴板	SGV480	302	198	419
	脚	SS400	302	169	373
	脚締付ボルト	SS400	50	231	394
	架台	STKR400	50	234	394
	基礎ボルト	SS400	50	231	394
CUW 非再生熱交換器（A）（B）	胴板	SGV410	85	205	374
	脚	SS400	50	241	394
	基礎ボルト	SS400	50	231	394
CUW プリコートタンク	胴板	SM400A	66	234	385
	基礎ボルト	SS400	50	231	394
CUW 万過脱塩器（A）（B）	胴板	SB410	66	212	400
	スカート	SS400	50	231	394
	基礎ボルト	SS400	50	231	394

表 4－8 使用材料及び使用材料の許容応力評価条件（2／5）

評価対象設備	評価部位	材料	温度条件 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
FPC プリコートタンク	胴板	SM400A	66	234	385
	基礎ボルト	SS400	50	231	394
燃料プール冷却浄化系ろ過脱塩器 （A）（B）	胴板	SUS304	66	188	479
	スカート	SUS304	50	198	504
	基礎ボルト	SS400	50	231	394
R／A LCW サンプ泠却器	胴板	STS410	70	229	407
	脚	SS400	50	241	394
	基礎ボルト	SS400	50	241	394
HNCW サージタンク	胴板	SS400	66	234	385
	脚	SS400	66	234	385
	基礎ボルト	SS400	50	231	394
R / A 給気冷却加熱コイル （A）（B）（C）（D）（E）（F）	取付ボルト	SS400	85	199	377
T / B 給気冷却加熱コイル (A) (B) (C) (D) (E) (F) (G) (H) (I)	取付ボルト	SS400	85	199	377
送風機室空調機（A）（B）	基礎ボルト	SS400	50	231	394
RW／A 給気泠却加熱コイル（A）（B）（C）	取付ボルト	SS400	85	199	377
燃料交換機制御室空調機	基礎ボルト	SS400	50	231	394
R／A MS トンネル室空調機（A）（B）	基礎ボルト	SS400	50	231	394
CRD ポンプ室空調機	基礎ボルト	SS400	50	231	394
PLR 電源装置室空調機	基礎ボルト	SS400	50	231	394
IA•SA 圧縮機室空調機	基礎ボルト	SS400	50	231	394
常用電気品室給気泠却加熱コイル（A）（B）	取付ボルト	SS400	85	199	377
入退域エリア（クリーン）空調機	基礎ボルト	SS400	50	231	394
燃料交換床給気加熱コイル（A）（B）	取付ボルト	SS400	85	199	377
燃料交換機制御室給気加熱コイル	取付ボルト	SS400	85	199	377
原子炉補機（A）（ $\mathrm{B}^{\text {）室給気加熱コイル }}$	取付ボルト	SS400	85	199	377
原子炉補機（HPCS）室給気加熱コイル（A）（B）	取付ボルト	SS400	85	199	377
CRD 水圧制御ユニット（A）（B）エリア給気加熱コイル	取付ボルト	SS400	85	199	377

表 4－8 使用材料及び使用材料の許容応力評価条件（3／5）

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} S_{y} \\ (\mathrm{MPa}) \end{gathered}$	S_{u} （MPa）
計測制御電源（A）（B）室給気加熱コイル	取付ボルト	SS400	85	199	377
中央制御室給気加熱コイル （A）（B）（C）（D）（E）（F）（G）（H）	取付ボルト	SS400	85	199	377
PLR－VVVF 泠却器（A）（B）	基礎ボルト	SS400	50	211	394
IA 後部冷却器（A）（B）	胴板	STS410	70	229	407
SA後部泠却器（A）（B）	胴板	STS410	70	229	407
所内温水系温水熱交換器（A）（B）	フレーム	SB410	85	205	394
	基礎ボルト	SNB7	50	512	671
	ベースプレート	SS400	85	218	377
所内温水系バックアップ熱交換器	胴板	SM400B	188	196	373
	脚	SS400	50	241	394
	基礎ボルト	SS400	50	211	394
所内温水系サージタンク	胴板	SM400B	85	227	377
	基礎ボルト	SS400	50	211	394
DG 燃料油ドレンユニット	基礎ボルト	SS400	50	231	394
HPCSDG 燃料油ドレンユニット	基礎ボルト	SS400	50	231	394
DG 燃料油ドレンタンク（A）（B）	胴板	SS400	50	241	394
	取付ボルト	SNB7	50	715	838
HPCSDG 燃料油ドレンタンク	胴板	SS400	50	241	394
	取付ボルト	SNB7	50	715	838
HPCSDG 潤滑油補給タンク	胴板	SS400	50	241	394
	基礎ボルト	SS400	50	231	394
RW 制御室 HVAC 泠水供給設備膨張タンク	胴板	SUS304	50	198	504
	脚	STKR400	50	234	394
	基礎ボルト	SS400	50	231	394
RW 制御室 給気加熱コイル	取付ボルト	SS400	85	199	377
RW 制御室 給気冷却コイル	取付ボルト	SS400	66	206	385
制御棒駆動水ポンプ（A）（B）	基礎ボルト	SS400	50	231	394
原子炉冷却材浄化系ポンプ（A）（B） （冷却器を含む）	基礎ボルト	SS400	50	211	394
	ポンプ取付ボルト	SS400	66	206	385

表 4－8 使用材料及び使用材料の許容応力評価条件（4／5）

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
CUW プリコートポンプ	基礎ボルト	SS400	50	231	394
	ポンプ取付ボルト	SS400	50	211	394
	原動機取付ボルト	SS400	50	211	394
原子炉冷却材浄化系保持ポンプ（A）（B）	基礎ボルト	SS400	50	231	394
	ポンプ取付ボルト	SS400	50	211	394
燃料プール泠却浄化系プリコートポンプ	基礎ボルト	SS400	50	231	394
	ポンプ取付ボルト	SS400	50	211	394
	原動機取付ボルト	SS400	50	211	394
燃料プール泠却浄化系保持ポンプ（A）（B）	基礎ボルト	SS400	50	231	394
	ポンプ取付ボルト	SS400	50	211	394
燃料プール補給水系ポンプ （軸受冷却器を含む）	基礎ボルト	SS400	50	231	394
	ポンプ取付ボルト	SS400	66	225	385
	原動機取付ボルト	SS400	50	231	394
タービン補機冷却海水ポンプ（A）（B）（C）	基礎ボルト	SCM435	50	764	906
	ポンプ取付ボルト	SCM435	50	764	906
	原動機台取付ボルト	SCM435	50	764	906
	原動機取付ボルト	SUS304	50	198	504
IA 空気圧縮機（A）（B）（中間冷却器を含む）	空気圧縮機取付ボルト	SS400	50	211	394
	基礎ボルト	S45C	50	339	556
SA 空気圧縮機（A）（B）（中間冷却器を含む）	空気圧縮機取付ボルト	SS400	50	211	394
	基礎ボルト	S45C	50	339	556
所内温水系ポンプ（A）（B）	基礎ボルト	SS400	50	211	394
	ポンプ取付ボルト	SS400	85	199	377
	原動機取付ボルト	SS400	50	211	394
DG 燃料油ドレンポンプ（A）（B）	取付ボルト	SNB7	50	715	838
	ポンプ取付ボルト	SS400	50	231	394
	原動機取付ボルト	SS400	50	231	394
HPCSDG 潤滑油補給ポンプ	基礎ボルト	SS400	50	231	394
	ポンプ取付ボルト	SNB7	85	683	774
	原動機取付ボルト	SNB7	50	715	838

表 4－8 使用材料及び使用材料の許容応力評価条件（5／5）

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} S_{y} \\ (\mathrm{MPa}) \end{gathered}$	Su （MPa）
HPCSDG 燃料油ドレンポンプ	取付ボルト	SNB7	50	715	838
	ポンプ取付ボルト	SS400	50	231	394
	原動機取付ボルト	SS400	50	231	394
循環水ポンプ（A）	基礎ボルト	SS400	50	211	394
	ポンプ取付ボルト	SNCM630	50	873	1061
	吐出エルボ取付ボルト	SNCM630	50	873	1061
	吐出配管ボルト	SS400	50	211	394
循環水ポンプ（B）	基礎ボルト	SS400	50	211	394
	ポンプ取付ボルト	SNCM630	50	873	1061
	吐出エルボ取付ボルト	SNCM630	50	873	1061
	吐出配管ボルト	SCM435	50	764	906
	ベース架台取付ボルト	SNCM630	50	873	1061

4． 4 計算方法

（1）溢水防護として要求する機能を踏まえ，添付書類「VI－2－別添2－1 溢水防護に係 る施設の耐震計算の方針」の「3．2許容限界」より，基準地震動 S s による地震力 に対して耐震性が確保され溢水に至らないことを確認するために，許容応力状態 IV A S で，許容限界を満足することを確認する。なお，配管については，地震起因に よる耐震 B，Cクラス配管から溢水が発生する損傷モードを考慮し，既往の試験や研究等の知見を踏まえ，疲労に着目した評価手法及び評価基準値を適用し，配管のバ ウンダリ機能が確保されることを確認する。また，支持装置については，添付書類「VI－2－1－12－1 配管及び支持構造物の耐震計算について」に基づき，使用される支持装置の定格荷重以下となることを確認する。
（2）減衰定数については，添付書類「VI－2－別添 2－1 溢水防護に係る施設の耐震計算 の方針」の「4．1．3 設計用減衰定数」に示す値を適用する。
（3）評価に用いる解析コード及びその適用機器並びに使用目的を以下に記す。耐震 B，C クラス機器の容器類及びポンプ類の固有値解析及び応力評価に用いる「SAP－IV」及び「MSC NASTRAN」の検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。配管，弁及び支持構造物の固有値解析等に用いる「ISAP」，「SAP－V」，「NX NASTRAN」，「SOLVER」，「AutoPIPE」，「NAPF」及び「MSAP（配管）」の検証及び妥当性の確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
応力評価は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」等の評価方法により評価を行う。
4.5 計算条件

三次元はりモデル解析により応力計算を行った配管について，解析モデル図を図4－1に示し，配管諸元の一覧表を表4－9に示す。 なお，図 4－1 及び表 4－9は，表5－2 で評価結果を示す換気空調補機常用冷却水系を代表で示す。

図 4－1 解析モデル図（1／5）

図 4－1 解析モデル図（4／5）

図 4－1 解析モデル図（5／5）

表 4－9 配管諸元
鳥瞰図 HNCW－20018

管名称	対応する評価点	最高使用圧力 （MPa）	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	外径 (mm)	厚さ （mm）	材料	耐震重要度分類	縦弾性係数 (MPa)
1	$1 \sim 18$	1． 27	85	165.2	7.1	STPG370	C	199200
2	$18 \sim 32$	1． 27	85	114．3	6． 0	STPG370	C	199200
3	$\begin{aligned} & 32 \sim 52 \\ & 30, \quad 103 \sim 115 \\ & 16, \quad 166 \sim 178 \end{aligned}$	1． 27	85	89.1	5.5	STPG370	C	199200
4	$\begin{aligned} & 52 \sim 58, \quad 70 \sim 72 \\ & 85 \sim 87, \quad 100 \sim 102 \\ & 115 \sim 121, \quad 133 \sim 135 \\ & 148 \sim 150, \quad 163 \sim 165 \\ & 178 \sim 184, \quad 196 \sim 198 \\ & 210 \sim 213, \quad 226 \sim 228 \end{aligned}$	1． 27	85	76.3	5.2	STPG370	C	199200
5	$\begin{aligned} & 58 \sim 65, \quad 67 \sim 70 \\ & 56, \quad 73 \sim 78, \quad 80 \sim 85 \\ & 50, \quad 88 \sim 93, \quad 95 \sim 100 \\ & 121 \sim 128, \quad 130 \sim 133 \\ & 119, \quad 136 \sim 141 \\ & 143 \sim 148 \\ & 113, \quad 151 \sim 156 \\ & 158 \sim 163, \quad 184 \sim 191 \\ & 193 \sim 196 \\ & 182, \quad 199 \sim 204 \\ & 206 \sim 210 \\ & 176, \quad 214 \sim 219 \\ & 221 \sim 226 \end{aligned}$	1． 27	85	60.5	5.5	STPG370	C	199200

5．評価結果
表 5－1 及び表 5－2 に示すとおり，耐震 B，Cクラス機器が基準地震動 S s による地震力に対し，耐震性を有することを確認した。 なお，表 5－1 及び表 5－2 においては，算出応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。

表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（1／6）

$\begin{aligned} & 区 \\ & \text { 区 } \end{aligned}$	評価対象設備	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
$\begin{aligned} & \text { 容 } \\ & \text { 器 } \\ & \text { 類 } \end{aligned}$	PLRポンプシールパージ系ろ過器	B	原子炉建屋	$\begin{gathered} -0.80^{*} \\ (0.10) \end{gathered}$	胴板	一次一般膜	95	287
	PLRポンプシールパージ系ろ過器（フィルタユニット）	B	原子炉建屋	－0．80	基礎ボルト	引張	39	190
	CRD サクションフィルタ（A）（B）	B	原子炉建屋	－0． 80	基礎ボルト	引張	55	190
	制御棒駆動水フィルタ（A）（B）	B	原子炉建屋	－0． 80	胴板	一次一般膜	94	287
	CRD スクラム排出容器（A）（B）	B	原子炉建屋	6.00	容器	一次＋二次	363	430
	制御棒駆動水ポンプ用オイル クーラー（A）（B）	C	原子炉建屋	－0．80	取付ボルト	せん断	2	146
	ほう酸水注入系テストタンク	C	原子炉建屋	22.50	脚	組合せ	90	205
	CUW 再生熱交換器	B	原子炉建屋	－0． 80	胴板	一次＋二次	252	396
	CUW 非再生熱交換器（A）（B）	B	原子炉建屋	－0．80	胴板	一次＋二次	338	410
	CUW プリコートタンク	B	原子炉建屋	$\begin{aligned} & 6.00^{*} \\ & (6.50) \end{aligned}$	基礎ボルト	引張	41	207
	CUW 万過脱塩器（A）（B）	B	原子炉建屋	15.00	基礎ボルト	せん断	92	159
	FPC プリコートタンク	B	原子炉建屋	$\begin{aligned} & 15.00^{*} \\ & (15.50) \end{aligned}$	基礎ボルト	引張	54	207

注記＊：基準床レベルを示す。

表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（2／6）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象設備	耐震 重要度 分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
容器類	燃料プール泠却浄化系ろ過脱塩器（A）（B）	B	原子炉建屋	22.50	スカート	組合せ	66	205
	R／A LCW サンプ泠却器	B	原子炉建屋	－8．10	胴板	一次＋二次	88	459
	HNCW サージタンク	C	原子炉建屋	$\begin{aligned} & \hline 36.30^{* 1} \\ & (41.20) \\ & \hline \end{aligned}$	基礎ボルト	引張	127	207
	R／A 給気冷却加熱コイル （A）（B）（C）（D）（E）（F）	C	原子炉建屋	$\begin{aligned} & 24.80^{* 1} \\ & (33.20) \\ & \hline \end{aligned}$	取付ボルト	引張	18	179
	T／B 給 気 冷却加熱コイル （A）（B）（C）（D）（E）（F）（G）（H）（I）	C	原子炉建屋	$\begin{aligned} & 24.80^{* 1} \\ & (33.20) \\ & \hline \end{aligned}$	取付ボルト	せん断	11	138
	送風機室空調機（A）（B）	C	原子炉建屋	$\begin{aligned} & 24.80^{* 1} \\ & (33.20) \end{aligned}$	基礎ボルト	引張	73	207
	RW／A 給気冷却加熱コイル （A）（B）（C）$* 2$	C	原子炉建屋	$\begin{aligned} & 24.80^{* 1} \\ & (33.20) \\ & \hline \end{aligned}$	－	－	－	－
	燃料交換機制御室空調機	C	原子炉建屋	$\begin{aligned} & 33.20^{* 1} \\ & (41.20) \\ & \hline \end{aligned}$	基礎ボルト	引張	139	207
	R／A MS トンネル室空調機（A）（B）＊3	C	原子炉建屋	15.00	－	－	－	－
	CRD ポンプ室空調機＊4	C	原子炉建屋	－0．80	－	－	－	－

注記 $* 1$ ：基準床レベルを示す。
＊2：T／B給気泠却加熱コイルと同形状の設備であることから，機器重量が大きい T／B 給気冷却加熱コイルを代表として耐震評価 を実施する。
＊3：入退域エリア（クリーン）空調機と同形状の設備であることから，設計震度の大きい入退域エリア（クリーン）空調機を代表として耐震評価を実施する。
＊4：送風機室空調機と同形状の設備であることから，設計震度の大きい送風機室空調機を代表として耐震評価を実施する。

表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（3／6）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象設備	耐震 重要度 分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
容器類	PLR 電源装置室空調機＊2	C	原子炉建屋	－0． 80	－	－	－	－
	IA • SA 圧縮機室空調機＊3	C	原子炉建屋	－0． 80	－	－	－	－
	常用電気品室給気泠却加熱コイ ル（A）（B）＊4	C	制御建屋	1． 50	－	－	－	－
	入退域エリア（クリーン）空調機	C	制御建屋	15.00	基礎ボルト	引張	101	202
	燃料交換床給気加熱コイル （A）（B）	C	原子炉建屋	$\begin{aligned} & \hline 27.80 * 1 \\ & (33.20) \\ & \hline \end{aligned}$	取付ボルト	せん断	7	138
	燃料交換機制御室給気加熱コ イル	C	原子炉建屋	$\begin{aligned} & 27.80 * 1 \\ & (33.20) \end{aligned}$	取付ボルト	引張	5	179
	原子炉補機（A）（B）室給気加熱 コイル	C	原子炉建屋	$\begin{gathered} 24.80^{* 1} \\ (33.20) \\ \hline \end{gathered}$	取付ボルト	引張	7	179
	原子炉補機（HPCS）室給気加熱 コイル（A）（B）	C	原子炉建屋	$\begin{gathered} 24.80^{* 1} \\ (33.20) \end{gathered}$	取付ボルト	引張	11	179
	CRD水圧制御ユニット（A）（B）エ リア給気加熱コイル	C	原子炉建屋	$\begin{aligned} & \hline 6.00 * 1 \\ & (15.00) \end{aligned}$	取付ボルト	引張	5	179
	計測制御電源（A）（B）室給気加熱コイル	C	制御建屋	1． 50	取付ボルト	引張	4	179
	中央制御室給気加熱コイル （A）（B）（C）（D）（E）（F）（G）（H）＊4	C	制御建屋	1． 50	－	－	－	－

注記 $* 1$ ：基準床レベルを示す。
＊2：入退域エリア（クリーン）空調機と同形状の設備であることから，設計震度の大きい入退域エリア（クリーン）空調機を代表として耐震評価を実施する。
＊3：送風機室空調機と同形状の設備であることから，設計震度の大きい送風機室空調機を代表として耐震評価を実施する。
＊4：計測制御電源（A）（B）室給気加熱コイルと同形状の設備であることから，機器重量が大きい計測制御電源（A）（B）室給気加熱コ イルを代表として耐震評価を実施する。

表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（4／6）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象設備	耐震 重要度 分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
$\begin{aligned} & \text { 容 } \\ & \text { 器 } \\ & \text { 類 } \end{aligned}$	PLR－VVVF 冷却器（A）（B）	C	原子炉建屋	－0．80	基礎ボルト	引張	79	164
	IA 後部冷却器（A）（B）	C	原子炉建屋	－0． 80	胴板	一次＋二次	355	459
	SA 後部冷却器（A）（B）	C	原子炉建屋	－0．80	胴板	一次＋二次	385	459
	所内温水系温水熱交換器（A）（B）	C	原子炉建屋	15.00	基礎ボルト	引張	266	323
	所内温水系バックアップ熱交換器	C	原子炉建屋	$\begin{aligned} & 15.00 * 1 \\ & (15.80) \\ & \hline \end{aligned}$	胴板	一次＋二次	284	392
	所内温水系サージタンク	C	原子炉建屋	33.20	基礎ボルト	引張	65	190
	DG 燃料油ドレンユニット	C	原子炉建屋	15.00	基礎ボルト	引張	17	207
	HPCSDG 燃料油ドレンユニット	C	原子炉建屋	15.00	基礎ボルト	引張	17	207
	DG 燃料油ドレンタンク（A）（B）	C	原子炉建屋	15.00	取付ボルト	引張	26	440
	HPCSDG 燃料油ドレンタンク	C	原子炉建屋	15.00	取付ボルト	引張	26	440
	HPCSDG 潤滑油補給タンク	C	原子炉建屋	15.00	基礎ボルト	引張	37	207
	RW 制御室 HVAC 冷水供給設備膨張タンク	C	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (22.50) \end{aligned}$	胴板	曲げ	160	192
	RW 制御室 給気加熱コイル＊2	C	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (22.50) \end{aligned}$	－	－	－	－
	RW 制御室 給気冷却コイル	C	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (22.50) \end{aligned}$	取付ボルト	引張	12	185

注記 $* 1$ ：基準床レベルを示す。
＊ $2: ~ R W$ 制御室給気冷却コイルと同形状の設備であることから，機器重量の大きい RW 制御室給気冷却コイルを代表として耐震評価を実施する。

表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（5／6）

区	評価対象設備	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
ポ ン プ 類	制御棒駆動水ポンプ（A）（B）	B	原子炉建屋	－0．80	基礎ボルト	引張	101	207
	原子炉冷却材浄化系ポンプ （A）（B）（冷却器を含む）	B	原子炉建屋	$\begin{aligned} & -8.10^{*} \\ & (-6.60) \\ & \hline \end{aligned}$	基礎ボルト	引張	14	190
	CUWプリコートポンプ	B	原子炉建屋	6.00	基礎ボルト	引張	14	207
	原子炉冷却材浄化系保持ポン プ（A）（B）	B	原子炉建屋	6.00	$\begin{gathered} \text { ポンプ取付 } \\ \text { ボルト } \\ \hline \end{gathered}$	引張	28	190
	燃料プール椧却浄化系プリコ ートポンプ	B	原子炉建屋	15.00	基礎ボルト	引張	18	207
	燃料プール泠却浄化系保持ポ ンプ (A) (B)	B	原子炉建屋	22.50	ポンプ取付 ボルト	引張	23	190
	燃料プール補給水系ポンプ（軸受冷却器を含む）	B	原子炉建屋	－8． 10	原動機取付ボルト	引張	8	207
	タービン補機冷却海水ポンプ （A）（B）（C）	C	海水ポンプ室	3.00	原動機取付ボルト	引張	98	145
	IA 空気圧縮機（A）（B）（中間冷却器含む）	C	原子炉建屋	－0．80	空気圧縮機取付ボルト	引張	58	190
	SA空気圧縮機（A）（B）（中間冷却器含む）	C	原子炉建屋	－0．80	空気圧縮機取付ボルト	引張	63	190
	所内温水系ポンプ（A）（B）	C	原子炉建屋	15.00	原動機取付ボルト	引張	20	190
	DG 燃料油ドレンポンプ（A）（B）	C	原子炉建屋	15.00	原動機取付ボルト	引張	4	207
	HPCSDG 潤滑油補給ポンプ	C	原子炉建屋	15.00	基礎ボルト	引張	7	207

注記＊：基準床レベルを示す。

表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（6／6）

区	評価対象設備	耐震 重要度 分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
ポ ジ類	HPCSDG 燃料油ドレンポンプ	C	原子炉建屋	15.00	原動機取付ボルト	引張	4	207
	循環水ポンプ（ A ）	C	海水ポンプ室	0． 20	吐出配管 ボルト	引張	126	174
	循環水ポンプ（B）	C	海水ポンプ室	0． 20	吐出エルボ取付ボルト	引張	305	557

表 5－2 基準地震動 S s に対する配管，弁及び支持構造物の応力評価結果（1／5）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象系統	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の 種類	算出 応力 （MPa）	許容 応力 （MPa）
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \\ & \text { 异 } \\ & \text { 及 } \\ & \text { び } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 構 } \\ & \text { 物 } \end{aligned}$	給水系	B，C	原子炉建屋	$6.00 \sim 22.50$	配管本体	一次＋二次	389	438
					支持構造物	一次＋二次	466	548
	原子炉再循環系	B，C	原子炉建屋	$-0.80 \sim 6.00$	配管本体	一次 + 二次 （疲労）	$\begin{gathered} 422 \\ (0.8205) \\ \hline \end{gathered}$	$\begin{gathered} \hline 318 \\ (1.0) \\ \hline \end{gathered}$
					支持構造物	一次	42	118
	制御棒駆動水圧系	C	原子炉建屋	$6.00 \sim 15.00$	配管本体	一次 + 二次 （疲労）	$\begin{gathered} 553 \\ (0.9524) \end{gathered}$	$\begin{gathered} 318 \\ (1.0) \end{gathered}$
					支持構造物	一次＋二次	15	137
	残留熱除去系	B，C	原子炉建屋	$15.00 \sim 22.50$	配管本体	一次＋二次	205	416
					支持構造物	一次＋二次	35	490
	高圧炉心スプレイ系	B，C	原子炉建屋	$-8.10 \sim 6.00$	配管本体	一次＋二次	82	376
					支持構造物	一次＋二次	14	490
	原子炉隔離時冷却系	B	原子炉建屋	$-0.80 \sim 6.00$	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { (疲労) } \\ \hline \end{gathered}$	$\begin{gathered} 388 \\ (0.0444) \\ \hline \end{gathered}$	$\begin{array}{r} 326 \\ (1.0) \\ \hline \end{array}$
					支持構造物	荷重＊${ }^{1}$	$\begin{aligned} & 16^{* 1} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{gathered} 27^{* 1} \\ (\mathrm{kN}) \end{gathered}$
	原子炉冷却材浄化系	B	原子炉建屋	$-0.80 \sim 6.00$	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ (\text { 疲労) } \\ \hline \end{gathered}$	$\begin{gathered} 385 \\ (0.8260 * 2) \\ \hline \end{gathered}$	$\begin{gathered} 364 \\ (1.0) \\ \hline \end{gathered}$
					支持構造物	一次＋二次	41	482
	燃料プール泠却浄化系	B	原子炉建屋	$6.00 \sim 22.50$	配管本体	一次＋二次	325	376
					支持構造物	一次	152	205

注記＊1：支持構造物はメカニカルスナッバであり，評価にあたつては荷重評価を実施しており，許容荷重き発生荷重を満たしているこ とを確認しているため，応力の種類は荷重とする。
＊2：本疲労評価は，個別に設定した等価繰返し回数 283 回（S s ）を適用し評価を実施している。

表 5－2 基準地震動 S s に対する配管，弁及び支持構造物の応力評価結果（2／5）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象系統	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の種類	算出 応力 （MPa）	許容 応力 （MPa）
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \\ & \text { 弁 } \\ & \text { 及 } \\ & \text { び } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 構 } \\ & \text { 造 } \end{aligned}$	放射性ドレン移送系	B，C	原子炉建屋	$-8.10 \sim-0.80$	配管本体	一次 + 二次 （疲労）	$\begin{gathered} \hline 472 \\ (0.9895) \end{gathered}$	$\begin{gathered} 376 \\ (1.0) \end{gathered}$
					支持構造物	一次＋二次	61	118
	機器ドレン系	B	原子炉建屋	$-8.10 \sim 6.00$	配管本体	一次＋二次	187	376
					支持構造物	一次＋二次	86	118
	床ドレン・化学廃液系	B	原子炉建屋	－8．10～ 6.00	配管本体	一次＋二次	340	376
					支持構造物	一次	123	280
	廃スラッジ系	B	原子炉建屋	$6.00 \sim 15.00$	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ (\text { 疲労) } \\ \hline \end{gathered}$	$\begin{gathered} 427 \\ (0.0288) \\ \hline \end{gathered}$	$\begin{gathered} 398 \\ (1.0) \\ \hline \end{gathered}$
					支持構造物	一次	75	254
	純水補給水系	C	原子炉建屋	$15.00 \sim 22.50$	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ (\text { 疲労) } \end{gathered}$	$\begin{gathered} 485 \\ (0.6068 *) \\ \hline \end{gathered}$	$\begin{gathered} 376 \\ (1.0) \\ \hline \end{gathered}$
					支持構造物	一次＋二次	153	490
	復水補給水系	B	原子炉建屋	$-0.80 \sim 6.00$	配管本体	一次 + 二次 （疲労）	$\begin{gathered} 458 \\ (0.8288) \end{gathered}$	$\begin{gathered} 376 \\ (1.0) \\ \hline \end{gathered}$
					支持構造物	一次	72	280
	万過水系	C	原子炉建屋	$-8.10 \sim-0.800$	配管本体	一次＋二次	365	378
					支持構造物	一次＋二次	32	159

注記＊：本疲労評価は，個別に設定した等価繰返し回数 174 回（S s）を適用し評価を実施している。

表 5－2 基準地震動 S s に対する配管，弁及び支持構造物の応力評価結果（3／5）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象系統	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の 種類	算出 応力 （MPa）	許容 応力 （MPa）
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \\ & \text { 弁 } \\ & \text { 及 } \\ & \text { び } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 構 } \\ & \text { 物 } \end{aligned}$	燃料プール補給水系	B	原子炉建屋	$-0.80 \sim 22.50$	配管本体	一次＋二次	306	462
					支持構造物	一次＋二次	352	490
	消火用水系	C	原子炉建屋	$6.00 \sim 15.00$	配管本体	一次＋二次	366	378
					支持構造物	一次＋二次	110	159
	換気空調補機常用冷却水系	C	原子炉建屋	$22.50 \sim 33.20$	配管本体	一次＋二次	344	354
					支持構造物	一次＋二次	102	142
	原子炉補機冷却水系	C	原子炉建屋	$-0.80 \sim 6.00$	配管本体	一次＋二次	393	394
					支持構造物	一次＋二次	349	454
	加熱蒸気及び復水戻り系	C	原子炉建屋	$-8.10 \sim 22.50$	配管本体	一次＋二次	348	358
					支持構造物	一次＋二次	168	552
	所内温水系	C	原子炉建屋	$22.50 \sim 33.20$	配管本体	一次＋二次	346	354
					支持構造物	一次	92	246
	非常用ディーゼル発電設備	C	原子炉建屋	$15.00 \sim 33.20$	配管本体	一次＋二次	454	484
					支持構造物	一次＋二次	54	159
	高圧炉心スプレイ系ディーゼ ル発電設備	C	原子炉建屋	$15.00 \sim 33.20$	配管本体	一次＋二次	362	484
					支持構造物	一次	73	276
	衛生設備排水系	C	原子炉建屋	$15.00 \sim 22.50$	配管本体	一次＋二次	323	398
					支持構造物	一次＋二次	37	552
	建屋内排水系	C	原子炉建屋	$6.00 \sim 15.00$	配管本体	一次＋二次	365	390
					支持構造物	一次＋二次	157	159

表 5－2 基準地震動 S s に対する配管，弁及び支持構造物の応力評価結果（4／5）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象系統	耐震 重要度 分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の 種類	算出 応力 （MPa）	許容 応力 （MPa）
配管弃及び支持構造物	非放射性ドレン移送系	C	原子炉建屋	$-8.10 \sim-0.80$	配管本体	一次＋二次	333	378
					支持構造物	一次	42	246
	循環水系	C	タービン建屋	0． 80	配管本体	一次＋二次	200	490
	純水補給水系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	301	376
					支持構造物	一次＋二次	197	552
	消火用水系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	347	378
					支持構造物	一次＋二次	110	159
	換気空調補機常用冷却水系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	365	378
					支持構造物	一次＋二次	97	552
	加熱蒸気及び復水戻り系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	320	376
					支持構造物	一次＋二次	34	552
	所内温水系	C	制御建屋	$1.50 \sim 8.00$	配管本体	一次＋二次	344	354
					支持構造物	一次＋二次	154	159
	衛生設備排水系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	232	280
					支持構造物	一次＋二次	26	552
	建屋内排水系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	320	390
					支持構造物	一次＋二次	548	552
	非放射性ドレン移送系	C	制御建屋	$1.50 \sim 8.00$	配管本体	一次＋二次	358	378
					支持構造物	一次	230	276

表 5－2 基準地震動 S s に対する配管，弁及び支持構造物の応力評価結果（5／5）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象系統	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の 種類	算出 応力 （MPa）	許容 応力 （MPa）
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \\ & \text { 异 } \\ & \text { 及 } \\ & \text { び } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 㮒 } \\ & \text { 物 } \end{aligned}$	高圧炉心スプレイ系	B	復水貯蔵	11． 225	配管本体	一次＋二次	25	376
			エリア		支持構造物	一次	100	280
	機器ドレン系	B，C	復水貯蔵	11． 225	配管本体	一次＋二次	357	376
			エリア		支持構造物	一次＋二次	63	490
	純水補給水系	C	復水貯蔵	11． 225	配管本体	一次＋二次	36	376
			エリア		支持構造物	一次＋二次	42	141
	復水補給水系	B	$\begin{aligned} & \text { 復水貯蔵 } \\ & \text { タンク } \\ & \text { エリア } \end{aligned}$	10.50	配管本体	$\text { 一次 }+ \text { 二次 }$ （疲労）	$\begin{gathered} 423 \\ (0.2037) \end{gathered}$	$\begin{gathered} 376 \\ (1.0) \end{gathered}$
					支持構造物	一次＋二次	89	236
	循環水系	C	海水ポンプ室	$\begin{gathered} 2.25 \sim \\ 7.25 \\ \hline \end{gathered}$	配管本体	一次＋二次	440	489
					支持構造物	一次＋二次	93	135
	タービン補機冷却海水系	C	海水ポンプ室	$-7.025 \sim 7.25$	配管本体	一次＋二次	448	548
					支持構造物	一次＋二次	156	228
	タービン補機冷却水系	C	海水ポンプ室	$7.25 \sim 11.65$	配管本体	一次＋二次	335	398
					支持構造物	組合せ	47	202
	万過水系	C	海水ポンプ室	$-0.55 \sim 7.25$	配管本体	一次＋二次	66	73
					支持構造物	せん断	36	155

