```
本資料のうち, 枠囲みの内容
は商業機密の観点から公開で
きません。
```

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －工－B－02－0007＿改 7
提出年月日	2021 年 11 月 4 日

VI－2－4－2－2 使用済燃料貯蔵ラック（第 1，2号機共用）の耐震性 についての計算書

2021年11月

東北電力株式会社
1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 7
3．評価部位 8
4．地震応答解析及び構造強度評価 8
4.1 地震応答解析及び構造強度評価方法 8
4.2 荷重の組合せ及び許容応力 12
4．2．1 荷重の組合せ及び許容応力状態 12
4．2．2 許容応力 12
4．2．3 使用材料の許容応力評価条件 12
4.3 解析モデル及び諸元 17
4． 4 固有周期 21
4.5 設計用地震力 24
4.6 計算方法 28
4．6．1 部材の応力 28
4．6．2 基礎ボルトの応力 30
4.7 計算条件 33
4.8 応力の評価 33
4．8．1 部材の応力評価 33
4．8．2 基礎ボルトの応力評価 33
5．評価結果 34
5.1 設計基準対象施設としての評価結果 34
5.2 重大事故等対処設備としての評価結果 34

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，使用済燃料貯蔵ラック（以下「ラック」という。）が設計用地震力に対して十分な構造強度を有していることを説明するものである。

ラックは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及 び重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画 ラックの構造計画を表 2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
ラックは，たて置形で ベースを使用済燃料プー ルの床に基礎ボルトを介 して固定される。 また，基礎ボルトは使用済燃料プール床のネジ座に締結され，ネジ座に はネジ棒及びターンバッ クルを介して埋込ボルト が接続される。 なお，ネジ座，ネジ棒，ターンバックル及び埋込ボルトは，使用済燃料プール床のコンクリー トに埋込まれている。	ボロン添加ステンレ ス鋼 製たて置きラッ ク。 ラックは， 110 体ラ ックが 8 個， 170 体ラ ックが 8 個ある。 ラックを構成する角管には，各 1 体ずつ燃料集合体が貯蔵され る。	

2.2 評価方針

ラックの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」のうち「3．1 構造強度上 の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」に て示すラックの部位を踏まえ「3．評価部位」にて設定する箇所において，「4．3解析モデ ル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等 が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認 することで実施する。確認結果を「5．評価結果」に示す。

ラックの耐震評価フローを図 2－1 に示す。

図 2－1 ラックの耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 O 1 •補一 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991追補版）
（4）J S M E S N C 1 －2005／2007発電用原子力設備規格設計•建設規格（以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
A ${ }_{\text {b }}$	基礎ボルトの軸断面積	mm^{2}
A_{\times}	部材の断面積	mm ${ }^{2}$
$\mathrm{A}_{y}, \mathrm{~A}_{z}$	部材のせん断断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
E	緱弾性係数	MPa
F	設計•建設規格 SSB－3121．1又はSSB－3131に定める値	MPa
F＊	設計•建設規格 SSB－3121．3又はSSB－3133に定める値	MPa
F ${ }_{\text {x }}$	部材に働く引張力	N
$\mathrm{F}_{\mathrm{y}}, \mathrm{F}_{z}$	部材に働くせん断力	N
$\mathrm{F}_{\mathrm{k} \times}$	解析モデル基部の4隅に設けられたはり部材に働く引張力	N
$\mathrm{F}_{\mathrm{k} y}, \mathrm{~F}_{\mathrm{k} z}$	解析モデル基部の4隅に設けられたはり部材に働くせん断力	N
Fi	ベース底部に働くせん断力（110体又は170体）	N
$\mathrm{f}_{\mathrm{j}} \mathrm{i}$	基礎ボルトに働く引張力（1本当たり）	N
$f_{\text {s }}$	部材の許容せん断応力	MPa
$f_{\text {s b }}$	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f_{t}	部材の許容引張応力	MPa
f_{t} 。	引張力のみを受ける基礎ボルトの許容引張応力	MPa
f_{ts}	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
g	重力加速度（ $\mathrm{g}=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
$\mathrm{I}_{y}, \mathrm{I}_{z}$	部材の断面2次モーメント	mm^{4}
$\ell_{\mathrm{g} ~}^{\text {i }}$	ベース端から重心までの距離	mm
$\ell_{\text {k i }}$	解析モデル基部の中心から4隅に設けられたはり部材位置ま での距離	mm
$\ell_{\mathrm{j}} \mathrm{i}$	ベース端から基礎ボルトまでの距離	mm
M_{i}	ベース底部の転倒モーメント（110体又は 170 体）	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\mathrm{y}}, \mathrm{M}_{\mathrm{z}}$	部材に働く曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
m	使用済燃料貯蔵時のラック全質量（110 体又は 170 体）	kg
m_{F}	燃料の質量	kg
m_{R}	ラックの質量	kg
m_{w}	ラックに含まれる水の質量	kg
n	基礎ボルトの全本数	－
$\mathrm{n}_{\mathrm{j} ~}^{\text {i }}$	基礎ボルト各部の本数	－
Su	設計•建設規格 付録材料図表 Part5 表9 に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa

$$
\begin{aligned}
& \mathrm{i}=\mathrm{N}: \mathrm{NS} \text { (短辺) 方向 } \\
& \mathrm{i}=\mathrm{E}: \mathrm{EW} \text { (長辺) 方向 }
\end{aligned}
$$

注2： $\mathrm{f}_{\mathrm{j} \mathrm{i}}, \ell_{\mathrm{j}} \mathrm{i}$ 及び $\mathrm{n}_{\mathrm{j}} \mathrm{i}$ の添字 j はボルトの列番号を示すものとする。

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
設計震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
最高使用温度	${ }^{\circ} \mathrm{C}$	小数点以下第 1 位	四捨五入	整数位
質量	kg	-	—	整数位
長さ	mm	—	整数位 $* 1$	
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における設計引張強さ及び設計降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
ラックの耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる角管，補強板，燃料支持板，ベース及び基礎ボルトについて実施する。 ラックの耐震評価部位については，表 2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価

4． 1 地震応答解析及び構造強度評価方法

（1）地震応答解析には，はり要素及びシェル要素を用いた有限要素法モデルによるスペク トルモーダル解析を用いる。
（2）ラックは，原子炉建屋の使用済燃料プールの底部（0．P．21．38m）に基礎ボルトにより固定されるものとする。
（3）ラックの質量には，使用済燃料の質量及びラック自身の質量のほか，ラックに含まれ る水の質量及びラック外形周りの水の付加質量＊を考慮する。
（4）地震力は，ラックに対して水平方向から作用するものとする。 ここで，水平方向地震力は，ラックの長辺方向に作用する場合及び短辺方向に作用す る場合を考慮する。
また，鉛直方向地震力は，水平方向地震力と同時に不利な方向に作用するものとす る。
（5）構造概念図（110 体ラックの例）を図 4－1 に，各ラックの構造概要図を図 4－2 及び図 4－3に示す。

注記＊：機器が流体中で加速度を受けた場合に質量が増加したような効果を模擬した質量
$5 \times 1 \mid$ ラック
裕㻐板：C

5体ラック

図 4－1 構造概念図（110 体ラック）

注記＊：補強板 a を橙，補強板 f を青，補強板 g を緑で色分けして示す。
図 4－2 構造概要図（110 体ラック）

注記＊：補強板 a を橙，補強板 f を青，補強板 g を緑で色分けして示す。
図 4－3 構造概要図（170 体ラック）
4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
ラックの荷重の組合せ及び許容応力状態のらち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力
ラックの許容応力は，添付資料「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとお りとする。

4．2．3 使用材料の許容応力評価条件
ラックの許容応力評価条件のらち設計基準対象施設の評価に用いるものを表4－4に，重大事故等対処設備の評価に用いるものを表4－5 に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質の	使用済燃料貯蔵設備	使用済燃料貯蔵ラック	S	－＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{d}{ }^{* 2}$	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$
盯蔵施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊2：S s との組み合わせ， $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の評価を実施する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）
$\stackrel{\omega}{\omega}$

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質の	使用済燃料貯蔵設備	使用済燃料 貯蔵ラック	常設耐震／防止常設／緩和	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\text {A }} \mathrm{S}$
貯蔵施設					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の } \end{gathered}$ 許容限界を用いる。）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
$* 2$ ：重大事故等その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	$\begin{aligned} & \text { 許容限界*1, *2 } \\ & \text { (ボルト等以外) } \end{aligned}$			許容限界＊1，＊2 （ボルト等）	
	一次応力			一次応力	
	引張り	せん断	組合せ	引張り	せん断
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot{ }_{\text {f }}$	$1.5 \cdot \mathrm{f}$	$1.5 \cdot \mathrm{ft}_{\text {t }}$	$1.5 \cdot{ }_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s
IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}{ }^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \text { の許容限界を用いる。) }\right) ~ \end{gathered}$					

注記＊ 1 ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}{ }^{* 1} \\ & (\mathrm{MPa} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
角管	$\begin{aligned} & \text { ボロン添加 } \\ & \text { ステンレス鋼 } \end{aligned}$	最高使用温度	66	－	188＊2	479＊2	$205 * 2$
補強板	SUS304	最高使用温度	66	－	188	479	205
燃料支持板	SUS304	最高使用温度	66	－	188	479	205
ベース	SUS304	最高使用温度	66	－	188	479	205
基礎ボルト		最高使用温度	66	－			

注記 $* 1$ ：最高使用温度（ $66{ }^{\circ} \mathrm{C}$ ）で算出
＊2：ボロン添加ステンレス鋼の $\mathrm{S}_{\mathrm{y}}, ~ \mathrm{~S}_{\mathrm{u}}$ の値は，SUS304の規格値を上回っているが，安全側の評価とするため，SUS304の値を使用す る。

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
角管	$\begin{aligned} & \text { ボロン添加 } \\ & \text { ステンレス鋼 } \end{aligned}$	最高使用温度	100	－	$171 * 2$	$441 * 2$	$205^{* 2}$
補強板	SUS304	最高使用温度	100	－	171	441	205
燃料支持板	SUS304	最高使用温度	100	－	171	441	205
ベース	SUS304	最高使用温度	100	－	171	441	205
基礎ボルト		最高使用温度	100	－			

注記 $~$ 1：最高使用温度（ $100{ }^{\circ} \mathrm{C}$ ）で算出
＊2：ボロン添加ステンレス鋼の $\mathrm{S}_{\mathrm{y}}, ~ \mathrm{~S}_{\mathrm{u}}$ の値は，SUS304の規格値を上回っているが，安全側の評価とするため，SUS304の値を使用 する。

4.3 解析モデル及び諸元

（1）ラックの解析モデルを図 4－4 及び図 4－5に，解析モデルの概要を以下に示す。また，機器の諸元を表 4－6に示す。
（2）ラックは，110体，170体ラック各々について，はり要素及びシェル要素を用いた有限要素モデルとする。
なお，角管はそれぞれ等価な断面特性を持つ 1 本のはり要素，補強板 $\mathrm{a} \sim \mathrm{e}$ について もそれぞれ同様にはり要素とし，補強板 $\mathrm{f} \sim \mathrm{h}$ ，燃料支持板及びベースはシェル要素 とする。
（3）解析モデルでは，角管をモデル化したはり要素をラックの角管のピッチに合わせて等間隔に配置し，補強板をモデル化したはり要素及びシェル要素で接続している。 また，同一方向への曲げモードが支配的となること及び角管間に存在する補強板を考慮し，角管同士の接触は考慮しない。
（4）ベース下部には基礎ボルトをモデル化したバネ要素が接続される。また，基礎ボルト をモデル化したバネ要素の下端には，はり要素を介して剛体要素が接続され，剛体要素の 4 隅には，ラックの転倒モーメント及びベース底部のせん断力を求めるためのは り要素が接続されている。
（5）ラックの質量には，使用済燃料の質量，ラック自身の質量，ラックに含まれる水の質量及び水の付加質量を考慮し，使用済燃料，ラックに含まれる水の質量及び水の付加質量は，角管全長にわたって等分布に与える。
（6）本ラックの \square であり，\square の増加に従って縦弾性係数が漸増し，固有周期については漸減する傾向を示す。このため，固有値解析，静的解析及び応答スペクトル解析にあたつては，縦弾性係数は \square 上限付近 の実験値を用いるが，設計用床応答スペクトルから震度を設定するにあたつては，\square

より想定される固有周期帯のなかでの最大値を評価用震度に用いる。
（7）計算に用いる設計条件，固有周期の算出及び部材と基礎ボルトの応力評価に用いる要目を「4．地震応答解析及び構造強度評価」及び「5．評価結果」に示す。
（8）解析コードは，「MSC NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要 については，「VI－5 計算機プログラム（解析コード）の概要」に示す。
\square
図 4－4 解析モデル（110 体ラック）
\square
図 4－5 解析モデル（170 体ラック）

表 4－6 機器諸元

項目	記号	単位	入力値
材質	－	－	ボロン添加ステンレス鋼 （角管） SUS304（補強板，燃料支持板，ベース）
質量	m	kg	
温度条件 （最高使用温度）	T	${ }^{\circ} \mathrm{C}$	66
縦弾性係数	$\mathrm{E}^{* 1}$	MPa	192000 （補強板，燃料支持板，ベース） 192000 （基礎ボルト）
ポアソン比	v	－	
要素数	－	個	
節点数	－	個	

注記 $* 1$ ：最高使用温度（ $66{ }^{\circ} \mathrm{C}$ ）で算出
＊2：\square における最高使用温度（ $66{ }^{\circ} \mathrm{C}$ ）での実験値

4． 4 固有周期

固有値解析の結果を表4－7に，各モードにおける固有ベクトルの大きさを示した振動モード図を図 4－6～図 4－9 に示す。鉛直方向は，5次モード以降で卓越し，固有周期は，0．05秒以下 であり，剛であることを確認した。

表 4－7 固有値解析結果

ラック	モード	卓越方向	固有周期 （s）	水平方向刺激係数＊		鉛直方向刺激係数＊
				X方向	Y方向	
$\begin{aligned} & 110 \text { 体 } \\ & \text { ラック } \end{aligned}$	1 次					
	2 次					
	3 次					
	5 次					
$\begin{aligned} & 170 \text { 体 } \\ & \text { ラック } \end{aligned}$	1 次					
	2 次					
	3 次					
	6 次					

注記＊：刺激係数は，モード質量を正規化し，固有値ベクトルと質量マトリックスの積から算出した値を示す。
\square

図 4－7 振動モード（110 体ラック）2次モード

\square
\square
図 4－9 振動モード（170 体ラック）2 次モード \square

4.5 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。評価に用いる設計用地震力を表 4－8 及び表4－9に示す。

表 4－8 設計用地震力（設計基準対象施設）（1／2）
a． 110 体ラック

据付場所及び 床面高さ（m）		原子炉建屋 0．P． $22.50{ }^{* 1}$（0．P．21．38）			
固有周期（s）					
減衰定数（\％）		水平：7． $0^{* 4}$ 鉛直：－			
地震力		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
モード	固有周期 （s）	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
1 次		2． $32 * 5$ ，${ }^{6}$	－＊5	4． 77	－
2 次		2． $28 * 5$	－＊5	4.51	－
3 次		－＊5	－＊5	－	－
動的地震力		1． $13 * 5$	$0.91 * 5$	2． 12	1． 56
静的地震力		$0.92 * 5$	$0.29 * 5$	－	－

注記 $* 1$ ：上階の基準床レベルを示す。
＊2： 1 次固有周期について記載
＊3：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊4：試験等により，妥当性が確認されている値。
＊5：III ${ }_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。
＊6：設置高さの上下階（0．P．22．50m，0．P．15．00m）における設計震度のうち，最大値となる原子炉建屋 O．P． 15.00 m の設計震度を示す。

表 4－8 設計用地震力（設計基準対象施設）（2／2）
b． 170 体ラック

$\begin{gathered} \text { 据付場所及び } \\ \text { 床面高さ (m) } \\ \hline \end{gathered}$		原子炉建屋 0．P．22．50＊1（0．P．21．38）			
固有周期（s）					
減衰定数（\％）		水平：7．0＊4 鉛直：－			
地震力		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
モード	固有周期 (s)	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
1 次		2． $39 * 5$＊ 6	－＊5	4.73	－
2 次		2． 23 ＊5	－＊5	4． 14	－
3 次		－＊5	－＊5	－	－
動的地震力		1． $13 * 5$	$0.91 * 5$	2． 12	1． 56
静的地震力		$0.92 * 5$	0． $29 * 5$	－	－

注記 $* 1$ ：上階の基準床レベルを示す。
＊2： 1 次固有周期について記載
＊3：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊4：試験等により，妥当性が確認されている値。
＊5： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。
＊6：設置高さの上下階（0．P．22．50m，0．P．15．00m）における設計震度のうち，最大値となる原子炉建屋 O．P． 15.00 m の設計震度を示す。

表 4－9 設計用地震力（重大事故等対処設備）（1／2）
a． 110 体ラック

据付場所及び 床面高さ（m）		原子炉建屋 0．P． $22.50{ }^{* 1}$（0．P．21．38）			
固有周期（s）					
減衰定数（\％）		水平：7． $0^{* 4}$ 鉛直：－			
地震力		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
モード	固有周期 （s）	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
1 次		－	－	4． 77	－
2 次		－	－	4.51	－
3 次		－	－	－	－
動的地震力		－	－	2.12	1． 56
静的地震力		－	－	－	－

注記 $~$ 1：基準床レベルを示す。
＊2： 1 次固有周期について記載
＊3：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊4：試験等により，妥当性が確認されている値。

表 4－9 設計用地震力（重大事故等対処設備）（2／2）
b． 170 体ラック

据付場所及び 床面高さ（m）		原子炉建屋 0．P． $22.50^{* 1}$（0．P．21．38）			
固有周期（s）					
減衰定数（\％）		水平：7． $0^{* 4}$ 鉛直：$:$			
地震力		弹性設計用地震動 S d又は静的震度		基準地震動 S S	
モード	固有周期 （s）	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
1 次		－	－	4.73	－
2 次		－	－	4． 14	－
3 次		－	－	－	－
動的地震力		－	－	2． 12	1． 56
静的地震力		－	－	－	－

注記＊1：基準床レベルを示す。
＊2： 1 次固有周期について記載
＊3：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊4：試験等により，妥当性が確認されている値。

4． 6 計算方法

4．6．1 部材の応力
部材についての応力計算は，図 4－4 及び図 4－5 の解析モデルにて，角管，補強板，燃料支持板及びベースから成る系全体での応力計算を解析コード「MSC NASTRAN」を使用して行 い，本項に示す計算方法に従って引張応力，せん断応力及び組合せ応力を計算する。
（1）はり部材の応力
解析コード内では，各部材の局所座標系及び引張力 F_{x} ，せん断力 $\mathrm{F}_{\mathrm{y}}, ~ \mathrm{~F}_{\mathrm{z}}$ 及び曲 げモーメント $\mathrm{M}_{\mathrm{y}}, ~ \mathrm{M}_{\mathrm{z}}$ の働く向きを図 4－10に示すように設定している。

図 4－10 はり部材の応力計算モデル

引張力 F_{x} 及び曲げモーメント M_{y} ， M_{z} によりはり部材に生じる引張応力 $\sigma_{\mathrm{f}} \mathrm{t}$ は
（4．1）式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{ft}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~A}_{\mathrm{x}}}+\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{Z}_{\mathrm{y}}}+\frac{\mathrm{M}_{\mathrm{z}}}{\mathrm{Z}_{\mathrm{z}}} \tag{4.1}
\end{equation*}
$$

せん断力 $\mathrm{F}_{\mathrm{y}}, \quad \mathrm{F}_{\mathrm{z}}$ により部材に生じるせん断応力 τ_{f} は，（4．2）式により求め る。

$$
\begin{equation*}
\tau_{\mathrm{f}}=\sqrt{\left(\frac{\mathrm{F}_{\mathrm{y}}}{A_{\mathrm{y}}}\right)^{2}+\left(\frac{\mathrm{F}_{\mathrm{x}}}{A_{\mathrm{x}}}\right)^{2}} \tag{4.2}
\end{equation*}
$$

組合せ応力 σ_{fa} は，（4．3）式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{fa}}=\sqrt{\sigma_{\mathrm{ft}}^{2}+3 \cdot \tau_{\mathrm{f}}^{2}} \tag{4.3}
\end{equation*}
$$

（2）シェル部材の応力
解析コード内では，各部材の局所座標系，せん断応力 τ_{xy} 及び引張応力 $\sigma_{\mathrm{x}}, ~ \sigma_{\mathrm{y}}$ の作用する向きを，図4－11に示すように設定している。

図 4－11 シェル部材の応力計算モデル

シェル部材の組合せ応力 σ_{fa} は，上記で計算したせん断応力 $\tau_{\mathrm{x}} \mathrm{y}$ ，引張応力 σ_{x} ，泣を用いて，（4．4）式より求める。
$\sigma_{\mathrm{fa}}=\sqrt{\sigma_{\mathrm{x}}{ }^{2}+\sigma_{\mathrm{y}}{ }^{2}-\sigma_{\mathrm{x}} \cdot \sigma_{\mathrm{y}}+3 \cdot \tau_{\mathrm{xy}}{ }^{2}}$

4．6．2 基礎ボルトの応力
ラックの系全体での荷重計算を解析コード「MSC NASTRAN」を使用して行い，求めら れた地震時のラックに作用する転倒モーメント M_{i} 及びベース底部に作用するせん断力 F_{i} から基礎ボルトの応力を求める。

転倒モーメント M_{i} 及びせん断力 F_{i} は，解析モデル基部の 4 隅に設けられたはり部材に生じる引張力 F_{kx} 及びせん断力 F_{ky} ， $\mathrm{F}_{\mathrm{k} \mathrm{z}}$ から求められる。なお，引張力 F_{kx} 及びせん断力 F_{ky} ， F_{kz} は図4－12のように負荷されるものとする。

図 4－12 解析モデル基部の荷重状態

$$
\begin{align*}
& \text { 転倒モーメント } \mathrm{M}_{\mathrm{i}} \text { 及びせん断力 } \mathrm{F}_{\mathrm{i}} \text { は, (4.5) , (4.6) 及び (4.7) 式から求める。 } \\
& \mathrm{M}_{\mathrm{i}}=\ell_{1 \mathrm{i}} \cdot\left|\mathrm{~F}_{1 \mathrm{x}}\right|+\ell_{2 \mathrm{i}} \cdot\left|\mathrm{~F}_{2 \mathrm{x}}\right|+\ell_{3 \mathrm{i}} \cdot\left|\mathrm{~F}_{3 \mathrm{x}}\right|+\ell_{4 \mathrm{i}} \cdot\left|\mathrm{~F}_{4 \mathrm{x}}\right| \tag{4.5}\\
& \mathrm{F}_{\mathrm{N}}=\left|\mathrm{F}_{1 \mathrm{y}}\right|+\left|\mathrm{F}_{2 \mathrm{y}}\right|+\left|\mathrm{F}_{3 \mathrm{y}}\right|+\left|\mathrm{F}_{4 \mathrm{y}}\right| \tag{4.6}\\
& \mathrm{F}_{\mathrm{E}}=\left|\mathrm{F}_{1 z}\right|+\left|\mathrm{F}_{2 z}\right|+\left|\mathrm{F}_{3 z}\right|+\left|\mathrm{F}_{4 z}\right| \tag{4.7}
\end{align*}
$$

基礎ボルトの荷重状態を図4－13に示す。なお，図4－13のボルト列数は，110体ラック の N S 方向を想定して $l_{1 \mathrm{i}} \sim \ell_{10 \mathrm{i}}$ の 10 列までとしたが，ボルト列数はラック及び方向によ つて異なるため，最大で $\ell_{1 \mathrm{i}} \sim \ell_{17 \mathrm{i}}$ の 17 列まで考慮する。

図 4－13 基礎ボルトの荷重状態（110体ラックのN S 方向）
（1）引張応力
図 4－13 において支点まわりのモーメントの平衡により基礎ボルト 1 本当りの引張力 $\mathrm{f}_{1 \mathrm{i}} \sim \mathrm{f}_{\mathrm{j} \mathrm{i}}$ を求める。なお，水平方向地震力によるモーメントと鉛直方向地震力 によるモーメントの組合せにはSRSS 法を適用する。

$$
\begin{equation*}
\mathrm{f}_{1 \mathrm{i}}=\frac{\ell_{1 \mathrm{i}} \cdot\left\{\sqrt{\mathrm{M}_{\mathrm{i}}^{2}+\left(\mathrm{C}_{\mathrm{V}} \cdot \mathrm{~m} \cdot \mathrm{~g} \cdot \ell_{\mathrm{gi}}\right)^{2}}-\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{l}_{\mathrm{gi}}\right\}}{\mathrm{n}_{1 \mathrm{i}} \cdot \ell_{1 \mathrm{i}}{ }^{2}+\mathrm{n}_{1 \mathrm{i}} \cdot \ell_{2 \mathrm{i}}{ }^{2}+\cdots \cdots \cdots+\mathrm{n}_{\mathrm{ji}} \cdot \ell_{\mathrm{ji}}{ }^{2}} . \tag{4.8}
\end{equation*}
$$

したがって，引張力 $\mathrm{f}_{1 \mathrm{i}}$ により基礎ボルトに生じる引張応力 σ_{b} は， より求める。

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{f}_{1 \mathrm{i}}}{\mathrm{~A}_{\mathrm{b}}} \tag{4.9}
\end{equation*}
$$

ただし， $\mathrm{f}_{1 \mathrm{i}}$ の値が負となった場合は，引張力が生じないので以降の引張応力の計算は省略する。
（2）せん断応力
せん断力 F_{i} により基礎ボルトに生じるせん断応力 τ_{b} は，（4．12）式により求め る。

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.12}
\end{equation*}
$$

4．7 計算条件

応力解析に用いる自重及び荷重は，本計算書の【使用済燃料貯蔵ラックの耐震性についての計算結果】の設計条件及び機器要目に示す。

4．8 応力の評価

4．8．1 部材の応力評価

4．6．1項で求めた各部材の引張応力 $\sigma_{\mathrm{f}} \mathrm{t}$ 及び組合せ応力 σ_{fa} が，許容引張応力 f_{t} 以下で あること。

また，4．6．1 項で求めた各部材のせん断応力 $\tau{ }_{\mathrm{f}}$ が，許容せん断応力 f_{s} 以下であること。
ただし，f_{t} 及び f_{s} は下表による。

	弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	基準地震動 S s による 荷重との組合せの場合
許引容せん張応力 f_{t}	$\frac{\mathrm{F}}{1.5} \cdot 1.5^{* 1}$	$\frac{\mathrm{~F} *}{1.5} \cdot 1.5^{* 1}$
応力 f_{s}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5^{* 1}$	$\frac{\mathrm{~F} *}{1.5 \cdot \sqrt{3}} \cdot 1.5^{* 1}$

注記＊1：ボロン添加ステンレス鋼の引張強さと降伏点（0．2 \％耐力）の値は，SUS304 の規格値を上回っているので，安全側の評価とするため，F及びF＊値は SUS304 の値を使用する。

4．8．2 基礎ボルトの応力評価
4．6．2項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b}$ が，次式より求めた許容引張応力 f_{t} 以下で あること。

また，4．6．2 項で求めた基礎ボルトのせん断応力 τ_{b} が，せん断力のみを受ける基礎ボル トの許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$ 以下であること。

$$
\begin{equation*}
f_{\mathrm{t} \mathrm{~s}}=1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}} \tag{4.11}
\end{equation*}
$$

かつ

$$
\begin{equation*}
f_{\mathrm{t} \mathrm{~s}} \leqq f_{\mathrm{t} \text { o }} \tag{4.12}
\end{equation*}
$$

ただし，f_{t} o及び f_{sb} は下表による。

	弾性設計用地震動 S d又は静的震度による荷重との組合せの場合	基準地震動 S s による荷重との組合せの場合
許容引張応力 $f_{\mathrm{t} \text { 。 }}$	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．評価結果
5.1 設計基準対象施設としての評価結果

ラックの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足 しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d による動的震度及び静的震度は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足したため，弾性設計用地震動 S d 及び静的震度による発生値の算出を省略した。
5.2 重大事故等対処設備としての評価結果

ラックの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【使用済燃料貯蔵ラックの耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	$\substack{\text { 耐震設計上の } \\ \text { 重要度分類 } \\ \hline}$	据付場所及び床面高さ （m）	ラック	固有周期(s)		弾性設計用地震動 S d又は静的震度		基準地震動S s		最高使用圧力 （MPa）	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
				水平方向	鈖直方向	水平方向	鉛直方向	水平方向	鈖直方向			
使用済燃料貯蔵ラック	S	原子炬建屋 0．P． $22.50^{* 1}$ （0．P．21．38）	110 体ラック		0．05以下＊${ }^{\text {2 }}$	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は ${ }^{\text {2 }} 4$	$\mathrm{C}_{\mathrm{v}}=1.56$	－	66	－
			170 体ラック		0． 05 以下＊2	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は $* 4$	$\mathrm{C}_{\mathrm{v}}=1.56$	－	66	－

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析により 0.05 秒以下であり，剛であることを確認した。
＊3： $\mathrm{II}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。
＊ 4 ：基準地震動 S s に基づく設計用床応答曲線から得られる値

1．2 機器要目

1．2．1 固有周期の算出及び部材の応力評価に用いる要目

ラック	部材	材料	$\begin{aligned} & \mathrm{A}_{\mathrm{x}} * \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{y}} * \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{z}{ }^{*} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \text { I y } \text { * } \\ & \left(\mathrm{mm}^{4}\right) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{z} \text { * } \\ & \left(\mathrm{mm}^{4}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{Z}_{\mathrm{y}} * \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{z}{ }^{*} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$
110 体ラック	角管	$\begin{gathered} \text { ボロン添加 } \\ \text { ステンレス鋼 } \end{gathered}$	1． 987×10^{3}	8． 834×10^{2}	8.834×10^{2}	7． 978×10^{6}	7． 978×10^{6}	1． 007×10^{5}	1． 007×10^{5}	
	補強板 a	SUS304	1． 800×10^{3}	1． 200×10^{3}	1． 200×10^{3}	1． 194×10^{7}	2． 778×10^{7}	1． 427×10^{5}	1． 323×10^{5}	1． 92×10^{5}
	補強板 b	SUS304	7． 500×10^{3}	5.000×10^{3}	5． 000×10^{3}	6． 346×10^{7}	5.625×10^{7}	6． 090×10^{5}	3． 750×10^{5}	1． 92×10^{5}
	補強板 c	SUS304	2． 800×10^{3}	1． 867×10^{3}	1． 867×10^{3}	1． 987×10^{7}	1． 829×10^{7}	2． 228×10^{5}	1． 306×10^{5}	1． 92×10^{5}
	補強板 d	SUS304	2． 800×10^{3}	1． 867×10^{3}	1． 867×10^{3}	1． 987×10^{7}	1． 829×10^{7}	2． 228×10^{5}	1． 306×10^{5}	1． 92×10^{5}
	補強板 e	SUS304	7． 500×10^{3}	5.000×10^{3}	5． 000×10^{3}	6． 346×10^{7}	5.625×10^{7}	6． 090×10^{5}	3． 750×10^{5}	1． 92×10^{5}
170 体ラック	角管	$\begin{aligned} & \text { ボロン添加 } \\ & \text { ステンレス鋼 } \end{aligned}$	1． 987×10^{3}	8． 834×10^{2}	8.834×10^{2}	7． 978×10^{6}	7． 978×10^{6}	1． 007×10^{5}	1． 007×10^{5}	
	補強板 a	SUS304	1． 800×10^{3}	1． 200×10^{3}	1． 200×10^{3}	1． 194×10^{7}	2． 778×10^{7}	1． 427×10^{5}	1． 323×10^{5}	1． 92×10^{5}
	補強板 b	SUS304	7． 500×10^{3}	5.000×10^{3}	5． 000×10^{3}	6． 346×10^{7}	5． 625×10^{7}	6． 090×10^{5}	3． 750×10^{5}	1． 92×10^{5}
	補強板 c	SUS304	2． 800×10^{3}	1． 867×10^{3}	1． 867×10^{3}	1． 987×10^{7}	1． 829×10^{7}	2.228×10^{5}	1． 306×10^{5}	1． 92×10^{5}
	補強板 d	SUS304	2． 800×10^{3}	1． 867×10^{3}	1． 867×10^{3}	1． 987×10^{7}	1． 829×10^{7}	2． 228×10^{5}	1． 306×10^{5}	1． 92×10^{5}
	補強板 e	SUS304	7.500×10^{3}	5.000×10^{3}	5． 000×10^{3}	6． 346×10^{7}	5.625×10^{7}	6． 090×10^{5}	3． 750×10^{5}	1． 92×10^{5}

注記＊：各部材の局所座標系に従う。

評価部材	材料	$\mathrm{S}_{\mathrm{y}}{ }^{* 1}$ (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	$\mathrm{S}_{\mathrm{u}}{ }^{* 1}$ (MPa)	F (MPa)	F^{*} (MPa)
角管	ボロン添加 ステンレス鋼	$188^{* 2}$	$205^{* 2}$	$479^{* 2}$	$205^{* 2}$	$205^{* 2}$
補強板	SUS304	188	205	479	205	205

注記 $* 1$ ：最高使用温度（ $66{ }^{\circ} \mathrm{C}$ ）で算出
＊2：ボロン添加ステンレス鋼の $\mathrm{S}_{\mathrm{y}}, ~ \mathrm{~S}_{\mathrm{u}}$ の値は，SUS304の規格値を上回っているが，安全側の評価とするため，SUS304の値を使用する。

	ラック	部材	材料	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline E \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
$\underset{y}{\omega}$	110 体ラック	補強板 f	SUS304		1． 92×10^{5}	188	205	479	205	205
		補強板 g	SUS304		1． 92×10^{5}	188	205	479	205	205
		補強板 h	SUS304		1． 92×10^{5}	188	205	479	205	205
		燃料支持板	SUS304		1． 92×10^{5}	188	205	479	205	205
		ベース	SUS304		1． 92×10^{5}	188	205	479	205	205
	170 体ラック	補強板 f	SUS304		1． 92×10^{5}	188	205	479	205	205
		補強板 g	SUS304		1． 92×10^{5}	188	205	479	205	205
		補強板 h	SUS304		1． 92×10^{5}	188	205	479	205	205
		燃料支持板	SUS304		1． 92×10^{5}	188	205	479	205	205
		ベース	SUS304		1． 92×10^{5}	188	205	479	205	205

注記 $* 1$ ：最高使用温度（ $66{ }^{\circ} \mathrm{C}$ ）で算出
＊2：部材位置は図5－1 に示す。
＊3：部材位置は図 5－2 に示す。

図 5－1 ラック構造図（110 体ラック）

図 5－2 ラック構造図（170 体ラック）

ラック	$\underset{(\mathrm{kg})}{\mathrm{m}}$	$\underset{(\mathrm{kg})}{(\mathrm{mg})}$	$\begin{aligned} & \mathrm{m}_{\mathrm{R}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{w}}(\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{V}} \\ & (-) \end{aligned}$	$\begin{aligned} & \ell_{\text {(EE }}(\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \hline \ell_{\text {2E }}(\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \ell_{3 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{EE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{6 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \boldsymbol{l}_{\mathrm{fE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{8 \mathrm{EE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline \ell_{9 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{10 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{11 \mathrm{E}}(\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{12 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$
110 体ラック					1590	1.56	1741.5	1577.5	1413.5	1249.5	1085.5	921.5	757.5	593.5	429． 5	265.5	101.5	－
170 体ラック					1590	1.56	2725.5	2561.5	2397.5	2233.5	2069.5	1905.5	1741.5	1577.5	1413.5	1249.5	1085.5	921.5

$\begin{aligned} & \ell_{13 \mathrm{E}}(\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{14 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{15 \mathrm{E}}^{(\mathrm{mm})} \end{aligned}$	$\begin{aligned} & \ell_{16 \mathrm{E}}(\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{17 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{\text {in }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \ell_{\text {2N }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \ell_{\text {3N }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\text {6N }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{IN}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{\text {8N }} \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \ell_{\text {gN }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \ell_{10 \mathrm{~N}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{\mathrm{gE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline \ell_{\mathrm{gN}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{n}_{1 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{2 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{3 \mathrm{E}} \\ (-) \end{gathered}$
－	－	－	－	－	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	921.5	835	10	2	2
757.5	593.5	429.5	265.5	101.5	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	1413.5	835	10	2	2

$\stackrel{\square}{4}$	$\begin{gathered} \mathrm{n}_{4 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{5 \mathrm{E}}(-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{6 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{aligned} & \hline \mathrm{n}_{\text {7E }} \\ & (-) \end{aligned}$	$\begin{gathered} \mathrm{n}_{\text {8E }} \\ (-) \end{gathered}$	$\begin{gathered} \hline \mathrm{n}_{9 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{10 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{11 \mathrm{E}}^{(-)} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{12 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{13 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{14 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{15 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{16 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{aligned} & \mathrm{n}_{17 \mathrm{E}}(-) \end{aligned}$	$\begin{aligned} & \hline \mathrm{n}_{1 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{2 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{3 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{aligned} & \hline \mathrm{n}_{4 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{aligned} & \hline \mathrm{n}_{5 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{aligned} & \hline \mathrm{n}_{6 \mathrm{~N}} \\ & (-) \end{aligned}$
	2	2	2	2	2	2	2	10	－	－	－	－	－	－	11	2	2	2	2	2
坴	2	2	2	2	2	2	2	2	2	2	2	2	2	10	17	2	2	2	2	2

$\mathrm{n}_{7 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{8 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{9 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{10 \mathrm{~N}}$ $(-)$	n $(-)$
2	2	2	11	38
2	2	2	17	50

基礎ボルト材料	$\mathrm{S}_{\mathrm{y}}^{* 1}$ (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)	$\mathrm{S}_{\mathrm{u}}{ }^{* 1}$ (MPa)	F (MPa)	F (MPa)

注記＊1：最高使用温度（66 $\left.{ }^{\circ} \mathrm{C}\right)$ で算出

ラック	地震の種類	$\begin{aligned} & \mathrm{F}_{\mathrm{N}} \\ & \text { (N) } \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{E}} \\ & (\mathrm{~N}) \end{aligned}$	$\underset{(\mathrm{N} \cdot \mathrm{~mm})}{\mathrm{M}_{\mathrm{N}}}$	$\begin{gathered} \mathrm{M}_{\mathrm{E}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
110 体ラック	弾性設計用地震動 S d又は静的震度	－	－	－	－
	基準地震動S s	1． 838×10^{6}	1． 622×10^{6}	5.849×10^{9}	4． 632×10^{9}
170 体ラック	弾性設計用地震動 S d又は静的震度	－	－	－	－
	基準地震動S s	2． 891×10^{6}	2． 250×10^{6}	8． 996×10^{9}	7． 236×10^{9}

1.3 計算数値

1．3．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	$\begin{aligned} & \text { ボロン添加 } \\ & \text { ステンレス鋼 } \end{aligned}$	引張り σ_{ft}	－	－	114	89
		せん断 $\tau_{\text {f }}$	－	－	46	24
		組合せ $\sigma_{\text {f a }}$	－	－	139	98
170体ラック	$\begin{aligned} & \text { ボロン添加 } \\ & \text { ステンレス鋼 } \end{aligned}$	引張り σ_{ft}	－	－	154	62
		せん断 τ_{f}	－	－	63	44
		組合せ $\sigma_{\text {f a }}$	－	－	188	98

（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {f }}$	－	－	68	22
		せん断 τ_{f}	－	－	52	39
		組合せ $\sigma_{\text {fa }}$	－	－	113	71
170体ラック	SUS304	引張り σ_{ft}	－	－	119	21
		せん断 τ_{f}	－	－	71	40
		組合せ $\sigma_{\text {fa }}$	－	－	171	73

（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	42	24
		せん断 τ_{f}	－	－	37	15
		組合せ $\sigma_{\text {fa }}$	－	－	76	34
170体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	65	20
		せん断 τ_{f}	－	－	62	14
		組合せ $\sigma_{\text {fa }}$	－	－	126	31

（4）補強板 C
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	85	79
		せん断 τ_{f}	－	－	36	54
		組合せ $\sigma_{\text {fa }}$	－	－	105	122
170体ラック	SUS304	引張り $\sigma_{\text {ft }}$	－	－	133	57
		せん断 $\tau_{\text {f }}$	－	－	54	43
		組合せ $\sigma_{\text {fa }}$	－	－	162	93

（5）補強板 d
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	113	152
		せん断 $\tau_{\text {f }}$	－	－	30	24
		組合せ $\sigma_{\text {f a }}$	－	－	124	158
170体ラック	SUS304	引張り σ_{ft}	－	－	171	126
		せん断 $\tau_{\text {f }}$	－	－	51	25
		組合せ $\sigma_{\text {f a }}$	－	－	193	133

（6）補強板e
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	83	33
		せん断 τ_{f}	－	－	6	10
		組合せ $\sigma_{\text {fa }}$	－	－	83	37
170体ラック	SUS304	引張り σ_{ft}	－	－	114	31
		せん断 τ_{f}	－	－	9	9
		組合せ σ_{fa}	－	－	115	34

（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	20	14
		引張り $\sigma_{\text {y }}$	－	－	2	2
		せん断 τ_{xy}	－	－	33	2
		組合せ $\sigma_{\text {fa }}$	－	－	59	14
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	18	11
		引張り $\sigma_{\text {y }}$	－	－	1	4
		せん断 τ_{xy}	－	－	56	5
		組合せ $\sigma_{\text {f a }}$	－	－	98	13

（8）補強板 g
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	1	1
		引張り σ_{y}	－	－	1	4
		せん断 τ_{xy}	－	－	2	1
		組合せ $\sigma_{\text {fa }}$	－	－	4	4
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	2	1
		引張り $\sigma_{\text {y }}$	－	－	2	3
		せん断 τ_{xy}	－	－	3	0
		組合せ $\sigma_{\text {fa }}$	－	－	6	3

（9）補強板 h
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	7	25
		引張り σ_{y}	－	－	53	21
		せん断 τ_{xy}	－	－	14	31
		組合せ $\sigma_{\text {fa }}$	－	－	55	58
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	5	22
		引張り $\sigma_{\text {y }}$	－	－	5	17
		せん断 τ_{xy}	－	－	44	33
		組合せ $\sigma_{\text {f a }}$	－	－	76	60

（10）燃料支持板
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	14	7
		引張り σ_{y}	－	－	46	18
		せん断 τ_{xy}	－	－	2	11
		組合せ $\sigma_{\text {fa }}$	－	－	41	24
170体ラック	SUS304	引張り ${ }_{\text {x }}$	－	－	32	12
		引張り σ_{y}	－	－	106	29
		せん断 τ_{xy}	－	－	3	8
		組合せ σ_{fa}	－	－	94	28

> (11) ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	23	15
		引張り σ_{y}	－	－	67	44
		せん断 τ_{xy}	－	－	1	6
		組合せ $\sigma_{\text {fa }}$	－	－	59	40
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	31	8
		引張り σ_{y}	－	－	78	40
		せん断 τ_{xy}	－	－	2	4
		組合せ $\sigma_{\text {fa }}$	－	－	69	38

1．3．2 基礎ボルトに生じる応力
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック		引張り $\sigma_{\text {b }}$	－	－	133	94
		せん断 $\tau_{\text {b }}$	－	－	31	27
170体ラック		引張り $\sigma_{\text {b }}$	－	－	149	73
		せん断 τ_{b}	－	－	37	29

1．4 結論

1．4．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	$\begin{aligned} & \text { ボロン添加 } \\ & \text { ステンレス鋼 } \end{aligned}$	引張り	$\sigma_{\mathrm{ft}}=114^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{f} \mathrm{t}}=114$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=46^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=46$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=139^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=139$	$f_{\mathrm{t}}=205$
170体ラック	$\begin{aligned} & \text { ボロン添加 } \\ & \text { ステンレス鋼 } \end{aligned}$	引張り	$\sigma_{\mathrm{ft}}=154^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{f} \mathrm{t}}=154$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=63^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=63$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}=188^{*}}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=188$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=68^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=68$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=52^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=52$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=113^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=113$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=119^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{f} \mathrm{t}}=119$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=71^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=71$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=171^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=171$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=42^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=42$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=37^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=37$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=76^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=76$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=65^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=65$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=62^{*}$	$f_{\text {s }}=118$	$\tau_{\mathrm{f}}=62$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=126^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=126$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（4）補強板 c
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=79^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{f}}{ }_{\mathrm{t}}=79$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=54^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=54$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=122^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=122$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=133^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=133$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=54^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=54$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=162^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=162$	$f_{\mathrm{t}}=205$

注記 $*$ ：基準地震動 S s による算出応力の値
すべて許容応力以下である。

（5）補強板 d

（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=152^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=152$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=24^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=24$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=158^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=158$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=171^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=171$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=51^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=51$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=193^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=193$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（6）補強板e
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=83^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=83$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=6^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=6$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=83^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=83$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=114^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=114$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=9 *$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=9$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=115^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=115$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	組合せ	$\sigma_{\mathrm{fa}}=59^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=59$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	組合せ	$\sigma_{\mathrm{fa}}=98^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=98$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（8）補強板 g
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	組合せ		$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=4$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	組合せ	$\sigma_{\mathrm{fa}}=6^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=6$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（9）補強板 h
（単位：MPa）
（10）燃料支持板
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	組合せ	$\sigma_{\mathrm{fa}}=41^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ffa}=41}$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	組合せ	$\sigma_{\mathrm{fa}}=94 *$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}_{\mathrm{a}}}=94$	$f_{\mathrm{t}}=205$

注記 $*$ ：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（11）ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	組合せ	$\sigma_{\mathrm{fa}}=59^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=59$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	組合せ	$\sigma_{\mathrm{fa}}=69^{*}$	$f_{\text {t }}=205$	$\sigma_{\mathrm{fa}}=69$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。

1．4．2 基礎ボルトに生じる応力

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	$\sigma_{\mathrm{b}}=133^{* 1}$	$f_{\mathrm{ts}}=455^{* 2}$	$\sigma_{b}=133$	$f_{\mathrm{ts}}=455^{* 2}$
		せん断	$\tau_{\mathrm{b}}=31^{* 1}$	$f_{\text {s b }}=350$	$\tau_{\mathrm{b}}=31$	$f_{\text {s b }}=350$
170体ラック		引張り	$\sigma_{\mathrm{b}}=149^{* 1}$	$f_{\mathrm{ts}}=455^{* 2}$	$\sigma_{b}=149$	$f_{\mathrm{ts}}=455^{* 2}$
		せん断	$\tau_{\mathrm{b}}=37^{* 1}$	$f_{\text {s b }}=350$	$\tau_{\mathrm{b}}=37$	$f_{\text {s b }}=350$

注記 $* 1$ ：基準地震動 S s による算出応力の値

$$
* 2: f_{\mathrm{t} \mathrm{~s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \text { より算出 }
$$

すべて許容応力以下である。

【使用済燃料貯蔵ラックの耐震性についての計算結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	ラック	固有周期 （s）		弹性設計用地震動 S d又は静的震度		基準地震動S s		最高使用圧力(MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
				水平方向	鈖直方向	水平方向	鉛直方向	水平方向	鉛直方向			
使用济燃料貯蔵ラック	常設耐震／防止常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. 22. } 0^{* 1} \\ & \text { (0.P. 21.38) } \end{aligned}$	110 体ラック		0.05 以下＊2	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は $* 3$	$\mathrm{C}_{\mathrm{v}}=1.56$	－	100	－
			170 体ラック		0． 05 以下＊ 2	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は ${ }^{\text {2 }} 3$	$\mathrm{C}_{\mathrm{V}}=1.56$	－	100	－

注記 $~ * ~ 1: ~$ 基準床レベルを示す。
＊ 2 ：固有値解析により 0.05 秒以下であり，剛であることを確認した。
＊3：基準地震動 S s に基づく設計用床応答曲線から得られる値
2.2 機器要目

2．2．1 固有周期の算出及び部材の応力評価に用いる要目

ラック	部材	材料	$\begin{aligned} & \mathrm{A}_{\mathrm{x}} * \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{y}}{ }^{*} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{z}{ }^{*} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{y}} \mathrm{*} \\ \left(\mathrm{~mm}^{4}\right) \end{gathered}$	$\begin{gathered} \mathrm{I}_{z}{ }^{*} \\ \left(\mathrm{~mm}^{4}\right) \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{y}} \text { * } \\ & \left(\mathrm{mm}^{3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{z}{ }^{*} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$
110 体ラック	角管	$\begin{aligned} & \text { ボロン添加 } \\ & \text { ステンレス鋼 } \end{aligned}$	1． 987×10^{3}	8． 834×10^{2}	8． 834×10^{2}	7． 978×10^{6}	7． 978×10^{6}	1． 007×10^{5}	1． 007×10^{5}	
	補強板 a	SUS304	1． 800×10^{3}	1． 200×10^{3}	1． 200×10^{3}	1． 194×10^{7}	2． 778×10^{7}	1． 427×10^{5}	1． 323×10^{5}	1． 92×10^{5}
	補強板 b	SUS304	7． 500×10^{3}	5． 000×10^{3}	5． 000×10^{3}	6． 346×10^{7}	5． 625×10^{7}	6.090×10^{5}	3.750×10^{5}	1.92×10^{5}
	補強板 c	SUS304	2． 800×10^{3}	1． 867×10^{3}	1． 867×10^{3}	1． 987×10^{7}	1． 829×10^{7}	2． 228×10^{5}	1． 306×10^{5}	1.92×10^{5}
	補強板 d	SUS304	2． 800×10^{3}	1． 867×10^{3}	1． 867×10^{3}	1． 987×10^{7}	1． 829×10^{7}	2． 228×10^{5}	1． 306×10^{5}	1． 92×10^{5}
	補強板 e	SUS304	7． 500×10^{3}	5． 000×10^{3}	5． 000×10^{3}	6． 346×10^{7}	5． 625×10^{7}	6.090×10^{5}	3.750×10^{5}	1． 92×10^{5}
170 体ラック	角管	ボロン添加 ステンレス鋼	1． 987×10^{3}	8． 834×10^{2}	8． 834×10^{2}	7． 978×10^{6}	7． 978×10^{6}	1． 007×10^{5}	1． 007×10^{5}	
	補強板 a	SUS304	1． 800×10^{3}	1． 200×10^{3}	1． 200×10^{3}	1． 194×10^{7}	2． 778×10^{7}	1． 427×10^{5}	1． 323×10^{5}	1． 92×10^{5}
	補強板 b	SUS304	7． 500×10^{3}	5． 000×10^{3}	5． 000×10^{3}	6． 346×10^{7}	5． 625×10^{7}	6.090×10^{5}	3.750×10^{5}	1． 92×10^{5}
	補強板 c	SUS304	2． 800×10^{3}	1． 867×10^{3}	1． 867×10^{3}	1． 987×10^{7}	1． 829×10^{7}	2.228×10^{5}	1． 306×10^{5}	1． 92×10^{5}
	補強板 d	SUS304	2． 800×10^{3}	1． 867×10^{3}	1． 867×10^{3}	1． 987×10^{7}	1． 829×10^{7}	2． 228×10^{5}	1． 306×10^{5}	1.92×10^{5}
	補強板 e	SUS304	7.500×10^{3}	5.000×10^{3}	5． 000×10^{3}	6． 346×10^{7}	5.625×10^{7}	6． 090×10^{5}	3.750×10^{5}	1． 92×10^{5}

注記＊：各部材の局所座標系に従う。

評価部材	材料	$\mathrm{S}_{\mathrm{y}}^{* 1}$ (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	$\mathrm{S}_{\mathrm{u}}{ }^{* 1}$ (MPa)	F (MPa)	F^{*} (MPa)
角管	ボロン添加 ステンレス鋼	$171^{* 2}$	$205^{* 2}$	$441^{* 2}$	-	$205^{* 2}$
補強板	SUS304	171	205	441	-	205

注記 $* 1$ ：最高使用温度 $\left(100{ }^{\circ} \mathrm{C}\right)$ で算出
＊2：ボロン添加ステンレス鋼のS y，Suの値は，SUS304の規格値を上回っているが，安全側の評価とするため，SUS304の値を使用する。

	ラック	部材	材料	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} F \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
®	110 体ラック	補強板 f	SUS304		1． 92×10^{5}	171	205	441	－	205
		補強板 g	SUS304		1． 92×10^{5}	171	205	441	－	205
		補強板 h	SUS304		1． 92×10^{5}	171	205	441	－	205
		燃料支持板	SUS304		1． 92×10^{5}	171	205	441	－	205
		ベース	SUS304		1． 92×10^{5}	171	205	441	－	205
	170 体ラック	補強板 f	SUS304		1． 92×10^{5}	171	205	441	－	205
		補強板 g	SUS304		1.92×10^{5}	171	205	441	－	205
		補強板 h	SUS304		1.92×10^{5}	171	205	441	－	205
		燃料支持板	SUS304		1.92×10^{5}	171	205	441	－	205
		ベース	SUS304		1． 92×10^{5}	171	205	441	－	205

注記 $* 1$ ：最高使用温度（ $100{ }^{\circ} \mathrm{C}$ ）で算出
＊2：部材位置は図 5－1に示す。
＊3：部材位置は図5－2に示す。

2．2．2 基礎ボルトの応力評価に用いる項目

ラック	$\underset{(\mathrm{kg})}{\mathrm{m}}$	$\begin{aligned} & \mathrm{m}_{\mathrm{F}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{m}_{\mathrm{R}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{m}_{\mathrm{W}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\mathrm{V}} \\ & (-) \end{aligned}$	$\begin{aligned} & \ell_{1 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{6 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{7 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{8 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{9 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{10 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{11 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{(\mathrm{mm})} \end{gathered}$
110 体ラック					1590	1． 56	1741.5	1577.5	1413.5	1249.5	1085.5	921.5	757.5	593.5	429.5	265.5	101.5	－
170 体ラック					1590	1． 56	2725.5	2561.5	2397.5	2233.5	2069.5	1905.5	1741.5	1577.5	1413.5	1249.5	1085.5	921.5

$\begin{gathered} \ell_{13 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{14 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{15 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{16 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{17 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{\text {iN }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \ell_{2 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{6 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{7 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{8 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{9 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{10 \mathrm{~N}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{\mathrm{gE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{gN}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{n}_{1 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{2 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{3 \mathrm{E}} \\ (-) \end{gathered}$
－	－	－	－	－	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	921.5	835	10	2	2
757.5	593.5	429． 5	265.5	101.5	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	1413.5	835	10	2	2

$\begin{gathered} \mathrm{n}_{4 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{5 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{6 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{7 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{8 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{9 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{10 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{11 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{12 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{13 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{14 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{15 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{16 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{17 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{1 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{2 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{3 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{4 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{5 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{6 \mathrm{~N}} \\ (-) \end{gathered}$
2	2	2	2	2	2	2	10	－	－	－	－	－	－	11	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	10	17	2	2	2	2	2

$\mathrm{n}_{7 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{8 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{9 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{10 \mathrm{~N}}$ $(-)$	n $(-)$
2	2	2	11	38
2	2	2	17	50

\square

注記 $* 1$ ：最高使用温度（ $100{ }^{\circ} \mathrm{C}$ ）で算出

$$
\text { O } 2 \text { (3) VI-2-4-2-2 R } 3
$$

ラック	地震の種類	F_{N} (N)	F_{E} (N)	M_{N} $(\mathrm{N} \cdot \mathrm{mm})$	M_{E} $(\mathrm{N} \cdot \mathrm{mm})$
110 体ラック	弾性設計用地震動 Sd 又は静的震度	-	-	-	-
	基準地震動 S	1.838×10^{6}	1.622×10^{6}	5.849×10^{9}	4.632×10^{9}
	弹性設計用地震動 Sd 又は静的震度	-	-	-	-
	基準地震動 s	2.891×10^{6}	2.250×10^{6}	8.996×10^{9}	7.236×10^{9}

2.3 計算数値

2．3．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	$\begin{aligned} & \text { ボロン添加 } \\ & \text { ステンレス鋼 } \end{aligned}$	引張り σ_{ft}	－	－	114	89
		せん断 τ_{f}	－	－	46	24
		組合せ $\sigma_{\text {fa }}$	－	－	139	98
170体ラック	ボロン添加 ステンレス鋼	引張り $\sigma_{\text {ft }}$	－	－	154	62
		せん断 τ_{f}	－	－	63	44
		組合せ $\sigma_{\text {fa }}$	－	－	188	98

（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	68	22
		せん断 τ_{f}	－	－	52	39
		組合せ $\sigma_{\text {fa }}$	－	－	113	71
170体ラック	SUS304	引張り $\sigma_{\text {ft }}$	－	－	119	21
		せん断 τ_{f}	－	－	71	40
		組合せ $\sigma_{\text {fa }}$	－	－	171	73

（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	42	24
		せん断 τ_{f}	－	－	37	15
		組合せ $\sigma_{\text {fa }}$	－	－	76	34
170体ラック	SUS304	引張り $\sigma_{\text {f t }}$	－	－	65	20
		せん断 τ_{f}	－	－	62	14
		組合せ $\sigma_{\text {f a }}$	－	－	126	31

（4）補強板 C
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	85	79
		せん断 τ_{f}	－	－	36	54
		組合せ $\sigma_{\text {fa }}$	－	－	105	122
170体ラック	SUS304	引張り σ_{ft}	－	－	133	57
		せん断 τ_{f}	－	－	54	43
		組合せ $\mathrm{ffa}^{\text {a }}$	－	－	162	93

（5）補強板 d

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {f t }}$	－	－	113	152
		せん断 τ_{f}	－	－	30	24
		組合せ $\sigma_{\text {fa }}$	－	－	124	158
170体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	171	126
		せん断 $\tau_{\text {f }}$	－	－	51	25
		組合せ $\sigma_{\text {fa }}$	－	－	193	133

（6）補強板 e
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	83	33
		せん断 $\tau_{\text {f }}$	－	－	6	10
		組合せ $\sigma_{\text {f a }}$	－	－	83	37
170体ラック	SUS304	引張り $\mathrm{fft}^{\text {t }}$	－	－	114	31
		せん断 τ_{f}	－	－	9	9
		組合せ $\mathrm{ffa}_{\text {f }}$	－	－	115	34

（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	20	14
		引張り σ_{y}	－	－	2	2
		せん断 τ_{xy}	－	－	33	2
		組合せ $\sigma_{\text {fa }}$	－	－	59	14
170体ラック	SUS304	引張り O_{x}	－	－	18	11
		引張り $\sigma_{\text {y }}$	－	－	1	4
		せん断 τ_{xy}	－	－	56	5
		組合せ $\sigma_{\text {fa }}$	－	－	98	13

（8）補強板 g
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り O_{x}	－	－	1	1
		引張り σ_{y}	－	－	1	4
		せん断 τ_{xy}	－	－	2	1
		組合せ $\sigma_{\text {f a }}$	－	－	4	4
170体ラック	SUS304	引張り O_{x}	－	－	2	1
		引張り $\sigma_{\text {y }}$	－	－	2	3
		せん断 $\tau_{\text {x }}$	－	－	3	0
		組合せ $\sigma_{\text {f a }}$	－	－	6	3

（9）補強板 h
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り O_{x}	－	－	7	25
		引張り σ_{y}	－	－	53	21
		せん断 τ_{xy}	－	－	14	31
		組合せ $\sigma_{\text {fa }}$	－	－	55	58
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	5	22
		引張り σ_{y}	－	－	5	17
		せん断 τ_{xy}	－	－	44	33
		組合せ $\sigma_{\text {f a }}$	－	－	76	60

（10）燃料支持板
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	14	7
		引張り σ_{y}	－	－	46	18
		せん断 $\tau_{x y}$	－	－	2	11
		組合せ $\sigma_{\text {fa }}$	－	－	41	24
170体ラック	SUS304	引張り O_{x}	－	－	32	12
		引張り dy $^{\text {y }}$	－	－	106	29
		せん断 τ_{xy}	－	－	3	8
		組合せ σ_{fa}	－	－	94	28

(11) ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	23	15
		引張り $\sigma_{\text {y }}$	－	－	67	44
		せん断 τ_{xy}	－	－	1	6
		組合せ $\sigma_{\text {fa }}$	－	－	59	40
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	31	8
		引張り $\sigma_{\text {y }}$	－	－	78	40
		せん断 τ_{xy}	－	－	2	4
		組合せ $\sigma_{\text {fa }}$	－	－	69	38

2．3．2 基礎ボルトに生じる応力
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック		引張り $\sigma_{\text {b }}$	－	－	133	94
		せん断 τ_{b}	－	－	31	27
170体ラック		引張り $\sigma_{\text {b }}$	－	－	149	73
		せん断 $\tau_{\text {b }}$	－	－	37	29

2.4 結論

2．4．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	$\begin{aligned} & \text { ボロン添加 } \\ & \text { ステンレス鋼 } \end{aligned}$	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=114$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=46$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=139$	$f_{\mathrm{t}}=205$
170体ラック	ボロン添加ステンレス鋼	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=154$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=63$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=188$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=68$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=52$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=113$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=119$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=71$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=171$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=42$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=37$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=76$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=65$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=62$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=126$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（4）補強板 c
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=79$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=54$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=122$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=133$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=54$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=162$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（5）補強板 d
（単位： MPa ）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=152$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=24$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=158$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=171$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=51$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=193$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（6）補強板 e

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=83$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=6$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=83$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f}}{ }_{\mathrm{t}}=114$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=9$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=115$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	組合せ	－	－	$\sigma_{\mathrm{fa}}=59$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	組合せ	－	－	$\sigma_{\mathrm{fa}}=98$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（8）補強板 g
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	組合せ	－	－	$\sigma_{\mathrm{fa}}=4$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	組合せ	－	－	$\sigma_{\mathrm{fa}}=6$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（9）補強板 h
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	組合せ	－	－	$\sigma_{\mathrm{fa}}=58$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	組合せ	－	－	$\sigma_{\mathrm{ffa}=76}$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（10）燃料支持板
（単位： MPa ）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	組合せ	－	－	$\sigma_{\mathrm{ffa}=41}$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	組合せ	－	－	$\sigma_{\mathrm{fa}}=94$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
(11) ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	組合せ	－	－	$\sigma_{\mathrm{fa}}=59$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	組合せ	－	－	$\sigma_{\mathrm{fa}}=69$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。

2．4．2 基礎ボルトに生じる応力
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	－	－	$\sigma_{\mathrm{b}}=133$	$f_{\mathrm{ts}}=444^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=31$	$f_{\mathrm{s} \mathrm{b}}=341$
170体ラック		引張り	－	－	$\sigma_{\mathrm{b}}=149$	$f_{\mathrm{ts}}=444^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=37$	$f_{\text {s b }}=341$

注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{t}}\right.$ $]$ より算出
すべて許容応力以下である。

