```
本資料のうち，枠囲みの内容 は防護上の観点から公開でき ません。
```

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －他－F－24－0024＿改 4
提出年月日	2021 年 11 月 4 日

屋外排水路の機能及び耐震性に係る説明方針について

2021年11月
東北電力株式会社

1．はじめに
地下水位低下設備の機能を考慮した 0. P．+14.8 m 盤の施設等における設計用揚圧力•設計用地下水位は，地下水位低下設備により地下水を汲み上げ，O．P．＋14．8m盤から海へ屋外排水路を通じて排水されることにより保持される。

本書は，設計用揚圧力•設計用地下水位を一定の高さに保持し，技術基準第5条（耐震） に適合した状態を維持することに対する屋外排水路の位置付けと説明方針について整理 するものである。

2．地下水位低下設備について

2.1 地下水位低下設備の範囲

地下水位を一定の高さに保持するための地下水位低下設備の範囲を図1に示す。
ドレーン（ヒューム管•鋼管）により揚水井戸に集水した地下水は，揚水井戸内に設置する揚水ポンプにより配管を通じて0．P．＋ 14.8 m 盤へ汲み上げ，屋外排水路を通じ て海へ排水される。地下水位低下設備の構成を表1，系統構成を図2に示す。

「VI－2－1－1－別添 1 地下水位
低下設備の設計方針」抜粋

図1 地下水位低下設備の配置

表1 地下水位低下設備の構成

	機能	設備構成
集水機能	－地下水を揚水井戸に集水する。	ドレーン
		接続㭌
支持•閉塞防止機能	- 揚水井戸内の設備を文持する。 - 揚水井戸内の設備が外部事象の影響を受 けないようにする。	揚水井戸
		盖
排水機能	－揚水井戸に流人する地ド水を排水さる。	揚水ボンブ
		配管
監視•制御機能	－揚水井戸の水位を测定することで揚水ボ ンプの起動及び停止を制御する。 - 眗水井戸水位を監視する。 - 揚水井戸水位及び設備の異常時に中央制御室に警報を発牛きせる。	水位計
		制御盤
電源機能	－設備に必要な電力を供給する。	電㷧 （非常用ディーゼル発電機）
		電源媻
		電路

「VI－2－1－1－別添1地下水位
低下設備の設計方針」抜粋

原子炉建屋•制御建屋エリア

図2 地下水位低下設備の系統構成
2.2 地下水位低下設備の設計流量

地下水位低下設備からの排水量は，保守的な解析条件（排水量を多めに評価するよ うな透水係数設定など）を与えた浸透流解析より原子炉建屋•制御建屋エリアで $8078 \mathrm{~m}^{3} / \mathrm{d}$ ，第3号機海水熱交換器建屋エリアで $7046 \mathrm{~m}^{3} / \mathrm{d}$（各エリアの流入量合計 $15124 \mathrm{~m}^{3} / \mathrm{d}$ ）と評価しており，揚水ポンプの排水能力はこれを包絡するよう，設計流量 を各エリアで $9000 \mathrm{~m}^{3} / \mathrm{d}$ ，流量合計 $18000 \mathrm{~m}^{3} / \mathrm{d}\left(0.21 \mathrm{~m}^{3} / \mathrm{s}\right)$ と設定している（詳細は「VI －2－1－1－別添1 地下水位低下設備の設計方針」を参照）。

2.3 地下水の排水経路

（1）通常時
地下水位低下設備から汲み上げた地下水は，揚水井戸出口の配管より支線排水路 へ流れ，敷地の南北に設置される幹線排水路（北側幹線排水路，南側幹線排水路） を通じて海へ排水される（図3）。

図3 地下水位低下設備で汲み上げた地下水の排水経路（北側排水路の例）
（2）地震時
屋外排水路のうち，北側幹線排水路の一部（北側排水路（防潮堤横断部）及び出口側集水ピット（北側））は基準地震動 S s に対する耐震性を確保することとして いるが，それ以外の範囲が地震により損傷し機能低下した場合，排水経路が寸断さ れ，海への排出が出来なくなる可能性が否定できない。

このため，地下水位低下設備より汲み上げた地下水を海へ排出可能な経路を確保 する必要がある。

3．地下水の排水経路確保について
地下水位低下設備より汲み上げた地下水を海へ排出することが可能な経路を確保する ため，以下 3.1 に示す屋外排水路の状況を踏まえ， 3.2 にて地下水位保持上必要な屋外排水路の範囲と耐震性確保の方針を整理した。また，地下水位保持上必要な屋外排水路の範囲設定にあたり，地震時の排水経路について3．3のとおり整理した。

3.1 屋外排水路の設備構成と排水能力

（1）設備構成
屋外排水路は，第 1 号機～第 3 号機の主要建屋の北側と南側に設置される北側幹線排水路•南側幹線排水路と，これに接続する支線排水路にて構成され，北側•南側幹線排水路は，いずれも防潮堤横断箇所より上流側に敷地側集水ピット，下流側に出口側集水ピットを設置しており，出口側集水ピットに耐震Sクラスの逆流防止設備を設置している（図4）。

また，北側幹線排水路は岩盤，改良地盤及び置換コンクリート，南側幹線排水路 は岩盤により支持されている（図5）。支線排水路は0．P．＋14．8m盤付近に設置され， その多くの区間が盛土上に構築される。

注：支線排水路（青点線）は2019年10月段階の配置を記載（今後の安全対策工事等によって変更可能性有）。

図4 屋外排水路の配置（設置許可段階における説明）

北側幹線排水路の縦断図

南側幹線排水路の縦断図

図5 北側•南側幹線排水路の断面図

> 「補足 140-1 津波への配慮に関する説明書の補足説明資料」, 「補足600-1 地盤の支持性能について」から抜粋•一部修正
（2）排水能力
北側•南側幹線排水路の排水能力は表2に示す通りであり，設計基準降水時 （ $91.0 \mathrm{~mm} / \mathrm{h}$ ）における雨水流入量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ を十分排出可能な設計となっている。

地下水位低下設備からの排水量（設計流量 $0.21 \mathrm{~m}^{3} / \mathrm{s}$ ）は，北側幹線排水路•南側幹線排水路いずれかが機能していれば排水可能である。また，想定される雨水流入量および地下水位低下設備からの排水量に対しては，北側幹線排水路のみで排水可能である。

表2 幹線排水路の排水能力

排水路名	設計基準降水時 $(91.0 \mathrm{~mm} / \mathrm{h})$ 雨水流入量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	排水可能流量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$
北側幹線排水路	9.4	51.1
南側幹線排水路	9.5	16.2

3.2 地下水位保持上必要な屋外排水路の範囲と取扱い

屋外排水路は基準地震動 S s に対する耐震性が確保されている範囲が限定的である こと，がれき等が直接流入しにくい構造であること（参考資料2）から，排水機能低下 が生じうる要因として地震を選定し，基準地震動 S s に対する耐震性が確認されてい ない範囲が機能低下した場合の影響整理を行った（参考資料1）。

この結果，敷地側集水ピット（北側）が機能低下した場合において地下水位保持に影響が生じる可能性があることから，敷地側集水ピット（北側）を基準地震動 S s に対し機能維持する設計とし，O．P．＋ 14.8 m 盤から海への地下水の排水経路となる北側幹線排水路の流末部（敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット（北側））については耐震Cクラス＊に分類する（表3）。

技術基準第5条（耐震）適合上必要な屋外排水路の耐震性確保範囲を図6に示す。
屋外排水路の概要を参考資料 2 に，敷地側集水ピット（北側）の耐震性の検討方針を参考資料3にそれぞれ示す。

注：支線排水路（青点線）は2019年10月段階の配置を記載（今後の安全対策工事等によって変更可能性有）。
$\left.\begin{array}{l}\text {（凡 例）} \\ \text { 揚水井戸 } \\ \cdots \\ \text { 幹線排水路 } \\ \text { 支線排水路 }\end{array}\right]$ 屋外排水路

図6 技術基準第5条（耐震）適合上必要な屋外排水路の耐震性確保範囲

注記＊：耐震重要度は，その重要度に応じたクラス分類（S，B，C）と，それらに該当する施設が示されている。表2のとおり，屋外排水路はSクラス設備及び Bクラス設備のいずれにも該当しないため，耐震Cクラスに分類した。

表3 北側幹線排水路流末部における耐震設計上の重要度分類

$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { 震 } \end{array}$	定誟	対象とする施設の例	棭当
S	 	 	\times
B	設	－原子が命却材主力パウンダルに直接接続されていて，一次 －放射性充秉物を坴内蔵している施設（ただし，内蔵量が少ない 和53年通商童業省今第77号）第2条第2項第6号に规定才 る「周辺監視入域り外にすりる年間の線量恨度に比べ十分小さいものは除く。）等	\times
C	同等の安全性が要求される旅改	－	0

「VI－2－1－4＿耐震重要度分類及び重大事故等対処施設の施設区分の基本方針」を参照し作成
3.3 地震時における地下水の排水経路
（1）評価手順
支線排水路は多くの区間が盛土上に設置されていることから，地震時において機能低下する可能性がある。このため，地震時において支線排水路が機能低下する状況を想定し，O．P．＋ 14.8 m 盤の地表面を通じて敷地側集水ピット（北側）へ排水する ことの成立性について検討を行った。
本項では，図 7 に示すフローに基づき，各揚水井戸から敷地側集水ピット（北側） に至る0．P．＋ 14.8 m 盤の排水経路に対して，盛土•旧表土の分布や地中構造物の配置，地盤改良等の状況を踏まえて，排水経路毎に地震時の不陸等の状況を想定し，支線排水路が機能低下した場合における各揚水井戸からの地下水の平面的な流れを検討 した。

項目	実施内容
（1）各井戸からの排水経路の設定	－地震時における各揚水井戸から敷地側集水ピット（北側）までの排水経路（地表面）を設定する。
（2）情報収集	－0．P．+14.8 m盤における地震時の不陸等の想定を行うために，地盤（盛土•旧表土分布）および地中構造物（地盤改良を含 む）等，想定に必要な情報の収集を行う。
（3）地震時の排水経路 （地表面）の状態想定	－（2）にて収集した情報を用いて，（1）の各 ルートにおいて不陸等の発生箇所を想定 する。
（4）各排水経路の成立性 の検討	－（3）の状態想定を踏まえ，各ルートにおけ る上記整理を踏まえて，0．P．＋14．8m盤に おける揚水井戸から排出された地下水の排水経路（平面）を検討する。 －排水経路として成立しないと判断される場合は，別な排水経路を検討する。
（5）その他検討	－敷地側集水ピット（北側）の開口により地下水を排水可能であることを確認する。 －各揚水井戸から排出される地下水が敷地側集水ピット（北側）へ到達することを確認する。

0．P．+14.8 m の排水経路評価フロー

図7 地震時における0．P．＋14．8m盤の排水経路評価フロー
（2）評価結果
フローに基づく各検討項目の評価結果の概要を示す。
（1）各井戸からの排水経路の設定
各揚水井戸から敷地側集水ピット（北側）への0．P．＋14．8m盤（地表面）の排水経路を図8のとおり設定した。敷地側集水ピット（北側）までの排水経路が相対的に長いNo．1揚水井戸，No． 2 揚水井戸については複数経路を設定した。

図8 各揚水井戸から敷地側集水ピット（北側）への排水経路
（2）情報収集
図9に，地震時に沈下等の変形が生じると考えられる盛土•旧表土の分布，図10 に，敷地の地盤改良および主要建屋等の配置，図11に2011年東北地方太平洋沖地震における0．P．＋ 14.8 m 盤の状況を示す。

地震時において，旧表土は液状化し変形が相対的に大きくなると想定される （「補足600－1 地盤の支持性能について」参照）。

平面図

断面図
図 9 盛土•旧表土の分布範囲

図 10 敷地の地盤改良および主要建屋等の配置

図112011年東北地方太平洋沖地震後の状況写真（第3号機南側）

③地震時の排水経路（地表面）の状態想定
図 12 に，地震時における地表面の状態想定を示す。
図12に示す黄色囲い箇所においては盛土が比較的厚く分布し，地震時において揺すり込み沈下が発生する可能性がある。この範囲は，岩盤，地盤改良，及び防潮堤等の構造物に囲まれており，沈下するとすり鉢状となることが想定される。

なお，地盤の揺すり込み沈下については，（2）にて前述する盛土の性状や，2011年東北地方太平洋沖地震において概ね一様に沈下している状況からも，顕著な不陸が生じる可能性は低いと想定される。なお，建物の倒壊について，地表面の排水経路が全線不通となることは考えにくく，排水経路のうちアクセスルートと重 なる範囲にがれき等が発生した場合はブルドーザー及びバックホウで撤去可能で あるため，建物の倒壊による排水経路への影響は考慮しない。（VI－1－1－6－別添1可搬型重大事故等対処設備の保管場所及びアクセスルート）

図12 地表面の地震時における状態想定
（4）各排水経路の成立性の検討
各排水経路において想定される不陸等の発生箇所を想定した結果を図 13 に示す。排水経路の状況により沈下の状況は異なるものの，すり鉢状の沈下範囲を徐々 に上昇し， $0 . P .+14.8 \mathrm{~m}$ に達することが想定される。

次に，揚水井戸から排出された地下水の平面的な流れ場を図14のとおり整理し た。各経路における地盤及び地中構造物等の状況に応じて盛土の沈下により地表面の状況が異なるが，いずれの経路においても，基準地震動 S s 対し機能維持さ れている揚水ポンプが地下水の集水状況に応じ間欠的に作動することで，揚水井戸より繰り返し地下水が地上に排水されるため， $0 . P .+14.8 \mathrm{~m} \frac{\mathrm{n}_{\mathrm{N}}^{\mathrm{n}} \mathrm{C} \text { に溢れ出た地下水 }}{}$ は平面的に広がり，各排水経路において生じる不陸を水で満たしながら，敷地側集水ピット（北側）に到達すると考えられる。なお，実際の排水挙動としては参考資料5に示すとおり，建屋近傍におけるくさび崩壊に伴ら沈下領域へ排水され ることが想定される。
以上の整理から，各揚水井戸から0．P．＋ 14.8 m 盤の地表面を通じて敷地側集水ピ ット（北側）へ排水する経路を確保可能であることを確認した。

範囲	解説
（1）－1	地盤改良により沈下小
（1）－2	盛土•旧表土が厚く沈下大
（1）－3	トレンチ，取放水管が埋設されているため沈下小
（1）－4	盛土が厚く沈下
（1）－5	トレンチが埋設されているため沈下小
（1）－6	盛土が厚く沈下

図 13（1）各排水経路について地震時に想定される事象

範囲	解説
（2）－1	盛土•旧表土が厚く沈下大
（2）－2	トレンチが埋設されているため沈下小
（2）－3	盛土•旧表土が厚く沈下大
（2）－4	トレンチ，取放水管が埋設されているため沈下小
（2）－5	盛土が厚く沈下
（2）－6	トレンチが埋設されているため沈下小
（2）－7	盛土が厚く沈下

図 13（2）各排水経路について地震時に想定される事象

範囲	解説
（3）－1	地盤改良により沈下小
（3）－2	盛土•旧表土が厚く沈下大
（3）－3	トレンチが埋設されているため沈下小
（3）－4	盛土が厚く沈下
（3）－5	トレンチが埋設されているため沈下小
（3）－6	盛土が厚く沈下
（3）－7	岩盤が浅いことから沈下小

図13（3）各排水経路について地震時に想定される事象

範囲	
（4）－1	盛土エリアのため沈下大

図13（4）各排水経路について地震時に想定される事象

Step1 No．1揚水井戸付近からあふれた地下水が海水ポンプ室•原子炉建屋間を通じて第2•3号機エリア間の沈下部へ到達	
Step2 沈下部に水が溜まり始め，地下水の供給が継続すると水面が 0．P．＋ 14．8m盤まで上昇	
Step3 沈下部から水が溢れ，地表面を介し て北側•西側に伝播	

図14（1）地下水位低下設備からの排水経路の想定

Step4 近接する北側•西側の沈下部に地下水が到達。 地下水の供給が継続すると，水面が 0．P．+14.8 m 盤まで上昇	
Step5 沈下部から溢れた地下水が，西側に伝播	
Step6 近接する西側の沈下部に地下水が到達。 地下水の供給が継続すると，水面が 0．P．$+14.8 \mathrm{~m} \frac{\mathrm{fen}_{\mathrm{n}} \text { まで上昇 }}{}$	

図14（2）地下水位低下設備からの排水経路の想定

図14（3）地下水位低下設備からの排水経路の想定
（5）その他検討
（5）－ 1 排水メカニズムと越流量について
揚水井戸からの排水は揚程の余裕分により敷地側集水ピット内部に向かっ て水の流れが形成されることから，長方形せきの越流量として評価を行い，排水は十分流下可能であることを確認した。詳細は参考資料4に示す。
（5）-2 到達時間の観点
排水の到達時間は，Kravenの式により評価を行い，浸透速度に対して地表面の伝播時間の方が十分に早いためほとんどの水は敷地側集水ピット（北側） に到達することを確認した。詳細は参考資料4に示す。
（3）まとめ
以上の整理から，地下水位低下設備により汲み上げた地下水が $0 . P .+14.8 \mathrm{~m}$ 盤に溢 れ出た場合においても，地表面を通じて敷地側集水ピット（北側）へ排水すること が可能である。

また，北側幹線排水路の排水可能流量は $51.1 \mathrm{~m}^{3} / \mathrm{s}$ であり，北側•南側幹線排水路 にて想定する流入量（ $18.9 \mathrm{~m}^{3} / \mathrm{s}$ ）と地下水位低下設備からの排水量（ $0.21 \mathrm{~m}^{3} / \mathrm{s}$ ）の合計値（ $19.11 \mathrm{~m}^{3} / \mathrm{s}$ ）を上回ることから，北側幹線排水路を通じた 0. P．+14.8 m から海へ の排水経路を確保すれば，設計用地下水位を一定の範囲に保持することができる。

4．他条文への影響
北側幹線排水路流末部の耐震性確保（技術基準第 5 条）を踏まえた各技術基準適合要求への影響について確認し，いずれも影響がないことを確認した。（詳細は表 4 参照）

表4（1）北側幹線排水路流末部の耐震性確保（技術基準第5条）を踏まえた
各技術基準適合要求への影響

技術基準	設置変更許可時の説明	技術基準適合への影響
第 5 条 （耐震）	（屋外排水路は，設計基準降水量を上回 る排水能力を有する設計としているこ とから，水位保持上の前提としていた が，基準適合上の位置付けに係る説明 は無し）	－屋外排水路のうち北側幹線排水路流末部の耐震性を確保することにより，水位保持上の前提で ある 0．P．+14.8 m 盤から海へ排水される状態が確実に維持される。（設定した設計用揚圧力•設計用地下水位への影響はない。）
第 6 条 （耐津波設計 （内郭防護））	－内郭防護における屋外タンク等の損傷 による溢水影響にて，屋外排水路の機能に期待しない評価を説明。（耐津波設計で考慮する敷地への溢水源の設定 では，屋外排水路による排水を期待せ ず，敷地に滞留した場合であっても，浸水防護重点化範囲に流入しないこと を確認。）	－屋外排水路の機能に期待しない評価を実施して いることから，屋外排水路のうち北側幹線排水路流末部の耐震性を確保した場合においても基準適合への影響はない。なお，屋外タンクの破損等により発生した 0. P．+14.8 m 盤の水は地震随伴事象により発生するものであり，北側幹線排水路流末部の耐震性を確保することによっ て，確実に屋外排水路を通じて海へ排水され る。
第 7 条 （外部事象（自然現象））	－想定される自然現象（地震，津波を除く） に対し，屋外排水路の機能に期待する個別事象として，降水による浸水の影響評価を実施し，外部事象防護対象施設等がその安全機能を損なわないこと を説明。（屋外排水路は，敷地への降水 を海域に排水するものであり，設計基準降水量を上回る排水能力を有する設計としている。3．1（2）参照。） 自然現象の重畳について，事象（影響 モード）の内容を基に，影響が増長す る事象の組合せを網羅的に検討し，降水を含む事象の組合せにおいて，影響 が増長するものはないことを説明。 （詳細については表 3－2参照。）	－考慮する自然現象は降水であり，屋外排水路の うち北側幹線排水路流末部の耐震性を確保した場合においても敷地への降水を海域に排水する機能に影響はなく，外部事象防護対象施設等の安全機能に影響を及ぼさないことから，基準適合への影響はない。また，自然現象の組合せの影響に対する確認結果は表 4（2）に示すとおりで あり，降水による浸水影響の個別評価と変わら ず，外部事象防護対象施設等の安全機能に影響 を及ぼさないことから，基準適合への影響はな い。なお，北側幹線排水路流末部の耐震性を確保することによって，地震時においても確実に屋外排水路を通じて海へ排水される。
第 12 条 （内部溢水）	－屋外排水路の機能に期待しない溢水評価を説明。（屋外タンク等の損傷にお ける敷地への溢水源の設定では，屋外排水路による排水を期待せず，敷地に滞留した場合であっても，防護対象設備に対して溢水影響を及ぼさないこと を確認。）	－屋外排水路の機能に期待しない評価を実施して いることから，屋外排水路のらち北側幹線排水路流末部の耐震性を確保した場合においても基準適合への影響はない。なお，屋外タンクの破損等により発生した 0. P．+14.8 m 盤の水は地震随伴事象により発生するものであり，北側幹線排水路流末部の耐震性を確保することによっ て，確実に屋外排水路を通じて海へ排水され る。
第 54 条 （アクセスルート）	－敷地への溢水（屋外タンク損傷）は， アクセスルート復旧作業の開始前に排水路から排水可能であり，アクセスル ート復旧作業への影響はない。 －排水を考慮しない場合でも可搬型車両 の通行は可能であり，人員への影響も小さい。	－敷地への溢水（屋外タンク損傷）は，アクセス ルート復旧作業の開始前に耐震性を確保した北側排水路流末部より排水可能であり，アクセス ルート復旧作業への影響はない。 －排水を考慮しない場合，アクセスルートから，側溝やより沈下量の大きな建屋近傍へ流下する ため，可搬型車両の通行は可能であり，人員へ の影響も小さい。

表 4（2）女川原子力発電所において想定される自然現象の組合せがプラントに及ぼす影響の評価結果（影響モード：浸水）（設置変更許可時の説明内容）

影響モード を含む事象	事象の組合せ	検討結果	備考
降水	$\begin{aligned} & \text { 風 (台風) } \times \\ & \text { 降水 } \end{aligned}$	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。 また，風（台風）による影響（荷重）を組み合わせたとし ても降水による浸水影響の個別評価と変わらない。	女川原子力発電所 2 号炉設置変更許可申請書 02－NP－0272（改 114）外部からの衝撃による損傷 の防止（その他外部事象）別添資料1 第5．3－8表より抜粋
	$\begin{array}{r} \text { (風 (台風) } \\ \times \times \text { 降水) } \times \\ \text { 涷結 } \times \text { 積雪 } \end{array}$	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。 また，風（台風）及び積雪による影響（荷重），及び，涷結による影響（温度及び閉塞）を組み合わせたとしても，降水による浸水影響の個別評価と変わらない。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \text { 降水) } \times \\ & \text { 竜巻 } \end{aligned}$	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。 また，風（台風）及び竜巻による影響（荷重）を組み合 わせたとしても，降水による浸水影響の個別評価と変わ らない。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \times \text { 降水) } \times \\ & \text { 落雷 } \end{aligned}$	降水による數地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。 また，落雷による影響（電気的影響）を組み合わせたと しても，降水による浸水影響の個別評価と変わらない。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \times \text { 降水) } \times \\ & \text { 火山の影響 } \end{aligned}$	湿った降下火砕物が乾燥して固結することにより，排水口等を閉塞させ浸水することが考えられるが，固結した降下火碑物は降水により溶解するため浸水は生じない。 また，風（台風）による影響（荷重）及び降水による影響（浸水）を組み合わせたとしても，降水による浸水影響の個別評価と変わらない。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \text { 降水) } \times \\ & \text { 生物学的事 } \\ & \text { 象 } \end{aligned}$	降水による數地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。 また，風（台風）による影響（荷重）及び生物学的事象 による影響（閉塞，電気的影響）を組み合わせたとして も，降水による浸水影響の個別評価と変わらない。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \text { 降水) } \times \\ & \text { 森林火災 } \end{aligned}$	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。 また，風（台風）による影響（荷重）及び森林火災によ る影響（温度，閉塞，電気的影響，摩耗）を組み合わせ たとしても，降水による浸水影響の個別評価と変わらな い。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \text { 降水) } \times \\ & \text { 地震 } \end{aligned}$	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。 また，風（台風）及び地震による影響（荷重）を組み合 わせたとしても，降水による浸水影響の個別評価と変わ らない。	
	$\begin{aligned} & \text { (風 (台風) } \\ & \times \text { 降水) } \times \\ & \text { 津波 } \end{aligned}$	降水及び津波による浸水影響が重畳することにより，敷地に対する浸水影響が増長すると考えられるが，構内排水路により排水することで敷地が降水により浸水するこ とはないこと，基準津波は津波防護施設及び浸水防止設備により敷地内に到達することはないことから，敷地が浸水に至る可能性はない。なお，津波により所内の排水設備が使用できない場合でも，津波の継続時間は短いこ とから，降水により浸水に至る可能性はない。	

5．工認図書における取扱い
北側幹線排水路流末部の耐震性確保（技術基準第 5 条）及び 0. P．+14.8 m 盤から海への地下水の排水経路となる北側幹線排水路の流末部（敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット（北側））を耐震Cクラスに分類することにつ いて，表5のとおり各図書に整理する。
表 5 （1）地下水位低下設備に係る各図書における屋外排水路の記載について（ $1 / 2$ ）

分類	対応箇所	対応内容（3．1に示す対策の反映箇所）	備考
本文	基本設計方針（ $5 / 50$ 条） 原子炉冷却系統施設（共通項目） 2．自然現象 2． 1 地震による損傷の防止 2．1．1 耐震設計 （5）設計における留意事項 b．主要施設への地下水の影響	－地下水位低下設備は，ドレーン，接続桝，揚水井戸，蓋，揚水ポンプ，配管，水位計，制御盤，電源（非常用ディーゼル発電機），電源盤及び電路により系統を構成する。地下水位低下設備は，ドレーン及び接続桝により揚水井戸に地下水を集水し，揚水ポン プ（容量 $375 \mathrm{~m}^{3} / \mathrm{h} /$ 個，揚程 52 m ，原動機出力 $110 \mathrm{~kW} /$ 個）により，揚水ポンプに接続された配管を通して地下水を屋外排水路へ排水する。 （中略） 路のらち敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット （北側）について基準地震動 S s に対し機能維持する設計とする。	地下水位低下設備で汲み上げた地下水を 0．P．＋+14.8 m 盤から海へ排水することを確実なものとするため，屋外排水路の必要範囲において耐震性を確保する方針を基本設計方針に記載する。
添付資料	VI－2－1－1 耐震設計の基本方針 VI－2－1－1－別添 1 地下水位低下設備の設計方針	（前略） －本系統は，ドレーン及び接続桝により揚水井戸に地下水を集水し，水位計により検出し た水位信号により揚水ポンプを起動し，揚水ポンプに接続された配管を通して地下水を屋外排水路へ排水することで，地下水位を一定の範囲に保持する設計とする。	地下水位低下設備の各構成部位の設計方針を記載する。
	VI－2－13－1 地下水位低下設備の耐震計算の方針	地下水位低下設備の計算結果は，添付書類「VI－2－13－…（中略）…についての計算書」 に示す。 また，地下水位低下設備にて集水した地下水は，屋外排水路を通じて $0 . P .+14.8 \mathrm{~m} \frac{\mathrm{n}_{\mathrm{n}}^{\mathrm{n}} \mathrm{m} \text { から }}{}$海に排水することから，この役割を担ら屋外排水路の構成部位（敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット（北側））における計算結果と して，敷地側集水ピット（北側）については「VI－2－13－4 地下水位低下設備揚水井戸の耐震性についての計算書」に，北側排水路（防潮堤横断部）については「VI－2－11－2－19北側排水路の耐震性についての計算書」に，出口側集水ピット（北側）については「VI－ 2－10－2－6－1－2 屋外排水路逆流防止設備（防潮堤北側）の耐震性についての計算書」にそ れぞれ示す。耐震重要度分類における取扱いは「VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針」に示す。	地下水位低下設備の各構成部位の耐震計算書の紐付情報に加えて，水位保持上必要となる屋外排水路の耐震計算結果及び耐震重要度分類に係る紐付情報を記載す る。
	VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針	－屋外排水路のうち敷地側集水ピット（北側），北側排水路（防潮堤横断部）及び出口側集水ピット（北側）について，耐震Cクラスとして基準地震動 S s に対し機能維持するこ とを，耐震重要度分類表に追記する。	
	VI－2－13－4 地下水位低下設備揚水井戸の耐震性 についての計算書	－別紙追加 （敷地側集水ピット（北側）の計算結果を記載する。）	
	VI－2－11－2－19 北側排水路の耐震性についての計算書	（防潮堤への波及的影響として北側排水路（防潮堤横断部）の計算結果を記載する。）	
	VI－2－10－2－6－1－2 屋外排水路逆流防止設備（防潮堤北側）の耐震性についての計算書	（逆流防止設備の支持構造として出口側集水ピット（北側）の計算結果を記載する。）	

表5（2）地下水位低下設備に係る各図書における屋外排水路の記載について（2／2）

分類	対応箇所	対応内容（3．1に示す対策の反映箇所）	備考
添付資料	VI－2－1－3 地盤の支持性能に係る基本方針	－北側幹線排水路流末部の耐震性を確保する考え方として以下を追記 5．耐震評価における地下水位設定方針 5.1 基本方針 建物•構築物及び土木構造物は，地下水位低下設備＊1 の効果が及ぶ範囲においては， その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。なお，地下水位低下設備の効果が及ばない範囲においては，自然水位＊2より保守的に設定した水位又は地表面にて設計用地下水位を設定し，水圧の影響を考慮する。 注記 $* 1:$ 防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持するため地下水位低下設備を設置する。 地下水位低下設備から汲み上げた地下水は屋外排水路を通じて $0 . P .+14.8 \mathrm{~m}$ 盤 から海へ排水されることにより地下水位を一定の範囲に保持できることから，地下水位低下設備の機能を維持するため，地震時において 0. P．+14.8 m 盤から海 への排水経路として期待する屋外排水路（北側幹線排水路のうち，敷地側集水ピ ット（北側），北側排水路（防潮堤横断部），出口型集水集水ピット（北側）） について，基準地震動 S s に対する耐震性を確保する。この場合，上記以外の屋外排水路は機能低下する可能性があるため，地下水位低下設備で汲み上げた地下水は 0. P．+14.8 m 盤に溢れる可能性があるが，地表面を通じて敷地側集水ピッ ト（北側）に集水されるため，地下水の排水への影響はない。（地下水位低下設備の詳細は「VI－2－1－1－別添1 地下水位低下設備の設計方針」を参照。地下水位低下設備及び地下水の排水経路を構成する屋外排水路の耐震評価方針につい ては「VI－2－13－1 地下水位低下設備の耐震計算の方針」を参照。） ＊2：自然水位とは，地下水位低下設備等の人為的な措置の影響が含まれない地下水位 を指す。 0. P．+14.8 m 盤は浸透流解析の境界条件として地下水位低下設備の機能を考慮している一方，0．P．+14.8 m 盤以外の地下水位は地下水位低下設備の影響が含 まれない。	地下水位低下設備からの排水は屋外排水路を通じて0．P．＋14．8m盤へ排水されるこ とに加え，技術基準第5条（耐震）への適合上必要な対策として，屋外排水路の必要範囲において耐震性を碓保する方針 を地盤側の添付資料に記載する。
補足説明 資料	補足600－1 地盤の支持性能について	参考資料追加 （「屋外排水路の機能及び耐震性に係る説明方針について」を追加する）	参考資料1－2を更新
	補足600－25－1 地下水位低下設備の設計方針に係る補足説明資料		参考資料2として追加収録
	補足600－25－2 地下水位低下設備の耐震性に係 る補足説明資料	－別紙追加（敷地側集水ピット（北側）の計算結果に係る詳細情報を記載）	

6．まとめ
設計用揚圧力•設計用地下水位を一定の高さに保持し，技術基準第5条（耐震）に適合 した状態を維持することに対する屋外排水路の位置付けと説明方針について，以下のと おり整理した。
－地下水位低下設備の機能を考慮した 0. P．+14.8 m 盤の施設等における設計用揚圧力•設計用地下水位を一定の範囲に保持し，技術基準第 5 条（耐震）に適合した状態を維持する上で，地下水位低下設備で汲み上げた地下水を，屋外排水路を介して海へ排水可能な経路を確保する必要がある。
－屋外排水路のらち，敷地側集水ピット（北側）が機能低下した場合において水位保持に影響が生じる可能性があることから，敷地側集水ピット（北側）を基準地震動 S s に対し機能維持する設計とし，0．P．＋14．8m盤から海への地下水の排水経路とな る北側幹線排水路の流末部（敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット（北側））については耐震Cクラスに分類する。
－上記の整理において，屋外排水路のうち北側幹線排水路の流末部以外の範囲は機能低下する可能性があるため，地下水位低下設備で汲み上げた地下水は0．P．＋14．8m盤 に溢れる可能性があるが，地表面を通じて敷地側集水ピット（北側）に集水される ため，地下水の排水への影響はない。
－この方針により，各技術基準適合要求への影響がないことを確認した。また，この方針について，技術基準第5条（耐震）適合上必要な設計として，本文（基本設計方針 第5／50条）並びに関連する添付資料，補足説明資料へ位置付ける。

7．その他の自主対策

地下水位低下設備から汲み上げた地下水は敷地側集水ピット（北側）へ集水されるが，更に排水経路の多様性確保の観点から以下の自主的な対策を行い，0．P．＋14．8m 盤への滞水影響の緩和を図ることとしている。

7.1 南側幹線排水路の活用

南側幹線排水路は，本編3．1の整理のとおり，想定排水量と排水能力の観点からは設計上考慮する必要がないが，No． 1 揚水井戸•No． 2 揚水井戸が近く排水経路が短いこ とも踏まえ，既設の敷地側集水ピット（南側）の補強を行い，基準地震動 S s に対し て内空を保持できる設計とする。（図 15）

図 15 既設の敷地側集水ピット（南側）

7.2 地下水位低下設備の分岐配管

地下水位低下設備からの地表面への排水をより確実にするために，揚水井戸内の配管上端に分岐管（図 16）を設置し，分岐管に仮設ホースを接続するために必要な資機材を配備するとともに，手順を社内規定に定める。

図16 揚水井戸 分岐管の概要図

屋外排水路の機能低下による地下水位低下設備の排水への影響確認

屋外排水路のうち，基準地震動 S s に対する耐震性が確認されていない範囲が機能低下した場合の影響整理を模式図により行った結果を図1－1 及び図1－2 に示す。

この結果，敷地側集水ピット（北側）が機能低下した場合において水位保持に影響 が生じる可能性があることを確認した。

機能低下の状態	その後想定される状態
（1）－a 敷地側集水ピット（北側）が損傷 	地下水の扸水に影暨が生じるおそれ （仮に閉塞を仮定した場合は，O．P＋14．8m盤から海への排水に支障が生じる）
（1）－b 北側幹線排水路（敷地側集水ピットより上流側）が損傷	水位保持へ影響しない（ $O P+148 \mathrm{~m}$ 盤に溢れた水は地表を通じて敷地側集水ピット（北側）へ流れ，海へ排水される）
（1）－c支線排水路が損傷	水位保持への影響しない（ $O P++48 \mathrm{~m}$ 盤に溢れた水は地表を通じて敷地側集水ピット（北，側）へ流れ，海へ排水される）

図 1－1 北側幹線排水路への排水経路の機能低下と排水への影響

機能低下の状態	その後想定される状態
（2）－a 敷地側集水ピット（南側）又はその海側が損傷	水位保持へ影響しない（O．P＋14．8m盤に溢れた水は支線排水路の健全部又 は地表を通じて敷地側集水ピット（北側）へ流れ，海へ排水される）
（2）－b 北側幹線排水路（敷地側集水ピットより上流側）が損傷	水位保持へ影響しない（O．P＋148m盤に溢れた水は支線排水路の健全部又 は地表を通じて敷地側集水ピット（北側）へ流れ，海へ排水される）
（2）－－支線排水路が損傷	水位保持へ影響しない（O．P +148 m 盤に溢れた水は支線排水路の健全部又 は地表を通じて敷地側集水ピット（北側）へ流れ，海へ排水される）

図 1－2 南幹線排水路への排水経路の機能低下と排水への影響

既設の屋外排水路の概要

1．配置と排水能力

屋外排水路は，図2－1及び図2－2に示すとおり第 1 号機～第 3 号機の主要建屋の北側と南側に設置される幹線排水路及び幹線排水路に接続する支線排水路にて構成される。揚水井戸から汲み上げた地下水は，降雨の際の表面水と共に支線排水路を通って図2－3に示 す北側•南側幹線排水路に流れ，排水勾配により海へ排水される。

北側•南側幹線排水路上には，いずれも防潮堤横断箇所より上流側に敷地側集水ピッ ト，下流側に出口側集水ピットを設置しており，海側の出口にはSクラスの逆流防止設備 を設置している。

幹線排水路は，表2－1に示すとおり，設計基準降水時（ $91.0 \mathrm{~mm} / \mathrm{h}$ ）における雨水流入量 を十分排水可能な排水能力を有している。

図2－1 既設の各幹線排水路の集水エリア

注：支線排水路（青点線）は2019年10月段階の配置を記載（今後の安全対策工事等によって変更可能性有）。

図2－2 既設の屋外排水路と地下水位低下設備の位置関係

図 2－3 既設の各幹線排水路の設置状況

表2－1 幹線排水路の排水能力（本編 表 3 再掲）

排水路名	設計基集降水時 $(91.0 \mathrm{~mm} / \mathrm{h})$ 雨水流入量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	排水可能流量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$
北側幹線排水路	9.4	51.1
南側幹線排水路	9.5	16.2

2．構造及び支持の状況
北側•南側幹線排水路の断面図を図2－4に示す。
北側幹線排水路は岩盤，改良地盤及び置換コンクリート，南側幹線排水路は岩盤によ り支持されている。

北側幹線排水路のうち，北側排水路（防潮堤横断部）は防潮堤への波及的影響防止の観点から，出口側集水ピット（北側）についてはSクラスの逆流防止設備の支持構造とし て，それぞれ基準地震動 S s に対する耐震性を確認する（詳細は「VI－2－11－2－19 北側排水路の耐震性についての計算書」及び「VI－2－10－2－6－1－2 屋外排水路逆流防止設備（防潮堤北側）の耐震性についての計算書」に示す）。

なお，出口側集水ピットが支持する逆流防止設備（フラップゲート）の開機能維持に ついては，「補足－140－1 津波への配慮に関する説明書の補足説明資料」の「6．5．1．8 屋外排水路逆流防止設備の開閉機能の維持について」に詳細を示す。

また，支線排水路は0．P．＋14．8m盤付近に設置され，その多くの区間が盛土上に構築さ れる。

北側幹線排水路の縦断図

南側幹線排水路の縦断図

図2－4 既設の北側•南側幹線排水路の断面図（本編図5再掲）

> 「補足 140-1 津波への配慮に関する説明書の補足説明資料」, 「補足 600-1 地盤の支持性能について」から抜粋•-部修正

敷地側集水ピット（北側）の耐震性の検討方針

1．設計方針
地下水位低下設備から汲み上げた地下水が 0. P．+14.8 m 盤から海へ確実に排水できる よう，0．P．+14.8 m 盤へ新たに敷地側集水ピット（北側）を構築する（図3－1 に敷地側集水ピット（北側）の構造概要図を示す）。

- 新たに構築する敷地側集水ピット（北側）の評価方針は以下のとおり。
- 基準地震動 S s 対し，構造強度を有することを確認する（ S s 後も内空を確保し，上流及び上部（0．P．＋ 14.8 m ）からの水を下流側に流下する機能を維持することを確認する）。
－物性ばらつきを考慮した地震応答解析（1次元重複反射理論：SHAKE）により集水 ピット部の応答を求め，頂版，側壁及び底版をフレームでモデル化し，応答変位法により応力解析を実施する（解析手法は東海第二の地下排水設備排水シャフト で実績有。フレーム解析：SLAP Ver6．65）。（図3－2，図3－3）
- 頂版には集水のためグレーチングを設置予定。
- 評価対象断面は，弱軸となる上下流方向の直交方向とする。
- 評価項目は，頂版，側壁及び底版（曲げ，軸力，せん断照査：短期許容応力度， せん断耐力），基礎地盤（接地圧：極限支持力）とする。

図 3－1 敷地側集水ピット（北側）構造概要図

図 3－2 地震応答解析モデル

「補足－600－25－2 地下水位低下設備 の耐震性に係る補足説明資料」修正

図 3－3 耐震評価フロー

0．P．+14.8 m 盤の排水経路に係る補足検討

地震時において，支線排水路が機能低下した場合，O．P．＋ 14.8 m 盤に溢れ出た地下水は地表面を通じて敷地側集水ピット（北側）へ排水される。

本資料では，本編 3．（3）のフローに基づき，（5）その他検討として実施する事項につい て，その詳細を示す。

1．排水メカニズムと越流量について
図 4－1 に示すとおり，敷地側集水ピット（北側）と揚水井戸は基準地震動 S s 対し機能維持されており，設置高さは 0. P．+14.8 m と同様であることから，両構造物間は溢れ た地下水で満たされることが想定される。

注：図中の【Ss機能維持】は，基準地震動Ssに対する機能維持を表す。

図 4－1 支線排水路機能低下時の地下水の排水経路（断面図）

揚水井戸では，前述のとおり揚程に余裕のある揚水ポンプによって排水がなされてお り，ピット内部に地下水が越流することで，ピットに向かった水の流れが形成される。 このメカニズムは，水路で用いられるせきと同様と考えられる。

ここで，揚水井戸からの排出量は， $0.21 \mathrm{~m}^{3} / \mathrm{s}$ であることから，敷地側集水ピット
（北側）の開口形状を踏まえ成立性を把握した。
土木学会水理公式集より，長方形せきを越流量として評価する。地下水は，敷地側集水ピット（北側）の開口の各面から越流するものと考えられるが，開口の半分の面から流れ込むことを想定し，以下の式により算出される。長方形せきの諸元及び波状水面の概要を図4－2に示す。
$\mathrm{Q}=\mathrm{CBH}^{3 / 2}$
$0<\mathrm{h} / \mathrm{L} \leqq 0.1$ の時 $\mathrm{C}=1.642(\mathrm{~h} / \mathrm{L}){ }^{0.022}$
ここで， Q ：越流量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ ，
B：せきの幅（m），
h ：越流水深（m）
C：流量係数（ $\mathrm{m}^{1 / 2} / \mathrm{s}$ ）
L ：せき長（m）
W：せき高（m）

長方形せきの諸元

（a）長頂せき流れ $0<h / L \leqq 0.1$
連続した波状水面

図 4－2 長方形せきの諸元及び波状水面の概要

越流水深を $\mathrm{h}=0.1 \mathrm{~m}$ ，せきの幅を図 $4-11$ より $\mathrm{B}=6.1 \mathrm{~m}$ ，せき長を側壁の幅として
排水は十分可能であることを確認した。

図 4－11 集水ピット構造図
（2）到達時間について
また，排水時間到達時間は，今回，勾配が緩いことから， $1 / 20$ より緩い場合に用 いるKravenの式に基づき評価する。
$T 1=500^{*} / 2.1 \fallingdotseq 240 \fallingdotseq 4.0(\mathrm{~min})$ となり，比較的短時間で排水可能である。なお，盛土の透水係数は $3.0 \times 10^{-5} \mathrm{~m} / \mathrm{s}$ と小さく，浸透速度に対して地表面の伝播時間の方が十分に早いため，ほとんどの排水は敷地側集水ピット（北側）に到達することを確認した。Kravenの式の洪水伝播時間を表4－1に，集水ピットの構造図を図4－11に示す。
注記＊：No． 1 揚水井戸から敷地側集水ピット（北側）までの水平距離

表 4－1 Kravenの式の洪水伝播時間
2．Kraven（クラーヘン）の式

I	$1 / 100$ 以上	$1 / 100 \sim 1 / 200$	$1 / 200$ 以下
W_{1}	$3.5 \mathrm{~m} / \mathrm{sec}$	$3.0 \mathrm{~m} / \mathrm{sec}$	$2.1 \mathrm{~m} / \mathrm{sec}$
	$12.6 \mathrm{~km} / \mathrm{hr}$	$10.8 \mathrm{~km} / \mathrm{hr}$	$7.56 \mathrm{~km} / \mathrm{hr}$

$\mathrm{T} 1=\mathrm{L} / \mathrm{W} 1$ で求める．$\cdots \cdots \cdots$（3）
T1：洪水伝播時間
W1：洪水到達時間
（出典：宮城県 砂防設計のマニュアル 第I編 共通一般より）

地震時における屋外アクセスルートの通行性に対する滞水の影響

1．はじめに
技術基準への適合性確認において，屋外アクセスルートについては，地震による地表面の沈下を想定しているため，支線排水路の機能喪失による沈下箇所の局所的な滞水が生じる可能性があることから，屋外アクセスルートの通行性に対する滞水の影響につい て検討した。

2．地震時における屋外アクセスルートの通行性
可搬型重大事故等対処設備の屋外アクセスルートについては，添付書類「VI－1－1－6－別添 1 可搬型重大事故等対処設備の保管場所及びアクセスルートについて」において，地震時における盛土及び旧表土の不等沈下による段差を評価し，補強材敷設による事前 の段差緩和対策，若しくは段差発生後の砕石を用いた重機による段差解消作業を実施す ることにより，車両の通行性に影響する急激な段差は発生せず，通行性を確保する設計 としている。

また，想定以上の段差が発生した場合に備えて，段差解消作業用の土のう等を準備し ていることから（図 5－1 及び「補足 200－14 可搬型重大事故等対処設備の保管場所及び アクセスルートについて」），地震により局所的に地表面が沈下し，想定箇所以外におい て通行に支障のある段差が発生した場合は，土のう等を用いた段差解消作業により通行性を維持する。

3．支線排水路が機能喪失した場合の屋外アクセスルートの通行性
地震により支線排水路が機能喪失した場合は，盛土及び旧表土の不等沈下により発生 する段差部に滞水する可能性があるが，補強材敷設による事前の段差緩和対策，若しく は段差発生後の砕石を用いた重機による段差解消作業を実施することとしていることか ら，屋外アクセスルートの通行性に影響を及ぼさない。

なお，図 5－2 のとおり，建屋近傍では地震時にくさび崩壊に伴う沈下が発生すること を想定し，建屋近傍の沈下量は屋外アクセスルートの沈下量より大きいと評価している ことから，支線排水路が機能喪失した場合に地下水位低下設備から汲み上げた地下水は屋外アクセスルート脇の建屋近傍に流下するため，屋外アクセスルートの通行性に影響 を及ぼさないと考えられる。

アクセスルート上で地震により許容段差量 15 cm ※以上の段差が発生する可能性のあ る箇所については，あらかじめ対策工を施すか，又は段差発生後にブルドーザで砕石 を敷き均す段差解消作業を実施することで対応することから，大型車両の通行に支障 となる段差は発生しない。

万一，許容段差量を超えて通行に支障が生じた場合の対応として，作業員 1 名があ らかじめブルドーザに積載している角材及び土のうを用いて段差を解消することに より，大型車両の通行性を確保できることを実証試験にて確認した。

なお，ブルドーザにより実施することを想定しているがれき撤去作業及び段差解消作業は 2 名 1 組での作業を計画しており，上記の角材及び土のらによる段差解消作業 もこの 2 名 1 組で対応可能であることから，追加人員は不要である。
※ 依藤ら：地震時の段差被害に対する補修と交通開放の管理•運用方法について （平成19年近畿地方整備局研究発表会）

段差復旧作業状況

大型車兩通行状況
（参考）実証試験において段差 1 箇所の復旧に要した時間 ：約 20 分第1図 段差復旧実証試験の状況

第2図 角材及び土のらの積載箇所（ブルドーザ）

図 5－1 想定以上の段差が発生した場合の対応について
（1）沈下量の想定
2011年東北地方太平洋沖地震の実䋶では，明らかなくさび崩壊に伴う建物近傍 の大きな沈下は確認されていないが，本評価においては 2007 年新潟県中越沖地震における東京電力柏崎刈羽原子力発電所の結果を参照して建屋近傍の沈下量 は一般部の 3.5 倍と想定して評価する。
a．一般部の沈下量
原子炉建屋近傍における沈下評俩対象層厚は 28.9 m であり，不飽和盛士及び飽和盛土の沈下率 1.4% を考慮し， 41 cm を想定する。
b．建屋近傍の沈下量
建屋近傍の沈下について，一般部の想定 41 cm の 3.5 倍である 144 cm を想定 する。
c．地震後の想定地盤形状
a．及び b．の想定を踏まえ，地震後の想定形状を第 2 図に示す。

図 5－2 建屋近傍におけるくさび崩壊に伴う沈下量の想定

