| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料 \(~\left(\begin{array}{c|c|}\hline 資料番号 \& 02－工－B－19－0035＿改4 \\

\hline 提出年月日 \& 2021年10月29日 \\
\hline\end{array}\right.\)

VI－2－1－13－2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針

2021年10月
東北電力株式会社

目 次

1．概要 1
2．一般事項 2
2.1 評価方針 2
2.2 適用規格•基準等 2
2.3 記号の説明 3
2.4 計算精度と数値の丸め方 9
3．評価部位 10
4．固有周期 11
4．1 固有周期の計算方法 11
4．1．1 2 脚支持横置一胴円筒形容器の場合 11
4．1．2 3 脚支持横置一胴円筒形容器の場合 14
4．1．3 4 脚支持横置一胴円筒形容器（脚間等間隔及び脚間非等間隔）の場合。 17
5．構造強度評価 21
5.1 構造強度評価方法 21
5．1．1 2 脚支持横置一胴円筒形容器の場合 21
5．1．2 3 脚支持横置一胴円筒形容器の場合 21
5．1．3 4 脚支持横置一胴円筒形容器（脚間等間隔及び脚間非等間隔）の場合 21
5.2 設計用地震力 22
5．3 計算方法 22
5．3．1 応力の計算方法 22
5．4 応力の評価 40
5．4．1 胴の応力評価 40
5．4．2 脚の応力評価 40
5．4．3 基礎ボルトの応力評価 41
6．耐震計算書のフォーマット 42
7．引用文献 42

1．概要

本資料は，添付書類「VI－2－1－1 耐震設計の基本方針」に基づき，耐震性に関する説明書が求められている横置一胴円筒形容器（耐震重要度分類 S クラス又はS s 機能維持 の計算を行うもの）が，十分な耐震性を有していることを確認するための耐震計算の方法について記載したものである。

解析の方針及び減衰定数については，添付書類「VI－2－1－6 地震応答解析の基本方針」 に従うものとする。

ただし，本基本方針が適用できない横置一胴円筒形容器にあっては，個別耐震計算書 にその耐震計算方法を含めて記載する。
2.1 評価方針

横置一胴円筒形容器の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」に て設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．評価部位」にて設定 する箇所において，「4．固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認する ことで実施する。確認結果を「6．耐震計算書のフォーマット」に示す。

横置一胴円筒形容器の耐震評価フローを図2－1に示す。

図 2－1 横置一胴円筒形容器の耐震評価フロー

2.2 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補－1984）
（2）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
（4）J S M E S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

2． 3 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\text {b }}$	基礎ボルトの軸断面積	mm^{2}
$\mathrm{A}_{\text {s }}$	脚の断面積	mm^{2}
$\mathrm{A}_{\text {s } 1}$	脚の長手方向に対する有効せん断断面積	mm^{2}
$\mathrm{A}_{\text {s } 2}$	脚の横方向に対する有効せん断断面積	mm^{2}
$\mathrm{A}_{\text {s }} 3$	脚の長手方向に対するせん断断面積	mm^{2}
$\mathrm{A}_{5} 4$	脚の横手方向に対するせん断断面積	mm^{2}
a	脚底板の長手方向幅	mm
b	脚底板の横方向幅	mm
C ${ }_{1}$	脚の胴付け根部のアタッチメントの幅の 2 分の 1 （胴の横方向）	mm
C 2	脚の胴付け根部のアタッチメントの幅の 2 分の 1 （胴の長手方向）	mm
$\mathrm{C}_{\mathrm{cj}}{ }^{\text {j }}$	周方向モーメントによる応力の補正係数（引用文献（2）より得 られる値）（ $\mathrm{j}=1$ ：周方向応力， $\mathrm{j}=2$ ：軸方向応力）	－
C_{H}	水平方向設計震度	－
$\mathrm{C}_{\ell}{ }^{\text {j }}$	軸方向モーメントによる応力の補正係数（引用文献（2）より得 られる値）（ $\mathrm{j}=1$ ：周方向応力， $\mathrm{j}=2$ ：軸方向応力）	－
C_{V}	鉛直方向設計震度	－
Di	胴の内径	mm
d	ボルトの呼び径	mm
d_{1}	脚底板端面から基礎ボルト中心までの長手方向の距離	mm
d_{2}	脚底板端面から基礎ボルト（外側）中心までの横方向の距離	mm
d 3	脚底板端面から基礎ボルト（内側）中心までの横方向の距離	mm
$\mathrm{E}_{\text {s }}$	脚の縦弾性係数	MPa
e	脚中心から偏心荷重作用点までの距離	mm
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3 又は SSB－3133に定める値	MPa
F_{b}	基礎ボルトに作用する引張力	N
$f_{\text {s b }}$	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f_{t}	脚の許容引張応力	MPa
$f_{\text {to }}$	引張力のみを受ける基礎ボルトの許容引張応力	MPa
$f_{\mathrm{t} \mathrm{s}}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
$\mathrm{G}_{\text {s }}$	脚のせん断弾性係数	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$

記号	記号の説明	単位
H	水頭	mm
h_{1}	基礎から脚の胴付け根部までの高さ	mm
h_{2}	基礎から胴の中心までの高さ	mm
I sx	脚の長手方向軸に対する断面二次モーメント	mm^{4}
I sy	脚の横方向軸に対する断面二次モーメント	mm^{4}
j_{1}	2 脚支持横置一胴円筒形容器における荷重分布で分割する荷重の数	－
j 2	2 脚支持横置一胴円筒形容器における第 1 脚より第 2 脚と反対 の方向に作用する荷重の数（第1脚上の荷重は含まない。）	－
j 3	2 脚支持横置一胴円筒形容器における第 2 脚より第 1 脚と反対 の方向に作用する荷重の数（第 2 脚上の荷重は含まない。）	－
$\mathrm{K}_{1 \mathrm{j}}, \mathrm{K}_{2 \mathrm{j}}$	引用文献（2）によるアタッチメントパラメータの補正係数 （ $\mathrm{j}=1$ ：周方向応力， $\mathrm{j}=2$ ：軸方向応力）	－
K．	脚のばね定数（胴の横方向に水平力が作用する場合）	N／m
Ke	脚のばね定数（胴の長手方向に水平力が作用する場合）	N／m
K_{v}	脚のばね定数（胴に鉛直力が作用する場合）	N／m
$\mathrm{K}_{\mathrm{cj}}, \mathrm{K}_{\ell}{ }^{\mathrm{j}}$	引用文献（2）によるアタッチメントパラメータの補正係数 $(j=1$ ：周方向応力，$j=2$ ：軸方向応力）	－
ℓ	両端の脚の中心から鏡板重心までの距離	mm
ℓ_{H}	鏡板の端から鏡板の丸みの始まる箇所までの長さ	mm
ℓ_{i}	2 脚支持横置一胴円筒形容器における第 1 脚より各部質量まで の距離（ $\mathrm{i}=1,2,3, \cdots \mathrm{j}_{1}$ ）	mm
$\ell_{\text {L }}$	鏡板の丸みの始まる箇所間の長さ	mm
ℓ_{0}	脚中心間距離	mm
$\ell{ }^{\prime}$	4 脚支持横置一胴円筒形容器（脚間非等間隔）における脚中心間距離（ $\ell_{0}{ }^{\prime} \neq \ell_{0}$ ）	mm
$\ell_{\text {w }}$	当板における脚の取り付かない部分の長手方向長さ	mm
M	脚底板に作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M ${ }_{\text {i }}$	各脚つけ根部における胴の運転時質量によるモーメント（ $\mathrm{i}=$ 1：第 1 脚，$i=2$ ：第 2 脚，$i=3$ ：第 3 脚，$i=4$ ：第 4 脚）	$\mathrm{N} \cdot \mathrm{mm}$
M_{c}	横方向地震により胴の脚つけ根部に作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\mathrm{c} 1}$	横方向地震により脚底面に作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{e}	長手方向地震による胴の脚つけ根部のモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{61}	長手方向地震により脚底面に働くモーメント	$\mathrm{N} \cdot \mathrm{mm}$

記号	記号の説明	単位
$\mathrm{S}_{\mathrm{y}(\mathrm{R} T)}$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ における値	MPa
S	基礎ボルトと基礎の縦弾性係数比	－
T_{1}	長手方向固有周期	s
T_{2}	横方向固有周期	S
T_{3}	鉛直方向固有周期	S
t	脚側胴板の厚さ	mm
t e	脚つけ根部における胴の有効板厚	mm
w	胴部自重による等分布荷重	N / mm
X_{n}	基礎が圧縮力を受ける幅	mm
Z	引用文献（1）による胴の断面係数	mm^{3}
Z_{sx}	脚の長手方向軸に対する断面係数	mm^{3}
$\mathrm{Z}_{\mathrm{s} \text { y }}$	脚の横方向軸に対する断面係数	mm^{3}
$\beta, \beta_{1}, \beta_{2}$	引用文献（2）によるアタッチメントパラメータ	－
γ	引用文献（2）によるシェルパラメータ	－
θ	引用文献（1）による胴の有効範囲角の 2 分の 1	rad
$\theta 0$	胴の脚端部より鉛直軸までの角度	rad
θ w	胴の脚端部より当板端部までの角度	rad
π	円周率	－
ρ^{\prime}	液体の密度（ $=$ 比重 $\times 10^{-6}$ ）	$\mathrm{kg} / \mathrm{mm}^{3}$
$\sigma 0$	胴の組合せ一次一般膜応力の最大値	MPa
σ oc	横方向及び鉛直方向地震が作用した場合の胴の組合せ一次一般膜応力	MPa
$\sigma \mathrm{ocx}$	横方向及び鉛直方向地震が作用した場合の胴の軸方向一次一般膜応力の和	MPa
σ ос ϕ	横方向及び鉛直方向地震が作用した場合の胴の周方向一次一般膜応力の和	MPa
σ oe	長手方向及び鉛直方向地震が作用した場合の胴の組合せ一次一般膜応力	MPa
$\sigma 00 \mathrm{x}$	長手方向及び鉛直方向地震が作用した場合の胴の軸方向一次一般膜応力の和	MPa
$\sigma 0{ }_{0}{ }_{\phi}$	長手方向及び鉛直方向地震が作用した場合の胴の周方向一次一般膜応力の和	MPa
σ_{1}	胴の組合せ一次応力の最大値	MPa

	記号	記号の説明	単位
	$\sigma_{1 \mathrm{c}}$	横方向及び鉛直方向地震が作用した場合の胴の組合せ一次応力	MPa
	$\sigma_{1 \mathrm{cx}}$	横方向及び鉛直方向地震が作用した場合の胴の軸方向一次応力の和	MPa
	$\sigma_{1 \mathrm{c} \phi}$	横方向及び鉛直方向地震が作用した場合の胴の周方向一次応力の和	MPa
	$\sigma 1 \ell$	長手方向及び鉛直方向地震が作用した場合の胴の組合せ一次応力	MPa
	$\sigma 10 \mathrm{x}$	長手方向及び鉛直方向地震が作用した場合の胴の軸方向一次応力の和	MPa
	$\sigma 1{ }_{10}{ }^{\prime}$	長手方向及び鉛直方向地震が作用した場合の胴の周方向一次応力の和	MPa
10	O 2	地震動のみによる胴の組合せ一次応力と二次応力の和の変動値の最大値	MPa
\sim 1 \cdots \cdots 1	$\sigma 2 \mathrm{c}$	横方向及び鉛直方向地震のみによる胴の組合せ一次応力と二次応力の和	MPa
1 $\stackrel{1}{1}$ $\stackrel{1}{5}$	$\sigma_{2 \mathrm{cx}}$	横方向及び鉛直方向地震のみによる胴の軸方向一次応力と二次応力の和	MPa
Θ	$\sigma 2 \mathrm{c} \phi$	横方向及び鉛直方向地震のみによる胴の周方向一次応力と二次応力の和	MPa
N	$\sigma{ }_{2 \ell}$	長手方向及び鉛直方向地震のみによる胴の組合せ一次応力と二次応力の和	MPa
	$\sigma 20 \mathrm{x}$	長手方向及び鉛直方向地震のみによる胴の軸方向一次応力と二次応力の和	MPa
	$\sigma 2{ }^{20} \phi$	長手方向及び鉛直方向地震のみによる胴の周方向一次応力と二次応力の和	MPa
	$\sigma_{\text {b }}$	基礎ボルトに生じる引張応力の最大値	MPa
	$\sigma \mathrm{b} 1$	長手方向及び鉛直方向地震により基礎ボルトに生じる引張応力	MPa
	$\sigma \mathrm{b} 2$	横方向及び鉛直方向地震により基礎ボルトに生じる引張応力	MPa
	σ s	脚の組合せ応力の最大値	MPa
	σ s c	横方向及び鉛直方向地震が作用した場合の脚の組合せ応力	MPa
	σ se	長手方向及び鉛直方向地震が作用した場合の脚の組合せ応力	MPa
	σ s 1	運転時質量により脚に生じる圧縮応力	MPa
	$\sigma_{\text {s } 2}$	長手方向地震により脚に生じる曲げ及び圧縮応力の和	MPa

記号	記号の説明	単位
σ s 3	横方向地震により脚に生じる曲げ応力	MPa
σ s 4	鉛直方向地震により脚に生じる圧縮応力	MPa
$\sigma \times 1$	静水頭により胴に生じる軸方向一次応力	MPa
$\sigma \times 2$	運転時質量による長手方向曲げモーメントにより胴の脚つけ根部に生じる軸方向一次応力	MPa
$\sigma \times 3$	運転時質量により胴の脚つけ根部に生じる軸方向一次応力	MPa
$\sigma \times 41, \sigma \times 42$	長手方向地震により胴の脚つけ根部に生じる軸方向一次応力 の和及び二次応力の和	MPa
$\sigma_{\times 411}, \sigma_{\times 421}$	長手方向地震による曲げモーメントにより胴の脚つけ根部に生じる軸方向一次応力及び二次応力	MPa
$\sigma \times 412, \sigma \times 422$	長手方向地震による鉛直荷重により胴の脚つけ根部に生じる軸方向一次応力及び二次応力	MPa
$\sigma \times 413$	長手方向地震による水平方向荷重により胴に生じる軸方向一次応力	MPa
$\sigma \times 51, \sigma \times 52$	横方向地震による曲げモーメントにより胴の脚つけ根部に生 じる軸方向一次応力及び二次応力	MPa
$\sigma \times 6$	鉛直方向地震による長手方向曲げモーメントにより胴の脚つ け根部に生じる軸方向一次応力	MPa
$\sigma \times 71, \sigma \times 72$	鉛直方向地震により胴の脚つけ根部に生じる軸方向一次応力及び二次応力	MPa
$\sigma_{\phi 1}$	静水頭により胴に生じる周方向一次応力	MPa
$\sigma_{\phi 2}$	静水頭に鉛直地震力が加わり胴に生じる周方向一次応力	MPa
$\sigma{ }_{\phi} 3$	運転時質量により胴の脚つけ根部に生じる周方向一次応力	MPa
$\sigma_{\phi 41}, \sigma_{\phi 42}$	長手方向地震により胴の脚つけ根部に生じる周方向一次応力 の和及び二次応力の和	MPa
$\sigma_{\phi 411}, \sigma_{\phi 421}$	長手方向地震による曲げモーメントにより胴の脚つけ根部に生じる周方向一次応力及び二次応力	MPa
$\sigma_{\phi 412}, \sigma_{\phi 422}$	長手方向地震による鉛直荷重により胴の脚つけ根部に生じる周方向一次応力及び二次応力	MPa
$\sigma_{\phi 51}, \sigma_{\phi 52}$	横方向地震による曲げモーメントにより胴の脚つけ根部に生 じる周方向一次応力及び二次応力	MPa
$\sigma_{\phi 71}, \sigma_{\phi 72}$	鉛直方向地震により胴の脚つけ根部に生じる周方向一次応力及び二次応力	MPa
τ b	基礎ボルトに生じるせん断応力の最大仵	MPa
$\tau_{\mathrm{b} 1}$	長手方向地震により基礎ボルトに生じるせん断応力	MPa

記号	記号の説明	単位
$\tau_{\mathrm{b} 2}$	横方向地震により基礎ボルトに生じるせん断応力	MPa
τ_{c}	横方向地震により胴の脚つけ根部に生じるせん断応力	MPa
τ_{ℓ}	長手方向地震により胴の脚つけ根部に生じるせん断応力	MPa
$\tau_{\mathrm{s} 2}$	長手方向地震により脚に生じるせん断応力	MPa
$\tau_{\mathrm{s} 3}$	横方向地震により脚に生じるせん断応力	MPa

2.4 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-1$ に示すとおりである。

表 2－1 表示する数値の丸め方

数値の種類		単位	処理桁	処理方法	表示桁
固有周期		S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度		－	小数点以下第 3 位	切上げ	小数点以下第 2 位
最高使用圧力		MPa	－	－	小数点以下第 2 位
温度		${ }^{\circ} \mathrm{C}$	－	－	整数位
比重		－	小数点以下第 3 位	四捨五入	小数点以下第 2 位
質量		kg	－	－	整数位
$\begin{aligned} & \text { 長 } \\ & \text { さ } \end{aligned}$	下記以外の長さ	mm	－	－	整数位＊1
	胴板の厚さ	mm	－	－	小数点以下第1位
面積		mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント		$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力		N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
角度		rad	小数点以下第 4 位	四捨五入	小数点以下第 3 位
算出応力		MPa	小数点以下第 1 位	切上げ	整数位
許容応力		MPa	小数点以下第 1 位	切捨て	整数位＊3

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及 び降状点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位 までの値とする。

3．評価部位

横置一胴円筒形容器の耐震評価は「5．1構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる胴，脚及び基礎ボルトについて評価を実施する。

4．固有周期
4．1 固有周期の計算方法
4．1．1 2 脚支持横置一胴円筒形容器の場合
（1）計算モデル
モデル化に当たつては次の条件で行う。
a．容器及び内容物の質量は中心軸に集中するものとする。
b．容器の胴は 2 個の脚で支持され，脚はそれぞれ基礎ボルトで基礎に固定され ており，固定端とする。
c．胴は剛とし，脚をはりと考え，変形モードは脚の曲げ及びせん断変形を考慮 する。
d．脚が長手方向に変形する場合，脚を基礎に取り付ける基礎ボルトが，脚の変形方向に直角な方向より見て脚1個につき1列の場合は下端を単純支持とする。 その他の場合は固定とする。
e．第 2 脚は長手方向にスライドできるものとし，その方向の力は全て第 1 脚で受けるものとする。
f．耐震計算に用いる寸法は，公称値を使用する。

本容器の荷重状態及び胴に生じるモーメントを図4－1～図4－4に示す。

図 4－1 荷重状態

第 1 脚

図 4－2 脚の位置での曲げ
モーメント

図 4－3 長手方向荷重による胴の第1脚つけ根部 のモーメント及び鉛直荷重

図 4－4 横方向荷重による胴の第1脚つけ根部のモーメント

本容器は，前記の条件より図4－5，図4－6及び図4－7 のような 1 質点系振動モデル として考える。

図 4－5 長手方向の固有周期計算モデル

図 4－6 横方向の固有周期計算モデル計算モデル
（2）脚の受ける荷重
脚の受ける荷重はモーメントの釣合いより求める。図4－1 において第1脚回り のモーメントの釣合いは次式で求める。

$$
\begin{equation*}
\sum_{i=1}^{j_{1}} m_{i} \cdot g \cdot \ell_{i}-R_{2} \cdot \ell_{0}=0 \tag{4.1.1.1}
\end{equation*}
$$

したがって，脚の受ける荷重は次式で求める。

$$
\begin{align*}
& \mathrm{R}_{2}=\sum_{\mathrm{i}=1}^{\mathrm{j} 1} \mathrm{~m}_{\mathrm{i}} \cdot \mathrm{~g} \cdot \ell_{\mathrm{i}} / \ell_{0} \tag{4.1.1.2}\\
& \mathrm{R}_{1}=\sum_{\mathrm{i}=1}^{\mathrm{j} 1} \mathrm{~m}_{\mathrm{i}} \cdot \mathrm{~g}-\mathrm{R}_{2} \tag{4.1.1.3}
\end{align*}
$$

（3）長手方向の固有周期
図 4－5におけるばね定数は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\ell}=\frac{1000}{\frac{\mathrm{~h}_{1}{ }^{3}}{12 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sy}}}+\frac{\mathrm{h}_{1}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s} 1}}} \tag{4.1.1.4}
\end{equation*}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{1}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}_{0}}{\mathrm{~K}_{\ell}}} \tag{4.1.1.5}
\end{equation*}
$$

（4）横方向の固有周期
図 4－6におけるばね定数は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\mathrm{c}}=\frac{1000}{\frac{\mathrm{~h}_{1}^{2} \cdot\left(3 \cdot \mathrm{~h}_{2}-\mathrm{h}_{1}\right)}{6 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sx}}}+\frac{\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right) \cdot \mathrm{h}_{1} \cdot\left(\mathrm{~h}_{2}-\mathrm{h}_{1} / 2\right)}{\mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sx}}}+\frac{\mathrm{h}_{1}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s} 2}}} \tag{4.1.1.6}
\end{equation*}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{2}=2 \cdot \pi \cdot \sqrt{\frac{\frac{\mathrm{R}_{1}}{g}+\mathrm{m}_{\mathrm{s} 1}}{\mathrm{~K}_{\mathrm{c}}}} \tag{4.1.1.7}
\end{equation*}
$$

ただし，脚の受ける荷重が $\mathrm{R}_{2}>\mathrm{R}_{1}$ となる場合は， R_{1} を R_{2} に置き換える。
（5）鉛直方向の固有周期
図4－7におけるばね定数は次式で求める。

$$
\begin{equation*}
K_{v}=\frac{1000}{\frac{h 1}{A_{s} \cdot E_{s}}} \tag{4.1.1.8}
\end{equation*}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{3}=2 \cdot \pi \cdot \sqrt{\frac{\frac{\mathrm{R}_{1}}{g+\mathrm{m}_{\mathrm{s} 1}}}{\mathrm{~K}_{\mathrm{v}}}} \tag{4.1.1.9}
\end{equation*}
$$

ただし，脚の受ける荷重が $\mathrm{R}_{2}>\mathrm{R}_{1}$ となる場合は， R_{1} を R_{2} に置き換える。

4．1．2 3 脚支持横置一胴円筒形容器の場合

（1）計算モデル
モデル化に当たつては次の条件で行う。
a．容器及び内容物の質量は中心軸に集中するものとする。
b． 3 脚支持横置一胴円筒形容器は 3 個の脚で支持され，脚はそれぞれ基礎ボル トで基礎に固定されているため，固定端とする。
c．胴は剛とし，脚をはりと考え，変形モードは脚の曲げ及びせん断変形を考慮 する。
d．耐震計算に用いる寸法は，公称値を使用する。

本容器の荷重状態及び胴に生じるモーメントを図4－8～図4－11に示す。

図 4－8 荷重状態

第1脚

第 3 脚

図4－9 脚の位置での曲げ モーメント

第1脚 第2脚 第3脚

図 4－10 長手方向荷重による胴の脚つけ根部 のモーメント及び鉛直荷重

図 4－11 横方向荷重による胴の脚つけ根部の モーメント

本容器は，前記の条件より図4－12，図4－13及び図4－14のような 1 質点系振動 モデルとして考える。

脚

下崵固定

脚

図 4－14 鉛直方向の固有周期計算モデル
（2）脚の受ける荷重
第1脚及び第3脚に作用する荷重
曲げモーメントは，5．3．1．1 項で算出した曲げモーメントを使用する。
ここで，モデルの幾何学的な対称性より $\mathrm{R}_{1}=\mathrm{R}_{3}, \mathrm{M}_{1}=\mathrm{M}_{3}$ とする

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{R}_{3}=\frac{\left(\mathrm{m}_{0}-3 \cdot \mathrm{~m}_{\mathrm{st}}\right) \cdot \mathrm{g}-\mathrm{R}_{2}}{2} \tag{4.1.2.1}
\end{equation*}
$$

第2脚に作用する荷重

$$
\begin{equation*}
\mathrm{R}_{2}=\frac{5 \cdot \mathrm{w} \cdot \ell_{0}}{4}-\frac{3 \cdot \mathrm{M}_{1}}{\ell_{0}} \tag{4.1.2.2}
\end{equation*}
$$

（3）長手方向の固有周期
図 4－12 におけるばね定数は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{l}=\frac{3 \times 1000}{\frac{\mathrm{~h}_{1}^{3}}{12 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sy}}}+\frac{\mathrm{h}_{1}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s} 1}}} \tag{4.1.2.3}
\end{equation*}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{1}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}_{0}}{\mathrm{~K}_{\ell}}} \tag{4.1.2.2}
\end{equation*}
$$

（4）横方向の固有周期
図 4－13におけるばね定数は次式で求める。

$$
\mathrm{K}_{\mathrm{c}}=\frac{1000}{\frac{\mathrm{~h}_{1}{ }^{2} \cdot\left(3 \cdot \mathrm{~h}_{2}-\mathrm{h}_{1}\right)}{6 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sx}}}+\frac{\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right) \cdot \mathrm{h}_{1} \cdot\left(\mathrm{~h}_{2}-\mathrm{h}_{1} / 2\right)}{\mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sx}}}+\frac{\mathrm{h}_{1}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s} 2}}}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{2}=2 \cdot \pi \cdot \sqrt{\frac{\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{~g}}+\mathrm{m}_{\mathrm{st}}}{\mathrm{~K}_{\mathrm{c}}}} \tag{4.1.2.6}
\end{equation*}
$$

ただし， R_{i} は各脚に作用する荷重のらち，最大のものとする。
（5）鉛直方向の固有周期
図 4－14 におけるばね定数は次式で求める。

$$
\begin{equation*}
K_{v}=\frac{1000}{\frac{h_{1}}{\mathrm{~A}_{\mathrm{s}} \cdot \mathrm{E}_{\mathrm{s}}}} \tag{4.1.2.7}
\end{equation*}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{3}=2 \cdot \pi \cdot \sqrt{\frac{\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{~g}}+\mathrm{m}_{\mathrm{s} t}}{\mathrm{~K}_{\mathrm{v}}}} \tag{4.1.2.8}
\end{equation*}
$$

ただし， R_{i} は各脚に作用する荷重のらち，最大のものとする。

4．1．3 4脚支持横置一胴円筒形容器（脚間等間隔及び脚間非等間隔）の場合
（1）計算モデル
モデル化に当たつては次の条件で行う。
a．容器及び内容物の質量は中心軸に集中するものとする。
b． 4 脚支持横置一胴円筒形容器は 4 個の脚で支持され，脚はそれぞれ基礎ボル トで基礎に固定されているため，固定端とする。
c．胴は剛とし，脚をはりと考え，変形モードは脚の曲げ及びせん断変形を考慮 する。
d．耐震計算に用いる寸法は，公称値を使用する。

本容器の荷重状態及び胴に生じるモーメントを図4－15～図4－19に示す。

図 4－15 荷重状態（脚間等間隔）

図 4－16 荷重状態（脚間非等間隔）

第1脚 第 2 脚 第 3 脚 第 4 脚
図 4－17 脚の位置での曲げモーメント

第 1 脚 第 2 脚 第 3 脚 第 4 脚
図 4－18 長手方向荷重による胴の脚つけ根部のモーメント及び鉛直荷重

図 4－19 横方向荷重による胴の脚つけ根部のモーメント

本容器は，前記の条件より図4－20，図4－21 及び図4－22のような 1 質点系振動 モデルとして考える。

図 4－20 長手方向の固有周期計算モデル

図 4－21 横方向の固有周期計算モデル

図 4－22 鉛直方向の固有周期計算モデル
（2）脚の受ける荷重
a． 4 脚支持横置一胴円筒形容器（脚間等間隔）の場合
曲げモーメントは，5．3．1．1 項で算出した曲げモーメントを使用する。
ここで，モデルの幾何学的な対称性より $\mathrm{R}_{1}=\mathrm{R}_{4}, \mathrm{R}_{2}=\mathrm{R}_{3}, \mathrm{M}_{1}=\mathrm{M}_{4}$ ， $\mathrm{M}_{2}=\mathrm{M}_{3}$ とする。

第1脚及び第4脚に作用する荷重

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{w} \cdot \ell+\frac{\mathrm{w}}{2} \cdot \ell_{0}-\frac{\mathrm{M}_{2}-\mathrm{M}_{1}}{\ell_{0}} \tag{4.1.3.1}
\end{equation*}
$$

第2脚及び第3脚に作用する荷重

$$
\mathrm{R}_{2}=\mathrm{R}_{3}=\frac{\mathrm{w} \cdot \ell_{0}}{2}+\frac{\mathrm{w} \cdot \ell_{0}}{2}-\frac{\mathrm{M}_{1}-\mathrm{M}_{2}}{\ell_{0}}-\frac{\mathrm{M}_{3}-\mathrm{M}_{2}}{\ell_{0}}=\mathrm{w} \cdot \ell_{0}-\frac{\mathrm{M}_{1}-\mathrm{M}_{2}}{\ell_{0}}
$$

b． 4 脚支持横置一胴円筒形容器（脚間非等間隔）の場合
曲げモーメントは，5．3．1．1 項で算出した曲げモーメントを使用する。
ここで，モデルの幾何学的な対称性より $\mathrm{R}_{1}=\mathrm{R}_{4}, \mathrm{R}_{2}=\mathrm{R}_{3}, \mathrm{M}_{1}=\mathrm{M}_{4}$ ， $\mathrm{M}_{2}=\mathrm{M}_{3}$ とする。

第1脚及び第4脚に作用する荷重

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{w} \cdot \ell+\frac{\mathrm{w}}{2} \cdot \ell_{0}-\frac{\mathrm{M}_{2}-\mathrm{M}_{1}}{\ell_{0}} \tag{4.1.3.3}
\end{equation*}
$$

第2脚及び第3脚に作用する荷重

$$
\begin{align*}
\mathrm{R}_{2}=\mathrm{R}_{3} & =\frac{\mathrm{w}}{2} \cdot \ell_{0}+\frac{\mathrm{w}}{2} \cdot \ell_{0}{ }^{\prime}-\frac{\mathrm{M}_{1}-\mathrm{M}_{2}}{\ell_{0}}-\frac{\mathrm{M}_{3}-\mathrm{M}_{2}}{\ell_{0}{ }^{\prime}} \\
& =\frac{\mathrm{w}}{2} \cdot\left(\ell_{0}+\ell_{0}^{\prime}\right)-\frac{\mathrm{M}_{1}-\mathrm{M}_{2}}{\ell_{0}} \quad \cdots \ldots . \tag{4.1.3.4}
\end{align*}
$$

（3）長手方向の固有周期
図 4－20におけるばね定数は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\ell}=\frac{4 \times 1000}{\frac{\mathrm{~h}_{1}^{3}}{12 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sy}}}+\frac{\mathrm{h}_{1}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s} 1}}} \tag{4.1.3.5}
\end{equation*}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{1}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}_{0}}{\mathrm{~K}_{\ell}}} \tag{4.1.3.6}
\end{equation*}
$$

（4）横方向の固有周期
図4－21におけるばね定数は次式で求める。

$$
\mathrm{K}_{\mathrm{c}}=\frac{1000}{\frac{\mathrm{~h}_{1}{ }^{2} \cdot\left(3 \cdot \mathrm{~h}_{2}-\mathrm{h}_{1}\right)}{6 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sx}}}+\frac{\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right) \cdot \mathrm{h}_{1} \cdot\left(\mathrm{~h}_{2}-\mathrm{h}_{1} / 2\right)}{\mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sx}}}+\frac{\mathrm{h}_{1}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s} 2}}}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{2}=2 \cdot \pi \cdot \sqrt{\frac{\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{~g}}+\mathrm{m}_{\mathrm{st}}}{\mathrm{~K}_{\mathrm{c}}}} \tag{4.1.3.8}
\end{equation*}
$$

ただし， R_{i} は各脚に作用する荷重のらち，最大のものとする。
（5）鉛直方向の固有周期
図 4－22におけるばね定数は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\mathrm{v}}=\frac{1000}{\frac{\mathrm{~h}_{1}}{\mathrm{~A}_{\mathrm{s}} \cdot \mathrm{E}_{\mathrm{s}}}} \tag{4.1.3.9}
\end{equation*}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{3}=2 \cdot \pi \cdot \sqrt{\frac{\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{~g}}+\mathrm{m}_{\mathrm{st}}}{\mathrm{~K}_{\mathrm{v}}}} \tag{4.1.3.10}
\end{equation*}
$$

ただし，R_{i} は各脚に作用する荷重のうち，最大のものとする。

5．構造強度評価

5.1 構造強度評価方法

5．1．1 2 脚支持横置一胴円筒形容器の場合
4．1．1（1）項a．～f．のほか，次の条件で計算する。概要図を図5－1に示す。
（1）地震力は容器に対して水平方向及び鉛直方向に作用するものとする。ここで，水平方向地震は胴の長手方向に作用する場合と胴の横方向に作用する場合を考慮する。
（2）第1脚と第2脚は同形状であり，受ける荷重の大きい方の脚についての評価を計算書に記載する。

図 5－1 概要図
5．1．2 3 脚支持横置一胴円筒形容器の場合
4．1．2（1）項の $\mathrm{a} . \sim \mathrm{d}$ 。のほか，次の条件で計算する。
（1）5．1．1（1）項と同様に地震力は容器に対して水平方向及び鉛直方向に作用するも のとする。ここで，水平方向地震は胴の長手方向に作用する場合と胴の横方向に作用する場合を考慮する。
（2）5．1．1（2）項と同様に全脚は同形状であり，受ける荷重が最大の脚についての評価を計算書に記載する。

5．1．3 4脚支持横置一胴円筒形容器（脚間等間隔及び脚間非等間隔）の場合 4．1．3（1）項の $\mathrm{a} . \sim \mathrm{d}$ 。のほか，次の条件で計算する。
（1）5．1．1（1）項と同様に地震力は容器に対して水平方向及び鉛直方向に作用するも のとする。ここで，水平方向地震は胴の長手方向に作用する場合と胴の横方向に作用する場合を考慮する。
（2）5．1．1（2）項と同様に全脚は同形状であり，受ける荷重が最大の脚についての評価を計算書に記載する。

5.2 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

5． 3 計算方法

5．3．1 応力の計算方法
応力計算における水平方向と鉛直方向の組合せについて，静的地震力を用いる場合は絶対値和を用いる。動的地震力を用いる場合は，絶対値和又はSRSS 法を用 いる。

5．3．1．1 胴の計算方法

（1）曲げモーメント
a． 2 脚支持横置一胴円筒形容器の場合

図 4－1 に示すように胴を集中荷重を受けるはりとして考える。
図 4－2 において脚つけ根部における第1脚に作用する曲げモーメント M_{1}及び第 2 脚に作用する曲げモーメント M_{2} は次式で求める。

$$
\begin{align*}
& \mathrm{M}_{1}=\sum_{\mathrm{i}=1}^{\mathrm{j} 2} \mathrm{~m}_{\mathrm{i}} \cdot \mathrm{~g} \cdot\left|\ell_{\mathrm{i}}\right| \tag{5.3.1.1.1}\\
& \mathrm{M}_{2}=\sum_{\mathrm{i}=\mathrm{j} 1}^{\mathrm{j} 1} \sum_{-j 3+1} \mathrm{~m}_{\mathrm{i}} \cdot \mathrm{~g} \cdot\left|\ell_{\mathrm{i}}-\ell_{0}\right| \tag{5.3.1.1.2}
\end{align*}
$$

b． 3 脚支持横置一胴円筒形容器の場合

$$
\begin{equation*}
\mathrm{w}=\frac{\left(\mathrm{m}_{0}-3 \cdot \mathrm{~m}_{\mathrm{st}}\right) \cdot \mathrm{g}}{\ell_{\mathrm{L}}+\frac{4}{3} \cdot \ell_{\mathrm{H}}} \tag{5.3,1,1.3}
\end{equation*}
$$

第1脚及び第3脚に作用する曲げモーメント

$$
\begin{equation*}
\mathrm{M}_{1}=\mathrm{M}_{3}=\frac{1}{2} \cdot \mathrm{w} \cdot\left(\frac{2}{3} \cdot \ell_{\mathrm{H}}+\frac{\ell_{\mathrm{L}}-2 \cdot \ell_{0}}{2}\right)^{2} \tag{5.3.1.1.4}
\end{equation*}
$$

第2脚に作用する曲げモーメント

$$
\begin{equation*}
\mathrm{M}_{2}=\frac{\mathrm{w} \cdot \ell_{0}^{2}}{8}-\frac{\mathrm{M}_{1}}{2} \tag{5.3.1.1.5}
\end{equation*}
$$

c． 4 脚支持横置一胴円筒形容器（脚間等間隔）の場合

$$
\begin{equation*}
\mathrm{w}=\frac{\left(\mathrm{m}_{0}-4 \cdot \mathrm{~m}_{\mathrm{st}}\right) \cdot \mathrm{g}}{\ell_{\mathrm{L}}+\frac{4}{3} \cdot \ell_{\mathrm{H}}} \tag{5.3.1.1.6}
\end{equation*}
$$

第1脚及び第4脚に作用する曲げモーメント

$$
\begin{equation*}
\mathrm{M}_{1}=\mathrm{M}_{4}=\frac{1}{2} \cdot \mathrm{w} \cdot \ell^{2} \tag{5.3.1.1.7}
\end{equation*}
$$

第2脚及び第3脚に作用する曲げモーメント

$$
\begin{equation*}
\mathrm{M}_{2}=\mathrm{M}_{3}=\frac{\mathrm{w}}{10} \cdot\left(\ell_{0}^{2}-\ell^{2}\right) \tag{5.3.1.1.8}
\end{equation*}
$$

d． 4 脚支持横置一胴円筒形容器（脚間非等間隔）の場合

$$
\begin{equation*}
\mathrm{w}=\frac{\left(\mathrm{m}_{0}-4 \cdot \mathrm{~m}_{\mathrm{st}}\right) \cdot \mathrm{g}}{\ell_{\mathrm{L}}+\frac{4}{3} \cdot \ell_{\mathrm{H}}} \tag{5.3.1.1.9}
\end{equation*}
$$

第1脚及び第4脚に作用する曲げモーメント

$$
\begin{equation*}
\mathrm{M}_{1}=\mathrm{M}_{4}=\frac{1}{2} \cdot \mathrm{w} \cdot e^{2} \tag{5.3.1.1.10}
\end{equation*}
$$

第2脚及び第3脚に作用する曲げモーメント

$$
\begin{equation*}
\mathrm{M}_{2}=\mathrm{M}_{3}=\frac{1}{4} \cdot \mathrm{w} \cdot\left\{\frac{\left(\ell_{0}^{3}+\ell_{0}^{3}\right)-2 \cdot \ell^{2} \cdot \ell_{0}}{2 \cdot \ell_{0}+3 \cdot \ell_{0}}\right\} \tag{5.3.1.1.11}
\end{equation*}
$$

（2）静水頭又は内圧による応力
静水頭による場合（鉛直方向地震時を含む。）

$$
\begin{align*}
& \sigma_{\phi 1}=\frac{\rho^{\prime} \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{D}_{\mathrm{i}}}{2 \cdot \mathrm{t}} \tag{5.3.1.1.12}\\
& \sigma_{\phi 2}=\frac{\rho^{\prime} \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{D}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{V}}}{2 \cdot \mathrm{t}} \tag{5.3.1.1.13}\\
& \sigma_{\mathrm{x} 1}=\frac{\rho^{\prime} \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{D}_{\mathrm{i}}}{4 \cdot \mathrm{t}} \tag{5.3.1.1.14}
\end{align*}
$$

内圧による場合

$$
\begin{align*}
& \sigma_{\phi 1}=\frac{\mathrm{P}_{\mathrm{r}} \cdot\left(\mathrm{D}_{\mathrm{i}}+1.2 \cdot \mathrm{t}\right)}{2 \cdot \mathrm{t}} \tag{5.3.1.1.15}\\
& \sigma_{\phi 2}=0 \quad \cdots \cdots \cdots \tag{5.3.1.1.16}\\
& \sigma_{\mathrm{x} 1}=\frac{\mathrm{P}_{\mathrm{r}} \cdot\left(\mathrm{D}_{\mathrm{i}}+1.2 \cdot \mathrm{t}\right)}{4 \cdot \mathrm{t}} \tag{5.3.1.1.17}
\end{align*}
$$

（3）運転時質量及び鉛直方向地震により生じる長手方向曲げモーメントによる応力
（1）で求めた曲げモーメントにより胴の脚つけ根部に生じる応力は次のよう に求める。

引用文献（1）によれば，この曲げモーメントは胴の断面に対して一様に作用す るものではなく，脚つけ根部において円周方向の曲げモーメントに置き換えら れ，胴の局部変形を生じさせようとする。

長手方向の曲げモーメントによる胴の応力の影響範囲を脚上 θ o／ 6 の点と すると長手方向曲げモーメントに対する胴の有効断面積は図 5－2 に $2 \cdot \theta$ で示 される円殻である。

したがって，運転時質量による応力は次式で求める。

$$
\begin{equation*}
\sigma_{\times 2}=\frac{\mathrm{M}_{\mathrm{i}}}{\mathrm{Z}} \tag{5.3.1.1.18}
\end{equation*}
$$

また，鉛直方向地震による応力は次式で求める。

$$
\begin{equation*}
\sigma_{\times 6}=\frac{\mathrm{M}_{\mathrm{i}}}{\mathrm{Z}} \cdot \mathrm{C}_{\mathrm{V}} \tag{5.3.1.1.19}
\end{equation*}
$$

ただし， M_{i} は各脚に作用する曲げモーメントのうち，最大のものとする。

ここで，

$$
\begin{equation*}
\mathrm{r}_{\mathrm{m}}=\frac{\mathrm{D}_{\mathrm{i}}+\mathrm{t}_{\mathrm{e}}}{2} \tag{5.3.1.1.20}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{Z}=\mathrm{r}_{\mathrm{m}}^{2} \cdot \mathrm{t}_{\mathrm{e}} \cdot\left\{\frac{\theta+\sin \theta \cdot \cos \theta-2 \cdot \sin ^{2} \theta / \theta}{(\sin \theta / \theta)-\cos \theta}\right\} \tag{5.3.1.1.21}
\end{equation*}
$$

図 5－2 脚つけ根部の有効範囲
胴の脚つけ根部に取り付く当板の大きさが

$$
\begin{equation*}
\text { 周方向範囲 } \quad \theta_{\mathrm{w}} \geqq \frac{\theta 0}{6}^{* 1} \tag{5.3.1.1.22}
\end{equation*}
$$

長手方向範囲

$$
\begin{equation*}
\ell_{\mathrm{w}} \geqq 1.56 \cdot \sqrt{\left(\frac{\mathrm{D}_{\mathrm{i}}+\mathrm{t}}{2}\right) \cdot \mathrm{t}}{ }^{* 2} \tag{5.3.1.1.23}
\end{equation*}
$$

である場合，脚つけ根部における胴の有効板厚 t eは胴板の厚さと当板の厚 さの合計とする。また，当板が上記の範囲を満たさない場合，teは胴板の厚さ とする。

注記＊1：引用文献（1）より引用
＊2：引用文献（3）より引用
（4）運転時質量及び鉛直方向地震による脚つけ根部の応力
脚の受ける荷重 R_{i} は各脚に作用する荷重のうち，最大のものとする。胴の脚つけ根部には脚反力による周方向応力及び軸方向応力が生じる。胴の脚つけ根部に作用する反力は次式で求める。

運転時質量による反力は，

$$
\begin{equation*}
\mathrm{P}=\mathrm{R}_{\mathrm{i}} \tag{5.3.1.1.24}
\end{equation*}
$$

鉛直方向地震による反力は，

$$
\begin{equation*}
P_{e}=C_{V} \cdot R_{i} \tag{5.3.1.1.25}
\end{equation*}
$$

この反力 P 及び P eにより生じる胴の周方向応力及び軸方向応力は，引用文献（2）により次のように求める。

脚が胴に及ぼす力の関係を図5－3に示す。

図 5－3 脚が胴に及ぼす力の関係

ここで，シェルパラメータ γ 及びアタッチメントパラメータ β は以下のよう に定義する。

$$
\begin{align*}
& \gamma=\mathrm{r}_{\mathrm{m}} / \mathrm{t}_{\mathrm{e}} \tag{5.3.1.1.26}\\
& \beta_{1}=\mathrm{C}_{1} / \mathrm{r}_{\mathrm{m}} \tag{5.3.1.1.27}\\
& \beta_{2}=\mathrm{C}_{2} / \mathrm{r}_{\mathrm{m}} \tag{5.3.1.1.28}\\
& 4 \geqq \beta_{1} / \beta_{2} \geqq 1 \text { のとき } \\
& \beta=\left\{1-\frac{1}{3} \cdot\left(\beta_{1} / \beta_{2}-1\right) \cdot\left(1-\mathrm{K}_{1 \mathrm{j}}\right)\right\} \cdot \sqrt{\beta_{1} \cdot \beta_{2}} \tag{5.3.1.1.29}
\end{align*}
$$

ただし，$\beta \leqq 0.5$

$$
\begin{aligned}
& \frac{1}{4} \leqq \beta_{1} / \beta_{2}<1 \text { のとき } \\
& \quad \beta=\left\{1-\frac{4}{3} \cdot\left(1-\beta_{1} / \beta_{2}\right) \cdot\left(1-\mathrm{K}_{2 \mathrm{j}}\right)\right\} \cdot \sqrt{\beta_{1} \cdot \beta_{2}}
\end{aligned}
$$

（5．3．1．1．30）
ただし，$\beta \leqq 0.5$
シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献（2） の図より値（以下＊を付記するもの）を求めることにより応力は次式で求める。

反力 P による応力は，
一次応力

$$
\begin{align*}
& \sigma_{\phi 3}=\left(\frac{\mathrm{N}_{\phi}}{\mathrm{P} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5.3.1.1.31}\\
& \sigma_{\mathrm{x} 3}=\left(\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{P} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5.3,1,1,32}
\end{align*}
$$

反力 $P_{\text {e による応力は，}}$
一次応力

$$
\begin{align*}
& \sigma_{\phi 71}=\left(\frac{\mathrm{N}_{\phi}}{\mathrm{P}_{\mathrm{e}} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5,3,1,1,33}\\
& \sigma_{\times 71}=\left(\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{P}_{\mathrm{e}} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5,3,1,1.34}
\end{align*}
$$

二次応力

$$
\begin{align*}
& \sigma_{\phi 72}=\left(\frac{\mathrm{M}_{\phi}}{\mathrm{P}_{\mathrm{e}}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{\mathrm{e}}}{\mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5.3.1.1.35}\\
& \sigma_{\times 72}=\left(\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{P}_{\mathrm{e}}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{\mathrm{e}}}{\mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5,3,1,1.36}
\end{align*}
$$

（5）長手方向地震による脚つけ根部の応力
a． 2 脚支持横置一胴円筒形容器の場合
第2脚は長手方向に自由にスライドできるので第1脚は図4－3 のように変形し，脚つけ根部に生じる曲げモーメント及び鉛直荷重は次式で求める。

$$
\begin{align*}
& \mathrm{M}_{\ell}=\frac{1}{2} \cdot \mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{s} 1}\right) \cdot \mathrm{g} \cdot \mathrm{~h}_{1} \tag{5.3.1,1.37}\\
& \mathrm{P}_{\ell}=\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{s}_{1} 1}\right) \cdot \mathrm{g} \cdot \frac{\mathrm{~h}_{2}-\frac{1}{2} \cdot \mathrm{~h}_{1}}{\ell_{0}} \tag{5.3.1.1.38}
\end{align*}
$$

b． 3 脚支持横置一胴円筒形容器の場合
全脚固定であり，脚つけ根部に生じる曲げモーメント及び鉛直荷重は次式 で求める。

$$
\begin{align*}
& \mathrm{M}_{\mathrm{l}}=\frac{1}{6} \cdot \mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{st}}\right) \cdot \mathrm{g} \cdot \mathrm{~h}_{1} \quad \cdots \tag{5.3.1.1.39}\\
& \mathrm{P}_{\ell}=\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{st}}\right) \cdot \mathrm{g} \cdot \frac{\mathrm{~h}_{2}-\frac{1}{2} \cdot \mathrm{~h}_{1}}{2 \cdot \ell_{0}} \tag{5.3.1.1.40}
\end{align*}
$$

c． 4 脚支持横置一胴円筒形容器（脚間等間隔）の場合
全脚固定であり，脚つけ根部に生じる曲げモーメント及び鋁直荷重は次式 で求める。

$$
\begin{align*}
& \mathrm{M}_{\ell}=\frac{1}{8} \cdot \mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{st}}\right) \cdot \mathrm{g} \cdot \mathrm{~h}_{1} \quad \cdots \tag{5.3.1.1.41}\\
& \mathrm{P}_{\ell}=\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{st}}\right) \cdot \mathrm{g} \cdot \frac{\mathrm{~h}_{2}-\frac{1}{2} \cdot \mathrm{~h}_{1}}{3 \cdot \ell_{0}} \tag{5.3.1.1.42}
\end{align*}
$$

d． 4 脚支持横置一胴円筒形容器（脚間非等間隔）の場合
全脚固定であり，脚つけ根部に生じる曲げモーメント及び鉛直荷重は次式 で求める。

$$
\begin{equation*}
\mathrm{M}_{\mathrm{e}}=\frac{1}{8} \cdot \mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{st}}\right) \cdot \mathrm{g} \cdot \mathrm{~h}_{1} \tag{5.3.1.1.43}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{P}_{\ell}=\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{st}}\right) \cdot \mathrm{g} \cdot \frac{\mathrm{~h}_{2}-\frac{1}{2} \cdot \mathrm{~h}_{1}}{2 \cdot \ell_{0}+\ell_{0}{ }^{\prime}} \tag{5.3.1.1.44}
\end{equation*}
$$

曲げモーメント M_{e} と鉛直荷重 P_{C} により生じる胴の周方向応力及び軸方向応力は，シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献（2）の図より値（以下＊を付記するもの）を求めることより（5．3．1．1．46）式～（5．3．1．1．53）式で求める。

ここで，シェルパラメータ γ 及び P 。の場合のアタッチメントパラメータ β は（4）と同じであるが， $\mathrm{M}_{\mathrm{\prime}}$ の場合のアタッチメントパラメータ β は次式 による。
ただし，二次応力を求める場合は更に $\mathrm{K}_{\ell \mathrm{j}}$ を乗じた値とする。

$$
\begin{equation*}
\beta=\sqrt[3]{\beta_{1} \cdot \beta_{2}{ }^{2}} \tag{5.3.1.1.45}
\end{equation*}
$$

ただし，$\beta \leqq 0.5$
曲げモーメント M_{e} により生じる応力は次式で求める。
一次応力

$$
\begin{align*}
& \sigma_{\phi 411}=\left\{\frac{\mathrm{N}_{\phi}}{\mathrm{M}_{\ell} /\left(\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\ell}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}}\right) \cdot \mathrm{C}_{\ell 1} \tag{5.3.1.1.46}\\
& \sigma_{\mathrm{X} 411}=\left\{\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{M}_{\ell} /\left(\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\ell}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}}\right) \cdot \mathrm{C}_{\ell 2}
\end{align*}
$$

（5．3．1．1．47）

二次応力

$$
\begin{align*}
& \sigma_{\phi 421}=\left\{\frac{\mathrm{M}_{\phi}}{\mathrm{M}_{\mathrm{e}} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{m}} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5.3.1.1.48}\\
& \sigma_{\mathrm{x} 421}=\left\{\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{M}_{\mathrm{e}} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{e}}{\mathrm{r}_{\mathrm{m}} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}{ }^{2}}\right)
\end{align*}
$$

（5．3．1．1．49）

鉛直荷重 P_{e} により生じる応力は次式で求める。
一次応力

$$
\begin{align*}
& \sigma_{\phi 412}=\left(\frac{\mathrm{N}_{\phi}}{\mathrm{P}_{\ell} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{\ell}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5.3.1.1.50}\\
& \sigma_{\mathrm{x} 412}=\left(\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{P}_{\ell} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{\ell}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5.3.1.1.51}
\end{align*}
$$

二次応力

$$
\begin{align*}
& \sigma_{\phi 422}=\left(\frac{\mathrm{M}_{\phi}}{\mathrm{P}_{\ell}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{\ell}}{\mathrm{t}_{\mathrm{e}}^{2}}\right) \tag{5.3.1.1.52}\\
& \sigma_{\times 422}=\left(\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{P}_{\ell}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{\ell}}{\mathrm{t}_{\mathrm{e}}^{2}}\right) \tag{5.3.1.1.53}
\end{align*}
$$

また，水平方向荷重により胴には，次式で求める引張応力が生じる。

$$
\begin{equation*}
\sigma_{\times 413}=\frac{\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{s} 1}\right) \cdot \mathrm{g}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right) \cdot \mathrm{t}} \tag{5.3.1.1.54}
\end{equation*}
$$

ただし，3脚支持及び 4 脚支持横置一胴円筒容器の場合は，上式における $\mathrm{m}_{\mathrm{s} 1}$ を $\mathrm{m}_{\mathrm{s} t}$ と読み替える。

したがって，曲げモーメント M_{ℓ} ，鉛直荷重 P_{ℓ} 及び水平方向荷重により生 じる胴の応力は次式で求める。

一次応力

$$
\begin{align*}
& \sigma_{\phi 41}=\sigma_{\phi 411}+\sigma_{\phi 412} \tag{5.3.1.1.55}\\
& \sigma_{\mathrm{x} 41}=\sigma_{\mathrm{x} 411}+\sigma_{\mathrm{x} 412}+\sigma_{\mathrm{x} 413} \tag{5.3.1.1.56}
\end{align*}
$$

二次応力

$$
\begin{align*}
& \sigma_{\phi 42}=\sigma_{\phi 421}+\sigma_{\phi 422} \tag{5.3.1.1.57}\\
& \sigma_{\times 42}=\sigma_{\times 421}+\sigma_{\times 422} \tag{5.3.1.1.58}
\end{align*}
$$

e． 2 脚支持横置一胴円筒形容器の場合
また，長手方向地震が作用した場合，第1脚つけ根部に生じるせん断応力 は次式で求める。

$$
\begin{equation*}
\tau_{\ell}=\frac{\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{s} 1}\right) \cdot \mathrm{g}}{4 \cdot \mathrm{C}_{2} \cdot \mathrm{t}} \tag{5.3.1.1.59}
\end{equation*}
$$

f． 3 脚支持横置一胴円筒形容器の場合
また，長手方向地震が作用した場合，脚つけ根部に生じるせん断応力は次式で求める。

$$
\begin{equation*}
\tau_{\ell}=\frac{\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{st}}\right) \cdot \mathrm{g}}{12 \cdot \mathrm{C}_{2} \cdot \mathrm{t}} \tag{5.3.1.1.60}
\end{equation*}
$$

g． 4 脚支持横置一胴円筒形容器（脚間等間隔及び脚間非等間隔）の場合 また，長手方向地震が作用した場合，脚つけ根部に生じるせん断応力は次式で求める。

$$
\begin{equation*}
\tau_{\ell}=\frac{\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{st}}\right) \cdot \mathrm{g}}{16 \cdot \mathrm{C}_{2} \cdot \mathrm{t}} \tag{5.3.1.1.61}
\end{equation*}
$$

（6）横方向地震による脚つけ根部の応力
脚の受ける荷重 R i は各脚に作用する荷重のうち，最大のものとする。横方向地震が作用した場合生じる曲げモーメント M_{C} は次式で求める。

$$
\begin{align*}
& \mathrm{M}_{\mathrm{c}}=\mathrm{C}_{\mathrm{H}} \cdot \mathrm{R}_{\mathrm{i}} \cdot \mathrm{r}_{0} \tag{5.3.1.1.62}\\
& \mathrm{r}_{0}=\frac{\mathrm{D}_{\mathrm{i}}}{2}+\mathrm{t}_{\mathrm{e}} \tag{5.3.1.1.63}
\end{align*}
$$

この曲げモーメント M c により生じる胴の周方向応力及び軸方向応力は， ェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献（2）の図 より値（以下＊を付記するもの）を求めることにより（5．3．1．1．65）式～ （5．3．1．1．68）式で求める。
ここで，シェルパラメータ γ は（4）と同じであるが，アタッチメントパラメー夕 β は次式による。ただし，二次応力を求める場合は更に K c j を乗じた値と する。

$$
\begin{equation*}
\beta=\sqrt[3]{\beta_{1}{ }^{2} \cdot \beta_{2}} \tag{5.3.1.1.64}
\end{equation*}
$$

ただし，$\beta \leqq 0.5$

したがって，応力は次式で求める。
一次応力

$$
\begin{gathered}
\sigma_{\phi 51}=\left\{\frac{\mathrm{N}_{\phi}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}}\right) \cdot \mathrm{C}_{\mathrm{c} 1} \\
\\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\sigma_{\times 51}=\left\{\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}}\right) \cdot \mathrm{C}_{\mathrm{c} 2}
\end{gathered}
$$

（5．3．1．1．65）
（5．3．1．1．66）
二次応力

$$
\begin{equation*}
\sigma_{\phi 52}=\left\{\frac{\mathrm{M}_{\phi}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}^{2}}\right) \tag{5.3.1.1.67}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\times 52}=\left\{\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5.3.1.1.68}
\end{equation*}
$$

また，横方向地震が作用した場合生じるせん断応力は次式で求める。

$$
\begin{equation*}
\tau_{\mathrm{c}}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{R}_{\mathrm{i}}}{4 \cdot \mathrm{C}_{1} \cdot \mathrm{t}} \tag{5.3.1.1.69}
\end{equation*}
$$

（7）組合せ応力
（2）～（6）によって求めた脚つけ根部に生じる胴の応力は以下のように組み合 わせる。
a．一次一般膜応力
鉛直方向と長手方向地震が作用した場合

$$
\sigma_{0 \ell}=\operatorname{Max}\left\{\text { 周方向応力 }\left(\sigma_{0 \ell_{\phi}}\right), \text { 軸方向応力 }\left(\sigma_{0 \ell x}\right)\right\}
$$

$$
\begin{align*}
& \text { ここで, } \tag{5.3.1.1.70}\\
& \quad \sigma_{0 \ell_{\phi}=\sigma_{\phi 1}+\sigma_{\phi 2}} \tag{5.3.1.1.71}
\end{align*}
$$

【絶対値和】

$$
\begin{equation*}
\sigma_{0 \ell_{\mathrm{x}}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 6}+\sigma_{\times 413} \tag{5.3.1.1.72}
\end{equation*}
$$

【SRSS 法】

$$
\begin{equation*}
\sigma_{00_{\mathrm{x}}}=\sigma_{\times 1}+\sigma_{\times 2}+{\sqrt{\sigma_{\times 6}{ }^{2}+\sigma_{\times 413}}{ }^{2}}^{2} \tag{5.3.1.1.73}
\end{equation*}
$$

鉛直方向と横方向地震が作用した場合

$$
\begin{align*}
& \sigma_{0 \mathrm{c}}=\operatorname{Max}\left\{\text { 周方向応力 }\left(\sigma_{0 c \phi}\right) \text {, 軸方向応力 }\left(\sigma_{0 c x}\right)\right\} \tag{5.3.1.1.74}\\
& \text { ここで } \\
& \sigma_{0 c \phi}=\sigma_{\phi 1}+\sigma_{\phi 2} \tag{5.3.1.1.75}
\end{align*}
$$

【絶対値和】

$$
\begin{equation*}
\sigma_{0 \mathrm{cx}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 6} \tag{5.3.1.1.76}
\end{equation*}
$$

【SRSS 法】

$$
\begin{equation*}
\sigma_{0 \mathrm{cx}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 6} \tag{5.3.1.1.77}
\end{equation*}
$$

したがって，胴に生じる一次一般膜応力の最大値は，絶対値和，SRSS 法， それぞれに対して，

（5．3．1．1．78）
b．一次応力
鉛直方向と長手方向地震が作用した場合

$$
\begin{equation*}
\sigma_{1 \ell}=\frac{1}{2} \cdot\left\{\sigma_{1 \ell \phi}+\sigma_{1 \ell \mathrm{x}}+\sqrt{\left(\sigma_{1 \ell \phi}-\sigma_{1 \ell \mathrm{x}}\right)^{2}+4 \cdot \tau_{\ell}^{2}}\right\} \tag{5.3.1.1.79}
\end{equation*}
$$

ここで，
【絶対値和】

$$
\begin{align*}
& \sigma_{1 \ell_{\phi}}=\sigma_{\phi 1}+\sigma_{\phi 2}+\sigma_{\phi 3}+\sigma_{\phi 41}+\sigma_{\phi 71} \tag{5.3.1.1.80}\\
& \sigma_{1 \ell \mathrm{x}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+\sigma_{\mathrm{x} 41}+\sigma_{\mathrm{x} 6}+\sigma_{\mathrm{x} 71}
\end{align*}
$$

（5．3．1．1．81）

【SRSS 法】

$$
\begin{align*}
& \sigma_{1 \ell \phi}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sqrt{\sigma_{\phi 41}{ }^{2}+\left(\sigma_{\phi 2}+\sigma_{\phi 71}\right)^{2}} \tag{5.3.1.1.82}\\
& \sigma_{1 \ell \mathrm{x}}=\sigma_{\times 1}+\sigma_{\times 2}+\sigma_{\times 3}+{\sqrt{\sigma_{\times 41}}{ }^{2}+\left(\sigma_{\times 6}+\sigma_{\times 71}\right)^{2}}^{2}
\end{align*}
$$

（5．3．1．1．83）
鉛直方向と横方向地震が作用した場合

$$
\begin{equation*}
\sigma_{1 \mathrm{c}}=\frac{1}{2} \cdot\left\{\left(\sigma_{1 \mathrm{c} \phi}+\sigma_{1 \mathrm{cx}}\right)+\sqrt{\left(\sigma_{1 \mathrm{c} \phi}-\sigma_{1 \mathrm{cx}}\right)^{2}+4 \cdot \tau_{\mathrm{c}}^{2}}\right\} \tag{5.3.1.1.84}
\end{equation*}
$$

ここで，

【絶対値和】

$$
\begin{align*}
\sigma_{1 \mathrm{c} \phi}=\sigma_{\phi 1}+\sigma_{\phi 2}+\sigma_{\phi 3}+\sigma_{\phi 51} & +\sigma_{\phi 71} \tag{5.3.1.1.85}\\
& \omega_{1} \ldots \ldots \\
\sigma_{1 \mathrm{cx}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+\sigma_{\mathrm{x} 51}+ & \sigma_{\mathrm{x} 6}+\sigma_{\mathrm{x} 71}
\end{align*}
$$

（5．3．1．1．86）

【SRSS 法】

$$
\begin{aligned}
& \sigma_{1 \mathrm{c} \phi}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sqrt{\sigma_{\phi 51}{ }^{2}+\left(\sigma_{\phi 2}+\sigma_{\phi 71}\right)^{2}} \\
& \sigma_{1 \mathrm{cx}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+\sqrt{\sigma_{\mathrm{x} 51}{ }^{2}+\left(\sigma_{\mathrm{x} 6}+\sigma_{\mathrm{x} 71}\right)^{2}}
\end{aligned}
$$

（5．3．1．1．87）
（5．3．1．1．88）
したがって，胴に生じる一次応力の最大値は，絶対値和，SRSS 法，それぞ れに対して，

（5．3．1．1．89）
とする。
c．地震動のみによる一次応力と二次応力の和の変動値鉛直方向と長手方向地震が作用した場合の変動値

$$
\sigma_{2 \ell}=\left(\sigma_{2 \ell \phi}+\sigma_{2 \ell \mathrm{x}}\right)+\sqrt{\left(\sigma_{2 \ell \phi}-\sigma_{2 \ell \mathrm{x}}\right)^{2}+4 \cdot \tau_{\ell}}
$$

（5．3．1．1．90）

ここで，

【絶対値和】

$$
\begin{align*}
& \sigma_{2 \ell_{\phi}}=\sigma_{\phi 2}+\sigma_{\phi 41}+\sigma_{\phi 42}+\sigma_{\phi 71}+\sigma_{\phi 72} \tag{5.3.1.1.91}\\
& \sigma_{2 \ell_{\mathrm{x}}}=\sigma_{\mathrm{x} 41}+\sigma_{\mathrm{x} 42}+\sigma_{\mathrm{x} 6}+\sigma_{\mathrm{x} 71}+\sigma_{\mathrm{x} 72} \tag{5.3.1.1.92}
\end{align*}
$$

【SRSS 法】

$$
\begin{array}{r}
\sigma_{2 \ell \phi}=\sqrt{\left(\sigma_{\phi 2}+\sigma_{\phi 71}+\sigma_{\phi 72}\right)^{2}+\left(\sigma_{\phi 41}+\sigma_{\phi 42}\right)^{2}} \tag{5.3.1.1.93}\\
\ldots \ldots \ldots \ldots \ldots
\end{array}
$$

（5．3．1．1．94）
鉛直方向と横方向地震が作用した場合の変動値

$$
\sigma_{2 \mathrm{c}}=\left(\sigma_{2 \mathrm{c} \mathrm{\phi}}+\sigma_{2 \mathrm{cx}}\right)+\sqrt{\left(\sigma_{2 \mathrm{c} \phi}-\sigma_{2 \mathrm{cx}}\right)^{2}+4 \cdot \tau_{\mathrm{c}}^{2}}
$$

（5．3．1．1．95）

ここで，

【絶対値和】

$$
\begin{array}{llll}
\sigma_{2 \mathrm{c} \phi}=\sigma_{\phi 2}+\sigma_{\phi 51}+\sigma_{\phi 52}+\sigma_{\phi 71}+\sigma_{\phi 72} & \cdots & (5.3 .1 .1 .96) \\
\sigma_{2 \mathrm{cx}}=\sigma_{\times 51}+\sigma_{\times 52}+\sigma_{\times 6}+\sigma_{\times 71}+\sigma_{\times 72} & \cdots & (5.3 .1 .1 .97)
\end{array}
$$

【SRSS 法】

$$
\begin{array}{r}
\sigma_{2 \mathrm{c} \phi}=\sqrt{\left(\sigma_{\phi 2}+\sigma_{\phi 71}+\sigma_{\phi 72}\right)^{2}+\left(\sigma_{\phi 51}+\sigma_{\phi 52}\right)^{2}} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{5.3.1.1.98}
\end{array}
$$

（5．3．1．1．99）
したがって，胴に生じる地震動のみによる一次応力と二次応力の和の変動値の最大値は，絶対値和，SRSS 法，それぞれに対して，
とする。

5．3．1．2 脚の計算方法

脚の受ける荷重 R i は各脚に作用する荷重のらち，最大のものとする。
（1）運転時質量による応力

$$
\begin{equation*}
\sigma_{\mathrm{s} 1}=\frac{\mathrm{R}_{\mathrm{i}}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \tag{5.3.1.2.1}
\end{equation*}
$$

ただし， 3 脚支持及び 4 脚支持横置一胴円筒容器の場合は，上式における $\mathrm{m}_{\mathrm{s} 1 \text { を } \mathrm{m}_{\mathrm{s}} \text { と読み替える。 }}$
（2）鉛直方向地震による応力

$$
\begin{equation*}
\sigma_{\mathrm{s} 4}=\frac{\mathrm{R}_{\mathrm{i}}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \cdot \mathrm{C}_{\mathrm{V}} \tag{5.3.1.2.2}
\end{equation*}
$$

ただし， 3 脚支持及び 4 脚支持横置一胴円筒容器の場合は，上式における $\mathrm{m}_{\mathrm{s} 1 \text { を } \mathrm{m}_{\mathrm{s} t} \text { と読み替える。 }}$
（3）長手方向地震による応力曲げ及び圧縮応力は次式で求める。

$$
\begin{align*}
& \sigma_{\mathrm{s} 2}=\frac{\mathrm{M}_{\ell_{1}}}{\mathrm{Z}_{\mathrm{sy}}}+\frac{\mathrm{P}_{\ell}}{\mathrm{A}_{\mathrm{s}}} \tag{5.3.1.2.3}\\
& \text { ここで, }
\end{align*}
$$

a． 2 脚支持横置一胴円筒形容器の場合

$$
\begin{equation*}
\mathrm{M}_{\ell_{1}}=\frac{1}{2} \cdot \mathrm{~m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}_{1} \tag{5.3.1.2.4}
\end{equation*}
$$

せん断応力は次式で求める。

$$
\begin{equation*}
\tau_{\mathrm{s} 2}=\frac{\mathrm{m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s} 3}} \tag{5.3,1,2.5}
\end{equation*}
$$

b． 3 脚支持横置一胴円筒形容器の場合

$$
\begin{equation*}
\mathrm{M}_{\ell 1}=\frac{1}{6} \cdot \mathrm{~m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}_{1} \tag{5.3.1.2.6}
\end{equation*}
$$

せん断応力は次式で求める。

$$
\begin{equation*}
\tau_{\mathrm{s} 2}=\frac{\mathrm{m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g}}{3 \cdot \mathrm{~A}_{\mathrm{s} 3}} \tag{5.3.1.2.7}
\end{equation*}
$$

c． 4 脚支持横置一胴円筒形容器（脚間等間隔及び脚間非等間隔）の場合

$$
\begin{equation*}
\mathrm{M}_{\ell 1}=\frac{1}{8} \cdot \mathrm{~m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}_{1} \tag{5.3.1.2.8}
\end{equation*}
$$

せん断応力は次式で求める。

$$
\begin{equation*}
\tau_{\mathrm{s} 2}=\frac{\mathrm{m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g}}{4 \cdot \mathrm{~A}_{\mathrm{s} 3}} \tag{5.3.1.2.9}
\end{equation*}
$$

（4）横方向地震による応力
曲げ応力は次式で求める。

$$
\begin{equation*}
\sigma_{\mathrm{s} 3}=\frac{\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{R}_{\mathrm{i}}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}\right) \cdot \mathrm{h}_{2}}{\mathrm{Z}_{\mathrm{sx}}} \tag{5.3.1.2.10}
\end{equation*}
$$

せん断応力は次式で求める。

$$
\begin{equation*}
\tau_{\mathrm{s} 3}=\frac{\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{R}_{\mathrm{i}}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}\right)}{\mathrm{A}_{\mathrm{s} 4}} \tag{5.3.1.2.11}
\end{equation*}
$$

ただし， 3 脚支持及び 4 脚支持横置一胴円筒容器の場合は，上式における $\mathrm{m}_{\mathrm{s} 1}$ を m_{st} と読み替える。
（5）組合せ応力
鉛直方向と長手方向地震が作用した場合
【絶対値和】

$$
\begin{equation*}
\sigma_{\mathrm{s} \ell}=\sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 2}+\sigma_{\mathrm{s} 4}\right)^{2}+3 \cdot \tau_{\mathrm{s} 2}^{2}} \tag{5.3.1.2.12}
\end{equation*}
$$

【SRSS 法】

$$
\begin{equation*}
\sigma_{\mathrm{s} \ell}=\sqrt{\left(\sigma_{\mathrm{s} 1}+{\sqrt{\sigma_{\mathrm{s} 2}}{ }^{2}+\sigma_{\mathrm{s} 4}{ }^{2}}^{2}+3 \cdot \tau_{\mathrm{s} 2}^{2}\right.} \tag{5.3.1.2.13}
\end{equation*}
$$

鉛直方向と横方向地震が作用した場合

【絶対値和】

$$
\begin{equation*}
\sigma_{\mathrm{sc}}=\sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 3}+\sigma_{\mathrm{s} 4}\right)^{2}+3 \cdot \tau_{\mathrm{s} 3}^{2}} \tag{5.3.1.2.14}
\end{equation*}
$$

【SRSS 法】

$$
\begin{equation*}
\sigma_{\mathrm{sc}}=\sqrt{\left(\sigma_{\mathrm{s} 1}+\sqrt{\sigma_{\mathrm{s} 3}{ }^{2}+\sigma_{\mathrm{s} 4}^{2}}\right)^{2}+3 \cdot \tau_{\mathrm{s} 3}{ }^{2}} \tag{5.3.1.2.15}
\end{equation*}
$$

したがって，脚に生じる最大応力は，絶対値和，SRSS 法，それぞれに対して， $\sigma_{\mathrm{s}}=\operatorname{Max}\left\{\right.$ 長手方向地震時応力 $\left(\sigma_{\mathrm{s} \ell}\right)$ ，横方向地震時応力 $\left.\left(\sigma_{\mathrm{sc}}\right)\right\}$
（5．3．1．2．16） とする。

5．3．1．3 基礎ボルトの計算方法

（1）鉛直方向と長手方向地震が作用した場合
a．引張応力
長手方向地震が作用した場合に脚底面に作用するモーメントは次式で求め る。

$$
\begin{equation*}
\mathrm{M}=\mathrm{M}_{\ell 1} \tag{5.3.1.3.1}
\end{equation*}
$$

鉛直荷重は
【絶対値和】

$$
\begin{equation*}
P_{s}=\left(1-C_{v}\right) \cdot\left(R_{i}+m_{\mathrm{s} 1} \cdot g\right)-P_{\ell} \tag{5.3,1.3.2}
\end{equation*}
$$

【SRSS 法】

$$
\begin{equation*}
\mathrm{P}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}-\sqrt{\left\{\mathrm{C}_{\mathrm{V}} \cdot\left(\mathrm{R}_{\mathrm{i}}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}\right)\right\}^{2}+\mathrm{P}_{\ell}^{2}} \tag{5,3,1,3.3}
\end{equation*}
$$

である。
ただし， 3 脚支持及び 4 脚支持横置一胴円筒容器の場合は，上式におけ る $\mathrm{m}_{\mathrm{s} 1 \text { を } \mathrm{m}_{\mathrm{st}} \text { と読み替える。 }}$

> ここで, モーメントと鉛直荷重の比を
> $\mathrm{e}=\mathrm{M} / \mathrm{P}_{\mathrm{s}} \quad \ldots \ldots \ldots \ldots \ldots \ldots$

とする。

図 5－4 基礎部に作用する外 図 5－5 基礎部に作用する外荷重より生じる荷重 の関係（その1）
荷重より生じる荷重 の関係（その 2）

図 5－4のように脚底面においてボルト位置に圧縮荷重がかかる状況では基礎ボルトに引張力は作用しないため，引張力の評価は行わない。

一方，図 5－5のように，ボルト位置に圧縮荷重がかからない状況に相当す る

$$
\begin{equation*}
e>\frac{a}{6}+\frac{d_{1}}{3} \tag{5.3,1.3.5}
\end{equation*}
$$

のとき，基礎ボルトに引張力が生じる。
このとき図5－8において，鉛直荷重の釣合い，A点回りのモーメントの釣合い，基礎ボルトの伸びと基礎の縮みの関係から中立軸の位置 X_{n} は

$$
\begin{align*}
X_{n}^{3}+3 \cdot\left(\mathrm{e}-\frac{\mathrm{a}}{2}\right) & \cdot \mathrm{X}_{\mathrm{n}}^{2}-\frac{6 \cdot \mathrm{~s} \cdot \mathrm{~A}_{\mathrm{b}} \cdot \mathrm{n}_{1}}{\mathrm{~b}} \cdot\left(\mathrm{e}+\frac{\mathrm{a}}{2}-\mathrm{d}_{1}\right) \\
& \cdot\left(\mathrm{a}-\mathrm{d}_{1}-X_{\mathrm{n}}\right)=0 \quad \cdots \cdots \cdots \tag{5.3.1.3.6}
\end{align*}
$$

より求めることができ，基礎ボルトに生じる引張力は

$$
\begin{equation*}
F_{b}=\frac{P_{s} \cdot\left(e-\frac{a}{2}+\frac{X_{n}}{3}\right)}{a-d_{1}-\frac{X_{n}}{3}} \tag{5.3,1.3.7}
\end{equation*}
$$

となる。
したがって，基礎ボルトに生じる引張応力は次のようになる。

$$
\begin{equation*}
\sigma_{\mathrm{b} 1}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{n}_{1} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.3.1.3.8}
\end{equation*}
$$

ここで，基礎ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5.3.1.3.9}
\end{equation*}
$$

b．せん断応力
（a）2 脚支持横置一胴円筒形容器の場合

$$
\begin{equation*}
\tau_{\mathrm{b} 1}=\frac{\mathrm{m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5,3,1,3,10}
\end{equation*}
$$

（b） 3 脚支持横置一胴円筒形容器の場合

$$
\begin{equation*}
\tau_{\mathrm{b} 1}=\frac{\mathrm{m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g}}{3 \cdot \mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.3.1.3.11}
\end{equation*}
$$

（c） 4 脚支持横置一胴円筒形容器（脚間等間隔及び脚間非等間隔）の場合

$$
\tau_{\mathrm{b} 1}=\frac{\mathrm{m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g}}{4 \cdot \mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

（2）鉛直方向と横方向地震が作用した場合脚の受ける荷重 R i は各脚に作用する荷重のらち，最大のものとする。
a．引張応力
（a）長手方向から見て図5－6のように応力 を 2 列の基礎ボルトで受ける場合

鉛直方向と横方向地震が作用した場合に脚底面に作用するモーメントは

$$
\begin{equation*}
\mathrm{M}_{\mathrm{c} 1}=\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{R}_{\mathrm{i}}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}\right) \cdot \mathrm{h}_{2} \tag{5,3,1.3,13}
\end{equation*}
$$

鉛直荷重は

$$
\mathrm{P}_{\mathrm{s} 1}=\left(1-\mathrm{C}_{\mathrm{V}}\right) \cdot\left(\mathrm{R}_{\mathrm{i}}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}\right)
$$

（5．3．1．3．14）
で求める。
ただし， 3 脚支持及び 4 脚支持横置一胴円筒容器の場合は，上式における $\mathrm{m}_{\mathrm{s} 1}$ を m_{st} と読み替える。

図 5－6 基礎部に作用する外荷重より生じる荷重 の関係（その 3）
（1）と同様にして中立軸の位置 X_{n} を
$\mathrm{X}_{\mathrm{n}}{ }^{3}+3 \cdot\left(\mathrm{e}-\frac{\mathrm{b}}{2}\right) \cdot \mathrm{X}_{\mathrm{n}}{ }^{2}-\frac{6 \cdot \mathrm{~s} \cdot \mathrm{~A}_{\mathrm{b}} \cdot \mathrm{n}_{2}}{\mathrm{a}}$
$\cdot\left\{\left(e+\frac{b}{2}-d_{2}\right) \cdot\left(b-X_{n}-d_{2}\right)+\left(e+\frac{b}{2}-d_{3}\right) \cdot\left(b-X_{n}-d_{3}\right)\right\}=0$

ただし

$$
\begin{equation*}
\mathrm{e}=\mathrm{M}_{\mathrm{c} 1} / \mathrm{P}_{\mathrm{s} 1} \tag{5.3.1.3.16}
\end{equation*}
$$

より求めると，基礎ボルトに生じる引張力は

$$
\begin{equation*}
F_{b}=\frac{P_{s 1} \cdot\left(e-\frac{b}{2}+\frac{X_{n}}{3}\right) \cdot\left(b-X_{n}-d_{2}\right)}{\left(b-d_{2}-\frac{X_{n}}{3}\right) \cdot\left(b-X_{n}-d_{2}\right)+\left(b-d_{3}-\frac{X_{n}}{3}\right) \cdot\left(b-X_{n}-d_{3}\right)} \tag{5,3,1,3,17}
\end{equation*}
$$

となる。
したがって，基礎ボルトに生じる引張応力は次のようになる。

$$
\begin{equation*}
\sigma_{\mathrm{b}_{2}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{n}_{2} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5,3,1,3,18}
\end{equation*}
$$

（b）長手方向から見て応力を 1 列の基礎ボルトで受ける場合
（1）と同様にして引張応力は求められるが，Mを $\mathrm{M}_{\mathrm{C} 1}, \mathrm{P}_{\mathrm{s}}$ を $\mathrm{P}_{\mathrm{S} 1}$ ， d_{1} を d_{2} ， a を b ， b を a 及び n_{1} を n_{2} に置き換え，得られた基礎ボルトの応力を $\sigma_{\mathrm{b} 2}$ とする。
b．せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b} 2}=\frac{\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{R}_{\mathrm{i}}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}\right)}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.3.1.3.19}
\end{equation*}
$$

ただし， 3 脚支持及び 4 脚支持横置一胴円筒容器の場合は，上式におけ る $\mathrm{m}_{\mathrm{s} 1 \text { を } \mathrm{m}_{\mathrm{st}} \text { と読み替える。 }}$
（3）基礎ボルトに生じる最大応力
（1）及び（2）より求められた基礎ボルトの応力のらち最大のものを $\sigma \mathrm{b}$ 及び $\tau \mathrm{b}$ とする。
a．基礎ボルトの最大引張応力
（5．3．1．3．20）
b．基礎ボルトの最大せん断応力

5.4 応力の評価

5．4．1 胴の応力評価
5．3．1．1 項で求めた組合せ応力が胴の最高使用温度における許容応力 S_{a} 以下 であること。ただし， S_{a} は下表による。

応力の種類	許容応力 $\mathrm{Sa}_{\text {a }}$	
	弾性設計用地震動S d 又は静的震度による荷重との組合せの場合	基準地震動 S s による荷重 との組合せの場合
一次一般膜応力	設計降伏点 S_{y} と設計引張強さ S_{u} の 0.6 倍のいずれ か小さい方の値。ただし，オ ーステナイト系ステンレス鋼及び高ニッケル合金にあ っては許容引張応力 S の 1． 2 倍の方が大きい場合は， この大きい方の値とする。	設計引張強さ S_{u} の 0.6 倍
一次応力	上記の 1.5 倍の値	上記の 1.5 倍の値
一次応力と二次応力の和	地震動のみによる一次応力計降伏点 S_{y} の 2 倍以下であ	二次応力の和の変動値が設 れば，疲労解析は不要とする。

5．4．2 脚の応力評価

5．3．1．2 項で求めた脚の組合せ応力が許容引張応力 f_{t} 以下であること。 ただし，f_{t} は下表による。

	弾性設計用地震動 S d 又は 静的震度による荷重との組 合せの場合	基準地震動 S s による荷重 との組合せの場合
許容引張応力 f_{t}	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{~F} *}{1.5} \cdot 1.5$

5．4．3 基礎ボルトの応力評価
5．3．1．3 項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b}$ は次式により求めた許容引張応力 f_{t} 以下であること。ただし，f_{t} 。は下表による。

$$
\begin{equation*}
f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \tag{5.4.3.1}
\end{equation*}
$$

せん断応力 $\tau \mathrm{b}$ はせん断力のみ受ける基礎ボルトの許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$ 以下で あること。ただし，$f_{\text {s b は下表による。 }}$

	弾性設計用地震動 S d 又 は静的震度による荷重と の組合せの場合	基準地震動 S s による荷 重との組合せの場合
許容引張応力 $f_{\mathrm{t} \mathrm{o}}$	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{~F}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F} *}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．耐震計算書のフォーマット
横置一胴円筒形容器の耐震計算書のフォーマットは， 2 脚支持横置一胴円筒形容器， 3脚支持横置一胴円筒形容器，4 脚支持横置一胴円筒形容器（脚間等間隔），4 脚支持横置一胴円筒形容器（脚間非等間隔）について，以下のとおりである。

〔設計基準対象施設及び重大事故等対処設備の場合〕
フォーマット I 設計基準対象施設としての評価結果
フォーマットII 重大事故等対処設備としての評価結果

〔重大事故等対処設備単独の場合〕
フォーマットII 重大事故等対処設備としての評価結果＊
注記 $*: ~$ 重大事故等対処設備単独の場合は，設計基準対象施設及び重大事故等対処設備に示すフォーマットIIを使用するものとする。ただし，評価結果表に記載の章番を「2．」から「1．」」よする。
O 2
（1） $\mathrm{VI}-2-1-13-2$
R 5

【フォーマットI 設計基淮対象施段としての評価結果】
（2 脚支持横置一胴円筒形容器】
IOOOOO熱交換器か而震性についての計算結果】
1．設計基漼対象施設
1.1 設計条件

機器名称	耐震重要度分頑	据付場所及び休面高さ （m）	固有周期（s）		弾生設計用地震動S d又は静的震度		基淮地震動S s		最高使用圧力 （MPa）	最高使用温度 （ ${ }^{\circ}$ C）	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
					$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{v}}=$	$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{v}}=$			

注記 $*$ ：基淮床レベルを示す。

$\stackrel{\rightharpoonup}{\omega}$

ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	ℓ_{5} $(\mathrm{~mm})$	ℓ_{6} $(\mathrm{~mm})$	ℓ_{7} $(\mathrm{~mm})$	M_{1} $(\mathrm{~N} \cdot \mathrm{~mm})$	M_{2} $(N \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	R_{2} $(\mathrm{~N})$

m_{0} $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 1}$ $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 2}$ $(\mathrm{~kg})$	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{0} $(\mathrm{~mm})$	h_{1} $(\mathrm{~mm})$	h_{2} $(\mathrm{~mm})$	θ_{w} (rad)	ℓ_{w} (mm)
					$*_{1}$					

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{mn}^{4}\right)$	I_{sy} $\left(\mathrm{mm}^{4}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)

$$
\text { O } 2 \text { (1) } \mathrm{VI}-2-1-13-2 \quad \mathrm{R} 5
$$

$\begin{gathered} \hline \mathrm{A}_{\mathrm{s}} \\ \left(\mathrm{mar}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{E}_{\mathrm{s}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{G}_{\mathrm{s}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{s} 1} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{s} 2} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s} 3} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{s} 4} \\ & \left(\mathrm{mn}^{2}\right) \end{aligned}$

$\mathrm{K}_{11}{ }^{* 2}$	$\mathrm{~K}_{12}{ }^{* 2}$	$\mathrm{~K}_{21}{ }^{* 2}$	$\mathrm{~K}_{22}{ }^{* 2}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\ell 1}$	$\mathrm{C}_{\ell 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} (mm)	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
						(M)			

者

$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (胴板) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}}(\text { (胴板) } \\ \text { (MPa) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { S (胴板) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (脚) } \\ \text { (MPa) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (脚) } \\ \text { (} \mathrm{MPa} \text {) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { F (脚) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{F}^{*}(\text { (脚) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (基礎ボルト) } \\ \text { (MPa) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (基礎ボルト) } \\ \text { (MPa) } \\ \hline \end{gathered}$	$\begin{gathered} \text { F (基礎ボルト) } \\ \text { (MPa) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{F}^{*}(\text { (基礎ボルト) } \\ \text { (MPa) } \\ \hline \end{gathered}$
＊3	＊3	＊3	＊4	＊4			＊4	＊ 4		

注記：＊1：本計算においては当板を有効とした
＊2：表中で上段は一次応力，下段は二次応力の俰数とする。
＊3：最高使用温度で算出
＊4：周囲環境温度で算出

1.3 計算数値

1．3．1 胴に生じる応力
（1）一次一般鄚応力
（単位：MPa）

	弾生設計用地震動S d 又は静的震度				基漼地震動S s			
－地震の方向		方向				方向		方向
－応力の方向	周方向応力	軸方向応力	周方向応力	㜞方向応力	周方向応力	軸万晌応力	周方向応力	軸方向応力
内圧による応力	$\sigma_{\text {¢1 }}=$	$\sigma_{x 1}=$	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$	$\sigma_{\text {¢ } 1}=$	$\sigma_{x 1}=$	$\sigma_{\text {¢ } 1}=$	$\sigma_{x 1}=$
内圧による応力 （鉛直方向地震時）	$\sigma_{\phi 2}=$	－						
運転時質量による長手方向曲げ モーメントにより生じる応力	－	$\sigma_{\times 2}=$						
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	－	$\sigma_{\times 6}=$						
長手方向地震によより胍軘断面 全面に生じる引張力	－	$\sigma_{\times 413}=$	－	－	－	$\sigma_{\times 413}=$	－	－
組合せ応力	$\sigma_{0} e^{\text {e }}=$		$\sigma_{0 \mathrm{c}}=$		$\sigma_{0}{ }_{8}=$		${ }_{0}{ }_{\text {c }}=$	

灾

（3）地震動のみによる一次応力と二次応力の和の変動值
（単位： MPa ）

－	地震の種類		弾牲蔎計用地	Sd又は静的震度			基淮	動S s	
	地震の方向		方向		向		方向		向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力 （鉛直方向地震時）		$\sigma_{\phi 2}=$	－						
鉛直方向地震による長手方向曲げモーメントにより生じる応力		－	$\sigma_{\times 6}=$	－	$\sigma_{\times 6}=$	－	$\sigma_{\times 6}=$	－	$\sigma_{x 6}=$
鉛直方向地震による脚反力により生じる応力		$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}= \\ & \sigma_{\times 72}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}= \\ & \sigma_{x 72}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \end{aligned}$	$\begin{aligned} & \sigma_{x 71}= \\ & \sigma_{x 72}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}= \\ & \sigma_{\times 72}= \\ & \hline \end{aligned}$
水平方向地震 による応力	引張り	$\sigma_{\text {¢ } 41}=$	$\sigma_{\times 41}=$	$\sigma_{\phi 51}=$	$\sigma_{\times 51}=$	$\sigma_{\text {¢ } 41}=$	$\sigma_{x 41}=$	$\sigma_{\phi 51}=$	$\sigma_{\times 51}=$
		$\begin{aligned} & \sigma_{\phi 421}= \\ & \sigma_{\phi 422}= \end{aligned}$	$\begin{aligned} & \sigma_{\times 421}= \\ & \sigma_{\times 422}= \end{aligned}$	$\sigma_{\phi 52}=$	$\sigma_{\times 52}=$	$\begin{aligned} & \sigma_{\phi 421}= \\ & \sigma_{\phi 422}= \end{aligned}$	$\begin{aligned} & \sigma_{\times 421}= \\ & \sigma_{\times 422}= \end{aligned}$	$\sigma_{652}=$	$\sigma_{\times 52}=$
		$\sigma_{\text {¢42 }}=$	$\sigma_{\times 42}=$			$\sigma_{\text {¢ } 42}=$	$\sigma_{\times 42}=$		
	せん断	$\tau_{8}=$		$\tau_{\mathrm{c}}=$		$\tau_{8}=$		$\tau_{\mathrm{c}}=$	
組合せ応力		$\sigma_{20}=$		$\mathrm{O}_{2 \mathrm{c}}=$		$\sigma_{2 \mathrm{e}}=$		$\sigma_{2 \mathrm{c}}=$	

出

1．4 結論
1．4．1 固有周期

方向	（単位： s ）
長手方向	$\mathrm{T}_{1}=$
横方周期	$\mathrm{T}_{2}=$
鈖直方向	$\mathrm{T}_{3}=$

1．4．2 応力					（単位： MPa ）	
部材		庶	弾性設計用地震動S d 又は静的震度		基淮地震動S s	
		心	算出応力	許容応力	算出応力	許容応力
		一次一般膜	$\sigma_{0}=$	$\mathrm{S}_{\mathrm{a}}=$	$\sigma_{0}=$	$\mathrm{S}_{\mathrm{a}}=$
胴板		一次	$\sigma_{1}=$	$\mathrm{S}_{\mathrm{a}}=$	$\sigma_{1}=$	$\mathrm{S}_{\mathrm{a}}=$
		一次＋二次	$\sigma_{2}=$	$\mathrm{S}_{\mathrm{a}}=$	$\sigma_{2}=$	$\mathrm{S}_{\mathrm{a}}=$
脚		組合せ	$\sigma_{\text {s }}=$	$f_{\mathrm{t}}=$	$\sigma_{\text {s }}=$	$f_{\mathrm{t}}=$
ト		引張り	$\sigma_{\mathrm{b}}=$	$f_{\text {t }}=$	$\sigma_{\mathrm{b}}=$	$f_{\mathrm{ts}}=$
基榣ボルト		せん断	$\tau_{\mathrm{b}}=$	$f_{\text {sb }}=$	$\tau_{\mathrm{b}}=$	$f_{\mathrm{sb}}=$

$!$ 膈板と当板の材料が異なる場合，当板の材料名及ひ許容応力を記載する。 1．4．2 応力（単位： MPa ）

部 材	材 料	許容応力
		$\begin{aligned} & \mathrm{S}_{\mathrm{a}}= \\ & \left(\begin{array}{r} * 1 \end{array}\right) \\ & \hline \end{aligned}$
胴 板		$\begin{aligned} & \mathrm{S}_{\mathrm{a}}= \\ & \left(\begin{array}{c} * 1 \end{array}\right) \end{aligned}$
脚		$f_{\mathrm{t}}=$
基礎ボルト		$f_{\mathrm{ts}}={ }^{2} 2$ $f_{\mathrm{sb}}=$

注記＊1：当板の材料を示す。
$* 2: \quad f_{\mathrm{t} \mathrm{s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$

$$
\text { O } 2 \text { (1) VI-2-1-13-2 R } 5
$$

【○○○○○熱交換器の而振性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	而振重要度分類	据付場所及び床面高さ （m）		固有周期（s）		弾性設計用地震動S d 又は静的震度		基準地震動S s		最高使用圧力 （ MPa ）	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 （ ${ }^{\text {C }}$ ）	比 重
				水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度				
		$\begin{aligned} & \hline \text { 建屋 } \\ & \text { 0.P. } \end{aligned}$	＊			$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{V}}=$	$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{V}}=$	静水頭			

注記＊：基漼床レベルを示す。
1.2 機器要目

m_{1} $(\mathrm{~kg})$	m_{2} $(\mathrm{~kg})$	m_{3} $(\mathrm{~kg})$	m_{4} $(\mathrm{~kg})$	m_{5} $(\mathrm{~kg})$	m_{6} $(\mathrm{~kg})$	m_{7} $(\mathrm{~kg})$

∞

ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	ℓ_{5} $(\mathrm{~mm})$	ℓ_{6} $(\mathrm{~mm})$	ℓ_{7} $(\mathrm{~mm})$	M_{1} $(\mathrm{~N} \cdot \mathrm{~mm})$	M_{2} $(\mathrm{~N} \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	R_{2} $(\mathrm{~N})$	H (mm)

m_{0} $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 1}$ $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 2}$ $(\mathrm{~kg})$	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{0} $(\mathrm{~mm})$	h_{1} $(\mathrm{~mm})$	h_{2} $(\mathrm{~mm})$	θ_{w} (rad)	ℓ_{w} (mm)
					$*_{1}$					

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{mm}^{4}\right)$	I_{sy} $\left(\mathrm{mm}^{4}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)

【静水頭へ場合】
（圧力容器と様式が異なるページのみ掲載）

1.3 計算数値

1．3．1 胴に生じる応力
（1）一次一般鄚応力
（単位： MPa ）

地震の種類地震の方向応力の方向	弾性設計用地震動S d 又 ${ }^{\text {a }}$ 静的震度				基淮地震動S s			
	長手方向		横方向		長手方向		横方向	
	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力	$\sigma_{\phi 1}=$	$\sigma_{\mathrm{x} 1}=$	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$
静水頭による応力 （鉛直方向地震時）	$\sigma_{\phi 2}=$	－						
運転時質量による長手方向曲げ モーメントにより生じる応力	－	$\sigma_{\times 2}=$						
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	－	$\sigma_{\times 6}=$						
長手方向地震により胴軸断面 全面に生じる引張応力	－	$\sigma_{\times 413}=$	－	－	－	$\sigma_{\times 413}=$	－	－
組合せ応力	$\sigma_{0 \ell}=$		$\sigma_{0 \mathrm{c}}=$		$\sigma_{0}{ }_{\ell}=$		$\sigma_{0 \mathrm{c}}=$	

屯

（3）地震動のみによる一次応力と二次応力の和の変動値

	地震の種類		弾生設計用地	S d 又は静的震度			基哖	輷動S s	
	地震の方向		方向		方向		方向		方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
$\begin{aligned} & \text { 静水頭 } \\ & \text { 鉛直) } \end{aligned}$		$\sigma_{\phi 2}=$	－						
$\begin{gathered} \text { 鉛直方向地震 } \\ \text { 曲げモーメンント } \end{gathered}$	方向 る応力	－	$\sigma_{x 6}=$	－	$\sigma_{\times 6}=$	－	$\sigma_{\times 6}=$	－	$\sigma_{x 6}=$
		$\begin{gathered} \sigma_{\phi 71}= \\ \sigma_{\phi 72}= \end{gathered}$	$\begin{aligned} & \sigma_{\times 71}= \\ & \sigma_{\times 72}= \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}= \\ & \sigma_{\times 72}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}= \\ & \sigma_{\times 72}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \end{aligned}$	$\begin{aligned} & \sigma \times 71= \\ & \sigma \times 72= \end{aligned}$
水平方向地震 による応力	引張り	$\sigma_{\phi 41}=$	$\sigma_{\times 41}=$	$\sigma_{\phi 51}=$	$\sigma_{\times 51}=$	$\sigma_{\phi 41}=$	$\sigma_{\times 41}=$	$\sigma_{\phi 51}=$	$\sigma_{\times 51}=$
		$\begin{aligned} & \sigma_{\phi 421}= \\ & \sigma_{\phi 422}= \end{aligned}$	$\begin{aligned} & \hline \sigma_{\times 421}= \\ & \sigma_{\times 422}= \\ & \hline \end{aligned}$	$\sigma_{\phi 52}=$	$\sigma_{\times 52}=$	$\begin{aligned} & \sigma_{\phi 421}= \\ & \sigma_{\phi 422}= \end{aligned}$	$\begin{aligned} & \sigma_{\times 421}= \\ & \sigma_{\times 422}= \\ & \hline \end{aligned}$	$\sigma_{\phi 52}=$	$\sigma_{\times 52}=$
		$\sigma_{\text {o42 }}=\quad \sigma_{\times 42}=$				$\sigma_{\phi 42}=$	$\sigma_{\times 42}=$		
	せん断	$\tau_{\ell}=$		$\tau_{\mathrm{c}}=$		$\tau_{\ell}=$		$\tau_{\mathrm{c}}=$	
組合せ応力		$\sigma_{2 \ell}=$		$\sigma_{2 \mathrm{c}}=$		$\sigma_{2 \ell}=$		$\sigma_{2 \mathrm{c}}=$	

앙

脚に生じる応力				（単位：MPa）	
	地震の種類	弾性設計用地震動S d 又は静的震度		基準地震動S s	
－	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	圧縮	$\sigma_{\text {s } 1}=$			
鋁直方向地震による応力	圧縮	$\sigma_{\text {s } 4}=$			
水平方向地震による応力	曲げ	$\sigma_{\mathrm{s} 2}=$	$\sigma_{\mathrm{s} 3}=$	$\sigma_{\mathrm{s} 2}=$	$\sigma_{\text {s } 3}=$
	せん断	$\tau_{\mathrm{s} 2}=$	$\tau_{\mathrm{s} 3}=$	$\tau_{\mathrm{s} 2}=$	$\tau_{\text {s } 3}=$
組合せ応力		$\sigma_{\text {se }}=$	$\sigma_{\text {sc }}=$	$\sigma_{\text {se }}=$	$\sigma_{\text {sc }}=$

O 2
（1） $\mathrm{VI}-2-1-13-2$
R 5

【フォーマットII 重大事故等対処設備としての評価結果】
2．重大事故等対处設作
2.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）		固有周期（s）		弹生設計用地震動S d又は静的震度		基淮地震動S s		最高使用圧力 （ MPa ）	最高使用温度 （ ${ }^{\text {C }}$ ）	周囲嘸境温度 （ ${ }^{\text {C）}}$
				水平方向	鉛直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鉛直方向設計震度			
		$\begin{array}{\|l\|l\|l\|l\|} \hline \text { 䢖 } \\ \text { 0.P. } \end{array}$	＊			－	－	$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{v}}=$			

注記＊：基淮床レベルを示す。
2.2 機器要目

m_{1} $(\mathrm{~kg})$	m_{2} $(\mathrm{~kg})$	m_{3} $(\mathrm{~kg})$	m_{4} $(\mathrm{~kg})$	m_{5} $(\mathrm{~kg})$	m_{6} $(\mathrm{~kg})$	m_{7} $(\mathrm{~kg})$

\because

ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	ℓ_{5} $(\mathrm{~mm})$	ℓ_{6} $(\mathrm{~mm})$	ℓ_{7} $(\mathrm{~mm})$	M_{1} $(N \cdot \mathrm{~m})$	M_{2} $(\mathrm{~N} \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	R_{2} $(\mathrm{~N})$

m_{0} $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 1}$ $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 2}$ $(\mathrm{~kg})$	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{0} $(\mathrm{~mm})$	h_{1} $(\mathrm{~mm})$	h_{2} $(\mathrm{~mm})$	θ_{w} (rad)	ℓ_{w} (mm)
					$*_{1}$					

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{mm}^{4}\right)$	I_{sy} $\left(\mathrm{mm}^{4}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)

○ 2
（1）VI－2－1－13－2
R 5

$\begin{aligned} & \hline \mathrm{A}_{\mathrm{s}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{E}_{\mathrm{s}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{G}_{\mathrm{s}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{s} 1} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{s} 2} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s} 3} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{s} 4} \\ & \left(\mathrm{mn}^{2}\right) \end{aligned}$

$\mathrm{K}_{11}{ }^{* 2}$	$\mathrm{~K}_{12}^{* 2}$	$\mathrm{~K}_{21}{ }^{* 2}$	$\mathrm{~K}_{22}{ }^{* 2}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\mathrm{e} 1}$	$\mathrm{C}_{\mathrm{e} 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} (mm)	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
						(M)			

덩

$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (胴板) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (胴板) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \hline \text { (胴板) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (脚) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (脚) } \\ (\mathbb{(\mathbb { 2 } a)} \\ \hline \end{gathered}$	$\begin{aligned} & \text { F (脚) } \\ & (\mathbb{N P a}) \end{aligned}$	$\begin{gathered} \mathrm{F}^{*} \text { (䀷) } \\ (\mathbb{P R a}) \\ \hline \end{gathered}$		$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \\ \begin{array}{c} \text { (基䞨ボルト) } \\ (\mathrm{NPa}) \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { F (基砝ボルト) } \\ \text { (MPa) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { F* (基湦ボルト) } \\ (\mathbb{P P a}) \\ \hline \end{gathered}$
＊3	＊3	＊	＊4	＊4	－		＊ 4	＊ 4	－	

注記：＊1：本計算においては当板を有効とした。
＊2：表中で上段は一次応力，下段は一次応力の係数とする。
＊3：最高使用温度で算出
＊4：周囲環境温度で算出

2.3 計算数值

2．3．1 胴に生じる応力
（1）一次一般莦度力
（単位：MPa）

	弾生設計用地震動S d 又 は青的震度				基潐地震動S s			
	長手方向		－横方向		長手方向		横方向	
	周方向応力	䡛方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	－	－	－	－	$\sigma_{\text {¢ } 1}=$	$\sigma_{x 1}=$	$\sigma_{\text {¢ } 1}=$	$\sigma_{x 1}=$
内圧による応力 （鈖直方向地震時）	－	－	－	－	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
運転挴量による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{\times 2}=$	－	${ }_{0 \times 2}=$
$\begin{array}{c}\text { 鉛直方向地震による長手方向曲げ } \\ \text { モーメントにより生じる応力 }\end{array}$	－	－	－	－	－	$\sigma_{\times 6}=$	－	$\sigma_{\times 6}=$
	－	－	－	－	－	$\sigma_{\times 413}=$	－	－
組合せ応力	－		－		$\sigma_{0}{ }_{0}=$		$\sigma_{0 \mathrm{c}}=$	

cic

（3）地震動のみによる一次応力と二次応力の和の変動値

$\stackrel{9}{1}$

2．3．2 脚こ生じる応力				（単位： MPa ）	
	地震の種類	弾性設計用地震動S d 又 は静的震度		基淮地震動S s	
	地震の方向	長手方向	横方向	長手方向	横方向
運車对質量による応力	圧縮	－	－	$\sigma_{\text {s } 1}=$	$\sigma_{\mathrm{s} 1}=$
鉛直方向地震による応力	圧縮	－	－	$\sigma_{\text {s } 4}=$	$\sigma_{\text {s } 4}=$
水平方向地震による応力	曲げ	－	－	$\sigma_{\mathrm{s} 2}=$	$\sigma_{\mathrm{s} 3}=$
	せん断	－	－	$\tau_{\mathrm{s} 2}=$	$\tau_{\mathrm{s} 3}=$
組合せ応力		－	－	$\sigma_{\text {s } \ell}=$	$\sigma_{\text {sc }}=$

3 基礎ボルトに生じる応力（単位：MPa）					
	地震の種類	弾性設計用地震動S d 又は静的震度		基準地震動S s	
－	地震の方向	長手方向	横方向	長手方向	横方向
鋁直方向地震及び水平方向地震による応力	引張り	－	－	$\sigma_{\mathrm{b} 1}=$	$\sigma_{\mathrm{b} 2}=$
水平方向地震による応力	せん断	－	－	$\tau_{\mathrm{b} 1}=$	$\tau_{\mathrm{b} 2}=$

O 2
（1） $\mathrm{VI}-2-1-13-2$
R 5
2.4 結論
2．4．1 固有周期

方 単位： s ）	
長手方向	$\mathrm{T}_{1}=$
横方向	$\mathrm{T}_{2}=$
鉛直方向	$\mathrm{T}_{3}=$

O 2
（1）VI－2－1－13－2
R 5

2．重大事故等対处設備
【静水頭の場合】

（圧力容器と様式が異なるページのみ揭載）

機器名称	設備分類	据付場所及び床面高さ （m）		固有周期（s）		弾生設計用地唇動S d 又は静的震度				基漼地震動S s		最高使用圧力 （ MPa ）	最高使用温度 （＇C）	周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）	比重
				水平方向	鉛直方向		水平方向設計震度		鋁直方向設計震度	水平方向 設計震度	鉛直方向設計震度				
		$\begin{aligned} & \text { 建屋 } \\ & \text { 0.P. } \end{aligned}$	＊			－		－		$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{v}}=$	静水頭			

注記＊：基淮床レベルを示す。
2.2 機器要目

m_{1} $(\mathrm{~kg})$	m_{2} $(\mathrm{~kg})$	m_{3} $(\mathrm{~kg})$	m_{4} $(\mathrm{~kg})$	m_{5} $(\mathrm{~kg})$	m_{6} $(\mathrm{~kg})$	m_{7} $(\mathrm{~kg})$

g

ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	ℓ_{5} $(\mathrm{~mm})$	ℓ_{6} $(\mathrm{~mm})$	ℓ_{7} $(\mathrm{~mm})$	M_{1} $(N \cdot \mathrm{~mm})$	M_{2} $(N \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	R_{2} $(\mathrm{~N})$	H (mm)

m_{0} $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 1}$ $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 2}$ $(\mathrm{~kg})$	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{0} $(\mathrm{~mm})$	h_{1} $(\mathrm{~mm})$	h_{2} $(\mathrm{~mm})$	θ_{w} (rad)	ℓ_{w} (mm)
					$*_{1}$					

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{ma}^{1}\right)$	I_{sy} $\left(\mathrm{mm}^{1}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)

2.3 計算数値

2．3．1 胴に生じる応力
（1）一次一般膜応力
（単位： MPa ）

걱

－	地震の種類		弾性設計用地	S d 又は静的震度				動S s	
	地震の方向		方向		方向		方向		方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭		－	－	－	－	$\sigma_{\phi 1}=$	$\sigma_{\mathrm{x} 1}=$	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$
静水頭 （鉛直）		－	－	－	－	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
運転时質量に モーメントに		－	－	－	－	－	$\sigma_{\times 2}=$	－	$\sigma_{\times 2}=$
鈖直方向地震に モーメントに	$\begin{aligned} & \text { 向曲げ } \\ & \text { 応力 } \\ & \hline \end{aligned}$	－	－	－	－	－	$\sigma_{\times 6}=$	－	$\sigma_{\times 6}=$
運転時質量 により		－	－	－	－	$\sigma_{\phi 3}=$	$\sigma_{\times 3}=$	$\sigma_{\phi 3}=$	$\sigma_{\times 3}=$
鉛直方向地 により		－	－	－	－	$\sigma_{\phi 71}=$	$\sigma_{x 71}=$	$\sigma_{\phi 71}=$	$\sigma_{\times 71}=$
水平方向地震 による応力	引張り	－	－	－	－	$\begin{aligned} & \sigma_{\phi 411}= \\ & \sigma_{\phi 412}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\times 411}= \\ & \sigma_{\times 412}= \\ & \hline \end{aligned}$	$\sigma_{\times 51}=$	$\sigma_{\times 51}=$
		－	－			$\sigma_{\phi 41}=$	$\sigma_{\times 41}=$		
	せん断	－		－		$\tau_{l}=$		$\tau_{\mathrm{c}}=$	
組合せ応力		－		－		$\sigma_{1 \ell}=$		$\sigma_{1 \mathrm{c}}=$	

（3）地震動のみによる一次応力と二次応力の和の変動値
（単位：MPa）

宛

脚に生じる応力				（単位： MPa ）	
	地震の種類	弾性設計用地震動S d 又は静的震度		基淮地震動S s	
－	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	圧縮	－	－	$\sigma_{\text {s } 1}=$	$\sigma_{\text {s } 1}=$
鉛直方向地震による応力	圧縮	－	－	$\sigma_{\text {s } 4}=$	$\sigma_{\text {s } 4}=$
水平方向地震による応力	曲げ	－	－	$\sigma_{\text {s } 2}=$	$\sigma_{\text {s } 3}=$
	せん断	－	－	$\tau_{\text {s } 2}=$	$\tau_{\text {s } 3}=$
組合せ応力		－	－	$\sigma_{\text {s } \ell}=$	$\sigma_{\text {sc }}=$

2.3 .3 基礎ボルトに生じる応力（単位：MPa）

	地震の種類		弾性設計用地震動S d 又 ${ }^{\text {a }}$ 静的震度		基準地震動S s	
	地震の方向		長手方向	横方向	長手方向	横方向
鉛直方向地震及び水平方向地震による応力	引張り	－		－	$\sigma_{\mathrm{b} 1}=$	$\sigma_{\mathrm{b} 2}=$
水平方向地震による応力	せん断	－		－	$\tau_{\mathrm{b} 1}=$	$\tau_{\mathrm{b} 2}=$

O 2
（1）VI－2－1－13－2
R 5

【3脚支持横置一胴円简形容器】

【OOOOOタンクの而震性についての計算結果】
1．設計基淮対象施設

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾牲設計用地震動S d 又 は静的震度		基淮地震動S s		最高使用圧力 （ MPa ）	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 （ ${ }^{\text {C }}$ ）	比重
			水平方向	鉛直方向	水平方向設計震度	鈖直方向設計震度	水平方向設計震度					
					－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{v}}=$	静水頭			

注記＊ 1 ：基漼床しベルを示す。
＊2：$\Pi_{4} S$ については，基準地震動 S s で評価する。
1.2 機㗊要目

ℓ_{H} (mm)	ℓ_{L} (mm)	w $(\mathrm{N} / \mathrm{mm})$	M_{1} $(N \cdot \mathrm{~mm})$	M_{2} $(N \cdot \mathrm{rm})$	M_{3} $(N \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	R_{2} $(\mathrm{~N})$	R_{3} $(\mathrm{~N})$
								H (mm)

엉

m_{0} $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} t}$ $(\mathrm{~kg})$	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{0} $(\mathrm{~mm})$	h_{1} $(\mathrm{~mm})$	h_{2} $(\mathrm{~mm})$	θ_{w} (rad)	ℓ_{w} (mm)
				$*_{1}$					

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	$\mathrm{I}_{\mathrm{sxx}}$ $\left(\mathrm{mm}^{1}\right)$	I_{sy} $\left(\mathrm{mm}^{1}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)

A_{s} $\left(\mathrm{mm}^{2}\right)$	E_{s} $(\mathbb{P P a})$	G_{s} $\left(\mathrm{MPa}^{2}\right.$	$\mathrm{A}_{\mathrm{s} 1}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 2} 2$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 3}$ $\left(\left(\mathrm{~mm}^{2}\right)\right.$	$\mathrm{A}_{\mathrm{s} 4}$ $\left(\mathrm{~mm}^{2}\right)$

$\mathrm{K}_{11}^{* 2}$	$\mathrm{~K}_{12}{ }^{* 2}$	$\mathrm{~K}_{21}{ }^{* 2}$	$\mathrm{~K}_{22}{ }^{* 2}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\ell 1}$	$\mathrm{C}_{\ell 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} (mm)	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
						(M)			

＊2：表中で上段は一次応力，下段は一次応力の俰数とする。
＊ 3 ：最高使用温度で算出
＊4：周囲擐境昷度で算出
1.3 計算数値

1．3．1 胴に生じる応力
（1）一次一般莫応力
（単位： $\mathbb{M P a}$ ）

注記＊：픗S については，基漼地震動S s で評価する。

						（単位： MPa ）			
						基淮地震動S s			
	$\begin{aligned} \\ \hline \text { 地震の方向 } \\ \hline \text { 応力の方向 } \\ \hline \end{aligned}$	長手方向		横方向		長手方向		横方向	
		周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力		$\sigma_{\phi 1}=-*$	$\sigma_{x 1}=-*$	$\sigma_{\phi 1}=-*$	${ }^{o_{1} 1}=$－＊	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$	$\sigma_{\phi 1}=$	$\sigma_{\times 1}=$
静水頭による応力 （鉛直方向地震時）		$\sigma_{\phi 2}=-*$	$-$	$\sigma_{\phi 2}=-*$	$-$	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
$\begin{aligned} & \text { 運転时質量による長手方向曲げ } \\ & \text { モートによりじる応力。 } \end{aligned}$		－	$\sigma_{\times 2}=-*$	－	$\sigma_{\times 2}=-*$	－	$\sigma_{\times 2}=$	－	$\sigma_{x 2}=$
$\begin{aligned} & \text { 鉛直方向地震による長手方向曲げ } \\ & \text { モーメントにより生でる応力 } \end{aligned}$		－	$\sigma_{x 6}=-*$	－	$\sigma_{\times 6}=-*$	－	$\sigma_{\times 6}=$	－	$\sigma_{\times 6}=$
$\begin{gathered} \text { 運転时質量による脚及力 } \\ \text { により生じる応力 } \end{gathered}$		$\sigma_{\phi 3}=-*$	$\sigma_{\times 3}=-*$	$\sigma_{\phi 3}=-*$	$\sigma_{\times 3}=-*$	$\sigma_{\phi 3}=$	$\sigma_{x 3}=$	$\sigma_{\phi 3}=$	$\sigma_{\times 3}=$
鋁直方向地震による脚反力 により生じる応力		$\sigma_{\phi 71}=-*$	$\sigma_{\times 71}=-*$	$\sigma_{\phi 71}=-*$	$\sigma_{\times 71}=-*$	$\sigma_{\phi 71}=$	$\sigma_{\times 71}=$	$\sigma_{\phi 71}=$	$\sigma_{x 71}=$
水平方向地震 による応力	引張り	$\begin{aligned} & \sigma_{\phi 411}=-* \\ & \sigma_{\phi 412}=-* \end{aligned}$	$\begin{aligned} & \sigma_{\times 411}=-* \\ & \sigma_{\times 412}=-* \\ & \sigma_{\times 413}=-* \\ & \hline \end{aligned}$	$\sigma_{\phi 51}=-*$	$\sigma_{x 51}=-*$	$\begin{aligned} & \sigma_{\phi 411}= \\ & \sigma_{\phi 412}= \end{aligned}$	$\left\{\begin{array}{l} \sigma_{\times 411}= \\ \sigma_{x 412}= \\ \sigma_{x 413}= \end{array}\right.$	$\sigma_{\phi 51}=$	$\sigma_{\times 51}=$
		$\sigma_{\phi 41}=-*$	$\sigma_{\times 41}=-*$			$\sigma_{\phi 41}=$	$\sigma_{\times 41}=$		
	せん断	$\tau_{\ell}=-*$		$\tau_{\mathrm{c}}=-*$		$\tau_{\ell}=$		$\tau_{\mathrm{c}}=$	
組合せ応力		$\sigma_{10}=-*$		$\sigma_{1 \mathrm{c}}=-*$		$\sigma_{10}=$		$\sigma_{1 \mathrm{c}}=$	

[^0]（3）地震動のみによる一次応力と二次応力の和の変動値
（単位：MPa）

－	地震の種類		弾性設計用地	S d 又は静的震度				動S s	
\bigcirc	地震の方向		方向		方向		方向		方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力 （鈖直方向地震時）		$\sigma_{\phi 2}=$－＊	－	$\sigma_{\phi 2}=$－＊	－	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
鉛直方向地震による長手方向 曲げモーメントにより生じる応力		－	$\sigma_{\times 6}=$－$*$	－	$\sigma_{\times 6}=$－$*$	－	$\sigma_{x 6}=$	－	$\sigma_{\times 6}=$
鋁直方向地震による脚反力 により生じる応力		$\begin{aligned} \sigma_{\phi 71} & =-* \\ \sigma_{\phi 72} & =-* \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}=\text { P }^{*} \\ & \sigma_{\times 72}=-* \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}=-* \\ & \sigma_{\phi 72}=-* \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}=-* \\ & \sigma_{\times 72}=-* \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}= \\ & \sigma_{\times 72}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \end{aligned}$	$\begin{aligned} & \sigma \times 71= \\ & \sigma \times 72= \\ & \hline \end{aligned}$
水平方向地震 による応力	引張り	$\sigma_{\phi 41}=$－＊*	$\sigma_{\times 41}=$－＊	$\sigma_{\phi 51}=$－＊	$\sigma_{\times 51}=$－＊	$\sigma_{\phi 41}=$	$\sigma_{\times 41}=$	$\sigma_{\text {¢ } 51}=$	$\sigma_{\times 51}=$
			$\begin{aligned} & \sigma_{\times 421}=-* \\ & \sigma_{\times 422}=-* \\ & \hline \end{aligned}$	$\sigma_{\phi 52}=-*$	$\sigma_{\times 52}=$－＊	$\begin{aligned} & \sigma_{\phi 421}= \\ & \sigma_{\phi 422}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\times 421}= \\ & \sigma_{\times 422}= \end{aligned}$	$\sigma_{\phi 52}=$	${ }^{\times 55} \times$
		$\sigma_{\phi 42}=$－＊	$\sigma_{\times 42}=$－＊			$\sigma_{\phi 42}=$	$\sigma_{\times 42}=$		
	せん断	$\tau_{\ell}=-*$		$\tau_{\mathrm{c}}=$－＊		$\tau_{\ell}=$		$\tau_{\mathrm{c}}=$	
組合せ応力		$\sigma_{2 \ell}=-$		$\sigma_{2 \mathrm{c}}=$－＊*		$\sigma_{2 \ell}=$		$\sigma_{2 \mathrm{c}}=$	

注記＊：$\Pi_{A} S$ については，基準地震動 S s で評価する。

注記＊：IITSについては，基準地震動S s で評価する。

注記＊：IIIA については，基準地震動S sで評価する。

$$
\text { O } 2 \text { (1) } \mathrm{VI}-2-1-13-2 \quad \mathrm{R} 5
$$

1.4 結論		
1．4．1 固有周期		（単位：s）
方 向	固有周期	
長手方向	$\mathrm{T}_{1}=$	
横方向	$\mathrm{T}_{2}=$	
鉛直	$\mathrm{T}_{3}=$	

部 材	材 料	応力			基鹪地震動S s	
			算出応力	許容応力	算出応力	計容応力
胴板		一次一般膜	$\sigma_{0}=* 2$	$\mathrm{S}_{\mathrm{a}}=* 2$	$\sigma_{0}=$	$\mathrm{S}_{\mathrm{a}}=$
		一次	$\sigma_{1}=* 2$	$\mathrm{S}_{\mathrm{a}}=* 2$	$\sigma_{1}=$	$\mathrm{S}_{\mathrm{a}}=$
		一次＋二次	$\sigma_{2}=* 2$	$\mathrm{S}_{\mathrm{a}}=* 2$	$\sigma_{2}=$	$\mathrm{S}_{\mathrm{a}}=$
脚		組合せ	$\sigma_{\mathrm{s}}=* 2$	$f_{\text {t }}{ }^{*}{ }^{*}$	$\sigma_{\text {s }}=$	$f_{\mathrm{t}}=$
基碮术ノト		引張り	$\sigma_{\mathrm{b}}=^{* 2}$	$f_{\text {ts }}=*$	$\sigma_{\mathrm{b}}=$	$f_{\text {ts }}=* 1$
		せん断	$\tau_{\mathrm{b}}=* 2$	$f_{\mathrm{sb}}=* 2$	$\tau_{\mathrm{b}}=$	$f_{\text {sb }}=$
注記 $* 1$ ：$f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出 ＊2：基漼地震動 $\mathrm{S} s$ による算出値						

$$
\text { O } 2 \text { (1) VI-2-1-13-2 R } 5
$$

A_{s} $\left(\mathrm{mm}^{2}\right)$	E_{s} $\left.(\mathbb{P})^{2}\right)$	G_{s} $(\mathbb{M P a})$	$\mathrm{A}_{\mathrm{s} 1}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 2}$ $\left(\mathrm{mr}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 3}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 4}$ $\left(\mathrm{mr}^{2}\right)$

$\mathrm{K}_{11}^{* 2}$	$\mathrm{~K}_{12}{ }^{* 2}$	$\mathrm{~K}_{21}{ }^{* 2}$	$\mathrm{~K}_{22}{ }^{* 2}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\ell 1}$	$\mathrm{C}_{\ell 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} (mm)	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
						(M)			

	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (胴板) } \\ (\mathrm{NPa}) \end{gathered}$	$\begin{gathered} \hline \text { S (胴板) } \\ \left(\begin{array}{c} \text { (NPa) } \end{array}\right. \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (脚) } \\ \text { (MPa) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (脚) } \\ (\mathbb{1 P a}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { F (脚) } \\ & (\mathbb{N P a}) \end{aligned}$	$\begin{gathered} \mathrm{F}^{*} \text { (䀷) } \\ (\mathbb{1 P a}) \end{gathered}$				
＊3	＊3	＊3	＊4	＊4	－		＊	＊4	－	

＊2：表中で上段は一次応力，下段は一次応力の俰数とする。
＊ 3 ：最高使用温度で算出
＊4：周囲擐境昷度で算出
2.3 計算数値

2．3．1 胴に生じる応力
（1）一次一般膜応力
（単位： MPa ）

地震の種類	弾性設計用地震動S d 又は静的震度				基淮地震動S s			
－地震の方向	長手方向		横方向		長手方向		横方向	
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力	－	－	－	－	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$
静水頭による応力 （鉛直方向地震時）	－	－	－	－	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
運転時質量による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{\times 2}=$	－	$\sigma_{\times 2}=$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{x 6}=$	－	$\sigma_{\times 6}=$
長手方向地震により䏱軸断面全面に生じる引張応力	－	－	－	－	－	$\sigma_{\times 413}=$	－	－
組合せ応力	－		－		$\sigma_{00}=$		$\sigma_{0 \mathrm{c}}=$	

8

$\stackrel{9}{3}$

$$
\text { O } 2 \text { (1) VI-2-1-13-2 R } 5
$$

2.4 結論
2．4．1 固有周期

方 単位： s$)$	
長手方向	$\mathrm{T}_{1}=$
横方向	$\mathrm{T}_{2}=$
固有周期	
鈖直	$\mathrm{T}_{3}=$

2．4．2 応力			弾性設計用地震動S d 又は静的震度				（午位： MPa ）	
部 材	材 料	応力					基準地震動S s	
				算出応力		許容応力	算出応力	許容応力
		一次一般膜	－		－		$\sigma_{0}=$	$\mathrm{S}_{\mathrm{a}}=$
胴板		一次	－		－		$\sigma_{1}=$	$\mathrm{S}_{\mathrm{a}}=$
		一次＋二次	－		－		$\sigma_{2}=$	$\mathrm{S}_{\mathrm{a}}=$
脚		組合せ	－		－		$\sigma_{\text {s }}=$	$f_{\mathrm{t}}=$
基礎ボルト		引張り	－		－		$\sigma_{\text {b }}=$	$f_{\text {ts }}=*$
基桂ボルト		せん断	－		－		$\tau_{\mathrm{b}}=$	$f_{\text {sb }}=$

$$
\text { すべて許容応力以下である。 } \quad \text { 注記 } *: ~ f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right] \text { より算出 }
$$

O 2
（1）VI－2－1－13－2
R 5

【4 脚支持横置一胴円筒形容器（脚間等間隔）
100000 タンクの而摝性についての計算結果】
1．設計基漼対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾生設計用地唇動S d 又は青的震度		基淮地震動S s		最高使用圧力 （ $\mathbb{P a}$ ）	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 （ㄷ）	比重
			水平方向	鉛直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鋁直方向設計震度				
					－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{v}}=$	静水頭			

注記＊ 1 ：基漼床レベルを示す。
＊2：IInS については，基準地震動S s で評価する。
1.2 機器要目

ℓ (mm)	ℓ_{H} (mm)	ℓ_{L} (mm)	w $(\mathrm{N} / \mathrm{mm})$	M_{1} $(\cdot \cdot \mathrm{~mm})$	M_{2} $(\cdot \cdot \mathrm{~mm})$	M_{3} $(\cdot \cdot \mathrm{~mm})$	M_{4} $(\cdot \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	R_{2} $(\mathrm{~N})$	R_{3} $(\mathrm{~N})$	R_{4} (N)	H (mm)

요

m_{0} $(\mathrm{~kg})$	m_{st} (kg)	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{0} $(\mathrm{~mm})$	h_{1} $(\mathrm{~mm})$	h_{2} (fm)	θ_{w} (rad)	ℓ_{w} (mm)
				$*$					

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{ma}^{1}\right)$	I_{sy} $\left(\mathrm{mm}^{1}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)

$\mathrm{A}-\mathrm{A}$ 矢視図

$$
\text { O } 2 \text { (1) VI-2-1-13-2 R } 5
$$

$\begin{array}{\|c} \hline \mathrm{A}_{\mathrm{s}} \\ (\mathrm{~mm}) \end{array}$	$\begin{gathered} \hline \mathrm{E}_{\mathrm{s}} \\ (\mathbb{\mathrm { NPa }}) \end{gathered}$	$\begin{gathered} \mathrm{G}_{\mathrm{s}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s}_{1}}\left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s} 2}\left(\mathrm{~m}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{s} 4} \\ & \left(\mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$

$\mathrm{K}_{11}{ }^{* 2}$	$\mathrm{~K}_{12}{ }^{* 2}$	$\mathrm{~K}_{21}{ }^{* 2}$	$\mathrm{~K}_{22}{ }^{* 2}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\ell 1}$	$\mathrm{C}_{\ell 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} (mm)	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
						(m)			

\bigcirc

$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (服板) } \\ (\mathrm{NPa}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (胴板) } \\ (\mathbb{1 \mathrm { Pa })} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { S (月⿵冂⿱一口⿵冂⿱一口一板) } \\ (\mathrm{NPa}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (脚) } \\ \text { ((NPa) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (脚) } \\ (\mathbb{\mathrm { Pra })} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { F (䀷) } \\ & (\text { (NPa) } \end{aligned}$		$\begin{array}{\|c\|} \hline \mathrm{S}_{\mathrm{y}} \text { (基礎ボルト) } \\ \text { (MPa) } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \mathrm{S}_{\mathrm{u}} \\ \begin{array}{c} \text { (基兟ボルト) } \\ \text { (NPa) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { F (基瘲ボルト) } \\ \left(\begin{array}{c} \text { (NPa) } \end{array}\right) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{F}^{*} \begin{array}{c} \text { (基㘁ボルト) } \\ \text { (Ma) } \end{array} \\ \hline \end{array}$
＊3	＊	＊3	＊ 4	＊4	－		＊	＊4	－	

＊3：最高使用温度で算出
＊4：周囲擐境昷度で算出

1．3 計算数値
1．3．1 胴に生じる応力
（1）一次一般膜応力
（単位： MPa ）

目$\substack{\text { 地震の種類 } \\ \text { 地震の方向 } \\ \text { 応力の方向 }}$	弾性設計用地震動S d 又は静的震度				基準地震動S s			
	長手方向		横方向		長手方向		横方向	
	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力	$\sigma_{\phi 1}=$－${ }^{*}$	$\sigma_{\times 1}=$＊	$\sigma_{\phi 1}=$－＊	$\sigma_{\times 1}=$－＊	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$
静水頭による応力 （鈖直方向地震時）	$\sigma_{\phi 2}=$－＊	－	$\sigma_{\phi 2}=$－＊	－	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
運転時質量による長手方向曲げ モーメントにより生じる応力	－	$\sigma_{\times 2}=$－＊	－	$\sigma_{\times 2}=$－＊	－	$\sigma_{\times 2}=$	－	$\sigma_{\times 2}=$
$\begin{gathered} \text { 鉛直方向地震による長手方向曲げ } \\ \text { モーメントにより生じる応力 } \\ \hline \end{gathered}$	－	$\sigma_{\times 6}=$－＊	－	$\sigma_{\times 6}=$－${ }^{*}$	－	$\sigma_{\times 6}=$	－	$\sigma_{\times 6}=$
長手方向地震により䏱車由断面 全面に生じる引張応力	－	$\sigma_{\times 413}=$－＊	－	－	－	$\sigma_{\times 413}=$	－	－
組合せ応力	$\sigma_{00}=-*$		$\sigma_{0 \mathrm{c}}=-*$		$\sigma_{00}=$		$\sigma_{0 \mathrm{c}}=$	

注記＊： $\mathrm{II}_{4} \mathrm{~S}$ については，基準地震動 s s で評価する。

	（2）一次応力									（単位： MPa ）
	－	地震の種類	弾性設計用地震動S d 又は静的震度				基淮地震動S s			
		地震の方向	長手方向		横方向		長手方向		横方向	
		応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力			$\sigma_{\phi 1}=$－＊	$\sigma_{\mathrm{x} 1}=$－＊	$\sigma_{\phi 1}=$－＊	$\sigma_{\mathrm{x} 1}=$－＊	$\sigma_{\phi 1}=$	$\sigma_{\mathrm{x} 1}=$	$\sigma_{\phi 1}=$	$\sigma_{\mathrm{x} 1}=$
静水頭による応力 （鈖直方向地震時）			$\sigma_{\phi 2}=$－＊	－	$\sigma_{\phi 2}=$－＊	－	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
運転時質量による長手方向曲げ モーメントにより生じる応力			－	$\sigma_{\times 2}=$－＊	－	$\sigma_{\times 2}=$－＊	－	$\sigma_{\times 2}=$	－	$\sigma_{\times 2}=$
$\begin{gathered} \text { 鉛直方向地震による長手方向曲げ } \\ \text { モーメントにより生じる応力 } \end{gathered}$			－	$\sigma_{\times 6}=$－＊	－	$\sigma_{\times 6}=-*$	－	$\sigma_{\times 6}=$	－	$\sigma_{x 6}=$
運転時質量による脚及力 により生じる応力			$\sigma_{\phi 3}=-*$	$\sigma_{\times 3}=$－	$\sigma_{\phi 3}=$－$*$	$\sigma_{\times 3}=$－＊	$\sigma_{\phi 3}=$	$\sigma_{\times 3}=$	$\sigma_{\phi 3}=$	$\sigma_{\times 3}=$
鉛直方向地震による脚反力 により生じる応力			$\sigma_{\phi 71}=-*$	$\sigma_{\times 71}=$＊	$\sigma_{\phi 71}=-*$	$\sigma_{\times 71}=-*$	$\sigma_{\phi 71}=$	$\sigma_{\times 71}=$	$\sigma_{\phi 71}=$	$\sigma_{\times 71}=$
	水平方向地震	引張り	$\begin{array}{\|l} \sigma_{\phi 411}=\text { — }^{*} \\ \sigma_{\phi 412}=-* \end{array}$	$\begin{aligned} & \sigma_{\times 411}=-* \\ & \sigma_{\times 412}=-* \\ & \sigma_{\times 413}=-* \\ & \hline \end{aligned}$	$\sigma_{\phi 51}=-*$	$\sigma \times 51=$＊	$\begin{aligned} & \sigma_{\phi 411}= \\ & \sigma_{\phi 412}= \end{aligned}$		$\sigma_{\phi 51}=$	$\sigma_{\times 51}=$
			$\sigma_{\phi 41}=$－＊	$\sigma_{\times 41}=$－＊			$\sigma_{\phi 41}=$	$\sigma_{\times 41}=$		
		せん断	$\tau_{\ell}=$－＊		$\tau_{\mathrm{c}}=$－＊		$\tau_{\ell}=$		$\tau_{\mathrm{c}}=$	
組合せ応力			$\sigma_{12}=$－＊		$\sigma_{1 \mathrm{c}}=$－＊		$\sigma_{18}=$		$\sigma_{1 \mathrm{c}}=$	

[^1]（3）地震動のみによる一次応力と二次応力の和の変動値
（単位： MPa ）

－	地震の種類		弾性設計用地	S d 又は静的震度				棖動S s	
	地震の方向		方向		方向		方向		方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力 （鉛直方向地震時）		$\sigma_{\phi 2}=$－＊	－	$\sigma_{\phi 2}=$－＊	－	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
鋁直方向地震による長手方向曲げモーメントにより生じる応力		－	$\sigma_{\times 6}=$－＊	－	$\sigma_{\times 6}=$－$*$	－	$\sigma_{\times 6}=$	－	$\sigma_{\times 6}=$
鉛直方向地震による脚反力 により生じる応力		$\begin{aligned} \sigma_{\phi 71} & =-* \\ \sigma_{\phi 72} & =-* \end{aligned}$	$\begin{array}{\|l\|} \sigma_{\times 71}=-* \\ \sigma_{\times 72}=-* \\ \hline \end{array}$	$\begin{aligned} & \sigma_{\phi 71}=-* \\ & \sigma_{\phi 72}=-* \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}=-* \\ & \sigma_{\times 72}=-* \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}= \\ & \sigma_{\times 72}= \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}= \\ & \sigma \times 72= \end{aligned}$
水平方向地震 による応力	引張り	$\sigma_{\phi 41}=$－＊*	$\sigma_{\times 41}=$－＊	$\sigma_{\phi 51}=$－＊	$\sigma_{\times 51}=$－＊	$\sigma_{\phi 41}=$	$\sigma_{\times 41}=$	$\sigma^{\circ 51}$＝	$\sigma_{\times 51}=$
		$\begin{array}{\|l} \sigma_{\phi 421}={ }^{*} \\ \sigma_{\phi 422}=-* \\ \hline \end{array}$	$\begin{array}{\|l} \sigma_{\times 421}=-* \\ \sigma_{\times 422}=-* \\ \hline \end{array}$	$\sigma_{\phi 52}=-*$	$\sigma_{\times 52}=$－＊	$\begin{aligned} & \sigma_{\phi 421}= \\ & \sigma_{\phi 422}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma \times 421= \\ & \sigma \times 422= \end{aligned}$	${ }^{\circ}{ }_{\phi 52}=$	$\sigma \times 52=$
		$\sigma_{\phi 42}=$－＊	$\sigma_{\times 42}=$－＊			$\sigma_{\phi 42}=$	$\sigma_{\times 42}=$		
	せん断	$\tau_{\ell}=$－＊		$\tau_{\mathrm{c}}=-*$		$\tau_{\ell}=$		$\tau_{\mathrm{c}}=$	
組合せ応力		$\sigma_{2 \ell}=$－＊		$\sigma_{2 \mathrm{c}}=$－＊		$\sigma_{2 \ell}=$		$\sigma_{2 \mathrm{c}}=$	

注記＊：$\Pi_{A} S$ については，基準地震動S s で評価する。
N

1．3．2 脚に生じる応力				（単位： MPa ）	
¢	地震の種類	弾性設計用地震動S d 又は静的震度			
，	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	圧縮	$\sigma_{\text {s } 1}=$－＊	$\sigma_{\text {s } 1}=$－＊	$\sigma_{\text {s } 1}=$	$\sigma_{\text {s } 1}=$
鉛直方向地震による応力	圧縮	$\sigma_{\text {s } 4}=$－＊	$\sigma_{\text {s } 4}=$－＊	$\sigma_{\mathrm{s} 4}=$	$\sigma_{\mathrm{s} 4}=$
水平方向地震による応力	曲げ	$\sigma_{\mathrm{s} 2}=$－＊	$\sigma_{\text {s } 3}=$－＊	$\sigma_{\mathrm{s} 2}=$	$\sigma_{\mathrm{s} 3}=$
	せん断	$\tau_{\mathrm{s} 2}=$－＊	$\tau_{\text {s } 3}=$－＊	$\tau_{\mathrm{s} 2}=$	$\tau_{\mathrm{s} 3}=$
組合せ応力		$\sigma_{\mathrm{s} \ell}=$－＊	$\sigma_{\mathrm{sc}}=$－＊	$\sigma_{\mathrm{s} \ell} \ell=$	$\sigma_{\text {sc }}=$

注記＊：$\Pi_{A} S$ については，基漼地震動S s で評価する。

注記＊：$\Pi_{A} S$ については，基準地震動 S s で評価する。

$$
\text { O } 2 \text { (1) VI-2-1-13-2 R } 5
$$

1.4 結論
1.4 .1 固有周期

方 単位： s ）	
長手方向	$\mathrm{T}_{1}=$
横方向	$\mathrm{T}_{2}=$
鉛直	$\mathrm{T}_{3}=$

1．4．2 応力					（単位： MPa ）	
部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
胴板		一次一般膜	$\sigma_{0}=* 2$	$\mathrm{S}_{\mathrm{a}}=* 2$	$\sigma_{0}=$	$\mathrm{S}_{\mathrm{a}}=$
		一次	$\sigma_{1}=* 2$	$\mathrm{S}_{\mathrm{a}}=* 2$	$\sigma_{1}=$	$\mathrm{S}_{\mathrm{a}}=$
		一次＋二次	$\sigma_{2}=* 2$	$\mathrm{S}_{\mathrm{a}}=* 2$	$\mathrm{\sigma}_{2}=$	$\mathrm{S}_{\mathrm{a}}=$
脚		組合せ	$\sigma_{\mathrm{s}}=* 2$	$f_{\mathrm{t}}={ }^{\text {2 }}$	$\sigma_{\text {s }}=$	$f_{\mathrm{t}}=$
基礎ボルト		引張り	$\sigma_{\mathrm{b}}=* 2$	$f_{\mathrm{ts}}=* 1$	$\sigma_{\mathrm{b}}=$	$f_{\mathrm{ts}}={ }^{1}$
		せん断	$\tau_{\mathrm{b}}=* 2$	$f_{\text {sb }}=* 2$	$\tau_{\mathrm{b}}=$	$f_{\mathrm{sb}}=$
注記 $* 1: ~ f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出 ＊2 ：基準地震動S s による算出値						

O 2
（1）VI－2－1－13－2
R 5

2．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾生設せ十用地震動S d又は静的震度		基淮地震動S s			最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 （ ${ }^{\circ}$ C）	比重
			水平方向	鉛直方向	水平方向設計震度	鈖直方向設計震度	水平方向設計震度	鉛直方向設計震度				
					－	－	$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{v}}=$	静水頭			

2.2 機器要目

ℓ (mm)	ℓ_{H} (mm)	ℓ_{L} (mm)	w $(\mathrm{N} / \mathrm{mm})$	M_{1} $(N \cdot \mathrm{~mm})$	M_{2} $(N \cdot \mathrm{~mm})$	M_{3} $(N \cdot \mathrm{~mm})$	M_{4} $(N \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	R_{2} $(\mathrm{~N})$	R_{3} (N)	R_{4} $(\mathrm{~N})$	H (mm)

$\stackrel{\rightharpoonup}{ }$

m_{0} $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} t}$ $(\mathrm{~kg})$	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{0} $(\mathrm{~mm})$	h_{1} $(\mathrm{~mm})$	h_{2} $(\mathrm{~mm})$	θ_{w} (rad)	ℓ_{w} (mm)
				$*_{1}$					

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{mm}^{1}\right)$	I_{sy} $\left(\mathrm{mm}^{1}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)

$\mathrm{A}-\mathrm{A}$ 矢視図

$$
\text { O } 2 \text { (1) VI-2-1-13-2 R } 5
$$

A_{s} $\left(\mathrm{mm}^{2}\right)$	E_{s} $(\mathbb{N P a})$	G_{s} $(\mathbb{N P a})$	$\mathrm{A}_{\mathrm{s} 1}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 2}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 3}{ }^{2}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 4}$ $\left(\mathrm{~mm}^{2}\right)$

$\mathrm{K}_{11}{ }^{* 2}$	$\mathrm{~K}_{12}{ }^{* 2}$	$\mathrm{~K}_{21}{ }^{* 2}$	$\mathrm{~K}_{22}{ }^{* 2}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\ell 1}$	$\mathrm{C}_{\ell 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} (mm)	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
						(m)			

ज

$\begin{gathered} \hline S_{y} \text { (月1月板) } \\ (\text { (NPa) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (朋板) } \\ (\mathbb{P P a}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { S (月月同板) } \\ (\mathbb{1 P a}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (脚) } \\ (\mathrm{NPa}) \end{gathered}$	$\begin{gathered} S_{u} \text { (f脚) } \\ (\mathbb{N P a}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { F (甽) } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{F}^{*}(\text { (脚) } \\ (\mathbb{1 P R}) \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \mathrm{S}_{\mathrm{y}} & \text { (基砝ボルト) } \\ (\mathrm{MPa}) \\ \hline \end{array}$		$\begin{array}{\|c} \hline \text { F (基檚ボルト) } \\ \text { (MPa) } \\ \hline \end{array}$	$\begin{gathered} \mathrm{F}^{*} \text { (基璴ボルト) } \\ \text { (MPa) } \\ \hline \end{gathered}$
＊3	＊	＊3	＊	＊	－		＊	＊4	－	

－異におしで，
＊ 3 ：最高使用温度で算出
＊4：周囲嘸竸昷度で算出

2．3 計算数値
2．3．1 胴に生じる応力
（1）一次一般膜応力
（単位： MPa ）

（	弾性設計用地震動S d 又は静的震度				基淮地震動S s			
	長手方向		横方向		長手方向		横方向	
	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力	－	－	－	－	$\sigma_{\phi 1}=$	$\sigma_{\times 1}=$	$\sigma_{\phi 1}=$	$\sigma_{\times 1}=$
静水頭による応力 （鈖直方向地震時）	－	－	－	－	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
運転時質量による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{\times 2}=$	－	$\sigma_{\times 2}=$
鋁直方向地震による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{\times 6}=$	－	$\sigma_{\times 6}=$
長手方向地震により胴車由断面 全面に生じる引張応力	－	－	－	－	－	$\sigma_{\times 413}=$	－	－
組合せ応力	－		－		$\sigma_{0}{ }^{\text {e }}=$		$\sigma_{0 \mathrm{c}}=$	

が

（2）一㳄応力									（単位： MPa ）
¢	地震の種類	弾性設計用地震動S d 又 は静的震度				基準地震動S s			
	地震の方向	長手方向		横方向		長手方向		横方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力		－	－	－	－	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$	$\sigma_{\phi 1}=$	$\sigma_{x 1}=$
静水頭による応力 （鉛直方向地震時）		－	－	－	－	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
運転时質量による長手方向曲げモーメントにより生じる応力		－	－	－	－	－	$\sigma_{\times 2}=$	－	$\sigma_{\times 2}=$
$\begin{gathered} \text { 鉛直方向地震による長手方向曲げ } \\ \text { モーメントにより生じる応力 } \\ \hline \end{gathered}$		－	－	－	－	－	$\sigma_{x 6}=$	－	$\sigma_{\times 6}=$
運転時質量による脚反力 により生じる応力		－	－	－	－	$\sigma_{\phi 3}=$	$\sigma_{\times 3}=$	$\sigma_{\phi 3}=$	$\sigma_{\times 3}=$
鉛直方向地震による脚反力 により生じる応力		－	－	－	－	$\sigma_{\phi 71}=$	$\sigma_{\times 71}=$	$\sigma_{\phi 71}=$	$\sigma_{\times 71}=$
水平方向地震 による応力	引張り	－	－	－	－	$\begin{aligned} & \sigma_{\phi 411}= \\ & \sigma_{\phi 412}= \end{aligned}$	$\begin{array}{\|l} \sigma_{\times 411}= \\ \sigma_{\times 412}= \\ \sigma_{\times 413}= \\ \hline \end{array}$	$\sigma_{\phi 51}=$	$\sigma_{\times 51}=$
		－	－			$\sigma_{\phi 41}=$	$\sigma_{\times 41}=$		
	せん断	－		－		$\tau_{\ell}=$		$\tau_{\mathrm{c}}=$	
組合せ応力		－		－		$\sigma_{1 \ell}=$		$\sigma_{1 \mathrm{c}}=$	

（3）地震動のみによる一次応力と二次応力の和の変動値
（単位：MPa）

－	地震の種類		弾性設計用地	S d 又は静的震度				動S s	
\bigcirc	地震の方向		方向		方向		方向		方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
$\begin{aligned} & \text { 静水頭 } \\ & \text { (鉛直) } \end{aligned}$		－	－	－	－	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
$\begin{gathered} \text { 鉛直方向地雳场 } \\ \text { 曲げモーメ } \end{gathered}$	方向 る応力	－	－	－	－	－	$\sigma_{x 6}=$	－	$\sigma_{\times 6}=$
鈖直方向地 により		$\left.\right\|_{-} ^{-}$	$\left.\right\|_{-} ^{-}$	$\left.\right\|^{-}$	$\left.\right\|^{-}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}= \\ & \sigma_{\times 72}= \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}= \\ & \sigma_{\phi 72}= \end{aligned}$	$\begin{aligned} & \sigma_{\times 71}= \\ & \sigma_{\times 72}= \end{aligned}$
		－	－	－	－	$\sigma_{\phi 41}=$	$\sigma_{\times 41}=$	$\sigma_{\phi 51}=$	$\sigma_{\times 51}=$
水平方向地震 による店力	引張り	$-$	$\overline{-}$	－	－	$\begin{aligned} & \sigma_{\phi 421}= \\ & \sigma_{\phi 422}= \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \sigma_{\times 421}= \\ \sigma_{\times 422}= \\ \hline \end{array}$	$\sigma_{\phi 52}=$	${ }^{\circ} \times 52=$
		－	－			$\sigma_{\phi 42}=\sigma_{\times 42}=$			
	せん断	－		－		$\tau_{\ell}=$		$\tau_{\mathrm{c}}=$	
組合せ応力		－				$\sigma_{2 \ell}=$		$\sigma_{2 \mathrm{c}}=$	

ปフ

$$
\text { O } 2 \text { (1) VI-2-1-13-2 R } 5
$$

応力			弾生設計用地震動S d 又は静的震度			基淮地震動S s	
部 材	材 料	応力					
				算出応力	許容応力	算出応力	許容応力
胴板		一次一般期	－		－	$\sigma_{0}=$	$\mathrm{S}_{\mathrm{a}}=$
		一次	－		－	$\sigma_{1}=$	$\mathrm{S}_{\mathrm{a}}=$
		一次＋二次	－		－	$\sigma_{2}=$	$\mathrm{S}_{\mathrm{a}}=$
脚		組合せ	－		－	$\sigma_{\mathrm{s}}=$	$f_{\mathrm{t}}=$
基䂾ボルト		引張り	－		－	$\sigma_{\mathrm{b}}=$	$f_{\text {ts }}=*$
		せん断	－		－	$\tau_{\mathrm{b}}=$	$f_{\text {sb }}=$

$$
\text { O } 2 \text { (1) VI-2-1-13-2 R } 5
$$

【4 4 却支持横置一胴円筒形容器（脚間非等間隔）

【OOOOOタンクの而震性についての計算結果】
1．重大事故等文处処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾生設什用地震動S d又は静的震度		基淮地震動S s		最高使用圧力 （ MPa ）	最高使用温度 （ ${ }^{\text {C }}$ ）	周囲睘境温度 （ ${ }^{\text {C }}$ ）	比重
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鋁直方向設計震度				
					－	－	$\mathrm{C}_{\mathrm{H}}=$	$\mathrm{C}_{\mathrm{v}}=$	静水頭			

注記＊：基漼床レベルを示す。

ℓ (mm)	ℓ_{H} (mm)	ℓ_{L} (mm)	w $(\mathrm{N} / \mathrm{mm})$	M_{1} $(N \cdot \mathrm{~mm})$	M_{2} $(\mathrm{~N} \cdot \mathrm{~mm})$	M_{3} $(N \cdot \mathrm{~mm})$	M_{4} $(\mathrm{~N} \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	R_{2} $(\mathrm{~N})$	R_{3} $(\mathrm{~N})$	R_{4} $(\mathrm{~N})$	H (mm)

Əै

m_{0} $(\mathrm{~kg})$	m_{st} (kg)	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{0} $(\mathrm{~mm})$	ℓ_{0} $(\mathrm{~mm})$	h_{1} $(\mathrm{~mm})$	h_{2} $(\mathrm{~mm})$	θ_{w} (rad)	ℓ_{w} (mm)
				$*_{1}$						

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{mm}^{4}\right)$	I_{sy} $\left(\mathrm{mm}^{4}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)

A－A 矢視図

$$
\text { O } 2 \text { (1) VI-2-1-13-2 R } 5
$$

A_{s} $\left(\mathrm{m}^{2}\right)$	E_{s} $(\mathbb{N P a})$	G_{s} $\left(\mathbb{P} \mathbb{P a}_{2}\right.$	$\mathrm{A}_{\mathrm{s} 1}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 2}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 3}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 4}$ $\left(\mathrm{~mm}^{2}\right)$

$\mathrm{K}_{11}^{* 2}$	$\mathrm{~K}_{12}{ }^{* 2}$	$\mathrm{~K}_{21}{ }^{* 2}$	$\mathrm{~K}_{22}{ }^{* 2}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\ell 1}$	$\mathrm{C}_{\ell 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} (mm)	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
						(M)			

$\stackrel{\infty}{\circ}$

$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (胴板) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (胴板) } \\ (\mathrm{NPa}) \end{gathered}$	$\begin{gathered} \hline \text { S (月月䏞) } \\ (\mathbb{N P a}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (脚) } \\ \text { (MPa) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (脚) } \\ (\mathbb{1 P a}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { F (䱈) } \\ & \text { (MPa) } \end{aligned}$	$\begin{gathered} \hline \mathrm{F}^{*} \text { (脚) } \\ (\mathbb{N P a}) \\ \hline \end{gathered}$		（基磽ボルト） （ MPa ）		$\begin{aligned} & \hline \text { (基砝ボルト) } \\ & \text { (NPa) } \end{aligned}$	F	（基礎ボルト） （MPa）	
＊3	＊3	＊	＊4	＊ 4	－		＊		＊				

注記 $* 1$ ：本計算においては当板を有効とした。
＊2：表中で上段は一次応力，下段は二次応力の係数とする。
＊3：最高使用温度で算出
＊4：周囲環境温度で算出

1．3 計算数値
1．3．1 胴に生じる応力
（1）一次一般膜応力
（単位： $\mathbb{M P a}$ ）

地震の種類					基準地震動S s			
－地震の方向	長手方向		横方向		長手方向		横方向	
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力	－	－	－	－	$\sigma_{\phi 1}=$	$\sigma_{\times 1}=$	$\sigma_{\phi 1}=$	$\sigma_{\mathrm{x} 1}=$
静水頭による応力 （鈖直方向地震時）	－	－	－	－	$\sigma_{\phi 2}=$	－	$\sigma_{\phi 2}=$	－
運転时質量による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{\times 2}=$	－	$\sigma_{\times 2}=$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{x 6}=$	－	$\sigma_{x 6}=$
長手方向地震により胴車由断面全面に生じる引張応力	－	－	－	－	－	$\sigma_{\times 413}=$	－	－
組合せ応力	－		－		$\sigma_{0 \ell}=$		$\sigma_{0 \mathrm{c}}=$	

$\stackrel{\infty}{\bullet}$

옹

1．3．3 基礎ボルトに生じる応力

O（1）VI－2－1－13－2 R 5 E
1.4 結論

1．4．1 固有周期		
方位： s ）		
向	固有周期	
手方向	$\mathrm{T}_{1}=$	
横方向	$\mathrm{T}_{2}=$	
鉛直	$\mathrm{T}_{3}=$	

$$
\text { すべて許容応力以下である。 注記 } *: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]
$$

[^0]: 注記＊： $\mathrm{II}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S sで評価する。

[^1]: 注記＊：$\Pi_{A} S$ については，基漼地震動 S s で評価する。

