女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0035_改 4
提出年月日	2021年 10月 29日

VI-2-1-13-2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針

2021年10月 東北電力株式会社

目 次

1. 概要 · · · · · · · · · · · · · · · · · ·
2. 一般事項 · · · · · · · · · · · · · · · · · · ·
2.1 評価方針 · · · · · · · · · · · · · · · · · 2
2.2 適用規格・基準等・・・・・・・・・・・・・・・・・・・・・・・・ 2
2.3 記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.4 計算精度と数値の丸め方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3. 評価部位 · · · · · · · · · · · · · · · · · · ·
4. 固有周期 · · · · · · · · · · · · · · · · · · 11
4.1 固有周期の計算方法・・・・・・・・・・・・・・・・・・・・・・11
4.1.1 2 脚支持横置一胴円筒形容器の場合11
4.1.2 3 脚支持横置一胴円筒形容器の場合14
4.1.3 4 脚支持横置一胴円筒形容器(脚間等間隔及び脚間非等間隔)の場合 17
5. 構造強度評価 · · · · · · · · · · · · · 21
5.1 構造強度評価方法 · · · · · · · · 21
5.1.1 2脚支持横置一胴円筒形容器の場合21
5.1.2 3 脚支持横置一胴円筒形容器の場合21
5.1.3 4 脚支持横置一胴円筒形容器(脚間等間隔及び脚間非等間隔)の場合 21
5.2 設計用地震力 · · · · · · · · · · · 22
5.3 計算方法 · · · · · · · · · · · · · · · 22
5.3.1 応力の計算方法 22
5.4 応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 40
5.4.1 胴の応力評価40
5.4.2 脚の応力評価40
5.4.3 基礎ボルトの応力評価41
6. 耐震計算書のフォーマット・・・・・・・・・・・・・・・・・・・・・・・・・42

Ŋ

1. 概要

本資料は、添付書類「VI-2-1-1 耐震設計の基本方針」に基づき、耐震性に関する説明書が求められている横置一胴円筒形容器(耐震重要度分類 S クラス又は S s 機能維持の計算を行うもの)が、十分な耐震性を有していることを確認するための耐震計算の方法について記載したものである。

解析の方針及び減衰定数については,添付書類「VI-2-1-6 地震応答解析の基本方針」 に従うものとする。

ただし、本基本方針が適用できない横置一胴円筒形容器にあっては、個別耐震計算書 にその耐震計算方法を含めて記載する。

2. 一般事項

2.1 評価方針

横置一胴円筒形容器の応力評価は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6. 耐震計算書のフォーマット」に示す。

横置一胴円筒形容器の耐震評価フローを図 2-1 に示す。

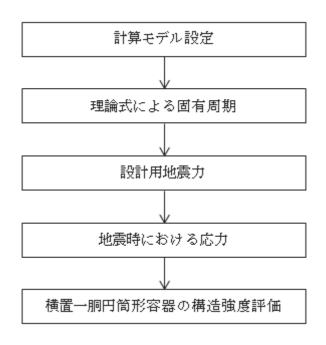


図 2-1 横置一胴円筒形容器の耐震評価フロー

2.2 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- (I) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 (JEAG 4 6 0 1· 補-1984)
- (2) 原子力発電所耐震設計技術指針 (JEAG4601-1987)
- (3) 原子力発電所耐震設計技術指針(JEAG4601-1991 追補版)
- (4) JSME S NC1-2005/2007 発電用原子力設備規格 設計・建設規格 (以下 「設計・建設規格」という。)

2.3 記号の説明

記号	記号の説明	単位				
A_b	基礎ボルトの軸断面積	mm^2				
A_s	脚の断面積					
A_{s1}	脚の長手方向に対する有効せん断断面積					
A_{s2}	脚の横方向に対する有効せん断断面積	mm^2				
A_{s3}	脚の長手方向に対するせん断断面積	${ m mm}^2$				
A_{s4}	脚の横手方向に対するせん断断面積	${\sf mm}^2$				
a	脚底板の長手方向幅	mm				
b	脚底板の横方向幅	mm				
C_1	脚の胴付け根部のアタッチメントの幅の 2 分の 1 (胴の横方	mm				
	向)					
C_2	脚の胴付け根部のアタッチメントの幅の2分の1(胴の長手方	mm				
	向)					
$C_{\mathrm{c}\mathrm{j}}$	周方向モーメントによる応力の補正係数 (引用文献(2)より得	_				
	られる値) (j=1:周方向応力, j=2:軸方向応力)					
C_{H}	水平方向設計震度	_				
$C_{\ell \mathrm{j}}$	軸方向モーメントによる応力の補正係数 (引用文献(2)より得	_				
	られる値) (j=1:周方向応力, j=2:軸方向応力)					
C_{V}	鉛直方向設計震度	_				
D_{i}	胴の内径	mm				
d	ボルトの呼び径	mm				
d_1	脚底板端面から基礎ボルト中心までの長手方向の距離	mm				
d $_2$	脚底板端面から基礎ボルト(外側)中心までの横方向の距離	mm				
d ₃	脚底板端面から基礎ボルト(内側)中心までの横方向の距離	mm				
E s	脚の縦弾性係数	MPa				
е	脚中心から偏心荷重作用点までの距離	mm				
F	設計・建設規格 SSB-3121.1(1)に定める値	MPa				
F *	設計・建設規格 SSB-3121.3 又は SSB-3133 に定める値	MPa				
F _b	基礎ボルトに作用する引張力	N				
$f_{ m s\ b}$	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa				
f_{t}	脚の許容引張応力	MPa				
$f_{ m to}$	引張力のみを受ける基礎ボルトの許容引張応力	MPa				
$f_{ m t\ s}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa				
G_s	脚のせん断弾性係数	MPa				
g	重力加速度 (=9.80665)	m/s^2				

記号	記号の説明	単位			
Н	水頭	mm			
h ₁	基礎から脚の胴付け根部までの高さ				
h ₂	基礎から胴の中心までの高さ				
Isx	脚の長手方向軸に対する断面二次モーメント	mm ⁴			
Isy	脚の横方向軸に対する断面二次モーメント	mm ⁴			
j 1	2 脚支持横置一胴円筒形容器における荷重分布で分割する荷	_			
	重の数				
j 2	2脚支持横置一胴円筒形容器における第1脚より第2脚と反対	_			
	の方向に作用する荷重の数 (第1脚上の荷重は含まない。)				
j 3	2脚支持横置一胴円筒形容器における第2脚より第1脚と反対	_			
	の方向に作用する荷重の数 (第2脚上の荷重は含まない。)				
K _{1j} , K _{2j}	引用文献(2)によるアタッチメントパラメータの補正係数	_			
	(j=1:周方向応力, j=2:軸方向応力)				
K _c	脚のばね定数 (胴の横方向に水平力が作用する場合)	N/m			
K_{ℓ}	脚のばね定数(胴の長手方向に水平力が作用する場合)	N/m			
K _v	脚のばね定数 (胴に鉛直力が作用する場合)	N/m			
Κ _{с j} , К _{l j}	引用文献(2)によるアタッチメントパラメータの補正係数	_			
	(j=1:周方向応力, j=2:軸方向応力)				
Q	両端の脚の中心から鏡板重心までの距離	mm			
ϱ_{H}	鏡板の端から鏡板の丸みの始まる箇所までの長さ	mm			
Q i	2脚支持横置一胴円筒形容器における第1脚より各部質量まで	mm			
	の距離 (i =1, 2, 3, … j ₁)				
$\varrho_{\scriptscriptstyle m L}$	鏡板の丸みの始まる箇所間の長さ	mm			
Q _O	脚中心間距離	mm			
Q o'	4 脚支持横置一胴円筒形容器(脚間非等間隔)における脚中心	mm			
	間距離 (Qo'≠Qo)				
$\varrho_{ m w}$	当板における脚の取り付かない部分の長手方向長さ	mm			
M	脚底板に作用するモーメント	N•mm			
$M_{\rm i}$	各脚つけ根部における胴の運転時質量によるモーメント(i=	N•mm			
	1:第1脚, i=2:第2脚, i=3:第3脚, i=4:第4脚)				
$M_{\rm c}$	横方向地震により胴の脚つけ根部に作用するモーメント	N•mm			
$M_{\mathrm{c}1}$	横方向地震により脚底面に作用するモーメント	N•mm			
M_{ℓ}	長手方向地震による胴の脚つけ根部のモーメント	N•mm			
$M_{\ell 1}$	長手方向地震により脚底面に働くモーメント	N·mm			

記号	記号の説明					
M_x	胴に生じる軸方向の曲げモーメント					
M_{ϕ}	胴に生じる周方向の曲げモーメント	N·mm/mm				
m_0	容器の運転時質量	kg				
m i	容器各部の質量(i = 1, 2, 3, … j ₁)	kg				
m _{s i}	2 脚支持横置一胴円筒形容器における脚の質量 (i =1:第 1	kg				
m _{st}	脚, i = 2:第2脚) 3脚支持及び4脚支持横置一胴円筒形容器における脚1本当た りの質量	kg				
N_x	胴に生じる軸方向の膜力	N/mm				
N_{ϕ}	胴に生じる周方向の膜力	N/mm				
n	脚1個当たりの基礎ボルトの本数	_				
n ₁	長手方向及び鉛直方向地震時に引張りを受ける基礎ボルトの	_				
	本数					
n ₂	横方向及び鉛直方向地震時に引張りを受ける基礎ボルトの本	_				
	数					
Р	運転時質量により胴の脚つけ根部に作用する反力					
P_{e}	鉛直方向地震により胴の脚つけ根部に作用する反力					
P_{ℓ}	長手方向地震により胴の脚つけ根部に作用する鉛直荷重					
P _s	長手方向及び鉛直方向地震により脚底部に作用する鉛直荷重					
P _{s 1}	横方向及び鉛直方向地震により脚底部に作用する鉛直荷重					
R i	各脚の受ける荷重(i=1:第1脚, i=2:第2脚, i=3:					
	第 3 脚, i = 4: 第 4 脚)					
r m	脚つけ根部における胴の平均半径	mm				
r ₀	脚つけ根部における胴の外半径	mm				
S	設計・建設規格 付録材料図表 Part5 表 5 に定める値	MPa				
S _a	胴の許容応力	MPa				
Su	設計・建設規格 付録材料図表 Part5 表 9 に定める値	MPa				
Sy	設計・建設規格 付録材料図表 Part5 表 8 に定める値	MPa				

記号	記号の説明	単位				
$S_{y(RT)}$	設計・建設規格 付録材料図表 Part5 表 8 に定める材料の	MPa				
	40℃における値					
S	基礎ボルトと基礎の縦弾性係数比					
T ₁	長手方向固有周期	S				
T 2	横方向固有周期	S				
Т з	鉛直方向固有周期	S				
t	脚側胴板の厚さ	mm				
t e	脚つけ根部における胴の有効板厚	mm				
W	胴部自重による等分布荷重	N/mm				
Xn	基礎が圧縮力を受ける幅	mm				
Z	引用文献(1)による胴の断面係数	mm^3				
Zsx	脚の長手方向軸に対する断面係数	mm^3				
Zsy	脚の横方向軸に対する断面係数	mm^3				
β , β ₁ , β ₂	引用文献(2)によるアタッチメントパラメータ	_				
γ	引用文献(2)によるシェルパラメータ	_				
θ	引用文献(1)による胴の有効範囲角の2分の1	rad				
θο	胴の脚端部より鉛直軸までの角度	rad				
θ w	胴の脚端部より当板端部までの角度					
π	円周率	_				
ρ'	液体の密度(=比重×10 ⁻⁶)	kg/mm ³				
σ 0	胴の組合せ一次一般膜応力の最大値	MPa				
σос	横方向及び鉛直方向地震が作用した場合の胴の組合せ一次一	MPa				
	般膜応力					
σ _{0сх}	横方向及び鉛直方向地震が作用した場合の胴の軸方向一次一	MPa				
	般膜応力の和					
σосφ	横方向及び鉛直方向地震が作用した場合の胴の周方向一次一	MPa				
	般膜応力の和					
σ οι	長手方向及び鉛直方向地震が作用した場合の胴の組合せ一次	MPa				
	一般膜応力					
σ 00x	長手方向及び鉛直方向地震が作用した場合の胴の軸方向一次	MPa				
	一般膜応力の和					
σ οθφ	長手方向及び鉛直方向地震が作用した場合の胴の周方向一次	MPa				
	一般膜応力の和					
σ 1	胴の組合せ一次応力の最大値	MPa				

記号	記号の説明	単位
σ _{1 с}	横方向及び鉛直方向地震が作用した場合の胴の組合せ一次応	MPa
	力	
O 1 с х	横方向及び鉛直方向地震が作用した場合の胴の軸方向一次応	MPa
	力の和	
σ 1 c φ	横方向及び鉛直方向地震が作用した場合の胴の周方向一次応	MPa
	力の和	
σ 10	長手方向及び鉛直方向地震が作用した場合の胴の組合せ一次	MPa
	応力	
σ 10 χ	長手方向及び鉛直方向地震が作用した場合の胴の軸方向一次	MPa
	応力の和	
σ 10φ	長手方向及び鉛直方向地震が作用した場合の胴の周方向一次	MPa
	応力の和	
σ 2	地震動のみによる胴の組合せ一次応力と二次応力の和の変動	MPa
	値の最大値	
σ 2 с	横方向及び鉛直方向地震のみによる胴の組合せ一次応力と二	MPa
	次応力の和	
О 2 c x	横方向及び鉛直方向地震のみによる胴の軸方向一次応力と二	MPa
	次応力の和	
σ 2 c φ	横方向及び鉛直方向地震のみによる胴の周方向一次応力と二	MPa
	次応力の和	
σ 20	長手方向及び鉛直方向地震のみによる胴の組合せ一次応力と	MPa
	二次応力の和	
σ 20 x	長手方向及び鉛直方向地震のみによる胴の軸方向一次応力と	MPa
	二次応力の和	
σ 20φ	長手方向及び鉛直方向地震のみによる胴の周方向一次応力と	MPa
	二次応力の和	
σь	基礎ボルトに生じる引張応力の最大値	MPa
σь1	長手方向及び鉛直方向地震により基礎ボルトに生じる引張応	MPa
	力	
σь2	横方向及び鉛直方向地震により基礎ボルトに生じる引張応力	MPa
О s	脚の組合せ応力の最大値	MPa
σ _{вс}	横方向及び鉛直方向地震が作用した場合の脚の組合せ応力	MPa
σsl	長手方向及び鉛直方向地震が作用した場合の脚の組合せ応力	MPa
σ s 1	運転時質量により脚に生じる圧縮応力	MPa
σ s 2	長手方向地震により脚に生じる曲げ及び圧縮応力の和	MPa

記号	記号の説明	単位		
σ s 3	横方向地震により脚に生じる曲げ応力	MPa		
σ _{s 4}	鉛直方向地震により脚に生じる圧縮応力			
σ _{x 1}	静水頭により胴に生じる軸方向一次応力			
σ χ 2	運転時質量による長手方向曲げモーメントにより胴の脚つけ			
	根部に生じる軸方向一次応力			
σ χ 3	運転時質量により胴の脚つけ根部に生じる軸方向一次応力	MPa		
σ x 4 1, σ x 4 2	長手方向地震により胴の脚つけ根部に生じる軸方向一次応力	MPa		
	の和及び二次応力の和			
σ x 4 1 1, σ x 4 2 1	長手方向地震による曲げモーメントにより胴の脚つけ根部に	MPa		
	生じる軸方向一次応力及び二次応力			
σ x 4 1 2, σ x 4 2 2	長手方向地震による鉛直荷重により胴の脚つけ根部に生じる	MPa		
	軸方向一次応力及び二次応力			
σ x 4 1 3	長手方向地震による水平方向荷重により胴に生じる軸方向一	MPa		
	次応力			
σ _{x51} , σ _{x52}	横方向地震による曲げモーメントにより胴の脚つけ根部に生	MPa		
	じる軸方向一次応力及び二次応力			
σ _{x 6}	鉛直方向地震による長手方向曲げモーメントにより胴の脚つ	MPa		
	け根部に生じる軸方向一次応力			
σ _x 71, σ _x 72	鉛直方向地震により胴の脚つけ根部に生じる軸方向一次応力	MPa		
	及び二次応力			
σ φ 1	静水頭により胴に生じる周方向一次応力	MPa		
σ φ 2	静水頭に鉛直地震力が加わり胴に生じる周方向一次応力	MPa		
σ φ 3	運転時質量により胴の脚つけ根部に生じる周方向一次応力	MPa		
σ φ41, σ φ42	長手方向地震により胴の脚つけ根部に生じる周方向一次応力	MPa		
	の和及び二次応力の和			
σ φ411, σ φ421	長手方向地震による曲げモーメントにより胴の脚つけ根部に	MPa		
	生じる周方向一次応力及び二次応力			
σ φ412, σ φ422	長手方向地震による鉛直荷重により胴の脚つけ根部に生じる	MPa		
	周方向一次応力及び二次応力			
σ φ 5 1, σ φ 5 2	横方向地震による曲げモーメントにより胴の脚つけ根部に生	MPa		
	じる周方向一次応力及び二次応力			
σ φ71, σ φ72	鉛直方向地震により胴の脚つけ根部に生じる周方向一次応力	MPa		
	及び二次応力			
τь	基礎ボルトに生じるせん断応力の最大値	MPa		
τ _{ь1}	長手方向地震により基礎ボルトに生じるせん断応力	MPa		

記号	記号の説明		
τь2	横方向地震により基礎ボルトに生じるせん断応力	MPa	
τ с	横方向地震により胴の脚つけ根部に生じるせん断応力	MPa	
τ ρ	長手方向地震により胴の脚つけ根部に生じるせん断応力	MPa	
τ s 2	長手方向地震により脚に生じるせん断応力	MPa	
τ s 3	横方向地震により脚に生じるせん断応力	MPa	

2.4 計算精度と数値の丸め方

計算精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は、表 2-1 に示すとおりである。

表 2-1 表示する数値の丸め方

数値の種類		単位	処理桁	処理方法	表示桁
固有周期		S	小数点以下第4位	四捨五入	小数点以下第3位
	震度	_	小数点以下第3位	切上げ	小数点以下第2位
-	最高使用圧力	MPa			小数点以下第2位
	温度	$^{\circ}$			整数位
比重		_	小数点以下第3位	四捨五入	小数点以下第2位
質量		kg			整数位
長	下記以外の長さ	mm			整数位*1
さ	胴板の厚さ	mm	_	ı	小数点以下第1位
	面積	mm^2	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
モーメント		N • mm	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
カ		N	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
角度		rad	小数点以下第4位	四捨五入	小数点以下第3位
算出応力		MPa	小数点以下第1位	切上げ	整数位
許容応力		MPa	小数点以下第1位	切捨て	整数位*3

注記*1:設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2:絶対値が1000以上のときは、べき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及 び降状点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位 までの値とする。

 \circ

Ŋ

3. 評価部位

横置一胴円筒形容器の耐震評価は「5.1 構造強度評価方法」に示す条件に基づき、耐 震評価上厳しくなる胴、脚及び基礎ボルトについて評価を実施する。

4. 固有周期

- 4.1 固有周期の計算方法
 - 4.1.1 2 脚支持横置一胴円筒形容器の場合
 - (1) 計算モデル

モデル化に当たっては次の条件で行う。

- a. 容器及び内容物の質量は中心軸に集中するものとする。
- b. 容器の胴は2個の脚で支持され、脚はそれぞれ基礎ボルトで基礎に固定されており、固定端とする。
- c. 胴は剛とし、脚をはりと考え、変形モードは脚の曲げ及びせん断変形を考慮する。
- d. 脚が長手方向に変形する場合,脚を基礎に取り付ける基礎ボルトが,脚の変形方向に直角な方向より見て脚1個につき1列の場合は下端を単純支持とする。 その他の場合は固定とする。
- e. 第2脚は長手方向にスライドできるものとし、その方向の力は全て第1脚で 受けるものとする。
- f. 耐震計算に用いる寸法は、公称値を使用する。

本容器の荷重状態及び胴に生じるモーメントを図 4-1~図 4-4 に示す。

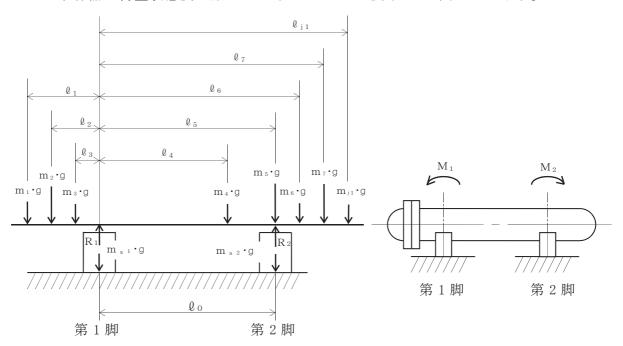
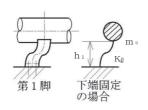


図 4-1 荷重状態


図 4-2 脚の位置での曲げ モーメント

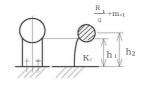


図 4-3 長手方向荷重による胴の第 1 脚つけ根部 のモーメント及び鉛直荷重

図 4-4 横方向荷重による 胴の第 1 脚つけ根 部のモーメント

本容器は,前記の条件より図 4-5,図 4-6 及び図 4-7 のような 1 質点系振動モデルとして考える。

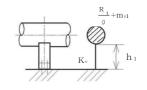


図 4-5長手方向の固有周期図 4-6横方向の固有周期図 4-7鉛直方向の固有周期計算モデル計算モデル計算モデル

(2) 脚の受ける荷重

脚の受ける荷重はモーメントの釣合いより求める。図 4-1 において第 1 脚回りのモーメントの釣合いは次式で求める。

$$\sum_{i=1}^{j_1} m_i \cdot g \cdot \ell_i - R_2 \cdot \ell_0 = 0 \qquad (4.1.1.1)$$

したがって, 脚の受ける荷重は次式で求める。

$$R_{2} = \sum_{i=1}^{j_{1}} m_{i} \cdot g \cdot \ell_{i} / \ell_{0} \qquad (4.1.1.2)$$

$$R_1 = \sum_{i=1}^{j_1} m_i \cdot g - R_2$$
 (4.1.1.3)

(3) 長手方向の固有周期

図 4-5 におけるばね定数は次式で求める。

$$K_{\ell} = \frac{1000}{\frac{h_{1}^{3}}{12 \cdot E_{s} \cdot I_{sy}} + \frac{h_{1}}{G_{s} \cdot A_{s_{1}}}}$$
 (4.1.1.4)

固有周期は次式で求める。

$$T_{1} = 2 \cdot \pi \cdot \sqrt{\frac{m_{0}}{K_{\ell}}} \qquad (4.1.1.5)$$

(4) 横方向の固有周期

図 4-6 におけるばね定数は次式で求める。

固有周期は次式で求める。

$$T_2 = 2 \cdot \pi \cdot \sqrt{\frac{R_1}{g} + m_{s1}}$$
 (4.1.1.7)

ただし、脚の受ける荷重が $R_2 > R_1$ となる場合は、 R_1 を R_2 に置き換える。

(5) 鉛直方向の固有周期

図 4-7 におけるばね定数は次式で求める。

$$K_{v} = \frac{1000}{\frac{h_{1}}{A_{s} \cdot E_{s}}} \qquad (4.1.1.8)$$

固有周期は次式で求める。

ただし、脚の受ける荷重が $R_2 > R_1$ となる場合は、 R_1 を R_2 に置き換える。

4.1.2 3 脚支持横置一胴円筒形容器の場合

(1) 計算モデル

モデル化に当たっては次の条件で行う。

- a. 容器及び内容物の質量は中心軸に集中するものとする。
- b. 3 脚支持横置一胴円筒形容器は 3 個の脚で支持され、脚はそれぞれ基礎ボルトで基礎に固定されているため、固定端とする。
- c. 胴は剛とし、脚をはりと考え、変形モードは脚の曲げ及びせん断変形を考慮する。
- d. 耐震計算に用いる寸法は、公称値を使用する。

本容器の荷重状態及び胴に生じるモーメントを図 4-8~図 4-11 に示す。

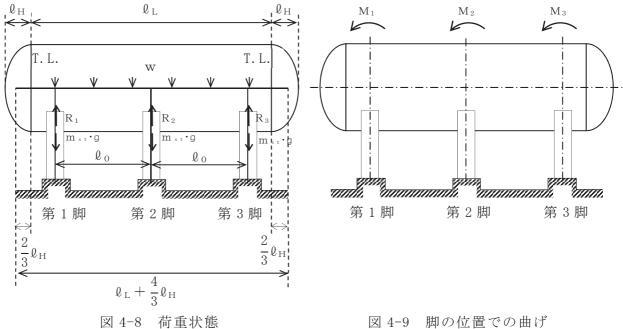
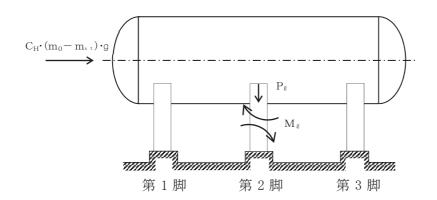



図 4-9 脚の位置での曲げ モーメント

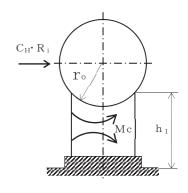
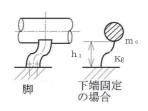
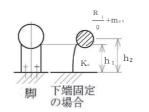




図 4-10 長手方向荷重による胴の脚つけ根部 のモーメント及び鉛直荷重

図 4-11 横方向荷重による 胴の脚つけ根部の モーメント

本容器は,前記の条件より図 4-12, 図 4-13 及び図 4-14 のような 1 質点系振動 モデルとして考える。

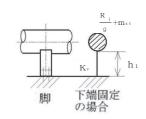


図 4-12 長手方向の固有周期図 4-13 横方向の固有周期図 4-14 鉛直方向の固有周計算モデル計算モデル期計算モデル

(2) 脚の受ける荷重

第 1 脚及び第 3 脚に作用する荷重 曲げモーメントは、5.3.1.1 項で算出した曲げモーメントを使用する。 ここで、モデルの幾何学的な対称性より $R_1 = R_3$, $M_1 = M_3$ とする

$$R_1 = R_3 = \frac{(m_0 - 3 \cdot m_{st}) \cdot g - R_2}{2}$$
 (4. 1. 2. 1)

第2脚に作用する荷重

$$R_2 = \frac{5 \cdot w \cdot \ell_0}{4} - \frac{3 \cdot M_1}{\ell_0} \quad \cdots \qquad (4.1.2.2)$$

(3) 長手方向の固有周期

図 4-12 におけるばね定数は次式で求める。

$$K_{\ell} = \frac{3 \times 1000}{\frac{h_{1}^{3}}{12 \cdot E_{s} \cdot I_{sy}} + \frac{h_{1}}{G_{s} \cdot A_{s1}}} \qquad (4.1.2.3)$$

固有周期は次式で求める。

$$T_1 = 2 \cdot \pi \cdot \sqrt{\frac{m_0}{K_{\ell}}} \qquad \cdots \qquad (4.1.2.4)$$

(4) 横方向の固有周期

図 4-13 におけるばね定数は次式で求める。

$$K_{c} = \frac{1000}{\frac{h_{1}^{2} \cdot (3 \cdot h_{2} - h_{1})}{6 \cdot E_{s} \cdot I_{sx}} + \frac{(h_{2} - h_{1}) \cdot h_{1} \cdot (h_{2} - h_{1}/2)}{E_{s} \cdot I_{sx}} + \frac{h_{1}}{G_{s} \cdot A_{s2}}}$$
(4.1.0.5)

固有周期は次式で求める。

$$T_2=2 \cdot \pi \cdot \sqrt{\frac{\frac{R_i}{g} + m_{st}}{K_c}}$$
 (4.1.2.6)

ただし、R;は各脚に作用する荷重のうち、最大のものとする。

(5) 鉛直方向の固有周期

図 4-14 におけるばね定数は次式で求める。

$$K_{v} = \frac{1000}{\frac{h_{1}}{A_{0} \cdot F_{co}}} \qquad (4.1.2.7)$$

固有周期は次式で求める。

$$T_{3} = 2 \cdot \pi \cdot \sqrt{\frac{R_{i}}{g} + m_{st}}$$
 (4.1.2.8)

ただし、Riは各脚に作用する荷重のうち、最大のものとする。

- 4.1.3 4 脚支持横置一胴円筒形容器(脚間等間隔及び脚間非等間隔)の場合
 - (1) 計算モデル

モデル化に当たっては次の条件で行う。

- a. 容器及び内容物の質量は中心軸に集中するものとする。
- b. 4 脚支持横置一胴円筒形容器は 4 個の脚で支持され、脚はそれぞれ基礎ボルトで基礎に固定されているため、固定端とする。
- c. 胴は剛とし、脚をはりと考え、変形モードは脚の曲げ及びせん断変形を考慮する。
- d. 耐震計算に用いる寸法は、公称値を使用する。

本容器の荷重状態及び胴に生じるモーメントを図 4-15~図 4-19 に示す。

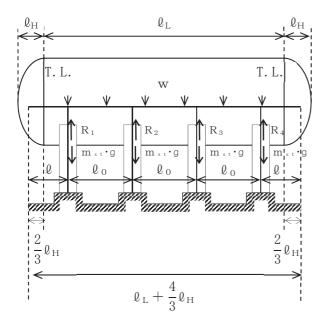


図 4-15 荷重状態 (脚間等間隔)

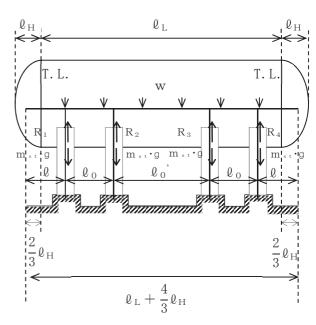


図 4-16 荷重状態 (脚間非等間隔)

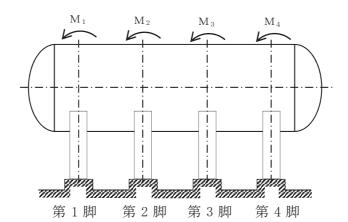


図 4-17 脚の位置での曲げモーメント

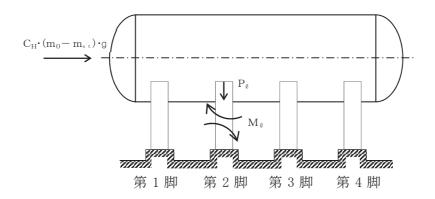


図 4-18 長手方向荷重による胴の脚つけ根部のモーメント及び鉛直荷重

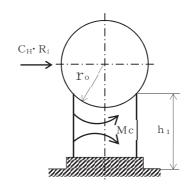
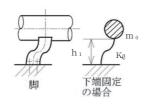



図 4-19 横方向荷重による胴の脚つけ根部のモーメント

本容器は,前記の条件より図 4-20,図 4-21 及び図 4-22 のような 1 質点系振動 モデルとして考える。

脚 下端固定 の場合

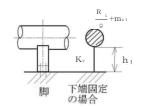


図 4-20 長手方向の固有周期 計算モデル

図 4-21 横方向の固有周期 計算モデル

図 4-22 鉛直方向の固有周期 計算モデル

(2) 脚の受ける荷重

a. 4 脚支持横置一胴円筒形容器(脚間等間隔)の場合 曲げモーメントは、5.3.1.1 項で算出した曲げモーメントを使用する。 ここで、モデルの幾何学 $\frac{1}{1}$ な対称性より $\frac{1}{1}$ R $\frac{1}$

第1脚及び第4脚に作用する荷重

$$R_1 = R_4 = w \cdot \ell + \frac{w}{2} \cdot \ell_0 - \frac{M_2 - M_1}{\ell_0}$$
 (4. 1. 3. 1)

第2脚及び第3脚に作用する荷重

 b. 4 脚支持横置一胴円筒形容器(脚間非等間隔)の場合 曲げモーメントは、5.3.1.1 項で算出した曲げモーメントを使用する。 ここで、モデルの幾何学的な対称性よりR₁=R₄、R₂=R₃、M₁=M₄、 M₂=M₃とする。

第1脚及び第4脚に作用する荷重

$$R_1 = R_4 = w \cdot \ell + \frac{w}{2} \cdot \ell_0 - \frac{M_2 - M_1}{\ell_0}$$
 (4.1.3.3)

第2脚及び第3脚に作用する荷重

$$R_{2} = R_{3} = \frac{w}{2} \cdot \ell_{0} + \frac{w}{2} \cdot \ell_{0}' - \frac{M_{1} - M_{2}}{\ell_{0}} - \frac{M_{3} - M_{2}}{\ell_{0}'}$$

$$= \frac{w}{2} \cdot (\ell_{0} + \ell_{0}') - \frac{M_{1} - M_{2}}{\ell_{0}} \qquad (4.1.3.4)$$

(3) 長手方向の固有周期

図 4-20 におけるばね定数は次式で求める。

$$K_{\ell} = \frac{4 \times 1000}{\frac{h_{1}^{3}}{12 \cdot E_{s} \cdot I_{sy}} + \frac{h_{1}}{G_{s} \cdot A_{s1}}}$$
(4. 1. 3. 5)

固有周期は次式で求める。

$$T_1 = 2 \cdot \pi \cdot \sqrt{\frac{m_0}{K_{\ell}}} \qquad \cdots \qquad (4.1.3.6)$$

(4) 横方向の固有周期

図 4-21 におけるばね定数は次式で求める。

固有周期は次式で求める。

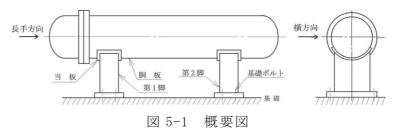
$$T_2=2 \cdot \pi \cdot \sqrt{\frac{R_i}{g} + m_{st}}$$
 (4.1.3.8)

ただし、Riは各脚に作用する荷重のうち、最大のものとする。

(5) 鉛直方向の固有周期

図 4-22 におけるばね定数は次式で求める。

$$K_{v} = \frac{1000}{\frac{h_{1}}{A_{s} \cdot E_{s}}} \qquad (4.1.3.9)$$


固有周期は次式で求める。

$$T_3 = 2 \cdot \pi \cdot \sqrt{\frac{R_i}{g} + m_{st}}$$
 (4.1.3.10)

ただし、R:は各脚に作用する荷重のうち、最大のものとする。

5. 構造強度評価

- 5.1 構造強度評価方法
 - 5.1.1 2 脚支持横置一胴円筒形容器の場合 4.1.1(1)項 a.~f.のほか,次の条件で計算する。概要図を図 5-1 に示す。
 - (1) 地震力は容器に対して水平方向及び鉛直方向に作用するものとする。ここで、水平方向地震は胴の長手方向に作用する場合と胴の横方向に作用する場合を考慮する。
 - (2) 第1脚と第2脚は同形状であり、受ける荷重の大きい方の脚についての評価を計算書に記載する。

- 5.1.2 3 脚支持横置一胴円筒形容器の場合 4.1.2(1)項の a.~d.のほか,次の条件で計算する。
 - (1) 5.1.1(1)項と同様に地震力は容器に対して水平方向及び鉛直方向に作用するものとする。ここで、水平方向地震は胴の長手方向に作用する場合と胴の横方向に作用する場合を考慮する。
 - (2) 5.1.1(2)項と同様に全脚は同形状であり、受ける荷重が最大の脚についての評価を計算書に記載する。
- 5.1.3 4 脚支持横置一胴円筒形容器 (脚間等間隔及び脚間非等間隔) の場合 4.1.3(1)項の a. ~ d.のほか,次の条件で計算する。
 - (1) 5.1.1(1)項と同様に地震力は容器に対して水平方向及び鉛直方向に作用するものとする。ここで、水平方向地震は胴の長手方向に作用する場合と胴の横方向に作用する場合を考慮する。
 - (2) 5.1.1(2)項と同様に全脚は同形状であり、受ける荷重が最大の脚についての評価を計算書に記載する。

5.2 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は、 添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。

5.3 計算方法

5.3.1 応力の計算方法

応力計算における水平方向と鉛直方向の組合せについて、静的地震力を用いる場合は絶対値和を用いる。動的地震力を用いる場合は、絶対値和又は SRSS 法を用いる。

5.3.1.1 胴の計算方法

(1) 曲げモーメント

a. 2 脚支持横置一胴円筒形容器の場合

図 4-1 に示すように胴を集中荷重を受けるはりとして考える。

図 4-2 において脚つけ根部における第 1 脚に作用する曲げモーメント M_1 及び第 2 脚に作用する曲げモーメント M_2 は次式で求める。

$$M_1 = \sum_{i=1}^{j} m_i \cdot g \cdot |\ell_i|$$
 (5. 3. 1. 1. 1)

$$M_{2} = \sum_{i=j \, 1-j \, 3+1}^{j \, 1} m_{i} \cdot g \cdot |\ell_{i} - \ell_{0}| \qquad (5. \, 3. \, 1. \, 1. \, 2)$$

b. 3 脚支持横置一胴円筒形容器の場合

$$w = \frac{\left(m_0 - 3 \cdot m_{st}\right) \cdot g}{\ell_L + \frac{4}{3} \cdot \ell_H} \qquad (5.3.1.1.3)$$

第1脚及び第3脚に作用する曲げモーメント

$$M_1 = M_3 = \frac{1}{2} \cdot w \cdot \left(\frac{2}{3} \cdot \ell_H + \frac{\ell_L - 2 \cdot \ell_0}{2}\right)^2$$
 (5. 3. 1. 1. 4)

第2脚に作用する曲げモーメント

$$M_2 = \frac{\mathbf{w} \cdot \ell_0^2}{8} - \frac{M_1}{2}$$
 (5. 3. 1. 1. 5)

c. 4 脚支持横置一胴円筒形容器(脚間等間隔)の場合

$$w = \frac{\left(m_0 - 4 \cdot m_{st}\right) \cdot g}{\ell_L + \frac{4}{3} \cdot \ell_H} \qquad (5.3.1.1.6)$$

第1脚及び第4脚に作用する曲げモーメント

$$M_1 = M_4 = \frac{1}{2} \cdot w \cdot \ell^2$$
 (5. 3. 1. 1. 7)

第2脚及び第3脚に作用する曲げモーメント

$$M_2 = M_3 = \frac{W}{10} \cdot (\ell_0^2 - \ell^2)$$
 (5. 3. 1. 1. 8)

d. 4 脚支持横置一胴円筒形容器(脚間非等間隔)の場合

$$w = \frac{\left(m_0 - 4 \cdot m_{st}\right) \cdot g}{\ell_L + \frac{4}{3} \cdot \ell_H} \qquad (5.3.1.1.9)$$

第1脚及び第4脚に作用する曲げモーメント

$$M_1 = M_4 = \frac{1}{2} \cdot w \cdot \ell^2$$
 (5. 3. 1. 1. 10)

第2脚及び第3脚に作用する曲げモーメント

$$M_{2} = M_{3} = \frac{1}{4} \cdot w \cdot \left\{ \frac{\left(\ell_{0}^{3} + \ell_{0}^{3} \right) - 2 \cdot \ell^{2} \cdot \ell_{0}}{2 \cdot \ell_{0} + 3 \cdot \ell_{0}} \right\} \quad \cdots \qquad (5. \ 3. \ 1. \ 1. \ 11)$$

(2) 静水頭又は内圧による応力

静水頭による場合(鉛直方向地震時を含む。)

$$\sigma_{\phi 1} = \frac{\rho' \cdot g \cdot H \cdot D_i}{2 \cdot t} \qquad (5.3.1.1.12)$$

$$\sigma_{\phi 2} = \frac{\rho' \cdot g \cdot H \cdot D_i \cdot C_V}{2 \cdot t} \qquad (5.3.1.1.13)$$

$$\sigma_{x1} = \frac{\rho' \cdot g \cdot H \cdot D_i}{4 \cdot t} \qquad \cdots \qquad (5.3.1.1.14)$$

内圧による場合

$$\sigma_{\phi 1} = \frac{P_{r} \cdot (D_{i} + 1.2 \cdot t)}{2 \cdot t} \qquad (5.3.1.1.15)$$

$$\sigma_{\phi 2} = 0 \qquad \cdots \qquad (5. 3. 1. 1. 16)$$

$$\sigma_{x1} = \frac{P_r \cdot (D_i + 1.2 \cdot t)}{4 \cdot t} \qquad (5.3.1.1.17)$$

- (3) 運転時質量及び鉛直方向地震により生じる長手方向曲げモーメントによる 応力
 - (1)で求めた曲げモーメントにより胴の脚つけ根部に生じる応力は次のように求める。

引用文献(1)によれば、この曲げモーメントは胴の断面に対して一様に作用するものではなく、脚つけ根部において円周方向の曲げモーメントに置き換えられ、胴の局部変形を生じさせようとする。

長手方向の曲げモーメントによる胴の応力の影響範囲を脚上 θ 。 /6 の点と すると長手方向曲げモーメントに対する胴の有効断面積は図 5-2 に $2\cdot\theta$ で示される円殻である。

したがって, 運転時質量による応力は次式で求める。

$$\sigma_{x2} = \frac{M_i}{Z} \qquad (5.3.1.1.18)$$

また,鉛直方向地震による応力は次式で求める。

$$\sigma_{x6} = \frac{M_i}{7} \cdot C_V \qquad (5.3.1.1.19)$$

ただし、Mi は各脚に作用する曲げモーメントのうち、最大のものとする。

ここで.

$$r_{m} = \frac{D_{i} + t_{e}}{2}$$
 (5. 3. 1. 1. 20)

$$Z = r_{m}^{2} \cdot t_{e} \cdot \left\{ \frac{\theta + \sin \theta \cdot \cos \theta - 2 \cdot \sin^{2} \theta / \theta}{(\sin \theta / \theta) - \cos \theta} \right\}$$
 (5. 3. 1. 1. 21)

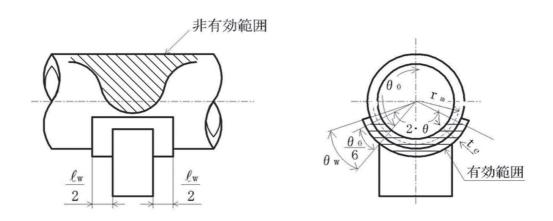


図 5-2 脚つけ根部の有効範囲

胴の脚つけ根部に取り付く当板の大きさが

周方向範囲
$$\theta_{\text{w}} \ge \frac{\theta_0}{6}^{*1}$$
 (5. 3. 1. 1. 22)

長手方向範囲
$$\ell_{\rm w} \ge 1.56 \cdot \sqrt{\left(\frac{{\rm D}_{\rm i} + {\rm t}}{2}\right) \cdot {\rm t}}^{*2}$$
 · · · · · (5.3.1.1.23)

である場合、脚つけ根部における胴の有効板厚 t。は胴板の厚さと当板の厚さの合計とする。また、当板が上記の範囲を満たさない場合、t。は胴板の厚さとする。

注記*1:引用文献(1)より引用

*2:引用文献(3)より引用

(4) 運転時質量及び鉛直方向地震による脚つけ根部の応力

脚の受ける荷重R_iは各脚に作用する荷重のうち、最大のものとする。胴の脚つけ根部には脚反力による周方向応力及び軸方向応力が生じる。胴の脚つけ根部に作用する反力は次式で求める。

運転時質量による反力は,

$$P = R_{i}$$
 (5. 3. 1. 1. 24)

鉛直方向地震による反力は,

$$P_{e} = C_{V} \cdot R_{:}$$
 (5. 3. 1. 1. 25)

この反力 P 及び P 。により生じる胴の周方向応力及び軸方向応力は、引用文 献(2)により次のように求める。

脚が胴に及ぼす力の関係を図5-3に示す。

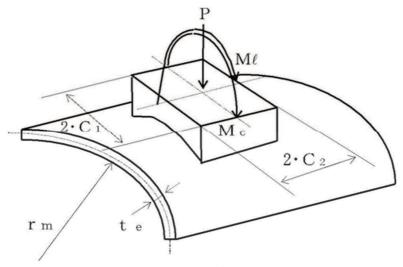


図 5-3 脚が胴に及ぼす力の関係

ここで、シェルパラメータγ及びアタッチメントパラメータβは以下のよう に定義する。

$$\gamma = r_{\rm m} / t_{\rm e}$$
 (5. 3. 1. 1. 26)

$$\beta_1 = C_1 / r_m$$
 (5. 3. 1. 1. 27)

$$\beta_2 = C_2 / r_m \qquad \cdots \qquad (5.3.1.1.28)$$

 $4 \ge \beta_1 / \beta_2 \ge 1$ のとき

ただし、 $\beta \leq 0.5$

$$\frac{1}{4} \le \beta_1 / \beta_2 < 1 \text{ obs}$$

ただし、 $β \le 0.5$

シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献(2) の図より値(以下*を付記するもの)を求めることにより応力は次式で求める。 反力 Pによる応力は,

一次応力

$$\sigma_{\phi 3} = \left(\frac{N_{\phi}}{P / r_{m}}\right)^{*} \cdot \left(\frac{P}{r_{m} \cdot t_{e}}\right) \qquad (5. 3. 1. 1. 31)$$

$$\sigma_{x3} = \left(\frac{N_x}{P / r_m}\right)^* \cdot \left(\frac{P}{r_m \cdot t_e}\right) \qquad (5.3.1.1.32)$$

反力P。による応力は,

一次応力

$$\sigma_{\phi71} = \left(\frac{N_{\phi}}{P_{e} / r_{m}}\right)^{*} \cdot \left(\frac{P_{e}}{r_{m} \cdot t_{e}}\right) \qquad (5.3.1.1.33)$$

$$\sigma_{X71} = \left(\frac{N_X}{P_e / r_m}\right)^* \cdot \left(\frac{P_e}{r_m \cdot t_e}\right) \qquad (5.3.1.1.34)$$

二次応力

$$\sigma_{\phi72} = \left(\frac{M_{\phi}}{P_{e}}\right)^{*} \cdot \left(\frac{6 \cdot P_{e}}{t_{e}}\right) \qquad (5.3.1.1.35)$$

$$\sigma_{x72} = \left(\frac{M_x}{P_e}\right)^* \cdot \left(\frac{6 \cdot P_e}{t_e^2}\right) \qquad (5.3.1.1.36)$$

(5) 長手方向地震による脚つけ根部の応力

a. 2 脚支持横置一胴円筒形容器の場合

第2脚は長手方向に自由にスライドできるので第1脚は図4-3のように変形し、脚つけ根部に生じる曲げモーメント及び鉛直荷重は次式で求める。

$$M_{\ell} = \frac{1}{2} \cdot C_{H} \cdot (m_{0} - m_{s1}) \cdot g \cdot h_{1}$$
 (5. 3. 1. 1. 37)

$$P_{\ell} = C_{H} \cdot (m_{0} - m_{s1}) \cdot g \cdot \frac{h_{2} - \frac{1}{2} \cdot h_{1}}{\ell_{0}}$$
 (5. 3. 1. 1. 38)

b. 3 脚支持横置一胴円筒形容器の場合

全脚固定であり、脚つけ根部に生じる曲げモーメント及び鉛直荷重は次式 で求める。

$$M_{\ell} = \frac{1}{6} \cdot C_{H} \cdot (m_{0} - m_{st}) \cdot g \cdot h_{1}$$
 (5. 3. 1. 1. 39)

$$P_{\ell} = C_{H} \cdot (m_{0} - m_{st}) \cdot g \cdot \frac{h_{2} - \frac{1}{2} \cdot h_{1}}{2 \cdot \ell_{0}}$$
 (5. 3. 1. 1. 40)

c. 4 脚支持横置一胴円筒形容器(脚間等間隔)の場合

全脚固定であり、脚つけ根部に生じる曲げモーメント及び鉛直荷重は次式で求める。

$$M_{\ell} = \frac{1}{8} \cdot C_{H} \cdot (m_{0} - m_{st}) \cdot g \cdot h_{1}$$
 (5. 3. 1. 1. 41)

$$P_{\ell} = C_{H} \cdot (m_{0} - m_{st}) \cdot g \cdot \frac{h_{2} - \frac{1}{2} \cdot h_{1}}{3 \cdot \ell_{0}}$$
 (5. 3. 1. 1. 42)

d. 4 脚支持横置一胴円筒形容器(脚間非等間隔)の場合

全脚固定であり、脚つけ根部に生じる曲げモーメント及び鉛直荷重は次式 で求める。

$$M_{\ell} = \frac{1}{8} \cdot C_{H} \cdot (m_{0} - m_{st}) \cdot g \cdot h_{1} \qquad (5.3.1.1.43)$$

$$P_{\ell} = C_{H} \cdot (m_{0} - m_{st}) \cdot g \cdot \frac{h_{2} - \frac{1}{2} \cdot h_{1}}{2 \cdot \ell_{0} + \ell_{0}} \qquad (5.3.1.1.44)$$

曲げモーメント M_{ℓ} と鉛直荷重 P_{ℓ} により生じる胴の周方向応力及び軸方向応力は、シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献(2)の図より値(以下*を付記するもの)を求めることより(5.3.1.1.46)式~(5.3.1.1.53)式で求める。

ここで、シェルパラメータ γ 及び P_{ϱ} の場合のPタッチメントパラメータ β は(4)と同じであるが、 M_{ϱ} の場合のPタッチメントパラメータ β は次式による。

ただし、二次応力を求める場合は更にK_{ℓj}を乗じた値とする。

$$\beta = \sqrt[3]{\beta_1 \cdot \beta_2}^2 \qquad (5.3.1.1.45)$$

ただし、 $β \le 0.5$

曲げモーメントM_®により生じる応力は次式で求める。

一次応力

二次応力

$$\sigma_{\phi 421} = \left\{ \frac{M_{\phi}}{M_{\ell} / (r_{m} \cdot \beta)} \right\}^{*} \cdot \left(\frac{6 \cdot M_{\ell}}{r_{m} \cdot \beta \cdot t_{e}^{2}} \right) \qquad (5.3.1.1.48)$$

$$\sigma_{x421} = \left\{ \frac{M_{x}}{M_{\ell} / (r_{m} \cdot \beta)} \right\}^{*} \cdot \left(\frac{6 \cdot M_{\ell}}{r_{m} \cdot \beta \cdot t_{e}^{2}} \right) \qquad (5.3.1.1.49)$$

鉛直荷重P』により生じる応力は次式で求める。

一次応力

$$\sigma_{\phi 412} = \left(\frac{N_{\phi}}{P_{\ell} / r_{m}}\right)^{*} \cdot \left(\frac{P_{\ell}}{r_{m} \cdot t_{e}}\right) \qquad (5.3.1.1.50)$$

$$\sigma_{X412} = \left(\frac{N_X}{P_{\emptyset} / r_m}\right)^* \cdot \left(\frac{P_{\emptyset}}{r_m \cdot t_{\theta}}\right) \qquad (5.3.1.1.51)$$

二次応力

$$\sigma_{\phi 422} = \left(\frac{M_{\phi}}{P_{\ell}}\right)^* \cdot \left(\frac{6 \cdot P_{\ell}}{t_{e}}\right) \qquad (5.3.1.1.52)$$

$$\sigma_{x422} = \left(\frac{M_x}{P_{\ell}}\right)^* \cdot \left(\frac{6 \cdot P_{\ell}}{t_e^2}\right) \qquad (5.3.1.1.53)$$

また, 水平方向荷重により胴には, 次式で求める引張応力が生じる。

$$\sigma_{x413} = \frac{C_{H} \cdot (m_{0} - m_{s1}) \cdot g}{\pi \cdot (D_{i} + t) \cdot t} \qquad (5.3.1.1.54)$$

ただし、3 脚支持及び 4 脚支持横置一胴円筒容器の場合は、上式における m_{s1} を m_{st} と読み替える。

したがって、曲げモーメント M_{ℓ} 、鉛直荷重 P_{ℓ} 及び水平方向荷重により生じる胴の応力は次式で求める。

一次応力

$$\sigma_{\phi 41} = \sigma_{\phi 411} + \sigma_{\phi 412} \qquad (5.3.1.1.55)$$

$$\sigma_{x41} = \sigma_{x411} + \sigma_{x412} + \sigma_{x413} \qquad \cdots \qquad (5. \ 3. \ 1. \ 1. \ 56)$$

二次応力

$$\sigma_{\phi 42} = \sigma_{\phi 421} + \sigma_{\phi 422} \qquad \cdots \qquad (5. 3. 1. 1. 57)$$

$$\sigma_{x42} = \sigma_{x421} + \sigma_{x422}$$
 (5. 3. 1. 1. 58)

e. 2 脚支持横置一胴円筒形容器の場合

また,長手方向地震が作用した場合,第1脚つけ根部に生じるせん断応力 は次式で求める。

$$\tau_{\ell} = \frac{C_{H} \cdot (m_{0} - m_{s1}) \cdot g}{4 \cdot C_{2} \cdot t} \qquad (5.3.1.1.59)$$

f. 3 脚支持横置一胴円筒形容器の場合

また,長手方向地震が作用した場合,脚つけ根部に生じるせん断応力は次 式で求める。

$$\tau_{\ell} = \frac{C_{\mathrm{H}} \cdot (\mathbf{m}_{0} - \mathbf{m}_{\mathrm{st}}) \cdot \mathbf{g}}{12 \cdot C_{2} \cdot \mathbf{t}} \qquad (5.3.1.1.60)$$

g. 4 脚支持横置一胴円筒形容器(脚間等間隔及び脚間非等間隔)の場合 また,長手方向地震が作用した場合,脚つけ根部に生じるせん断応力は次 式で求める。

$$\tau_{\ell} = \frac{C_{H} \cdot (m_{0} - m_{st}) \cdot g}{16 \cdot C_{2} \cdot t} \qquad (5.3.1.1.61)$$

(6) 横方向地震による脚つけ根部の応力

脚の受ける荷重 R_i は各脚に作用する荷重のうち、最大のものとする。横方向地震が作用した場合生じる曲げモーメント M_c は次式で求める。

$$r_0 = \frac{D_i}{2} + t_e$$
 (5. 3. 1. 1. 63)

この曲げモーメントM c により生じる胴の周方向応力及び軸方向応力は、シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献(2)の図より値(以下*を付記するもの)を求めることにより(5.3.1.1.65)式~(5.3.1.1.68)式で求める。

ここで、シェルパラメータ γ は(4)と同じであるが、アタッチメントパラメータ β は次式による。ただし、二次応力を求める場合は更に K_{cj} を乗じた値とする。

$$\beta = \sqrt[3]{\beta_1^2 \cdot \beta_2} \qquad \cdots \qquad (5.3.1.1.64)$$

ただし、 $\beta \leq 0.5$

したがって, 応力は次式で求める。

一次応力

二次応力

また, 横方向地震が作用した場合生じるせん断応力は次式で求める。

$$\tau_{c} = \frac{C_{H} \cdot R_{i}}{4 \cdot C_{1} \cdot t} \qquad (5.3.1.1.69)$$

(7) 組合せ応力

(2) \sim (6) によって求めた脚つけ根部に生じる胴の応力は以下のように組み合わせる。

a. 一次一般膜応力

鉛直方向と長手方向地震が作用した場合

$$\sigma_{0\ell} = Max\{$$
周方向応力 $(\sigma_{0\ell s})$, 軸方向応力 $(\sigma_{0\ell x})$ }

ここで,

【絶対値和】

$$\sigma_{0\ell x} = \sigma_{x1} + \sigma_{x2} + \sigma_{x6} + \sigma_{x413}$$
 (5. 3. 1. 1. 72)

【SRSS法】

$$\sigma_{0\ell x} = \sigma_{x1} + \sigma_{x2} + \sqrt{\sigma_{x6}^2 + \sigma_{x413}^2} \qquad (5.3.1.1.73)$$

鉛直方向と横方向地震が作用した場合

$$\sigma_{0c} = Max\{周方向応力(\sigma_{0c\phi}), 軸方向応力(\sigma_{0cx})\}$$

$$\cdots \cdots (5.3.1.1.74)$$

ここで

【絶対値和】

$$\sigma_{0cx} = \sigma_{x1} + \sigma_{x2} + \sigma_{x6} \qquad (5.3.1.1.76)$$

【SRSS法】

$$\sigma_{0cx} = \sigma_{x1} + \sigma_{x2} + \sigma_{x6} \qquad (5.3.1.1.77)$$

したがって、胴に生じる一次一般膜応力の最大値は、絶対値和、SRSS 法、 それぞれに対して、

とする。

b. 一次応力

鉛直方向と長手方向地震が作用した場合

ここで,

【絶対値和】

$$\sigma_{1\ell_{\phi}} = \sigma_{\phi 1} + \sigma_{\phi 2} + \sigma_{\phi 3} + \sigma_{\phi 41} + \sigma_{\phi 71}$$
 (5. 3. 1. 1. 80)

$$\sigma_{1}\ell_{x} = \sigma_{x1} + \sigma_{x2} + \sigma_{x3} + \sigma_{x41} + \sigma_{x6} + \sigma_{x71}$$

(5.3.1.1.81)

【SRSS法】

$$\sigma_{1\ell\phi} = \sigma_{\phi 1} + \sigma_{\phi 3} + \sqrt{\sigma_{\phi 4} 1^{2} + (\sigma_{\phi 2} + \sigma_{\phi 7} 1)^{2}}$$
 (5. 3. 1. 1. 82)

鉛直方向と横方向地震が作用した場合

ここで,

【絶対値和】

【SRSS 法】

したがって、胴に生じる一次応力の最大値は、絶対値和、SRSS法、それぞ れに対して,

$$\sigma_1 = Max$$
{長手方向地震時応力 $(\sigma_1 \varrho)$, 横方向地震時応力 $(\sigma_1 \varrho)$ } (5.3.1.1.89) とする。

地震動のみによる一次応力と二次応力の和の変動値 鉛直方向と長手方向地震が作用した場合の変動値

ここで,

【絶対値和】

$$\sigma_{2\ell\phi} = \sigma_{\phi2} + \sigma_{\phi41} + \sigma_{\phi42} + \sigma_{\phi71} + \sigma_{\phi72} \qquad (5.3.1.1.91)$$

$$\sigma_{2\ell_x} = \sigma_{x41} + \sigma_{x42} + \sigma_{x6} + \sigma_{x71} + \sigma_{x72} \qquad (5.3.1.1.92)$$

【SRSS法】

鉛直方向と横方向地震が作用した場合の変動値

ここで,

【絶対値和】

$$\sigma_{2c\phi} = \sigma_{\phi2} + \sigma_{\phi51} + \sigma_{\phi52} + \sigma_{\phi71} + \sigma_{\phi72} \qquad \cdots \qquad (5. \ 3. \ 1. \ 1. \ 96)$$

$$\sigma_{2cx} = \sigma_{x51} + \sigma_{x52} + \sigma_{x6} + \sigma_{x71} + \sigma_{x72} \qquad \cdots \qquad (5. \ 3. \ 1. \ 1. \ 97)$$

【SRSS法】

したがって、胴に生じる地震動のみによる一次応力と二次応力の和の変動 値の最大値は、絶対値和、SRSS法、それぞれに対して、

$$\sigma_2 = \text{Max}$$
 長手方向地震時応力 $(\sigma_{2\ell})$, 横方向地震時応力 (σ_{2c}) } (5.3.1.1.100) とする。

5.3.1.2 脚の計算方法

脚の受ける荷重Riは各脚に作用する荷重のうち、最大のものとする。

(1) 運転時質量による応力

$$\sigma_{s1} = \frac{R_i + m_{s1} \cdot g}{A_s} \qquad (5.3.1.2.1)$$

ただし、3 脚支持及び 4 脚支持横置一胴円筒容器の場合は、上式における m_{s1} を m_{st} と読み替える。

(2) 鉛直方向地震による応力

$$\sigma_{s4} = \frac{R_i + m_{s1} \cdot g}{A_s} \cdot C_V \qquad (5.3.1.2.2)$$

ただし、3 脚支持及び 4 脚支持横置一胴円筒容器の場合は、上式における m_{s1} を m_{st} と読み替える。

(3) 長手方向地震による応力

曲げ及び圧縮応力は次式で求める。

$$\sigma_{s2} = \frac{M_{\ell 1}}{Z_{sy}} + \frac{P_{\ell}}{A_s} \qquad (5.3.1.2.3)$$

$$\Xi \subseteq \mathfrak{T},$$

a. 2 脚支持横置一胴円筒形容器の場合

$$\mathbf{M}_{\ell_1} = \frac{1}{2} \cdot \mathbf{m}_0 \cdot \mathbf{C}_{\mathsf{H}} \cdot \mathbf{g} \cdot \mathbf{h}_1 \qquad \cdots \qquad (5.3.1.2.4)$$

せん断応力は次式で求める。

$$\tau_{s2} = \frac{m_0 \cdot C_H \cdot g}{A_{s3}} \qquad (5.3.1.2.5)$$

b. 3 脚支持横置一胴円筒形容器の場合

$$\mathbf{M}_{\ell_1} = \frac{1}{6} \cdot \mathbf{m}_0 \cdot \mathbf{C}_{\mathsf{H}} \cdot \mathbf{g} \cdot \mathbf{h}_1 \qquad \cdots \qquad (5. \ 3. \ 1. \ 2. \ 6)$$

せん断応力は次式で求める。

$$\tau_{s2} = \frac{m_0 \cdot C_H \cdot g}{3 \cdot A_{s3}} \qquad \cdots \qquad (5.3.1.2.7)$$

c. 4 脚支持横置一胴円筒形容器(脚間等間隔及び脚間非等間隔)の場合

$$\mathbf{M}_{\ell_1} = \frac{1}{8} \cdot \mathbf{m}_0 \cdot \mathbf{C}_{\mathsf{H}} \cdot \mathbf{g} \cdot \mathbf{h}_1 \qquad \cdots \qquad (5.3.1.2.8)$$

せん断応力は次式で求める。

$$\tau_{s2} = \frac{m_0 \cdot C_H \cdot g}{4 \cdot A_{s3}} \qquad \cdots \qquad (5.3.1.2.9)$$

(4) 横方向地震による応力

曲げ応力は次式で求める。

$$\sigma_{s3} = \frac{C_{H} \cdot (R_{i} + m_{s1} \cdot g) \cdot h_{2}}{Z_{sx}} \qquad (5.3.1.2.10)$$

せん断応力は次式で求める。

$$\tau_{s3} = \frac{C_{H} \cdot (R_i + m_{s1} \cdot g)}{A_{s4}} \qquad (5.3.1.2.11)$$

ただし、3 脚支持及び 4 脚支持横置一胴円筒容器の場合は、上式における m_{s1} を m_{s1} と読み替える。

(5) 組合せ応力

鉛直方向と長手方向地震が作用した場合

【絶対値和】

$$\sigma_{s\ell} = \sqrt{(\sigma_{s1} + \sigma_{s2} + \sigma_{s4})^2 + 3 \cdot \tau_{s2}^2} \qquad (5.3.1.2.12)$$

【SRSS 法】

$$\sigma_{s\ell} = \sqrt{\left(\sigma_{s1} + \sqrt{\sigma_{s2}^2 + \sigma_{s4}^2}\right)^2 + 3 \cdot \tau_{s2}^2}$$
 (5. 3. 1. 2. 13)

鉛直方向と横方向地震が作用した場合

【絶対値和】

$$\sigma_{sc} = \sqrt{(\sigma_{s1} + \sigma_{s3} + \sigma_{s4})^2 + 3 \cdot \tau_{s3}^2} \qquad (5.3.1.2.14)$$

【SRSS 法】

$$\sigma_{sc} = \sqrt{\left(\sigma_{s1} + \sqrt{\sigma_{s3}^2 + \sigma_{s4}^2}\right)^2 + 3 \cdot \tau_{s3}^2} \qquad (5.3.1.2.15)$$

したがって、脚に生じる最大応力は、絶対値和、SRSS 法、それぞれに対して、 $\sigma_s = Max\{$ 長手方向地震時応力 $(\sigma_{s\ell})$ 、横方向地震時応力 (σ_{sc}) }

とする。

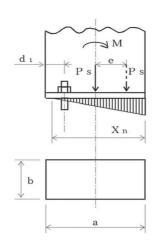
- 5.3.1.3 基礎ボルトの計算方法
 - (1) 鉛直方向と長手方向地震が作用した場合
 - a. 引張応力

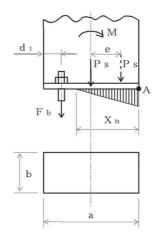
長手方向地震が作用した場合に脚底面に作用するモーメントは次式で求める。

$$\mathbf{M} = \mathbf{M}_{\ell_1} \qquad \cdots \qquad (5. \ 3. \ 1. \ 3. \ 1)$$

鉛直荷重は

【絶対値和】


$$P_s = (1 - C_V) \cdot (R_i + m_{s1} \cdot g) - P_{\ell}$$
 (5. 3. 1. 3. 2)


【SRSS 法】

である。

ただし、3 脚支持及び4 脚支持横置一胴円筒容器の場合は、上式における m_{s1} を m_{st} と読み替える。

ここで、モーメントと鉛直荷重の比を
$$e=M/P_s$$
 ················· (5.3.1.3.4) とする。

荷重より生じる荷重 の関係 (その1)

図 5-4 基礎部に作用する外 図 5-5 基礎部に作用する外 荷重より生じる荷重 の関係 (その2)

図 5-4 のように脚底面においてボルト位置に圧縮荷重がかかる状況では基 礎ボルトに引張力は作用しないため、引張力の評価は行わない。

一方、図 5-5 のように、ボルト位置に圧縮荷重がかからない状況に相当す る

$$e > \frac{a}{6} + \frac{d_1}{3}$$
 (5. 3. 1. 3. 5)

のとき, 基礎ボルトに引張力が生じる。

このとき図 5-8 において、鉛直荷重の釣合い、A点回りのモーメントの釣 合い、基礎ボルトの伸びと基礎の縮みの関係から中立軸の位置Xnは

$$X_{n}^{3} + 3 \cdot \left(e - \frac{a}{2}\right) \cdot X_{n}^{2} - \frac{6 \cdot s \cdot A_{b} \cdot n_{1}}{b} \cdot \left(e + \frac{a}{2} - d_{1}\right)$$

 $\cdot \left(a - d_{1} - X_{n}\right) = 0 \quad \cdots \quad (5.3.1.3.6)$

より求めることができ、基礎ボルトに生じる引張力は

$$F_{b} = \frac{P_{s} \cdot \left(e - \frac{a}{2} + \frac{X_{n}}{3}\right)}{a - d_{1} - \frac{X_{n}}{3}} \qquad (5.3.1.3.7)$$

となる。

したがって, 基礎ボルトに生じる引張応力は次のようになる。

$$\sigma_{b1} = \frac{F_b}{n_1 \cdot A_b} \qquad (5.3.1.3.8)$$

ここで、基礎ボルトの軸断面積 A b は次式により求める。

$$A_b = \frac{\pi}{4} \cdot d^2$$
 (5. 3. 1. 3. 9)

- b. せん断応力
 - (a) 2 脚支持横置一胴円筒形容器の場合

$$\tau_{b1} = \frac{m_0 \cdot C_H \cdot g}{n \cdot A_b} \qquad (5.3.1.3.10)$$

(b) 3 脚支持横置一胴円筒形容器の場合

$$\tau_{b1} = \frac{m_0 \cdot C_H \cdot g}{3 \cdot n \cdot A_b} \qquad \cdots \qquad (5.3.1.3.11)$$

(c) 4 脚支持横置一胴円筒形容器(脚間等間隔及び脚間非等間隔)の場合

$$\tau_{b1} = \frac{m_0 \cdot C_H \cdot g}{4 \cdot n \cdot A_b} \qquad \cdots \qquad (5.3.1.3.12)$$

- (2) 鉛直方向と横方向地震が作用した場合 脚の受ける荷重 R_i は各脚に作用する荷 重のうち、最大のものとする。
 - a. 引張応力
 - (a) 長手方向から見て図 5-6 のように応力 を 2 列の基礎ボルトで受ける場合 鉛直方向と横方向地震が作用した場 合に脚底面に作用するモーメントは

$$M_{c1} = C_H \cdot (R_i + m_{s1} \cdot g) \cdot h_2$$

.... (5. 3. 1. 3. 13)

鉛直荷重は

$$P_{s1} = (1 - C_V) \cdot (R_i + m_{s1} \cdot g)$$

.....(5. 3. 1. 3. 14)

で求める。

ただし、3 脚支持及び 4 脚支持横置一胴円筒容器の場合は、上式における m_{s1} を m_{st} と読み替える。

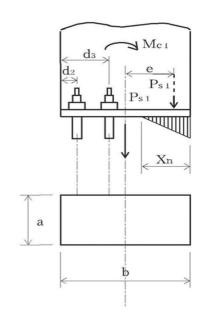


図 5-6 基礎部に作用する外 荷重より生じる荷重 の関係 (その3)

(1)と同様にして中立軸の位置 X nを

ただし

$$e = M_{c1}/P_{s1}$$
 (5. 3. 1. 3. 16)

より求めると、基礎ボルトに生じる引張力は

$$F_{b} = \frac{P_{s1} \cdot \left(e - \frac{b}{2} + \frac{X_{n}}{3}\right) \cdot \left(b - X_{n} - d_{2}\right)}{\left(b - d_{2} - \frac{X_{n}}{3}\right) \cdot \left(b - X_{n} - d_{2}\right) + \left(b - d_{3} - \frac{X_{n}}{3}\right) \cdot \left(b - X_{n} - d_{3}\right)}$$
.....(5, 3, 1, 3, 17)

となる。

したがって, 基礎ボルトに生じる引張応力は次のようになる。

$$\sigma_{b2} = \frac{F_b}{n_2 \cdot A_b} \qquad \cdots \qquad (5.3.1.3.18)$$

- (b) 長手方向から見て応力を1列の基礎ボルトで受ける場合
 - (1)と同様にして引張応力は求められるが、 $MをM_{C1}$ 、 $P_SをP_{S1}$ 、 d_1 を d_2 、aをb,bをa及び n_1 を n_2 に置き換え、得られた基礎ボルトの応力を σ_{b_2} とする。
- b. せん断応力

$$\tau_{b2} = \frac{C_{H} \cdot (R_i + m_{s1} \cdot g)}{n \cdot A_b} \qquad (5.3.1.3.19)$$

ただし、3 脚支持及び4 脚支持横置一胴円筒容器の場合は、上式における m_{s1} を m_{st} と読み替える。

- (3) 基礎ボルトに生じる最大応力
 - (1)及び(2)より求められた基礎ボルトの応力のうち最大のものを σ _b及び τ _bとする。
 - a. 基礎ボルトの最大引張応力

b. 基礎ボルトの最大せん断応力

Ŋ

5.4 応力の評価

5.4.1 胴の応力評価

5.3.1.1 項で求めた組合せ応力が胴の最高使用温度における許容応力 S_a 以下であること。ただし、 S_a は下表による。

	李 安 点	5カS a			
	II 在 //L	7)			
 応力の種類	弾性設計用地震動Sd又は	基準地震動Ssによる荷重			
/U / J V / 1里 / fg	静的震度による荷重との組	との組合せの場合			
	合せの場合				
一次一般膜応力	設計降伏点Sуと設計引張	設計引張強さSuの 0.6 倍			
	強さS _u の 0.6 倍のいずれ				
	か小さい方の値。ただし,オ				
	ーステナイト系ステンレス				
	鋼及び高ニッケル合金にあ				
	っては許容引張応力Sの				
	1.2倍の方が大きい場合は,				
	この大きい方の値とする。				
一次応力	上記の 1.5 倍の値	上記の 1.5 倍の値			
一次応力と二次	地震動のみによる一次応力と二次応力の和の変動値が				
応力の和	計降伏点Sgの2倍以下であ	れば,疲労解析は不要とする。			

5.4.2 脚の応力評価

5.3.1.2 項で求めた脚の組合せ応力が許容引張応力 f_t 以下であること。 ただし、 f_t は下表による。

	弾性設計用地震動 S d 又は 静的震度による荷重との組 合せの場合	基準地震動Ssによる荷重 との組合せの場合
許容引張応力 $f_{\rm t}$	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{F^*}{1.5} \cdot 1.5$

5.4.3 基礎ボルトの応力評価

5.3.1.3 項で求めた基礎ボルトの引張応力 σ_b は次式により求めた許容引張応力 $f_{t,s}$ 以下であること。ただし、 $f_{t,s}$ は下表による。

せん断応力 τ $_{\rm b}$ はせん断力のみ受ける基礎ボルトの許容せん断応力 $f_{\rm s}$ $_{\rm b}$ 以下であること。ただし、 $f_{\rm s}$ $_{\rm b}$ は下表による。

	弾性設計用地震動Sd又は静的震度による荷重との組合せの場合	基準地震動Ssによる荷 重との組合せの場合
許容引張応力 f _t 。	$\frac{F}{2} \cdot 1.5$	$\frac{F^*}{2} \cdot 1.5$
許容せん断応力 _{fs b}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6. 耐震計算書のフォーマット

横置一胴円筒形容器の耐震計算書のフォーマットは,2 脚支持横置一胴円筒形容器,3 脚支持横置一胴円筒形容器,4 脚支持横置一胴円筒形容器(脚間等間隔),4 脚支持横置 一胴円筒形容器(脚間非等間隔)について,以下のとおりである。

[設計基準対象施設及び重大事故等対処設備の場合]

フォーマット I 設計基準対象施設としての評価結果

フォーマットⅡ 重大事故等対処設備としての評価結果

[重大事故等対処設備単独の場合]

フォーマットⅡ 重大事故等対処設備としての評価結果*

注記*: 重大事故等対処設備単独の場合は、設計基準対象施設及び重大事故等対処 設備に示すフォーマットⅡを使用するものとする。ただし、評価結果表に 記載の章番を「2. 」から「1. 」とする。

7. 引用文献

- (1) Stresses in Large Horizontal Cylindrical Pressure Vessels on Two Saddle Supports, Welding Research Supplement, Sep. 1951.
- (2) Wichman, K.R. et al. :Local Stresses in Spherical and Cylindrical Shells due to External Loadings, Welding Research Council bulletin, March 1979 revision of WRC bulletin 107 / August 1965.
- (3) 日本産業規格 JIS B 8278(2003)「サドル支持の横置圧力容器」

【フォーマット I 設計基準対象施設としての評価結果】

【2 脚支持横置一胴円筒形容器】

【○○○○熱交換器の耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ	面高さ 固有周期(s)		弾性設計用地震動S d 又は静的震度		基準地震動S s		最高使用圧力	最高使用温度	周囲環境温度
7.发育产口47	辰里安戊刀炽	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(°C)	(°C)
		建屋 0. P. *			C _H =	$C_V =$	C _H =	$C_V =$			

注記*:基準末レベルを示す。

1.2 機器要	目						_				i. O.
m_1 (kg)	m ₂ (kg)	m ₃ (kg)	m ₄ (kg)	m ₅ (kg)	m ₆ (kg)	m ₇ (kg)					
							1				
Q ₁ (mm)	ℓ ₂ (mm)	0з (mm)	0 ₄ (mm)	Q ₅ (mm)	Q ₆ (mm)	ℓ ₇ (mm)	M ₁ (N•mm)	M ₂ (N·mm)	R ₁ (N)	R ₂ (N)	
											
		I	I	I	1	I	I	I			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
m ₀ (kg)	m _{s 1} (kg)	m _{s2} (kg)	D _i (mm)	t (mm)	t _e (mm)	ℓ _o (mm)	h 1 (mm)	h ₂ (mm)	$\theta_{\rm w}$ (rad)	$\ell_{ m w}$ (mm)	基礎ボルト
					*1						A Masi 9 Masi 9 Masi 9 A W
							l	l	ı		□
C ₁ (mm)	C ₂ (mm)	I sx (mm ⁴)	I sy (mm ⁴)	Z_{sx} (mm ³)	Z_{sy} (mm ³)	θ ₀ (rad)	θ (rad)				mH Vannunnih. Van.
					1		l	ı			
											$\frac{1}{a} d_1$

K_{11}^{*2}	K_{12}^{*2}	K_{21}^{*2}	K_{22}^{*2}	$K_{\ell 1}$	$K_{\ell 2}$	K _{c1}	K _{c2}	$C_{\ell 1}$	$C_{\ell 2}$	C c 1	C c 2

S	n	n 1	n_2	a (mm)	b (mm)	d (mm)	$A_{ m b}$ (mm ²)	d ₁ (mm)	d ₂ (mm)
						(M)			

S _y (胴板)	Su (胴板)	S(胴板)	S _y (脚)	Su(脚)	F(脚)	F* (脚)	S _y (基礎ボルト)	S _u (基礎ボルト)	F(基礎ボルト)	F* (基礎ボルト)
(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
*3	*3	*3	*4	*4			*4	*4		

注記: *1: 本計算においては当板を有効とした。

*2: 表中で上段は一次応力、下段は二次応力の係数とする。

*3:最高使用温度で算出 *4:周囲環境温度で算出

- 胴板と当板の材料が異なる場合- 当板のSy, Su及びS値を記載する。

S _y (胴板)	S _u (胴板)	S (胴板)		F*(基礎ボルト)
(MPa)	(MPa)	(MPa)		(MPa)
*3 (*5)	*3 (*5)	*3 (*5)	//	

注記 *1:本計算においては当板を有効とした。

*2:表中で上段は一次応力、下段は二次応力の係数とする。

*3:最高使用温度で算出 *4:周囲環境温度で算出

*5: 当板の材料を示す。

1.3 計算数値

1.3.1 胴に生じる応力

(1) 一次一般膜芯力

(単位:MPa)

	地震の種類		弹性設計用地震動	IS d 又は静的震度			基準地	憂動S s	
	地震の方向	長手	方向	横方向		長手方向		横方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力		σ φ 1=	$\sigma_{x1} =$	$\sigma_{\phi 1} =$	$\sigma_{x1} =$	σ _{φ1} =	$\sigma_{x1} =$	σ _{φ1} =	σ _{x1} =
内圧による応力 (鉛直方向地震時)		σ φ 2=	_	σ φ 2=	_	σ _{φ2} =	_	σ φ 2=	_
運転時質量による長手方向 モーメントにより生じる応		_	σ _{x2} =	_	σ _{x2} =	_	σ _{x2} =	_	σ x2=
鉛直方向地震による長手方向 モーメントにより生じる応		_	σ _{x6} =	_	σ _{x6} =	_	σ _{x6} =	_	σ _{x6} =
長手方向地震により胴軸的 全面に生じる引張応力		_	σ _{x413} =	_	_	_	σ _{x413} =	_	_
組合せ応力		σοε=		σ _{0c} =		σ _{0 ℓ} =		σ _{0c} =	

(2) 一次応力

(単位:MPa)

	地震の種類		弹性設計用地震動	bS d 又は静的震度			基準地	震動S s		
	地震の方向	長手	方向	横	方向	長手	方向	横	方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
内圧による応力	h	σ _{φ1} =	σ_{x1} =	$\sigma_{\phi 1} =$	$\sigma_{x1} =$	$\sigma_{\phi 1} =$	$\sigma_{x1} =$	$\sigma_{\phi 1} =$	σ_{x1} =	
内圧による応力 (鉛直方向地震)		σ _{φ2} =	_	σ φ2=	_	σ _{φ2} =	_	σ _{φ2} =	_	
運転時質量による長手 モーメントにより生し		_	σ _{x2} =	_	σ _{x2} =	_	σ _{x2} =	_	σ _{x2} =	
	鉛直方向地震による長手方向曲げ モーメントにより生じる応力		σ _{x6} =	_	σ _{x6} =	_	σ x 6=	_	σ _{x 6} =	
運転時質量による朋 により生じる応		σ _{φ3} =	σ _{x3} =	σ φ 3=	σ _{x3} =	σ _{φ3} =	σ _{x3} =	σ _{φ3} =	σ _{x3} =	
鉛直方向地震による により生じる応		σ _{φ71} =	σ _{x71} =	σ φ71=	σ _{x71} =	σ _{φ71} =	σ _{x71} =	σ φ 7 1=	σ _{x71} =	
水平方向地震 による応力		$ \sigma_{\phi 411} = \\ \sigma_{\phi 412} = \\ \sigma_{\phi \pi} = \\ \sigma_{\pi} = \\ \sigma_{$	$ \sigma_{x411} = \\ \sigma_{x412} = \\ \sigma_{x} =$	σ φ 5 1=	σ _{x51} =	$ \sigma_{\phi 411} = \\ \sigma_{\phi 412} = \\ \sigma_{\phi \pi} = \\ \sigma_{\pi} = \\ \sigma_{$	$ \sigma_{x411} = \\ \sigma_{x412} = \\ \sigma_$	σ _{x51} =	σ _{x51} =	
「「チのデン)	せん断		$\sigma_{\phi 41} = \sigma_{x41} = \sigma_{x41}$		$\tau_c =$		$\sigma_{\phi 41} = \sigma_{x41} = \tau_{\ell} = 0$		τ _c =	
組合せ応力	=: 177			σ _{1c} =		σ 1 ε=		σ _{1c} =		

(3) 地震動のみによる一次応力と二次応力の和の変動値

(単位:MPa)

	地震の種類		弹性設計用地震重	hS d又は静的震度			基準地	震動S s		
	地震の方向	長手	手方向	横	方向	長手	手方向	模	 方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
内圧による応 (鉛直方向地震		σ _{φ2} =	_	σ φ2=	_	σ _{φ2} =	_	σ φ2=	_	
鉛直方向地震による 曲げモーメントにより		_	σ _{x6} =	_	σ _{x6} =	_	σ _{x6} =	_	σ _{x6} =	
鉛直方向地震による	5脚反力	σ φ 7 1 =	σ _{x71} =	σ φ71=	σ _{x71} =	σ φ 7 1=	σ _{x71} =	σ φ 7 1=	σ x 7 1 =	
により生じるの	动	$\sigma_{\phi72} =$	σ_{x72} =	$\sigma_{\phi72} =$	σ_{x72} =	$\sigma_{\phi72} =$	σ_{x72} =	$\sigma_{\phi72} =$	$\sigma_{x72} =$	
		σ _{φ41} =	σ _{x41} =	$\sigma_{\phi 51} =$	σ _{x51} =	σ φ41=	σ _{x41} =	σ _{φ51} =	$\sigma_{x51} =$	
水平方向地震	引張り	$\sigma_{\phi 421} =$	$\sigma_{x421} =$			σ _{φ421} =	σ _{x421} =			
による応力	5100	$\sigma_{\phi 422} =$	σ _{x422} =	$\sigma_{\phi 52} =$	σ _{x52} =	σ _{φ422} =	σ _{x422} =	σ _{φ52} =	σ_{x52} =	
(50.0)		$\sigma_{\phi 42} =$	σ_{x42} =			$\sigma_{\phi 42} =$	σ_{x42} =			
せん断		τ θ=		τ_{c} =		τ θ=		τ _c =		
組合せ応力		σ 2 ℓ=	σ 2 μ=		σ _{2c} =		σ 2 ε		σ _{2c} =	

1.3.2 脚に生じる応力

(単位:MPa)

	地震の種類	弹性設計用地震動	Sd又は静的震度	基準地震動S s		
	地震の方向	長手方向	横方向	長手方向	横方向	
運転時質量による応力	圧縮	$\sigma_{s1} =$	$\sigma_{s1} =$	$\sigma_{s1} =$	$\sigma_{s1} =$	
鉛直方向地震による応力	圧縮	σ _{s4} =	$\sigma_{s4} =$	σ _{s4} =	σ _{s4} =	
水平方向地震による応力	曲げ	$\sigma_{s2} =$	$\sigma_{s3}=$	$\sigma_{s2} =$	σ _{s3} =	
小十万円地辰による心力	せん断	τ_{s2} =	τ _{s3} =	τ_{s2} =	$\tau_{s3} =$	
組合せ応力		σ _{sℓ} =	σ _{s c} =	σ _{sℓ} =	σ _{sc} =	

1.3.3 基礎ボルトに生じる応力

(単位:MPa)

1.0.0 全級が 110上しるがり					(十 <u> </u> 元 · Mi d)	
	地震の種類	弹性設計用地震動	IS d 又は静的震度	基準地震動S s		
	地震の方向	長手方向	横方向	長手方向	横方向	
鉛直方向地震及び 水平方向地震による応力	引張り	σ _{b1} =	σ _{b2} =	σ _{b1} =	σ _{b2} =	
水平方向地震による応力	せん断	τ ы1=	τ _{b2} =	τ _{b1} =	τ _{b2} =	

1.4 結論 1.4.1 固有周期

(単位: s)

方向	固有周期
長手方向	$T_1 =$
横方向	$T_2 =$
鉛直方向	$T_3 =$

1.4.2 応力

(単位:MPa)

						(/	
\$17 ±±	++ 4:1	K +	弹性設計用地震	動Sd又は静的震度	基準地震動S s		
PP 121 121 121	171 177) /L /J	算出応力	許容応力	算出応力	許容応力	
		一次一般膜	$\sigma_0 =$	$S_a =$	$\sigma_0 =$	$S_a =$	
胴板		一次	σ_1 =	$S_a =$	σ_1 =	$S_a =$	
		一次+二次	$\sigma_2 =$	$S_a =$	$\sigma_2 =$	$S_a =$	
脚		組合せ	σ_s =	f_t =	σ_s =	f_t =	
甘葉れた		引張り	σ b=	$f_{ts} = *$	σ b=	$f_{ts} = *$	
本庭ハット		せん断	$\tau_b =$	$f_{sb} =$	τ _b =	$f_{sb} =$	
		脚脚	一次一般膜 一次 一次+二次 脚 組合せ 引張り	部 材 材 科 応 ガ 算出応力 一次一般膜 $\sigma_0 =$ 一次 $\sigma_1 =$ 一次十二次 $\sigma_2 =$ 脚 組合せ $\sigma_s =$ 引張り $\sigma_b =$	原出応力 評容応力 アベー般膜 σ_0	部 材 科 心	

すべて許容応力以下である。

注記*: f_{ts} =Min[1.4· f_{to} -1.6· τ b, f_{to}]

胴板と当板の材料が異なる場合、当板の材料名及び許容応力を記載する。 (単位:MPa) 1.4.2 応力

		_
部 材	材料	許容応力
胴 板	(*1)	$S_a = \begin{pmatrix} & & & \\ & & & & \\ & & & & & \\ & & & &$
III		$S_a = \begin{pmatrix} & & \\ & & & \\ & & & \\ & & & \end{pmatrix}$
脚		f_{t} =
基礎ボルト		$f_{ts} = *2$ $f_{sb} =$

注記 *1: 当板の材料を示す。

*2: $f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau b, f_{to}]$

【○○○○熱交換器の耐震性についての計算結果】

【静水頭の場合】

1. 設計基準対象施設

(圧力容器と様式が異なるページのみ掲載)

1.1 設計条件

	担付担応及が主面官さ	固有周期(s)		弾性設計用地震動Sd又は静的震度		基準地震動S s		是宣信田広力	最高使用温度	周囲環境温度			
機器名称	機器名称 耐震重要度分類	据付場所及び床面高さ(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度		最高使用圧力 (MPa)	取尚使用温度 (°C)	河西琛児価及 (°C)	比	重
		建屋 0. P. *			C _H =	$C_V=$	C _H =	$C_V =$	静水頭				

	注記*:基	準床レベルを	示す。										
	1.2 機器要	5目											
	m ₁ (kg)	m ₂ (kg)	m ₃ (kg)	m ₄ (kg)	m ₅ (kg)	m ₆ (kg)	m ₇ (kg)					$\begin{array}{c c} & & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$	
												$\begin{array}{c c} & \ell_2 \\ \hline & \ell_3 \\ \hline \end{array}$	
48	Q 1 (mm)	Q ₂ (mm)	Фз (mm)	Q ₄ (mm)	Q ₅ (mm)	Q ₆ (mm)	Q 7 (mm)	M ₁ (N·mm)	M ₂ (N•mm)	R ₁ (N)	R ₂ (N)		
	m	m	m	$\mathrm{D_{i}}$	+	+	ℓ_{0}	h	h ₂	θ w	$\ell_{ m w}$		
	m ₀ (kg)	m _{s 1} (kg)	m _{s2} (kg)	(mm)	(mm)	t _e (mm)	(mm)	h ₁ (mm)	(mm)	(rad)	(mm)	$m_1 \cdot g m_2 \cdot g m_3 \cdot g \qquad \qquad m_5 \cdot g \qquad m_6 \cdot g m_7 \cdot g$	
						*1						基礎ボルト	
	C ₁ (mm)	C ₂ (mm)	I sx (mm ⁴)	I sy (mm ⁴)	Z _{sx} (mm³)	Z_{sy} (mm ³)	θ ₀ (rad)	θ (rad)				→ M _{si} ·g M _{s₂} ·g → M _{s₂} ·g	
												A A A A 夫視図	

1.3 計算数値

1.3.1 胴に生じる応力

(1) 一次一般膜芯力

(単位:MPa)

	地震の種類		弹性設計用地震動	IS d 又は静的震度		基準地震動S s			
	地震の方向	長手	方向	横方向		長手方向		横方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力	J	σ φ 1=	σ _{x1} =	$\sigma_{\phi 1} =$	σ _{x1} =	σ _{φ1} =	σ _{x1} =	σ _{φ1} =	$\sigma_{x1} =$
静水頭による応力 鉛直方向地震時		σ _{φ2} =	_	σ φ 2=	_	σ _{φ2} =	_	σ φ 2=	_
運転時質量による長手力 モーメントにより生じ		_	σ _{x2} =	_	σ _{x2} =	_	σ _{x2} =	_	σ _{x2} =
鉛直方向地震による長手 モーメントにより生じ		_	σ _{x6} =	_	σ _{x6} =	_	σ _{x6} =	_	σ _{x6} =
長手方向地震により胴 全面に生じる引張だ		_	σ _{x413} =	_	_	_	σ _{x413} =	_	_
組合せ応力		σοε=		σ _{0c} =		σ ο θ=		σ _{0c} =	

(2) 一次応力

(単位: MPa)

(4) 100/07									(牛型.Mra)	
	地震の種類		弹性設計用地震動	カS d 又は静的震度		基準地震動S s				
	地震の方向	長手方向		横	横方向		長手方向		方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
静水頭による応	动	σ φ 1=	σ _{x1} =	σ φ 1=	σ x 1=	σ _{φ1} =	σ _{x1} =	σ φ 1=	σ _{x1} =	
静水頭による応 (鉛直方向地震)		σ φ2=	_	σ φ 2=	_	σ _{φ2} =	_	σ _{φ2} =	_	
運転時質量による長手 モーメントにより生		_	σ _{x2} =	_	σ _{x2} =	_	σ _{x2} =	_	σ _{x2} =	
	鉛直方向地震による長手方向曲げ モーメントにより生じる応力			_	σ _{x6} =	_	σ _{x6} =	_	σ _{x6} =	
運転時質量による により生じる応		σ φ3=	σ _{x3} =	σ φ3=	σ _{x3} =	σ φ 3=	σ _{x3} =	σ φ3=	σ _{x3} =	
鉛直方向地震による により生じる応		σ φ 7 1 =	σ _{x71} =	σ φ71=	σ _{x71} =	σ φ 7 1=	σ _{x71} =	σ φ 7 1=	σ _{x71} =	
水平方向地震 による応力	引張り	$ \sigma_{\phi 411} = \\ \sigma_{\phi 412} = \\ \sigma_{\phi 41} = $	$\sigma_{x411} = \\ \sigma_{x412} = \\ \sigma_{x41} =$	σ φ51=	σ _{x51} =	$ \sigma_{\phi 411} = \\ \sigma_{\phi 412} = \\ \sigma_{\phi 41} = $	$ \sigma_{x411} = \\ \sigma_{x412} = \\ \sigma_{x41} = $	σ _{x51} =	σ _{x51} =	
	せん断		$\tau_{\varrho} =$		τ _c =		τ_e=		τ _c =	
組合せ応力		σ 1 ℓ=	•	σ _{1c} =		σ 1 θ=		σ _{1c} =		

(3) 地震動のみによる一次応力と二次応力の和の変動値

(単位:MPa)

	地震の種類		弹性設計用地震重	hS d 又は静的震度			基準地震動S s			
	地震の方向	長毛	手方向	横	方向	長手	手方向	横方向		
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
静水頭による原 (鉛直方向地震		σ φ 2=	_	σ φ 2=	_	σ _{φ2} =	_	σ φ2=	_	
鉛直方向地震による 曲げモーメントにより		_	σ _{x6} =	_	σ _{x6} =	_	σ _{x6} =	_	σ _{x6} =	
鉛直方向地震による	5脚反力	σ φ 7 1 =	σ _{x71} =	σ φ71=	σ _{x71} =	σ _{φ71} =	σ _{x71} =	σ φ 7 1=	σ _{x71} =	
により生じる原	力	σ _{φ72} =	σ_{x72} =	$\sigma_{\phi72}$ =	σ_{x72} =	σ _{φ72} =	σ_{x72} =	σ _{φ72} =	σ_{x72} =	
		σ φ41=	σ _{x41} =	σ _{φ51} =	σ _{x51} =	σ φ 4 1 =	σ _{x41} =	σ _{φ51} =	σ _{x51} =	
水平方向地震	引張り	σ φ 4 2 1 =	$\sigma_{x421} =$			σ _{φ421} =	$\sigma_{x421} =$			
による応力	JIM	σ _{φ422} =	σ _{x422} =	σ _{φ52} =	σ _{x52} =	σ _{φ422} =	σ _{x422} =	σ _{φ52} =	σ _{x52} =	
(こその)(ご)		σ φ42=	σ_{x42} =			$\sigma_{\phi 42} =$	σ_{x42} =			
	せん断	τ_{ℓ} =		$\tau_{\rm c} =$	·	τ @=	τ ε=			
組合せ応力	1	σ 2 ℓ=		σ _{2c} =		σ 2 θ=		σ _{2c} =		

1.3.2 脚に生じる応力

(単位:MPa)

	地震の種類	弹性設計用地震動	基準地震動S s		
	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	圧縮	$\sigma_{s1} =$	$\sigma_{s1} =$	σ _{s1} =	$\sigma_{s1} =$
鉛直方向地震による応力	圧縮	$\sigma_{s4} =$	$\sigma_{s4} =$	σ _{s4} =	$\sigma_{s4} =$
水平方向地震による応力	曲げ	$\sigma_{s2} =$	$\sigma_{s3}=$	$\sigma_{s2} =$	$\sigma_{s3} =$
八十万円地長による心力	せん断	$\tau_{s2} =$	$\tau_{s3} =$	$\tau_{s2} =$	$\tau_{s3} =$
組合せ応力	•	σ _{sℓ} =	σ _{s c} =	σ _{sℓ} =	σ _{sc} =

1.3.3 基礎ボルトに生じる応力

(単位:MPa)

1. 0. 0 ASPENTAL LOS MONTO					(十)····································	
	地震の種類	弾性設計用地震動	IS d 又は静的震度	基準地震動S s		
	地震の方向	長手方向	横方向	長手方向	横方向	
鉛直方向地震及び 水平方向地震による応力	引張り	σ _{b1} =	σ _{b2} =	σ _{b1} =	σ _{b2} =	
水平方向地震による応力	せん断	τ _{b1} =	τ _{b2} =	τ _{b1} =	τ _{b2} =	

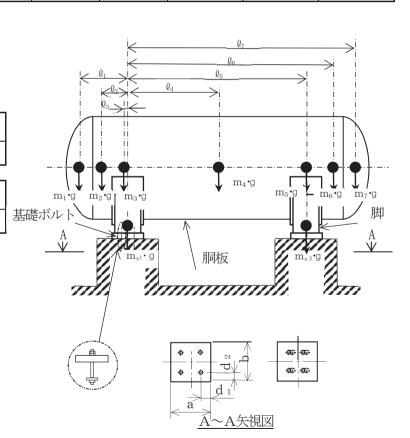
【フォーマットⅡ 重大事故等対処設備としての評価結果】

2. 重大事故等対処設備

2.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ	固有周	期 (s)	弾性設計用 又は静	地震動Sd 的震度	基準地	震動S s	最高使用圧力	最高使用温度	周囲環境温度
7.交合产/口7/1	间辰里女及刀粮	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(°C)	(°C)
		建屋 0. P. *			_	_	C _H =	C _v =			

注記*:基準末レベルを示す。


0	0	機器要	\exists
۷.	4	130 77 1	_

	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
	(kg)						
I							

ℓ ₁ (mm)	ℓ ₂ (mm)	ℓ ₃ (mm)	ℓ ₄ (mm)	ℓ ₅ (mm)	ℓ ₆ (mm)	ℓ ₇ (mm)	M_1 (N•mm)	M ₂ (N•mm)	R ₁ (N)	R ₂ (N)

m_0	m_{s1}	m_{s2}	D _i	t	t e	Q _O	h ₁	h ₂	θ w	ϱ_{w}
(kg)	(kg)	(kg)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(rad)	(mm)
					*1					

C ₁ (mm)	C ₂ (mm)	I_{sx} (mm ⁴)	I sy (mm ⁴)	Z_{sx} (mm ³)	Z_{sy} (mm ³)	θ_{0} (rad)	θ (rad)

K_{11}^{*2}	K_{12}^{*2}	K ₂₁ *2	K ₂₂ *2	$K_{\ell 1}$	$K_{\ell 2}$	K_{c1}	K_{c2}	$C_{\ell 1}$	$C_{\ell 2}$	С с 1	C c 2

S	n	n 1	n_2	a (mm)	b (mm)	d (mm)	$A_{ m b}$ (mm ²)	d ₁ (mm)	d ₂ (mm)
						(M)			

ר	S _y (胴板)	Su(胴板)	S(胴板)	S _y (脚)	Su(脚)	F(脚)	F* (脚)	S _y (基礎ボルト)	S _u (基礎ボルト)	F(基礎ボルト)	F* (基礎ボルト)
כ	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
	*3	*3	*3	*4	*4	_		*4	*4	_	

注記: *1: 本計算においては当板を有効とした。

*2:表中で上段は一次応力、下段は二次応力の係数とする。

*3:最高使用温度で算出 *4:周囲環境温度で算出

! 胴板と当板の材料が異なる場合! 当板のS_v, S_u及びS値を記載する。

	S _y (胴板)	S _u (胴板)	S (胴板)		/	F*(基礎ボルト)
	(MPa)	(MPa)	(MPa)	(/	(MPa)
*3		*3	*3		Ī	
(*5)	(*5)	(*5)	/	1	

注記 *1:本計算においては当板を有効とした。

*2:表中で上段は一次応力、下段は二次応力の係数とする。

*3:最高使用温度で算出 *4:周囲環境温度で算出

*5: 当板の材料を示す。

2.3 計算数値

2.3.1 胴に生じる応力

(1) 一次一般膜芯力

(単位:MPa)

地	震の種類		弾性設計用地震動	Sd又は静的震度			基準地	憂動S s	
地	震の方向	長手	方向	横》	姉	長手	方向	横	方向
応	力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力		_	_	_	1	σ _{φ1} =	$\sigma_{x1} =$	σ _{φ1} =	σ _{x1} =
内圧による応力		_	_		_	σ φ 2=	_	σ _{φ2} =	_
(鉛直方向地震時)						Ψ2		. 92	
運転時質量による長手方向曲に		_	_	_	_	_	σ _{x2} =	_	$\sigma_{x2} =$
モーメントにより生じる応力							0 X2		0 X2
鉛直方向地震による長手方向曲	由げ	_	_	_	_	_	σ _{x6} =	_	σ _{x6} =
モーメントにより生じる応力	5						0 x6		0 x 6
長手方向地震により胴軸断面	ī		_	_	_		a –	_	
全面に生じる引張応力							σ _{x413} =		
組合せ応力		<u> </u>		_		σο θ=		σ _{0c} =	

(2) 一次応力

(単位:MPa)

(4) 00000									(1) 11 · MI (1)
	地震の種類		弹性設計用地震	動Sd又は静的震度			基準地	煙動S s	
	地震の方向	長手	方向	横	訪向	長	手方向	村	黄方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応	カ	_	_	_	_	σ φ 1=	σ x 1=	σ φ 1=	σ x 1=
内圧による応 (鉛直方向地震)		_	_	_	_	σ φ 2=	_	σ φ 2=	_
運転時質量による長手 モーメントにより生	=方向曲げ	_	_	_	_	_	σ x 2=	_	σ _{x2} =
鉛直方向地震による長 モーメントにより生		_	_	_	_	_	σ _{x6} =	_	σ x 6=
運転時質量による原 により生じる応		_	_	_	_	σ φ 3=	σ _{x3} =	σ φ 3=	σ _{x3} =
鉛直方向地震による により生じる応			_	_	_	σ φ71=	σ _{x71} =	σ φ 7 1=	σ _{x71} =
水平方向地震	引張り	_	_	_	_	$ \sigma_{\phi 411} = \\ \sigma_{\phi 412} = $	$ \sigma_{x411} = \\ \sigma_{x412} = $	σ _{x51} =	σ _{x51} =
による応力		_	_			σ φ 4 1 =	$\sigma_{x41} =$		
	せん断	<u> -</u>		-		τ θ=		τ c=	
組合せ応力		-		-		σ 1 ℓ=		$\sigma_{1c} =$	

(3) 地震動のみによる一次応力と二次応力の和の変動値

(単位:MPa)

	地震の種類		弹性設計用地震動	IS d 又は静的震度		基準地震動S s			
	地震の方向	長手方向		横方向		長手方向		横方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力 (鉛直方向地震時)		_	_	_	_	σ _{φ2} =	_	σ φ2=	_
鉛直方向地震による長手方向 曲げモーメントにより生じる応力		_	_	_	_	_	σ _{x6} =	_	σ _{x6} =
鉛直方向地震によ により生じる		_		_ _	_ _	$\begin{array}{c} \sigma_{\phi 7 1} = \\ \sigma_{\phi 7 2} = \end{array}$	$\begin{array}{c} \sigma_{x71} = \\ \sigma_{x72} = \end{array}$	$\begin{array}{c} \sigma_{\phi 7 1} = \\ \sigma_{\phi 7 2} = \end{array}$	$\begin{array}{c} \sigma_{x71} = \\ \sigma_{x72} = \end{array}$
		_	_	_	_	σ _{φ41} =	σ _{x41} =	σ _{φ51} =	$\sigma_{x51} =$
水平方向地震	引張り	_		_	_	$ \sigma_{\phi 421} = \\ \sigma_{\phi 422} = $	$ \sigma_{x421} = \\ \sigma_{x422} = $	σ _{φ52} =	σ _{x52} =
による応力		_	_	1		σ φ 4 2=	σ _{x42} =	1	
せん断		_		_	_		τ ε=		
組合せ応力		_		_		σ _{2 ℓ} =		σ _{2c} =	

2.3.2 脚に生じる応力

(単位:MPa)

	地震の種類	弾性設計用地震動	JS d 又は静的震度	基準地	喪動S s
	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	圧縮	_	_	$\sigma_{s1} =$	$\sigma_{s1} =$
鉛直方向地震による応力	圧縮	_	_	σ _{s4} =	$\sigma_{s4} =$
水平方向地震による応力	曲げ	_	_	σ _{s2} =	σ _{s3} =
小平万円地長による心力	せん断	_	_	τ _{s2} =	τ _{s3} =
組合せ応力	•	_	_	σ _{s ℓ} =	σ _{s c} =

2.3.3 基礎ボルトに生じる応力

(単位:MPa)

2. 0. 0 Emery 1 (-1 0 0/10)					(— <u> -/-</u> · // ct/
	地震の種類	弹性設計用地震動	IS d 又は静的震度	基準地震	長動S s
	地震の方向	長手方向	横方向	長手方向	横方向
鉛直方向地震及び 水平方向地震による応力	引張り	_	_	σ _{b1} =	σ _{b2} =
水平方向地震による応力	せん断	_	_	τ ь1=	τ _{b2} =

ŹΊ

2.4 結論

2.4.1 固有周期

(単位:s)

方 向	固有周期
長手方向	$T_1 =$
横方向	$T_2 =$
鉛直方向	T ₃ =

2.4.2 応力

(単位:MPa)

						(
部材	材料	応 力	弹性設計用地震	動Sd又は静的震度	基準地震動S s		
四 四	1/1 1/1	応力	算出応力	許容応力	算出応力	許容応力	
		一次一般膜	_	_	σ 0=	$S_a =$	
胴板		一次	_	_	σ_1 =	$S_a =$	
		一次+二次	_	_	σ_2 =	$S_a =$	
脚		組合せ	_	_	σ_s =	f_t =	
基礎ボルト		引張り	_	_	σ _b =	$f_{ts} = *$	
本版ハット		せん断	_	_	τ _b =	$f_{sb} =$	

すべて許容応力以下である。 注記*: $f_{ts}=Min[1.4 \cdot f_{to}-1.6 \cdot \tau b, f_{to}]$

胴板と当板の材料が異なる場合、当板の材料名及び許容応力を記載する。 (単位:MPa) 2.4.2 応力

胴板 $\begin{pmatrix} & *1 \end{pmatrix}$ $\begin{pmatrix} & & & & & & & & & & & & & & & & & & $	部材	材料	許容応力
期期 $S_a = (*1)$ $f_t = f_{ts} = *2$	HEHE	(*1)	-
$f_{ts}=*2$	加州汉	() (
基礎ポルト f_{ts} =*2 f_{sb} =	脚		$f_{\rm t} =$
	基礎ボルト		$f_{ts} = *2$ $f_{sb} =$

注記 *1: 当板の材料を示す。

*2: $f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau b, f_{to}]$

2. 重大事故等対処設備

【静水頭の場合】

(圧力容器と様式が異なるページのみ掲載)

2.1 設計条件

ſ	機器名称 設備分類		据付場所及び床面高さ	固有周期(s)		弾性設計用地震動Sd又は静的震度		基準地震動S s		最高使用圧力	最高使用温度	周囲環境温度	
	機器名称	設備分類	が10分別及0外国同さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度		東同文州ユノ) (MPa)	取同使用面及 (°C)	问世朵児面支 (℃)	比重
			建屋 0. P. *			_	_	C _H =	$C_V =$	静水頭			

注記*:基準床レベルを示す。

	注記*:基	準床レベルを	を示す。													
	2.2 機器要	三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三						_								
	m ₁ (kg)	m ₂ (kg)	m ₃ (kg)	m ₄ (kg)	m ₅ (kg)	m ₆ (kg)	m ₇ (kg)									
	(Kg)	(kg)	(Kg)	(Kg)	(Kg)	(Kg)	(Kg)							<u> </u>	<u>Q</u> 7	
													ℓ_1		ℓ_6	
	0	1 0	I 0	I 0	Ι ο	Ι ο	Ι ο	M	М	R ₁	D	Н	1	l ₂ ><	ℓ_4 \rightarrow i	
	ℓ ₁ (mm)	ℓ ₂ (mm)	ℓ ₃ (mm)	0 ₄ (mm)	0 ₅ (mm)	ℓ ₆ (mm)	ℓ ₇ (mm)	M₁ (N•mm)	M_2 (N•mm)	(N)	R ₂ (N)	(mm)	Q_3	> 	į	
56														ii ii	į į	
						<u> </u>							」 /		!	
	m ₀ (kg)	m _{s 1} (kg)	m _{s2} (kg)	D _i (mm)	t (mm)	t _e (mm)	ℓ _O (mm)	h ₁ (mm)	h ₂ (mm)	$\theta_{\rm w}$ (rad)	ℓ _w (mm)	_			m ₄ •g	
	(ng)	(Ng)	(Ag)	(IIII)	(IIII)	*1	(IIII)	(IIIII)	(IIII)	(Lau)	(IIII)		$m_1 \cdot g m_2 \cdot g$	l ₩ : l m ₃ •g	A 1114 8	$m_5 \cdot g - m_6 \cdot g - m_7 \cdot g$
						w 1						基礎ボ	ルト	\blacksquare		脚
	C ₁	C 2	Isx	Isy	Zsx	Zsy	θ ο	θ	I				A V		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A V
	(mm)	(mm)	(mm ⁴)	(mm ⁴)	(mm ³)	(mm ³)	(rad)	(rad)				_		$M_{s^1} \cdot g$	│胴板	m _{s2} ·g
													ואונוי	/ <i>?</i>),	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	all. Van
				<u> </u>	<u> </u>	<u> </u>	J		l				.,,,,,,		,,,,,,,,,,,,,	,,,,
														\	φ φ _α Λ	(m)
)		
													・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	/	d 1	
															a A 77.78	াত্য
															Á~A矢視	凶

2.3 計算数値

2.3.1 胴に生じる応力

(1) 一次一般膜芯力

(単位:MPa)

	地震の種類		弹性設計用地震動	Sd又は静的震度		基準地震動S s				
	地震の方向	長手方向		横方向		長手方向		横方向		
	応力の方向		軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
静水頭による応力	h	_	_	_	_	σ φ 1=	σ x 1=	σ _{φ1} =	σ x 1=	
静水頭による応力 (鉛直方向地震時		_	_	_	_	σ _{φ2} =	_	σ φ 2=	_	
運転時質量による長手が モーメントにより生じ		_	_	_	_	_	σ _{x2} =	_	σ _{x2} =	
鉛直方向地震による長手 モーメントにより生じ		_	_	_	_	_	σ _{x6} =	_	σ _{x 6} =	
	長手方向地震により胴軸断面 全面に生じる引張応力		_	_	_	_	σ _{x413} =	_	_	
組合せ応力		_	•	_		σ ο ε		σ _{0c} =		

(2) 一次応力

(単位:MPa)

(2) 00/6/3						(十年: 河田)					
	地震の種類		弹性設計用地震重	hS d 又は静的震度		基準地震動S s					
	地震の方向	長手	方向	横	 方向	長手	手方向	植	訪向		
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力		
静水頭による応	力	_	_	_	_	σ _{φ1} =	$\sigma_{x1} =$	σ _{φ1} =	$\sigma_{x1} =$		
	静水頭による応力 (鉛直方向地震時)		_	_	_	σ _{φ2} =	_	σ φ2=	_		
運転時質量による長手 モーメントにより生		_	_	_	_	_	σ _{x2} =	_	σ _{x2} =		
	鉛直方向地震による長手方向曲げ モーメントにより生じる応力		_	_	_	_	σ _{x6} =	_	σ _{x6} =		
運転時質量による原 により生じる応		_	_	_	_	σ φ 3=	σ _{x3} =	σ φ3=	σ _{x3} =		
鉛直方向地震による脚反力 により生じる応力			_	_	_	σ φ 7 1=	σ _{x71} =	σ φ71=	σ _{x71} =		
水平方向地震					_			$ \sigma_{\phi 411} = \\ \sigma_{\phi 412} = $	$ \sigma_{x411} = \\ \sigma_{x412} = $	σ _{x51} =	σ _{x51} =
による応力	せん断	_		<u> </u>		$\sigma_{\phi 41} = \sigma_{x41} = \sigma_{$		τ _c =			
組合せ応力		_		_		σ _{1 ℓ} =		σ _{1c} =			

(3) 地震動のみによる一次応力と二次応力の和の変動値

(単位:MPa)

	地震の種類		弾性設計用地震動	IS d 又は静的震度		基準地震動S s			
	地震の方向	長手方向		横方向		長手	手方向	横方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
	静水頭による応力 (鉛直方向地震時)		_	_	_	σ φ 2=	_	σ _{φ2} =	_
	鉛直方向地震による長手方向 曲げモーメントにより生じる応力		_	_	_	_	σ _{x6} =	_	σ _{x6} =
	鉛直方向地震による脚反力 により生じる応力		_ _	_ _		$ \begin{array}{c} \sigma_{\phi71} = \\ \sigma_{\phi72} = \end{array} $	$\sigma_{x71} = $ $\sigma_{x72} = $	$ \sigma_{\phi 7 1} = \\ \sigma_{\phi 7 2} = $	$\sigma_{x71} = $ $\sigma_{x72} = $
		_	_	_	_	σ φ 4 1=	σ _{x41} =	σ _{φ51} =	σ _{x51} =
水平方向地震による応力	引張り		_	_	_	$ \sigma_{\phi 421} = \\ \sigma_{\phi 422} = $	$\sigma_{x421} = \\ \sigma_{x422} =$	σ _{φ52} =	σ _{x52} =
にその心力	によるかり					$\sigma_{\phi 42} = \sigma_{x42} =$		7 , , , ,	
せん断		_		_		τ @=		τ .=	
組合せ応力		_	•	_		σ _{2ℓ} =		σ _{2c} =	

2.3.2 脚に生じる応力

(単位:MPa)

2. 0. 2 PMC_T_O_D/L/97					(+ 1. : Mi ti)
	地震の種類	弹性設計用地震動	Sd 又は静的震度	基準地	喪動S s
	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	圧縮	_	_	$\sigma_{s1} =$	$\sigma_{s1} =$
鉛直方向地震による応力	圧縮	_	_	$\sigma_{s4} =$	$\sigma_{s4} =$
水平方向地震による応力	曲げ	_	_	σ _{s2} =	σ _{s3} =
八十万円地展による心力	せん断	_	_	τ_{s2} =	$\tau_{s3} =$
組合せ応力		_	_	σ s θ=	σ s c=

2.3.3 基礎ボルトに生じる応力

(単位:MPa)

2. 0. 0 AND 1 1 CT O DICTO					(—) <u>1.</u> . Mi a)
	地震の種類	弾性設計用地震動	IS d 又は静的震度	基準地	震動S s
	地震の方向	長手方向	横方向	長手方向	横方向
鉛直方向地震及び 水平方向地震による応力	引張り	_	_	σ _{b1} =	σ _{b2} =
水平方向地震による応力	せん断	_	_	τ ь1=	τ _{b2} =

【3 脚支持横置一胴円筒形容器】

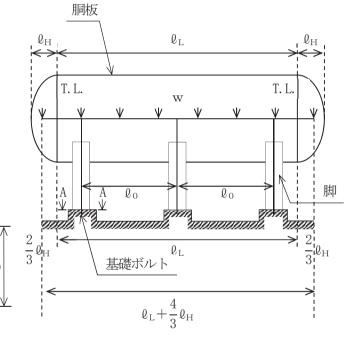
【○○○○タンクの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

		据付場所及び床面高さ	固有周	期 (s)	弾性設計用地震動Sd又は静的震度		基準地震動S s		是宣传田广力	具有体田坦庇	周囲環境温度	
機器名称	耐震重要度分類	がり物が及り外面同さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	沿国。カロ (MPa)	最高使用温度 (℃)		比重
					*2	*2	$C_H =$	$C_v =$	静水頭			

注記*1:基準床レベルを示す。


*2: Ⅲ₄S については、基準地震動S s で評価する。

1.2 機器要目

Q _H (mm)	$\ell_{\rm L}$ (mm)	W (N/mm)	M ₁ (N•mm)	M ₂ (N•mm)	M ₃ (N•mm)	R ₁ (N)	R ₂ (N)	R ₃ (N)	H (mm)

m ₀ (kg)	m _{s t} (kg)	D_{i} (mm)	t (mm)	t _e (mm)	ℓ _o (mm)	h 1 (mm)	h ₂ (mm)	$ heta_{ m w}$ (rad)	$\ell_{ m w}$ (mm)
				*1					

C ₁ (mm)	C ₂ (mm)	I sx (mm ⁴)	I sy (mm ⁴)	Z_{sx} (mm ³)	Z_{sy} (mm ³)	θ ₀ (rad)	θ (rad)

A-A 矢視図

A_s (mm ²)	E s (MPa)	G s (MPa)	$A_{s 1}$ (mm ²)	$A_{s 2}$ (mm ²)	A_{s3} (mm ²)	A_{s4} (mm ²)

K ₁₁ *2	K ₁₂ *2	K ₂₁ *2	K _{2 2} *2	$K_{\ell 1}$	$K_{\ell 2}$	K _{e1}	K _{c2}	$C_{\ell 1}$	$C_{\ell 2}$	C c 1	C c 2

S	n	n ₁	n_2	a (mm)	b (mm)	d (mm)	A_{b} (mm ²)	d ₁ (mm)	d ₂ (mm)
						(M)			

	S _y (胴板)	Sų (胴板)	S (胴板)	S _y (脚)	Su(脚)	F(脚)	F* (脚)	S _y (基礎ボルト)	S _u (基礎ボルト)	F(基礎ボルト)	F* (基礎ボルト)
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
:	k 3	*3	*3	*4	*4	_		*4	*4	_	

注記*1:本計算においては当板を有効とした。

*2:表中で上段は一次応力、下段は二次応力の係数とする。

*3:最高使用温度で算出 *4:周囲環境温度で算出

1.3.1 胴に生じる応力

(1) 一次一般膜芯力

(単位: MPa)

地	震の種類		弹性設計用地震動	IS d 又は静的震度			基準地	喪動S s	,,,
地	震の方向	長手	方向	横	5向	長手	方向	横	方向
応	力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力		$\sigma_{\phi 1} = -*$	$\sigma_{x1}=-*$	σ _{φ1} =-*	$\sigma_{x1}=-*$	σ φ 1=	$\sigma_{x1} =$	σ φ 1=	$\sigma_{x1} =$
静水頭による応力 (鉛直方向地震時)		σ _{φ2} =-*		σ φ2=-*	_	σ φ 2=	_	σ φ 2=	_
運転時質量による長手方向曲 モーメントにより生じる応力		_	σ _{x2} =-*	_	σ _{x2} =-*	_	σ _{x2} =	_	σ _{x2} =
鉛直方向地震による長手方向曲 モーメントにより生じる応力	-	_	σ _{x6} =-*	_	σ _{x6} =-*	_	σ _{x6} =	_	σ _{x 6} =
長手方向地震により胴軸断面 全面に生じる引張応力	面	_	σ _{x413} =-*	_	_	_	σ _{x413} =	_	_
組合せ応力		σ _{0ℓ} =-*		σ _{0c} =-*		σ οθ=		σ _{0c} =	

注記*: ⅢAS については、基準地震動S s で評価する。

(2) 一次応力

(単位:MPa)

	地震の種類		弹性設計用地震動	Sd又は静的震度			基準地	憂動S s		
	地震の方向	長手	方向	横	方向	長手	F方向	横	訪向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
静水頭による応	力	σ _{φ1} =-*	σ _{x1} =-*	σ _{φ1} =-*	$\sigma_{x1}=-*$	σ φ1=	σ _{x1} =	σ φ 1=	σ _{x1} =	
静水頭による応 (鉛直方向地震・	力	σ _{φ2} =-*		σ _{φ2} =-*	_	σ _{φ2} =	_	σ _{φ2} =	_	
運転時質量による長手 モーメントにより生し		_	σ _{x2} =-*	_	σ _{x2} =-*	_	σ _{x2} =	_	σ _{x2} =	
鉛直方向地震による長手 モーメントにより生し		_	σ x 6=-*	_	σ _{x6} =-*	_	σ _{x 6} =	_	σ x6=	
運転背質量による脚により生じる応		σ _{φ3} =-*	σ _{x3} =-*	σ φ 3 = -*	σ _{x3} =-*	σ _{φ3} =	σ _{x3} =	σ _{φ3} =	σ _{x3} =	
鉛直方向地震による により生じる応		σ _{φ71} =-*	σ _{x71} =-*	σ _{φ71} =-*	σ _{x71} =-*	σ _{φ71} =	σ _{x71} =	σ φ71=	$\sigma_{x71} =$	
水平方向地震 による応力	引張り	ο _{φ411} —*	$\sigma_{x411} = -*$ $\sigma_{x412} = -*$ $\sigma_{x413} = -*$	σ _{φ51} =-*	σ _{x51} =-*	$ \sigma_{\phi 411} = \\ \sigma_{\phi 412} = $	$\sigma_{x411} = \\ \sigma_{x412} = \\ \sigma_{x413} =$	σ φ51=	σ _{x51} =	
にその心力		σ _{φ41} =-*	$\sigma_{x41} = -*$			σ φ41=	σ_{x41} =			
	せん断				τ _c =-*		τ _{ =		τ _=	
組合せ応力	組合せ応力				*		σ 10=		σ _{1c} =	

注記*:ⅢSについては、基準地震動Ssで評価する。

	地震の種類		弹性設計用地震動	bSd又は静的震度			基準地	震動S s	
	地震の方向	長手	与方向	横	方向	長手	手方向	模	 方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による原 (鉛直方向地震		σ _{φ2} =-*	_	σ φ 2=-*	_	σ _{φ2} =	_	σ _{φ2} =	_
鉛直方向地震による 曲げモーメントにより		_	σ _{x6} =-*	_	σ _{x6} =-*	_	σ_{x6} =	_	σ _{x6} =
鉛直方向地震による により生じる原					$\sigma_{x71} = -*$ $\sigma_{x72} = -*$	$ \sigma_{\phi71} = \\ \sigma_{\phi72} = $	$ \sigma_{x71} = \\ \sigma_{x72} = $	$ \sigma_{\phi71} = \\ \sigma_{\phi72} = $	$\begin{array}{c} \sigma_{x71} = \\ \sigma_{x72} = \end{array}$
		σ _{φ41} =-*	σ _{x41} =-*	σ _{φ51} =-*	σ _{x51} =-*	σ φ41=	σ _{x41} =	σ φ51=	σ _{x51} =
水平方向地震による応力	引張り		σ _{x421} =-*	σ _{φ52} =-*	σ _{x52} =-*	$ \sigma_{\phi 421} = \\ \sigma_{\phi 422} = $	$ \sigma_{x421} = \\ \sigma_{x422} = $	σ _{φ52} =	σ _{x52} =
(こから) ()			σ _{x42} =-*			σ φ42=	σ _{x42} =		
	せん断	τ θ=-*		$\tau_{\rm c} = -*$		τ θ=		$\tau_{\rm c} =$	
組合せ応力				σ _{2c} =-*		σ _{2ℓ} =		σ _{2c} =	

注記*:ⅢSについては、基準地震動Ssで評価する。

1.3.2 脚に生じる応力

(単位:MPa)

1. 3. 2 JAPICE C'S/ILVJ					(+111. MI a)
	地震の種類	弹性設計用地震動	JS d 又は静的震度	基準地	震動S s
	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	圧縮	σ _{s1} =-*	$\sigma_{s1}=-*$	σ_{s1} =	σ_{s1} =
鉛直方向地震による応力	圧縮	σ _{s4} =-*	σ _{s4} =-*	σ _{s4} =	σ _{s4} =
水平方向地震による応力	曲げ	σ _{s2} =-*	σ _{s3} =-*	σ _{s2} =	σ _{s3} =
小半万円地長による応力	せん断	τ _{s2} =-*	τ _{s3} =-*	τ_{s2} =	τ _{s3} =
組合せ応力		σ _{sℓ} =-*	σ _{sc} =-*	$\sigma_{s\ell} =$	σ _{sc} =

注記*:ⅢASについては、基準地震動Ssで評価する。

1.3.3 基礎ボルトに生じる応力

(単位:MPa)

	地震の種類	弹性設計用地震動	基準地震動S s		
	地震の方向	長手方向	横方向	長手方向	横方向
鉛直方向地震及び 水平方向地震による応力	引張り	σ _{b1} =-*	σ _{b2} =-*	σ _{b1} =	σ _{b2} =
水平方向地震による応力	せん断	τ _{b1} =-*	τ _{b2} =-*	τ _{b1} =	τ _{b2} =

注記*:ⅢSについては、基準地震動Ssで評価する。

1.4 結論

1.4.1 固有周期

(単位: s)

方 向	固有周期
長手方向	$T_1 =$
横方向	$T_2 =$
鉛直	T ₃ =

1.4.2 応力

(単位:MPa)

部材	材料	r +	弹性設計用地震	動Sd又は静的震度	基準地	震動S s
司 1/7		応 力	算出応力	許容応力	算出応力	許容応力
		一次一般膜	$\sigma_0 = *2$	S a = *2	$\sigma_0 =$	$S_a =$
胴板		一次	$\sigma_1 = *2$	S a = *2	σ_1 =	$S_a =$
		一次+二次	σ ₂ =*2	S a=*2	σ_2 =	$S_a =$
脚		組合せ	$\sigma_s = *2$	$f_{\rm t} = *2$	σ_s =	f_t =
基礎ボルト		引張り	$\sigma_b = *2$	$f_{t s} = *1$	σ _b =	$f_{ts} = *1$
本限がソント		せん断	τ _b =*2	$f_{\rm s b} = *2$	τ b=	$f_{sb} =$

すべて許容応力以下である。

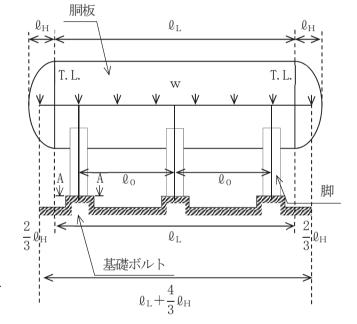
注記*1: f_{ts}=Min[1.4·f_{to}-1.6·τ b, f_{to}]より算出

*2: 基準地震動Ssによる算出値

2. 重大事故等対処設備

2.1 設計条件

機器名称	設備分類	設備分類 据付場所及び床面高さ (m)	固有周期(s)		弾性設計用地震動Sd又は静的震度		基準地震動S s		是宣佈田区力	最高使用温度	周囲環境温度	
			水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度		鉛直方向 設計震度	東同使用土刀 (MPa)	取同史用温度 (°C)	问世琛児価及 (°C)	比重
					— RXF17X/X			$C_V =$	静水頭			


注記*:基準末レベルを示す。

2.2 機器要目

ℓ _H (mm)	$\ell_{ m L}$ (mm)	w (N/mm)	M ₁ (N•mm)	M ₂ (N•mm)	M ₃ (N•mm)	R ₁ (N)	R ₂ (N)	R ₃	H (mm)

m ₀ (kg)	m _{s t} (kg)	D _i (mm)	t (mm)	t _e (mm)	ℓo (mm)	h 1 (mm)	h 2 (mm)	$ heta_{ m w}$ (rad)	ℓ _w (mm)
				*1					

C ₁ (mm)	C ₂ (mm)	I sx (mm ⁴)	I sy (mm ⁴)	Z_{sx} (mm ³)	Z_{sy} (mm ³)	θ ₀ (rad)	θ (rad)

A-A 矢視図

	A_s (mm ²)	E s (MPa)	G s (MPa)	$A_{s 1}$ (mm ²)	A_{s2} (mm ²)	A_{s3} (mm ²)	A_{s4} (mm ²)
-							

K _{1 1} *2	K ₁₂ *2	K ₂₁ *2	K _{2 2} *2	$K_{\ell 1}$	$K_{\ell 2}$	K_{c1}	K_{c2}	$C_{\ell 1}$	$C_{\ell 2}$	C c 1	C c 2

S	n	n ₁	n_2	a (mm)	b (mm)	d (mm)	A_{b} (mm ²)	d ₁ (mm)	d ₂ (mm)
						(M)			

	S _y (胴板)	Sų (胴板)	S (胴板)	S _y (脚)	Su(脚)	F(脚)	F* (脚)	S _y (基礎ボルト)	S _u (基礎ボルト)	F (基礎ボルト)	F* (基礎ボルト)
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
:	* 3	*3	*3	*4	*4	_		*4	*4	_	

注記*1:本計算においては当板を有効とした。

*2:表中で上段は一次応力、下段は二次応力の係数とする。

*3:最高使用温度で算出 *4:周囲環境温度で算出

2.3 計算数値

2.3.1 胴に生じる応力

(1) 一次一般膜芯力

(単位:MPa)

地震の種類		弹性設計用地震動	Sd又は静的震度			基準地	震動S s	
地震の方向	長手	F 方向	横	方向	長手	方向	横	方向
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力	_	_	_	_	$\sigma_{\phi 1} =$	σ_{x1} =	σ φ 1=	$\sigma_{x1} =$
静水頭による応力 (鉛直方向地震時)	_	_	_	_	σ φ 2=	_	σ φ2=	_
運転時質量による長手方向曲げ モーメントにより生じる応力	_	_	_	_	_	σ _{x2} =	_	σ _{x2} =
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	_	_	_	_	_	σ _{x 6} =	_	σ _{x6} =
長手方向地震により胴軸断面 全面に生じる引張応力	_	_	_	_	_	σ _{x413} =	_	_
組合せ応力	_		_		σ οθ=		σ _{0c} =	

(2) 一次応力

	地震の種類		弹性設計用地震動	Sd又は静的震度			基準地	喪動S s	
	地震の方向	長手	方向	横	方向	長手	方向	横	 方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応	力	_	1	_	_	σ φ1=	$\sigma_{x1} =$	σ _{φ1} =	σ _{x1} =
静水頭による応 (鉛直方向地震)		_		_	_	$\sigma_{\phi 2} =$	_	σ _{φ2} =	_
運転時質量による長手 モーメントにより生し		_	_	_	_	_	σ _{x2} =	_	σ_{x2} =
鉛直方向地震による長手 モーメントにより生し		_		_	_	_	σ x 6=	_	σ x6=
運転時質量による服 により生じる応		_		_	_	σ _{φ3} =	σ _{x3} =	σ φ3=	σ _{x3} =
鉛直方向地震による により生じる応		_		_	_	σ _{φ71} =	σ _{x71} =	σ φ 7 1 =	σ _{x71} =
水平方向地震	引張り	_	_	_	_	$\sigma_{\phi 411} = \\ \sigma_{\phi 412} =$	$\sigma_{x411} = \\ \sigma_{x412} = \\ \sigma_{x413} =$	σ φ 5 1 =	σ _{x51} =
による応力		_				σ _{φ41} =	σ_{x41} =		
	せん断	_	_			τ ϵ=		τ c=	
組合せ応力	•	_		_		σ 1 ℓ=		σ _{1c} =	

(3) 地震動のみによる一次応力と二次応力の和の変動値

(単位:MPa)

	地震の種類		弹性設計用地震動	IS d 又は静的震度			基準地	震動S s	
	地震の方向	長手	方向	横	方向	長手	方向	横	方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応 (鉛直方向地震)		_	_	_	_	σ φ2=	_	σ φ 2=	_
鉛直方向地震による: 曲げモーメントにより:		_	_	_	_	_	σ _{x6} =	_	σ _{x6} =
鉛直方向地震による により生じる応		_		_ _		$ \sigma_{\phi71} = \\ \sigma_{\phi72} = $	$\begin{array}{c} \sigma_{x71} = \\ \sigma_{x72} = \end{array}$	$\begin{array}{c} \sigma_{\phi 7 1} = \\ \sigma_{\phi 7 2} = \end{array}$	$\sigma_{x71} = $ $\sigma_{x72} = $
		_	_	_	_	σ φ41=	σ_{x41} =	σ _{φ51} =	σ_{x51} =
水平方向地震による応力	引張り			_	_	$ \sigma_{\phi 421} = \\ \sigma_{\phi 422} = $	$ \sigma_{x421} = \\ \sigma_{x422} = $	σ _{φ52} =	σ _{x52} =
(こよる)(15/1)		_	_			σ φ42=	σ _{x42} =		
	せん断	_		_		τ θ=		$\tau_{\rm c} =$	
組合せ応力		_		_		σ 2 ℓ=		σ _{2c} =	

2.3.2 脚に生じる応力

(単位:MPa)

2. 0. 2 JANCE C'SINDYJ					(平位、M a)	
	地震の種類	弹性設計用地震動	bSd 又は静的震度	基準地震動S s		
	地震の方向	長手方向	横方向	長手方向	横方向	
運転時質量による応力	圧縮	_	_	$\sigma_{s1} =$	$\sigma_{s1} =$	
鉛直方向地震による応力	圧縮	_	_	σ _{s4} =	σ _{s4} =	
水平方向地震による応力	曲げ	_	_	$\sigma_{s2} =$	σ _{s3} =	
八十万円地長による応力	せん断	_	_	τ _{s2} =	τ _{s3} =	
組合せ応力		_	_	σ _s _ℓ =	σ s c =	

2.3.3 基礎ボルトに生じる応力

(単位:MPa)

	地震の種類	弾性設計用地震動	IS d 又は静的震度	基準地震動S s		
	地震の方向	長手方向	横方向	長手方向	横方向	
鉛直方向地震及び 水平方向地震による応力	引張り	_	_	σ _{b1} =	σ _{b2} =	
水平方向地震による応力	せん断	_	_	τ ы1=	τ _{b2} =	

2.4 結論 2.4.1 固有周期 (単位: s)

方 向	固有周期
長手方向	$T_1 =$
横方向	$T_2 =$
鉛直	$T_3 =$

2.4.2 応力 (単位:MPa)

部材	材料	K +	弹性設計用地震動	めSd 又は静的震度	基準地震動S s		
司 初		応 力	算出応力	許容応力	算出応力	許容応力	
		一次一般膜	_	_	$\sigma_0 =$	$S_a =$	
胴板		一次	_	_	σ_1 =	$S_a =$	
		一次+二次	_	_	$\sigma_2 =$	$S_a =$	
脚		組合せ	_	_	σ_s =	$f_t =$	
基礎ボルト		引張り	_	_	σ _b =	$f_{ts} = *$	
全版ハゾレト		せん断	_	_	τ _b =	$f_{sb} =$	

すべて許容応力以下である。 注記*: f_{ts}=Min[1.4·f_{to}-1.6·τ b, f_{to}]より算出

【4 脚支持横置一胴円筒形容器(脚間等間隔)】

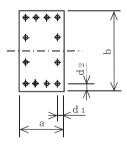
【○○○○タンクの耐震性についての計算結果】

1. 設計基準対象施設

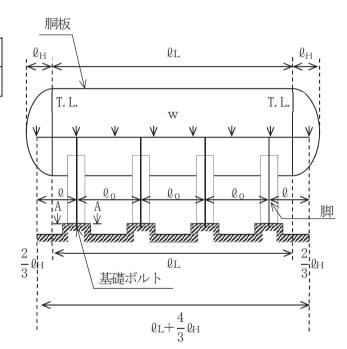
1.1 設計条件

		担付担応及び主要する	固有周	期 (s)	弾性設計用地震動	Sd又は静的震度	基準地震	憂動S s	具官体田広力	具有体田洱底	周囲環境温度 (°C)	
機器名称	耐震重要度分類	度分類 据付場所及び床面高さ m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度		(MPa)	最高使用温度 (°C)		比重
					*2	*2	$C_H =$	$C_V =$	静水頭			

注記*1:基準床レベルを示す。


*2: Ⅲ₄S については、基準地震動S s で評価する。

1.2 機器要目


- 1													
	Q	ϱ_{H}	$\varrho_{\scriptscriptstyle m L}$	w	M_1	M_2	M_3	M_4	R_1	R_2	R_3	R_4	Н
	(mm)	(mm)	(mm)	(N/mm)	(N•mm)	(N•mm)	(N•mm)	(N·mm)	(N)	(N)	(N)	(N)	(mm)

m ₀ (kg)	m _{st} (kg)	D _i (mm)	t (mm)	t _e (mm)	ℓ _o (mm)	h 1 (mm)	h ₂ (mm)	$ heta_{ m w}$ (rad)	ℓ _w (mm)
				*1					

C ₁ (mm)	C ₂ (mm)	I_{sx} (mm ⁴)	I sy (mm ⁴)	Z_{sx} (mm ³)	Z_{sy} (mm ³)	θ o (rad)	θ (rad)

A_s (mm ²)	E s (MPa)	G _s (MPa)	A_{s1} (mm ²)	A_{s2} (mm ²)	A_{s3} (mm ²)	A_{s4} (mm ²)

K ₁₁ *2	K_{12}^{*2}	K ₂₁ *2	K _{2 2} *2	$K_{\ell 1}$	$K_{\ell 2}$	K _{e1}	К _{с2}	$C_{\ell 1}$	$C_{\ell 2}$	C c 1	C c 2

S	n	n 1	n_2	a (mm)	b d (mm) (mm)		A_b (mm ²)	d ₁ (mm)	d ₂ (mm)
						(M)			

	S _y (胴板)	Su (胴板)	S (胴板)	S _y (脚)	Su(脚)	F(脚)	F* (脚)	S _y (基礎ボルト)	S _u (基礎ボルト)	F (基礎ボルト)	F* (基礎ボルト)
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
:	* 3	*3	*3	*4	*4	_		*4	*4	_	

注記*1:本計算においては当板を有効とした。

*2:表中で上段は一次応力、下段は二次応力の係数とする。

*3:最高使用温度で算出 *4:周囲環境温度で算出

1.3 計算数値

1.3.1 胴に生じる応力

(1) 一次一般膜応力

(単位:MPa)

(1) 00 /100001000									(— <u> </u>
ţ	地震の種類		弹性設計用地震動	IS d 又は静的震度			基準地	震動S s	
1	地震の方向	長手	方向	横方向		長手方向		横	方向
, , , , , , , , , , , , , , , , , , ,	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力		σ _{φ1} =-*	σ _{x1} =-*	σ _{φ1} =-*	σ _{x1} =-*	σ φ1=	σ _{x1} =	σ φ 1=	σ _{x 1} =
静水頭による応力 (鉛直方向地震時)		σ φ2=-*	_	σ _{φ2} =-*	_	σ φ2=	_	σ φ2=	_
運転時質量による長手方向は モーメントにより生じる応		_	σ _{x2} =-*	_	σ _{x2} =-*	_	σ _{x2} =	_	σ _{x2} =
鉛直方向地震による長手方向 モーメントにより生じる応		_	σ _{x6} =-*	_	σ _{x6} =-*	_	σ _{x6} =	_	σ _{x6} =
長手方向地震により胴軸断 全面に生じる引張応力		_	σ _{x413} =-*	_	_	_	σ _{x413} =	_	_
組合せ応力		σ _{0ℓ} =-*		σ _{0c} =-*		σ οθ=		σ _{0c} =	

注記*:ⅢSについては、基準地震動Ssで評価する。

(2) 一次応力

(単位:MPa)

(4)									(—) <u>1.</u> . Mi (1)
	地震の種類		弹性設計用地震動	bSd又は静的震度			基準地	喪動S s	
	地震の方向	長手	方向	横	方向	長手	手方向	模	訪向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応		σ _{φ1} =-*	σ _{x1} =-*	σ _{φ1} =-*	σ _{x1} =-*	σ φ 1=	σ _{x1} =	σ φ 1=	$\sigma_{x1} =$
静水頭による応 (鉛直方向地震)	力	σ φ 2=-*		σ φ 2=-*	_	σ φ2=	_	σ φ2=	_
運転時質量による長手 モーメントにより生!		_	σ _{x2} =-*	_	σ _{x2} =-*	_	σ _{x2} =	_	σ _{x2} =
鉛直方向地震による長手方向曲げ モーメントにより生じる応力		_	σ _{x6} =-*	_	σ _{x6} =-*	_	σ _{x 6} =	_	σ _{x 6} =
運転時質量によるM により生じる応		σ φ 3=-*	σ _{x3} =-*	σ φ 3 = -*	σ _{x3} =-*	σ φ3=	σ _{x3} =	σ φ3=	σ _{x3} =
鉛直方向地震による により生じる応		σ _{φ71} =-*	σ _{x71} =-*	σ _{φ71} =-*	σ _{x71} =-*	σ _{φ71} =	σ _{x71} =	σ φ71=	$\sigma_{x71} =$
		σ φ412=-*	0 x413-	σ φ51=-*	σ _{x51} =-*	$ \sigma_{\phi 411} = \\ \sigma_{\phi 412} = $	$\sigma_{x411} = \\ \sigma_{x412} = \\ \sigma_{x413} =$	σ φ 5 1 =	σ _{x51} =
トーキの心力		$\sigma_{\phi 41} = -*$	$\sigma_{x41} = -*$			σ φ41=	σ _{x41} =]	
		τ ℓ=-*		τ _c =-*		τ ϵ=		$\tau_{\rm c} =$	
組合せ応力	•	σ _{1ℓ} =-*		σ _{1c} =-*		σ 10=		σ _{1c} =	

注記*:ⅢSについては、基準地震動Ssで評価する。

	地震の種類		弹性設計用地震重	hS d 又は静的震度			基準地	震動S s		
	地震の方向	長	手方向	横	方向	長	手方向	植	訪向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
静水頭による (鉛直方向地)		σ φ2=-*	_	σ _{φ2} =-*	_	σ φ2=	_	σ φ2=	_	
鉛直方向地震による 曲げモーメントにより		_	σ _{x6} =-*	_	σ _{x6} =-*	_	σ _{x6} =	_	σ _{x6} =	
鉛直方向地震による脚反力 により生じる応力		$\sigma_{\phi 7 1} = -*$ $\sigma_{\phi 7 2} = -*$			$\sigma_{x71} = -*$ $\sigma_{x72} = -*$	$ \sigma_{\phi71} = \\ \sigma_{\phi72} = $	$ \sigma_{x71} = \\ \sigma_{x72} = $	$ \begin{array}{c} \sigma_{\phi71} = \\ \sigma_{\phi72} = \end{array} $	$\begin{array}{c} \sigma_{x71} = \\ \sigma_{x72} = \end{array}$	
		σ _{φ41} =-*	σ _{x41} =-*	σ _{φ51} =-*	σ _{x51} =-*	σ φ41=	σ _{x41} =	σ φ 5 1 =	σ x 5 1=	
水平方向地震による応力	引張り	$\sigma_{\phi 421} = -*$ $\sigma_{\phi 422} = -*$	σ _{x421} =-*	σ _{φ52} =-*	σ _{x52} =-*	$ \sigma_{\phi 421} = \\ \sigma_{\phi 422} = $	$ \sigma_{x421} = \\ \sigma_{x422} = $	σ _{φ52} =	σ _{x52} =	
(「チの)(ご)			σ _{x42} =-*]		σ φ42=	σ _{x42} =	7		
	せん断	τ θ=-*		$\tau_{\rm c}{=}{-}*$		τ e=		τ _c =		
組合せ応力		σ 20=-*			σ _{2c} =-*		σ 20=		σ _{2c} =	

注記*:ⅢASについては、基準地震動Ssで評価する。

1.3.2 脚に生じる応力

(単位: MPa)

1.0.2 ///(-1.0.0/195)					(— <u> </u> —, (4)
	地震の種類	弹性設計用地震動	IS d 又は静的震度	基準地	憂動S s
	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	圧縮	σ _{s1} =-*	$\sigma_{s1}=-*$	$\sigma_{s1} =$	$\sigma_{s1} =$
鉛直方向地震による応力	圧縮	σ _{s4} =-*	σ _{s4} =-*	σ _{s4} =	σ _{s4} =
水平方向地震による応力	曲げ	σ _{s2} =-*	σ _{s3} =-*	σ _{s2} =	σ _{s3} =
小十万円地展による心力	せん断	τ _{s2} =-*	τ _{s3} =-*	$\tau_{s2} =$	τ _{s3} =
組合せ応力		σ _s ℓ=-*	σ _{sc} =-*	σ _s <i>ℓ</i> =	σ _{sc} =

注記*: ⅢSについては、基準地震動Ssで評価する。

1.3.3 基礎ボルトに生じる応力

(単位:MPa)

1.0.0 21,2.1 11-11-20					(•	
	地震の種類	弹性設計用地震動	IS d 又は静的震度	基準地震動S s		
	地震の方向	長手方向	横方向	長手方向	横方向	
鉛直方向地震及び 水平方向地震による応力	引張り	σ _{b1} =-*	σ _{b2} =-*	σ _{b1} =	σ _{b2} =	
水平方向地震による応力	せん断	τ _{b1} =-*	τ _{b2} =-*	τ _{b1} =	τ _{b2} =	

注記*: ⅢAS については、基準地震動Ssで評価する。

1.4 結論 1.4.1 固有周期 (単位:s)

方 向	固有周期
長手方向	$T_1 =$
横方向	$T_2 =$
鉛直	T ₃ =

1.4.2 応力 (単位:MPa)

如 ++	部材材料応		弹性設計用地震動	めS d 又は静的震度	基準地震動S s		
口 (1 ^元	1/1 1/1		算出応力	許容応力	算出応力	許容応力	
		一次一般膜	$\sigma_0 = *2$	S a = *2	$\sigma_0 =$	$S_a =$	
胴板		一次	$\sigma_1 = *2$	S a = *2	σ_1 =	$S_a =$	
		一次+二次	σ ₂ =*2	S a = *2	$\sigma_2 =$	$S_a =$	
脚		組合せ	$\sigma_s = *2$	$f_{\rm t} = *2$	σ_s =	$f_{\rm t} =$	
基礎ボルト		引張り	$\sigma_b = *2$	$f_{ts}=*1$	$\sigma_b =$	$f_{ts} = *1$	
左岐ハソレト		せん断	$\tau_b = *2$	$f_{sb} = *2$	τ _b =	$f_{sb} =$	

注記*1: f_{ts}=Min[1.4·f_{to}-1.6·τ b, f_{to}]より算出 すべて許容応力以下である。

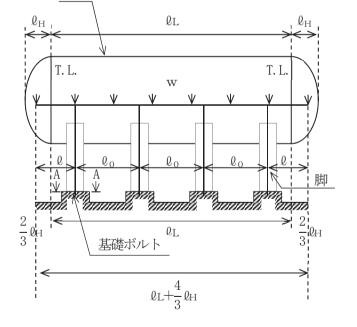
*2:基準地震動Ssによる算出値

2. 重大事故等対処設備

2.1 設計条件

		据付場所及び末面高さ	固有周期(s)		弾性設計用地震動	設計用地震動Sd又は静的震度		喪動S s	最高使用圧力 最高使用温		更 周囲環境温度	
機器名称	設備分類	がからが、例(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度		鉛直方向 設計震度	(MPa)	(C)	(°C)	比重
					- RXH172/2	— IXHI <i>I</i> XIX	_	C _V =	静水頭			

<u>A-A 矢視図</u>


注記*:基準末レベルを示す。

2.2 機器要目

DWHI												
Q	ϱ_{H}	$\varrho_{\scriptscriptstyle m L}$	W	M_1	M_2	M_3	M_4	R_1	R_2	R_3	R_4	Н
(mm)	(mm)	(mm)	(N/mm)	(N•mm)	(N•mm)	(N•mm)	(N·mm)	(N)	(N)	(N)	(N)	(mm)
												ĺ

m ₀ (kg)	m _{s t} (kg)	D _i (mm)	t (mm)	t _e (mm)	ℓ _O (mm)	h 1 (mm)	h ₂ (mm)	$ heta_{ m w}$ (rad)	$\ell_{ m w}$ (mm)
				*1					

C ₁ (mm)	C ₂ (mm)	I_{sx} (mm ⁴)	I sy (mm ⁴)	Z_{sx} (mm ³)	Z_{sy} (mm ³)	θ_{0} (rad)	θ (rad)

胴板

A_s (mm ²)	E s (MPa)	G s (MPa)	A_{s1} (mm ²)	A_{s2} (mm ²)	A_{s3} (mm ²)	A_{s4} (mm²)

K ₁₁ *2	K_{12}^{*2}	K ₂₁ *2	K _{2 2} *2	$K_{\ell 1}$	$K_{\ell 2}$	K _{e1}	К _{с2}	$C_{\ell 1}$	$C_{\ell 2}$	C c 1	C c 2

S	n	n 1	n_2	a (mm)	b (mm)	d (mm)	A_b (mm ²)	d ₁ (mm)	d ₂ (mm)
						(M)			

S _y (胴板)	Su (胴板)	S (胴板)	S _y (脚)	Su(脚)	F(脚)	F* (脚)	S _y (基礎ボルト)	S _u (基礎ボルト)	F (基礎ボルト)	F* (基礎ボルト)
(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
*3	*3	*3	*4	*4	_		*4	*4	_	

注記*1:本計算においては当板を有効とした。

*2:表中で上段は一次応力、下段は二次応力の係数とする。

*3:最高使用温度で算出 *4:周囲環境温度で算出

2.3 計算数値

2.3.1 胴に生じる応力

(1) 一次一般膜芯力

(単位:MPa)

地震の種類		弹性設計用地震動	Sd又は静的震度			基準地	喪動S s	
地震の方向	長手方向		横	横方向		長手方向		姉
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力	_	_	1	_	$\sigma_{\phi 1} =$	$\sigma_{x1} =$	σ φ 1=	$\sigma_{x1} =$
静水頭による応力 (鉛直方向地震時)	_	_	_	_	σ φ 2=	_	σ φ 2=	_
運転時質量による長手方向曲げ モーメントにより生じる応力	_	_	_	_	_	σ _{x2} =	_	$\sigma_{x2} =$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	_	_	_	_	_	σ x 6=	_	σ _{x6} =
長手方向地震により胴軸断面 全面に生じる引張応力	_	_	_	_	_	σ _{x413} =	_	_
組合せ応力	_		_		σο ε=		σ _{0c} =	

(2) 一次応力

	地震の種類		弹性設計用地震動	Sd又は静的震度			基準地	喪動S s	
	地震の方向	長手	方向	横	方向	長手	=方向	横	 方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応	力	_		_	_	σ _{φ1} =	$\sigma_{x1} =$	σ φ 1=	$\sigma_{x1} =$
静水頭による応力 (鉛直方向地震時)		_	_	_	_	$\sigma_{\phi 2} =$	_	σ _{φ2} =	_
運転時質量による長手方向曲げ モーメントにより生じる応力		_		_	_	_	σ _{x2} =	_	σ _{x2} =
鉛直方向地震による長手方向曲げ モーメントにより生じる応力		_		_	_	_	σ x 6=	_	σ x 6=
運転時質量による駅 により生じる応		_		_	_	σ _{φ3} =	σ _{x3} =	σ _{φ3} =	σ _{x3} =
鉛直方向地震による により生じる応		_		_	_	σ _{φ71} =	σ _{x71} =	σ _{φ71} =	σ _{x71} =
水平方向地震による応力	引張り	_	_	_	_	$\sigma_{\phi 411} = \\ \sigma_{\phi 412} =$	$ \sigma_{x411} = \sigma_{x412} = \sigma_{x413} = $	σ _{φ51} =	σ _{x51} =
による心力		_	_			σ φ41=	σ_{x41} =		
	せん断	_		_		τ ℓ=		τ _c =	
組合せ応力		_		_		σ 1 ℓ=		σ _{1c} =	

(3) 地震動のみによる一次応力と二次応力の和の変動値

(単位:MPa)

	地震の種類		弹性設計用地震動	ISd 又は静的震度			基準地	震動S s	
	地震の方向	長手	長手方向		横方向		長手方向		方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による! (鉛直方向地震		_	_	_	_	σ φ2=	_	σ φ 2=	_
鉛直方向地震による長手方向 曲げモーメントにより生じる応力		_	_	_	_	_	σ _{x6} =	_	σ _{x6} =
	鉛直方向地震による脚反力 により生じる応力		_ _	_ _		$ \sigma_{\phi71} = \\ \sigma_{\phi72} = $	$\begin{array}{c} \sigma_{x71} = \\ \sigma_{x72} = \end{array}$	$ \sigma_{\phi 7 1} = \\ \sigma_{\phi 7 2} = $	$\begin{array}{c} \sigma_{x71} = \\ \sigma_{x72} = \end{array}$
		_	_	_	_	σ φ41=	σ_{x41} =	σ _{φ51} =	σ_{x51} =
水平方向地震による応力	引張り	_		_	_	$ \sigma_{\phi 421} = \\ \sigma_{\phi 422} = $	$ \sigma_{x421} = \\ \sigma_{x422} = $	σ _{φ52} =	σ _{x52} =
(こよる)心/		_	_			σ φ42=	σ _{x42} =		
	せん断	_			_		τ θ=		
組合せ応力		_		_		σ 2 ℓ=		σ _{2c} =	

2.3.2 脚に生じる応力

(単位: MPa)

2. J. Z JAPICE COJUDJ					(平区·Ma)	
	地震の種類	弹性設計用地震動	IS d 又は静的震度	基準地震動S s		
	地震の方向	長手方向	横方向	長手方向	横方向	
運転時質量による応力	圧縮	_	_	$\sigma_{s1} =$	$\sigma_{s1} =$	
鉛直方向地震による応力	圧縮	_	_	σ _{s4} =	$\sigma_{s4} =$	
水平方向地震による応力	曲げ	_	_	σ _{s2} =	σ _{s3} =	
小十万円地長による応力	せん断	_	_	τ_{s2} =	$\tau_{s3} =$	
組合せ応力		_	_	σ s ℓ=	σ s c=	

2.3.3 基礎ボルトに生じる応力

(単位:MPa)

					(===/	
	地震の種類	弾性設計用地震動	IS d 又は静的震度	基準地震動S s		
	地震の方向	長手方向	横方向	長手方向	横方向	
鉛直方向地震及び 水平方向地震による応力	引張り	_	_	σ _{b1} =	σ _{b2} =	
水平方向地震による応力	せん断	_	_	τы1=	τ _{b2} =	

~

2.4 結論 2.4.1 固有周期 (単位:s)

方 向	固有周期
長手方向	$T_1 =$
横方向	$T_2 =$
鉛直	$T_3 =$

2.4.2 応力 (単位:MPa)

部材	材料	K +	弹性設計用地震動	動Sd又は静的震度	基準地	震動S s
司 1/7		応 力	算出応力	許容応力	算出応力	許容応力
		一次一般膜	_	_	$\sigma_0 =$	$S_a =$
胴板		一次	_	_	σ_1 =	$S_a =$
		一次+二次	_	_	$\sigma_2 =$	$S_a =$
脚		組合せ	_	_	σ_s =	f_t =
基礎ボルト		引張り	_	_	σ _b =	$f_{ts} = *$
全版ハゾレト		せん断	_	_	τ _b =	$f_{\rm sb} =$

すべて許容応力以下である。 注記*: f_{ts}=Min[1.4·f_{to}-1.6·τ b, f_{to}]より算出

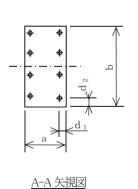
【4脚支持横置一胴円筒形容器(脚間非等間隔)】

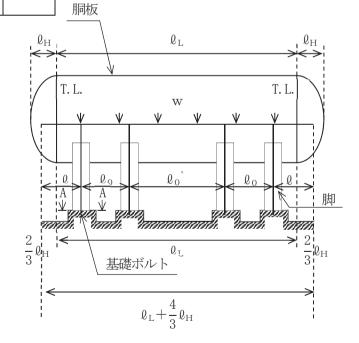
【○○○○タンクの耐震性についての計算結果】

1. 重大事故等対処設備

1.1 設計条件

	設備分類	据付場所及び床面高さ (m)	固有周期(s)		弾性設計用地震動Sd又は静的震度		基準地震動S s		最高使用圧力	具有体田泪座	田田県安田市	
機器名称			水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度		東両史州エハ (MPa)	最高使用温度 (°C)	周囲環境温度 (℃)	比重
					_	_	C _H =	$C_V =$	静水頭			


注記*:基準床レベルを示す。


1.2 機器要目

(mm)	Q _H (mm)	ℓ _L (mm)	w (N/mm)	M ₁ (N•mm)	M ₂ (N•mm)	M ₃ (N•mm)	M ₄ (N•mm)	R ₁ (N)	R ₂ (N)	R ₃ (N)	R ₄ (N)	H (mm)

m_0	m _{st}	D_{i}	t	t e	ℓ_{0}	Qo,	h 1	h ₂	θ w	ℓ_{w}
(kg)	(kg)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(rad)	(mm)
				*1						

C ₁ (mm)	C ₂ (mm)	I s x (mm ⁴)	I sy (mm ⁴)	Z_{sx} (mm ³)	Z_{sy} (mm ³)	θ ₀ (rad)	θ (rad)

A_s (mm ²)	E s (MPa)	G _s (MPa)	A_{s1} (mm ²)	A_{s2} (mm ²)	A_{s3} (mm ²)	A_{s4} (mm ²)

K ₁₁ *2	K_{12}^{*2}	K ₂₁ *2	K _{2 2} *2	K_{ϱ_1}	$K_{\ell 2}$	K_{c1}	K_{c2}	$C_{\ell 1}$	$C_{\ell 2}$	C c 1	C c 2

S	n	n ₁	n_2	a (mm)	b (mm)	d (mm)	$A_{ m b}$ (mm ²)	d ₁ (mm)	d ₂ (mm)
						(M)			

S _y (胴板)	Su (胴板)	S(胴板)	S _y (脚)	Su(脚)	F(脚)	F*(脚)	S _y (基礎ボルト)	S _u (基礎ボルト)	F (基礎ボルト)	F* (基礎ボルト)
(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
*3	*3	*3	*4	*4	_		*4	*4	_	

注記*1:本計算においては当板を有効とした。

*2:表中で上段は一次応力、下段は二次応力の係数とする。

*3:最高使用温度で算出 *4:周囲環境温度で算出

1.3 計算数値

1.3.1 胴に生じる応力

(1) 一次一般膜芯力

(単位:MPa)

地震の種類		弹性設計用地震動	Sd又は静的震度		基準地震動S s			
地震の方向	長手方向		横方向		長手方向		横方向	
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力	_	_	_	_	σ _{φ1} =	$\sigma_{x1} =$	σ φ 1=	$\sigma_{x1} =$
静水頭による応力 (鉛直方向地震時)	_	_	_	_	σ φ 2=	_	σ _{φ2} =	_
運転時質量による長手方向曲げ モーメントにより生じる応力	_	_	_	_	_	σ_{x2} =	_	σ _{x2} =
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	_	_	_	_	_	σ _{x6} =	_	σ _{x6} =
長手方向地震により胴軸断面 全面に生じる引張応力	_	_	_	_	_	σ _{x413} =	_	_
組合せ応力	-	_	-	_	σο	=	σ) _c =

(2) 一次応力

	地震の種類		弹性設計用地震動	Sd又は静的震度			基準地原	動S s	
	地震の方向	長手	方向	横	方向	長手	方向	横	方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応	动	_		_	_	$\sigma_{\phi 1} =$	$\sigma_{x1} =$	$\sigma_{\phi 1} =$	$\sigma_{x1} =$
静水頭による応 (鉛直方向地震		_	_	_	_	σ φ 2=	-	σ φ 2=	_
運転時質量による長手 モーメントにより生		_	_	_	_	_	σ _{x2} =	_	σ _{x2} =
鉛直方向地震による長 モーメントにより生		_	١	_	_	_	σ_{x6} =	_	$\sigma_{x6} =$
運転時質量による により生じる応		_	-	_	_	σ φ3=	σ _{x3} =	σ φ3=	σ _{x3} =
鉛直方向地震による により生じる応		_	1	_	_	σ φ71=	σ _{x71} =	σ φ 7 1=	σ _{x71} =
		_	_			σ _{φ411} =	$\sigma_{x411} =$		
水平方向地震	引張り	_	-	_	_	σ φ412=	$\sigma_{x412} = \\ \sigma_{x413} =$	σ _{φ51} =	$\sigma_{x51} =$
による応力		_				σ φ 4 1 =	σ _{x41} =		
	せん断	-	_	_		τ ε=		$_{ au_{ m c}}=$	
組合せ応力		_		_		σ 12=		σ _{1c} =	

(3) 地震動のみによる一次応力と二次応力の和の変動値

(単位:MPa)

	地震の種類		弹性設計用地震動	IS d 又は静的震度			基準地	憂動S s	
	地震の方向	長手方向		横	横方向		方向	横方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による (鉛直方向地震		_	_	_	_	σ φ 2=	_	σ φ2=	_
鉛直方向地震による 曲げモーメントにより		_	_	-	_	_	σ _{x6} =	_	σ _{x6} =
鉛直方向地震によ	る脚反力	_	_	_	_	σ φ 7 1=	σ _{x71} =	σ φ 7 1=	$\sigma_{x71} =$
により生じる	応力	_	_	_	_	σ _{φ72} =	σ_{x72} =	σ _{φ72} =	σ_{x72} =
		_	_	_	_	$\sigma_{\phi 41} =$	$\sigma_{x41} =$	σ _{φ51} =	$\sigma_{x51} =$
水平方向地震	引張り	_	_			$\sigma_{\phi 421} =$	$\sigma_{x421} =$		
による応力	71029	_	_	_	_	σ _{φ422} =	σ _{x422} =	σ _{φ52} =	σ_{x52} =
(「キの)(ご)		_				σ _{φ42} =	$\sigma_{x42} =$		
	せん断	-	_	_		τ ε=		$_{ au_{ m c}}=$	
組合せ応力		_		_		σ 20=		σ _{2c} =	

1.3.2 脚に生じる応力

(単位・MPa)

	1. 3. 2 かんこと しつかい 1					(平位·Ma)	
Г		地震の種類	弹性設計用地震動	Sd又は静的震度	基準地震動S s		
		地震の方向	長手方向	横方向	長手方向	横方向	
	運転時質量による応力	圧縮	_	_	$\sigma_{s1} =$	σ_{s1} =	
	鉛直方向地震による応力	圧縮	_	_	σ _{s4} =	$\sigma_{s4} =$	
	水平方向地震による応力	曲げ	_	_	$\sigma_{s2} =$	$\sigma_{s3} =$	
	小十万回地長による心力	せん断	_	_	τ_{s2} =	τ _{s3} =	
	組合せ応力	_	_	σ _{s ℓ} =	σ _{s c} =		

1.3.3 基礎ボルトに生じる応力

(単位: MPa)

1.0.0 22,2.7 11=2.0 2,2.3					(
	地震の種類	弹性設計用地震動	IS d 又は静的震度	基準地	震動S s
	地震の方向	長手方向	横方向	長手方向	横方向
鉛直方向地震及び 水平方向地震による応力	引張り	1	_	σ _{b1} =	σ _{b2} =
水平方向地震による応力	せん断	_	_	τ _{b1} =	τ _{b2} =

 \propto

1.4 結論 1.4.1 固有周期 (単位:s)

方 向	固有周期
長手方向	$T_1 =$
横方向	$T_2 =$
鉛直	T ₃ =

1.4.2 応力 (単位:MPa)

部材	材料	応 力	弾性設計用地震動Sd又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
胴板		一次一般膜		_	$\sigma_0 =$	$S_a =$
		一次		_	σ_1 =	$S_a =$
		一次+二次	_	_	$\sigma_2 =$	$S_a =$
脚		組合せ		_	σ_s =	$f_{\rm t}$ =
基礎ボルト		引張り		_	σ _b =	$f_{ts} = *$
		せん断	_	_	τ _b =	$f_{sb} =$

すべて許容応力以下である。

注記*: $f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau b, f_{to}]$