女川原子力発電所第 2 号機 工事計画審查資料	
資料番号	02 －工－B－19－0452＿改 3
提出年月日	2021 年 10 月 29 日

VI－2－11－2－6 ほう酸水注入系テストタンクの耐震性についての計算書

2 0 2 1 年 1 0 月

東北電力株式会社
1．概要 1
2．一般事項 1
2.1 配置概要 1
2.2 構造計画 2
2.3 評価方針 3
2.4 適用規格•基準等 4
2.5 記号の説明 5
2.6 計算精度と数値の丸め方 13
3．評価部位 14
4．構造強度評価 14
4． 1 構造強度評価方法 14
4．2 荷重の組合せ及び許容応力 14
4．2．1 荷重の組合せ及び許容応力状態 14
4．2．2 許容応力 14
4．2．3 使用材料の許容応力評価条件 14
4．3 固有周期 17
4． 4 計算方法 24
4．4．1 応力の計算方法 24
4.5 計算条件 43
4．6 応力の評価 43
4．6．1 胴の応力評価 43
4．6．2 脚の応力評価 43
4．6．3 ボルトの応力評価 47
5．評価結果 48
5.1 設計基準対象施設としての評価結果 48
6．引用文献 55

1．概要

本計算書は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設 の耐震評価方針」の耐震評価方針に基づき，下位クラス設備であるほう酸水注入系テス トタンクが上位クラス施設と同じ運転状態において基準地震動 S s に対して十分な構造強度を有していることを確認することで，近傍に設置された上位クラス施設であるほう酸水注入系ポンプ出口圧力（S クラス施設）に対して，波及的影響を及ぼさないことを説明するものである。

2．一般事項

2.1 配置概要

ほう酸水注入系テストタンクは原子炉建屋2階に設置される。ほう酸水注入系テス トタンクは図 2－1 の位置関係図に示すように，上位クラスであるほう酸水注入系ポン プ出口圧力に隣接しており，転倒によりほう酸水注入系ポンプ出口圧力に対して波及的影響を及ぼすおそれがある。
\square

図 2－1 ほう酸水注入系テストタンクとほう酸水注入系ポンプ出口圧力の位置関係

2.2 構造計画

ほう酸水注入系テストタンクの構造計画を表2－1に示す。

表 2－1 構造計画

構造の概要		概略構造図
基礎•支持構造	主体構造	
胴を 4 個の脚で支持し，脚をそれぞ れ基礎ボルトで架台に据え付ける。 また，架台は架台基礎ボルトにより基礎に据え付け る。	上面及び下面に平板を有するたて置円筒形	$\mathrm{A}-\mathrm{A}$ 断面図（4ヶ所） $B-B$ 断面図 $\mathrm{C}-\mathrm{C}$ 断面図

2.3 評価方針

ほう酸水注入系テストタンクの応力評価は，添付書類「VI－2－11－1 波及的影響を及 ぼすおそれのある下位クラス施設の耐震評価方針」にて設定したSクラス設備と同じ運転状態における荷重及び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」 にて示すほう酸水注入系テストタンクの部位を踏まえ，「3．評価部位」にて設定する箇所において，「4．3 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．1 構造強度評価方法」にて示す方法にて確認 することで実施する。確認結果を「5．評価結果」に示す。

ほう酸水注入系テストタンクの耐震評価フローを図 2－2 に示す。

図 2－2 ほう酸水注入系テストタンクの耐震評価フロー
2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－ 1984
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版
（4）発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）
2.5 記号の説明

記号	記号の説明	単位
A_{b}	基礎ボルトの軸断面積	mm^{2}
$\mathrm{A}_{\mathrm{bff}}$	架台基礎ボルトの軸断面積	mm^{2}
$\mathrm{A}_{\mathrm{b} k}$	架台基礎ボルトの軸最小断面積	mm^{2}
$\mathrm{A}_{\text {e }}$	胴の有効せん断断面積	mm^{2}
A_{f}	脚の圧縮フランジの断面積	mm^{2}
A_{5}	脚の断面積	mm^{2}
A s 1	脚の半径方向軸に対するせん断断面積	mm^{2}
$\mathrm{A}_{\mathrm{s} 2}$	脚の周方向軸に対するせん断断面積	mm^{2}
$\mathrm{A}_{\mathrm{sf} \mathrm{f}}$	脚の圧縮フランジとせいの6分の1から成るT形断面の断面積	mm^{2}
A s r	脚の半径方向軸に対する有効せん断断面積	mm^{2}
A s t	脚の周方向軸に対する有効せん断断面積	mm^{2}
a	脚底板の半径方向幅	mm
b	脚底板の周方向幅	mm
C	脚の座屈曲げモーメントに対する修正係数	－
C 1	脚の胴付け根部のアタッチメントの幅の2分の1（胴の周方向）	mm
C_{2}	脚の胴付け根部のアタッチメントの幅の2分の1（胴の軸方向）	mm
C c j	周方向モーメントによる応力の補正係数（引用文献（2）より得 られる値） （ $\mathrm{j}=1$ ：周方向応力， $\mathrm{j}=2$ ：軸方向応力）	－
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
$\mathrm{C}_{\ell}{ }^{\mathrm{j}}$	鉛直方向モーメントによる応力の補正係数（引用文献（2）より得られる値） （ $\mathrm{j}=1$ ：周方向応力， $\mathrm{j}=2$ ：軸方向応力）	－
D i	胴の内径	mm
d_{1}	脚底板端面から基礎ボルト中心までの半径方向の距離	mm
d 2	脚底板端面から基礎ボルト中心までの周方向の距離	mm
d b	ボルトの呼び径	mm
E	胴の縦弾性係数	MPa
E b f	架台基礎ボルトの縦弾性係数	MPa
E f	架台の縦弾性係数	MPa
Es	脚の縦弾性係数	MPa
e	脚中心から偏心荷重作用点までの距離	mm
F＊	設計•建設規格 SSB－3121．3又はSSB－3133に定める値	MPa
F 0	振動モデル系における水平力	N
F_{b}	基礎ボルトに作用する引張力	N

	記号	記号の説明	単位
	F bx	X方向地震により架台基礎ボルト 1 本当たりに作用する引張力	N
	$\mathrm{F}_{\mathrm{b}} \mathrm{z}$	Z 方向地震により架台基礎ボルト 1 本当たりに作用する引張 力	N
	F v	鉛直方向荷重	N
	$f_{\text {b r }}$	脚の半径方向軸まわりの許容曲げ応力	MPa
	f_{b}	脚の半径方向に直角な方向の軸まわりの許容曲げ応力	MPa
	$f_{\text {c }}$	脚の許容圧縮応力	MPa
	f_{b}	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
	$f_{\text {t }}$	脚の許容引張応力	MPa
	$f_{\text {t }}$ 。	引張力のみを受ける基礎ボルトの許容引張応力	MPa
	$f_{\mathrm{t} \text { s }}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
	G	胴のせん断弾性係数	MPa
$\begin{aligned} & \text { H } \\ & \sim \end{aligned}$	G s	脚のせん断弾性係数	MPa
	$\mathrm{G}_{\mathrm{bf}} \mathrm{f}$	架台基礎ボルトのせん断弾性係数	MPa
－	g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
\exists	H	水頭	mm
¢	h	脚断面のせい	mm
5	I	胴の断面二次モーメント	mm^{4}
（2）	I_{Hf}	架台の水平力に対する断面二次モーメント	mm^{4}
	I v f	架台の鉛直力に対する断面二次モーメント	mm^{4}
\bigcirc	i	脚の弱軸についての断面二次半径	mm
	i_{f}	脚の圧縮フランジとせいの6分の1から成るT形断面のウェッ ブ軸まわりの断面二次半径	mm
	I sf	脚の圧縮フランジとせいの6分の1から成るT形断面のウェッ ブ軸まわりの断面二次モーメント	mm^{4}
	I s r	脚の半径方向軸に対する断面二次モーメント	mm^{4}
	I st	脚の周方向軸に対する断面二次モーメント	mm^{4}
	J s	脚のねじりモーメント係数	mm^{4}
	$\mathrm{K}_{1 \mathrm{j}}, \mathrm{K}_{2} \mathrm{j}$	引用文献（2）によるアタッチメントパラメータの補正係数 （ $\mathrm{j}=1$ ：周方向応力， $\mathrm{j}=2$ ：軸方向応力）	－
	K ${ }_{\text {c }}$	胴の脚付け根部における周方向曲げモーメントに対する局部 ばね定数（引用文献（1）より得られる値）	－
	K_{H}	ばね定数（水平方向）	N／m
	$\mathrm{K}_{\mathrm{H}} \mathrm{b}$	水平力による架台基礎ボルトばね定数	N／m
	K_{Hf}	架台ばね定数（水平方向）	N / m

	記号	記号の説明	単位
	N ${ }_{\text {x }}$	胴に生じる軸方向の膜力	N / mm
	N ¢	胴に生じる周方向の膜力	N / mm
	n	脚1個当たりの基礎ボルトの本数	－
	n b	架台基礎ボルトの本数	－
	n H b	引張りを受ける架台基礎ボルトの本数	－
	n Hk	水平方向ばね定数として考慮する架台基礎ボルトの本数	－
	n V k	鉛直方向ばね定数として考慮する架台基礎ボルトの本数	－
	n 1	Z 方向地震により第1脚及び第3脚の脚 1 個当たりの引張りを受 ける基礎ボルトの本数	－
	n 2	Z 方向地震により第2脚及び第4脚の脚 1 個当たりの引張りを受 ける基礎ボルトの本数	－
	P	運転時質量による胴の脚付け根部の半径方向荷重	N
	P_{1}	Z 方向地震による胴の脚付け根部の半径方向荷重	N
\sim	P_{2}	鉛直方向地震による胴の脚付け根部の半径方向荷重	N
	Q	Z 方向地震による胴の脚付け根部の周方向荷重	N
$\stackrel{1}{\sim}$	R	運転時質量による脚の軸力	N
\exists	R 1	Z 方向地震により脚に作用する軸力	N
§	R_{2}	鉛直方向地震による脚に作用する軸力	N
5	R $\times 1$	X 方向地震により脚に作用する軸力	N
（a）	$\mathrm{R}_{\mathrm{z}} 1$	Z 方向地震により第1脚及び第3脚に作用する軸力	N
	R z 2	Z 方向地震により第2脚及び第4脚に作用する軸力	N
0	r m	胴の平均半径	mm
	S	設計•建設規格 付録材料図表 Part5 表5に定める値	MPa
	$\mathrm{Sa}_{\text {a }}$	胴の許容応力	MPa
	Su	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
	S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
	s	基礎ボルトと基礎又は架台の縦弾性係数比	－
	T ${ }_{\text {H }}$	水平方向の固有周期	s
	T v	鉛直方向の固有周期	s
	t	胴板の厚さ	mm
	u	脚の中心軸から胴板の厚さの中心までの距離	mm
	X ${ }_{n}$	基礎又は架台が圧縮力を受ける幅	mm
	Z sp	脚のねじり断面係数	mm ${ }^{3}$
	Z sr	脚の半径方向軸に対する断面係数	mm^{3}
	Z st	脚の周方向軸に対する断面係数	mm ${ }^{3}$
	$\beta, \beta_{1}, \beta_{2}$	引用文献（2）によるアタッチメントパラメータ	－
	γ	引用文献（2）によるシェルパラメータ	－

記号	記号の説明	単位
σ s $1, ~ \sigma$ s 2	運転時質量による脚の圧縮及び曲げ応力	MPa
σ s 3，σ s 4	鉛直方向地震による脚の圧縮及び曲げ応力	MPa
σ s 5，σ s 6，	Z 方向地震による脚の圧縮並びに第1脚及び第2脚の曲げ応力	MPa
$\begin{gathered} \sigma \mathrm{s} 8, \sigma \mathrm{~s} 9, \\ \sigma \mathrm{~s} 10 \end{gathered}$	X方向地震による脚の圧縮並びに半径方向及び周方向の曲げ応力	MPa
σ s c	脚の圧縮応力の和	MPa
σ s r	脚の半径方向軸まわりの圧縮側曲げ応力の和	MPa
$\sigma \mathrm{st}$	脚の半径方向に直角な軸まわりの圧縮側曲げ応力の和	MPa
$\sigma \mathrm{s} \times$	X 方向地震が作用した場合の脚の組合せ応力	MPa
σ se 1 ，	Z 方向地震が作用した場合の第1脚及び第2脚の組合せ応力	MPa
$\sigma \mathrm{sz} 2$		
$\sigma{ }_{\text {¢ }} 1, \sigma \times 1$	静水頭又は内圧による胴の周方向及び軸方向応力	MPa
	鉛直方向地震による胴の周方向応力	MPa
$\sigma \times 2$	運転時質量による胴の軸方向応力	MPa
σ ¢ $3, ~ \sigma \times 3$	運転時質量により生じる鉛直方向モーメントによる胴の周方向及び軸方向応力	MPa
	運転時質量により生じる半径方向荷重による胴の周方向及び軸方向応力	MPa
$\sigma \times 5$	水平方向地震が作用した場合の転倒モーメントによる胴の軸方向応力	MPa
$\sigma \times 7$	鉛直方向地震による胴の軸方向応力	MPa
σ O $8, ~ \sigma \times 8$	鉛直方向地震により生じる鉛直方向モーメントによる胴の周方向及び軸方向応力	MPa
σ б $9, \sigma \times 9$	鉛直方向地震により生じる半径方向荷重による胴の周方向及び軸方向応力	MPa
$\begin{gathered} \sigma \phi 10, \\ \sigma \times 10 \end{gathered}$	鉛直方向地震により生じる鉛直方向モーメントによる胴の周方向及び軸方向応力	MPa
$\begin{gathered} \sigma \quad \phi \quad 11 \\ \sigma \times 1 \end{gathered}$	鉛直方向地震により生じる半径方向荷重による胴の周方向及び軸方向応力	MPa
	Z方向地震が作用した場合の半径方向荷重による胴の周方向及び軸方向店力	MPa
$\begin{array}{r} \sigma \quad \phi 62, \\ \sigma \times 62 \\ \hline \end{array}$		

記号	記号の説明	単位
$\sigma \phi 71$, $\sigma \times 71$,	Z方向地震が作用した場合の鉛直方向モーメントによる胴の周方向及び軸方向応力	MPa
σ ¢ 72 ，		
$\sigma \times 72$		
	Z 方向地震が作用した場合の周方向モーメントによる胴の周	MPa
$\sigma \times 81$,		
O×82		
	X 方向地震が作用した場合の半径方向荷重による胴の周方向	MPa
$\sigma \times 91$	及び軸方向応力	
O ¢ $^{\text {2 } 2, ~}$		
$\sigma \times 92$		
$\sigma \phi 101,$	X方向地震が作用した場合の鉛直方向モーメントによる胴の	MPa
$\sigma \times 101,$	周方向及び軸方向応力	
σ \％ 102 ，		
$\sigma \times 102$		
$\sigma \phi 111,$	X方向地震が作用した場合の周方向モーメントによる胴の周	MPa
$\sigma \times 111,$	方向及び軸方向応力	
σ \％ 112 ，		
O×112		
$\sigma \times 1$,	X 方向地震が作用した場合の胴の脚付け根部の第 1 評価点及 び第の証価占における軸方向—次応力の和	MPa
$\sigma^{\sigma} \times \mathrm{x} \times 2$	X方向地震が作用した坦合の胴の脚付け根部の第1評洒点及	
$\sigma \times \times 3$, $\sigma \times 4$	X方向地震が作用した場合の胴の脚付け根部の第1評価点及 び第 2 評価点における軸方向一次 + 二次応力の和	MPa
$\sigma \times \mathrm{x} 4$	ひ第2評価点における軸方问一次 + —次心力の和	
$\sigma \mathrm{x}$ z 1,	Z 方向地震が作用した場合の胴の第1脚付け根部の第1評価点	MPa
$\sigma \mathrm{xz} 2$	及び第2評価点における軸方向一次応力の和	
$\sigma \times \mathrm{z} 3$,	Z 方向地震が作用した場合の胴の第 2 脚付け根部の第 1 評価点	MPa
$\sigma \mathrm{xz} 4$	及び第2評価点における軸方向一次応力の和	
$\sigma \times z 5,$	Z 方向地震が作用した場合の胴の第 1 脚付け根部の第 1 評価点	MPa
$\sigma \mathrm{xz} 6$	及び第2評価点における軸方向一次＋二次応力の和	
$\sigma \times z 7$,	Z 方向地震が作用した場合の胴の第 2 脚付け根部の第 1 評価点	MPa
$\sigma \mathrm{x} \boldsymbol{z} 8$	及び第2評価点における軸方向一次 + 二次応力の和	
$\sigma_{\phi \times 1}$ ，	X 方向地震が作用した場合の胴の脚付け根部の第1評価点及	MPa
$\sigma_{\phi} \times 2$	び第2評価点における周方向一次応力の和	
$\begin{aligned} & \sigma \phi \times 3, \\ & \sigma \phi \times 4 \\ & \hline \end{aligned}$	X 方向地震が作用した場合の胴の脚付け根部の第 1 評価点及 び第2評価点における周方向一次＋二次応力の和	MPa

2.6 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
本資料で表示する数値の丸め方は，表2－1に示すとおりである。

表 2－1 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
固有周期		S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度		－	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度		${ }^{\circ} \mathrm{C}$	－	－	整数位
比重		－	小数点以下第 3 位	四捨五入	小数点以下第 2 位
質量		kg	－	－	整数位
$\begin{aligned} & \text { 長 } \\ & \text { さ } \end{aligned}$	下記以外の長さ	mm	－	－	整数位＊${ }^{\text {\％}}$
	胴板の厚さ	mm	－	－	小数点以下第 1 位
面積		mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント		$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力		N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
角度		rad	小数点以下第 4 位	四捨五入	小数点以下第 3 位
算出応力		MPa	小数点以下第 1 位	切上げ	整数位
許容応力		MPa	小数点以下第 1 位	切捨て	整数位＊3

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とす る。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及 び降状点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

ほう酸水注入系テストタンクの耐震評価は，「4．1 構造強度評価方法」に示す条件に基づき，ほら酸水注入系テストタンクの転倒により，上位クラス設備が損傷することを防止するために，胴，脚，基礎ボルト，及び架台基礎ボルトについて評価を実施する。 ほう酸水注入系テストタンクの耐震評価部位については，表 2－1 の概略構造図に示す。

4．構造強度評価

4． 1 構造強度評価方法
（1）容器及び内容物の質量は重心に集中するものとする。
（2）地震力は容器に対して水平方向及び鉛直方向から作用するものとする。
（3）胴を 4 個の脚で支持し，脚はボルトで架台に据え付けているため，固定端とし て評価する。
（4）計算に用いる寸法は，公称値を使用する。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
ほう酸水注入系テストタンクの荷重の組合せ及び許容応力状態のらち設計基準対象設備の評価に用いるものを表4－1 に示す。

4．2．2 許容応力

ほう酸水注入系テストタンクの許容応力は，添付資料「VI－2－1－9 機能維持の基本方針」に基づき表 4－2，表4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件
ほう酸水注入系テストタンクの使用材料の許容応力評価のらち設計基準対象設備の評価に用いるものを表 4－4 に示す。

O 2 （3） $\mathrm{VI}-2-11-2-6 \quad \mathrm{R} 4$

表 4－1 荷重の組合せ及び許容応力状態（設計基準対処設備）

| 施設区分 | | 機器名称
 震設計上の
 重要度分類 | 機器等の区分 | 荷重の組合せ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

注記 $* 1$ ：クラス 3 容器の支持構造物を含む。
表 4－2 許容応力（クラス 2，クラス 3 容器）

た

許容応力状態	許容限界＊1		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	一次 + 二次応力 $\begin{array}{c}\text {－次 }+ \text { 二次 }+ \\ \text { ピーク応力 }\end{array}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍の値	基準地震動S s のみによる疲労解析を行い，疲労累積係数が1．0以下であること。 ただし，地震動のみによる一次＋二次応力の変動値 が $2 \cdot \mathrm{~S}_{\mathrm{y}}$ 以下であれば，疲労解析は不要。

注記＊1：座屈に対する評価が必要な場合には，クラス MC 容器の座屈に対する評価式による。
＊2：2•S yを超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313 を除く。 S_{m} は $2 / 3 \cdot \mathrm{~S}_{\mathrm{y}}$ と読み替える。）の簡易弾塑性解析を用いる。

O 2 （3）VI－2－11－2－6 R 4

表 4－3 許容応力（クラス 2,3 支持構造物）

許容応力状態	$\begin{gathered} \text { 許容限界*1 } \\ \text { (ボルト等以外) } \end{gathered}$		許容限界＊1 （ボルト等）	
	一次応力		一次応力	
	引張り	組合せ	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}{ }^{*}$	$1.5 \cdot \mathrm{ft}$＊	$1.5 \cdot \mathrm{ft}$＊	$1.5 \cdot \mathrm{f} \mathrm{s}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。

ぁ
表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
胴板	SUS304	最高使用温度	66	－	188	479	－
脚	SUS304	周囲環境温度	50	－	198	504	205
基礎ボルト	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	211	394	－
架台基礎ボルト	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	211	394	－

4． 3 固有周期

（1）計算モデル
容器は，2．2項より脚下端の支持条件を組み合わせることで次の計算モデルがで きる。
a．第 1 脚及び第 2 脚とも固定の場合
図4－1 に a 項の変形モードを示す。
（2）固有周期
a．水平方向の固有周期
水平方向は，架台基礎ボルト，架台，容器のばね定数を合成し，設備全体の固有周期を算出する。
（a）容器ばね定数
容器はそれぞれの脚及び胴について，荷重，モーメント及び変形の釣合い条件の方程式を作ることにより，以下のようにばね定数を求める。

第1脚及び第2脚とも固定の場合（図 4－1 参照）
水平力の釣合いより

$$
\begin{equation*}
2 \cdot \mathrm{P}_{1}+2 \cdot \mathrm{Q}=\mathrm{F}_{0} \tag{4.3.1}
\end{equation*}
$$

転倒モーメントの釣合いより

$$
\begin{equation*}
2 \cdot \mathrm{M}_{1}-2 \cdot \mathrm{M}_{3}+2 \cdot \mathrm{R}_{1} \cdot \mathrm{r}_{\mathrm{m}}=\mathrm{F}_{0} \cdot(\ell \mathrm{~g}-\ell) \tag{4.3.2}
\end{equation*}
$$

ただし，

$$
\begin{equation*}
\mathrm{r}_{\mathrm{m}}=\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right) / 2 \tag{4.3.3}
\end{equation*}
$$

水平力 F oによる第1脚の水平方向変位量，傾き角及び鉛直方向変位量は

$$
\begin{equation*}
\Delta_{\mathrm{x} 1}=\frac{\mathrm{P}_{1} \cdot \ell^{3}}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}+\frac{\mathrm{P}_{1} \cdot \ell}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{sr}}}+\frac{\left(\mathrm{M}_{1}-\mathrm{R}_{1} \cdot \mathrm{u}\right) \cdot \ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}} \tag{4.3.4}
\end{equation*}
$$

ここで，（図4－1参照）

$$
\begin{align*}
& \mathrm{u}=\frac{\ell \mathrm{c}}{2}-\mathrm{r}_{\mathrm{m}} \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{4.3.5}\\
& \theta_{1}=\frac{\left(\mathrm{M}_{1}-\mathrm{R}_{1} \cdot \mathrm{u}\right) \cdot \ell}{\mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}+\frac{\mathrm{P}_{1} \cdot \ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}} \tag{4.3.6}\\
& \Delta_{\mathrm{y} 1}=\frac{\mathrm{R}_{1} \cdot \ell}{\mathrm{~A}_{\mathrm{s}} \cdot \mathrm{E}_{\mathrm{s}}} \quad \cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{4.3.7}
\end{align*}
$$

水平力 F 。による胴の半径方向局部変位量と局部傾き角は

$$
\begin{align*}
\Delta \mathrm{r}_{1} & =\frac{\mathrm{K}_{\mathrm{r}} \cdot \mathrm{P}_{1}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{E}} \tag{4.3.8}\\
\theta_{1^{\prime}}^{\prime} & =\frac{\mathrm{K}_{\ell} \cdot \mathrm{M}_{1}}{\mathrm{r}_{\mathrm{m}}^{3} \cdot \beta^{2} \cdot \mathrm{E}} \tag{4.3.9}
\end{align*}
$$

ここで， K_{r} 及び K_{e} は引用文献（1）に基づく胴の半径方向荷重による局部変位と長手方向曲げモーメントによる局部傾き角に対する定数であり，シェ ルパラメータ γ 及びアタッチメントパラメータ β は，以下のように定義する。

$$
\begin{align*}
& \mathrm{r}_{\mathrm{m}}=\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right) / 2 \tag{4.3.10}\\
& \gamma=\mathrm{r}_{\mathrm{m}} / \mathrm{t} \quad \ldots \ldots \tag{4.3.11}\\
& \beta_{1}=\mathrm{C}_{1} / \mathrm{r}_{\mathrm{m}} \ldots \tag{4.3.12}\\
& \beta_{2}=\mathrm{C}_{2} / \mathrm{r}_{\mathrm{m}} \ldots \tag{4.3.13}\\
& \beta=\mathrm{k}_{\ell} \cdot \sqrt[3]{\beta_{1} \cdot \beta_{2}^{2}} \tag{4.3.14}
\end{align*}
$$

水平力 Foによる第2脚の傾き角（胴の中心軸の傾き角に同じ。）と水平方向変位量は

$$
\begin{align*}
\theta_{0} & =\frac{-M_{3} \cdot \ell}{\mathrm{E}_{\mathrm{s} \cdot} \cdot \mathrm{I}_{\mathrm{sr}}}+\frac{\mathrm{Q} \cdot \ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sr}}} \quad \cdots \cdots \cdots \cdots \cdots \tag{4.3.15}\\
\Delta_{\mathrm{x} 3} & =\frac{\mathrm{Q} \cdot \ell^{3}}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sr}}}+\frac{\mathrm{Q} \cdot \ell}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{st}}}+\frac{\mathrm{M}_{3} \cdot \ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s} \cdot} \cdot \mathrm{I}_{\mathrm{sr}}} \quad \cdots \cdots \tag{4.3.16}
\end{align*}
$$

第1脚と胴の傾き角の釣合いより

$$
\begin{equation*}
\theta_{1}+\theta_{1}^{\prime}-\theta_{0}=0 \tag{4.3.17}
\end{equation*}
$$

水平力 F oによる第 2 脚のねじれ角と胴の局部傾き角は等しいから

ここで， K_{c} は，引用文献（1）に基づく胴の周方向曲げモーメントによる局部傾き角に対する定数であり，シェルパラメータ γ 及びアタッチメントパラ メータ β は，（4．3．10）式～（4．3．14）式とする。ただし，（4．3．14）式の k_{ℓ} を k c ，β_{1} を β_{2} 及び β_{2} を β_{1} に置き換える。

脚と胴の水平方向変位量の釣合いより

$$
\begin{equation*}
\Delta_{\mathrm{x} 1}+\Delta_{\mathrm{r} 1}=\Delta_{\mathrm{x} 3}+\mathrm{u} \cdot \theta_{3} \tag{4.3.19}
\end{equation*}
$$

さらに，鉛直方向の釣合いより

$$
\begin{equation*}
\Delta_{\mathrm{y} 1}-\mathrm{u} \cdot \theta_{1}-\mathrm{r}_{\mathrm{m}} \cdot \theta_{\mathrm{o}}=0 \tag{4.3.20}
\end{equation*}
$$

（4．3．20）式へ（4．3．6）式，（4．3．7）式及び（4．3．15）式を代入して

$$
\begin{array}{r}
\frac{R_{1} \cdot \ell}{A_{\mathrm{s}} \cdot E_{\mathrm{s}}}-\frac{u \cdot\left(M_{1}-R_{1} \cdot u\right) \cdot \ell}{E_{\mathrm{s}} \cdot I_{\mathrm{st}}}-\frac{u \cdot P_{1} \cdot \ell^{2}}{2 \cdot E_{\mathrm{s}} \cdot I_{\mathrm{st}}} \\
\quad+\frac{r_{\mathrm{m}} \cdot M_{3} \cdot \ell}{E_{\mathrm{s}} \cdot I_{\mathrm{s} r}}-\frac{r_{\mathrm{m}} \cdot Q \cdot \ell^{2}}{2 \cdot E_{\mathrm{s}} \cdot I_{\mathrm{s} r}}=0 \quad \cdots \cdots \cdot \tag{4.3.21}
\end{array}
$$

（4．3．17）式へ（4．3．6）式，（4．3．9）式及び（4．3．15）式を代入して

$$
\begin{align*}
& \frac{M_{3} \cdot \ell}{E_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sr}}}-\frac{\mathrm{Q} \cdot \ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sr}}}+\frac{\left(\mathrm{M}_{1}-\mathrm{R}_{1} \cdot \mathrm{u}\right) \cdot \ell}{\mathrm{E}_{\mathrm{s}} \cdot \mathrm{Ist}_{\mathrm{t}}} \\
& \quad+\frac{\mathrm{P}_{1} \cdot \ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}+\frac{\mathrm{K} \ell \cdot \mathrm{M}_{1}}{\mathrm{r}_{\mathrm{m}}{ }^{3} \cdot \beta^{2} \cdot \mathrm{E}}=0 \quad \cdots \cdots \tag{4.3.22}
\end{align*}
$$

（4．3．18）式を変形して

$$
\begin{equation*}
\frac{\mathrm{u} \cdot \mathrm{Q} \cdot \ell}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~J}_{\mathrm{s}}}-\frac{\mathrm{M}_{\mathrm{c}} \cdot l}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~J}_{\mathrm{s}}}-\frac{\mathrm{K}_{\mathrm{c}} \cdot \mathrm{M}_{\mathrm{c}}}{\mathrm{rm}_{\mathrm{m}}{ }^{2} \cdot \beta^{2} \cdot \mathrm{E}}=0 \tag{4.3.23}
\end{equation*}
$$

（4．3．19）式へ（4．3．4）式，（4．3．8）式，（4．3．16）式及び（4．3．18）式を代入して

$$
\begin{gather*}
\frac{P_{1} \cdot \ell^{3}}{3 \cdot E_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}+\frac{\mathrm{P}_{1} \cdot \ell}{\mathrm{Gs}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{sr}}}+\frac{\left(\mathrm{M}_{1}-\mathrm{R}_{1} \cdot \mathrm{u}\right) \cdot \ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}+\frac{\mathrm{K}_{\mathrm{r}} \cdot \mathrm{P}_{1}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{E}} \\
-\frac{\mathrm{Q} \cdot \ell^{3}}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sr}}}-\frac{\mathrm{Q} \cdot \ell}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{st}}}+\frac{\mathrm{M}_{3} \cdot \ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sr}}} \\
-\frac{\mathrm{u} \cdot \mathrm{~K}_{\mathrm{c}} \cdot \mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}}{ }^{3} \cdot \beta^{2} \cdot \mathrm{E}}=0 \quad \cdots \quad, \tag{4.3.24}
\end{gather*}
$$

以上より，6変数 $\mathrm{P}_{1}, ~ \mathrm{Q}, \mathrm{R}_{1}, \mathrm{M}_{1}, \mathrm{M}_{3}$ 及び M_{c} に対して（4．3．1）式，（4．3．2）式及び（4．3．21）式～（4．3．24）式を連立させ，$\Delta_{\mathrm{x} 1}, \Delta_{\mathrm{r} 1}$ 及び θ oを求める。

胴重心の変位量 δ_{H} ，容器ばね定数 K_{HV} は次式で求める。

$$
\begin{align*}
& \delta_{H}=\Delta_{\mathrm{x} 1}+\Delta_{\mathrm{r} 1}+\left(\ell_{\mathrm{g}}-\ell\right) \cdot \theta_{0}+\frac{\left(\ell_{\mathrm{g}}-\ell\right)^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}} \cdot \mathrm{~F}_{0} \\
& +\frac{(\ell g-\ell)}{G \cdot A_{e}} \cdot F_{0} . \tag{4.3.25}\\
& \mathrm{K}_{\mathrm{HV}}=\frac{1000 \cdot \mathrm{~F}_{0}}{\delta_{\mathrm{H}}} \tag{4.3.26}
\end{align*}
$$

ここで，胴の断面性能は次式で求める。

$$
\begin{gather*}
\mathrm{I}=\frac{\pi}{8} \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right)^{3} \cdot \mathrm{t} \tag{4.3.27}\\
\mathrm{~A}_{\mathrm{e}}=\frac{2}{3} \cdot \pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right) \cdot \mathrm{t} \tag{4.3.28}
\end{gather*}
$$

（b）架台基礎ボルトばね定数
図4－2に示すとおり，水平力にて架台基礎ボルトには，せん断力を受けることと なるため，ばね定数としては，せん断剛性を考慮し次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\mathrm{Hb}}=\frac{1000 \cdot \mathrm{n}_{\mathrm{Hk}} \cdot \mathrm{~A}_{\mathrm{bk}} \cdot \mathrm{G}_{\mathrm{b} \mathrm{f}}}{\ell_{\mathrm{b}}} \tag{4.3.29}
\end{equation*}
$$

ここで， G_{bf} は架台基礎ボルトのせん断弾性係数であり，ポアソン比 $v=0.3$ と
して，以下のとおり算出する。
$G_{b \mathrm{f}}=\frac{\mathrm{E}_{\mathrm{bf}}}{2 \cdot(1+v)}$
（c）架台ばね定数
図4－2に示すとおり，架台はH鋼を組み合わせた構造物となっているが，架台 ばね定数の算出に当たつては，図 4－3のとおり，より剛性が低くなるH鋼材単体 の断面形状のみ考慮する。

水平方向荷重による両端支持の H 鋼架台のばね定数は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\mathrm{Hf}}=\frac{1000 \cdot 48 \cdot \mathrm{E}_{\mathrm{f}} \cdot \mathrm{I}_{\mathrm{Hf}}}{\ell_{\mathrm{f}}^{3}} \tag{4.3.31}
\end{equation*}
$$

（d）合成ばね定数
（a）から（c）で求めたばね定数より直列型合成ばね定数を次式で求める。

$$
\begin{equation*}
\frac{1}{\mathrm{~K}_{\mathrm{H}}}=\frac{1}{\mathrm{~K}_{\mathrm{HV}}}+\frac{1}{\mathrm{~K}_{\mathrm{Hb}}}+\frac{1}{\mathrm{~K}_{\mathrm{Hf}}} \tag{4.3.32}
\end{equation*}
$$

（e）固有周期
ほら酸水注入系テストタンクの水平方向の固有周期 T_{H} は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{H}}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}}{\mathrm{~K}_{\mathrm{H}}}} \tag{4.3.33}
\end{equation*}
$$

b．鉛直方向の固有周期
鉛直方向は，架台基礎ボルト，架台，容器のばね定数を合成し，設備全体の固有周期を算出する。
（a）容器ばね定数
鉛直方向荷重 Fvによる支持脚の鉛直方向変位量と胴の鉛直方向変位量は次式 で求める。

$$
\begin{align*}
& \Delta_{\mathrm{y}_{2}}=\frac{\mathrm{F}_{\mathrm{v}} \cdot \ell}{4 \cdot \mathrm{~A}_{\mathrm{s}} \cdot \mathrm{E}_{\mathrm{s}}} \tag{4.3.34}\\
& \Delta_{\mathrm{y}_{3}}=\frac{\mathrm{F}_{\mathrm{v}} \cdot\left(\ell_{\mathrm{g}}-\ell\right)}{\mathrm{A} \cdot \mathrm{E}} \tag{4.3.35}
\end{align*}
$$

ここで，

$$
\begin{equation*}
\mathrm{A}=\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right) \cdot \mathrm{t} \tag{4.3.36}
\end{equation*}
$$

運転時質量による胴の脚付け根部における局部傾き角による鉛直方向変位は次式で求める。

$$
\begin{equation*}
\Delta_{\mathrm{y} 4}=\theta \cdot \mathrm{u} \tag{4.3.37}
\end{equation*}
$$

局部傾き角は脚下端の支持条件により，脚下端が固定の場合

$$
\begin{equation*}
\theta=\frac{\mathrm{K}_{\ell} \cdot \mathrm{M}_{\ell}}{\mathrm{r}_{\mathrm{m}}{ }^{3} \cdot \beta^{2} \cdot \mathrm{E}} \tag{4.3.38}
\end{equation*}
$$

ここで，

$$
\begin{align*}
& \mathrm{M}_{\ell}=\left\{\left(\frac{\ell^{3}}{12 \cdot \mathrm{Es}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}+\frac{\ell}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{Assr}}+\frac{\mathrm{K}_{\mathrm{r}}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{E}}\right) \cdot \frac{\mathrm{F}_{\mathrm{v}} \cdot \mathrm{u} \cdot \ell}{4 \cdot \mathrm{Es}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}\right\} \\
& \prime\left\{\left(\frac{e^{3}}{3 \cdot E_{s} \cdot I_{s t}}+\frac{\ell}{G_{s} \cdot A_{s r}}+\frac{K_{r}}{r_{m} \cdot E}\right)\right. \\
& \left.\left(\frac{\ell}{\mathrm{EscI}_{\mathrm{s} \cdot \mathrm{t}}}+\frac{\mathrm{Ke}}{\mathrm{rm}_{\mathrm{m}}{ }^{3} \cdot \beta^{2} \cdot \mathrm{E}}\right)-\left(\frac{e^{2}}{2 \cdot \mathrm{Es} \cdot \mathrm{Ist}}\right)^{2}\right\} \tag{4.3.39}
\end{align*}
$$

以上により，胴重心の鉛直方向変位量 δ_{v} ，ばね定数 K vv は次式で求める。

$$
\begin{align*}
& \delta \mathrm{v}=\Delta_{\mathrm{y} 2}+\Delta_{\mathrm{y} 3}+\Delta_{\mathrm{y} 4} \tag{4.3.40}\\
& \mathrm{~K}_{\mathrm{vv}}=\frac{1000 \cdot \mathrm{~F}_{\mathrm{v}}}{\delta \mathrm{v}} \quad \ldots \tag{4.3.41}
\end{align*}
$$

（b）架台基礎ボルトばね定数
鉛直方向荷重により架台基礎ボルトに引張力が作用するため，ばね定数は次式で求める。
（c）架台ばね定数
図 4－2に示すとおり，架台はH鋼を組み合わせた構造物となっているが，架台 ばね定数の算出に当たつては，図4－3のとおり，より剛性が低くなるH鋼材単体 の断面形状のみ考慮する。

鉛直方向荷重による両端支持の H 鋼架台のばね定数は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\mathrm{vf}}=\frac{1000 \cdot 48 \cdot \mathrm{E}_{\mathrm{f}} \cdot \mathrm{I}_{\mathrm{Vf}}}{\ell_{\mathrm{f}}^{3}} \tag{4.3.43}
\end{equation*}
$$

（d）合成ばね定数
（a）から
（c）で求めたばね定数より直列型合成ばね定数を次式で求める。

$$
\begin{equation*}
\frac{1}{K v}=\frac{1}{K_{v v}}+\frac{1}{K_{v b}}+\frac{1}{K_{v f}} \tag{4.3.44}
\end{equation*}
$$

（e）固有周期
ほう酸水注入系テストタンクの鉛直方向の固有周期 T_{H} は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{v}}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}}{\mathrm{~K}_{\mathrm{v}}}} \tag{4.3.45}
\end{equation*}
$$

図 4－1 第1脚及び第2脚とも脚下端が固定されている場合の変形モード

図 4－2 架台基礎ボルトの水平方向ばね定数計算モデル

水平力に対する断面二次モーメント $I_{\text {Hf }}$

鉛直力に対する
断面二次モーメント I_{Vf}

図 4－3 架台ばね定数計算モデル
（3）固有周期の計算結果
計算の結果，固有周期は 0.05 秒以下であり，剛であることを確認した。固有周期の計算結果を表4－5に示す。

表 4－5 固有周期
（単位：s）

水平	
鉛直	

枠囲みの内容は商業機密の観点から公開できません。

4． 4 計算方法

4．4．1 応力の計算方法
応力計算において，絶対値和を用いる。
4．4．1．1 胴の応力
（1）静水頭による応力
静水頭による場合（鉛直方向地震時を含む。）

$$
\begin{align*}
& \sigma_{\phi 1}=\frac{\rho \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{D}_{\mathrm{i}}}{2 \cdot \mathrm{t}} \ldots \tag{4.4.1.1.1}\\
& \sigma_{\phi 2}=\frac{\rho^{\prime} \cdot \mathrm{g}^{\prime} \mathrm{H} \cdot \mathrm{D}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{v}}}{2 \cdot \mathrm{t}} \tag{4.4.1.1.2}\\
& \sigma_{\mathrm{x} 1}=0 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{4.4.1.1.3}
\end{align*}
$$

（2）運転時質量及び鉛直方向地震による応力

$$
\begin{align*}
& \sigma_{\times 2}=\frac{\mathrm{m}_{\mathrm{o}} \cdot \mathrm{~g}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right) \cdot \mathrm{t}} \tag{4.4.1.1.4}\\
& \sigma_{\times 7}=\frac{\mathrm{m}_{\mathrm{o}} \cdot \mathrm{~g}^{\prime} \cdot \mathrm{C}_{\mathrm{v}}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right) \cdot \mathrm{t}} \tag{4.4.1.1.5}
\end{align*}
$$

（3）運転時質量による胴の脚付け根部の応力
脚下端が固定の場合
脚の半径方向変位量と胴の半径方向局部変位量は等しいから

$$
\Delta_{\mathrm{r}}=\frac{-\mathrm{P} \cdot \ell^{3}}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}+\frac{-\mathrm{P} \cdot \ell}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s} \mathrm{r}}}+\frac{\left(\mathrm{R} \cdot \mathrm{u}-\mathrm{M}_{\ell}\right) \cdot \ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}
$$

$$
\begin{equation*}
=\frac{\mathrm{K}_{\mathrm{r}} \cdot \mathrm{P}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{E}} \tag{4.4.1.1.6}
\end{equation*}
$$

また，脚上端の傾き角と胴の局部傾き角は等しい から

$$
\begin{align*}
& \theta=\frac{\left(\mathrm{R} \cdot \mathrm{u}-\mathrm{M}_{\ell}\right) \cdot \ell}{\mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}+\frac{-\mathrm{P} \cdot \ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}} \\
&=\frac{\mathrm{K} \ell \cdot \mathrm{M} \ell^{\mathrm{rm}^{3} \cdot \beta^{2} \cdot \mathrm{E}} \quad \cdots \quad(4.4 .1 .1 .}{} \quad . \quad \tag{4.4.1.1.7}
\end{align*}
$$

$$
\begin{align*}
& \text { ここで, } \\
& \qquad \mathrm{R}=\frac{\mathrm{m}_{\mathrm{o}} \cdot \mathrm{~g}}{4} \tag{4.4.1.1.8}
\end{align*}
$$

図 4－4 脚下端が固定されて いる場合の運転時質量による脚及び胴の変形

したがって，（4．4．1．1．8）式を（4．4．1．1．6）式及び（4．4．1．1．7）式に代入し た式を連立することにより， M_{\bullet} を以下のように求める。

$$
\begin{align*}
& \mathrm{M}_{\ell}=\left\{\left(\frac{\ell^{3}}{12 \cdot \mathrm{Es}_{\mathrm{s}} \cdot \mathrm{Isst}_{\mathrm{s}}}+\frac{\ell}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{sr}}}+\frac{\mathrm{K}_{\mathrm{r}}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{E}}\right) \cdot \frac{\mathrm{m}_{\mathrm{o}} \cdot \mathrm{~g} \cdot \mathrm{u} \cdot \ell}{4 \cdot \mathrm{E}_{\mathrm{s} \cdot} \cdot \mathrm{I}_{\mathrm{st}}}\right\} \\
& /\left\{\left(\frac{\ell^{3}}{3 \cdot \mathrm{E}_{\mathrm{s} \cdot} \cdot \mathrm{I}_{\mathrm{st}}}+\frac{\ell}{\mathrm{Gs}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{sr}}}+\frac{\mathrm{K}_{\mathrm{r}}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{E}}\right)\right. \\
&\left.\cdot\left(\frac{\ell}{\mathrm{E}_{\mathrm{s} \cdot} \cdot \mathrm{I}_{\mathrm{st}}}+\frac{\mathrm{K}_{\ell}}{\mathrm{rm}_{\mathrm{m}}{ }^{2} \beta^{2} \cdot \mathrm{E}}\right)-\left(\frac{\ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}\right)^{2}\right\} \tag{4.4.1.1.9}
\end{align*}
$$

Pは（4．4．1．1．6）式に（4．4．1．1．8）式を代入して整理すると

$$
\mathrm{P}=\frac{\frac{\mathrm{m}_{\mathrm{o}} \cdot \mathrm{~g}}{4} \cdot \mathrm{u}-\mathrm{M} \ell^{2} \cdot \ell^{2}}{\frac{\ell^{3}}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}} \mathrm{I}_{\mathrm{st}}}+\frac{\ell}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{sr}}}+\frac{\mathrm{K}_{\mathrm{r}}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{E}}
$$

（4．4．1．1．10）
となる。
鉛直方向曲げモーメントMeにより生じる胴の周方向応力及び軸方向応力は引用文献（2）により次のようにして求める。

シェルパラメータ γ 及びアタッチメントパラメータ β を以下のように定義す る。

$$
\begin{align*}
& \mathrm{r}_{\mathrm{m}}=\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right) / 2 \tag{4.4.1.1.11}\\
& \gamma=\mathrm{r}_{\mathrm{m}} / \mathrm{t} \quad \cdots \tag{4.4.1.1.12}\\
& \beta_{1}=\mathrm{C}_{1} / \mathrm{r}_{\mathrm{m}} \tag{4.4.1.1.13}\\
& \beta_{2}=\mathrm{C}_{2} / \mathrm{r}_{\mathrm{m}} \tag{4.4.1.1.14}\\
& \beta=\sqrt[3]{\beta_{1} \cdot \beta_{2}{ }^{2}} . \tag{4.4.1.1.15}
\end{align*}
$$

ただし，$\beta \leqq 0.5$
シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献（2）の図より値（以下＊を付記するもの）を求めることにより，次式で求める。

$$
\begin{align*}
& \sigma \phi 3=\left\{\frac{\mathrm{N}_{\phi}}{\mathrm{Me} /\left(\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{Me}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \mathrm{t} \cdot \beta}\right) \cdot \mathrm{C}_{\ell 1} \cdots(4.4 .1 .1 .16) \tag{4.4.1.1.16}\\
& \sigma \times 3=\left\{\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{Me} /\left(\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M} \ell}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \mathrm{t} \cdot \beta}\right) \cdot \mathrm{C}_{\ell 2} \cdots(4.4 .1 .1 \text {.17) } \tag{4.4.1.1.17}
\end{align*}
$$

半径方向荷重 P により生じる胴の周方向応力及び軸方向応力は

$$
\begin{align*}
& \sigma_{\phi 4}=\left(\frac{\mathrm{N}_{\phi}}{\mathrm{P} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}}\right) \tag{4.4.1.1.18}\\
& \sigma_{\times 4}=\left(\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{P} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}}\right) \tag{4.4.1.1.19}
\end{align*}
$$

ここで，γ 及び β は（4．4．1．1．11）式～（4．4．1．1．15）式によるが，（4．4．1．1．15）式を

$$
\begin{align*}
& \qquad \begin{array}{l}
4 \geqq \beta_{1} / \beta_{2} \geqq 1 \text { のとき } \\
\qquad \quad \beta=\left\{1-\frac{1}{3} \cdot\left(\beta_{1} / \beta_{2}-1\right) \cdot\left(1-\mathrm{K}_{1 \mathrm{j}}\right)\right\} \cdot \sqrt{\beta_{1} \cdot \beta_{2}} \cdots(4.4 .1 .1 .20) \\
\text { ただし, } \quad \beta \leqq 0.5 \\
\frac{1}{4} \leqq \beta_{1} / \beta_{2}<1 \text { のとき } \\
\quad \beta=\left\{1-\frac{4}{3} \cdot\left(1-\beta_{1} / \beta_{2}\right) \cdot\left(1-\mathrm{K}_{2 \mathrm{j}}\right)\right\} \cdot \sqrt{\beta_{1} \cdot \beta_{2}}
\end{array}
\end{align*}
$$

ただし，$\beta \leqq 0.5$
に置き換える。

反力 R によるせん断応力は

$$
\begin{equation*}
\tau_{\ell 1}=\frac{\mathrm{R}}{4 \cdot \mathrm{C}_{2} \cdot \mathrm{t}} \tag{4.4.1.1.22}
\end{equation*}
$$

（4）水平方向地震による胴の曲げ応力
水平方向地震により胴に転倒モーメントが作用するため，脚が取り付く胴の円周上に以下の曲げ応力が発生する。

$$
\begin{equation*}
\sigma \times 5=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m}_{\mathrm{o}} \cdot \mathrm{~g} \cdot(\ell \mathrm{~g}-\ell) \cdot\left(\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}\right)}{2 \cdot \mathrm{I}} \tag{4.4.1.1.23}
\end{equation*}
$$

（5）Z 方向地震による胴の脚付け根部の応力
4．3項の固有周期計算において（4．3．1）式及び（4．3．2）式の水平力 F oを $\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m}$ 。•gに置き換えて得られる数値を使用する。
a．一次応力
半径方向荷重 P_{1} により生じる胴の周方向応力及び軸方向応力は （4．4．1．1．18）式及び（4．4．1．1．19）式と同様にして

$$
\begin{align*}
& \sigma_{\phi 61}=\left(\frac{\mathrm{N}_{\phi}}{\mathrm{P}_{1} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{1}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}}\right) \tag{4.4.1.1.24}\\
& \sigma_{\times 61}=\left(\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{P}_{1} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{1}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}}\right) \tag{4.4.1.1.25}
\end{align*}
$$

鉛直方向曲げモーメント M_{1} により生じる胴の周方向応力及び軸方向応力は （4．4．1．1．16）式及び（4．4．1．1．17）式と同様にして

$$
\sigma_{\phi 71}=\left\{\frac{\mathrm{N}_{\phi}}{\mathrm{M}_{1} /\left(\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{1}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \mathrm{t} \cdot \beta}\right) \cdot \mathrm{C}_{\ell 1} \cdots(4.4 .1 .1 .26)
$$

$$
\begin{equation*}
\sigma \times 71=\left\{\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{M}_{1} /\left(\mathrm{rm}_{\mathrm{m}}^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{1}}{\mathrm{rm}_{\mathrm{m}}^{2} \cdot \mathrm{t} \cdot \beta}\right) \cdot \mathrm{C}_{\ell 2} . \tag{4.4.1.1.27}
\end{equation*}
$$

周方向曲げモーメント M_{c} により生じる胴の周方向応力及び軸方向応力は
（4．4．1．1．16）式及び（4．4．1．1．17）式と同様にして

$$
\begin{aligned}
& \sigma_{\phi 81}=\left\{\frac{\mathrm{N}_{\phi}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \mathrm{t}^{*} \cdot \beta}\right) \cdot \mathrm{C}_{\mathrm{c} 1} \cdot(4.4 .1 .1 .28) \\
& \sigma \times 81=\left\{\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{rm}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \mathrm{t}^{2} \cdot \beta}\right) \cdot \mathrm{C}_{\mathrm{c} 2} \cdots(4.4 .1 .1 .29)
\end{aligned}
$$

ここで，γ 及び β は（4．4．1．1．11）式～（4．4．1．1．15）式によるが，（4．4．1．1．15）式を

$$
\begin{equation*}
\beta=\sqrt[3]{\beta_{1}{ }^{2} \cdot \beta_{2}} \tag{4.4.1.1.30}
\end{equation*}
$$

ただし，$\beta \leqq 0.5$
に置き換える。

周方向せん断力 Q によるせん断応力は

$$
\begin{equation*}
\tau_{\mathrm{c}_{1}}=\frac{\mathrm{Q}}{4 \cdot \mathrm{C}_{1} \cdot \mathrm{t}} \tag{4.4.1.1.31}
\end{equation*}
$$

鉛直方向せん断力 R 1 によるせん断応力は

$$
\begin{equation*}
\tau_{\mathrm{e} 2}=\frac{\mathrm{R}_{1}}{4 \cdot \mathrm{C}_{2} \cdot \mathrm{t}} \tag{4.4.1.1.32}
\end{equation*}
$$

ねじりモーメント M_{3} により生じる胴のせん断応力は

$$
\begin{equation*}
\tau_{3}=\frac{\mathrm{M}_{3}}{2 \cdot \pi \cdot \mathrm{C}_{1}{ }^{2} \cdot \mathrm{t}} \tag{4.4.1.1.33}
\end{equation*}
$$

ここで， $\mathrm{C}_{1}>\mathrm{C}_{2}$ のとき C_{1} を C_{2} に置き換える。（図4－5参照）

b．二次応力

半径方向荷重 P_{1} により生じる胴の周方向応力及び軸方向応力は

$$
\begin{align*}
& \sigma_{\phi 62}=\left(\frac{\mathrm{M}_{\phi}}{\mathrm{P}_{1}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{1}}{\mathrm{t}^{2}}\right) \tag{4.4.1.1.34}\\
& \sigma_{\times 62}=\left(\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{P}_{1}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{1}}{\mathrm{t}^{2}}\right) \tag{4.4.1.1.35}
\end{align*}
$$

鉛直方向曲げモーメント M_{1} により生じる胴の周方向応力及び軸方向応力は

$$
\begin{align*}
& \sigma{ }_{\phi 72}=\left\{\frac{\mathrm{M}_{\phi}}{\mathrm{M}_{1} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{1}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}^{2} \cdot \beta}\right) \tag{4.4.1.1.36}\\
& \sigma \times 72=\left\{\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{M}_{1} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{1}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}^{2} \cdot \beta}\right) \tag{4.4.1.1.37}
\end{align*}
$$

周方向曲げモーメント Mc_{c} により生じる胴の周方向応力及び軸方向応力は

$$
\begin{align*}
& \sigma \phi 82=\left\{\frac{\mathrm{M}_{\phi}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}^{2} \cdot \beta}\right) \tag{4.4.1.1.38}\\
& \sigma \times 82=\left\{\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}^{2} \cdot \beta}\right) \tag{4.4.1.1.39}
\end{align*}
$$

（6）X 方向地震による胴の脚付け根部の応力
a．一次応力
半径方向荷重 P_{1} により生じる胴の周方向応力及び軸方向応力は

$$
\begin{align*}
& \sigma_{\phi 91}=\sigma_{\phi 61} / \sqrt{2} \tag{4.4.1.1.40}\\
& \sigma_{\times 91}=\sigma_{\times 6} 1 / \sqrt{2} \tag{4.4.1.1.41}
\end{align*}
$$

鉛直方向曲げモーメント M_{1} により生じる胴の周方向応力及び軸方向応力は

$$
\begin{align*}
& \sigma_{\phi 101}=\sigma_{\phi}+1 / \sqrt{2} \\
& \sigma_{\times 101}=\sigma_{\times 71} / \sqrt{2} \tag{4.4.1.1.43}
\end{align*}
$$

(4.4.1.1.42)

周方向曲げモーメント M_{c} により生じる胴の周方向応力及び軸方向応力は

$$
\begin{align*}
& \sigma_{\phi 111}=\sigma_{\phi 8} 1 / \sqrt{2} \tag{4.4.1.1.44}\\
& \sigma_{\times 111}=\sigma_{\times 81} / \sqrt{2} \tag{4.4.1.1.45}
\end{align*}
$$

周方向せん断力 Q によるせん断応力は

$$
\begin{equation*}
\tau_{c 4}=\tau_{c 1} / \sqrt{2} \tag{4.4.1.1.46}
\end{equation*}
$$

鉛直方向せん断力 R 1 によるせん断応力は

$$
\begin{equation*}
\tau_{\ell_{5}}=\tau_{\ell_{2}} / \sqrt{2} \tag{4.4.1.1.47}
\end{equation*}
$$

ねじりモーメント M_{3} により生じる胴のせん断応力は

$$
\begin{equation*}
\tau_{6}=\tau_{3} / \sqrt{2} \tag{4.4.1.1.48}
\end{equation*}
$$

b．二次応力
半径方向荷重 P_{1} により生じる胴の周方向応力及び軸方向応力は

$$
\begin{align*}
& \sigma_{\phi 92}=\sigma_{\phi 62} / \sqrt{2} \tag{4.4.1.1.49}\\
& \sigma_{\times 92}=\sigma_{\times 62} / \sqrt{2} \tag{4.4.1.1.50}
\end{align*}
$$

鉛直方向曲げモーメント M_{1} により生じる胴の周方向応力及び軸方向応力は

$$
\begin{align*}
\sigma_{\phi 102} & =\sigma_{\phi} 72 / \sqrt{2} \tag{4.4.1.1.51}\\
\sigma \times 102 & =\sigma \times 72 / \sqrt{2} \tag{4.4.1.1.52}
\end{align*}
$$

周方向曲げモーメント M_{c} により生じる胴の周方向応力及び軸方向応力は

$$
\begin{align*}
& \sigma_{\phi 112}=\sigma_{\phi} 82 / \sqrt{2} \tag{4.4.1.1.53}\\
& \sigma_{\times 112}=\sigma_{\times 82} / \sqrt{2} \tag{4.4.1.1.54}
\end{align*}
$$

（7）鉛直方向地震による胴の脚付け根部の応力
脚下端が固定の場合の軸力，胴の脚付け根部の鉛直方向モーメント及び半径方向荷重を以下のように求める。

$$
\begin{align*}
& \mathrm{R}_{2}=\frac{\mathrm{m}_{\mathrm{o}} \cdot \mathrm{~g}^{\prime} \cdot \mathrm{C}_{\mathrm{v}}}{4} \tag{4.4.1.1.55}\\
& M_{\ell_{2}}=\left\{\left(\frac{\ell^{3}}{12 \cdot E_{s} \cdot I_{s t}}+\frac{\ell}{G_{s} \cdot A_{s r}}+\frac{K_{r}}{r_{m} \cdot E}\right) \cdot \frac{R_{2} \cdot u^{\prime} \cdot \ell}{E_{s} \cdot I_{s t}}\right\} \\
& /\left\{\left(\frac{e^{3}}{3 \cdot E_{s} \cdot I_{s t}}+\frac{\ell}{G_{s} \cdot A_{s r}}+\frac{K_{r}}{r_{m} \cdot E}\right)\right. \\
& \left.\cdot\left(\frac{\ell}{\mathrm{E}_{\mathrm{s} \cdot} \cdot \mathrm{I}_{\mathrm{st} \mathrm{t}}}+\frac{\mathrm{K} \ell}{\mathrm{rm}_{\mathrm{m}}{ }^{3} \cdot \beta^{2} \cdot \mathrm{E}}\right)-\left(\frac{\ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}\right)^{2}\right\} \tag{4.4.1.1.56}
\end{align*}
$$

$$
\begin{align*}
\mathrm{P}_{2}= & \frac{\left(\mathrm{R}_{2} \cdot \mathrm{u}-\mathrm{M}_{\ell 2}\right) \cdot \ell^{2}}{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}} \\
& /\left(\frac{\ell^{3}}{3 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{st}}}+\frac{\ell}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{sr}}}+\frac{\mathrm{K}_{\mathrm{r}}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{E}}\right) \ldots \tag{4.4.1.1.57}
\end{align*}
$$

a．一次応力
鉛直方向曲げモーメント $\mathrm{M}_{\ell_{2}}$ により生じる胴の周方向及び軸方向応力は次式で求める。

$$
\begin{aligned}
& \sigma_{\phi 8}=\left\{\frac{\mathrm{N}_{\phi}}{\mathrm{M}_{\ell 2} /\left(\mathrm{rm}_{\mathrm{m}}^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\ell 2}}{\mathrm{rm}_{\mathrm{m}}{ }^{2} \mathrm{t} \cdot \beta}\right) \cdot \mathrm{C}_{\ell 1} \cdots(4.4 .1 .1 .58) \\
& \sigma \times 8=\left\{\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{M}_{\ell 2} /\left(\mathrm{rm}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\ell 2}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \mathrm{t} \cdot \beta}\right) \cdot \mathrm{C}_{\ell 2} \cdots(4.4 .1 .1 .59)
\end{aligned}
$$

半径方向荷重 P_{2} により生じる胴の周方向及び軸方向応力は次式で求める。

$$
\begin{align*}
& \sigma_{\phi 9}=\left(\frac{\mathrm{N}_{\phi}}{\mathrm{P}_{2} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{2}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}}\right) \tag{4.4.1.1.60}\\
& \sigma_{\mathrm{x9} 9}=\left(\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{P}_{2} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{2}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}}\right) \tag{4.4.1.1.61}
\end{align*}
$$

b．二次応力
鉛直方向曲げモーメント $\mathrm{M}_{\mathrm{e}_{2} \text { により生じる胴の周方向及び軸方向応力は次 }}$式で求める。

$$
\begin{align*}
& \sigma \phi 10=\left\{\frac{\mathrm{M}_{\phi}}{\mathrm{M}_{\ell 2} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{\ell 2}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}^{2} \cdot \beta}\right) \tag{4.4.1.1.62}\\
& \sigma \times 10=\left\{\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{M}_{\ell 2} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{\ell 2}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}^{2} \cdot \beta}\right) \tag{4.4.1.1.63}
\end{align*}
$$

半径方向荷重 P_{2} により生じる胴の周方向及び軸方向応力は次式で求める。

$$
\begin{align*}
& \sigma_{\phi 11}=\left(\frac{\mathrm{M}_{\phi}}{\mathrm{P}_{2}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{2}}{\mathrm{t}^{2}}\right) \tag{4.4.1.1.64}\\
& \sigma_{\mathrm{x} 11}=\left(\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{P}_{2}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{2}}{\mathrm{t}^{2}}\right) \tag{4.4.1.1.65}
\end{align*}
$$ せん断応力は次による。

$$
\begin{equation*}
\tau \ell_{3}=\frac{\mathrm{R}_{2}}{4 \cdot \mathrm{C}_{2} \cdot \mathrm{t}} \tag{4.4.1.1.66}
\end{equation*}
$$

（8）組合せ応力
（1）～（7）によって求めた胴の脚付け根部に生じる応力を以下のように組み合わせる。
a．一次一般膜応力

$$
\begin{align*}
& \sigma \sigma_{0}=\operatorname{Max}\left\{\text { 周方向応力 }\left(\begin{array}{lll}
\sigma & 0
\end{array}\right) \text {, 軸方向応力 }\left(\begin{array}{lll}
\sigma & 0 x
\end{array}\right)\right\} \tag{4.4.1.1.67}\\
& \sigma_{0}{ }_{\phi}=\sigma_{\phi 1}+\sigma_{\phi 2} \tag{4.4.1.1.68}\\
& \sigma_{0 \mathrm{x}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 5}+\sigma_{\mathrm{x} 7} \tag{4.4.1.1.69}
\end{align*}
$$

b．$\quad \mathrm{Z}$ 方向地震及び鉛直方向地震が作用した場合の組合せ一次応力

図4－5 胴の評価点
（a）第1脚付け根部
第1評価点については

$$
\begin{gather*}
\sigma_{\phi z 1}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sigma_{\phi 4}+\sigma_{\phi 61}+\sigma_{\phi 71}+\sigma_{\phi 2}+\sigma_{\phi 8}+\sigma_{\phi 9} \\
 \tag{4.4.1.1.70}\\
\cdots \cdots \cdots \\
\sigma_{\times z 1}=\sigma_{\times 1}+\sigma_{\times 2}+\sigma_{\times 3}+\sigma_{\times 4}+\sigma_{\times 5}+\sigma_{\times 61} \\
\\
\\
+\sigma_{\times 71}+\sigma_{\times 7}+\sigma_{\times 8}+\sigma_{\times 9}
\end{gather*}
$$

（4．4．1．1．71）
$\sigma_{11}=\frac{1}{2} \cdot\left\{\left(\sigma_{\phi z 1}+\sigma_{x z 1}\right)+\sqrt{\left(\sigma_{\phi z 1}-\sigma_{x z 1}\right)^{2}}\right\}$
（1．4．1．1．71）
（4．4．1．1．72）
第2評価点については

$$
\begin{array}{lrl}
\sigma_{\phi 22}=\sigma_{\phi 1}+\sigma_{\phi 4}+\sigma_{\phi 2}+\sigma_{\phi 61}+\sigma_{\phi 9} & \cdots \cdots \cdots \cdots & \text { (4.4.1.1.73) } \\
\sigma_{\times z 2}=\sigma_{\times 1}+\sigma_{\times 2}+\sigma_{\times 4}+\sigma_{\times 5}+\sigma_{\times 61}+\sigma_{\times 7}+\sigma_{\times 9} & \\
& \ldots \ldots \ldots & \text { (4.4.1.1.74) } \tag{4.4.1.1.74}\\
\sigma_{12}=\frac{1}{2} \cdot & \left\{\left(\sigma_{\phi z 2}+\sigma_{\times z 2}\right)+\sqrt{\left(\sigma_{\phi z 2}-\sigma_{\times 22}\right)^{2}+4 \cdot\left(\tau_{\ell 1}+\tau_{\ell 2}+\tau_{\ell 3}\right)^{2}}\right\}
\end{array}
$$

（b）第2脚付け根部
第1評価点については

$$
\sigma_{\phi z 3}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sigma_{\phi 4}+\sigma_{\phi 2}+\sigma_{\phi 8}+\sigma_{\phi 9}
$$

$$
\begin{align*}
& \sigma_{\mathrm{xz} 3}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 7}+\sigma_{\mathrm{x} 8}+\sigma_{\mathrm{x} 9} \tag{4.4.1.1.76}\\
& \cdots \cdots \tag{4.4.1.1.78}\\
& \sigma_{13}=\frac{1}{2} \cdot\left\{\left(\sigma_{\phi z 3}+\sigma_{\mathrm{xz} 3}\right)+\sqrt{\left(\sigma_{\phi z 3}-\sigma_{\mathrm{xz} 3}\right)^{2}+4 \cdot\left(\tau_{\mathrm{c} 1}+\tau_{3}\right)^{2}}\right\}
\end{align*}
$$

第2評価点については

$$
\begin{align*}
\sigma_{\phi z 4} & =\sigma_{\phi 1}+\sigma_{\phi 4}+\sigma_{\phi 2}+\sigma_{\phi 9}+\sigma_{\phi 81} \quad \cdots \cdots \cdots \cdots \tag{4.4.1.1.79}\\
\sigma_{\times z 4} & =\sigma_{\times 1}+\sigma_{\times 2}+\sigma_{\times 4}+\sigma_{\times 7}+\sigma_{\times 9}+\sigma_{\times 81} \ldots \\
\sigma_{14} & =\frac{1}{2} \cdot \\
& \left\{\left(\sigma_{\phi z 4}+\sigma_{\times z 4}\right)+\sqrt{\left(\sigma_{\phi z 4}-\sigma_{\times z 4}\right)^{2}+4 \cdot\left(\tau_{\ell 1}+\tau_{3}+\tau_{\ell 3}\right)^{2}}\right\} \tag{4.4.1.1.81}
\end{align*}
$$

c． X 方向地震及び鉛直方向地震が作用した場合の組合せ一次応力
第1評価点については

$$
\begin{array}{r}
\sigma_{\phi \times 1}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sigma_{\phi 4}+\sigma_{\phi 91}+\sigma_{\phi 101}+\sigma_{\phi 2}+\sigma_{\phi 8}+\sigma_{\phi 9} \tag{4.4.1.1.82}\\
\\
\quad \cdots \cdots \cdots
\end{array} \quad \begin{array}{r}
\text { (4.4.1 } \\
\sigma_{\times \times 1}=\sigma_{\times 1}+\sigma_{\times 2}+\sigma_{\times 3}+\sigma_{\times 4}+\sigma_{\times 5} \\
\\
+\sigma_{\times 91}+\sigma_{\times 101}+\sigma_{\times 7}+\sigma_{\times 8}+\sigma_{\times 9}
\end{array}
$$

(4.4.1.1.83)

$$
\begin{equation*}
\left.\sigma_{15}=\frac{1}{2} \cdot\left\{\left(\sigma_{\phi \times 1}+\sigma_{\times \times 1}\right)+\sqrt{\left(\sigma_{\phi \times 1}-\sigma_{\times \times 1}\right)^{2}+4 \cdot\left(\tau_{\mathrm{c}}^{4}\right.}+\tau_{6}\right)^{2}\right\} \tag{4.4.1.1.84}
\end{equation*}
$$

第2評価点については

$$
\begin{align*}
& \sigma_{\phi \times 2}=\sigma_{\phi 1}+\sigma_{\phi 4}+\sigma_{\phi 2}+\sigma_{\phi 91}+\sigma_{\phi 111}+\sigma_{\phi 9} \cdots c \\
& \sigma_{\times \times 2}=\sigma_{\times 1}+\sigma_{\times 2}+\sigma_{\times 4}+\sigma_{\times 5}+\sigma_{\times 91}+\sigma_{\times 111}+\sigma_{\times 7}+\sigma_{\times 9} \\
& \cdots \cdots \cdots(4.1 .85) \tag{4.4.1.1.86}\\
& \sigma_{16}=\frac{1}{2} \cdot \\
& \left\{\left(\sigma_{\phi \times 2}+\sigma_{\times \times 2}\right)+\sqrt{\left(\sigma_{\phi \times 2}-\sigma_{\times \times 2}\right)^{2}+4 \cdot\left(\tau_{\ell 1}+\tau_{\ell 5}+\tau_{6}+\tau_{\ell 3}\right)^{2}}\right\}
\end{align*}
$$

（4．4．1．1．87）
d．胴の一次応力の最大値
ここで，b項及びc項により組み合わせた一次応力のうち最大のものを σ_{1} と する。

$$
\sigma_{1}=\operatorname{Max}\left(\begin{array}{lllll}
\sigma_{11}, & \sigma_{12}, & \sigma_{13}, & \sigma_{14}, \sigma_{15}, \sigma_{16} \tag{4.4.1.1.88}
\end{array}\right)
$$

e．地震力のみによる一次＋二次応力の変動値
Z 方向地震及び鉛直方向地震が作用した場合
（a）第1脚付け根部
第1評価点については

$$
\begin{align*}
\sigma_{\phi z 5}=\sigma_{\phi 2}+\sigma_{\phi 8}+\sigma_{\phi 9}+\sigma_{\phi 10} & +\sigma_{\phi 11} \\
& +\sigma_{\phi 61}+\sigma_{\phi 62}+\sigma_{\phi 71}+\sigma_{\phi 72} \tag{4.4.1.1.89}
\end{align*}
$$

$$
\begin{array}{r}
\sigma_{\times 25}=\sigma_{\times 7}+\sigma_{\times 8}+\sigma_{\times 9}+\sigma_{\times 10}+\sigma_{\times 11} \\
+\sigma_{\times 5}+\sigma_{\times 61}+\sigma_{\times 62}+ \tag{}\\
\sigma_{21}=\sigma_{\phi 25}+\sigma_{\times 25}+\sqrt{\left(\sigma_{\phi z 5}-\sigma_{\times 25}\right)^{2}}
\end{array}
$$

$$
+\sigma_{x_{5}}+\sigma_{x_{61}}+\sigma_{x_{62}}+\sigma_{x_{7}}+\sigma_{x_{7}}
$$

第2評価点については

$$
\begin{align*}
& \sigma_{\phi z 6}=\sigma_{\phi 2}+\sigma_{\phi 9}+\sigma_{\phi 11}+\sigma_{\phi 61}+\sigma_{\phi 62} \tag{4.4.1.1.92}\\
& \sigma_{\mathrm{xz} 6}=\sigma_{\mathrm{x} 7}+\sigma_{\mathrm{x} 9}+\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 5}+\sigma_{\mathrm{x} 61}+\sigma_{\mathrm{x} 62} \\
& \text {........ (4.4.1.1.93) } \\
& \sigma_{22}=\sigma_{\phi z_{6}}+\sigma_{\mathrm{xz} 6}+\sqrt{\left(\sigma_{\phi z 6}-\sigma_{\mathrm{xz} 6}\right)^{2}+4 \cdot\left(\tau_{\ell 2}+\tau_{\ell 3}\right)^{2}} \\
& \text { (4.4.1.1.93) }
\end{align*}
$$

（4．4．1．1．94）
（b）第2脚付け根部
第1評価点については

$$
\begin{aligned}
& \sigma_{\phi z 7}=\sigma_{\phi 2}+\sigma_{\phi 8}+\sigma_{\phi 9}+\sigma_{\phi 10}+\sigma_{\phi 11} \quad \cdots \ldots \ldots \\
& \sigma_{\mathrm{xz} 7}=\sigma_{\mathrm{x} 7}+\sigma_{\mathrm{x} 8}+\sigma_{\mathrm{x} 9}+\sigma_{\mathrm{x} 10}+\sigma_{\mathrm{x} 11} \ldots \ldots \text { (4.1.1.95) } \\
& \sigma_{23}=\sigma_{\phi \mathrm{z} 7}+\sigma_{\mathrm{xz} 7}+\sqrt{\left(\sigma_{\phi \mathrm{z} 7}-\sigma_{\mathrm{xz} 7}\right)^{2}+4 \cdot\left(\tau_{\mathrm{c} 1}+\tau_{3}\right)^{2}}
\end{aligned}
$$

第2評価点については

$$
\begin{align*}
& \sigma_{\phi \mathrm{z} 8}=\sigma_{\phi 2}+\sigma_{\phi 9}+\sigma_{\phi 11}+\sigma_{\phi 81}+\sigma_{\phi 82} \tag{4.4.1.1.98}\\
& \sigma_{\mathrm{xz} 8}=\sigma_{\mathrm{x} 7}+\sigma_{\mathrm{x} 9}+\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 81}+\sigma_{\mathrm{x} 82} \tag{4.4.1.1.99}\\
& \sigma_{24}=\sigma_{\phi \mathrm{z} 8}+\sigma_{\mathrm{xz} 8}+\sqrt{\left(\sigma_{\phi \mathrm{z} 8}-\sigma_{\mathrm{xz} 8}\right)^{2}+4 \cdot\left(\tau_{3}+\tau_{\ell 3}\right)^{2}}
\end{align*}
$$

f．地震力のみによる一次 + 二次応力の変動値
X方向地震及び鉛直方向地震が作用した場合
（a）第1脚付け根部
第1評価点については

$$
\begin{align*}
\sigma_{\phi \times 3}=\sigma_{\phi 2}+\sigma_{\phi 8}+\sigma_{\phi 9}+\sigma_{\phi 10} & +\sigma_{\phi 11} \\
& +\sigma_{\phi 91}+\sigma_{\phi 101}+\sigma_{\phi 92}+\sigma_{\phi 102} \tag{4.4.1.1.101}
\end{align*}
$$

$$
\begin{aligned}
& \sigma_{\mathrm{x} \times 3}=\sigma_{\mathrm{x} 7}+\sigma_{\mathrm{x} 8}+\sigma_{\mathrm{x} 9}+\sigma_{\mathrm{x} 10}+\sigma_{\mathrm{x} 11}
\end{aligned}
$$

$$
\begin{align*}
& \text {....... (4.4.1.1.102) } \\
& \sigma_{25}=\sigma_{\phi \times 3}+\sigma_{\mathrm{xx} 3}+\sqrt{\left(\sigma_{\phi \times 3}-\sigma_{\mathrm{xx} 3}\right)^{2}+4\left(\tau_{\mathrm{c} 4}+\tau_{6}\right)^{2}} \tag{4.4.1.1.103}
\end{align*}
$$

第2評価点については

$$
\begin{aligned}
& \sigma_{\phi \mathrm{x} 4}=\sigma_{\phi 9}+\sigma_{\phi 11}+\sigma_{\phi 91}+\sigma_{\phi 92}+\sigma_{\phi 111}+\sigma_{\phi 112} \\
& \text {........ (4.4.1.1.104) } \\
& \sigma_{\mathrm{x} \times 4}=\sigma_{\mathrm{x} 7}+\sigma_{\mathrm{x} 9}+\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 5}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{26}=\sigma_{\phi \times 4}+\sigma_{\times \times 4}+\sqrt{\left(\sigma_{\phi \times 4}-\sigma_{\times \times 4}\right)^{2}+4\left(\tau_{\ell 5}+\tau_{6}+\tau_{\ell 3}\right)^{2}}
\end{aligned}
$$

g．胴の一次 + 二次応力の最大値
ここで，e項及びf項により組み合わせた一次応力のうち最大のものを $\sigma 2$ と する。

$$
\sigma_{2}=\operatorname{Max}\left(\begin{array}{lllllll}
\sigma_{2} & \sigma_{2}, & \sigma_{2} 3_{3}, & \sigma_{2}, & \sigma_{2}
\end{array}, \sigma_{26}\right)
$$

（4．4．1．1．107）

脚にかかる荷重について計算する。
（1）運転時質量による応力

$$
\begin{align*}
\sigma_{\mathrm{s} 1} & =\frac{\mathrm{R}}{\mathrm{~A}_{\mathrm{s}}} \quad \ldots \tag{4.4.1.2.1}
\end{align*}
$$

（2）鉛直方向地震による応力

$$
\begin{aligned}
\sigma_{s_{3}} & =\frac{\mathrm{R}_{2}}{\mathrm{~A}_{\mathrm{s}}} \quad \ldots \\
\sigma_{\mathrm{s} 4} & =\frac{\operatorname{Max}\left(\left|\mathrm{R}_{2} \cdot \mathrm{u}-\mathrm{M}_{\ell_{2}}-\mathrm{P}_{2} \cdot \ell\right|,\left|\mathrm{R}_{2} \cdot \mathrm{u}-\mathrm{M}_{\ell 2}\right|\right)}{\mathrm{Z}_{\mathrm{s} t}}
\end{aligned}
$$

$$
\begin{equation*}
\tau_{\mathrm{s} 2}=\frac{\mathrm{P}_{2}}{\mathrm{~A}_{\mathrm{s} 1}} \tag{4.4.1.2.5}
\end{equation*}
$$

（3）Z方向地震による応力
第1脚については

$$
\begin{align*}
& \sigma_{\mathrm{s} 5}=\frac{\mathrm{R}_{1}}{\mathrm{~A}_{\mathrm{s}}} \tag{4.4.1.2.7}\\
& \sigma_{\mathrm{s} 6}=\frac{\operatorname{Max}\left(\left|\mathrm{R}_{1} \cdot \mathrm{u}-\mathrm{M}_{1}-\mathrm{P}_{1} \cdot \ell\right|,\left|\mathrm{R}_{1} \cdot \mathrm{u}-\mathrm{M}_{1}\right|\right)}{\mathrm{Z}_{\mathrm{s} \mathrm{t}}} \\
& \text { (4.4.1.2.8) } \\
& \tau_{\mathrm{s} 3}=\frac{\mathrm{P}_{1}}{\mathrm{~A}_{\mathrm{s} 1}} \tag{4.4.1.2.9}
\end{align*}
$$

第2脚については

$$
\begin{align*}
\sigma_{\mathrm{s} 7} & =\frac{\operatorname{Max}\left(\left|\mathrm{Q} \cdot \ell-\mathrm{M}_{3}\right|,\left|\mathrm{M}_{3}\right|\right)}{\mathrm{Z}_{\mathrm{sr}}} \tag{4.4.1.2.10}\\
\tau_{\mathrm{s} 4} & =\frac{\mathrm{Q}}{\mathrm{~A}_{\mathrm{s} 2}}+\frac{\mathrm{Q} \cdot \mathrm{u}-\mathrm{M}_{\mathrm{c}}}{Z_{\mathrm{sp}}} \tag{4.4.1.2.11}
\end{align*}
$$

（4）X方向地震による応力

$$
\begin{align*}
& \sigma_{\mathrm{s} 8}=\frac{\mathrm{R}_{1}}{\sqrt{2} \cdot \mathrm{~A}_{\mathrm{s}}} \tag{4.4.1.2.12}\\
& \sigma_{\mathrm{s} 9}=\frac{\operatorname{Max}\left(\left|\mathrm{R}_{1} \cdot \mathrm{u}-\mathrm{M}_{1}-\mathrm{P}_{1} \cdot \ell\right|,\left|\mathrm{R}_{1} \cdot \mathrm{u}-\mathrm{M}_{1}\right|\right)}{\sqrt{2} \cdot \mathrm{Z}_{\mathrm{s} t}} \\
& \sigma_{\mathrm{s} 10}=\frac{\operatorname{Max}\left(\left|\mathrm{Q} \cdot \ell-\mathrm{M}_{3}\right|, \quad\left|\mathrm{M}_{3}\right|\right)}{\sqrt{2} \cdot \mathrm{Z}_{\mathrm{s} \mathrm{r}}} \tag{4.4.1.2.14}\\
& \tau_{\mathrm{s} 5}=\frac{\mathrm{P}_{1}}{\sqrt{2} \cdot \mathrm{~A}_{\mathrm{s} 1}}+\frac{\mathrm{Q}}{\sqrt{2} \cdot \mathrm{~A}_{\mathrm{s} 2}}+\frac{\mathrm{Q} \cdot \mathrm{u}-\mathrm{M}_{\mathrm{c}}}{\sqrt{2} \cdot \mathrm{Z}_{\mathrm{sp}}} \tag{4.4.1.2.15}
\end{align*}
$$

（4．4．1．2．13）
（5）組合せ応力
脚の最大応力は次式で求める。
a．$\quad Z$ 方向地震及び鉛直方向地震が作用した場合

第1脚については

$$
\begin{align*}
& \sigma_{\mathrm{s} z 1}= \\
& \qquad \sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 2}+\sigma_{\mathrm{s} 3}+\sigma_{\mathrm{s} 4}+\sigma_{\mathrm{s} 5}+\sigma_{\mathrm{s} 6}\right)^{2}+3 \cdot\left(\tau_{\mathrm{s} 1}+\tau_{\mathrm{s} 2}+\tau_{\mathrm{s} 3}\right)^{2}} \tag{4.4.1.2.16}
\end{align*}
$$

第2脚については

$$
\begin{align*}
\sigma_{\mathrm{sz} 2}= \\
\qquad \sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 2}+\sigma_{\mathrm{s} 3}+\sigma_{\mathrm{s} 4}+\sigma_{\mathrm{s} 7}\right)^{2}+3 \cdot\left(\tau_{\mathrm{s} 1}+\tau_{\mathrm{s} 2}+\tau_{\mathrm{s} 4}\right)^{2}} \tag{4.4.1.2.17}
\end{align*}
$$

b． X 方向地震及び鉛直方向地震が作用した場合

$$
\begin{align*}
& \sigma_{\mathrm{s} \mathrm{x}}= \tag{4.4.1.2.18}\\
& \sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 2}+\sigma_{\mathrm{s} 3}+\sigma_{\mathrm{s} 4}+\sigma_{\mathrm{s} 8}+\sigma_{\mathrm{s} 9}+\sigma_{\mathrm{s} 10}\right)^{2}+3 \cdot\left(\tau_{\mathrm{s} 1}+\tau_{\mathrm{s} 2}+\tau_{\mathrm{s} 5}\right)^{2}}
\end{align*}
$$

ここで，組み合わせた応力のうち最大のものを $\sigma \mathrm{s}$ とする。

$$
\sigma_{\mathrm{s}}=\operatorname{Max}\left(\begin{array}{ccc}
\sigma_{\mathrm{sz}}, & \sigma_{\mathrm{sz}} 2, & \sigma_{\mathrm{s} x} \tag{4.4.1.2.19}
\end{array}\right)
$$

基礎又は架台には鉛直荷重，水平方向のせん断力，鉛直軸まわりのねじりモー メント及び転倒モーメントが作用する。
（1）基礎ボルトに Z 方向地震及び鉛直方向地震が作用した場合 a．引張応力

脚底部に作用するモーメント及び鉛直荷重は，第1脚及び第3脚については脚下端が固定の場合

$$
\begin{align*}
& \mathrm{M}_{z_{1}}=\left|\mathrm{P}_{1} \cdot \ell+\mathrm{M}_{1}-\mathrm{R}_{1} \cdot \mathrm{u}\right| \\
& \quad+\left|\left(\mathrm{P}-\mathrm{P}_{2}\right) \cdot \ell+\left(\mathrm{M}_{\ell}-\mathrm{M}_{\ell 2}\right)-\left(\mathrm{R}-\mathrm{R}_{2}\right) \cdot \mathrm{u}\right| \ldots \tag{4.4.1.3.1}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{R}_{\mathrm{z}_{1}}=\mathrm{R}-\mathrm{R}_{2}-\mathrm{R}_{1} \tag{4.4.1.3.2}
\end{equation*}
$$

モーメントと鉛直荷重の比を

$$
\begin{equation*}
\mathrm{e}=\mathrm{M}_{\mathrm{z}_{1}} / \mathrm{R}_{\mathrm{z}_{1}} \tag{4.4.1.3.3}
\end{equation*}
$$

とする。
図4－6のように脚底面においてボル ト位置に圧縮荷重 がかかる状況では， ボルトに引張力は作用しないため，引張力の評価は行わ ない。

一方，鉛直荷重
（軸力） $\mathrm{R}_{\mathrm{z}} 1$ が負に なる場合に相当す る $\mathrm{e}<0$ のとき，ボ ルトに引張力が作用する。

また，図4－7のよ うにボルト位置に圧縮荷重がかから ない状況に相当す る

$$
\begin{equation*}
e>\frac{a}{6}+\frac{d_{1}}{3} \tag{4.4.1.3.4}
\end{equation*}
$$

のとき，ボルトに引張力が生じる。

このとき図4－7において，鉛直荷重の釣合い，A点まわりのモーメントの釣合 い，ボルトの伸びと基礎又は架台の縮みの関係から中立軸の位置 X_{n} は，

$$
\begin{align*}
X_{n}^{3}+3 \cdot\left(e-\frac{a}{2}\right) & \cdot X_{n}^{2}-\frac{6 \cdot s \cdot A_{b} \cdot n_{1}}{b} \cdot\left(e+\frac{a}{2}-d_{1}\right) \\
& \cdot\left(a-d_{1}-X_{n}\right)=0 \quad \tag{4.4.1.3.5}
\end{align*}
$$

より求めることができ，ボルトに生じる引張力は，

$$
\begin{equation*}
F_{b}=\frac{R_{z 1} \cdot\left(\mathrm{e}-\frac{\mathrm{a}}{2}+\frac{\mathrm{X}_{\mathrm{n}}}{3}\right)}{\mathrm{a}-\mathrm{d}_{1}-\frac{X_{\mathrm{n}}}{3}} \tag{4.4.1.3.6}
\end{equation*}
$$

となる。
したがって，ボルトに生じる引張応力は次式で求める。

$$
\begin{equation*}
\sigma_{\mathrm{b} 1}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{n}_{1} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.4.1.3.7}
\end{equation*}
$$

第2脚及び第4脚のボルトについては，脚下端が固定の場合

$$
\begin{aligned}
& \mathrm{M}_{z_{2}}= \\
& \qquad \sqrt{\left(\mathrm{Q} \cdot \ell-\mathrm{M}_{3}\right)^{2}+\left\{\left(\mathrm{P}-\mathrm{P}_{2}\right) \cdot \ell+\left(\mathrm{M}_{\ell}-\mathrm{M}_{2}\right)-\left(\mathrm{R}-\mathrm{R}_{2}\right) \cdot \mathrm{u}\right\}^{2}}
\end{aligned}
$$

（4．4．1．3．8）
$\mathrm{R}_{\mathrm{z} 2}=\mathrm{R}-\mathrm{R}_{2}$
（4．4．1．3．9）
（4．4．1．3．3）式の $\mathrm{M}_{\mathrm{z} 1}$ を $\mathrm{M}_{\mathrm{z} 2}$ 及び $\mathrm{R}_{\mathrm{z} 1}$ を $\mathrm{R}_{\mathrm{z} 2}$ に置き換え，（4．4．1．3．3）式
～（4．4．1．3．7）式で得られたボルトの応力を $\sigma_{\mathrm{b} 2}$ とする。
ただし，上式中で a を b ， b を a ， d_{1} を d_{2} 及び n_{1} を n_{2} に置き換えた場合 に得られるボルトの引張応力が，Ob L より大きいときは，その値を σ b 2 とす る。
b．せん断応力
第1脚及び第3脚のボルトについては

$$
\begin{equation*}
\tau_{\mathrm{b} 1}=\frac{\mathrm{P}_{1}+\mathrm{P}+\mathrm{P}_{2}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.4.1.3.10}
\end{equation*}
$$

第2脚及び第4脚のボルトについては

$$
\begin{equation*}
\tau_{\mathrm{b} 2}=\frac{\sqrt{\mathrm{Q}^{2}+\left(\mathrm{P}+\mathrm{P}_{2}\right)^{2}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}}+\frac{\mathrm{Q} \cdot \mathrm{u}-\mathrm{M}_{\mathrm{c}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}} \cdot \sqrt{\left(\frac{\mathrm{a}-2 \cdot \mathrm{~d}_{1}}{2}\right)^{2}+\left(\frac{\mathrm{b}-2 \cdot \mathrm{~d}_{2}}{2}\right)^{2}}} \tag{4.4.1.3.11}
\end{equation*}
$$

（2）基礎ボルトにX方向地震及び鉛直方向地震が作用した場合

a 。引張応力

脚底部に作用するモー メント及び鉛直荷重は，第1脚及び第4脚について は，脚下端が固定の場合

図 4－8 地震力の作用する方向
$\mathrm{M}_{\mathrm{x} 1}=\left[\left\{\left|\frac{1}{\sqrt{2}} \cdot\left(\mathrm{P}_{1} \cdot \ell+\mathrm{M}_{1}-\mathrm{R}_{1} \cdot \mathrm{u}\right)\right|\right.\right.$
$\left.\left.+\left|\left(\mathrm{P}-\mathrm{P}_{2}\right) \cdot \ell+\left(\mathrm{M} \ell-\mathrm{M} \ell_{2}\right)-(\mathrm{R}-\mathrm{R} 2) \cdot \mathrm{u}\right|\right\}^{2}+\left\{\frac{1}{\sqrt{2}} \cdot(\mathrm{Q} \cdot \ell-\mathrm{M} 3)\right\}^{2}\right\}^{\frac{1}{2}}$
．．．．．（4．4．1．3．12）
$\mathrm{R}_{\times 1}=\mathrm{R}-\mathrm{R}_{2}-\frac{\mathrm{R}_{1}}{\sqrt{2}}$
（4．4．1．3．3）式の $\mathrm{M}_{z 1}$ を $\mathrm{M}_{\mathrm{x} 1}$ ， $\mathrm{R}_{z_{1} \text { を } \mathrm{R}_{\mathrm{x}} 1 \text { 及び（4．4．1．3．6）式の } \mathrm{R}_{z_{1}} \text { を }}$ $\mathrm{R}_{\mathrm{x} 1}$ に置き換え，（4．4．1．3．3）式～（4．4．1．3．7）式で得られたボルトの応力を ob з とする。

ただし， a を b ， b を $\mathrm{a}, \mathrm{d}_{1}$ を d_{2} 及び n_{1} を n_{2} に置き換えた場合に得られ るボルトの引張応力が σ b 3 より大きいときはその値を σ b 3 とする。
b．せん断応力
第1脚～第4脚のボルトについては

$$
\begin{align*}
\tau_{\mathrm{b} 3}= & \frac{\sqrt{\left(\frac{\mathrm{P}_{1}}{\sqrt{2}}+\mathrm{P}+\mathrm{P}_{2}\right)^{2}+\left(\frac{\mathrm{Q}}{\sqrt{2}}\right)^{2}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \\
& +\frac{\mathrm{Q} \cdot \mathrm{u}-\mathrm{M}_{\mathrm{c}}}{\sqrt{2} \cdot \mathrm{n}_{\mathrm{C}} \cdot \mathrm{~A}_{\mathrm{b}} \cdot \sqrt{\left(\frac{\mathrm{a}-2 \cdot \mathrm{~d}_{1}}{2}\right)^{2}+\left(\frac{\mathrm{b}-2 \cdot \mathrm{~d}_{2}}{2}\right)^{2}}} \tag{4.4.1.3.14}
\end{align*}
$$

（3）基礎ボルトに生じる最大応力
（1）及び（2）より求められたボルトの応力のうち最大のものを $\sigma \mathrm{b}$ 及 な $\tau \mathrm{b}$ と する。
a．ボルトの最大引張応力

$$
\sigma_{\mathrm{b}}=\operatorname{Max}\left(\begin{array}{ccccc}
\sigma_{\mathrm{b}} 1, & \sigma_{\mathrm{b}} 2, & \sigma \mathrm{~b} 3 \tag{4.4.1.3.15}
\end{array}\right)
$$

b．ボルトの最大せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\operatorname{Max}\left(\tau_{\mathrm{b} 1}, \tau_{\mathrm{b} 2}, \tau_{\mathrm{b} 3}\right) \tag{4.4.1.3.16}
\end{equation*}
$$

（4）架台基礎ボルトにZ方向地震及び鉛直方向地震が作用した場合 a．引張応力

架台基礎ボルトに対する引張力は最も厳しい条件として，図4－9で最外列のボ ルトを支点とする転倒を考え，これを片側の最外列のボルトで受けるものとして計算する。

図 4－9 計算モデル

架台基礎ボルト 1 本当たりに作用する引張力は

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} z}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m} \cdot \mathrm{~g} \cdot \ell_{\mathrm{h}}-(1-\mathrm{C} v) \mathrm{m} \cdot \mathrm{~g} \cdot \frac{\ell_{\mathrm{f}}}{2}}{\mathrm{n}_{\mathrm{Hb}} \cdot \ell_{\mathrm{f}}} \tag{4.4.1.3.17}
\end{equation*}
$$

引張応力は

$$
\begin{equation*}
\sigma \mathrm{b}_{\mathrm{z}}=\frac{\mathrm{F}_{\mathrm{b} \mathrm{z}}}{\mathrm{~A}_{\mathrm{b} \mathrm{f}}} \tag{4.4.1.3.18}
\end{equation*}
$$

b．せん断応力
架台基礎ボルトに対するせん断力は架台基礎ボルト全本数で受けるものとし せん断力は

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m} \cdot \mathrm{~g}}{\mathrm{n}_{\mathrm{b}} \cdot \mathrm{~A}_{\mathrm{b} f}} \tag{4.4.1.3.19}
\end{equation*}
$$

（5）架台基礎ボルトにX方向地震及び鉛直方向地震が作用した場合 a．引張応力

架台基礎ボルトに対する引張力は最も厳しい条件として，図4－10で最外列のボ ルトを支点とする転倒を考え，これを片側の最外列のボルトで受けるものとして計算する。

図 4－10 計算モデル

架台基礎ボルト 1 本当たりに作用する引張力は

$$
\begin{equation*}
F_{b x}=\frac{C_{H} \cdot m \cdot g \cdot \ell_{\mathrm{h}}-(1-\mathrm{C} \mathrm{v}) \mathrm{m} \cdot \mathrm{~g} \cdot \frac{\ell_{\mathrm{fx}}}{2}}{\mathrm{n}_{\mathrm{Hb}} \cdot \ell_{\mathrm{fx}}} \tag{4.4.1.3.20}
\end{equation*}
$$

引張応力は

$$
\begin{equation*}
\sigma_{b x}=\frac{F_{b x}}{A_{b f}} \tag{4.4.1.3.21}
\end{equation*}
$$

b．せん断応力
架台基整ボルトに対するせん断力は架台基礎ボルト全本数で受けるものとし せん断力は

$$
\begin{equation*}
\tau_{\mathrm{bx}}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m} \cdot \mathrm{~g}}{\mathrm{n}_{\mathrm{b}} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.4.1.3.22}
\end{equation*}
$$

（6）架台基礎ボルトに生じる最大応力
（4）及び（5）より求められたボルトの応力のらち最大のものを $\sigma \mathrm{b} \mathrm{f}$ 及び τ bf とする。
a．架台基礎ボルトの最大引張応力

$$
\sigma_{\mathrm{bf}}=\operatorname{Max}\left(\begin{array}{cc}
\sigma_{\mathrm{b}}, & \sigma_{\mathrm{bx}} \tag{4.4.1.3.23}
\end{array}\right)
$$

b．ボルトの最大せん断応力

$$
\begin{equation*}
\tau_{\mathrm{bf}}=\operatorname{Max}\left(\tau_{\mathrm{bz}}, \tau_{\mathrm{bxx}}\right) \tag{4.4.1.3.24}
\end{equation*}
$$

4． 5 計算条件
応力計算に用いる計算条件は，本計算書の【ほう酸水注入系テストタンクの耐震性 についての計算結果】の設計条件及び機器要目に示す。

4． 6 応力の評価

4．6．1 胴の応力評価

4．4．1．1 項で求めた組合せ応力が胴の最高使用温度における許容応力 S a 以下で あること。ただし，Saは下表による。

応力の種類	許容応力 $S_{\text {a }}$
	基準地震動 S s による荷重との組合 せの場合
一次一般膜応力	設計引張強さ S_{u} の 0.6 倍
一次応力	上記の 1.5 倍の値
一次応力と二次応力の和	地震動のみによる一次応力と二次応力の和の変動値が設計降伏点 S_{y} の 2倍以下であれば，疲れ解析は不要と する。

4．6．2 脚の応力評価

（1）4．4．1．2項で求めた脚の組合せ応力が許容引張応力 f_{t} 以下であること。 ただし，f_{t} は下表による。

	基準地震動 S s による荷重との組合 せの場合
許容引張応力 f_{t}	

（2）圧縮応力と曲げによる圧縮側応力の組合せは次式を満足すること。（座屈の評価）

$$
\begin{equation*}
\frac{\sigma_{\mathrm{s} \mathrm{r}}}{f_{\mathrm{b} \mathrm{r}}}+\frac{\sigma_{\mathrm{s} \mathrm{t}}}{f_{\mathrm{b} \mathrm{t}}}+\frac{\sigma_{\mathrm{s} \mathrm{c}}}{f_{\mathrm{c}}} \leqq 1 \tag{4.6.2.1}
\end{equation*}
$$

a．f_{c} は次による。
$\lambda \leqq \Lambda$ のとき

$$
\begin{equation*}
f_{\mathrm{c}}=1.5 \cdot\left\{1-0.4 \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}\right\} \cdot \frac{\mathrm{F}}{v} \tag{4.6.2.2}
\end{equation*}
$$

$\lambda>\Lambda$ のとき

$$
\begin{equation*}
f_{\mathrm{c}}=1.5 \cdot 0.277 \cdot \mathrm{~F} \cdot\left(\frac{\Lambda}{\lambda}\right)^{2} \tag{4.6.2.3}
\end{equation*}
$$

ここで，

$$
\begin{align*}
\lambda & =\frac{\ell_{\mathrm{k}}}{\mathrm{i}} \quad \ldots \ldots \ldots \ldots . \tag{4.6.2.4}\\
\Lambda & =\sqrt{\frac{\pi^{2} \cdot \mathrm{E}_{\mathrm{s}}}{0.6 \cdot \mathrm{~F}}} \ldots \ldots \ldots \tag{4.6.2.5}\\
\nu & =1.5+\frac{2}{3} \cdot\left(\frac{\lambda}{\Lambda}\right)^{2} \ldots \tag{4.6.2.6}\\
\mathrm{i} & =\sqrt{\frac{\text { Min (I } \left.\mathrm{I}_{\mathrm{t}}, \mathrm{I}_{\mathrm{sr}}\right)}{\mathrm{A}_{\mathrm{s}}}} \tag{4.6.2.7}
\end{align*}
$$

ℓ_{k} は有効座屈長さで脚下端を固定とする場合は $1.2 \cdot \ell$ とする。
b．$f_{\mathrm{br}}, f_{\mathrm{b} t}$ は次による。
（a）脚が鋼管の場合

$$
\begin{equation*}
f_{\mathrm{brr}}=f_{\mathrm{b} \mathrm{t}}=f_{\mathrm{t}} \tag{4.6.2.8}
\end{equation*}
$$

（b）脚が形鋼の場合で弱軸が半径方向軸の場合
イ．H 形鋼

$$
\begin{equation*}
f_{\mathrm{br}}=f_{\mathrm{t}} \tag{4.6.2.9}
\end{equation*}
$$

 いずれか小さい方の値とする。

$$
\begin{align*}
f_{\mathrm{b} \mathrm{t}} & =\left(1-0.4 \cdot \frac{\ell^{2}}{\mathrm{C} \cdot \Lambda^{2} \cdot \mathrm{i}_{\mathrm{f}}^{2}}\right) \cdot f_{\mathrm{t}} \tag{4.6.2.10}\\
f_{\mathrm{bt}} & =\left(\frac{0.433 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{f}}}{\ell \cdot \mathrm{~h}}\right) \cdot 1.5 \tag{4.6.2.11}
\end{align*}
$$

ここで，i f f は脚の圧縮フランジとはりのせいの 6 分の 1 から成る T 形断面のウェッブ軸まわりの断面二次半径で次式による。

$$
\begin{equation*}
i_{f}=\sqrt{\frac{I_{s f}}{A_{s f}}} \tag{4.6.2.12}
\end{equation*}
$$

Cは次の計算式より計算した値又は2．3のうちいずれか小さい方の値と し， $\mathrm{M}_{\mathrm{s} 2}$ 及び $\mathrm{M}_{\mathrm{s} 1} 1$ はそれぞれの脚の両端における強軸まわりの曲げモー メントとする。

この場合において $\mathrm{M}_{\mathrm{s} 2}$ と $\mathrm{M}_{\mathrm{s} 1} 1$ との比は 1 より小さいものとし，単曲率 の場合を正に，複曲率の場合を負とする。

$$
\begin{equation*}
\mathrm{C}=1.75-1.05 \cdot\left(\frac{\mathrm{M}_{\mathrm{s} 2}}{\mathrm{M}_{\mathrm{s} 1}}\right)+0.3 \cdot\left(\frac{\mathrm{M}_{\mathrm{s} 2}}{\mathrm{M}_{\mathrm{s} 1}}\right)^{2} \tag{4.6.2.13}
\end{equation*}
$$

脚が形鋼の場合で強軸が半径方向軸の場合（b）と同様にして求められた $f_{\mathrm{b} \mathrm{r}}$ を $f_{\mathrm{b} \mathrm{t}}$ に，$f_{\mathrm{b} \mathrm{t}}$ を f_{br} に置き換える。
c．応力の区分は次のようにする。
（a）Z方向地震が作用した場合の第1脚及び第3脚について

$$
\begin{align*}
& \sigma_{\mathrm{sc}}=\sigma_{\mathrm{s} 1}+{ }_{\sigma \mathrm{s} 3}+\sigma_{\mathrm{s} 5} \tag{4.6.2.14}\\
& \sigma_{\mathrm{st}}=\sigma_{\mathrm{s} 2}+\sigma_{\mathrm{s} 4}+\sigma_{\mathrm{s} 6} \tag{4.6.2.15}\\
& \sigma \text { s r }=0 \tag{4.6.2.16}
\end{align*}
$$

脚の強軸が半径方向に直角で，脚下端がその軸まわりに固定の場合，強軸 まわりの曲げモーメント $\mathrm{M}_{\mathrm{s} 1}$ 及び $\mathrm{M}_{\mathrm{s} 2}$ は次の 2 つの式より計算し， $\mathrm{M}_{\mathrm{s} 2}$ の絶対値が $\mathrm{M}_{\mathrm{s} 1}$ の絶対値より大きいときは $\mathrm{M}_{\mathrm{s} 1}$ と $\mathrm{M}_{\mathrm{s} 2}$ を置き換える。（以下同じ。）

$$
\begin{array}{r}
\mathrm{M}_{\mathrm{s} 1}=-\left(\mathrm{M}_{\ell}+\mathrm{M}_{\ell_{2}}+\mathrm{M}_{1}\right)+\left(\mathrm{R}+\mathrm{R}_{2}+\mathrm{R}_{1}\right) \cdot \mathrm{u}
\end{array} \begin{array}{r}
\mathrm{M}_{\mathrm{s}_{2}}=-\left(\mathrm{P}+\mathrm{P}_{2}+\mathrm{P}_{1}\right) \cdot \ell-\left({\left.\mathrm{M} \ell+\mathrm{M}_{2}+\mathrm{M}_{1}\right)}\right. \\
+\left(\mathrm{R}+\mathrm{R}_{2}+\mathrm{R}_{1}\right) \cdot \mathrm{u}^{2}
\end{array}
$$

脚の強軸が半径方向に直角で，脚下端がその軸まわりに単純支持の場合， C は1．75とする。
（b）Z方向地震が作用した場合の第2脚及び第4脚について

$$
\begin{gather*}
\sigma_{\mathrm{sc}}=\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 3} \tag{4.6.2.19}\\
\sigma_{\mathrm{st}}=\sigma_{\mathrm{s} 2}+\sigma_{\mathrm{s} 4} \tag{4.6.2.20}\\
\sigma_{\mathrm{s} \mathrm{r}}=\sigma_{\mathrm{s} 7} \quad \cdots \tag{4.6.2.21}
\end{gather*}
$$

脚の強軸が半径方向で，脚下端がその軸まわりに固定の場合，強軸まわり の曲げモーメントは

$$
\begin{align*}
& \mathrm{M}_{\mathrm{s} 1}=\mathrm{M}_{3} \quad \cdots \tag{4.6.2.22}\\
& \mathrm{M}_{\mathrm{s} 2}=\mathrm{M}_{3}-\mathrm{Q} \cdot \ell \tag{4.6.2.23}
\end{align*}
$$

脚の強軸が半径方向に直角で，脚下端がその軸まわりに固定の場合，強軸 まわりの曲げモーメントは

$$
\begin{aligned}
& M_{s_{1}}=-\left(\mathrm{M}_{\ell}+\mathrm{Me}_{2}\right)+\left(\mathrm{R}+\mathrm{R}_{2}\right) \cdot \mathrm{u} \quad \ldots \ldots \ldots \ldots \text { (4.6.2.24) } \\
& \mathrm{M}_{\mathrm{s}_{2}}=-\left(\mathrm{P}+\mathrm{P}_{2}\right) \cdot \ell-\left(\mathrm{Me}^{2}+\mathrm{M} \ell 22\right)+\left(\mathrm{R}+\mathrm{R}_{2}\right) \cdot \mathrm{u} \cdot(4.6 .2 .25)
\end{aligned}
$$

脚下端が強軸まわりに単純支持の場合，Cは1．75とする。
（c）X方向地震が作用した場合について

$$
\begin{gather*}
\sigma \mathrm{sc}=\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 3}+\sigma_{\mathrm{s} 8} \tag{4.6.2.26}\\
\sigma \mathrm{st}=\sigma_{\mathrm{s} 2}+\sigma_{\mathrm{s} 4}+\sigma_{\mathrm{s} 9} \tag{4.6.2.27}\\
\sigma_{\mathrm{sr}}=\sigma_{\mathrm{s} 10} \quad \ldots \ldots . \tag{4.6.2.28}
\end{gather*}
$$

脚の強軸が半径方向に直角で，脚下端がその軸まわりに固定の場合，強軸 まわりの曲げモーメントは

$$
\begin{align*}
& \mathrm{M}_{\mathrm{s}_{1}}=-\left(\mathrm{M} \ell+\mathrm{M}_{\ell_{2}}\right)+\left(\mathrm{R}+\mathrm{R}_{2}\right) \cdot \mathrm{u}+\frac{1}{\sqrt{2}} \cdot\left(-\mathrm{M}_{1}+\mathrm{R}_{1} \cdot \mathrm{u}\right) \\
& \mathrm{M}_{\mathrm{s}_{2}}=-\left(\mathrm{P}+\mathrm{P}_{2}\right) \cdot \ell-\left(\mathrm{M} \ell+\mathrm{M}_{\ell}\right)+\left(\mathrm{R}+\mathrm{R}_{2}\right) \cdot \mathrm{u} \tag{4.6.2.29}\\
& +\frac{1}{\sqrt{2}} \cdot\left(-P_{1}-M_{1}+R_{1} \cdot u\right) \quad \cdots \tag{4.6.2.30}
\end{align*}
$$

脚の強軸が半径方向で脚下端がその軸まわりに固定の場合，強軸まわり の曲げモーメントは

$$
\begin{align*}
& M_{s_{1}}=\frac{1}{\sqrt{2}} \cdot M_{3} \quad \ldots \ldots . \tag{4.6.2.31}\\
& M_{s_{2}}=\frac{1}{\sqrt{2}} \cdot\left(M_{3}-Q \cdot \ell\right) \tag{4.6.2.32}
\end{align*}
$$

脚下端が強軸まわりに単純支持の場合，Cは1．75とする。

4．6．3 ボルトの応力評価
4．4．1．3 項で求めた基礎ボルトの引張応力 σ bは次式により求めた許容引張応力 f_{t} 以下であること。
せん断応力 τ_{b} はせん断力のみを受けるボルトの許容せん断力 $f \mathrm{sb}$ 以下であるこ と。

$$
\begin{equation*}
f_{\mathrm{t} \mathrm{~s}}=1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \tag{4.6.3.1}
\end{equation*}
$$

かつ，

$$
\begin{equation*}
f_{\mathrm{tss}} \leqq f_{\mathrm{t}} \tag{4.6.3.2}
\end{equation*}
$$

ただし f_{t} 。及び f_{sb} は俵による。

	基準地震動 S s による荷 重との組合せの場合
許容引張応力 f_{t} 。	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．評価結果

5.1 設計基準対象施設としての評価結果

ほう酸水注入系テストタンクの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【ほう酸水注入系テストタンクの耐震性についての計算結果】
 設計基準対象施設

1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動S s		$\underset{\substack{\text { 最高使用圧力 } \\(\mathrm{MPa})}}{ }$	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$	比重
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度				
ほう酸水注入系テストタンク	C	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { O. P. } 22.500^{*} \end{aligned}$			－	－	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C} v=1.56$	静水頭	66	50	1． 00

注記＊：基準床レベルを示す。

$\underset{(\mathrm{kg})}{\mathrm{m}}$	$\begin{aligned} & \mathrm{m}_{0} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{D}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} E \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{E}_{\mathrm{b} f} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{E}_{\mathrm{f}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{E}_{\mathrm{s}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{G} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{G}_{\mathrm{s}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{G}_{\mathrm{b}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \ell \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \ell_{\mathrm{b}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{\mathrm{f}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{fx}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{g}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{\mathrm{h}} \\ (\mathrm{~mm}) \end{gathered}$
		965	4.0	192000＊ 1	200000＊2	200000＊2	193000＊2	$73700 * 1$	74200＊2	76900＊2	300	14	1031	950	785	760	1010

$\begin{gathered} \hline \mathrm{H} \\ (\mathrm{~mm}) \end{gathered}$	$\mathrm{K}_{\text {c }}$	K_{ℓ}	$\mathrm{K}_{\text {r }}$	$\begin{gathered} \mathrm{C}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \overline{\mathrm{I}_{\mathrm{Hf}}} \\ & \left(\mathrm{~mm}^{4}\right) \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{Vff}} \\ \left(\mathrm{~mm}^{4}\right) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{s} f} \\ & \left(\mathrm{~mm}^{4}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{s}} \mathrm{r} \\ & \left(\mathrm{~mm}^{4}\right) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{s} t} \mathrm{t} \\ & \left(\mathrm{~mm}^{4}\right) \end{aligned}$	$\underset{\left(\mathrm{mm}^{2}\right)}{\mathrm{A}_{\mathrm{f}}}$	$\underset{\left(\mathrm{mm}^{2}\right)}{\mathrm{A}_{\mathrm{s}}}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{s}} \mathrm{f} \\ & \left(\mathrm{~mm}^{2}\right)^{2} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s} r} \mathrm{r} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{s}} \mathrm{t} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s} 1} 1 \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s} 2} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$
1260.8	18788	2666	41938	75	125	3． 650×10^{7}	1． 070×10^{8}	8． 349×10^{4}	1． 993×10^{6}	1． 682×10^{5}	400	1． 359×10^{3}	452	444.4	420	533.3	504

$\underset{\left(\mathrm{mm}^{4}\right)}{\mathrm{J}}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$	S	n	n 1	n 2	n b	n $\mathrm{H}_{\text {b }}$	n_{Hk}	n vk	$\begin{gathered} \mathrm{a} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{b} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \mathrm{f} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}_{\mathrm{k}}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{d}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{d}_{2} \\ (\mathrm{~mm}) \end{gathered}$
2． 311×10^{4}	100	1	4	2	2	8	2	8	8	122	206	$\begin{gathered} 201.1 \\ (\mathrm{M} 16) \end{gathered}$	$\begin{aligned} & 201.1 \\ & (\mathrm{M} 16) \end{aligned}$	$\begin{aligned} & 150.3 \\ & (\mathrm{M} 16) \end{aligned}$	25	25

	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}}\left(\begin{array}{c} \text { (胴板) } \\ (\mathrm{MPa}) \end{array}{ }^{\text {ana }}\right. \end{gathered}$	$\begin{gathered} \hline \text { S 胴板) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{S}_{\mathrm{y}} \text { (脚) } \\ \text { (MPa) } \end{array}$	$\begin{array}{\|c} \mathrm{S}_{\mathrm{u}} \text { (脚) } \\ \text { (MPa) } \end{array}$	$\begin{array}{cc} \mathrm{F}^{*} \text { (脚) } \\ (\mathrm{MPa}) \end{array}$			$\begin{array}{\|l} \hline \text { F } \end{array} \begin{gathered} \text { (基礎ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{array}{cc} \hline \mathrm{S}_{\mathrm{y}} & \begin{array}{c} \text { 架台基礎ボルト) } \\ (\mathrm{MPa}) \end{array} \end{array}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (架台基礎ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{array}{cc} \hline \text { F } & \left(\begin{array}{c} \text { (架台基礎ボルト) } \\ (\mathrm{MPa}) \end{array}\right. \end{array}$
188＊1	479＊ 1	－	$198 * 2$	$504 * 2$	$205 * 2$	$\begin{gathered} 211^{* 2} \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	$394 * 2$	$253 * 2$	$\begin{gathered} 211^{* 2} \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	$394 * 2$	$253 * 2$

[^0]$$
\text { O } 2 \text { (3) VI-2-11-2-6 R } 4
$$

1．3．計算数値
1．3．1 胴に生じる応力

応力	静水頭又は内圧による応力	静水頭又は内圧 による応力 （鉛直方向地震時）	運転時質量による応力	水平方向地震による	鉛	組合せ一次 一般膜応力
			自重による応力	転倒モーメントによる応	鉛直方向荷重による応力	
周方向	$\sigma_{\phi 1}=2$	$\sigma_{\phi 2}=3$	－	－	－	$\sigma_{0}=7$
軸方向	$\sigma \times 1=0$	－	$\sigma \times 2=1$	$\sigma \times 5=4$	$\sigma_{\times 7}=2$	
せん断	－	－	－	－	－	

O 2 (3) VI-2-11-2-6 R 4

O 2 （3）VI－2－11－2－6 R 4

1．3．2 脚に生じる応力

地震の方向		運転時質量による応力			水平方向地震による応力				鉛直方向地震による応力			組合せ応力
		圧縮	曲げ	せん断	圧縮	曲げ		せん断	圧縮	曲げ	せん断	
Z方向及び鉛直方向	第1脚側	$\sigma_{\text {s } 1}=3$	$\sigma_{\mathrm{s}_{2}}=4$	$\tau_{\mathrm{S}_{1}}=0$	$\sigma_{\mathrm{S} 5}=11$	$\sigma \mathrm{s}_{6}=30$		$\tau_{\mathrm{s}_{3}}=2$	$\sigma_{\text {s } 3}=4$	$\sigma \mathrm{s}_{4}=6$	$\tau_{\mathrm{s}_{2}}=1$	$\sigma \mathrm{s} \mathrm{z}_{1}=55$
	第 2 脚側	$\sigma_{\text {S } 1}=3$	$\sigma_{\mathrm{s} 2}=4$	$\tau_{\mathrm{s} 1}=0$	－	σ		$\tau \mathrm{S}_{4}=39$	$\sigma_{\text {s } 3}=4$	$\sigma_{\text {s } 4}=6$	$\tau_{\mathrm{s}_{2}}=1$	$\sigma_{\text {s z } 2}=90$
X 方向及び鉛直方向		$\sigma_{\text {S } 1}=3$	$\sigma_{\mathrm{s} 2}=4$	$\tau \mathrm{S}_{1}=0$	$\sigma_{\text {S } 8}=8$	$\sigma_{\mathrm{s} 9}=21$	$\sigma_{\text {S } 10}=32$	$\tau \mathrm{s}_{5}=29$	$\sigma_{\text {s } 3}=4$	$\sigma \mathrm{s}_{4}=6$	$\tau_{\mathrm{s} 2}=1$	$\sigma \mathrm{s}_{\mathrm{x}}=90$

1．3．3 基硞ボルトに生じる応力（単位：MPa）

地震の方向		引張応力	せん断応力
Z 方向及び鉛直方向	第 1 脚側	$\sigma_{\text {b } 1}=1$	$\tau_{\mathrm{b} 1}=2$
	第2脚側	$\sigma_{\mathrm{b}_{2}}=51$	$\tau_{\mathrm{b}_{2}}=15$
	第3脚側	$\sigma_{b_{1}}=1$	$\tau_{\mathrm{b} 1}=2$
	第4脚側	$\sigma_{\mathrm{b}_{2}}=51$	$\tau_{\mathrm{b}_{2}}=15$
X方向及び鉛直方向	第 1 脚側	$\sigma_{\mathrm{b} 3}=52$	$\tau_{\mathrm{b} 3}=11$
	第2脚側	$\sigma_{\mathrm{b}_{3}}=52$	$\tau_{\mathrm{b}_{3}}=11$
	第3脚側	$\sigma_{\text {b } 3}=52$	$\tau_{\mathrm{b} 3}=11$
	第4脚側	$\sigma_{\text {b } 3}=52$	$\tau_{\mathrm{b} 3}=11$

1．3．4 架台基整ボルトに生じる応力

地震の方向	引張応力	せん断応力
Z 方向及び鉛直方向	$\sigma_{\mathrm{b} z}=84$	$\tau_{\mathrm{b}}{ }_{2}=18$
X方向及び鉛直方向	$\sigma_{\text {b x }}=99$	$\tau_{\mathrm{bx}}=18$

$$
\text { O } 2 \text { (3) VI-2-11-2-6 R } 4
$$

$\stackrel{\circ}{\perp}$
1．4．結論
1．4．1 固有周期

（単位：s ）	
方向	固有周期
水平方向	
鉛直方向	

1．4．2 応力

部材	材料	応力	算出応力	許容応力
胴板	SUS304	一次一般膜	$\sigma_{0}=7$	$\mathrm{S}_{\mathrm{a}}=287$
		一次	$\sigma_{1}=34$	$\mathrm{S}_{\mathrm{a}}=431$
		一次＋二次	$\sigma_{2}=162$	$\mathrm{S}_{\mathrm{a}}=377$
脚	SUS304	組合せ	$\sigma_{\text {s }}=90$	$f_{\mathrm{t}}=205$
		圧縮と曲げの組合せ （座屈の評価）	$\frac{\sigma_{\mathrm{s} \mathrm{r}}}{f_{\mathrm{br}}}+\frac{\sigma_{\mathrm{s} \mathrm{t}}}{f_{\mathrm{b} \mathrm{t}}}+\frac{\sigma_{\mathrm{sc}}}{f_{\mathrm{c}}} \leqq 1$	
			0.37	
基礎ボルト	SS400	引張り	$\sigma_{\text {b }}=52$	$f_{\mathrm{ts}}=190^{*}$
		せん断	$\tau_{\mathrm{b}}=15$	$f_{\mathrm{s} \mathrm{b}}=146$
架台基礎ボルト	SS400	引張り	$\sigma_{\mathrm{bf}}=99$	$f_{\mathrm{ts}}=190^{*}$
		せん断	$\tau_{\mathrm{b} f}=18$	$f_{\mathrm{s} \mathrm{b}}=146$

すべて許容応力以下である。

注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, \boldsymbol{f}_{\mathrm{ta}}\right]$ より算出

6．引用文献
（1）Bijlaard，P．P ：Stresses from Radial Loads and External Moments in Cylindrical Pressure Vessels，The Welding Journal，34（12），Research Supplment， 1955.
（2）Wichman，K．R．et al．：Local Stresses in Spherical and Cylindrical Shell due to External Loadings，Welding Reserch Council bulletin，March 1979 revision of WRC bulletin 107 ／August 1965.

[^0]: 注記＊ 1 ：最高使用温度で算出
 ＊ 2 ：周囲環境温度で算出
 ＊ 3 ：表中で上段は一次応力，下段は二次応力の係数とする。

