女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －工－B－19－0231＿改 2
提出年月日	2021 年 10 月 29 日

$$
\begin{array}{ll}
\mathrm{VI}-2-6-7-2-2 & \text { 衛星電話設備 (屋外アンテナ) (中央制御室) } \\
& \text { の耐震性についての計算書 }
\end{array}
$$

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2．4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．地震応答解析及び構造強度評価 7
4． 1 地震応答解析及び構造強度評価方法 7
4．2 荷重の組合せ及び許容応力 7
4．2．1 荷重の組合せ及び許容応力状態 7
4．2．2 許容応力 7
4．2．3 使用材料の許容応力評価条件 7
4．2．4 風荷重 7
4.3 解析モデル及び諸元 11
4． 4 固有周期 12
4.5 設計用地震力 14
4．6 計算方法 15
4．7 計算条件 16
4．8 応力の評価 16
4．8．1 基礎ボルトの応力評価 16
5．機能維持評価 17
5.1 電気的機能維持評価方法 17
6．評価結果 17
6.1 重大事故等対処設備としての評価結果 17

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，衛星電話設備（屋外アンテナ）（中央制御室）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものであ る。

衛星電話設備（屋外アンテナ）（中央制御室）は，設計基準対象施設においてはCクラ ス施設に，重大事故等対処設備においては発電所内の通信連絡機能は常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に，発電所外の通信連絡機能は常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項

2． 1 構造計画

衛星電話設備（屋外アンテナ）（中央制御室）の構造計画を表2－1 に示す。

表 2－1 構造計画

2.2 評価方針

衛星電話設備（屋外アンテナ）（中央制御室）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示す衛星電話設備（屋外アンテナ）（中央制御室）の部位を踏まえ，「3．評価部位」にて設定する箇所において，「4．3 解析モデル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まる ことを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認することで実施 する。

また，衛星電話設備（屋外アンテナ）（中央制御室）の機能維持評価は，添付書類「VI －2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時 の応答加速度が電気的機能確認済加速度以下であることを，「5．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

衛星電話設備（屋外アンテナ）（中央制御室）の耐震評価フローを図2－1 に示す。

図 2－1 衛星電話設備（屋外アンテナ）（中央制御室）の耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
（2）原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1 •補－ 1984）
（3）原子力発電所耐震設計技術指針（ J E A G 4 6 O 1－1991 追補版）
（4）J S M E S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）

記号	記号の説明	単位
A	アンテナ取付架台の断面積	mm^{2}
A_{b}	基礎ボルトの断面積	mm^{2}
C_{H}	水平方向設計震度	－
$\mathrm{C}_{\text {v }}$	鉛直方向設計震度	－
d	基礎ボルトの呼び径	mm
E	縦弾性係数	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F b	基礎ボルトに作用する引張力	N
$f_{\text {s b }}$	せん断力のみを受ける基礎ボルトの許容せん断応力 （f＊＊を 1.5 倍した値）	MPa
$f_{\text {t }}$ 。	引張力のみを受ける基礎ボルトの許容引張応力 （ f t＊を 1.5 倍した値）	MPa
$f_{\text {t s }}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
$I_{\text {y }}$	アンテナ取付架台の断面二次モーメント（ Y 軸）	mm^{4}
I_{z}	アンテナ取付架台の断面二次モーメント（ Z 軸）	mm^{4}
J	アンテナ取付架台のねじり定数	mm^{4}
L	架台長さ	mm
m	質量	kg
N	基礎ボルトの本数	－
Q b	基礎ボルトに作用するせん断力	N
Q \times	基礎ボルトに作用する X 軸方向のせん断力	N
$\mathrm{Q}_{\text {z }}$	基礎ボルトに作用する Z 軸方向のせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{R} T)$	設計•建設規格 付録材料図表 Part5 表8に定める材料の $40^{\circ} \mathrm{C}$ における値	MPa
T	温度条件（雰囲気温度）	${ }^{\circ} \mathrm{C}$
v	ポアソン比	－
ρ	風圧力	$\mathrm{N} / \mathrm{m}^{2}$
$\sigma \mathrm{b} \mathrm{t}$	基礎ボルトに生じる引張応力	MPa
$\tau \mathrm{b}$	基礎ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類		単位	処理桁	処理方法	表示桁
	固有周期	S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
	震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
	温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
	質量	kg	－	－	整数位＊${ }^{1}$
長	下記以外の長さ	mm	－	－	整数位＊${ }^{1}$
さ	部材断面寸法	mm	小数点以下第 2 位＊${ }^{\text {a }}$	四捨五入	小数点以下第 1 位＊ 2
	面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊4
	モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊${ }^{*}$
	力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊4
	縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁＊4
	算出応力	MPa	小数点以下第 1 位	切上げ	整数位
	許容応力＊5	MPa	小数点以下第 1 位	切捨て	整数位＊5

注記＊1：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：設計上定める値が小数点以下第 2 位の場合は，小数点以下第 2 位表示とする。
＊ 3 ：設計上定める値が小数点以下第 3 位の場合は，小数点以下第 3 位表示とする。
＊4：絶対値が 1000 以上のときは，べき数表示とする。
＊5：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位まで の値とする。

3．評価部位

衛星電話設備（屋外アンテナ）（中央制御室）の耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトについて実施する。なお，衛星電話設備（屋外アンテナ）（中央制御室）の取付架台は，構造物とし て十分な剛性を有しており，基礎ボルトが健全であれば衛星電話設備（屋外アンテナ）
（中央制御室）の機能を維持できるため，基礎ボルトを評価対象とする。
衛星電話設備（屋外アンテナ）（中央制御室）の耐震評価部位については，表 2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価
4.1 地震応答解析及び構造強度評価方法
（1）アンテナ取付架台は，十分剛な壁に基礎ボルトにより固定する。
（2）アンテナ取付架台の質量には，屋外アンテナの質量及びアンテナ取付架台の質量を考慮する。
（3）地震力は，アンテナ取付架台に対して水平方向及び鉛直方向から個別に作用するも のとし，作用する荷重の算出において組み合わせるものとする。
（4）耐震計算に用いる寸法は，公称値を使用する。

4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
衛星電話設備（屋外アンテナ）（中央制御室）の重大事故等対処設備の評価に用 いる荷重の組合せ及び許容応力状態を表4－1 に示す。

4．2．2 許容応力

衛星電話設備（屋外アンテナ）（中央制御室）の許容応力は，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき表4－2 に示す。

4．2．3 使用材料の許容応力評価条件
衛星電話設備（屋外アンテナ）（中央制御室）の使用材料の許容応力評価条件の うち重大事故等対処設備の評価に用いるものを表 4－3 に示す。

4．2． 4 風荷重

風荷重は，風速 $30 \mathrm{~m} / \mathrm{s}$ を使用し，衛星電話設備（屋外アンテナ）（中央制御室） の架台形状，風向きを踏まえ，作用する風圧力を算出する。風圧力の算出の基準 となる基準速度圧を表4－4に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等 の区分	荷重の組合せ	許容応力状態
計測制御	その他	衛星電話設備 (屋外アンテナ) （中央制御室）	常設／防止常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}+\mathrm{P}_{\mathrm{K}}{ }^{* 3}$	IV ${ }_{\text {A }} \mathrm{S}$
系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}+\mathrm{S}}+\mathrm{P}_{\mathrm{K}}$	$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記 $* 1$ ：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備 を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}+\mathrm{P}_{\mathrm{K}}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}{ }^{*}$
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV } \mathrm{A}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$		

注記 $~$ 1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行ら。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力 で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
基礎ボルト	SUS304	$\mathrm{S}_{\mathrm{y}}(\mathrm{R}$ T $)$ (MPa)			
囲環境温度	40	-	520	205	

| 表 $4-4$ | 基準速度圧 |
| :---: | :---: | （単位： $\mathrm{N} / \mathrm{m}^{2}$ ）

4.3 解析モデル及び諸元

衛星電話設備（屋外アンテナ）（中央制御室）の解析モデルを図4－1に，解析モデル の概要を以下に示す。また機器の諸元を本計算書の【衛星電話設備（屋外アンテナ） （中央制御室）の耐震性についての計算結果】に示す。
（1）屋外アンテナの取付架台をはり要素でモデル化した FEM モデルを用いる。
（2）解析モデルの各節点の質量は，屋外アンテナ（取付ポールを含む），アンテナ取付架台，取付金具であり，実際の位置を考慮して付加する。
（3）拘束条件として，基礎部のXYZ 並進方向を固定する。なお，基礎ボルト部は剛体と して評価する。
（4）解析コードは「MSC NASTARAN」を使用し，固有値と各要素に発生する荷重及びモー メントを求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要に ついては，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 4－1 解析モデル図

4．4 固有周期

固有値解析の結果を表4－5に示す。
1 次モードは水平方向に卓越し，固有周期が 0.037 秒であり，剛であることを確認 した。

また，鉛直方向は 6 次モードで卓越し，固有周期は 0.003 秒であり，剛であること を確認した。

表 4－5 固有値解析結果

モード	卓越方向	固有周期 （ s ）	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Y 方向	
1 次	水平方向	0.037	－	－	－
6 次	鉛直方向	0.003	－	－	－

図 4－2 振動モード（1次モード水平方向 0.037 s ）

図 4－3 振動モード（6 次モード 鉛直方向 0.003 s）
4.5 設計用地震力

評価に用いる設計用地震力を表4－6に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用応答曲線の作成方針」に基づき設定する。

表 4－6 設計用地震力（重大事故等対処設備）

据付場所 及び 床面高さ (m)	固有周期 (s)		水平方向	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	0.037	0.003	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	

注記＊1：基準床レベルを示す。
＊2：添付書類「VI－2－6－7－2－4 衛星電話設備（屋外アンテナ）（緊急時対策所）の耐震性についての計算書」で示す屋外アンテナと同型式のため，原子炉建屋よ り設計震度の大きい緊急時対策建屋の水平方向設計震度を適用。

4．6 計算方法

FEM 解析の結果から得られる基礎ボルト部の最大荷重を用いて，表 4－7 の式により最大応力を算出する。なお，風荷重について表 4－4に示す基準速度圧が，壁面に設置 されているアンテナ取付架台に向かい，0度，45度又は90度の方向から常時作用する ものとして解析を行う。

最大応力発生部位を図4－4に示す。

表 4－7 応力計算式

応力の種類	単位	応力計算式
引張応力 σ_{bt}	MPa	$\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
せん断応力 τ_{b}	MPa	$\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$

ここで,

$$
\text { 基礎ボルトに作用するせん断力 } \mathrm{Q}_{\mathrm{b}}=\sqrt{\mathrm{Q}_{\mathrm{x}}^{2}+\mathrm{Q}_{\mathrm{z}}{ }^{2}}
$$

図 4－4 最大応力発生部位

4．7 計算条件

解析に用いる自重（アンテナ取付架台）及び荷重（地震荷重）は，本計算書の【衛星電話設備（屋外アンテナ）（中央制御室）の耐震性についての計算結果】の設計条件及び機器要目に示す。

4． 8 応力の評価
4．8．1 基礎ボルトの応力評価
4． 6 項で求めた基礎ボルトの引張応力は次式より求めた許容引張応力 $f_{\mathrm{t}} \mathrm{s}$ 以下 であること。

ただし，$f_{\mathrm{t} \text { 。は下表による。 }}$

$$
\begin{equation*}
f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \tag{4.8.1.1}
\end{equation*}
$$

せん断応力 τ_{b} は，せん断力のみを受けるボルトの許容せん断応力 $f_{\mathrm{s}} \mathrm{b}$ 以下 であること。

ただし，$f_{\text {sb }}$ は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 f_{t} 。	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．機能維持評価
5.1 電気的機能維持評価方法

衛星電話設備（屋外アンテナ）（中央制御室）の電気的機能維持評価について以下に示す。

なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

衛星電話設備（屋外アンテナ）（中央制御室）の機能確認済加速度は，添付書類「VI －2－1－9 機能維持の基本方針」に基づき，同型式の屋外アンテナのサインビート波加振試験において電気的機能の健全性を確認した評価部位の加速度を適用する。

機能確認済加速度を表5－1に示す。

表 $5-1$ 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
衛星電話設備 （屋外アンテナ） （中央制御室）	水平方向	4.44
	鉛直方向	2.30

6．評価結果

6． 1 重大事故等対処設備としての評価結果
衛星電話設備（屋外アンテナ）（中央制御室）の重大事故等時の状態を考慮した場合 の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対 して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

O 2 （3）VI－2－6－7－2－2 R 3

【衛星電話設備（屋外アンテナ）（中央制御室）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	
衛星電話設備 （屋外アンテナ） （中央制御室）	常設／防止常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } 33.20^{*} \end{aligned}$	0． 037	0． 003	$\mathrm{C}_{\mathrm{H}}=3.34$	$\mathrm{C}_{\mathrm{v}}=1.77$	40

注記 $*$ ：基準床レベルを示す。

18

1．2 機器要目

m (kg)	A $\left(\mathrm{mm}^{2}\right)$	I y $\left(\mathrm{mm}^{4}\right)$	$\mathrm{I} z$ $\left(\mathrm{~mm}^{4}\right)$	J $\left(\mathrm{mm}^{4}\right)$	E (MPa)	v $(-)$
76	2.763×10^{3}	6.410×10^{6}	6.410×10^{6}	1.010×10^{7}	2.02×10^{5}	0.3

d (mm)	A_{b} (mm)	N $(-)$	L (mm)
16 $(\mathrm{M} 16)$	201.1	4	1931

部材	材料	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)	S_{u} (MPa)	F (MPa)	F ＊ (MPa)
基礎ボルト	SUS304	205	520	-	205

侧面图

正面图

1．3 計算数値
1．3．1 基礎ボルトに作用する力
（単位：N）

F_{b}		Q_{b}	
弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
-	8.655×10^{3}	-	1.295×10^{4}

1． 4 結論
1．4．1 ボルトの応力
（単位：MPa）

部材	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SUS304	引張り	－	－	$\sigma_{\mathrm{b} \mathrm{t}}=44$	$f_{\mathrm{ts}}=122^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=65$	$f_{\text {s b }}=94$

すべて許容応力以下である。 注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t} \circ}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出

1．4．2 電気的機能維持の評価結果

		機能維持評価用加速度＊1	機能確認済加速度
衛星電話設備 （屋外アンテナ） （中央制御室）	水平方向	$2.79 * 2$	4.44
	鉛直方向	1.47	2.30

注記 $* 1$ ：基準地震動 S s により定まる応答加速度とする。
＊2：添付書類「VI－2－6－7－2－4 衛星電話設備（屋外アンテナ）（緊急時対策所）の耐震性についての計算書」で示す屋 アンテナと同型式のため，原子炉建屋より設計震度の大きい緊急時対策建屋の水平方向設計震度を適用。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

