女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －工－B－19－0437＿改 1
提出年月日	2021 年 10 月 29 日

VI－2－10－1－2－1－3 非常用ディーゼル発電設備
燃料デイタンクの耐震性についての計算書

2021 年10月東北電力株式会社1．概要1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の計算 3
4．構造強度評価 3
4．1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件 3
4．3 計算条件 3
5．評価結果 8
5.1 設計基準対象施設としての評価結果 8
5.2 重大事故等対処設備としての評価結果 8

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度 の設計方針に基づき，非常用ディーゼル発電設備の燃料デイタンクが設計用地震力に対 して十分な構造強度を有していることを説明するものである。

燃料デイタンクは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対象設備としての構造強度評価を示す。

なお，燃料デイタンクは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」 に記載のスカート支持たて置円筒形容器と類似の構造であるため，添付書類「VI－2－1－ 13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針」に基 づき評価を実施する。

2．一般事項
2.1 構造計画

燃料デイタンクの構造計画を表2－1に示す。

表 2－1 構造計画

3．固有周期
3.1 固有周期の計算

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は，本計算書 の【燃料デイタンクの耐震性についての計算結果】の機器要目に示す。

計算の結果，固有周期は 0.05 秒以下であり，剛であることを確認した。固有周期 の計算結果を表 3－1 に示す。

表 3－1 固有周期（単位：s）

水平方向	\square
鉛直方向	\square

4．構造強度評価
4.1 構造強度評価方法

燃料デイタンクの構造強度評価は，添付書類「VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づ き行ら。なお，水平地震動による応力と鉛直地震動による応力の組合せには絶対値和 を適用する。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
燃料デイタンクの荷重の組合せ及び許容応力状態のらち設計基準対象施設の評価に用いるものを表4－1に，重大事故等対処設備の評価に用いるものを表4－2に示す。

4．2．2 許容応力
燃料デイタンクの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3及び表 4－4のとおりとする。

4．2．3 使用材料の許容応力評価条件
燃料デイタンクの使用材料の許容応力評価条件のうち設計基準対象施設の評価 に用いるものを表4－5に，重大事故等対処設備の評価に用いるものを表4－6に示 す。

4． 3 計算条件

応力計算に用いる計算条件は，本計算書の【燃料デイタンクの耐震性についての計算結果】の設計条件及び機器要目に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
非常用電源設備	非常用発電装置	燃料デイタンク	S	－＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$	$\mathrm{III}_{A} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊：クラス 2，3容器及びクラス 2，3支持構造物の荷重の組合せ及び許容応力を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等の区分	荷重の組合せ	許容応力状態
非常用電源 設備	非常用発電装置	燃料デイタンク	常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{A} \mathrm{~S}$
				－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{aligned} & \quad \mathrm{V}_{A} \mathrm{~S} \\ & \left(\mathrm{~V}_{A} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \\ & \text { の許容限界を用 } \\ & \text { いる。) } \end{aligned}$

注記 $* 1$ ：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張），「常設／緩和（DB 拡張）」は常設重大事故緩和設備 （設計基準拡張）を示す。
＊2：重大事故等クラス 2 容器及び重大事故等クラス 2 支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（クラス 2， 3 容器及び重大事故等クラス 2 容器）

許容応力状態	許容限界＊1，＊2		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	一次 + 二次応力 $\quad \begin{aligned} & \text {－次 }+ \text { 二次 }+ \\ & \text { ピーク応力 }\end{aligned}$
$\mathrm{II}_{4} \mathrm{~S}$	S_{y} と $0.6 \cdot \mathrm{~S}_{\mathrm{u}}$ の小さい方 ただし，オーステナイト系 ステンレス鋼及び高ニッケ ル合金については上記の値 と 1.2 •Sのらち大きい方	左欄の 1.5 倍の値	弾性設計用地震動 S d 又は基準地震動S s のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2 • S_{y} 以下であれば疲労解析は不要。
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			
$\begin{aligned} & \mathrm{V}_{A} \mathrm{~S} \\ & \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{S}_{\mathrm{A}} \mathrm{~S}\right. \text { の許 } \\ & \text { 容限界を用いる。) } \end{aligned}$	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍の値	基準地震動S s のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2 • S y 以下であれば，疲労解析は不要。

注記 $* 1$ ：座屈による評価は，クラス MC容器の座屈に対する評価式による。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 許容応力（クラス 2,3 支持構造物及び重大事故等クラス 2 支持構造物）

許容応力状態	許容限界 ${ }^{* 1, ~ * ~} 2, ~ * 3$ （ボルト等以外）	許容限界＊2，＊3 （ボルト等）	
	一次応力	一次応力	
	引張り	引張り	せん断
III ${ }_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			
$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	1．5 f f ＊	$1.5 \cdot \mathrm{ft} *$	$1.5 \cdot \mathrm{fs}$＊

注記＊1：座屈による評価は，クラス MC容器の座屈に対する評価式による。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。 ＊ 3 ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。

表 4－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
胴板	$\begin{gathered} \mathrm{SS} 400 \\ (\text { 厚さ } \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	241	394	－
スカート	$\begin{gathered} \mathrm{SS} 400 \\ (\text { 厚 } さ \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	241	394	－
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	211	394	－

表 4－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
胴板	$\begin{gathered} \mathrm{SS} 400 \\ (\text { 厚さ } \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	241	394	－
スカート	$\begin{gathered} \mathrm{SS} 400 \\ (\text { 厚 } さ \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	241	394	－
基礎ボルト	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	211	394	－

5．評価結果

5.1 設計基準対象施設としての評価結果

燃料デイタンクの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d による動的震度及び静的震度は基準地震動 S s を下回つており，基準地震動 S s による発生値が，弾性設計用地震動 $\mathrm{S} d$ 又は静的震度に対する評価における許容限界を満足 するため，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
5.2 重大事故等対処設備としての評価結果
（1）構造強度評価結果構造強度評価の結果を次頁以降の表に示す。

【然料デイタンクの耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾生設計用地震動 Sd又は静的震度		基漼地震動S s		最高使用圧力 （ MPa ）	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$	比重
			水平方向	鉛直方向	水平方向設計震度	鉛直方向 設計震度	水平方向設計震度	鉛直方向設計震度				
燃料デイタンク	S	原子炉建屋 0．P． 24.80 （0．P． $33.20^{* 1}$ ）			－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.77$	静水頭	－	50	0.86

注記 \boldsymbol{N}^{2} ：基淮床レベルを示す。
＊2：패S S については，基準地震動 s s で評価する。
\odot

$\begin{aligned} & \mathrm{m}_{0} \\ & (\mathrm{~kg}) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{m}_{\mathrm{e}} \\ (\mathrm{~kg}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{D}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \hline \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \hline \mathrm{D}_{\mathrm{s}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{array}{r} \mathrm{t}_{\mathrm{s}} \\ (\mathrm{~mm}) \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{E} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{array}{r} \hline \mathrm{E}_{\mathrm{s}} \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{G} \\ (\mathrm{MPa}) \end{gathered}$	G_{s} （MPa）	
		2800	9.0	2800	9.0	201000＊1	201000＊1	77300＊1	77300＊1	
$\begin{gathered} \hline \ell \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \hline \ell_{\mathrm{s}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{D}_{1} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{2} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{3} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{4} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \hline \mathrm{H} \\ (\mathrm{~mm}) \end{gathered}$	s	n	$\begin{aligned} & \mathrm{D}_{\mathrm{c}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{D}_{\mathrm{bo}} \\ (\mathrm{~mm}) \end{gathered}$
1400	929	102	102	102	102	2868	15	16	2950	3078

$\begin{aligned} & \mathrm{D}_{\mathrm{bi}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ (\mathrm{~mm}) \end{gathered}$	$\mathrm{M}_{\mathrm{s}}(\mathrm{N} \cdot \mathrm{mm})$	
				弾性設計用地震動S d又は静的震度	基淮地震動S s
2738	$\begin{gathered} 42 \\ (\mathrm{M} 42) \end{gathered}$	1385	408	－	1． 362×10^{9}

$\begin{gathered} \mathrm{S}_{\mathrm{y}}^{\text {(胴板) }} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (胴板) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { S (胴板) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \text { (スカート) } \\ (\mathbb{P P a}) \end{gathered}$	$\underset{(\mathbb{P a})}{\mathrm{S}_{\mathrm{u}} \text { (スカート) }}$	$\underset{(\mathbb{P P a})}{\mathrm{F}(\text { スカート })}$	$\begin{gathered} \mathrm{F}^{*} \text { (スカート) } \\ (\mathrm{MPa}) \end{gathered}$
$\begin{gathered} 241^{* 1} \\ \text { (厚さ } \leqq 16 \mathrm{~mm} \text {) } \end{gathered}$	$\begin{gathered} 394 *{ }^{* 1} \\ (\text { 厚さ } \leqq 16 \mathrm{~mm}) \end{gathered}$	－	$\begin{gathered} 241^{* 1} \\ (\text { 厚さ } \leqq 16 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 394^{* 1} \\ (\text { 厚さ } \leqq 16 \mathrm{~mm}) \end{gathered}$	241	276

$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (基嘚ボルト) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { F (基礎ボルト) } \\ \text { (MPa) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \text { (基礎ボルト) } \\ \text { (MPa) } \\ \hline \end{gathered}$
$\begin{gathered} 211^{* 1} \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 394^{* 1} \\ (40 \mathrm{~mm}<\text { 径 } \leq 100 \mathrm{~mm}) \end{gathered}$	211	253

スカート開口部の形状を示す。

注記＊1：周囲環境温度で算出
1.3 計算数值

1．3．1 胴に生じる応力
（1）一次一般膜応力
（単位： MPa ）

		弾性設計用地震動S d 又は静的震度			基漼地震動S s		
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力
静水頭又は内圧による応力		$\sigma_{\phi 1}=-*$	$\sigma_{\times 1}=-*$	－	$\sigma_{\phi 1}=4$	$\sigma_{\times 1}=0$	－
運転時質量による引張応力		－	$\sigma_{\times 2}=-*$	－	－	$\sigma_{\times 2}=3$	－
鈖直方向地震による引張応力		$\sigma_{\phi 2}=-*$	$\sigma_{\times 5}=-*$	－	$\sigma_{\phi 2}=7$	$\sigma_{\times 5}=5$	－
空質量による压縮応力		－	$\sigma_{\times 3}=-*$	－	－	$\sigma_{\times 3}=1$	－
鉛直方向地震による圧縮応力		－	$\sigma_{\times 6}=-*$	－	－	$\sigma_{\times 6}=1$	－
水平方向地震による応力		－	$\sigma_{\times 4}=-*$	$\tau=-*$	－	$\sigma_{\times 4}=15$	$\tau=15$
応力の和	引張側	$\sigma_{\phi}=-*$	$\sigma_{x t}=-*$	－	$\sigma_{\phi}=11$	$\sigma_{x t}=22$	－
	圧縮側	$\sigma_{\phi}=-*$	$\sigma_{\text {xc }}=-*$	－	$\sigma_{\phi}=-11$	$\sigma_{\mathrm{xc}}=16$	－
組合せ応力	引張り	$\sigma_{0 \mathrm{t}}=-*$			$\sigma_{0 t}=32$		
	圧縮	$\sigma_{0 \mathrm{c}}=-*$			$\sigma_{0 \mathrm{c}}=23$		

（2）地震動のみによる一次応力と二次応力の和の変動値					（単位：MPa）		
		弾性設計用地震動S d 又は静的震度			基淮地震動S s		
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力
鉛直方向地震による引張応力		$\sigma_{\phi 2}=$－＊	$\sigma_{\times 5}=-*$	－	$\sigma_{\phi 2}=7$	$\sigma_{\times 5}=5$	－
鉛直方向地震による圧縮応力		－	$\sigma_{\times 6}=-*$	－	－	$\sigma_{\times 6}=1$	－
水平方向地震による応力		－	$\sigma_{\times 4}=-*$	$\tau=-*$	－	$\sigma_{\times 4}=15$	$\tau=15$
応力の和	引張側	$\sigma_{2 \phi}=$－＊	$\sigma_{2 \times t}=$－＊	－	$\sigma_{2 \phi}=7$	$\sigma_{2 \times t}=19$	－
	圧縮側	$\sigma_{2 \phi}=$－＊	$\sigma_{2 \times \mathrm{c}}=$－＊	－	$\sigma_{2 \phi}=-7$	$\sigma_{2 \mathrm{xc}}=16$	－
組合せ応力 （変動値）	引張り	$\sigma_{2 \mathrm{t}}=$－＊			$\sigma_{2 \mathrm{t}}=58$		
	圧縮	$\sigma_{2 \mathrm{c}}=$－＊			$\sigma_{2 \mathrm{c}}=46$		

注記＊：$\Pi_{A} \mathrm{~S}$ については，基準地震動 S s で評価する。

注記＊：IIIS については，基準地震動S s で評価する。

注記＊： $\mathrm{II}_{A} \mathrm{~S}$ については，基準地震動S s で評価する。
1.4 結論

1．4．1 固有周期
（単位： s ） 方 向 固有周期 水平方向 $\mathrm{T}_{\mathrm{H}}=$ 鉛直方向 $\mathrm{T}_{\mathrm{V}}=$

	1．4．2 応力	材 料	応力			（単位： MPa ）	
	部 材			弾生設計用地震動S d 又は静的震度		基準地震動S s	
				算出応力	許容応力	算出応力	許容応力
	胴板	SS400	一次一般膜	$\sigma_{0}=32^{* 2}$	$\mathrm{S}_{\mathrm{a}}=236^{* 2}$	$\sigma_{0}=32$	$\mathrm{S}_{\mathrm{a}}=236$
			一次＋二次	$\sigma_{2}=58 * 2$	$\mathrm{S}_{\mathrm{a}}=482^{* 2}$	$\sigma_{2}=58$	$\mathrm{S}_{\mathrm{a}}=482$
	スカート	SS400	組合せ	$\sigma_{\mathrm{s}}=44^{* 2}$	$f_{\mathrm{t}}=241 * 2$	$\sigma_{\mathrm{s}}=44$	$f_{\mathrm{t}}=276$
Ə			圧縮と曲げ の組合せ （座屈の評価）	$\frac{\eta \cdot\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 3}\right)}{f_{\mathrm{c}}}+\frac{\eta \cdot \sigma_{\mathrm{s} 2}}{f_{\mathrm{b}}} \leqq 1$		$\frac{\eta \cdot\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 3}\right)}{f_{\mathrm{c}}}+\frac{\eta \cdot \sigma_{\mathrm{s} 2}}{f_{\mathrm{b}}} \leqq 1$	
				$0.20 * 2$（無次元）		0． 20 （無次元）	
	基礎ボルト	SS400	引張り	$\sigma_{\mathrm{b}}=75^{* 2}$	$f_{\mathrm{ts}}=158^{* 1}$	$\sigma_{\mathrm{b}}=75$	$f_{\mathrm{ts}}=190 * 1$
			せん断	$\tau_{\mathrm{b}}=27^{* 2}$	$f_{\mathrm{sb}}=122^{* 2}$	$\tau_{b}=27$	$f_{\mathrm{sb}}=146$
	注記 $* 1: f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出 ＊2：基準地震動 $\mathrm{S}_{\text {s }}$ による算出値						

すべて許容応力以下である。

【燃料デイタンクの耐震性についての計算結果】
2．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基漼地震動S s		$\begin{gathered} \text { 最高使用 } \\ \text { 圧力 } \\ \text { (MPa) } \end{gathered}$	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	比重
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鋁直方向設計震度				
燃料デイタンク	常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0. P. } 24.80 \\ & \left(0 . \mathrm{P} .33 .20^{*}\right) \end{aligned}$			－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.77$	静水頭	－	50	0.86

注記＊：基淮床レベルを示す。

๗
2.2 機器要目

| m_{0}
 $(\mathrm{~kg})$ | m_{e}
 (kg) | D_{i}
 (mm) | t
 (mm) | D_{s}
 (mm) | t_{s}
 (mm) | E
 (MPa) | E_{s}
 (MPa) | G
 (MPa) | G_{s}
 $(\mathrm{MPa)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \square | 2800 | 9.0 | 2800 | 9.0 | $201000^{* 1}$ | $201000^{* 1}$ | $77300^{* 1}$ | $77300 * 1$ | | |
| ℓ
 (mm) | ℓ_{s}
 (mm) | D_{1}
 $(\mathrm{~mm})$ | D_{2}
 $(\mathrm{~mm})$ | D_{3}
 $(\mathrm{~mm})$ | D_{4}
 $(\mathrm{~mm})$ | H
 (mm) | s | n | D_{c}
 (mm) | D_{bo}
 (mm) |
| 1400 | 929 | 102 | 102 | 102 | 102 | 2868 | 15 | 16 | 2950 | 3078 |

$\begin{aligned} & D_{b i} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left({ }^{2}{ }^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ (\mathrm{~mm}) \end{gathered}$	$\mathrm{M}_{\mathrm{s}}(\mathrm{N} \cdot \mathrm{mm})$	
				弾性設計用地震動 S d又は静的震度	基淮地震動S s
2738	42 （M42）	1385	408	－	1． 362×10^{9}

S_{y}（胴板） (MPa)	S_{u}（胴板） (MPa)	S （胴板） (MPa)	S_{y}（スカート） (MPa)	S_{u}（スカート） (MPa)	F （スカート） (MPa)	F^{*}（スカート） （MPa）
$241^{* 1}$ （厚さ $\leqq 16 \mathrm{~mm})$	$394^{* 1}$ （厚さ $\leqq 16 \mathrm{~mm})$	-	$241^{* 1}$ （厚さ $\leqq 16 \mathrm{~mm})$	$394^{* 1}$ $($ 厚さ $\leqq 16 \mathrm{~mm})$	-	276

S_{y}（基礎ボルト） (MPa)	S_{u}（基礎ボルト） (MPa)	F （基礎ボルト） (MPa)	F ＊（基礎ボルト） (MPa)
$211^{* 1}$ $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	$\left.\begin{array}{c}394^{* 1} \\ (40 \mathrm{~mm}<\text { 径 }\end{array} \leq 100 \mathrm{~mm}\right)$	-	253

スカート開口部の形状を示す。

$\mathrm{A} \sim \mathrm{A}$ 矢視図

注記＊1 ：周囲環境温度で算出

2.3 計算数値

2．3．1 胴に生じる応力

一次一般脱忍力		弾生設計用地震動S d 又は静的震度			基漼地震動S s		
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力
静水頭又は内圧による応力		－	－	－	$\sigma_{\phi 1}=4$	$\sigma_{\times 1}=0$	－
運転時質量による引張応力		－	－	－	－	$\sigma_{\times 2}=3$	－
鈖直方向地震による引張応力		－	－	－	$\sigma_{\phi 2}=7$	$\sigma_{\times 5}=5$	－
空質量による圧縮応力		－	－	－	－	$\sigma_{\times 3}=1$	－
鉛直方向地震による圧縮応力		－	－	－	－	$\sigma_{\times 6}=1$	－
水平方向地震による応力		－	－	－	－	$\sigma_{\times 4}=15$	$\tau=15$
応力の和	引張側	－	－	－	$\sigma_{\phi}=11$	$\sigma_{x t}=22$	－
	圧縮側	－	－	－	$\sigma_{\phi}=-11$	$\sigma_{\mathrm{xc}}=16$	－
組合せ応力	引張り	－			$\sigma_{0{ }_{0}=32}$		
	珄縮	－			$\sigma_{0 \mathrm{c}}=23$		

$\stackrel{\rightharpoonup}{\omega}$

		弾性設計用地震動S d 又 は静的震度			基漼地震動S s		
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力
鉛直方向地震による引張応力		－	－	－	$\sigma_{\phi 2}=7$	$\sigma_{\times 5}=5$	－
鉛直方向地震による圧縮応力		－	－	－	－	$\sigma_{x 6}=1$	－
水平方向地震による応力		－	－	－	－	$\sigma_{\times 4}=15$	$\tau=15$
応力の和	引張側	－	－	－	$\sigma_{2_{\phi}}=7$	$\sigma_{2 \times \mathrm{t}}=19$	－
	圧縮側	－	－	－	$\sigma_{2 \phi}=-7$	$\sigma_{2 \times \mathrm{c}}=16$	－
組合せ応力 （変動値）	引張り	－			$\sigma_{2 \mathrm{t}}=58$		
	圧縮	－			$\sigma_{2 \mathrm{c}}=46$		

2．3．3 基礎ボルトに生じる応力		（単位： MPa ）
	弾性設計用地震動 d又は静的震度	基淮地震動S s
引張応力	－	$\sigma_{\mathrm{b}}=75$
せん断応力	－	$\tau_{\mathrm{b}}=27$

2.4 結論

2.4 .1 固有周期
単位： s ） 向 固有周期 水平方向 $\mathrm{T}_{\mathrm{H}}=$ 鉛直方向 T_{V}

	2．4．2 応力					（単位 ： MPa ）	
	部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基淮地震動S s	
				算出応力	許容応力	算出応力	許容応力
	胴板	SS400	一次一般膜	－	－	$\sigma_{0}=32$	$\mathrm{S}_{\mathrm{a}}=236$
			一次＋二次	－	－	$\sigma_{2}=58$	$\mathrm{S}_{\mathrm{a}}=482$
	スカート	SS400	組合せ	－	－	$\sigma_{\mathrm{s}}=44$	$f_{\mathrm{t}}=276$
$\stackrel{\rightharpoonup}{\triangleright}$			圧縮と曲げ の組合せ （座屈の評価）	$\frac{\eta \cdot\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 3}\right)}{f_{\mathrm{c}}}+\frac{\eta \cdot \sigma_{\mathrm{s} 2}}{f_{\mathrm{b}}} \leqq 1$		$\frac{\eta \cdot\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 3}\right)}{f_{\mathrm{c}}}+\frac{\eta \cdot \sigma_{\mathrm{s} 2}}{f_{\mathrm{b}}} \leqq 1$	
				－		0.20 （無次元）	
	基礎ボルト	SS400	引張り	－	－	$\sigma_{b}=75$	$f_{\mathrm{ts}}=190 *$
			せん断	－	－	$\tau_{\mathrm{b}}=27$	$f_{\text {sb }}=146$

すべて許容応力以下である。
注記 $*: f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出

