本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料			
資料番号	02-工-B-19-0437_改 1			
提出年月日	2021年10月29日			

VI-2-10-1-2-1-3 非常用ディーゼル発電設備 燃料デイタンクの耐震性についての計算書

2021年10月 東北電力株式会社

目 次

1.	7	既要・				• • • •		• • •		• • •	• • •	 	• • •	 	 	 • •	 	1
2.	-	一般事	耳項 …									 		 	 	 	 	1
2	. 1	構造	b計画·									 		 	 	 	 	1
3.		固有周	期 …									 		 	 	 	 	3
3	. 1	固有	「周期の)計算								 		 	 	 	 	3
4.	7	構造強	食評価	<u>F</u> · · ·								 		 	 	 	 	3
4	. 1	構造	造強度評	平価方	法 …							 		 	 	 	 	3
4	. 2	荷重	この組合 かんしゅう かんしょう かんしょう かんしょう かんしょ かんしょ かんしょ かんしゅう しゅうしゅう しゅう	かせ及	び許:	容応	力・					 		 	 	 	 	3
	4.	2.1	荷重の)組合	せ及	び許	容応	力制	犬態			 		 	 	 	 	3
	4.	2.2	許容点	5力・								 		 	 	 	 	3
	4.	2.3	使用材	才料の	許容	応力	評価	条件	牛・・			 		 	 	 	 	3
4	. 3	計算	重条件·									 		 	 	 	 	3
5.	Ī	評価結	吉果 ・・・									 		 	 	 	 	8
5	. 1	設計	基準文	†象施	設と	して	の評	価約	吉果			 		 	 	 	 	8
5	. 2	重大	事故等	幹対処	設備	とし	ての	評値	西結	果·		 		 	 	 	 	8

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき、非常用ディーゼル発電設備の燃料デイタンクが設計用地震力に対して十分な構造強度を有していることを説明するものである。

燃料デイタンクは、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設重大事故防止設備(設計基準拡張)及び常設重大事故緩和設備(設計基準拡張)に分類される。以下、設計基準対象施設及び重大事故等対象設備としての構造強度評価を示す。

なお、燃料デイタンクは、添付書類「VI-2-1-13 機器・配管系の計算書作成の方法」に記載のスカート支持たて置円筒形容器と類似の構造であるため、添付書類「VI-2-1-13-1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2. 一般事項

2.1 構造計画

燃料デイタンクの構造計画を表 2-1 に示す。

表 2-1 構造計画

計画の概	要	概略構造図
基礎・支持構造	主体構造	似 岭 伟 垣 凶
胴をスカートで支持し、スカートを基礎ボルトで基礎に据え付ける。	たて置円筒形 (上面及び下面に鏡 板を有するスカート 支持たて置円筒形容 器)	胴板
		(単位:mm)

3. 固有周期

3.1 固有周期の計算

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は、本計算書の 【燃料デイタンクの耐震性についての計算結果】の機器要目に示す。

計算の結果,固有周期は 0.05 秒以下であり,剛であることを確認した。固有周期の計算結果を表 3-1 に示す。

表 3-1 固有周期 (単位:s)

水平方向	
鉛直方向	

4. 構造強度評価

4.1 構造強度評価方法

燃料デイタンクの構造強度評価は、添付書類「VI-2-1-13-1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。なお、水平地震動による応力と鉛直地震動による応力の組合せには絶対値和を適用する。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

燃料デイタンクの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4-1 に、重大事故等対処設備の評価に用いるものを表 4-2 に示す。

4.2.2 許容応力

燃料デイタンクの許容応力は、添付書類「VI-2-1-9 機能維持の基本方針」に 基づき表 4-3 及び表 4-4 のとおりとする。

4.2.3 使用材料の許容応力評価条件

燃料デイタンクの使用材料の許容応力評価条件のうち設計基準対象施設の評価 に用いるものを表 4-5 に、重大事故等対処設備の評価に用いるものを表 4-6 に示す。

4.3 計算条件

応力計算に用いる計算条件は、本計算書の【燃料デイタンクの耐震性についての計算結果】の設計条件及び機器要目に示す。

O 2 ② VI-2-10-1-2-1-3 R 1

表 4-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

施設	'区分	機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
非常用電源	非常用発電	燃料デイタンク	C	*	$D + P_D + M_D + S d *$	III _A S
設備	装置		5		$D + P_D + M_D + S s$	IV _A S

注記*:クラス2,3容器及びクラス2,3支持構造物の荷重の組合せ及び許容応力を適用する。

表 4-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設	区分	機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態
			常設/防止		$D + P_D + M_D + S s^{*3}$	IV _A S
非常用電源 設備	非常用発電 装置	燃料デイタンク	(DB 拡張) 常設/緩和 (DB 拡張)	*2	D+P _{SAD} +M _{SAD} +S s	V _A S (V _A SとしてIV _A S の許容限界を用 いる。)

注記*1:「常設/防止(DB 拡張)」は常設重大事故防止設備(設計基準拡張),「常設/緩和(DB 拡張)」は常設重大事故緩和設備(設計基準拡張)を示す。

*2: 重大事故等クラス2容器及び重大事故等クラス2支持構造物の荷重の組合せ及び許容応力を適用する。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_{S} \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

		許容限界* ^{1,*2}								
	許容応力状態	· / 加腊片力	一次膜応力+	<i>₩</i> 1 = ₩ 5 ±	一次+二次+					
		一次一般膜応力	一次曲げ応力	一次+二次応力	ピーク応力					
		Syと 0.6・Suの小さい方								
		ただし,オーステナイト系			↓ 薬地震動Ssのみによる疲					
	III_AS	ステンレス鋼及び高ニッケ	左欄の 1.5 倍の値	労解析を行い、疲労累積係						
		ル合金については上記の値		ただし、地震動のみによる一次+二次応力の変動値が 2・S _y 以下であれば疲労解析は不要。 基準地震動Ssのみによる疲労解析を行い、疲労累積						
		と 1.2・S のうち大きい方								
ת	IV_AS									
	$ m V_A\!S$	0.6 · S u	左欄の 1.5 倍の値							
	(VaSとしてIVaSの許	0.0 · S _u	左, /阑 / / 1. 5 /音 / / / L	係数が 1.0 以下であること	0					
	容限界を用いる。)			ただし、地震動のみによる一次+二次応力の変動値が $2 \cdot S_y$ 以下であれば、疲労解析は不要。						
	谷がかて力いる。)									

注記*1:座屈による評価は、クラスMC容器の座屈に対する評価式による。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

5

表 4-4 許容応力 (クラス 2, 3 支持構造物及び重大事故等クラス 2 支持構造物)

	許容限界* ^{1,*2,*3} (ボルト等以外)	許容限界* ^{2,*3} (ボルト等)				
許容応力状態	一次応力	一次応力				
	引張り	引張り	せん断			
III _A S	1.5 • f t	1.5 • f t	1.5 • f s			
IV _A S						
VAS (VAS としてIVAS の許容限界を 用いる。)	1.5 • f t *	1.5 • f t *	1.5 • fs*			

注記*1:座屈による評価は、クラスMC容器の座屈に対する評価式による。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

*3:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

表 4-5 使用材料の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条件 (℃)		S (MPa)	S _y (MPa)	S _u (MPa)	S _y (RT) (MPa)
胴板	SS400 (厚さ≦16mm)	周囲環境温度 50		_	241	394	_
スカート	SS400 (厚さ≦16mm)	周囲環境温度	50	_	241	394	_
基礎ボルト	SS400 (40mm<径≦100mm)	周囲環境温度	50	_	211	394	_

表 4-6 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件 (℃)		S (MPa)	S _y (MPa)	S _u (MPa)	S _y (RT) (MPa)
胴板	SS400 (厚さ≦16mm)	周囲環境温度	50	_	241	394	_
スカート	SS400 (厚さ≦16mm)	周囲環境温度	50	_	241	394	_
基礎ボルト	SS400 (40mm<径≦100mm)	周囲環境温度	50	_	211	394	_

 \circ

5. 評価結果

5.1 設計基準対象施設としての評価結果

燃料デイタンクの設計基準対象施設としての耐震評価結果を以下に示す。発生値は 許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを 確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。なお、弾性設計用地震動Sdによる動的震度及び静的震度は基準地震動Ssを下回っており、基準地震動Ssによる発生値が、弾性設計用地震動Sd又は静的震度に対する評価における許容限界を満足するため、弾性設計用地震動Sd又は静的震度による発生値の算出を省略した。

5.2 重大事故等対処設備としての評価結果

燃料デイタンクの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。 発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有してい ることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

【燃料デイタンクの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

機器名称	耐震重要度分類	据付場所及び 床面高さ	固有周	期(s)	弾性設計用 又は静	地震動Sd 的震度	基準地震	憂動S s	最高使用	最高使用	周囲環境 温度	比重
7%在6~177	删長里女授刀賴	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	温度 (°C)	(°C)	ル里
燃料デイタンク	S	原子炉建屋 0. P. 24. 80 (0. P. 33. 20*1)			*2	*2	C _H =2.65	$C_{v}=1.77$	静水頭	_	50	0.86

注記*1:基準床レベルを示す。

*2: **III**_AS については、基準地震動S s で評価する。

1.2 機器 m ₀ (kg)		D _i (mm)	t (mm)	D _s (mm)	t s (mm)	E (MPa)	Es (MPa)	G (MPa)	G s (MPa)		
		2800	9.0	2800	9.0	201000*	201000*1	77300*1	77300*1		
0 0 s (mm) (mm) 1400 929				D ₃ (mm) 102	D ₄ (mm) 102	H (mm) 2868	s 15	n 16	D c (mm)	D _{bo} (mm) 3078	
$D_{\mathrm{b}\mathrm{i}}$ (mm)	D _{b i} d		Y (mm)	弾性設計	M。(N·m 弾性設計用地震動Sd 又は静的震度		n)	震動S s		D ₁ D ₂ D ₃ D ₄	スカート D _s S
2738	42 (M42)	1 1385 1 408			_		1.36	2×10^{9}		スカート開口部の形状を示す。	A Dobi 基礎がルト
S _y (胴板 (MPa)	Su(胴板) S(胴板 (MPa) (MPa)		S (胴板) (MPa)	S _y (スカート) S _u (スカ (MPa) (MPa			F (スカート) (MPa)	F*(スカー (MPa)	F)		D _{bo}
241*1 (厚さ≦16r	l l	394*1		241*1 (厚さ≦16mm)			241	276			0 0
(MF	巻形レト) Pa)				礎ボルト) MPa)						
211*1 (40mm<径≦100mm)		(40mm	394*1 <径≦100mm)	211			253				A~A矢視図

注記*1:周囲環境温度で算出

1.3 計算数値

1.3.1 胴に生じる応力

(1) 一次一般膜応力

(単位:MPa)

		弹性	設計用地震動Sd又は静命	震度	基準地震動S s			
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力	
静水頭又は内圧	による応力	σ _{φ1} =-*	σ _{x1} =-*	_	σ _{φ1} =4	$\sigma_{x1}=0$	_	
運転時質量によ	る引張応力		σ _{x2} =-*	_	_	$\sigma_{x2}=3$	_	
鉛直方向地震による引張応力		σ _{φ2} =-*	σ _{x5} =-*	_	σ _{φ2} =7	σ _{x5} =5	_	
空質量による圧縮応力			σ _{x3} =-*	_	_	$\sigma_{x3}=1$	_	
鉛直方向地震に。	にる圧縮応力	_	σ _{x6} =-*	_	_	$\sigma_{x6}=1$	_	
水平方向地震は	こよる応力		σ _{x4} =-*	$\tau = -*$	_	$\sigma_{x4} = 15$	$\tau = 15$	
応力の和	引張側	$\sigma_{\phi} = -*$	$\sigma_{xt} = -*$	_	$\sigma_{\phi}=11$	$\sigma_{xt}=22$	_	
圧縮側		$\sigma_{\phi} = -*$	σ _{xc} =-*	_	σ_{ϕ} =-11	σ _{xc} =16	_	
組合せ応力	引張り		$\sigma_{0t} = -*$			$\sigma_{0t}=32$		
が正口。「ヒルウン」	圧縮		σ _{0c} =-*	_	σ _{0c} =23			

注記*: ⅢAS については、基準地震動S s で評価する。

(2) 地震動のみによる一次応力と二次応力の和の変動値

(単位・MPa)

	(4) 一個投資があれてある。 りんじりこ 一りんじりが対応が交換に									
		弹性	設計用地震動Sd又は静的	震度	基準地震動Ss					
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力			
鉛直方向地震による引張応力		σ _{φ2} =-*	σ _{x5} =-*	_	σ _{φ2} =7	σ _{x5} =5	_			
鉛直方向地震による圧縮応力		_	σ _{x6} =-*	_	_	σ _{x6} =1	_			
水平方向地震	こよる応力	_	σ _{x4} =-*	$\tau = -*$	_	σ _{x4} =15	τ =15			
応力の和	引張側	σ _{2φ} =-*	σ _{2xt} =-*	_	σ _{2φ} =7	σ _{2xt} =19	_			
かいノフマンイロ	圧縮側		σ _{2xc} =-*	_	σ _{2φ} =-7	σ _{2xc} =16	_			
組合せ応力	組合せ応力 引張り σ _{2t} =-*					σ _{2t} =58				
(変動値)	圧縮		σ _{2c} =-*		σ _{2c} =46					

注記*: ⅢSについては、基準地震動Ssで評価する。

1.3.2 スカートに生じる応力

(単位:MPa)

		弹性設計用地震動So	d又は静的震度	基準地震動S s					
		応 力	組合せ応力	応 力	組合せ応力				
運転時質量に	よる応力	$\sigma_{s1} = -*$ $\sigma_{s3} = -*$ *		σ _{s1} =3					
鉛直方向地震	こよる応力			σ _{s3} =6	44				
水平方向地震	曲げ	σ _{s2} =-*	$\sigma_s = -*$	σ _{s2} =27	σ_s =44				
による応力	せん断	$\tau_s = -*$		τ s=16					

注記*: Ⅲ₈ については、基準地震動S s で評価する。

1.3.3 基礎ボルトに生じる応力

(単位:MPa)

	弾性設計用地震動S d 又は静的震度	基準地震動S s
引張応力	$\sigma_b = -*$	σ_b =75
せん断応力	$\tau_b = -*$	τ b=27

10

注記*:ⅢSについては、基準地震動Ssで評価する。

1.4.1 固有周期

(単位:s)

方 向	固有周期
水平方向	T_{H} =
鉛直方向	$T_V =$

1.4.2 応力

(単位:MPa)

11 11 1 / 11 / 3						(
部材	材料	応力	弹性設計用地震動	hSd 又は静的震度	基準地	震動S s	
(d <u>日</u>	17) 14	ルい ノノ	算出応力	許容応力	算出応力	許容応力	
胴板	SS400	一次一般膜	σ ₀ =32*2	S _a =236*2	σ ₀ =32	S a=236	
ЛРИХ	33400	一次+二次	$\sigma_2 = 58^{*2}$	S _a =482*2	σ_2 =58	S a=482	
		組合せ	$\sigma_{s} = 44^{*2}$	$f_t = 241^{*2}$	σ _s =44	$f_{\rm t} = 276$	
スカート	SS400	圧縮と曲げの組合せ	$\frac{\eta \cdot (\sigma_{s1} + \sigma_{s3})}{f_{c}}$	$+ \frac{\eta \cdot \sigma_{s2}}{f_b} \leq 1$	$\frac{\eta \cdot (\sigma_{s1} + \sigma_{s3})}{f_c}$	$+ \frac{\eta \cdot \sigma_{s2}}{f_b} \leq 1$	
		(座屈の評価)	0.20*2(無次元)		0.20 (無次元)		
世で株式りまし	SS400	引張り	σ _b =75*2	f _{ts} =158*1	σ _b =75	f _{ts} =190*1	
基礎ボルト	35400	せん断	τ _b =27*2	$f_{\rm s b} = 122^{*2}$	τ _b =27	f _{s b} =146	

注記 *1: f_{tsi} =Min[1.4・ f_{toi} -1.6・ τ_{bi} , f_{toi}]より算出 *2:基準地震動 S_s による算出<mark>値</mark>

すべて許容応力以下である。

【燃料デイタンクの耐震性についての計算結果】

2. 重大事故等対処設備

2.1 設計条件

機器名称	据付場所及び 設備分類 床面高さ -		固有周期(s)		弾性設計用地震動 S d 又は静的震度		基準地震動S s		最高使用	最高使用	周囲環境 温度	比重
7 交流 17 / 17		床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	温度 (°C)	(°C)	ル 里
燃料デイタンク	常設/防止 (DB 拡張) 常設/緩和 (DB 拡張)	原子炉建屋 0. P. 24. 80 (0. P. 33. 20*)			_	_	C _H =2.65	C _V =1.77	静水頭	_	50	0.86

注記*・基準床レベルを示す。

注記*:基準	準床 レベル	を示す。									
2.2 機器	要目									_	
m_0	m _e	Di	t	D _s	t s	Е	E s	G	G_s		
(kg)	_(kg)_	(mm)	(mm)	(mm)	(mm)	(MPa)	(MPa)	(MPa)	(MPa)		
		2800	9.0	2800	9.0	201000	*1 201000*1	77300*1	77300*1		
Q	Q _s	D_1	D_2	D_3	D_4	Н	S	n	Dc	D_{bo}	t D _i 胴板
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)			(mm)	(mm)	→
1400	929	102	102	102	102	2868	15	16	2950	3078	Ⅱ Vm ₀ ·g
D _{b i}	d	$A_{\rm b}$	Y			M _s (N·n	m)]		スカート
(mm)	(mm)	(mm ²)	(mm)		l·用地震重 L静的震度		基準地	震動S s		$\begin{array}{c c} D_3 & D_4 \\ \hline D_1 & D_2 & \bullet \end{array}$	D _s
2738	42 (M42)	1385	408		_		1. 36	2×10^{9}]	スカート開口部の形状を示す。	
S _y (胴板		(胴板)	S (胴板)	S _y (スカート)	1		F(スカート)	F*(スカー	F)	2179 Diselling 2020/CE2117 0	型 D _b i 基礎ポルト
(MPa)		(Pa)	(MPa)	(MPa)	(MF		(MPa)	(MPa)			000
241*¹ (厚さ≦16r		94*1 ≤16mm)	_	241*1 (厚さ≦16mm)	394 (厚さ≦	4*¹ ≦16mm)	_	276			
S _y (基)	楚がレト)	S _u ((基礎ボルト)	F(基礎ボル	ト)	F*(基	礎ボルト)				
(MF	Pa)		(MPa)	(MPa)			(MPa)				0 0 0
211			394*1	_			253				
(40mm<径 注記×1·居		-	<径≦100mm)								A~A矢視図

注記*1:周囲環境温度で算出

2.3 計算数値

2.3.1 胴に生じる応力

(1) 一次一般膜応力

(単位:MPa)

		弾性	設計用地震動Sd又は静的	震 度		基準地震動S s	
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力
静水頭又は内圧	による応力	_	_	_	σ _{φ1} =4	$\sigma_{x1}=0$	_
運転時質量によ	る引張応力	_	_	_	_	σ _{x2} =3	_
鉛直方向地震による引張応力		_	_	_	σ _{φ2} =7	σ _{x5} =5	_
空質量による圧縮応力		_	_	_	_	σ _{x3} =1	_
鉛直方向地震によ	にる圧縮応力	_	_	_	_	$\sigma_{x6}=1$	_
水平方向地震に	こよる応力	_	_	_	_	σ _{x4} =15	$\tau = 15$
応力の和	引張側	_	_	_	$\sigma_{\phi}=11$	$\sigma_{xt}=22$	_
正縮側		_	_	_	σ_{ϕ} =-11	σ _{xc} =16	_
組合せ応力	引張り		_			σ_{0t} =32	
が正立。「これで入り	圧縮		_			σ _{0c} =23	

(2) 地震動のみによる一次応力と二次応力の和の変動値

(単位: MPa)

(4) (4)	(4) 2点及動かり(1年30年30日30年30日30日30日30日30日30日30日30日30日30日30日30日30日3									
		弾性	設計用地震動Sd又は静的	震度	基準地震動S s					
		周方向応力	軸方向応力	せん断応力	周方向応力	軸方向応力	せん断応力			
鉛直方向地震による引張応力		_	_	_	σ _{φ2} =7	σ _{x5} =5	_			
鉛直方向地震による圧縮応力		_	_	_	_	σ _{x6} =1	_			
水平方向地震	こよる応力	_	_	_	_	σ _{x4} =15	$\tau = 15$			
応力の和	引張側	_	_	_	σ _{2φ} =7	σ _{2xt} =19	_			
ルロンプマンベロ	圧縮側	_	_	_	σ _{2φ} =-7	σ _{2xc} =16	_			
組合せ応力	引張り		_		σ _{2t} =58					
(変動値)	圧縮		_		σ _{2c} =46					

2.3.2 スカートに生じる応力

(単位:MPa)

		弹性設計	用地震動Sの	d 又は静的震度	基準地震動S s		
		応	力	組合せ応力	応力	J	組合せ応力
運転時質量に	_			σ _{s1} =3			
鉛直方向地震	鉛直方向地震による応力				σ _{s3} =6		44
水平方向地震	曲げ	_		_	σ _{s2} =27		σ_s =44
による応力	せん断	_			τ _s =16		

2.3.3 基礎ボルトに生じる応力

(単位:MPa)

	弾性設計用地震動S d 又は静的震度	基準地震動S s
引張応力	_	σ _b =75
せん断応力	_	τ _b =27

13

2.4.1 固有周期

(単位:s)

方 向	固有周期		
水平方向	T_{H} =		
鉛直方向	$T_V=$		

2.4.2 応力

(単位:MPa)

部材	材料	応 力	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
胴板	SS400	一次一般膜	_	_	σ ₀ =32	S a=236
		一次+二次	_	_	σ_2 =58	S a=482
スカート	SS400	組合せ	_	_	σ _s =44	$f_{\rm t} = 276$
		圧縮と曲げの組合せ	$\frac{\eta \cdot (\sigma_{s1} + \sigma_{s3})}{f_c}$	$+ \frac{\eta \cdot \sigma_{s2}}{f_b} \leq 1$	$\frac{\eta \cdot (\sigma_{s1} + \sigma_{s3})}{f_{c}}$	$+ \frac{\eta \cdot \sigma_{s2}}{f_b} \leq 1$
		(座屈の評価)	_		0.20 (無次元)	
基礎ボルト	SS400	引張り	_	_	σ _b =75	f _{ts} =190*
		せん断	_	_	τ _b =27	f _{s b} =146

すべて許容応力以下である。

注記*: f_{tsi}=Min[1.4・f_{toi}-1.6・τ_{bi}, f_{toi}]より算<mark>出</mark>