本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

| 女川原子力発電所第2号 | <b>号機</b> 工事計画審査資料 |
|-------------|--------------------|
| 資料番号        | 02-工-B-19-0436_改 1 |
| 提出年月日       | 2021年10月29日        |

VI-2-10-1-2-1-2 非常用ディーゼル発電設備 空気だめの耐震性についての計算書

2021年10月 東北電力株式会社

# 目 次

| 1. | 木    | 既要・ |     |     |           |    | • • • |    |    | • • •   | • • • | • • • | <br> | • • | <br> | • • | • • • | <br>• • | <br>• • | • • | • • | • 1 |
|----|------|-----|-----|-----|-----------|----|-------|----|----|---------|-------|-------|------|-----|------|-----|-------|---------|---------|-----|-----|-----|
| 2. | -    | 一般事 | 項   |     | . <b></b> |    |       |    |    |         |       |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | • 1 |
| 2. | . 1  | 構造  | 計画  |     |           |    |       |    |    |         |       |       | <br> |     | <br> |     |       | <br>    | <br>    | • • |     | • 1 |
| 3. | Ē    | 固有质 | 期 … |     | . <b></b> |    |       |    |    |         |       |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | . 3 |
| 3. | . 1  | 固有  | 周期  | の計  | 算・        |    |       |    |    |         |       |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | . 3 |
| 4. | 木    | 構造強 | 度評  | 価・・ | . <b></b> |    |       |    |    |         |       |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | . 3 |
| 4. | . 1  | 構造  | 強度  | 評価  | 方法        |    |       |    |    |         |       |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | • 3 |
| 4. | . 2  | 荷重  | この組 | 合せ  | 及び        | 許容 | 応え    | 力· |    |         |       |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | . 3 |
|    | 4.   | 2.1 | 荷重  | の組  | 合せ        | 及び | 許名    | 容応 | 力制 | <b></b> | ₹     |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | • 3 |
|    | 4.   | 2.2 | 許容  | 応力  |           |    |       |    |    |         |       |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | • 3 |
|    | 4.   | 2.3 | 使用  | 材料  | の許        | 容応 | 力言    | 平価 | 条任 | 牛 ·     |       |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | • 3 |
| 4. | . 3  | 計算  | 条件  |     |           |    |       |    |    |         |       |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | • 3 |
| 5. | 1111 | 評価結 | 景 … |     |           |    |       |    |    |         |       |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | . 8 |
| 5. | . 1  | 設計  | 基準  | 対象  | 施設        | とし | ての    | の評 | 価約 | 洁果      |       |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | . 8 |
| 5. | . 2  | 重大  | 事故  | 等対  | 処設        | 備と | しっ    | ての | 評化 | 価結      | i果    |       | <br> |     | <br> |     |       | <br>    | <br>    |     |     | . 8 |

# 1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき、非常用ディーゼル発電設備の空気だめが設計用地震力に対して十分な構造強度を有していることを説明するものである。

空気だめは、設計基準対象施設においては S クラス施設に、重大事故等対処設備においては常設重大事故防止設備(設計基準拡張)及び常設重大事故緩和設備(設計基準拡張)に分類される。以下、設計基準対象施設及び重大事故等対象設備としての構造強度評価を示す。

なお、空気だめは、添付書類「VI-2-1-13 機器・配管系の計算書作成の方法」に記載のスカート支持たて置円筒形容器と類似の構造であるため、添付書類「VI-2-1-13-1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

# 2. 一般事項

# 2.1 構造計画

空気だめの構造計画を表 2-1 に示す。

表 2-1 構造計画

| 計画の概                            | 要                                                   | 概略構造図   |
|---------------------------------|-----------------------------------------------------|---------|
| 基礎・支持構造                         | 主体構造                                                | 似岭伟坦凶   |
| 胴をスカートで支持し、スカートを基礎ボルトで基礎に据え付ける。 | たて置円筒形<br>(上面及び下面に鏡<br>板を有するスカート<br>支持たて置円筒形容<br>器) | 胴板      |
|                                 |                                                     | (単位:mm) |

### 3. 固有周期

# 3.1 固有周期の計算

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は、本計算書の【空気だめの耐震性についての計算結果】の機器要目に示す。

計算の結果,固有周期は 0.05 秒以下であり,剛であることを確認した。固有周期の計算結果を表 3-1 に示す。

| 表 3-1 固有周期 | (単位:s) |
|------------|--------|
| 水平方向       |        |
| 鉛直方向       |        |

# 4. 構造強度評価

# 4.1 構造強度評価方法

空気だめの構造強度評価は、添付書類「VI-2-1-13-1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。なお、水平地震動による応力と鉛直地震動による応力の組合せには絶対値和を適用する。

#### 4.2 荷重の組合せ及び許容応力

## 4.2.1 荷重の組合せ及び許容応力状態

空気だめの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4-1 に、重大事故等対処設備の評価に用いるものを表 4-2 に示す。

# 4.2.2 許容応力

空気だめの許容応力は、添付書類「VI-2-1-9 機能維持の基本方針」に基づき表 4-3 及び表 4-4 のとおりとする。

# 4.2.3 使用材料の許容応力評価条件

空気だめの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4-5 に、重大事故等対処設備の評価に用いるものを表 4-6 に示す。

# 4.3 計算条件

応力計算に用いる計算条件は、本計算書の【空気だめの耐震性についての計算結果】 の設計条件及び機器要目に示す。

表 4-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

O 2 ② VI-2-10-1-2-1-2 R 1

| 施設    | 艺区分   | 機器名称 | 耐震重要度分類 | 機器等の区分    | 荷重の組合せ                  | 許容応力状態             |
|-------|-------|------|---------|-----------|-------------------------|--------------------|
| 非常用電源 | 非常用発電 | 空戸おみ | C       | クラス 3 容器* | $D + P_D + M_D + S d *$ | III <sub>A</sub> S |
| 設備    | 装置    | 空気だめ | 5       | クノヘ3谷畚・   | $D + P_D + M_D + S s$   | IV <sub>A</sub> S  |

注記\*:クラス3容器の支持構造物を含む。

表 4-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

| 施設       | 区分          | 機器名称 | 設備分類*1                      | 機器等の区分                        | 荷重の組合せ                                    | 許容応力状態                                                                         |
|----------|-------------|------|-----------------------------|-------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|
|          |             |      | 常設/防止                       |                               | $D + P_D + M_D + S s^{*3}$                | IV <sub>A</sub> S                                                              |
| 非常用電源 設備 | 非常用発電<br>装置 | 空気だめ | (DB 拡張)<br>常設/緩和<br>(DB 拡張) | 重大事故等<br>クラス2容器* <sup>2</sup> | D+P <sub>SAD</sub> +M <sub>SAD</sub> +S s | V <sub>A</sub> S<br>(V <sub>A</sub> S として<br>IV <sub>A</sub> S の許容限<br>界を用いる。) |

注記\*1:「常設/防止(DB 拡張)」は常設重大事故防止設備(設計基準拡張),「常設/緩和(DB 拡張)」は常設重大事故緩和設備(設計基準拡張)を示す。

\*2: 重大事故等クラス2容器の支持構造物を含む。

\*3:  $\lceil D + P_{SAD} + M_{SAD} + S_{S} \rceil$  の評価に包絡されるため、評価結果の記載を省略する。

注記\*1:座屈による評価は、クラスMC容器の座屈に対する評価式による。

\*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-4 許容応力 (クラス 2, 3 支持構造物及び重大事故等クラス 2 支持構造物)

|                                     | 許容限界* <sup>1,*2,*3</sup><br>(ボルト等以外) | 許容限界* <sup>2,*3</sup><br>(ボルト等) |             |  |  |  |  |
|-------------------------------------|--------------------------------------|---------------------------------|-------------|--|--|--|--|
| 許容応力状態                              | 一次応力                                 | 一次応力                            |             |  |  |  |  |
|                                     | 引張り                                  | 引張り                             | せん断         |  |  |  |  |
| III <sub>A</sub> S                  | 1.5 • f t                            | 1.5 • f t                       | 1.5 · f s   |  |  |  |  |
| IV AS                               |                                      |                                 |             |  |  |  |  |
| VAS<br>(VAS としてIVAS の許容限界を<br>用いる。) | 1.5 • f t *                          | 1.5 • f t *                     | 1.5 • f s * |  |  |  |  |

注記\*1:座屈による評価は、クラスMC容器の座屈に対する評価式による。

\*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

\*3:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

# 表 4-5 使用材料の許容応力評価条件(設計基準対象施設)

O 2 ② VI-2-10-1-2-1-2 R 1

| 評価部材  | 材料                     | 温度条件   |    | S<br>(MPa) | S <sub>y</sub><br>(MPa) | S <sub>u</sub><br>(MPa) | S <sub>y</sub> (RT)<br>(MPa) |
|-------|------------------------|--------|----|------------|-------------------------|-------------------------|------------------------------|
| 胴板    | SGV480                 | 最高使用温度 | 90 | _          | 241                     | 438                     | _                            |
| スカート  | SGV480                 | 周囲環境温度 | 50 | _          | 259                     | 471                     | _                            |
| 基礎ボルト | SS400<br>(16mm<径≦40mm) | 周囲環境温度 | 50 | _          | 231                     | 394                     | _                            |

# 表 4-6 使用材料の許容応力評価条件(重大事故等対処設備)

| 評価部材  | 材料                     | 温度条件<br>(℃) | <b>±</b> | S<br>(MPa) | S <sub>y</sub><br>(MPa) | S <sub>u</sub><br>(MPa) | S <sub>y</sub> (RT) (MPa) |
|-------|------------------------|-------------|----------|------------|-------------------------|-------------------------|---------------------------|
| 胴板    | SGV480                 | 最高使用温度      | 90       | _          | 241                     | 438                     | _                         |
| スカート  | SGV480                 | 周囲環境温度      | 50       | _          | 259                     | 471                     | _                         |
| 基礎ボルト | SS400<br>(16mm<径≦40mm) | 周囲環境温度      | 50       | _          | 231                     | 394                     | _                         |

# 5. 評価結果

# 5.1 設計基準対象施設としての評価結果

空気だめの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限 界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認し た。

# (1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。なお、弾性設計用地震動Sdによる動的震度及び静的震度は基準地震動Ssを下回っており、基準地震動Ssによる発生値が、弾性設計用地震動Sd又は静的震度に対する評価における許容限界を満足するため、弾性設計用地震動Sd又は静的震度による発生値の算出を省略した。

# 5.2 重大事故等対処設備としての評価結果

空気だめの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生 値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有しているこ とを確認した。

#### (1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

# 【空気だめの耐震性についての計算結果】

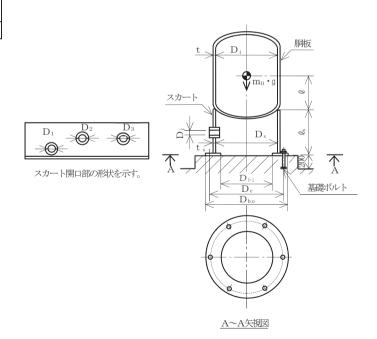
1. 設計基準対象施設

# 1.1 設計条件

| 機器名称         | 而/電舌 <b>西</b> | 据付場所及び床面高さ              | 固有周  | ]期(s) | 弾性設計用<br>又は静 | 地震動Sd<br>的震度 | 基準地震                 | 動S s         | 最高使用圧力 | 最高使用温度 | 周囲環境温度 |
|--------------|---------------|-------------------------|------|-------|--------------|--------------|----------------------|--------------|--------|--------|--------|
| 7. 效益产口 7. 小 |               | (m)                     | 水平方向 | 鉛直方向  | 水平方向<br>設計震度 | 鉛直方向<br>設計震度 | 水平方向<br>設計震度         | 鉛直方向<br>設計震度 | (MPa)  | (℃)    | (°C)   |
| 空気だめ         | S             | 原子炉建屋<br>0. P. 15. 00*1 |      |       | *2           | *2           | C <sub>H</sub> =1.97 | $C_{V}=1.37$ | 3. 24  | 90     | 50     |

注記\*1:基準床レベルを示す。

\*2: ⅢSについては、基準地震動Ssで評価する。


# 1.2 機器要目

| $m_0$                       | m <sub>e</sub>         | Di                 | t                 | D <sub>s</sub>             | t s   | Е                     | E s              | G                 | G s   |
|-----------------------------|------------------------|--------------------|-------------------|----------------------------|-------|-----------------------|------------------|-------------------|-------|
| (kg)                        | _(kg)                  | (mm)               | (mm)              | (mm)                       | (mm)  | (MPa)                 | (MPa)            | (MPa)             | (MPa  |
|                             |                        | 1200               | 22.0              | 1245                       | 22.0  | 199000*1              | 201000*2         | 76500*1           | 77300 |
| Q                           | $\varrho_{\mathrm{s}}$ | $D_1$              | $D_2$             | $D_3$                      | S     | n                     | Dc               | $D_{bo}$          | ]     |
| (mm)                        | (mm)                   | (mm)               | (mm)              | (mm)                       |       |                       | (mm)             | (mm)              |       |
| 1132                        | 520                    | 102                | 102               | 102                        | 15    | 6                     | 1420             | 1500              | ]     |
| Dbi                         | d                      | $A_b$              | Y                 |                            |       | M <sub>s</sub> (N·mm) | )                |                   | 1     |
| (mm)                        | (mm)                   | (mm <sup>2</sup> ) | (mm)              |                            | 計用地震動 |                       | 基準地              | 震動S s             |       |
| 1050                        | 24<br>(M24)            | 452.4              | 306               |                            | _     |                       | 9. 25            | $5 \times 10^{7}$ |       |
| S <sub>y</sub> (胴板<br>(MPa) |                        | (胴板)<br>Pa)        | S (胴板)<br>(MPa)   | S <sub>y</sub> (スカー) (MPa) |       | カート) I<br>Pa)         | 「(スカート)<br>(MPa) | F*(スカー<br>(MPa)   | ·     |
| 241*1                       | 43                     | 88*1               | _                 | 259*2                      | 47    | 1*2                   | 259              | 311               |       |
| S <sub>y</sub> (基礎          |                        |                    | 国港ボルト)<br>(MPa)   | F(基礎ポ<br>(MPa              |       |                       | 巻ボルト)<br>Pa)     |                   |       |
| 23]                         | _                      |                    | 394*2<br><冬<40mm) | 231                        |       | 2                     | 76               |                   |       |

注記\*1:最高使用温度で算出 \*2:周囲環境温度で算出

(16mm<径≦40mm)

(16mm<径≦40mm)



9

# 1.3 計算数値

# 1.3.1 胴に生じる応力

(1) 一次一般膜応力

(単位:MPa)

|          |        | 弹性                   | 設計用地震動Sd又は静命                       | 震度          |                       | 基準地震動S s             |            |
|----------|--------|----------------------|------------------------------------|-------------|-----------------------|----------------------|------------|
| /        |        | 周方向応力                | 軸方向応力                              | せん断応力       | 周方向応力                 | 軸方向応力                | せん断応力      |
| 静水頭又は内圧  | による応力  | σ <sub>φ1</sub> =-*  | $\sigma_{x1}=-*$                   | _           | σ <sub>φ1</sub> =91   | σ <sub>x1</sub> =46  | _          |
| 運転時質量によ  | る引張応力  |                      | σ <sub>x2</sub> =-*                | _           | _                     | $\sigma_{x2}=1$      | _          |
| 鉛直方向地震に  | にる引張応力 | σ <sub>φ2</sub> =-*  | σ <sub>x5</sub> =-*                | _           | $\sigma_{\phi 2} = 0$ | σ <sub>x5</sub> =1   | _          |
| 空質量による   | 圧縮応力   |                      | σ <sub>x3</sub> =-*                | _           | _                     | σ <sub>x3</sub> =1   | _          |
| 鉛直方向地震に  | にる圧縮応力 |                      | σ <sub>x6</sub> =-*                | _           | _                     | σ <sub>x6</sub> =1   | _          |
| 水平方向地震は  | こよる応力  |                      | σ <sub>x4</sub> =-*                | $\tau = -*$ | _                     | σ <sub>x4</sub> =3   | $\tau = 2$ |
| 応力の和     | 引張側    | $\sigma_{\phi} = -*$ | $\sigma_{xt} = -*$                 | _           | σ <sub>φ</sub> =91    | $\sigma_{xt}=48$     | _          |
| ルロンフロンベロ | 圧縮側    | $\sigma_{\phi} = -*$ | σ <sub>xc</sub> =-*                | _           | σ <sub>φ</sub> =-91   | σ <sub>xc</sub> =-43 | _          |
| 組合せ応力    |        |                      | $_{\sigma}$ $_{0}$ $_{t}$ $=$ $-*$ | ·           |                       | $\sigma_{0t}$ =91    | _          |
| 組合で応り 圧縮 |        |                      | _                                  |             |                       | _                    |            |

注記\*: ⅢAS については、基準地震動S s で評価する。

# (2) 地震動のみによる一次応力と二次応力の和の変動値

(単位:MPa)

|               |        | 弹性                  | 設計用地震動Sd又は静的         | 震度          | 基準地震動S s           |                     |            |  |
|---------------|--------|---------------------|----------------------|-------------|--------------------|---------------------|------------|--|
|               |        | 周方向応力               | 軸方向応力                | せん断応力       | 周方向応力              | 軸方向応力               | せん断応力      |  |
| 鉛直方向地震によ      | にる引張応力 | σ <sub>φ2</sub> =-* | σ <sub>x5</sub> =-*  | _           | σ <sub>φ2</sub> =0 | σ <sub>x5</sub> =1  | _          |  |
| 鉛直方向地震による圧縮応力 |        | _                   | σ <sub>x6</sub> =-*  | _           | _                  | σ <sub>x6</sub> =1  | _          |  |
| 水平方向地震に       | こよる応力  | _                   | σ <sub>x4</sub> =-*  | $\tau = -*$ | _                  | σ <sub>x4</sub> =3  | $\tau = 2$ |  |
| 応力の和          | 引張側    | σ <sub>2φ</sub> =-* | σ <sub>2xt</sub> =-* | _           | σ <sub>2φ</sub> =0 | σ <sub>2xt</sub> =3 | _          |  |
| ルロノフマンイロ      | 圧縮側    | σ <sub>2φ</sub> =-* | σ <sub>2xc</sub> =-* | _           | σ <sub>2φ</sub> =0 | σ <sub>2xc</sub> =3 | _          |  |
| 組合せ応力 引張り     |        | σ <sub>2t</sub> =-* |                      |             | σ <sub>2t</sub> =7 |                     |            |  |
| (変動値)         | 圧縮     |                     | σ <sub>2c</sub> =-*  |             |                    | σ <sub>2c</sub> =7  |            |  |

注記\*: ⅢSについては、基準地震動Ssで評価する。

# 1.3.2 スカートに生じる応力

(単位:MPa)

|         |      | 弹性設計用地震動Sd          | l 又は静的震度        | 基準地震動              | 震動S s          |  |  |
|---------|------|---------------------|-----------------|--------------------|----------------|--|--|
|         |      | 応 力                 | 組合せ応力           | 応 力                | 組合せ応力          |  |  |
| 運転時質量に  | よる応力 | $\sigma_{s1}=-*$    | σ s 1=1         |                    |                |  |  |
| 鉛直方向地震に | よる応力 | σ <sub>s3</sub> =-* | *               | σ <sub>s3</sub> =1 | - <i>-c</i>    |  |  |
| 水平方向地震  | 曲げ   | $\sigma_{s2}=-*$    | $\sigma_s = -*$ | σ <sub>s2</sub> =4 | $\sigma_s = 6$ |  |  |
| による応力   | せん断  | $\tau_s = -*$       |                 | $\tau$ s=2         |                |  |  |
| による心力   | せん例  | $\tau_s = -$        |                 | $\tau_s = 2$       |                |  |  |

注記\*:ⅢSについては、基準地震動Ssで評価する。

1.3.3 基礎ボルトに生じる応力

(単位:MPa)

|       | 弾性設計用地震動S d<br>又は静的震度 | 基準地震動S s           |  |  |  |
|-------|-----------------------|--------------------|--|--|--|
| 引張応力  | $\sigma_b = -*$       | $\sigma_b$ =74     |  |  |  |
| せん断応力 | $\tau_b = -*$         | τ <sub>b</sub> =21 |  |  |  |

10

注記\*: Ⅲ、S については、基準地震動S s で評価する。

1.4.1 固有周期

(単位:s)

| 方 向  | 固有周期      |
|------|-----------|
| 水平方向 | $T_{H}$ = |
| 鉛直方向 | $T_V =$   |

1.4.2 応力

(単位:MPa)

| 部材    | 材料      | 応 力       | 弹性設計用地震動                                                 | bSd 又は静的震度                                    | 基準地                                                    | 震動S s                                         |  |
|-------|---------|-----------|----------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|-----------------------------------------------|--|
| 即约    | 171 177 | ルい ノノ     | 算出応力                                                     | 許容応力                                          | 算出応力                                                   | 許容応力                                          |  |
| 胴板    | SGV480  | 一次一般膜     | σ <sub>0</sub> =91*2                                     | S a=241*2                                     | σ <sub>0</sub> =91                                     | S a=262                                       |  |
| лгих  | 301400  | 一次+二次     | $\sigma_2 = 7^{*2}$                                      | S <sub>a</sub> =482*2                         | σ <sub>2</sub> =7                                      | S a=482                                       |  |
|       |         | 組合せ       | $\sigma_{s} = 6^{*2}$                                    | $f_t = 259^{*2}$                              | σ <sub>s</sub> =6                                      | $f_{\rm t} = 311$                             |  |
| スカート  | SGV480  | 圧縮と曲げの組合せ | $\frac{\eta \cdot (\sigma_{s1} + \sigma_{s3})}{f_{c}} -$ | $+ \frac{\eta \cdot \sigma_{s2}}{f_b} \leq 1$ | $\frac{\eta \cdot (\sigma_{s1} + \sigma_{s3})}{f_c} -$ | $+ \frac{\eta \cdot \sigma_{s2}}{f_b} \leq 1$ |  |
|       |         | (座屈の評価)   | 0.02*2                                                   | (無次元)                                         | 0.02 (無次元)                                             |                                               |  |
| 基礎ボルト | SS400   | 引張り       | σ <sub>b</sub> =74*2                                     | $f_{\rm ts} = 173^{*1}$                       | σ <sub>b</sub> =74                                     | f <sub>ts</sub> =207*1                        |  |
| 全版が   | 55400   | せん断       | $\tau_{b}=21^{*2}$                                       | $f_{\rm s b} = 133^{*2}$                      | τ <sub>b</sub> =21                                     | f <sub>s b</sub> =159                         |  |

注記 \*1: f<sub>tsi</sub>=Min[1.4・f<sub>toi</sub>-1.6・τ<sub>bi</sub>, f<sub>toi</sub>]より算<mark>出</mark> \*2: 基準地震動S<sub>S</sub>による算出<mark>値</mark>

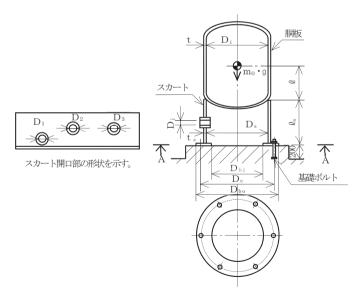
すべて許容応力以下である。

# 【空気だめの耐震性についての計算結果】

# 2. 重大事故等対処設備

# 2.1 設計条件

|   | 機器名称  | 沙/供/>淅                               | 据付場所及び床面高さ             | 固有周  | 期(s) | 弾性設計用<br>又は静 | 地震動Sd<br>的震度 | 基準地震                 | 憂動S s        | 最高使用圧力 | 最高使用温度 | 周囲環境温度 |
|---|-------|--------------------------------------|------------------------|------|------|--------------|--------------|----------------------|--------------|--------|--------|--------|
|   | 校命心口仍 | 設備分類                                 | (m)                    | 水平方向 | 鉛直方向 | 水平方向<br>設計震度 | 鉛直方向<br>設計震度 | 水平方向<br>設計震度         | 鉛直方向<br>設計震度 | (MPa)  | (°C)   | (°C)   |
| L |       |                                      |                        |      |      | <b>双</b> 司   |              | <b></b> 可引 長 受       | <b> </b>     |        |        |        |
|   | 空気だめ  | 常設/防止<br>(DB 拡張)<br>常設/緩和<br>(DB 拡張) | 原子炉建屋<br>0. P. 15. 00* |      |      | _            | _            | C <sub>H</sub> =1.97 | $C_{v}=1.37$ | 3. 24  | 90     | 50     |


注記\*:基準床レベルを示す。

# 

12

| 2.2 機器             | 要目                                          |                |                    |       |        |                                |      |         |                    |     |          |                      |                |
|--------------------|---------------------------------------------|----------------|--------------------|-------|--------|--------------------------------|------|---------|--------------------|-----|----------|----------------------|----------------|
| $m_0$              |                                             | m <sub>e</sub> | D i                |       | t      | D <sub>s</sub>                 |      | t s     | Е                  |     | E s      | G                    | G <sub>s</sub> |
| _(kg)              |                                             | (kg)           | (mm)               |       | (mm)   | (mm)                           |      | (mm)    | (MPa)              | )   | (MPa)    | (MPa)                | (MPa)          |
|                    |                                             |                | 1200               | )     | 22.0   | 1245                           | 2    | 22.0    | 199000             | )*1 | 201000*2 | 76500*1              | 77300*2        |
| Q                  |                                             | Q <sub>s</sub> | $D_1$              |       | $D_2$  | $D_3$                          |      | S       | n                  |     | Dc       | $D_{bo}$             | ]              |
| (mm)               |                                             | (mm)           | (mm)               |       | (mm)   | (mm)                           |      |         |                    |     | (mm)     | (mm)                 |                |
| 1132               |                                             | 520            | 102                |       | 102    | 102                            |      | 15      | 6                  |     | 1420     | 1500                 |                |
| Dbi                |                                             | d              | $A_b$              |       | Y      |                                |      |         | M <sub>s</sub> (N· | mm) |          |                      | 1              |
| (mm)               |                                             |                | (mm <sup>2</sup> ) | )     | (mm)   | 弾性設計用地震動S d 基準地震動S s<br>又は静的震度 |      |         |                    |     |          |                      |                |
| 1050               | (1                                          | 24<br>M24)     | 452.               | 4     | 306    |                                |      | _       |                    |     | 9. 25    | 9. $255 \times 10^7$ |                |
| S <sub>v</sub> (胴板 | ĵ)                                          | S ,, ()        | 胴板)                |       | S (胴板) | S <sub>v</sub> (スカー            | - 卜) | S ,, (ス | カート)               | F   | (スカート)   | F*(スカー               | · F)           |
| (MPa)              | ~                                           |                | Pa)                |       | (MPa)  | (MPa)                          | . ,  |         | Pa)                |     | (MPa)    | (MPa)                |                |
| 241*1              |                                             | 438            | 8*1                |       | _      | 259*2 471*2                    |      | _       | 311                |     |          |                      |                |
| S <sub>v</sub> (基) | S <sub>v</sub> (基準がい) S <sub>u</sub> (基準がい) |                | きだレト)              | F(基礎) | ボル     | F)                             | F*(2 | 基礎      | ボルト)               |     |          |                      |                |
| (MF                | Pa)                                         |                | (MPa)              |       | (MP    | a)                             |      |         | (MPa               | a)  |          |                      |                |
|                    | 1*2<br>V / 1                                |                | (10                | 394*2 |        | _                              | -    |         |                    | 276 | 76       |                      |                |
| (16mm<名            | (16mm<径≦40mm) (16mm<径≦40mm)                 |                | è≥40mm)            |       |        |                                |      |         |                    |     |          |                      |                |

注記\*1:最高使用温度で算出 \*2:周囲環境温度で算出



A~A矢視図

枠囲みの内容は商業機密の観点から公開できません。

# 2.3 計算数値

# 2.3.1 胴に生じる応力

(1) 一次一般膜芯力

(単位:MPa)

|          |            | 弾性    | 設計用地震動Sd又は静的 | <b>震</b> 度 |                       | 基準地震動S s             |            |
|----------|------------|-------|--------------|------------|-----------------------|----------------------|------------|
|          |            | 周方向応力 | 軸方向応力        | せん断応力      | 周方向応力                 | 軸方向応力                | せん断応力      |
| 静水頭又は内圧  | による応力      | _     |              |            | σ <sub>φ1</sub> =91   | σ <sub>x1</sub> =46  | _          |
| 運転時質量によ  | る引張応力      | _     | _            | —          | _                     | $\sigma_{x2}=1$      | _          |
| 鉛直方向地震によ | よる引張応力     | _     |              | _          | $\sigma_{\phi 2} = 0$ | $\sigma_{x5}=1$      | _          |
| 空質量による   | 空質量による圧縮応力 |       |              | _          | _                     | σ <sub>x3</sub> =1   | _          |
| 鉛直方向地震によ | よる圧縮応力     | _     |              | _          | _                     | $\sigma_{x6}=1$      | _          |
| 水平方向地震は  | こよる応力      | _     |              | _          | _                     | σ <sub>x4</sub> =3   | $\tau = 2$ |
| 応力の和     | られの部 引張側   |       | _            | _          | $\sigma_{\phi}$ =91   | $\sigma_{xt}=48$     | _          |
| 圧縮側      |            | _     | _            | _          | $\sigma_{\phi}$ =-91  | σ <sub>xc</sub> =-43 | _          |
| 組合せ応力    | 引張り        |       | _            | ·          |                       | $\sigma_{0t}$ =91    |            |
| が正口 ビルンノ | 圧縮         |       | _            |            |                       | _                    |            |

# (2) 地震動のみによる一次応力と二次応力の和の変動値

(単位:MPa)

|               |        | 弾性    | 設計用地震動Sd又は静的 | 震度    | 基準地震動S s           |                     |            |  |
|---------------|--------|-------|--------------|-------|--------------------|---------------------|------------|--|
|               |        | 周方向応力 | 軸方向応力        | せん断応力 | 周方向応力              | 軸方向応力               | せん断応力      |  |
| 鉛直方向地震に。      | よる引張応力 | _     | _            | _     | σ <sub>φ2</sub> =0 | σ <sub>x5</sub> =1  | _          |  |
| 鉛直方向地震による圧縮応力 |        | _     | _            | _     | _                  | σ <sub>x6</sub> =1  | _          |  |
| 水平方向地震        | こよる応力  | _     | _            | _     | _                  | σ <sub>x4</sub> =3  | $\tau = 2$ |  |
| 応力の和          | 引張側    | _     | _            | _     | $\sigma_{2\phi}=0$ | σ <sub>2xt</sub> =3 | _          |  |
| ルロノフマンギロ      | 圧縮側    | _     | _            | _     | $\sigma_{2\phi}=0$ | σ <sub>2xc</sub> =3 | _          |  |
| 組合せ応力 引張り     |        |       | _            |       |                    | σ <sub>2t</sub> =7  |            |  |
| (変動値) 圧縮      |        |       | <del></del>  |       |                    | σ <sub>2c</sub> =7  |            |  |

# 2.3.2 スカートに生じる応力

(単位:MPa)

|        |       | 弹性設計用地震動S | d又は静的震度   | 基準地震動S s           |                                        |  |  |
|--------|-------|-----------|-----------|--------------------|----------------------------------------|--|--|
|        |       | 応 力       | 組合せ応力     | 応 力                | 組合せ応力                                  |  |  |
| 運転時質量に | よる応力  | _         | 和音で応り が 月 |                    |                                        |  |  |
| 鉛直方向地震 | こよる応力 | _         |           | σ <sub>s3</sub> =1 | 応 力 組合せ応力 $s_1=1$ $s_3=1$ $\sigma_s=6$ |  |  |
| 水平方向地震 | 曲げ    | _         |           | σ <sub>s2</sub> =4 | 0 s -0                                 |  |  |
| による応力  | せん断   | _         |           | τ <sub>s</sub> =2  |                                        |  |  |

# 2.3.3 基礎ボルトに生じる応力

(単位:MPa)

|       | 弾性設計用地震動S d<br>又は静的震度 | 基準地震動S s           |
|-------|-----------------------|--------------------|
| 引張応力  | _                     | $\sigma_b = 74$    |
| せん断応力 | _                     | τ <sub>b</sub> =21 |

13

2.4.1 固有周期

(単位:s)

| 方 向  | 固有周期      |
|------|-----------|
| 水平方向 | $T_{H}$ = |
| 鉛直方向 | $T_V=$    |

2.4.2 応力

(単位:MPa)

| 部材    | 材料     | 応 力       | 弾性設計用地震動Sd又は静的震度                                       |                                               | 基準地震動S s                                             |                                               |
|-------|--------|-----------|--------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|
|       |        |           | 算出応力                                                   | 許容応力                                          | 算出応力                                                 | 許容応力                                          |
| 胴板    | SGV480 | 一次一般膜     | _                                                      | _                                             | σ <sub>0</sub> =91                                   | S a=262                                       |
|       |        | 一次+二次     | _                                                      | _                                             | σ <sub>2</sub> =7                                    | S a=482                                       |
| スカート  | SGV480 | 組合せ       | _                                                      | _                                             | σ <sub>s</sub> =6                                    | $f_{\rm t} = 311$                             |
|       |        | 圧縮と曲げの組合せ | $\frac{\eta \cdot (\sigma_{s1} + \sigma_{s3})}{f_c} -$ | $+ \frac{\eta \cdot \sigma_{s2}}{f_b} \leq 1$ | $\frac{\eta \cdot (\sigma_{s1} + \sigma_{s3})}{f_c}$ | $+ \frac{\eta \cdot \sigma_{s2}}{f_b} \leq 1$ |
|       |        | (座屈の評価)   |                                                        |                                               | 0.02 (無次元)                                           |                                               |
| 基礎ボルト | SS400  | 引張り       | _                                                      | _                                             | σ <sub>b</sub> =74                                   | $f_{\rm t\ s} = 207^*$                        |
|       |        | せん断       | _                                                      | _                                             | τ <sub>b</sub> =21                                   | $f_{\rm s  b} = 159$                          |

注記\*: $f_{\text{tsi}} = \text{Min} [1.4 \cdot f_{\text{toi}} - 1.6 \cdot \tau_{\text{bi}}, f_{\text{toi}}]$ より算<mark>出</mark>

すべて許容応力以下である。