女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －補－E－01－0140－1＿改 47
提出年月日	2021 年 11 月 17 日

補足－140－1 津波への配慮に関する説明書の補足説明資料

目 次

1．入力津波の評価
1.1 潮位観測記録の考え方について
1.2 遡上•浸水域の考え方について
1.3 港湾内の局所的な海面の励起について
1.4 管路解析モデルについて
1.5 入力津波の不確かさの考慮について
1.6 津波シミュレーションにおける解析モデルについて
1.7 非常用取水設備内に貯留される水量の算定について

2．津波防護対象設備
2.1 津波防護対象設備の選定及び配置について

3．取水性に関する考慮事項
3.1 砂移動による影響確認について
3.2 除塵装置の取水性への影響について
3.3 非常用海水ポンプの波力に対する強度評価について

4．漂流物に関する考慮事項
4． 1 設計に用いる遡上波の流速について
4.2 取水口付近の漂流物に対する取水性
4.3 漂流物による衝突荷重について

5．設計における考慮事項
5.1 地震と津波の組合せで考慮する荷重について

5．2耐津波設計における現場確認プロセスについて
5.3 津波防護に関する施設の機能設計•構造設計に係る許容限界について
5.4 津波波圧の算定に用いた規格•基準類の適用性について
5.5 スロッシングによる貯水量に対する影響評価
5.6 津波防護施設の強度計算における津波荷重，余震荷重及び衝突荷重の組合せについ て
5.7 浸水防護施設の評価における衝突荷重，風荷重及び積雪荷重について
5.8 強度計算における津波時及び重畳時の荷重作用状況について
5.9 耐震及び耐津波設計における許容限界について
5.10 津波防護施設の設計における評価対象断面の選定について
5.11 地殻変動後の津波襲来時における海水ポンプの取水性への影響について
5.12 浸水防護施設のアンカーボルトの設計について
5.13 強度計算に用いた規格•基準類の適用性について
5.14 自然現象を考慮する浸水防護施設の選定について
5.15 浸水量評価について

5． 16 強度評価における津波荷重等の鉛直方向荷重の考え方について
5.17 津波に対する止水性能を有する施設の評価について

5． 18 防潮壁内のスロッシングによる非常用海水ポンプへの没水影響について
5.19 津波監視設備の設備構成及び電源構成について

5． 20 軽油タンクエリアにおける浸水防護重点化範囲について
5.21 屋外タンク等のからの溢水影響評価について
5.22 復水器水室出入口弁の津波に対する健全性について

5． 23 タービン補機冷却海水系ポンプ吐出弁の津波に対する健全性について
5． 24 津波の流入防止に係る津波バウンダリとなる設備の評価
5．24．1 3 号機補機放水側配管の基準地震動 S s に対する耐震評価
5．24．2 3 号機海水系ポンプの基準地震動 S s に対する耐震評価
5.24 .33 号機取水側海水系配管の基準地震動 S s に対する耐震評価

5．24．4 2 号機および 3 号機海水ポンプの津波に対する強度評価
5．24．5 2 号機および 3 号機海水系配管•弁の津波に対する強度評価
5.25 第 3 号機海水熱交換器建屋の回転動の影響について

5． 26 大津波警報発表時等における常用系海水系の運用について
5.27 防潮壁の止水構造について

5． 283 号機海水系に関する津波時の敷地への流入影響について
6．浸水防護施設に関する補足資料
6． 1 防潮堤に関する補足説明
6.2 取放水路流路縮小工に関する補足説明
6.3 防潮壁に関する補足説明

6． 4 貯留堰に関する補足説明
6.5 浸水防止設備に関する補足説明

6．5．1逆流防止設備に関する補足説明
6．5．2 水密扉に関する補足説明
6．5．3 浸水防止蓋に関する補足説明
6．5．4 浸水防止壁に関する補足説明
6．5． 5 逆止弁付ファンネルに関する補足説明
I6．5．6 貫通部止水処置に関する補足説明
6.6 津波監視設備に関する補足説明

6．6．1 津波監視カメラに関する補足説明

6． 6.2 取水ピット水位計に関する補足説明

6．浸水防護施設に関する補足資料
6.5 浸水防止設備に関する補足説明

6．5．6 貫通部止水処置に関する補足説明
6．5．6．2 貫通部止水処置の強度計算書に関する補足説明

目次

1．概要

6．5．6．2－1

2．一般事項
6．5．6．2－2
2.1 配置概要 ．．．6．5．6．2－2
2.2 構造概要 ．．6．5．6．2－2
2.3 評価方針 ．．．6．5．6．6－6
2.4 適用規格•基準等 ．．6．6．6．6．． 2 ． 8
2.5 記号の説明 ．．6．5．6．2－9

3．評価対象部位 ．．．6．6．6．2－11
4．構造強度評価．．6．6．6．2－12
4.1 構造強度評価方法 ．．．6．5．6．2－12
4.2 荷重及び荷重の組合せ．．6．6．6．6．2－12

4．2．1 荷重の設定 ．．．6．5．6．2－12
4．2．2 荷重の組合せ ．．6．5．6．2－15
4.3 許容限界 ．．．6．5．6．2－16
4.4 設計用地震力 ．．6．5．6．2－18
4.5 計算方法 ．．6．5．6．2－21

4．5．2 モルタルの強度評価（荷重計算）．．6．6．6．21
4.6 計算条件 ．．6．5．6．6－22

5．評価結果．．．6．6．6．2－27
（別紙1）遮水鋼板におけるケーブルトレイ貫通部の強度評価について…．．．．．．．．．．．．6．5．6．2－28
（参考1）第3号機補機冷却海水系放水ピット浸水防止蓋及び貫通配管に対する地震時の影響につ
いて
6．5．6．2－44

（参考 2 ）遮水鋼板におけるケーブルトレイ貫通部の相対変位による貫通部止水処置の性能への影響について

1．概要
第2号機放水立坑防潮壁横断部に施工する遮水鋼板には，ケーブルトレイが貫通して おり，貫通部には貫通部止水処置を実施している。遮水鋼板及び貫通部止水処置（鋼板） については防潮壁から定着部を設定し，ケーブルトレイについては改良地盤に設けた基礎から定着部を設定しているため，地震時において同一の挙動となることが考えられる が，津波時においては，津波の流入によって生じる浸水深の静水圧荷重及び余震により，遮水鋼板，貫通部止水処置（鋼板）及び貫通するケーブルトレイに有意な相対変位が発生した場合には，貫通部止水処置の性能に影響を与える可能性があるため，相対変位の影響について確認する。

2．相対変位の評価方法
貫通部止水処置の性能に与える影響の評価にあたつては，貫通部止水処置のうちコー キングタイプのシール材の最大変位を確認する必要があるため，遮水鋼板及び鋼板は津波及び余震により変位するが，ケーブルトレイは貫通部両側の近傍に設置された支持構造物により両端が完全拘束する構造とするため，余震により軸直方向にのみ変位するも のとして評価する。評価の概要図を図2－1に示す。

図 2－1 評価概要図

3．ケーブルトレイの応答変位
3.1 応答変位評価方法

ケーブルトレイの応答変位評価を実施し，最大応答変位を算出する。

3.2 荷重の設定

応答変位評価に用いる荷重に関して以下に示す。
（1）固定荷重
固定荷重として，ケーブルトレイ，内包するケーブル及び充填するシール材の質量を考慮する。

なお，単位重量が最も大きい動力ケーブルのトレイを代表に評価を実施する。
評価においては，ケーブルトレイ重量（内包するケーブルを含む）を分布荷重，内包する充填シール材の重量を集中荷重として両端支持点の中央に設定し，変位を算出する。

集中荷重：W

図 3－1 ケーブルトレイへの荷重作用図（両端支持等分布荷重及び集中荷重）
（2）浸水津波荷重
ケーブルトレイについては，貫通部両側の近傍に支持構造物を設置し完全拘束と するため，軸方向の浸水津波荷重は考慮しない。また，軸直方向の浸水津波荷重の影響は軽微であることから考慮しない。

なお，ケーブルトレイの周囲に水を想定した場合は軸直方向の変位を抑制するた め，保守的に水はないものとして評価する。
（3）余震荷重
余震荷重は，弾性設計用地震動 S d－D 2 に伴う地震力とする。

3.3 設計用地震力

弾性設計用地震動 S d－D 2 に伴う地震力については，添付書類「VI－2－1－7 設計用床応答曲線の作成方法」に示す最大床応答加速度を考慮して設定する。貫通部止水処置の強度評価に用いる設計用震度を表3－1に示す。

表 3－1 ケーブルトレイの評価に用いる設計用震度

地震動	床面高さ＊1 0. P. (m)	ケーブルトレイの 設置場所	余震による設計震度＊2	
弾性設計用地震動	10.0	第2号機海水ポンプ室 防潮壁横断部	水平方向 C_{H}	0.97
S d－D 2			鉛直荷重 C_{V}	0.60

注記＊1 ：ケーブルトレイの設置場所より高い基準床レベルを設定している。
＊ 2 ：最大床応答加速度の 1.2 倍を設計震度とした。

3．4 計算方法（応答変位計算）
水平変位 δ_{Y} ，鉛直変位 δ_{Z} は，次のとおり算出する。
また，ケーブルトレイの評価の諸元を表3－2に示す。

$$
\begin{aligned}
& \delta_{\mathrm{Y}}=5 \mathrm{wL}^{4} / 384 \mathrm{EI}_{1}+\mathrm{WL}^{3} / 48 E I_{1} \\
& \delta_{\mathrm{Z}}=5 \mathrm{WL}^{4} / 384 \mathrm{EI}_{2}+\mathrm{WL}^{3} / 48 E I_{2}
\end{aligned}
$$

表 3－2 ケーブルトレイの評価の諸元

記号	記号の説明	単位	水平	鉛直
w	トレイ分布荷重	N / mm	1.047	0.648
W	シール材集中荷重	N	1043	645
L	トレイ支持間隔	mm	1500	
E	縦弾性係数	$\mathrm{N} / \mathrm{mm}^{2}$	201667	
I_{1}	断面二次モーメント（強軸）	mm^{4}	1.26×10^{8}	
I_{2}	断面二次モーメント（弱軸）	mm^{4}	2.36×10^{6}	

3.5 ケーブルトレイの変位評価結果

軸直方向に変位するケーブルトレイの変位評価結果を表3－3に示す。

表 3－3 変位評価結果

評価対象	水平変位量 δ_{Y}	鉛直変位量 δ_{Z}
最大変位量 (mm)	0.006	0.186

4．遮水鋼板及び鋼板の応答変位
軸方向に変位する遮水鋼板及び鋼板の応答変位の評価結果は，別紙14．2項より，表 4－1 に示す。

表 4－1 変位評価結果

評価対象部位	最大変位量 (mm)	総変位量 (mm)
遮水鋼板	2.86	3.2
鋼板	0.32	

5．貫通部止水処置のコーキングタイプのシール材の相対変位
津波及び余震時における貫通部止水処置のコーキングタイプのシール材の相対変位 を表5－1に示す。

表 5－1 シール材の相対変位量

評価対象部位	方向	最大変位量 (mm)
遮水鋼板及び鋼板	軸方向	3.2
ケーブルトレイ	軸直方向＊	0.2

注記 $*: ~$ 水平方向と鉛直方向の 2 乗和平方根の値を記載している。

6．コーキングタイプのシール材の性能への相対変位の影響確認
5 項に示す津波及び余震時における貫通部止水処置のコーキングタイプのシール材 の変位について，シール材の水圧性能への影響確認を実施した。

6．1 試験体の仕様
試験体は水圧性能に影響を及ぼすシール部の隙間と脚長について実機形状を模擬し たものとする。

表 6－1 に試験体の仕様，図 6－1 に試験体の構造図を示す。

表 6－1 試験体の仕様

項目		仕様	
試験体	試験容器	口径	100A
		材質	炭素鋼
	貫通物	口径	50A
		材質	炭素鋼
シール材		材料	
		寸法	

注記 $*$ ：実機においては，隙間 20 mm ，脚長 31 mm であるが，コーキングタイプの シール材は水密性能検証試験において，のど厚：aと受圧幅：$\Delta \mathrm{x}$ との比 （ $\mathrm{a} / \Delta \mathrm{x}$ ）と最大圧力（水密性能）が比例することが確認されており，実機と同等以上の水密性能（のど厚と受圧幅の比（a／$\Delta x)$ ）を有する寸法 とする。

6． 2 試験条件

試験条件としては，津波及び余震に伴う変位を想定し，試験ケース 2 においては貫通物に対して図6－1 の方向に変位を付与する。

試験条件を表6－2に示す。

表 6－2 試験条件

試験ケース	変位有無	変位量	
		軸方向	軸直方向
1	無	-	-
2	有	$1.5 \mathrm{~mm}^{*}$	$0.5 \mathrm{~mm} *$

注記＊：実機における軸方向変位量： 3.2 mm ，軸直方向変位量： 0.2 mm の場合の伸 び率（ひずみ）は 16.1% であり，試験体においては，表記の変位量とす ることで伸び率（ひずみ）が 23.6% となるため，同等以上の伸び率（ひず み）を与えて試験を実施している。

6． 3 試験方法

試験容器に圧力を段階的に印加して許容圧力を確認する。なお，各段階において，圧力は10分間保持して有意な圧力低下が発生しないことを確認の上，昇圧する。

シール材からの漏えい及び有意な圧力低下が認められた場合，10分間の耐圧保持が出来た最終試験圧力を許容圧力とする。

6． 4 試験結果
各水圧試験の結果を表 6－3に示す。
試験ケース 1 とケース 2 共に，第 2 号機放水立坑防潮壁貫通部における遮水鋼板の ケーブルトレイ貫通部に施工するコーキングタイプのシール材の許容圧力 \square ま で漏えいがなく，相対変位の影響があった場合においても耐圧性に影響を及ぼさない ことを確認した。

表 6－3 試験結果

試験ケース	変位有無	試験結果（許容圧力）
1	無	
2	有	

