```
本資料のうち，枠囲みの内容 は防護上の観点から公開でき ません。
```

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －他－F－24－0024＿改 3
提出年月日	2021 年 11 月 1 日

屋外排水路の機能及び耐震性に係る説明方針について

2021年11月
東北電力株式会社

1．はじめに
地下水位低下設備の機能を考慮した 0. P．$+14.8 \mathrm{~m} \frac{\text { 盤の施設等における設計用揚圧力•設 }}{}$
外排水路を通じて排水されることにより保持され，技術基準第5条（耐震）に適合した状態を維持することから，この状態を確実に担保するために，屋外排水路のらち敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット（北側）について基準地震動Ssに対し機能維持する設計とする。

本書は，設計用揚圧力•設計用地下水位を保持することに対する屋外排水路の位置付 けと説明方針について整理したものである。

2．屋外排水路の概要

2.1 配置と排水能力

屋外排水路は，図 1 及び図 2 に示すとおり第 1 号機～第 3 号機の主要建屋の北側と南側 に設置される幹線排水路及び幹線排水路に接続する支線排水路にて構成される。揚水井戸から汲み上げた地下水は，降雨の際の表面水と共に支線排水路を通って図3に示 す北側•南側幹線排水路に流れ，排水勾配により海へ排水される。

北側•南側幹線排水路上には，いずれも防潮堤横断箇所より上流側に敷地側集水ピ ット，下流側に出口側集水ピットを設置しており，海側の出口にはSクラスの逆流防止設備を設置している。

幹線排水路は，表1に示すとおり，設計基準降水時（ $91.0 \mathrm{~mm} / \mathrm{h}$ ）における雨水流入量 を十分排水可能な排水能力を有している。

図1 各幹線排水路の集水エリア

注：支線排水路（青点線）は2019年10月段階の配置を記載（今後の安全対策工事等によって変更可能性有）。

図2 屋外排水路と地下水位低下設備の位置関係

北側幹線排水路（写真 1）

南側幹線排水路（写真 2）

写真撮影位置図

図3 各幹線排水路の設置状況

表1 幹線排水路の排水能力

排水路名	設計基蕉降水時 $(91.0 \mathrm{~mm} / \mathrm{h})$ 雨水流入量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	排水可能流量 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$
北側幹線排水路	9.4	51.1
南側幹線排水路	9.5	16.2

2.2 構造及び支持の状況

北側•南側幹線排水路の断面図を図4に示す。
北側幹線排水路は岩盤，改良地盤及び置換コンクリート，南側幹線排水路は岩盤に より支持されている。

北側幹線排水路のらち，北側排水路（防潮堤横断部）は防潮堤への波及的影響防止 の観点から，出口側集水ピット（北側）についてはSクラスの逆流防止設備の支持構造 として，それぞれ基準地震動Ssに対する耐震性を確認する（詳細は「VI－2－11－2－19 北側排水路の耐震性についての計算書」及び「VI－2－10－2－6－1－2 屋外排水路逆流防止設備（防潮堤北側）の耐震性についての計算書」に示す）。

なお，出口側集水ピットが支持する逆流防止設備（フラップゲート）の開機能維持 については，「補足－140－1 津波への配慮に関する説明書の補足説明資料」の「6．5．1．8屋外排水路逆流防止設備の開閉機能の維持について」に詳細を示す。

また，支線排水路は0．P．＋ 14.8 m 盤付近に設置され，その多くの区間が盛土上に構築 される。

北側幹線排水路の縦断図

南側幹線排水路の縦断図

図4 北側•南側幹線排水路の断面図
（「補足 140－1 津波への配慮に関する説明書の補足説明資料」，「補足 600－1 地盤の支持性能について」から抜粋•一部修正）

2.3 地下水位低下設備で汲み上げた地下水の排水経路

地下水位低下設備で汲み上げた地下水は，揚水井戸上部の配管より支線排水路へ排水され，幹線排水路を通じて排水勾配により 0. P．＋14． 8 m 盤から海へ排水される（図 5 ）。

図 5 0．P．+14.8 m 盤から海への地下水の排水経路

3．地下水の排水を確実に行うための屋外排水路の耐震性の確保について

3.1 屋外排水路の耐震性確保

地下水位低下設備は 0. P．+14.8 m 盤の各施設における耐震評価の条件（設計用揚圧力•設計用地下水位）を規定することから，詳細設計段階においては，地下水位を保持し技術基準第5条（耐震）に適合した状態を確実に維持するため，地下水位低下設備から汲み上げた地下水の 0. P．+14.8 m 盤から海への排水経路（十分な排水能力＊${ }^{*}$ を有する北側幹線排水路の流末部＊2）について，基準地震動 S S に対し機能維持する設計とする（図6）

なお，北側幹線排水路流末部については耐震Cクラス＊3に分類する（表 2）。
北側幹線排水路流末部のうち，敷地側集水ピット（北側）の耐震性の検討方針を参考資料1に示す。

注記 $* 1$ ：北側幹線排水路の排水能力 $\left(51.1 \mathrm{~m}^{3} / \mathrm{s}\right)$ は，北側•南側幹線排水路にて想定する流入量 $\left(18.9 \mathrm{~m}^{3} / \mathrm{s}\right)$ と地下水位低下設備からの排水量 $\left(0.175 \mathrm{~m}^{3} / \mathrm{s}\right)$ の合計値（ $19.075 \mathrm{~m}^{3} / \mathrm{s}$ ）を上回る。なお，地下水位低下設備からの排水量 は浸透流解析より得られた原子炉建屋•制御建屋エリア，第3号機海水熱交換器建屋エリアの流入量合計 $\left(15124 \mathrm{~m}^{3} / \mathrm{d}\right)$ より設定している。
＊2：北側幹線排水路流末部とは，敷地側集水ピット（北側）•北側排水路（防潮堤横断部）•出口側集水ピット（北側）を指す。
＊3：耐震重要度は，その重要度に応じたクラス分類（S，B，C）と，それらに該当する施設が示されている。表2のとおり，屋外排水路はS クラス設備及び B クラス設備のいずれにも該当しないため，耐震 C クラスに分類し た。

注：支線排水路（青点線）は2019 年10月段階の配置を記載（今後の安全対策工事等によって変更可能性有）。

図 6 技術基準第 5 条（耐震）適合上必要な屋外排水路の耐震性確保範囲

表2 北側幹線排水路流末部における耐震設計上の重要度分類

而震	定嶬		碝当
S	 	 ための榑設，及び原子炬の侸止状熊を維持少るための施改 	\times
B	設	命却材を内蔵しているか又は内蔵し得る施设 －放射性㐬秉场き内歳している施設しただし，内蔵量が少ない又は㺃蔵方式により，その被損により公缐に与える放射線の 和53年通商童業省今第77号）第 2 条第 2 貣第 6 号に規定才 小さいものは除く。）等	\times
C	Sクラズに属する施設及びBクラススに属する旅設以处の一般座業施設又は公共施設と同等の安全性が要求きれる旅設	－	0

注：「VI－2－1－4＿耐震重要度分類及び重大事故等対処施設の施設区分の基本方針」を参照し作成

3.2 対策の妥当性の確認

3.1 で示した技術基準第 5 条（耐震）適合のための対策（北側幹線排水路流末部の耐震性確保の方針）について，その妥当性を確認するために，地下水位低下設備から の排水経路を構成する屋外排水路（耐震性の確認されていない範囲）の機能が低下し た状況を仮定し，その場合に生じる影響を確認した（図 7）。

なお，この影響確認は3．1の対策を考慮していない現状構造に対し行ったものであ り，敷地側集水ピット（北側）も含めて機能低下を仮定している。

図 5 に示すとおり，敷地側集水ピット（北側）が機能低下する場合（1）），機能低下 の程度によっては 0. P．+14.8 m 盤から海への排水に支障が生じる可能性が考えられる。 また，それ以外の範囲が機能低下する場合（（2）（3）においては，0．P．＋14．8m 盤に水 が溢れるものの，地表を通じて敷地側集水ピット（北側）に集水されるため，設計用地下水位への影響はない。（地表を排水経路とする考え方は参考資料2に詳述）

以上の確認から，敷地側集水ピット（北側）の耐震性の確認を行うことによって① の状態とならないことが設計上担保され，地下水位低下設備で汲み上げた地下水は 0．P．+14.8 m 盤から海へ確実に排水されることから，3．1 で示した対策は妥当であるこ とを確認した。

また，この対策は技術基準第5条への適合を目的とするが，対策を行った場合にお いても，屋外排水路に係る他の基準適合要求への影響はないことを確認した。確認結果については参考資料 3 に詳述する。

地下水排水経路の損傷状態	その後想定される状態
（1）敷地側集水ピット（北側）が損傷 （敷地側集水ビット（北側 は現状構造（耐震性未確認）にて評価）	地下水の排水に影響が生じるおそれ （仮に閉塞を仮定した場合は，O．P＋14．8m盤から海への排水に支障が生じる）
（2）北側幹線排水路（敷地側集水ピットより上流側）が損傷	O．P．+14.8 m 盤に溢れた水は地表を通じて敷地側集水ピット （北側）へ流れ，海へ排水される
（3）支線排水路が損傷	O．P＋ 14.8 m 盤に溢れた水は地表を通じて敷地側集水ピット （北側）へ流れ，海へ排水される

図7 北側幹線排水路及び支線排水路の損傷状態と地下水位低下設備の排水への影響

4．工認図書における取扱い
3.1 で示した対策について，表 3 のとおり各図書に整理する。
表3（1）地下水位低下設備に係る各図書における屋外排水路の記載について（1／2）

分類	対応箇所	対応内容（3．1に示す対策の反映箇所）	備考
本文	基本設計方針（ $5 / 50$ 条） 原子炉冷却系統施設（共通項目） 2．自然現象 2． 1 地震による損傷の防止 2．1．1 耐震設計 （5）設計における留意事項 b．主要施設への地下水の影響	地下水位低下設備は，ドレーン，接続桝，揚水井戸，蓋，揚水ポンプ，配管，水位計，制御盤，電源（非常用ディーゼル発電機），電源盤及び電路により系統を構成する。地下水位低下設備は，ドレーン及び接続桝により揚水井戸に地下水を集水し，揚水ポン プ（容量 $375 \mathrm{~m}^{3} / \mathrm{h} /$ 個，揚程 52 m ，原動機出力 $110 \mathrm{~kW} /$ 個）により，揚水ポンプに接続された配管を通して地下水を屋外排水路へ排水する。 （中略） 地下水位低下設備で汲み上げた地下水を $0 . P .+14.8 \mathrm{~m}$ 盤から海へ排水するため，屋外排水路のらち敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット （北側）について基準地震動Ssに対し機能維持する設計とする。	地下水位低下設備で汲み上げた地下水を 0．P．+14.8 m 盤から海へ排水することを確実なものとするため，屋外排水路の必要範囲において耐震性を確保する方針を基本設計方針に記載する。
添付 資料	$\mathrm{VI}-2-1-1$ 耐震設計の基本方針 VI－2－1－1－別添 1 地下水位低下設備の設計方針	（前略） －本系統は，ドレーン及び接続桝により揚水井戸に地下水を集水し，水位計により検出し た水位信号により揚水ポンプを起動し，揚水ポンプに接続された配管を通して地下水を屋外排水路へ排水することで，地下水位を一定の範囲に保持する設計とする。	地下水位低下設備の各構成部位の設計方針を記載する。
	VI－2－13－1 地下水位低下設備の耐震計算の方針	地下水位低下設備の計算結果は，添付書類「VI－2－13－…（中略）…についての計算書」 に示す。 また，地下水位低下設備にて集水した地下水は，屋外排水路を通じて $0 . P .+14.8 \mathrm{~m} \frac{\text { 盤から }}{}$海に排水することから，この役割を担ら屋外排水路の構成部位（敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口側集水ピット（北側））における計算結果と して，敷地側集水ピット（北側）については「VI－2－13－4 地下水位低下設備揚水井戸の耐震性についての計算書」に，北側排水路（防潮堤横断部）については「VI－2－11－2－19北側排水路の耐震性についての計算書」に，出口側集水ピット（北側）については「VI－ 2－10－2－6－1－2 屋外排水路逆流防止設備（防潮堤北側）の耐震性についての計算書」にそ れぞれ示す。耐震重要度分類における取扱いは「VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針」に示す。	地下水位低下設備の各構成部位の耐震計算書の紐付情報に加えて，水位保持上必要となる屋外排水路の耐震計算結果及び耐震重要度分類に係る紐付情報を記載す る。
	VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針	－屋外排水路のうち敷地側集水ピット（北側），北側排水路（防潮堤横断部）及び出口側集水ピット（北側）について，耐震Cクラスとして基準地震動Ssに対し機能維持すること を，耐震重要度分類表に追記する。	
	VI－2－13－4 地下水位低下設備揚水井戸の耐震性 についての計算書	別紙追加 （敷地側集水ピット（北側）の計算結果を記載する。）	
	VI－2－11－2－19 北側排水路の耐震性についての計算書	（防潮堤への波及的影響として北側排水路（防潮堤横断部）の計算結果を記載する。）	
	VI－2－10－2－6－1－2 屋外排水路逆流防止設備（防潮堤北側）の耐震性についての計算書	（逆流防止設備の支持構造として出口側集水ピット（北側）の計算結果を記載する。）	

表3（2）地下水位低下設備に係る各図書における屋外排水路の記載について（2／2）

分類	対応箇所	対応内容（3．1に示す対策の反映箇所）	備考
添付資料	VI－2－1－3 地盤の支持性能に係る基本方針	－北側幹線排水路流末部の耐震性を確保する考え方として以下を追記 5．耐震評価における地下水位設定方針 5.1 基本方針 建物•構築物及び土木構造物は，地下水位低下設備＊11の効果が及ぶ範囲においては， その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。なお，地下水位低下設備の効果が及ばない範囲においては，自然水位＊2 より保守的に設定した水位又は地表面にて設計用地下水位を設定し，水圧の影響を考慮する。 注記 $* 1$ ：防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持するため地下水位低下設備を設置する。 地下水位低下設備から汲み上げた地下水は屋外排水路を通じて $0 . P .+14.8 \mathrm{~m}$ 盤 から海へ排水されることから，地震時において排水経路として期待する屋外排水路（敷地側集水ピット（北側），北側排水路（防潮堤横断部），出口型集水集水ピット（北側））については，設計用地下水位を確実に保持するため，基準地震動 Ss に対する耐震性を確保する。なお，それ以外の屋外排水路の機能が低下 した場合においては，地下水位低下設備からの排水は地表面を通じて敷地側集水ピット（北側）に集水され，北側排水路（防潮堤横断部）及び出口側集水ピッ ト（北側）を通じて海へ排水される。（地下水位低下設備の詳細は「VI－2－1－1－別添 1 地下水位低下設備の設計方針」を参照。地下水位低下設備及び地下水の排水経路を構成する屋外排水路の耐震評価方針については「VI－2－13－1 地下水位低下設備の耐震計算の方針」を参照。） ＊2：自然水位とは，地下水位低下設備等の人為的な措置の影響が含まれない地下水位 を指す。0．P．+14.8 m 盤は浸透流解析の境界条件として地下水位低下設備の機能を考慮している一方，0．P．+14.8 m 盤以外の地下水位は地下水位低下設備の影響が含 まれない。	地下水位低下設備からの排水は屋外排水路を通じて0．P．＋14． 8 m 盤へ排水されるこ とに加え，技術基準第5条（耐震）への適合上必要な対策として，屋外排水路の必要範囲において耐震性を確保する方針 を地盤側の添付資料に記載する。
補足説明 資料	補足600－1 地盤の支持性能について	参考資料追加 （「屋外排水路の機能及び耐震性に係る説明方針について」を追加する）	参考資料1－2を更新
	補足600－25－1 地下水位低下設備の設計方針に係る補足説明資料		参考資料2として追加収録
	補足600－25－2 地下水位低下設備の耐震性に係 る補足説明資料	－別紙追加（敷地側集水ピット（北側）の計算結果に係る詳細情報を記載）	

敷地側集水ピット（北側）の耐震性の検討方針

1．設計方針

－地下水位低下設備から汲み上げた地下水が 0. P．+14.8 m 盤から海へ確実に排水できる よう，0．P．+14.8 m 盤へ新たに敷地側集水ピット（北側）を構築する（図 1 － 1 に敷地側集水ピット（北側）の構造概要図を示す）。

- 新たに構築する敷地側集水ピット（北側）の評価方針は以下のとおり。
- 基準地震動 Ss 対し，構造強度を有することを確認する（Ss 後も内空を確保し，上流及び上部（0．P．＋ 14.8 m ）からの水を下流側に流下する機能を維持することを確認する）。
－物性ばらつきを考慮した地震応答解析（1次元重複反射理論：SHAKE）により集水 ピット部の応答を求め，頂版，側壁及び底版をフレームでモデル化し，応答変位法 により応力解析を実施する（解析手法は東海第二の地下排水設備排水シャフトで実績有。フレーム解析：SLAP Ver6．65）。（図1－2，図1－3）
- 頂版には集水のためグレーチングを設置予定。
- 評価対象断面は，弱軸となる上下流方向の直交方向とする。
- 評価項目は，頂版，側壁及び底版（曲げ，軸力，せん断照査：短期許容応力度，せ ん断耐力），基礎地盤（接地圧：極限支持力）とする。

図 1－1 敷地側集水ピット（北側）構造概要図

図 1－2 地震応答解析モデル

図 1－3 耐震評価フロー

1．敷地側集水ピット（北側）への排水経路について
地下水位低下設備から汲み上げた地下水は，以下 $1.1 \sim 1.3$ の整理•考察から，敷地側集水ピット（北側）へ排水されるものと整理した。

1． 1 地震時における地下水の排水について

図 $2-1$ に 0. P．+14.8 m 盤から海への地下水の排水経路を示す。
地下水位低下設備の機能を考慮した設計用揚圧力•設計用地下水位を設定する 0．P．+14.8 m 盤の施設等は，地盤中に配置したドレーン（ヒューム管や鋼管）により集水した地下水を，揚水井戸内に設置した揚水ポンプ（排出高さ約 47 m に対して揚程 52 m ） を有するにより地表面付近に配置される支線排水路へ排出し，幹線排水路（敷地側•出口側の集水ピットを含む）を経由し海に排水することにより設計状態を保持する。

支線排水路は層厚が一様ではない盛土•旧表土上に配置されていることから，基準地震動 Ss が作用した場合，地盤の揺すり込み沈下に伴い生じる地表面の凹凸の影響 を受け，排水経路としての連続性や排水勾配に影響が及ぶ可能性がある。

これに対し，地盤の摇すり込み沈下については，1．2にて後述する盛土の性状や， 2011年東北地方太平洋沖地震において概ね一様に沈下している状況からも，顕著な不陸が生じる可能性は低いと想定されるが，支線排水路が機能しない状況となつた場合 においても以下のとおり敷地側集水ピット（北側）に地下水が流れ込み海へ排水可能 であるものと判断される。

図 2－2に，地震時において南側幹線排水路及び支線排水路が機能喪失した場合にお ける各揚水井戸からの排水経路の例を示す。

支線排水路が排水できない状況となった場合，基準地震動 S S 対し機能維持されて いる揚水ポンプが地下水の集水状況に応じ間欠的に作動することで，揚水井戸より繰 り返し地下水が地上に排水され，排水路の連続性が失われた箇所等から $0 . \mathrm{P} .+14.8 \mathrm{~m}$ 盤 に溢れ出ることが想定される。

このとき，地表面に流水を阻害するような施設等はなく構造物間の離隔（排水経路 の幅）は狭い箇所でも約 17 m 確保されていること，倒壊等により排水経路が阻害され ることがない（図 $2-2$ ，図 $2-3$ ）ことから，揚水ポンプから排出する際の水頭により徐々に平面的に広がり，頂部（0．P．＋ 14.8 m 盤）に開口を有し基準地震動 Ss 対し機能維持される敷地側集水ピット（北側）へ到達し，その開口からピット内部に地下水が落ちるものと考えられる（敷地側集水ピット（北側）の構造は参考資料1を参照）。

ここで，敷地側集水ピット（北側）と揚水井戸は基準地震動 S s 対し機能維持され ており，設置高さは 0. P．+14.8 m と同様であることから，地表に溢れ出た地下水が両構造物の間で繋がりピットに落ちることで流路が形成され，支線排水路の機能が喪失 した場合においても海へ排水は可能である。

なお，想定される排水量については，前述のとおり敷地全体の雨水排水を含め北側幹線排水路で排出可能である。

図 2－1 0．P．＋ 14.8 m 盤から海への地下水の排水経路（本編 図 5 再掲）

注：浸透流解析による再現解析段階での土地利用例であり，工事完了後の状況とは異なる。
図 2－2（1）支線排水路機能喪失時の各揚水井戸からの排水経路概要（平面図）

注：図中の【Ss機能維持】は，基準地震動Ssに対する機能維持を表す。

図2－2（2）支線排水路機能低下時の地下水の排水経路（断面図）

図 2－3 排水経路の状況（令和 3 年 10 月撮影。写真撮影位置は図 2－2（1）参照）

1．2 0．P．+14.8 m 盤の盛土の性状と排水経路への影響
女川原子力発電所における盛土の分布範囲を図2－3に示す。
盛土は，発電所建設時の敷地造成及び構造物建設時の埋戻しにより，敷地のほぼ全域にわたつて分布しており，施工管理基準により施工範囲全域にわたつて同様に締固 められていることから，均一性が確保されている（補足－600－1 地盤の支持性能につ いて 参考資料15）。

盛土は地震時に沈下すると想定しており，2011年東北地方太平洋沖地震における構内の沈下実績としては，不等沈下や建屋際等において局所的に大きな沈下が確認され ているが，概ね一様に沈下していることを確認している（補足 600－1 地盤の支持性能について）。

以上から，盛土の不等沈下＊により，地震時において排水経路を阻害するような不陸等が生じる可能性は低いと考えられる。

なお，地震時における盛土の沈下により局所的に滞水が生じた場合の屋外アクセス ルートの通行性への影響については参考資料 4 に整理している。

注記＊：地震時には盛土及び旧表土の沈下を想定しているが，排水経路においては発電所建設時等により旧表土の大部分を掘削していることから，不等沈下によ る不陸への影響は盛土より小さい。

（1）平面図

（2）断面図
図 2－3 盛土の分布範囲
（「補足 600－1 地盤の支持性能について」より抜粋）
（参考）2－5

1．32011年東北地方太平洋沖地震における 0．P．＋14．8m 盤の状況について 2011年東北地方太平洋沖地震によって，女川原子力発電所の構内には不等沈下が生 じている。建物近傍など局所的には最大 40 cm 程度の沈下量を確認した箇所もあるが，構内道路や緑地帯には大きな変状は確認されなかった（図 2－4）。（補足－600－1 地盤 の支持性能について 参考資料16）

図2－4 2011年東北地方太平洋沖地震後の状況写真（第3号機南側）
（「補足 600－1 地盤の支持性能について」から抜粋）

2．その他の自主的な対策
地下水位低下設備から汲み上げた地下水は敷地側集水ピット（北側）へ導水されると整理しているが，更に排水経路の多様性確保の観点から以下の自主的な対策を行い， 0．P．+14.8 m 盤への滞水影響の緩和を図ることとしている。

2． 1 南側幹線排水路の活用

南側幹線排水路は，本編3．1の整理のとおり，想定排水量と排水能力の観点からは設計上考慮する必要がないが，No． 1 揚水井戸•No． 2 揚水井戸が近く排水経路が短いこ とも踏まえ，既設の敷地側集水ピット（南側）の補強を行い，基準地震動 Ss 対して内空を保持できる設計とする。（図2－5）

図 2－5 既設の敷地側集水ピット（南側）

2.2 地下水位低下設備の分岐配管

地下水位低下設備からの地表面への排水をより確実にするために，揚水井戸内の配管上端に分岐管（図 2－6）を設置し，分岐管に仮設ホースを接続するために必要な資機材を配備するとともに，手順を社内規定に定める。

図 2－6 揚水井戸 分岐管の概要図

北側幹線排水路流末部の耐震性確保に係る基準適合要求への影響

本編 3.1 にて整理した技術基準第 5 条（耐震）適合のための対策について，技術基準第5条以外も含めた基準適合要求への影響に係る確認結果を表3－1 に示す。

なお，第7条（外部事象（自然現象））において，屋外排水路は外部事象防護対象施設 ではないが，降水事象に対して屋外排水路の機能に期待していることから，降水を含む自然現象の組合せの影響に対する確認結果を表 3－2 に示す。

表 3－1 北側幹線排水路流末部の耐震性確保（技術基準第5条）を踏まえた各基準適合要求への影響

技術基準	設置変更許可時の説明	技術基準適合への影響
第 5 条 （耐震）	（屋外排水路は，設計基準降水量を上回る排水能力を有する設計として いることから，水位保持上の前提としていたが，基準適合上の位置付 けに係る説明は無し）	－屋外排水路のらち北側幹線排水路流末部の耐震性を確保することによ り，水位保持上の前提である $0 . \mathrm{P} .+14.8 \mathrm{~m}$ 盤から海へ排水される状態が確実に維持される。（設定した設計用揚圧力•設計用地下水位への影響は ない。）
第 6 条 （耐津波設計 （内郭防護））	－内郭防護における屋外タンク等の損傷による溢水影響にて，屋外排水路の機能に期待しない評価を説明。（耐津波設計で考慮する敷地への溢水源の設定では，屋外排水路による排水を期待せず，敷地に滞留し た場合であっても，浸水防護重点化範囲に流入しないことを碓認。）	－屋外排水路の機能に期待しない評価を実施していることから，屋外排水路のらち北側幹線排水路流末部の耐震性を碓保した場合においても基準適合への影響はない。なお，屋外タンクの破損等により発生した 0. P．+14.8 m 盤の水は地震随伴事象により発生するものであり，北側幹線排水路流末部の耐震性を碓保することによって，確実に屋外排水路を通 じて海へ排水される。
第 7 条 （外部事象（自然現象））	－想定される自然現象（地震，津波を除く）に対し，屋外排水路の機能 に期待する個別事象として，降水による浸水の影響評価を実施し，外部事象防護対象施設等がその安全機能を損なわないことを説明。（屋外排水路は，敷地への降水を海域に排水するものであり，設計基準降水量を上回る排水能力を有する設計としている。 2.1 参照。）自然現象の重畳について，事象（影響モード）の内容を基に，影響が増長する事象の組合せを網羅的に検討し，降水を含む事象の組合せに おいて，影響が増長するものはないことを説明。（詳細については表 3－2 参照。）	－屋外排水路のらち北側幹線排水路流末部の耐震性を碓保した場合におい ても敷地への降水を海域に排水する機能に対する基準適合への影響はな い。なお，北側幹線排水路流末部の耐震性を確保することによって，地震時においても確実に屋外排水路を通じて海へ排水される。
$\begin{aligned} & \text { 第 } 12 \text { 条 } \\ & \text { (内部溢水) } \end{aligned}$	－屋外排水路の機能に期待しない溢水評価を説明。（屋外タンク等の損傷における敷地への溢水源の設定では，屋外排水路による排水を期待 せず，敷地に滞留した場合であっても，防護対象設備に対して溢水影響を及ぼさないことを確認。）	－屋外排水路の機能に期待しない評価を実施していることから，屋外排水路のらち北側幹線排水路流末部の耐震性を確保した場合においても基準適合への影響はない。なお，屋外タンクの破損等により発生した 0. P．+14.8 m 盤の水は地震随伴事象により発生するものであり，北側幹線排水路流末部の耐震性を碓保することによって，確実に屋外排水路を通 じて海へ排水される。
$\begin{aligned} & \text { 第 } 54 \text { 条 } \\ & \text { (アクセスルート) } \end{aligned}$	－數地への溢水（屋外タンク損傷）は，アクセスルート復旧作業の開始前に排水路から排水可能であり，アクセスルート復旧作業への影響は ない。 －排水を考慮しない場合でも可搬型車両の通行は可能であり，人員への影響も小さい。	－敷地への溢水（屋外タンク損傷）は，アクセスルート復旧作業の開始前 に耐震性を碓保した北側排水路流末部より排水可能であり，アクセスル ート復旧作業への影響はない。 －排水を考慮しない場合，アクセスルートから，側溝やより沈下量の大き な建屋近傍へ流下するため，可搬型車両の通行は可能であり，人員への影響も小さい。

表 3－2 女川原子力発電所において想定される自然現象の組合せがプラントに及ぼす影響の評価結果（影響モード：浸水）
（設置変更許可時の説明内容）

影響モード を含む事象	事象の組合せ	検討結果	備考
降水	風（台風）\times 降水	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。また，風（台風）による影響（荷重）を組み合わせたとしても降水によ る浸水影響の個別評価と変わらない。	女川原子力発電所 2 号炉設置変更許可申請書
	（風（台風）\times 降水）\times凍結 \times 積雪	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。また，風（台風）及び積雪による影響（荷重），及び，凍結による影響 （温度及び閉塞）を組み合わせたとしても，降水による浸水影響の個別評価と変わらない。	02－NP－0272（改 114）外部からの衝撃による損傷
	（風（台風）\times 降水）\times竜巻	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。また，風（台風）及び竜巻による影響（荷重）を組み合わせたとして も，降水による浸水影響の個別評価と変わらない。	の防止（その他外部事象）別添資料1 第5．3－8
	（風（台風）\times 降水）\times落雷	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。また，落雷による影響（電気的影響）を組み合わせたとしても，降水 による浸水影響の個別評価と変わらない。	表より抜粋
	（風（台風）\times 降水）\times火山の影響	湿った降下火砕物が乾燥して固結することにより，排水口等を閉塞させ浸水することが考 えられるが，固結した降下火砕物は降水により溶解するため浸水は生じない。また，風（台風）による影響（荷重）及び降水による影響（浸水）を組み合わせたとしても，降水による浸水影響の個別評価と変わらない。	
	（風（台風）\times 降水）\times生物学的事象	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。また，風（台風）による影響（荷重）及び生物学的事象による影響（閉塞，電気的影響）を組み合わせたとしても，降水による浸水影響の個別評価と変わらない。	
	（風（台風）\times 降水）\times森林火災	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。また，風（台風）による影響（荷重）及び森林火災による影響（温度，閉塞，電気的影響，摩耗）を組み合わせたとしても，降水による浸水影響の個別評価と変わ らない。	
	（風（台風）\times 降水）\times地震	降水による敷地の浸水の可能性が考えられるが，構内排水路により排水することで敷地が浸水することはない。また，風（台風）及び地震による影響（荷重）を組み合わせたとして も，降水による浸水影響の個別評価と変わらない。	
	（風（台風）\times 降水）\times津波	降水及び津波による浸水影響が重畳することにより，敷地に対する浸水影響が増長すると考えられるが，構内排水路により排水することで敷地が降水により浸水することはないこ と，基準津波は津波防護施設及び浸水防止設備により敷地内に到達することはないことか ら，敷地が浸水に至る可能性はない。なお，津波により所内の排水設備が使用できない場合 でも，津波の継続時間は短いことから，降水により浸水に至る可能性はない。	

地震時における屋外アクセスルートの通行性に対する滞水の影響

1．はじめに
技術基準への適合性確認において，屋外アクセスルートについては，地震による地表面の沈下を想定しているため，支線排水路の機能喪失による沈下箇所の局所的な滞水が生じる可能性があることから，屋外アクセスルートの通行性に対する滞水の影響につい て検討した。

2．地震時における屋外アクセスルートの通行性
可搬型重大事故等対処設備の屋外アクセスルートについては，添付書類「VI－1－1－6－別添 1 可搬型重大事故等対処設備の保管場所及びアクセスルートについて」において，地震時における盛土及び旧表土の不等沈下による段差を評価し，補強材敷設による事前 の段差緩和対策，若しくは段差発生後の砕石を用いた重機による段差解消作業を実施す ることにより，車両の通行性に影響する急激な段差は発生せず，通行性を確保する設計 としている。

また，想定以上の段差が発生した場合に備えて，段差解消作業用の土のう等を準備し ていることから（図 4－1 及び「補足 200－14 可搬型重大事故等対処設備の保管場所及び アクセスルートについて」），地震により局所的に地表面が沈下し，想定箇所以外におい て通行に支障のある段差が発生した場合は，土のう等を用いた段差解消作業により通行性を維持する。

3．支線排水路が機能喪失した場合の屋外アクセスルートの通行性
地震により支線排水路が機能喪失した場合は，盛土及び旧表土の不等沈下により発生 する段差部に滞水する可能性があるが，補強材敷設による事前の段差緩和対策，若しく は段差発生後の砕石を用いた重機による段差解消作業を実施することとしていることか ら，屋外アクセスルートの通行性に影響を及ぼさない。

なお，図4－2のとおり，建屋近傍では地震時にくさび崩壊に伴う沈下が発生すること を想定し，建屋近傍の沈下量は屋外アクセスルートの沈下量より大きいと評価している ことから，支線排水路が機能声失した場合に地下水位低下設備から汲み上げた地下水は屋外アクセスルート脇の建屋近傍に流下するため，屋外アクセスルートの通行性に影響 を及ぼさないと考えられる。

アクセスルート上で地震により許容段差量 15 cm ※以上の段差が発生する可能性のあ る箇所については，あらかじめ対策工を施すか，又は段差発生後にブルドーザで砕石 を敷き均す段差解消作業を実施することで対応することから，大型車両の通行に支障 となる段差は発生しない。

万一，許容段差量を超えて通行に支障が生じた場合の対応として，作業員 1 名があ らかじめブルドーザに積載している角材及び土のうを用いて段差を解消することに より，大型車両の通行性を確保できることを実証試験にて確認した。

なお，ブルドーザにより実施することを想定しているがれき撤去作業及び段差解消作業は 2 名 1 組での作業を計画しており，上記の角材及び土のらによる段差解消作業 もこの 2 名 1 組で対応可能であることから，追加人員は不要である。
※ 依藤ら：地震時の段差被害に対する補修と交通開放の管理•運用方法について （平成 19 年近畿地方整備局研究発表会）

段差復旧作業状況

大型車兩通行状沉 （参考）実証試験において段差 1 箇所の復旧に要した時間：約 20 分第1図 段差復旧実証試験の状況

第 2 図 角材及び土のうの積載箇所（ブルドーザ）

図 4－1 想定以上の段差が発生した場合の対応について
（1）沈下量の想定
2011年東北地方太平洋沖地震の実䋶では，明らかなくさび崩壊に伴う建物近傍 の大きな沈下は確認されていないが，本評価においては 2007 年新潟県中越沖地震における東京電力柏崎刈羽原子力発電所の結果を参照して建屋近傍の沈下量 は一般部の 3.5 倍と想定して評価する。
a．一般部の沈下量
原子炉建屋近傍における沈下評俩対象層厚は 28.9 m であり，不飽和盛士及び飽和盛土の沈下率 1.4% を考慮し， 41 cm を想定する。
b．建屋近傍の沈下量
建屋近傍の沈下について，一般部の想定 41 cm の 3.5 倍である 144 cm を想定 する。
c．地震後の想定地盤形状
a．及び b．の想定を踏まえ，地震後の想定形状を第 2 図に示す。

図 4－2 建屋近傍におけるくさび崩壊に伴う沈下量の想定

