女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－D－08－0001＿改 2
提出年月日	2021 年 10 月 28 日

工事計画に係る説明資料

原子炬格納施設
（基本設計方針）

2021年10月
東北電力株式会社

O 2 （1）II R 2

7． 4 原子炉格納施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 原子炉格納施設の共通項目である「1．地盤等，2．自然現象，3．火災， 4．設備に対する要求（4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設 の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 原子炉格納施設の共通項目である「1．地盤等， 2 ．自然現象， 3 ．火災， 4．溢水等，5．設備に対する要求（5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針 については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基 づく設計とする。
第2章 個別項目 1．原子炉格納容器 1．1 原子炉格納容器本体等 原子炉格納施設は，設計基準対象施設として，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に漏えいする放射性物質が公衆 に放射線障害を及ぼすおそれがない設計とする。 原子炉格納容器にはドライウェル内のガスを循環冷却するための設備として，冷却装置及び送風機からなるドライウェル泠却系（個数 4（予備2））を設ける設計とする。 原子炉格納容器は，残留熱除去系（格納容器スプレイ冷却モード）と	第2章 個別項目 1．原子炉格納容器 1．1 原子炉格納容器本体等 原子炉格納施設は，設計基準対象施設として，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に漏えいする放射性物質が公衆 に放射線障害を及ぼすおそれがない設計とする。 原子炉格納容器にはドライウェル内のガスを循環冷却するための設備として，冷却装置及び送風機からなるドライウェル泠却系（個数 4（予備2））を設ける設計とする。 原子炉格納容器は，残留熱除去系（格納容器スプレイ冷却モード）と

変更前	変更後
あいまって原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定 し，これにより放出される原子炉冷却材のエネルギによる冷却材喪失時 の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，冷却材喪失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器 に生じる動荷重に耐える設計とする。 原子炉格納容器の開口部である出入口及び貫通部を含めて原子炉格納容器全体の漏えい率を許容値以下に保ち，冷却材喪失時及び主蒸気逃 がし安全弁作動時において想定される原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウンダリの健全性を保 つ設計とする。 通常運転時，運転時の異常な過渡変化時及び設計基準事故時におい て，原子炉格納容器バウンダリを構成する機器は脆性破壊及び破断が生 じない設計とする。脆性破壊に対しては，最低使用温度を考慮した破壊 じん性試験を行い，規定値を満足した材料を使用する設計とする。 原子炉格納容器を貫通する箇所及び出入口は，想定される漏えい量そ の他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」 （J E A C 4 2 0 3 ）に定める漏えい試験のうち B 種試験ができる設計とする。 サプレッションチェンバは，設計基準対象施設として容量 $2800 \mathrm{~m}^{3}$ ，個数 1 個を設置する。	あいまって原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定 し，これにより放出される原子炉冷却材のエネルギによる冷却材喪失時 の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，冷却材喪失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器 に生じる動荷重に耐える設計とする。 原子炉格納容器の開口部である出入口及び貫通部を含めて原子炉格納容器全体の漏えい率を許容値以下に保ち，冷却材喪失時及び主蒸気逃 がし安全弁作動時において想定される原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウンダリの健全性を保 つ設計とする。 通常運転時，運転時の異常な過渡変化時及び設計基準事故時におい て，原子炉格納容器バウンダリを構成する機器は脆性破壊及び破断が生 じない設計とする。脆性破壊に対しては，最低使用温度を考慮した破壊 じん性試験を行い，規定値を満足した材料を使用する設計とする。 原子炉格納容器を貫通する箇所及び出入口は，想定される漏えい量そ の他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」 （JEAC4203）に定める漏えい試験のうち B 種試験ができる設計とする。 サプレッションチェンバは，設計基準対象施設として容量 $2800 \mathrm{~m}^{3}$ ，個数 1 個を設置する。 原子炉格納容器は，想定される重大事故等時において，設計基準対象施設としての最高使用圧力及び最高使用温度を超える可能性があるが，設計基準対象施設としての最高使用圧力の 2 倍の圧力及び $200^{\circ} \mathrm{C}$ の温度

変更前

1．2 原子炉格納容器隔離弁
原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁（以下「隔離弁」という。）は，安全保護装置からの信号により，自動的に閉鎖する動力駆動弁，チェーンロックが可能な手動弁，キーロ ックが可能な遠隔操作弁又は隔離機能を有する逆止弁とし，原子炉格納容器の隔離機能の確保が可能な設計とする。

原子炉冷却材圧力バウンダリに接続するか，又は原子炉格納容器内に開口し，原子炉格納容器を貫通している各配管は，冷却材喪失事故時に必要とする配管及び計測制御系統施設に関連する小口径配管を除いて，原則として原子炉格納容器の内側に 1 個，外側に 1 個の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

ただし，原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部がなく，かつ，原子炉冷却系統に係る発電用原子炉施設の損壊の際に損壊するおそれがない管，又は原子炉格納容器外側で閉じた系を構成した管で，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常の際に，原子炉格納容器内で水封が維持され，かつ，原子炉格納容器外へ導かれた漏えい水による放射性物質の放出量が，冷却材喪失事故の原子炉格納容器内気相部からの漏えいによる放出量に比べ十分小さい配管については，原子炉格納容器の外側又は内側に少なくとも 1個の隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

原子炉格納容器の内側で閉じた系を構成する管に設置する隔離弁は，遠隔操作にて閉止可能な弁を設置することも可能とする。

変更後
で閉じ込め機能を損なわない設計とする。

1．2 原子炉格納容器隔離弁
原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁（以下「隔離弁」という。）は，安全保護装置からの信号により，自動的に閉鎖する動力駆動弁，チェーンロックが可能な手動弁，キーロ ックが可能な遠隔操作弁又は隔離機能を有する逆止弁とし，原子炉格納容器の隔離機能の確保が可能な設計とする。

原子炉冷却材圧力バウンダリに接続するか，又は原子炉格納容器内に開口し，原子炉格納容器を貫通している各配管は，冷却材喪失事故時に必要とする配管及び計測制御系統施設に関連する小口径配管を除いて，原則として原子炉格納容器の内側に 1 個，外側に 1 個の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

ただし，原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部がなく，かつ，原子炉冷却系統に係る発電用原子炉施設の損壊の際に損壊するおそれがない管，又は原子炉格納容器外側で閉じた系を構成した管で，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常の際に，原子炉格納容器内で水封が維持され，かつ，原子炉格納容器外へ導かれた漏えい水による放射性物質の放出量が，冷却材喪失事故の原子炉格納容器内気相部からの漏えいによる放出量に比べ十分小さい配管については，原子炉格納容器の外側又は内側に少なくとも 1個の隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

原子炉格納容器の内側で閉じた系を構成する管に設置する隔離弁は，遠隔操作にて閉止可能な弁を設置することも可能とする。

設計基準事故の収束に必要な非常用炉心冷却設備及び残留熱除去系 （格納容器スプレイ冷却モード）で原子炉格納容器を貫通する配管，そ の他隔離弁を設けることにより安全性を損なうおそれがあり，かつ，当該系統の配管により原子炉格納容器の隔離機能が失われない場合は，自動隔離弁を設けない設計とする。

ただし，原則遠隔操作が可能であり，設計基準事故時に容易に閉鎖可能な隔離機能を有する弁を設置する設計とする。

原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配管であって特に隔離弁を設けない場合には，隔離升を設置したものと同等の隔離機能を有する設計とする。

原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通す る計測系配管に隔離弁を設けない場合は，オリフィス又は過流量防止逆止弁を設置し，流出量抑制対策を講じる設計とする。

変更後

貫通箇所の内側又は外側に設置する隔離弁は，一方の側の設置箇所に おける管であって，湿気や水滴等により駆動機構等の機能が著しく低下 するおそれがある箇所，配管が狭险部を貫通する場合であつて貫通部に近接した箇所に設置できないことによりその機能が著しく低下するよ うな箇所には，貫通箇所の外側であって近接した箇所に 2 個の隔離弁 を設ける設計とする。

原子炉格納容器を貫通する配管には，圧力開放板を設けない設計とす る。

設計基準事故及び重大事故等の収束に必要な非常用炉心冷却設備及 び残留熱除去系（格納容器スプレイ冷却モード）で原子炉格納容器を貫通する配管，その他隔離弁を設けることにより安全性を損ならおそれが あり，かつ，当該系統の配管により原子炉格納容器の隔離機能が失われ ない場合は，自動隔離弁を設けない設計とする。

ただし，原則遠隔操作が可能であり，設計基準事故時及び重大事故等時に容易に閉鎖可能な隔離機能を有する弁を設置する設計とする。

また，重大事故等時に使用する原子炉格納容器調気系の隔離弁につい ては，設計基準事故時の隔離機能の確保を考慮し自動隔離弁とし，重大事故等時に容易に開弁が可能な設計とする。

原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配管であって特に隔離弁を設けない場合には，隔離弁を設置したものと同等の隔離機能を有する設計とする。
原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通す る計測系配管に隔離弁を設けない場合は，オリフィス又は過流量防止逆止弁を設置し，流出量抑制対策を講じる設計とする。

変更前	変更後
隔離弁は，閉止後に駆動動力源が喪失した場合においても閉止状態が維持され隔離機能が喪失しない設計とする。また，隔離弁のうち，隔離信号で自動閉止するものは，隔離信号が除去されても自動開とはならな い設計とする。 隔離弁は，想定される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E A C 4 2 0 3 ）に定める漏え い試験のらち C 種試験ができる設計とする。また，隔離弁は動作試験が できる設計とする。	隔離弁は，閉止後に駆動動力源が喪失した場合においても閉止状態が維持され隔離機能が喪失しない設計とする。また，隔離弁のうち，隔離信号で自動閉止するものは，隔離信号が除去されても自動開とはならな い設計とする。 隔離弁は，想定される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E A C 4 2 0 3 ）に定める漏え い試験のうちC種試験ができる設計とする。また，隔離弁は動作試験が できる設計とする。
2．原子炉建屋 2.1 原子炉建屋原子炉棟等 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針 （平成2年8月30日原子力安全委員会）」に規定する線量を超えない よう，当該放射性物質の濃度を低減する設備として原子炉建屋原子炉棟 を設置する。 原子炉建屋原子炉棟は，原子炉格納容器を収納する建屋であって，非常用ガス処理系等により，内部の負圧を確保し，原子炉格納容器から放射性物質の漏えいがあっても発電所周辺に直接放出されることを防止 する設計とする。 原子炉建屋原子炉棟に開口部を設ける場合には，気密性を確保する設計とする。	2．原子炉建屋 2.1 原子炉建屋原子炉棟等 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針 （平成2年8月30日原子力安全委員会）」に規定する線量を超えない よう，当該放射性物質の濃度を低減する設備として原子炉建屋原子炉棟 を設置する。 原子炉建屋原子炉棟は，原子炉格納容器を収納する建屋であって，非常用ガス処理系等により，内部の負圧を確保し，原子炉格納容器から放射性物質の漏えいがあっても発電所周辺に直接放出されることを防止 する設計とする。 原子炉建屋原子炉棟に開口部を設ける場合には，気密性を確保する設計とする。

σ

変更前	変更後
新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及ぼすおそ れがある場合において，放射性物質による敷地外への影響を低減するた め，原子炉建屋原子炉棟内に設置する設計とする。	新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及ぼすおそ れがある場合において，放射性物質による敷地外への影響を低減するた め，原子炉建屋原子炉棟内に設置する設計とする。 原子炉建屋原子炉棟は，重大事故等時においても，非常用ガス処理系 により，内部の負圧を確保することができる設計とする。原子炉建屋原子炉棟の気密バウンダリの一部として原子炉建屋原子炉棟に設置する原子炉建屋ブローアウトパネル（原子炉冷却系統施設のうち「5．2 高圧炉心スプレイ系」，浸水防護施設と兼用）（以下同じ。）は，閉状態の維持又は開放時に容易かつ確実に原子炉建屋ブローアウトパネル閉止装置により開口部を閉止可能な設計とする。
3．圧力低減設備その他の安全設備 3.1 真空破壊装置 冷却材喪失事故後，ドライウェル圧力がサプレッションチェンバ圧力 より低下した場合に，ドライウェルとサプレッションチェンバ間に設置 された6個の真空破壊弁が，圧力差により自動的に働き，サプレッショ ンチェンバのプール水のドライウェルへの逆流及びドライウェルの破損を防止できる設計とする。 なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしてい ることなどから，原子炉格納容器外面に受ける圧力が設計を超えること はない。	3．圧力低減設備その他の安全設備 3.1 真空破壊装置 冷却材喪失事故後，ドライウェル圧力がサプレッションチェンバ圧力 より低下した場合に，ドライウェルとサプレッションチェンバ間に設置 された 6 個の真空破壊弁が，圧力差により自動的に働き，サプレッショ ンチェンバのプール水のドライウェルへの逆流及びドライウェルの破損を防止できる設計とする。 なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしてい ることなどから，原子炉格納容器外面に受ける圧力が設計を超えること はない。 想定される重大事故等時において，ドライウェル圧力がサプレッショ ンチェンバ圧力より低下した場合に，ドライウェルとサプレッションチ

変更前

3． 2 原子炉格納容器安全設備
3．2．1 原子炉格納容器スプレイ冷却系
原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として残留熱除去系（格納容器スプレイ冷却モード）を設置する。

変更後

ェンバ間に設置された 6 個の真空破壊弁が，圧力差により自動的に働 き，サプレッションチェンバのプール水のドライウェルへの逆流及びド ライウェルの破損を防止できる設計とする。

3． 2 原子炉格納容器安全設備
3．2．1 原子炉格納容器スプレイ冷却系
原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として残留熱除去系（格納容器スプレイ冷却モード）を設置する。

重要度が特に高い安全機能を有する系統において，設計基準事故 が発生した場合に長期間にわたつて機能が要求される静的機器の うち，単一設計とする残留熱除去系（格納容器スプレイ冷却モード） のドライウェルスプレイ管及びサプレッションチェンバスプレイ管については，想定される最も過酷な単一故障の条件として，配管 1 箇所の全周破断を想定した場合においても，原子炉格納容器の冷却機能を達成できる設計とする。

ここで，単一故障時には，残留熱除去系 1 系統による格納容器ス プレイ冷却モードは，スプレイ効果に期待できない状態となり，ス プレイ液滴による除熱を考慮しないこと及び泠却水が破断箇所か ら落下してサプレッションチェンバのプール水に移行することを想定する。このような場合においても，他の残留熱除去系 1 系統を

変更前	変更後
	して，設計基準対象施設である原子炉格納容器を重大事故等対処設
	備として使用することから，流路に係る機能について重大事故等対
	処設備としての設計を行う。
	原子炉格納容器安全設備のらち，復水貯蔵タンクを水源として原
	子炉格納容器冷却のために運転するポンプは，復水貯蔵タンクの圧
	力及び温度により，想定される最も小さい有効吸込水頭において
	も，正常に機能する能力を有する設計とする。
	（2）原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）によ
	る原子炉格納容器下部への注水
	原子炉格納容器下部に落下した溶融炬心の泠却を行らための重
	大事故等対処設備として，原子炉格納容器下部注水系（常設）（代
	替循環冷却ポンプ）は，代替循環冷却ポンプにより，サプレッショ
	ンチェンバのプール水を残留熱除去系等を経由して原子炉格納容
	器下部へ注水し，溶融炬心が落下するまでに原子炉格納容器下部に
	あらかじめ十分な水位を確保するとともに，落下した溶融炬心を泠
	却できる設計とする。
	原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）は，
	非常用交流電源設備に加えて，代替所内電気設備を経由した常設代
	替交流電源設備からの給電が可能な設計とする。
	原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）の流
	路として，設計基準対象施設である残留熱除去系熱交換器及び原子
	炬格納容器を重大事故等対処設備として使用することから，流路に
	係る機能について重大事故等対処設備としての設計を行ら。
	原子炉格納容器安全設備のらち，サプレッションチェンバのプー

	変更前	変更後
$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \stackrel{t}{0} \end{aligned}$		ル水を水源として原子炉格納容器除熱のために運軽するポンプは，原子炉格納容器内の圧力及び温度並びに，原子炉冷却材中の異物の影響について「非常用炉心椧却設備又は格納容器熱除去設備に係る万過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第5号（平成20年2月27日原子力安全•保安院制定））によるろ過装置の性能評価により，重大事故等時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 （3）原子炉格納容器下部注水系（可搬型）による原子炉格納容器下部 への注水 原子炉格納容器下部に落下した溶融炉心の泠却を行うための重大事故等対処設備として，原子炉格納容器下部注水系（可搬型）は，大容量送水ポンプ（タイプ I ）により，代替淡水源の水をあらかじ め敷設した補給水系配管を経由して原子炉格納容器下部へ注水し，落下した溶融炉心を泠却できる設計とする。 原子炉格納容器下部注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプ I ）により海を利用できる設計とする。 原子炉格納容器下部注水系（可搬型）は，非常用交流電源設備に加えて代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。 また，大容量送水ポンプ（タイプI）は，空冷式のディーゼルエ ンジンにより駆動できる設計とする。 原子炬格納容器下部注水系（可搬型）に使用するホースの敷設等 は，ホース延長回収車（台数 4 （予備 1））（核燃料物質の取扱施設

	変更前	変更後
$\frac{\stackrel{\rightharpoonup}{t}}{\stackrel{\rightharpoonup}{\omega}}$		水系（常設）（代替循環冷却ポンプ）の電動弁（交流）は，ハンド ルを設けて手動操作を可能とすることで，常設代替交流電源設備か らの給電による遠隔操作に対して多様性を有する設計とする。ま た，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）の電動弁 （交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 原子炉格納容器下部注水系（常設）（復水移送ポンプ）の電動弁 （直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器下部注水系（常設） （復水移送ポンプ）の電動弁（直流）は，125V 蓄電池から 125 V 直流主母線盤までの系統において，独立した電路で系統構成すること により，非常用ディーゼル発電機の交流を直流に変換する電路に対 して，独立性を有する設計とする。さらに，常設代替直流電源設備 からの給電も可能であり， 125 V 代替蓄電池から 125 V 直流主母線盤 までの系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。 また，原子炉格納容器下部注水系（可搬型）は代替淡水源を水源 とすることで，復水貯蔵タンクを水源とする原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ泠却系（常設）並びにサプレッションチェンバを水源とする原子炉

	変更前	変更後
$\begin{aligned} & \stackrel{\rightharpoonup}{t} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$		原子炉格納容器代替スプレイ椧却系（常設）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま た，系統構成に必要な電動异（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 原子炬格納容器代替スプレイ椧却系（常設）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備と しての設計を行う。 原子炉格納容器代替スプレイ泠却系（常設）は，炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として兼用す る設計とする。 原子灲格納容器安全設備のらち，復水貯蔵タンクを水源として原子炉格納容器泠却のために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さい有効吸込水頭において も，正常に機能する能力を有する設計とする。 （2）原子炬格納容器代替スプレイ冷却系（可搬型）による代替格納容器スプレイ 炉心の著しい損傷防止のための原子炉格納容器内泠却に用いる設備のらち，残留熱除去系（格納容器スプレイ泠却モード）の機能 が喪失した場合及び全交流動力電源喪失又は原子炉補機冷却水系 （原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器スプレイ冷却モード）及び残留熱除去系（サプレッションプール水冷却モード）が起動できない場

	変更前	変更後
$\begin{aligned} & \sqrt{1} \\ & \hat{1} \end{aligned}$		力及び温度により，想定される最も小さい有効吸込水頭において も，正常に機能する能力を有する設計とする。 （3）多重性又は多様性及び独立性，位置的分散 原子炉格納容器代替スプレイ冷却系（常設）は，残留熱除去系（格納容器スプレイ椧却モード）と共通要因によって同時に機能を損な わないよう，復水移送ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備 からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（格納容器スプレイ泠却モード）に対して多様性を有する設計 とする。 原子炉格納容器代替スプレイ泠却系（常設）の電動弁（交流）は， ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 また，原子炉格納容器代替スプレイ泠却系（常設）の電動弁（交流） は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 原子炉格納容器代替スプレイ冷却系（常設）の電動弁（直流）は， ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器代替スプレイ泠却系（常設）の電動弁（直流）は， 125 V 蓄電池から 125 V 直流主母線盤までの系統に おいて，独立した電路で系統構成することにより，非常用ディーゼ

	変更前	変更後
$\begin{aligned} & \stackrel{1}{1} \\ & \stackrel{1}{N} \end{aligned}$		らの給電による遠隔操作に対して多様性を有する設計とする。ま た，原子灲格納容器代替スプレイ椧却系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 原子炬格納容器代替スプレイ椧却系（可搬型）は，代替淡水源を水源とすることで，サプレッションチェンバを水源とする残留熱除去系（格納容器スプレイ泠却モード）及び復水貯蔵タンクを水源と する原子炉格納容器代替スプレイ椧却系（常設）に対して異なる水源を有する設計とする。 大容量送水ポンプ（タイプ I）は，原子炬建屋から離れた屋外に分散して保管することで，原子炉建屋原子炉棟内の残留熱除去系ポ ンプ及び復水移送ポンプと共通要因によって同時に機能を損なわ ないよう位置的分散を図る設計とする。 大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続できなくなることを防止するため，位置的分散を図った複数箇所 に設置する設計とする。 原子炉格納容器代替スプレイ冷却系（常設）及び原子炬格納容器代替スプレイ泠却系（可搬型）は，残留熱除去系と共通要因によっ て同時に機能を損なわないよう，水源から残留熱除去系配管との合流点までの系統について，残留熱除去系に対して独立性を有する設計とする。 これらの多様性及び采統の独立性並びに位置的分散によって，原子炉格納容器代替スプレイ椧却系（常設）及び原子炉格納容器代替

No

\approx

	変更前	変更後
$\begin{aligned} & \text { N } \\ & i \\ & \dot{\omega} \end{aligned}$		を代替所内電気設備を経由した常設代替交流電源設備からの給電 による電動機駆動とし，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ泠却系（可搬型）の大容量送水ポンプ （タイプI）を空泠式のディーゼルエンジンによる駆動とすること で，多樣性を有する設計とする。 原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ泠却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環泠却ポンプ）及び代替循環泠却系は，共通要因によって同時に機能を損なわないよう，非常用所内電気設備 を経由した非常用交流電源設備からの給電に対して，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替 スプレイ泠却系（常設）の復水移送ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電とし，原子炉格納容器下部注水系（常設）（代替循環泠却ポン プ）及び代替循環冷却系の代替循環冷却ポンプを代替所内電気設備 を経由した常設代替交流電源設備からの給電とすることで，多様性 を有する設計とする。 代替循環冷却系の電動弁（交流）は，ハンドルを設けて手動操作 を可能とすることで，常設代替交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，代替循環冷却系の電動弁（交流）は，代替所内電気設備を経由して給電する系統にお いて，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 また，原子炉格納容器下部注水系（可搬型）及び原子灲格納容器

	変更前	変更後
$\begin{aligned} & \text { N } \\ & \stackrel{1}{i_{0}^{\prime}} \end{aligned}$		下部への落下を遅延•防止するための重大事故等対処設備として，高圧代替注水系を設ける設計とする。なお，この場合は，ほう酸水注入系による原子炬圧力容器へのほう酸水注入と並行して行う。 高圧代替注水系は，蒸気タービン駆動ポンプにより復水貯蔵タン クの水を高圧炉心スプレイ系等を経由して，原子灲圧力容器へ注水 することで溶融炖心を泠却できる設計とする。 高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備又は所内常設蓄電式直流電源設備からの給電が可能な設計と し，所内常設蓄電式直流電源設備が機能喪失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により中央制御室からの操作が可能な設計とする。 高圧代替注水系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 3．2．6 低圧代替注水系 （1）低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水灲心の著しい損傷が発生した場合に溶融炖心の原子炉格納容器下部への落下を遅延•防止するための重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）を設ける設計とする。 なお，この場合は，ほう酸水注入系による原子炉圧力容器へのほう酸水注入と並行して行う。 低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポンプ

	変更前	変更後
$\begin{aligned} & \stackrel{1}{4} \\ & \stackrel{1}{i} \end{aligned}$		により，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで溶融炬心を泠却できる設計とする。 低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま た，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 低圧代替注水系（常設）（復水移送ポンプ）の流路として，設計基準対象施設である原子炉圧力容器，炬心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行ら。 （2）低圧代替注水系（可搬型）こよる原子炉注水 灲心の著しい損傷が発生した場合に溶融灲心の原子炬格納容器下部への落下を遅延•防止するための重大事故等対処設備として，低圧代替注水系（可搬型）を設ける設計とする。なお，この場合は， ほう酸水注入系による原子炉圧力容器へのほう酸水注入と並行し て行う。 低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI）に より，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器 へ注水することで溶融㷋心を椧却できる設計とする。 低圧代替注水系（可搬型）は，代替淡水源が枯渴した場合におい て，重大事故等の収束に必要となる水の供給設備である大容量送水 ポンプ（タイプI）により海を利用できる設計とする。 低圧代替注水系（可搬型）は，非常用交流電源設備に加えて，代

3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備
3．3．1 非常用ガス処理系
原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として非常用ガス処理系を設置する。
非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガ ス処理系排風機及び高性能エアフィルタ，チャコールエアフィルタ を含む非常用ガス処理系フィルタ装置等から構成される。
放射性物質の放出を伴ら設計基準事故時には，常用換気系を閉鎖 し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フィルタ装置を通して除去•低減した

変更後
残留熱除去系（サプレッションプール水冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用する ため，重大事故等対処設備としての基本方針に示す設計方針を適用 する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針 は適用しない。
3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備

3．3．1 非常用ガス処理系
原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として非常用ガス処理系を設置する。

非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガ ス処理系排風機及び高性能エアフィルタ，チャコールエアフィルタ を含む非常用ガス処理系フィルタ装置等から構成される。

放射性物質の放出を伴ら設計基準事故時には，常用換気系を閉鎖 し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フィルタ装置を通して除去•低減した

後，排気筒から放出する設計とする。
非常用ガス処理系は，冷却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素を除去し，環境に放出され る放射性物質の濃度を減少させる設計とする。
非常用ガス処理系のうち，非常用ガス処理系フィルタ装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可 を受けた設計基準事故の評価の条件を満足する設計とする。
新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及 ぼすおそれがある場合において，放射性物質による敷地外への影響 を低減するため，非常用ガス処理系により放射性物質の放出を低減 できる設計とする。

変更後

後，排気筒から放出する設計とする。
非常用ガス処理系は，冷却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素を除去し，環境に放出され る放射性物質の濃度を減少させる設計とする。

非常用ガス処理系のうち，非常用ガス処理系フィルタ装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可 を受けた設計基準事故の評価の条件を満足する設計とする。

新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及 ぼすおそれがある場合において，放射性物質による敷地外への影響 を低減するため，非常用ガス処理系により放射性物質の放出を低減 できる設計とする。
重要度が特に高い安全機能を有する系統において，設計基準事故 が発生した場合に長期間にわたつて機能が要求される静的機器の うち，単一設計とする非常用ガス処理系の配管の一部及び非常用ガ ス処理系フィルタ装置については，当該設備に要求される原子炉格納容器内又は放射性物質が原子炉格納容器内から漏れ出た場所の雰囲気中の放射性物質の濃度低減機能が喪失する単一故障のうち，想定される最も過酷な条件として，配管の全周破断及び非常用ガス処理系フィルタ装置の閉塞を想定しても，単一故障による放射性物質の放出に伴う被ばくの影響を最小限に抑えるよう，安全上支障の ない期間に単一故障を確実に除去又は修復できる設計とし，その単一故障を仮定しない。

想定される単一故障の発生に伴う周辺公衆に対する放射線被ば

	変更前	変更後
$$		くは，保守的に単一故障を除去又は修復ができない場合で評価し，安全評価指針に示された設計基準事故時の判断基準を下回ること を確認する。 また，単一故障の除去又は修復のための作業期間として想定する 3 日間を考慮し，修復作業に係る従事者の被ばく線量は緊急時作業 に係る線量限度に照らしても十分小さくする設計とする。 単一設計とする箇所の設計に当たっては，想定される単一故障の除去又は修復のためのアクセスが可能であり，かつ，補修作業が容易となる設計とする。 炉心の著しい損傷が発生した場合に，非常用ガス処理系は，非常用ガス処理系排風機により原子炉建屋原子炉棟内を負圧に維持す るとともに，原子炉格納容器から原子炉建屋原子炉棟内に漏えいし た放射性物質を含む気体を排気筒から排気し，原子炉格納容器から漏えいした空気中の放射性物質の濃度を低減させることで，中央制御室にとどまる運転員を過度の被ばくから防護する設計とする。 炉心の著しい損傷が発生し，非常用ガス処理系を起動する際に，原子炉建屋ブローアウトパネルを閉止する必要がある場合には，中央制御室から原子炉建屋ブローアウトパネル閉止装置（個数1）を操作し，容易かつ確実に開口部を閉止できる設計とする。また，原子炉建屋ブローアウトパネル閉止装置は現場においても，人力によ り操作できる設計とする。 非常用ガス处理系は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とする。 また，原子炉建屋ブローアウトパネル閉止装置は，常設代替交流

N

	変更前	変更後
$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{1}{4} \end{aligned}$		電源設備からの給電が可能な設計とする。 非常用ガス処理系の流路として，設計基準対象施設である非常用 ガス処理系空気乾燥装置，非常用ガス処理系フィルタ装置，排気筒，原子炉建屋原子炉棟，原子炉建屋大物搬入口及び原子炉建屋エアロ ックを重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。
	3．3．2 可燃性ガス濃度制御系 冷却材喪失事故時に原子炉格納容器内で発生する水素及び酸素 の反応を防止するため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあい まって，可燃限界に達しないための制限値である水素濃度 4vol $\%$未満又は酸素濃度 $5 \mathrm{vo} 1 \%$ 未満に維持できる設計とする。	3．3．2 可燃性ガス濃度制御系 泠却材喪失事故時に原子炉格納容器内で発生する水素及び酸素 の反応を防止するため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあい まって，可燃限界に達しないための制限値である水素濃度 4vol \％未満又は酸素濃度 $5 \mathrm{vol} \%$ 未満に維持できる設計とする。
		3．3．3 原子炉建屋水素濃度抑制系 炬心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために原子炉建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備として，水素濃度制御設備である静的触媒式水素再結合装置を設ける設計とする。 水素濃度制御設備である静的触媒式水素再結合装置は，運転員の起動操作を必要とせずに，原子炉格納容器から原子炉建屋原子炉棟内に漏えいした水素と酸素を触媒反応によって再結合させること で，原子炉建屋原子炉棟内の水素濃度の上昇を抑制し，原子炉建屋

出

変更前	変更後
	容器の負圧破損を防止するために，可搬型窒素ガス供給装置を用い
	て原子炉格納容器内に不活性ガス（窒素）の供給が可能な設計とす
	る。また，原子炉格納容器フィルタベント系は，排気中に含まれる
	可燃性ガスによる爆発を防ぐため，可搬型窒素がス供給系により，
	系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格
	納容器ベント後においても不活性がス（窒素）で置換できる設計と
	する。
	炬心の著しい損傷が発生した場合において，原子炉格納容器内に
	おける水素爆発による破損を防止するために必要な重大事故等対
	処設備のらち，原子炉格納容器内を不活性化するための設備とし
	て，可搬型窒素がス供給装置を設ける設計とする。
	可搬型窒素がス供給装置は，原子炉格納容器内に窒素を供給する
	ことで，ジルコニウム一水反応，水の放射線分解等により原子炉格
	納容器内に発生する水素及び酸素の濃度を可燃限界未満にできる
	設計とする。
	可搬型窒素がス供給装置は，車両内に搭載された可搬型窒素がス
	供給装置発電設備により給電できる設計とする。
	可搬型窒素がス供給系の流路として，設計基準対象施設である原
	子炉格納容器を重大事故等対処設備として使用することから，流路
	に係る機能について重大事故等対処設備としての設計を行ら。
	3．3．7 原子炉格納容器フィルタベント系
	炉心の著しい損傷が発生した場合において原子炉格納容器内に
	おける水素爆発による破損を防止できるように，原子炉格納容器内

	変更前	変更後
$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \stackrel{1}{\Delta} \end{aligned}$		に滞留する水素及び酸素を大気へ排出するための設備として，原子炉格納容器フィルタベント系を設ける設計とする。 原子炉格納容器内に滞留する水素及び酸素を大気へ排出するた めの重大事故等対処設備として，原子炉格納容器フィルタベント系 は，フィルタ装置（フィルタ容器，スクラバ溶液，金属綫維フィル夕，放射性よう素フィルタ），フィルタ装置出口側ラプチャディス ク，配管•弁類，計測制御装置等で構成し，炉心の著しい損傷が発生した場合において，原子炉格納容器内雾囲気ガスを原子炉格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減さ せた後に原子炉建屋屋上に設ける放出口から排出（系統設計流量 10． $0 \mathrm{~kg} / \mathrm{s}$（ 1 Pd において））することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，ジルコニウム一水反応，水の放射線分解等により発生する原子灯格納容器内の水素及び酸素を大気に排出できる設計とする。 フィルタ装置は3台を並列に設置し，排気中に含まれる粒子状放射性物質，ガス状の無機よう素及び有機よう素を除去できる設計 とする。また，無機よう素をスクラバ溶液中に捕集•保持するため にアルカリ性の状態（待機状態において pH13 以上）に維持する設計とする。 原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガ スによる爆発を防ぐため，可搬型窒素がス供給系により，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器べ ント開始後においても不活性ガス（窒素）で置換できる設計とする とともに，系統内に可燃性ガスが蓄積する可能性のある箇所にはバ

変更前	変更後
	子炉格納容器フィルタベント系」の設備を原子炉格納施設のうち「3．3．7 原子炉格納容器フィルタベント系」の設備として兼用） （以下同じ。））を設置し，放射線防護を考慮した設計とする。遠隔手動弁操作設備遮蔽は，炉心の著しい損傷時においても，原子炉格納容器フィルタベント系の隔離弁操作ができるよう，どちらの遮蔽体においても鉛厚さ 2 mm の遮蔽厚さを有する設計とする。 原子炉格納容器フィルタベント系に使用するホースの敷設等は， ホース延長回収車（台数 4 （予備 1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉格納施設のらち「3．3．7 原子炉格納容器フィルタベント系」の設備 として兼用）により行う設計とする。 原子炉格納容器フィルタベント系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用するこ とから，流路に係る機能について重大事故等対処設備としての設計 を行う。
3.4 原子炉格納容器調気設備 3．4．1 原子炉格納容器調気系 原子炬格納容器調気系は，水素及び酸素の反応を防止するため， あらかじめ原子炉格納容器内に窒素を充填することにより，水素濃度及び酸素濃度を可燃限界未満に保つ設計とする。	3．4 原子炉格納容器調気設備 3．4．1 原子炉格納容器調気系 原子炉格納容器調気系は，水素及び酸素の反応を防止するため， あらかじめ原子炉格納容器内に窒素を充填することにより，水素濃度及び酸素濃度を可燃限界未満に保つ設計とする。 炉心の著しい損傷が発生した場合において原子炉格納容器内に おける水素爆発による破損を防止できるように，発電用原子炉の運転中は，原子炉格納容器内を原子炉格納容器調気系により常時不活

$\xrightarrow{\sim}$

g

	変更前	変更後
$\begin{aligned} & \text { N } \\ & i \\ & i \\ & \text { N } \end{aligned}$		る。 また，淡水が枯渴した場合に，海を水源として利用できる設計とする。復水貯蔵タンクは，想定される重大事故等時において，原子炉圧力容器への注水及び原子炉格納容器へのスプレイに使用する設計基準事故対処設備が機能喪失した場合の代替手段である高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ），原子炉格納容器代替スプレイ泠却系（常設）及び原子炉格納容器下部注水系（常設）（復水移送ポンプ） の水源として使用できる設計とする。 サプレッションチェンバ（容量 $2800 \mathrm{~m}^{3}$ ，個数 1）は，想定される重大事故等時において，原子炉圧力容器への注水及び原子炉格納容器へのス プレイに使用する設計基準事故対処設備が機能喪失した場合の代替手段である代替循環冷却系及び原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）並びに重大事故等対処設備（設計基準拡張）である残留熱除去系（格納容器スプレイ椧却モード）及び残留熱除去系（サプレ ッションプール水冷却モード）の水源として使用できる設計とする。 ほう酸水注入系貯蔵タンクは，想定される重大事故等時において，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失し た場合の代替手段であるほら酸水注入系の水源として使用できる設計 とする。 代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）は，想定される重大事故等時において，原子炉圧力容器への注水及び原子炉格納容器へのスプレイに使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型），原子炉格納容器代替 スプレイ冷却系（可搬型），原子炉格納容器フィルタベント系への水補

変更前	変更後
3.5 設備の共用 液体窒素蒸発装置（第 2,3 号機共用）は，第 3 号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作すること により隔離できる設計とすることで，共用により安全性を損なわない設計とする。	給及び原子炉格納容器下部注水系（可搬型）の水源として使用できる設計とする。 海は，想定される重大事故等時において，淡水が枯渇した場合に，原子炉圧力容器への注水及び原子炉格納容器へのスプレイに使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型），原子炉格納容器代替スプレイ冷却系（可搬型）及び原子炉格納容器下部注水系（可搬型）の水源として，さらに，放水設備（大気への拡散抑制設備）及び放水設備（泡消火設備）の水源として利用で きる設計とする。 3.7 設備の共用 液体窒素蒸発装置（第 2,3 号機共用）は，第 3 号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作すること により隔離できる設計とすることで，共用により安全性を損なわない設計とする。
4．主要対象設備 原子炉格納施設の対象となる主要な設備について，「表1 原子炉格納施設の主要設備リスト」に示す。	4．主要対象設備 原子炉格納施設の対象となる主要な設備について，「表 1 原子炉格納施設の主要設備リスト」に示す。 本施設の設備として兼用する場合に主要設備リストに記載されない設備については，「表2 原子炉格納施設の兼用設備リスト」に示す。

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（1／42）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊＊		重大事故等対処設備＊${ }^{*}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \stackrel{\sim}{1} \\ & \stackrel{1}{1} \\ & \sim \\ & \infty \end{aligned}$		－	原子炬格納容器 本体	－		原子炉格納容器	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
		－	機器搬出入口	－	機器搬出入用ハッチ	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					逃がし安全弃搬出入口	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					制御棒駆動機構搬出入口	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					サプレッションチェンバ出入口	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
		－	エアロック	－	所員用エアロック	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					原子炬格納容器配管貫通部（X－5）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					原子炉格納容器配管貫通部（X－10A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					原子炉格納容器配管貫通部（ $\mathrm{X}-10 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
			原子炉格納容器		原子炉格納容器配管貫通部（X－10C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
		－	配䉓費気配線費通部		原子炉格納容器配管貫通部（X－10D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					原子炉格納容器配管貫通部（X－11）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					原子炉格納容器配管貫通部（X－12A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					原子炉格納容器配管貫通部（X－12B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（2／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊${ }^{* 1}$		重大事故等対処設備＊1		名称	設計基準対象施設＊＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 䜌 } \\ & \text { 啉 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部		原子炉格納容器配管貫通部（ $\mathrm{X}-13 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－13B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－14）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－20）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－21）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－22）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ X －30A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－30B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ X －31A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ X －31B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ X －31C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ X －32A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－32B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ X －33A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－33B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－34）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（3／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊${ }^{* 1}$		重大事故等対処設備＊1		名称	設計基準対象施設＊＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 重要度 分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 蒳 } \\ & \text { 喿 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部		原子炬格納容器配管貫通部（X－35）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－36）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－37）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－50）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－51）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－52）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炬格納容器配管貫通部（X－60）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ X －61A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ X －61B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ $\mathrm{X}-62 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ X －62B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炬格納容器配管貫通部（X－63）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炬格納容器配管貫通部（X－64）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炬格納容器配管貫通部（X－70）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炬格納容器配管貫通部（X－71）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ X －72A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（4／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 多 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基漼対象施設＊＊1		重大事故等対処設備＊${ }^{*}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 里分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 䧻 } \end{aligned}$	－	$\begin{aligned} & \text { 原子炉格納容器 } \\ & \text { 配管貫通部及び } \\ & \text { 電気配線費通部 } \end{aligned}$	配管貫通部		原子炉格納容器配管貫通部（ X －72B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－73）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－80）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－81）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ $\mathrm{X}-82 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ $\mathrm{X}-82 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－90）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－91）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－92）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－93）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炬格納容器配管貫通部（ X －106B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炬格納容器配管貫通部（ X －130A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ ${ }^{\text {（ }}$－130B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炬格納容器配管貫通部（ $\mathrm{X}-130 \mathrm{C}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－130D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ $\mathrm{X}-131$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（5／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（6／42）

$\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 繵 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊${ }^{\text {¹ }}$		重大事故等対処設備＊${ }^{* 1}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震 分類 分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 烙 } \\ & \text { 紋 } \\ & \text { 喿 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（ X －136A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －136B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －137A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ ${ }^{\text {（ }}$－137B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ ${ }^{\text {－}}$－137C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ ${ }^{\text {（ }}$－137D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ X －138）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －139A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－139B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －140A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －140B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-150$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －151A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －151B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －152A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －152B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（7／42）

$\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 繵 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊${ }^{\text {¹ }}$		重大事故等対処設備＊${ }^{* 1}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震 分類 分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 蒳 } \\ & \text { 谽 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部		原子炉格納容器配管貫通部（ X －152C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－152D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－153）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ X －154）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ X －155）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ X －160A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－160B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ ${ }^{\text {－}}$－160C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－160D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ X －161）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－190A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－190B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（X－191A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ X －191B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ X －205A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ $\mathrm{X}-205 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（8／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（9／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（10／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（ $11 / 42$ ）

$\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基漼対象施設＊1		重大事故等対処設備＊${ }^{\text {＊}}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
	－	原子炉格納容器配管貫通部及び電気配線貫通部	電気配線貫通部	原子炉格納容器電気配線貫通部（X－ 100 A	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X— 100B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 100 C ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 100D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X— 101A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X— 101B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 101C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 101D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（ X － 102A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 102B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 102 C ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X— 102D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 102E）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X— 103A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X— 103B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（ $12 / 42$ ）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（ $13 / 42$ ）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
原		エアロック			原子炉建屋エアロック	S	－		－	変更なし			常設／緩和	－
建		原子炬建屋基麾 スラブ		原子炉建屋基礎版＊2	－	－		－	変更なし			－		
力 低 減 設 備 \vdots の 他 安 安 設	－	真空破壊装置	－	真空破壊弁	S	－		－	変更なし			常設耐震／防止常設／緩和	－	
		ダウンカマ		ダウンカマ	S	クラス 2		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
		ベント管		ベント管	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				ベント管ベローズ	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
		ベントヘッダ		ベントヘッダ	S	クラス 2		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
		原子炉格納容器安全設備	主配管	ドライウェルスプレイ管	S	クラス 2		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				サプレッションチェンバスプレイ管	S	クラス 2		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
		原子炉格納容器安全設備	ポンプ	－					復水移送ポンプ	－	－	常設／緩和	SA クラス 2	
				－					代替循環冷却ポンブ	－	－	常設／緩和	SAクラス 2	
				－					大容量送水ポンプ（タイプ I ）	－	－	可搬／緩和	SA クラス 3	
			容器	－					復水貯蔵タンク	－	－	常設／緩和	SA クラス 2	
			万過装置	－					残留熱除去系ストレーナ（A）	－	－	常設／緩和	SA クラス 2	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（14／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（15／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊＊		重大事故等対処設備＊${ }^{\text {¹ }}$		名称	設計基漼対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
圧低減設備\succsimの他の安設備	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 谽 } \\ & \text { F } \\ & \text { 部 } \\ & \text { 注 } \\ & \text { 系 } \end{aligned}$	原子炬格納容器安全設備	主配管	－					低圧代替注水系注入配管合流点 2～原子炉格納容器下部注水系注入配管分岐点	－	－	常設／緩和	SA クラス 2
				－					原子炬格納容器下部注水系注入配管分岐点～原子炉格納容器配管貫通部（X－ 92）	－	－	常設／緩和	SA クラス 2
				－					原子炉格納容器配管貫通部（X－92）	－	－	常設／緩和	SA クラス 2
				－					原子炉格納容器配管貫通部（X－92）～原子炬格納容器下部注水配管開放端	－	－	常設／緩和	SA クラス 2
				－					残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（X－214A）	－	－	常設／緩和	SA クラス 2
				－					原子炉格納容器配管貫通部（X－214A）	－	－	常設／緩和	SA クラス 2
				－					原子炉格納容器配管貫通部（X－214A） ～サプレッションチェンバ出口配管 A系合流点	－	－	常設／緩和	SA クラス 2
				－					サプレッションチェンバ出口配管A系合流点～代替循環冷却系吸込配管分岐点	－	－	常設／緩和	SA クラス 2
				－					代替循環冷却系吸込配管分岐点～代替循環冷却ポンプ	－	－	常設／緩和	SA クラス 2
				－					代替循環冷却ポンプ～代替循環冷却系注入配管合流点	－	－	常設／緩和	SA クラス 2
				－					代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	－	－	常設／緩和	SA クラス 2
				－					残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器 （A）	－	－	常設／緩和	SA クラス 2
				－					残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	－	－	常設／緩和	SA クラス 2
				－					残留熱除去系熱交換器代替循環冷却系出口配管分岐点～残留熱除去系熱交換器（A）バイパス配管合流点	－	－	常設／緩和	SA クラス 2

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（ $16 / 42$ ）

	番綝称	機器区分		変更前					変更後					
				名称	設計基淮対象施設茥		重大事故等対処設備索		名称	設計基漼対象施設＊｜		重大事故等対処設倫苼		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		原子炉格納容器安全設備	主配管		－					残留熱除去系熱交换器 (A) バイパス配管分岐点～残留熱除去系熱交換器 （A）バイパス配管合流点	－	－	常設／緩和	SAクラス 2
				－					残留熱除去系熱交换器代替循睘洽却系出口配管分岐点～E11－F088	－	－	常設／緩和	SAクラス 2	
				－					E11－F088～低圧代替注水系注入配管合流点 2	－	－	常設／緩和	SAクラス 2	
				－					原子炉•格納容器下部注水接続口 （北）～低圧代替注水系注入配管 A 系分㞳点	－	－	常設／緩和	SAクラス 2	
				－					原子炬格納容器下部注水系注入配管分吱点～低圧代替注水系注入配管A系分岐点	－	－	常設／緩和	SAクラス 2	
				－						－	－	常設／緩和	SAクラス 2	
				－					取水用ホース（ $250 \mathrm{~A}: ~ 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	－	－	可搬緩和	SAクラス 3	
				－					$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { 送水用ホース }(300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \\ \mathrm{m}, 5 \mathrm{~m}) \end{array}$	－	－	可搬）（緩和	SAクラス 3	
				－					注水用ヘッダ	－	－	可搬／緩和	SAクラス 3	
				－					送水用ホース（150A 1m，2m，5m，10m，20m）	－	－	可搬／緩和	SAクラス3	
	$\begin{gathered} \text { 原 } \\ \text { 煏 } \end{gathered}$	原子炉格納容器安全設備	ポンプ	－					復水移送ポンプ	－	－	常設耐震／防止常設 ${ }^{2}$（綵和	SAクラス 2	
	$\begin{gathered} \text { 䈷 } \\ \text { 洽营 } \end{gathered}$			－					大容量送水ポンプ（タイプI）	－	－	可搬／防止可搬／緩和	SAクラス 3	
	絮寶		容器	－					復水眝蔵タンク	－	－	常設耐震／防止常設／緩和	SAクラス 2	
	$\begin{aligned} & \text { X } \\ & \text { K } \\ & \text { an } \end{aligned}$		3 過装置	－					可般型ストレーナ	－	－	可搬／防止可搬／緩和	SAクラス 3	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（17／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（18／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（19／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \\ & \text { men } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊${ }^{\text {＊}}$		名称	設計基準対象施設＊1		重大事故等対処設備＊${ }^{\text {＊}}$	
				名称	耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス		耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス
	$\begin{aligned} & \hline \text { 器原 } \\ & \text { 冷替炉 } \\ & \text { 却スて格 } \\ & \text { 系プ篗 } \end{aligned}$	原子炉格納容器安全設備	主配管	－					注水用ヘッダ	－	－	可搬／防止可搬／緩和	SA クラス 3
				－					送水用ホース（150A： $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m})$	－	－	可搬／防止 可搬／緩和	SA クラス 3
		原子炉格納容器安全設備	熱交換器	－					残留熱除去系熱交換器（A）	－	－	常設／緩和	SAクラス 2
			ポンプ	－					代替循環冷却ポンプ	－	－	常設／緩和	SAクラス 2
			万過装置	－					残留熱除去系ストレーナ（A）	－	－	常設／緩和	SAクラス 2
			安全弁及び逃 がし弁	－					E11－F084	－	－	常設／緩和	－
				－					E11－F085	－	－	常設／緩和	－
				－					E11－F048A	－	－	常設／緩和	－
				－					E11－F048B	－	－	常設／緩和	－
			主配管	－					残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（X－214A）	－	－	常設／緩和	SAクラス 2
				－					原子炉格納容器配管貫通部（X－214A）	－	－	常設／緩和	SAクラス 2
				－					原子炉格納容器配管貫通部（X－214A） ～サプレッションチェンバ出口配管 A系合流点	－	－	常設／緩和	SA クラス 2
				－					サプレッションチェンバ出口配管A系合流点～代替循環冷却系吸込配管分岐点	－	－	常設／緩和	SA クラス 2
				－					代替循環冷却系吸込配管分岐点～代替循環冷却ポンプ	－	－	常設／緩和	SAクラス 2
				－					代替循環冷却ポンプ～代替循環冷却系注入配管合流点	－	－	常設／緩和	SAクラス 2

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（20／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト $(21 / 42)$

	$\begin{aligned} & \text { 穫 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基淮対象施設＂		重大事故等対処設備著		名称	設計基淮対象施設＊1		重大事故等対処設備＊${ }^{\text {¹ }}$		
				$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		原子炉格納容器安全設備	主配管		－					E11－F026B～低圧代替注水系B系注入配管合流点	－	－	常設／緩和	SAクラス 2
				－					低圧代替注水系 B 系注入配管合流点 ～原子炉格納容器配管貫通部（X－ 31B）	－	－	常設／緩和	SAクラス 2	
				－					原子炬格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~B}$ ）	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容器配管貫通部（X－31B） ～原子炬圧力容器	－	－	常設／緩和	SAクラス 2	
				－					ドライウエルスプレイ注入配管 A 系分 岐点～低圧代替注水系 A 系注入配管合 流点	－	－	常設／綵和	SAクラス 2	
				－					低圧代替注水系 A 系注入配管合流点 ～原子炉格納容器配管貫通部（X－ 31A）	－	－	常設／綬和	SAクラス 2	
				－					原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）	－	－	常設 ${ }^{\text {a }}$ 綵和	SAクラス 2	
				－					原子炬格納容器配管貫通部（X－31A） ～原子炉圧力容器	－	－	常設／緩和	SAクラス 2	
		$\begin{aligned} & \text { 原子炬格納容器 } \\ & \text { 安全設備 } \end{aligned}$	ポンプ		－				高圧代替注水系タービンポンプ	－	－	常設／緩和	SAクラス 2	
			容器		－				復水貯蔵タンク	－	－	常設 $/$ 綵和	SAクラス 2	
			主配管	－					原子炉圧力容器～原子炉隔崔時冾却系蒸気配管分吱点	－	－	常設／緩和	SAクラス 2	
				－					原子炉隔離時冷却系蒸気配管分岐点 ～原子炬格納容器配管貫通部（X－36）	－	－	常設／緩和	SAクラス 2	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（22／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（23／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（24／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（ $25 / 42$ ）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（26／42）

$\begin{aligned} & \text { 笽 } \\ & \text { 供 } \\ & \text { 分 } \end{aligned}$		機器区分		変更前					変更後					
				名称	設計基準対象施設程				名称	設計基準対象施設茥		重大事故等対処設備显		
				$\begin{aligned} & \text { 耐震噟 } \\ & \text { 分頧 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		$\begin{aligned} & \text { 原子炬格納容器 } \\ & \text { 安全設備 } \end{aligned}$	安全弁及び逃 がし弁		－					C41－F003A，B	－	－	常設／緩和	－
				－					C41－F022	－	－	常設／緩和	－	
			主配管	－					ほうら酸水注入系貯蔵タンク～ほうら酸水注入系ポンプ	－	－	常設／緩和	SAクラス 2	
				－					ほう酸水注入系ポンプ～原子炉格納容器配管貫通部（X－22）	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容器配管貫通部（X－22）	－	－	常設／緩和	SAクラス2	
				－					イーよりN11 ノズルまでの外管	－	－	常設／緩和	SAクラス 2	
				－					残留熱除去系熱交換器（A）	－	－	常設／防止 （DB 拡張）	SAクラス2	
				－					残留熱除去系熱交換器（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
	$\begin{aligned} & \text { 除 } \\ & \text { 系 } \end{aligned}$			－					残留熱除去系ポンプ（A），（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
	$\begin{aligned} & \text { 敋 } \\ & \text { 蓝 } \end{aligned}$			－					残留熱除去系ストレーナ（A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
				－					残留熱除去系ストレーナ（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
	$\begin{aligned} & \text { 友 } \\ & \text { 椧 } \\ & \text { nen } \end{aligned}$		安全弁及び逃 がし弁	－					E11－F048A	－	－	常設／防止 （DB 拡張）	－	
	$\begin{aligned} & \text { E } \\ & \text { E゙ } \end{aligned}$			－					E11－F048B	－	－	常設／防止 （DB 拡張）	－	
			主配管	－					残留熱除去系ストレーナ (A)～原子炉格納容器配管貫通部（X－214A）	－	－	常設／防止 （DB 拡張）	SAクラス2	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（27／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（28／42）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 多 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \stackrel{\rightharpoonup}{\prime} \\ & \stackrel{1}{1} \\ & \infty \\ & 0 \end{aligned}$			原子炉格納容器安全設備	主配管		－					ドライウェルスプレイ管	－	－	常設／防止 （DB 拡張）	SAクラス 2
					－					原子炉停止時冷却モードA系注入配管分岐点～サプレッションプール水冷却モードA系戻り配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2	
					－					サプレッションプール水冷却モード A系戻り配管分岐点～サプレッショ ンチェンバスプレイ注入配管A系分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2	
					－					サプレッションチェンバスプレイ注入配管 A 系分岐点～原子炉格納容器配管貫通部（X－213A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
					－					原子炬格納容器配管貫通部（X－213A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
					－					サプレッションチェンバスプレイ管	－	－	常設／防止 （DB 拡張）	SAクラス 2	
					－					残留熱除去系ストレーナ（B）～原子师格納容器配管貫通部（X－214B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
					－					原子炬格納容器配管貫通部（ $\mathrm{X}-214 \mathrm{~B}$ ）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
					－					原子炉格納容器配管貫通部（X－214B） ～サプレッションチェンバ出口配管 B系合流点	－	－	常設／防止 （DB 拡張）	SAクラス 2	
					－					サプレッションチェンバ出口配管B系合流点～残留熱除去系ポンプ（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
					－					残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バイパス配管分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2	
					－					残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器 （B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
					－					残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点	－	－	常設／防止 （DB 拡張）	SAクラス 2	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（29／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊${ }^{* 1}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		原子炉格納容器安全設備	主配管		－					残留熱除去系熱交換器（B）バイパス配管合流点～原子炉停止時冷却モー ドB 系注入配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炬停止時泠却モードB系注入配管分岐点～ドライウェルスプレイ注入配管 B 系分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2	
				－					$\begin{aligned} & \text { ドライウェルスプレイ注入配管 B 系 } \\ & \text { 分岐点~原子炉格納容器代替スプレ } \\ & \text { イ泠却系 } \mathrm{B} \text { 系注入配管合流点 } \end{aligned}$	－	－	常設／防止 （DB 拡張）	SA クラス 2	
				－					原子炉格納容器代替スプレイ椧却系 B 系注入配管合流点～原子炉格納容 品配管貫通部 $(\mathrm{X}-30 \mathrm{~B})$器配管貫通部（X－30B）	－	－	常設／防止 （DB 拡張）	SA クラス 2	
				－					原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~B}$ ）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
				－					$\begin{aligned} & \text { 原子炉停止時冷却モード B 系注入配 } \\ & \text { 管分岐点~サプレッションフルル水 } \end{aligned}$ 泠却モードB系戻り配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2	
				－					サプレッションプール水泠却モード B 系戻り配管分岐点～サプレッショ ンチェンバスプレイ注入配管B系分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2	
				－					サプレッションチェンバスプレイ注 入配管B B 系分岐点～原子炉格納容器 配管貫通部（X－213B）	－	－	常設／防止 （DB 拡張）	SA クラス 2	
				－					原子炬格納容器配管貫通部（X－213B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
	残 熱	原子炉格納容器安全設備	熱交換器	－					残留熱除去系熱交換器（A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
	$\begin{aligned} & \text { ル蒢 } \\ & \text { 水采 } \end{aligned}$			－					残留熱除去系熱交換器（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
	$\begin{aligned} & \text { 椧开 } \\ & \text { 却 } \end{aligned}$		ポンプ	－					残留熱除去系ポンプ（A），（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
	ビシ		3過装置	－					残留熱除去系ストレーナ（A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
	$\begin{aligned} & \text { ンo } \\ & \text { । } \end{aligned}$			－					残留熱除去系ストレーナ（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（30／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（31／42）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \\ & \text { } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 多 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
						設計基準対象施設＊1		重大事故等対処設備＊${ }^{*}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
					名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震 重要度 分頪	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \stackrel{\rightharpoonup}{\prime} \\ & \stackrel{1}{1} \\ & \infty \\ & \infty \end{aligned}$	圧方澸備備の他の安䛒備		原子炉格納容器安全設備	主配管	－					サプレッションプール水泠却モード A 系戻り配管分岐点～原子炬格納容器配管貫通部（X－215A）	－	－	常設／防止 （DB 拡張）	SAクラス 2
					－					原子炉格納容器配管貫通部（X－215A）	－	－	常設／防止 （DB 拡張）	SAクラス 2
					－					原子炉格納容器配管貫通部（X－215A） ～サプレッションプール水冷却配管 A系開放端	－	－	常設／防止 （DB 拡張）	SA クラス 2
					－					残留熱除去系ストレーナ（B）～原子炬格納容器配管貫通部（X－214B）	－	－	常設／防止 （DB 拡張）	SAクラス 2
					－					原子炉格納容器配管貫通部（X－214B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
					－					原子炉格納容器配管貫通部（X－214B） ～サプレッションチェンバ出口配管 B 系合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2
					－					サプレッションチェンバ出口配管B系合流点～残留熱除去系ポンプ（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2
					－					残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バイパス配管分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2
					－					残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器 （B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
					－					残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点	－	－	常設／防止 （DB 拡張）	SAクラス 2
					－					残留熱除去系熱交換器（B）バイパス配管合流点～原子炉停止時冷却モー ド B 系注入配管分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2
					－					原子炉停止時冷却モード B 系注入配管分岐点～サプレッションプール水泠却モード B 系戻り配管分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2
					－					サプレッションプール水冷却モード B系戻り配管分岐点～原子炬格納容器配管貫通部（X－215B）	－	－	常設／防止 （DB 拡張）	SA クラス 2

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（32／42）

$\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊${ }^{* 1}$		重大事故等対処設備＊${ }^{*}$		名称	設計基準対象施設＊${ }^{*}$		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 分類		機器クラス	設備分類	重大事故等機器クラス		
	$\begin{array}{\|c\|} \hline \\ \hline \end{array}$	原子炉格納容器安全設備	主配管		－					原子炉格納容器配管貫通部（X－215B）	－	－	常設／防止 （DB 拡張）	SAクラス 2
				－					原子炉格納容器配管貫通部（X－215B）～ サプレッションプール水冷却配管 B 系開放端	－	－	常設／防止 （DB 拡張）	SA クラス 2	
	韭唃妿ス処理系	放射性物質浱度制御設備及び可燃性ガス莀度制御設備並びに格納容器再循環設備	加熱器	非常用がス処理系空気乾燥装置	S	－		－	変更なし			－		
			主要弁	T46－F001A，B	S	クラス 4		－	変更なし			－		
				T46－F003A，B	S	クラス 4		－	変更なし			－		
			主配管	T48－F045～非常用ガス処理系空気乾燥装置入口配管合流点	S	クラス 4		－	変更なし			－		
				非常用ガス処理系空気乾燥装置入口配管合流点～非常用ガス処理系排風機	S	クラス 4		－	変更なし			常設／緩和	SAクラス 2	
				原子炉建屋内～非常用ガス処理系排風機入口配管合流点	S	クラス 4		－	変更なし			常設／緩和	SAクラス 2	
				非常用ガス処理系排風機～非常用ガス処理系フィルタ装置	S	クラス 4		－	変更なし			常設／緩和	SAクラス 2	
				非常用ガス処理系フィルタ装置～非常用ガス処理系フィルタ装置出口配管合 流点	S	クラス 4		－	変更なし			常設／緩和	SA クラス 2	
				非常用ガス処理系フィルタ装置出口配管合流点～排気筒	S	クラス 4		－	変更なし			常設／緩和	SAクラス 2	
				非常用ガス処理系空気乾燥装置		－		－						
				非常用ガス処理系フィルタ装置		－		－						

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（33／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（34／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（35／42）

$\begin{aligned} & \text { 䧼 } \\ & \text { 㸚 } \end{aligned}$	緗森	機器区分		変更前					変更後					
				名称	設計基準対象施設程				名称	設計基準対象施設茥		重大事故等対処設備显		
				$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	主配管		－					窒素供給用ホース（50A：5m）	－	－	可搬／愛和	SAクラス 3
				－					窒素供給用ヘッダ	－	－	可搬／緩和	SAクラス3	
				－					可搬型窒素が供給装置接䌊管	－	－	可搬／緩和	SAクラス3	
			ポンプ	－					大容量送水ポンプ（タイプ I）	－	－	可搬／緩和	SAクラス3	
			圧縮機	－					可搬型空素が大供給装置	－	－	可搬／綵和	－	
			容器	－					フィルタ装置䉼	－	－	常設／緩和	SAクラス2	
			安全弁及び逃 がし弁	－					T63－F006	－	－	常設／緩和	－	
			主要弁	－					T48－F019	－	－	常設／緩和	SAクラス2	
				－					T48－F022	－	－	常設／緩和	SAクラス2	
				－					T63－F001	－	－	常設／緩和	SAクラス 2	
				－					T63－F002	－	－	常設／緩和	SAクラス 2	
			主配管	－					原子炬格納容器配管貫通部（ $\mathrm{S}_{\text {－}}$ 230）	－	－	常設／緩和	SAクラス2	
				－					原子炉格納容器配管貫通部（X－230） ～ドライウェル出口配管分岐点	－	－	常設／緩和	SAクラス 2	

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（36／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（37／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（38／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（39／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（40／42）

O 2 （1）II R 2

表1原子炉格納施設の主要設備リスト（41／42）

O 2 （1）II R 2

表1原子炬格納施設の主要設備リスト（42／42）

$\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊${ }^{\text {¹ }}$		重大事故等対処設備＊${ }^{* 1}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		圧力逃がし装置	主配管		－					窒素供給用ヘッダ	－	－	可搬／防止 可搬／緩和	SA クラス 3
				－					可搬型窒素ガス供給装置接続管	－	－	可搬／防止 可搬／緩和	SA クラス 3	
				－					取水用ホース（250A：5m， $10 \mathrm{~m}, 20 \mathrm{~m}$ ）	－	－	可搬／防止可搬／緩和	SA クラス 3	
				－					$\text { 送水用ホース (300A : } 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20$ $\mathrm{m}, 50 \mathrm{~m})$	－	－	可搬／防止可搬／緩和	SA クラス 3	
				－					注水用ヘッダ	－	－	可搬／防止可搬／緩和	SA クラス 3	
				－					送水用ホース（65A ：20m）	－	－	可搬／防止 可搬／緩和	SA クラス 3	
			フィルター	－					フィルタ装置＊7	－	－	常設耐震／防止常設／緩和	SA クラス 2	

注記＊1 ：表1に用いる略語の定義は「原子炉本体」の「8 原子灲本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。
＊ 2 ：本設備は記載の適正化のみ行うものであり，手続き対象外である。
$* 2$ ：本設備は記載の適正化のみ行うものであり，手続き対象外で
$* 3$ ：当該配管は，主配管に該当しないため記載の適正化を行う。
＊3：当該配管は，主配管に該当しないため記載の適正化じ装置内配管がクラス 3 ，それ以外はクラスなし。
$* 4$ ：装置内配管がクラス 3, それ以外はクラスなし。
$* 5$ ：本設備は，フィルターとして使用するフィルタ装置と同一機
＊6：当該尣は，主要弁に該当しないため記載の適正化を行う。
＊7 ：本設備は，容器として使用するフィルタ装置と同一機器である。

O 2 （1）II R 2

表2原子炉格納施設の兼用設備リスト（1／5）

O 2 （1）II R 2

表2原子炉格納施設の兼用設備リスト（2／5）

		$\begin{aligned} & \text { 系 } \\ & \text { 總 } \\ & \text { 称 } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { 機 } \\ \text { 訔 } \\ \text { 分 } \end{array}$	主たる機能の施設／設備区分	変更前					変更後				
					$\begin{array}{\|l\|l\|} \hline \text { 名 } \\ \text { 称 } \end{array}$	設計基準対象施設＊1		重大事故等対処設備＊${ }^{\text {＊}}$		名称	設計基準対象施設＊		重大事故等対処設備＊1	
						$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラ ス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
										炉心シュラウド		－	常設／緩和	－
										シュラウドサポート		－	常設／緩和	－
										炉心シュラウド支持ロッド		－	常設／緩和	－
				子炉本体						上部格子板		－	常設／緩和	－
		茼								炬心支持板		－	常設／緩和	－
		$\begin{aligned} & \text { 替 } \\ & \text { 注 } \end{aligned}$	－							中央燃料支持金具		－	常設／緩和	－
		系								周辺燃料支持金具		－	常設／緩和	－
										制御棒案内管		－	常設／緩和	－
	原			原子炉本体原子炉圧力容器						原子炉圧力容器		－	常設／緩和	SAクラス 2
	$\begin{aligned} & \text { 塥 } \\ & \text { 納 } \end{aligned}$			原子炉本体 原子炉圧力容器内部構造物						給水スパージャ		－	常設／緩和	－
	$\begin{aligned} & \text { 器 } \\ & \text { 第 } \end{aligned}$									炬心シュラウド		－	常設／緩和	－
	$\begin{aligned} & \text { 設㣁 } \end{aligned}$									シュラウドサポート		－	常設／緩和	－
										炉心シュラウド支持ロッド		－	常設／緩和	－
				原子炉本体						上部格子板		－	常設／緩和	－
		$\begin{aligned} & \text { 坒 } \\ & \text { 代 } \end{aligned}$		炉心又持構造物						炉心支持板		－	常設／緩和	－
		注								中央燃料支持金具		－	常設／緩和	－
		系								周辺燃料支持金具		－	常設／緩和	－
										制御棒案内管		－	常設／緩和	－
				原子炉本体原子炉圧力容器						原子炉圧力容器		－	常設／緩和	SA クラス 2
				原子炉本体原子炉圧力容器内部構造物						残留熱除去系配管（原子炉圧力容器内部）		－	常設／緩和	－

O 2 （1）II R 2

表2原子炉格納施設の兼用設備リスト（3／5）

O 2 （1）II R 2

表2原子炉格納施設の兼用設備リスト（4／5）

O 2 （1）II R 2

表2原子炉格納施設の兼用設備リスト（5／5）

注記 $* 1$ ：表 2 に用いる略語の定義は「原子炬本体」の「 8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備りスト 付表1」による。
（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 原子炉格納施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 原子炉格納施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 原子炉格納施設に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定）	第2章 個別項目 原子炉格納施設に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） －J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 －原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 601 •補－1984）

変更前	変更後
- 原子炉格納容器の漏えい率試験規程（J E A C 4 2 0 3－2008） - 日本建築学会 1987 年 鉄骨鉄筋コンクリート構造計算規準•同解説	- 原子炉格納容器の漏えい率試験規程（J E A C 4 2 0 3－2008） - 日本建築学会 1987 年 鉄骨鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 2001 年 建築基礎構造設計指針 - 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－ - J I S B 8 2 4 3－1981 圧力容器の構造

