| 女川原子力発電所第 2 号機 |  |
| :---: | :---: | 工事計画審査資料

# 工事計画に係る説明資料 

放射線管理施設

## （基本設計方針）

2021年10月
東北電力株式会社
6.4 放射線管理施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

| 変更前 | 変更後 |
| :---: | :---: |
| 用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。 | 用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。 |
| 第1章 共通項目 <br> 放射線管理施設の共通項目である「1．地盤等， 2 ．自然現象， 3 。火災， 4．設備に対する要求（4．5 安全弁等，4．6 逆止め弁，4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。 | 第1章 共通項目 <br> 放射線管理施設の共通項目である「1．地盤等， 2 ．自然現象， 3 。火災， 4．溢水等，5．設備に対する要求（5．5 安全弁等，5．6 逆止め弁，5．7内燃機関及びガスタービンの設計条件， 5.8 電気設備の設計条件を除く。）， <br> 6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方 <br> 針「第1章 共通項目」に基づく設計とする。 |
| 第2章 個別項目 <br> 1．放射線管理施設 <br> 1.1 放射線管理用計測装置 <br> 発電用原子炉施設には，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリング設備，エリアモニタ リング設備及び放射線サーベイ機器（第 1 号機設備，第 1 ， 2 ， 3 号機共用）を設ける設計とする。 <br> 出入管理関係設備（第 1 号機設備，第 1,2 号機共用）として，放射線 | 第2章 個別項目 <br> 1．放射線管理施設 <br> 1.1 放射線管理用計測装置 <br> 発電用原子炉施設には，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリング設備，エリアモニタ リング設備及び放射線サーベイ機器（第 1 号機設備，第 $1,2,3$ 号機共用）を設ける設計とする。 <br> 出入管理関係設備（第 1 号機設備，第 1,2 号機共用）として，放射線 |


| 変更前 | 変更後 |
| :---: | :---: |
| 業務従事者及び一時立入者の出入管理，汚染管理のための測定機器等を設ける設計とする。 <br> 各系統の試料，放射性廃棄物の放出管理用試料及び環境試料の化学分析並びに放射能測定を行うため，化学分析室（第 1 号機設備，第 1,2号機共用），放射能測定室（第 1 号機設備，第 1 ， 2 号機共用（以下同 じ。））に測定機器を設ける設計とする。 <br> 発電所外へ放出する放射性物質の濃度，周辺監視区域境界付近の空間線量率等を監視するためにプロセスモニタリング設備，固定式周辺モニ タリング設備及び移動式周辺モニタリング設備を設ける設計とする。ま た，風向，風速その他の気象条件を測定するため，環境測定装置を設け る設計とする。 <br> プロセスモニタリング設備，エリアモニタリング設備及び固定式周辺 モニタリング設備については，設計基準事故時における迅速な対応のた めに必要な情報を中央制御室に表示できる設計とする。 <br> 設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼ すおそれが発生した場合（原子炉建屋原子炉棟内の放射能レベルが設定値を超えた場合，主蒸気管又は蒸気式空気抽出器排ガス中の放射能レベ ルが設定値を超えた場合等）に，これらを確実に検出して自動的に警報 （原子炉建屋放射能高，主蒸気管放射能高等）を発信する装置を設ける設計とする。 <br> 排気筒の出口又はこれに近接する箇所における排気中の放射性物質 の濃度，管理区域内において人が常時立ち入る場所その他放射線管理を | 業務従事者及び一時立入者の出入管理，汚染管理のための測定機器等を設ける設計とする。 <br> 各系統の試料，放射性廃棄物の放出管理用試料及び環境試料の化学分析並びに放射能測定を行うため，化学分析室（第1号機設備，第1， 2号機共用），放射能測定室（第 1 号機設備，第 1,2 号機共用（以下同 じ。））に測定機器を設ける設計とする。 <br> 発電所外へ放出する放射性物質の濃度，周辺監視区域境界付近の空間線量率等を監視するためにプロセスモニタリング設備，固定式周辺モニ タリング設備及び移動式周辺モニタリング設備を設ける設計とする。ま た，風向，風速その他の気象条件を測定するため，環境測定装置を設け る設計とする。 <br> プロセスモニタリング設備，エリアモニタリング設備及び固定式周辺 モニタリング設備については，設計基準事故時における迅速な対応のた めに必要な情報を中央制御室及び緊急時対策所に表示できる設計とす る。 <br> 設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼ すおそれが発生した場合（原子炉建屋原子炉棟内の放射能レベルが設定値を超えた場合，主蒸気管又は蒸気式空気抽出器排ガス中の放射能レベ ルが設定値を超えた場合等）に，これらを確実に検出して自動的に警報 （原子炉建屋放射能高，主蒸気管放射能高等）を発信する装置を設ける設計とする。 <br> 排気筒の出口又はこれに近接する箇所における排気中の放射性物質 の濃度，管理区域内において人が常時立ち入る場所その他放射線管理を |


| 変更前 | 変更後 |
| :---: | :---: |
| 特に必要とする場所（燃料取扱場所その他の放射線業務従事者に対する放射線障害の防止のための措置を必要とする場所をいう。）の線量当量率及び周辺監視区域に隣接する地域における空間線量率が著しく上昇 した場合に，これらを確実に検出して自動的に中央制御室に警報（排気筒放射能高，エリア放射線モニタ放射能高及び周辺監視区域放射能高） を発信する装置を設ける設計とする。 <br> 上記の警報を発信する装置は，表示ランプの点灯，ブザー鳴動等によ り運転員に通報できる設計とする。 | 特に必要とする場所（燃料取扱場所その他の放射線業務従事者に対する放射線障害の防止のための措置を必要とする場所をいう。）の線量当量率及び周辺監視区域に隣接する地域における空間線量率が著しく上昇 した場合に，これらを確実に検出して自動的に中央制御室に警報（排気筒放射能高，エリア放射線モニタ放射能高及び周辺監視区域放射能高） を発信する装置を設ける設計とする。 <br> 上記の警報を発信する装置は，表示ランプの点灯，ブザー鳴動等によ り運転員に通報できる設計とする。 <br> 重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域 を含む。）において，発電用原子炉施設から放出される放射性物質の濃度及び放射線量を監視し，及び測定し，並びにその結果を記録するため に，移動式周辺モニタリング設備を保管する設計とする。 <br> 重大事故等が発生した場合に発電所において，風向，風速その他の気象条件を測定し，及びその結果を記録するために，環境測定装置を保管 する設計とする。 <br> 重大事故等が発生し，当該重大事故等に対処するために監視すること が必要なパラメータとして，原子炉格納容器内の放射線量率，最終ヒー トシンクの確保及び使用済燃料プールの監視に必要なパラメータを計測する装置を設ける設計とする。 <br> 重大事故等が発生し，計測機器（非常用のものを含む。）の故障によ り，当該重大事故等に対処するために監視することが必要なパラメータ を計測することが困難となった場合において，当該パラメータを推定す るために必要なパラメータを計測する設備を設置する設計とする。 <br> 重大事故等に対処するために監視することが必要なパラメータは，炉 |



1．1．1 プロセスモニタリング設備
通常運転時，運転時の異常な過渡変化時及び設計基準事故時にお いて，原子炉格納容器内の放射性物質の濃度及び線量当量率，主蒸気管中及び空気抽出器その他の蒸気タービン又は復水器に接続す る放射性物質を内包する設備の排ガス中の放射性物質の濃度，排気筒の出口又はこれに近接する箇所における排気中の放射性物質の濃度，排水口近傍における排水中の放射性物質の濃度及び管理区域内において人が常時立ち入る場所その他放射線管理を特に必要と する場所の線量当量率を計測するためのプロセスモニタリング設備を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設計とする。
原子炉冷却材の放射性物質の濃度，排気筒の出口又はこれに近接 する箇所における排気中の放射性物質の濃度及び排水口又はこれ に近接する箇所における排水中の放射性物質の濃度は，試料採取設備により断続的に試料を採取し分析を行い，測定結果を記録する。

## 変更後

とする。また，記録は必要な容量を保存できる設計とする。
炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握するためのパラメータを計測す る装置の電源は，非常用交流電源設備又は非常用直流電源設備の喪失等 により計器電源が喪失した場合において，代替電源設備として常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用できる設計 とする。

1．1．1 プロセスモニタリング設備
通常運転時，運転時の異常な過渡変化時及び設計基準事故時にお いて，原子炉格納容器内の放射性物質の濃度及び線量当量率，主蒸気管中及び空気抽出器その他の蒸気タービン又は復水器に接続す る放射性物質を内包する設備の排ガス中の放射性物質の濃度，排気筒の出口又はこれに近接する箇所における排気中の放射性物質の濃度，排水口近傍における排水中の放射性物質の濃度及び管理区域内において人が常時立ち入る場所その他放射線管理を特に必要と する場所の線量当量率を計測するためのプロセスモニタリング設備を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録し，及び保存することができる設計とする。

原子炉冷却材の放射性物質の濃度，排気筒の出口又はこれに近接 する箇所における排気中の放射性物質の濃度及び排水口又はこれ に近接する箇所における排水中の放射性物質の濃度は，試料採取設備により断続的に試料を採取し分析を行い，測定結果を記録し，及

| 変更前 | 変更後 |
| :---: | :---: |
| 放射性物質により污染するおそれがある管理区域内に開口部が ある排水路を施設しないことから，排水路の出口近傍における排水中の放射性物質の濃度を計測するための設備を設けない設計とす る。 <br> プロセスモニタリング設備のうち，原子师格納容器内の線量当量率を計測する格納容器内雰囲気放射線モニタ（D／W）及び格納容器内雰囲気放射線モニタ（S／C）は，それぞれ多重性，独立性を碓保 した設計とする。 | び保存する。 <br> 放射性物質により污染するおそれがある管理区域内に開口部が ある排水路を施設しないことから，排水路の出口近傍における排水中の放射性物質の濃度を計測するための設備を設けない設計とす る。 <br> プロセスモニタリング設備のうち，原子炉格納容器内の線量当量率を計測する格納容器内雰囲気放射線モニタ（D／W）及び格納容器内雰囲気放射線モニタ（S／C）は，それぞれ多重性，独立性を確保 した設計とする。 <br> プロセスモニタリング設備のらち，原子炉建屋原子炉棟排気放射線モニタ及び燃料取替エリア放射線モニタは，外部電源が使用でき ない場合においても非常用所内電源系からの電源供給により，線量当量率を計測することができる設計とする。 <br> 原子炉格納容器フィルタベント系の排出経路における放射線量率を測定し，放射性物質濃度を推定できるよう，フィルタ装置出口配管にフィルタ装置出口放射線モニタを設ける設計とする。 <br> フィルタ装置出口放射線モニタは，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。 |
| 1．1．2 エリアモニタリング設備 <br> 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内において人が常時立ち入る場所その他放射線管理を特 に必要とする場所の線量当量率を計測するためのエリアモニタリ | 1．1．2 エリアモニタリング設備 <br> 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内において人が常時立ち入る場所その他放射線管理を特 に必要とする場所の線量当量率を計測するためのエリアモニタリ |



機設備，第1，2，3号機共用（以下同じ。））を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設計とする。

周辺監視区域境界付近の放射性物質の濃度は，構内ダストモニタ （第 1 号機設備，第 1 ， 2 ， 3 号機共用（以下同じ。））により断続的 に試料を採取し分析を行い，測定結果を記録できる設計とする。

1．1．4 移動式周辺モニタリング設備
通常運転時，運転時の異常な過渡変化時及び設計基準事故時にお いて，周辺監視区域境界付近の放射性物質の濃度を測定するための移動式周辺モニタリング設備として，空気中の放射性粒子及び放射性よう素の濃度を測定するサンプラと測定器を備えた放射能観測

変更後
機設備，第1，2，3号機共用（以下同じ。））を設け，計測結果を中央制御室で監視し，現場等で記録及び保存を行うことができる設計 とする。また，緊急時対策所でも監視することができる設計とする。 モニタリングポストは，外部電源が使用できない場合において も，非常用交流電源設備により，空間線量率を計測することができ る設計とする。さらに，モニタリングポストは，専用の無停電電源装置を有し，電源切替時の短時間の停電時に電源を供給できる設計 とし，重大事故等が発生した場合には，非常用交流電源設備に加え て，代替電源設備である常設代替交流電源設備から給電できる設計 とする。
モニタリングポストで計測したデータの伝送系は, モニタリング ポスト設置場所から中央制御室及び中央制御室から緊急時対策所建屋間において有線系回線及び無線系回線により多様性を有する設計とする。

周辺監視区域境界付近の放射性物質の濃度は，構内ダストモニタ
（第1号機設備，第1，2，3号機共用（以下同じ。））により断続的 に試料を採取し分析を行い，測定結果を記録し，及び保存すること ができる設計とする。

1．1．4 移動式周辺モニタリング設備
通常運転時，運転時の異常な過渡変化時及び設計基準事故時にお いて，周辺監視区域境界付近の放射性物質の濃度を測定するための移動式周辺モニタリング設備として，空気中の放射性粒子及び放射性よう素の濃度を測定するサンプラと測定器を備えた放射能観測

| 変更前 | 変更後 |
| :---: | :---: |
| 車（第 1 号機設備，第 1，2，3号機共用，屋外保管（以下同じ。）） を設け，測定結果を表示し，記録できる設計とする。ただし，放射能観測車による断続的な試料の分析は，従事者が計測結果を記録 し，その記録を確認することをもって，これに代えるものとする。 | 車（第 1 号機設備，第 $1,2,3$ 号機共用，屋外に保管（以下同じ。）） を設け，測定結果を表示し，記録し，及び保存することができる設計とする。ただし，放射能観測車による断続的な試料の分析は，従事者が計測結果を記録し，及びこれを保存し，その記録を確認する ことをもって，これに代えるものとする。 <br> 重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域を含む。）において，発電用原子炬施設から放出される放射性物質の濃度（空気中，水中，土壌中）及び放射線量を監視するため の移動式周辺モニタリング設備として，$\gamma$ 線サーベイメータ，$\beta$ 線 サーベイメータ，$\alpha$ 線サーベイメータ及び電離箱サーベイメータを設け，測定結果を記録し，保存できるように測定値を表示できる設計とし，可搬型ダスト・よう素サンプラ（個数 2 （予備 1）），小型船舶（個数1（予備 1））を保管する設計とする。 <br> 放射能観測車のダスト・よう素サンプラ，放射性よう素測定装置又は放射性ダスト測定装置が機能喪失した場合にその機能を代替 する重大事故等対処設備として，可搬型ダスト・よう素サンプラ， $\gamma$ 線サーベイメータ及び $\beta$ 線サーベイメータを設け，重大事故等が発生した場合に，発電所及びその周辺において，発電用原子炬施設 から放出される放射性物質の濃度（空気中）を監視し，及び測定し，並びにその結果を記録し，保存できるように測定値を表示できる設計とし，放射能観測車を代替し得る十分な個数を保管する設計とす る。 <br> モニタリングポストが機能喪失した場合にその機能を代替する移動式周辺モニタリング設備として，可搬型モニタリングポストを |



下同じ。））を設け，計測結果を中央制御室に表示できる設計とする。 また，発電所敷地内における風向及び風速の計測結果を記録できる設計とする。

変更後
下同じ。））を設け，計測結果を中央制御室に表示できる設計とする。 また，発電所敷地内における風向及び風速の計測結果を記録し，及 び保存することができる設計とする。

重大事故等が発生した場合に発電所において，風向，風速その他 の気象条件を測定し，及びその結果を記録するための設備として，代替気象観測設備（個数 1 （予備 1））を保管する設計とする。

気象観測設備が機能喪失した場合にその機能を代替する重大事故等対処設備として，代替気象観測設備は，重大事故等が発生した場合に，発電所において，風向，風速その他の気象条件を測定し，及びその結果を記録できる設計とする。

代替気象観測設備の指示値は，衛星系回線により伝送し，緊急時対策所で代替気象観測設備データ処理装置にて監視できる設計と する。

代替気象観測設備で測定した風向，風速その他の気象条件は，電磁的に記録，保存し，電源喪失により保存した記録が失われず，必要な容量を保存できる設計とする。

1．1．6 設備の共用
放射能測定室は，第1号機と共用するが，試料の分析等を行うた めに必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。

焼却炉建屋排気口ダストモニタ（第 1 号機設備，第 $1,2,3$ 号機共用），サイトバンカ建屋排気口放射線モニタ（第1号機設備，第 1，2， 3 号機共用），液体廃棄物処理系排水放射線モニタ（第 1， 2

| 変更前 | 変更後 |
| :---: | :---: |
| 号機共用），焼却炉建屋放射線モニタ（第 1 号機設備，第 $1,2,3$号機共用）及びサイトバンカ建屋放射線モニタ（第 1 号機設備，第 1，2， 3 号機共用）は，女川原子力発電所共用エリア又は設備にお ける放射線量率等を測定するために必要な仕様を満足する設計と することで，共用により安全性を損なわない設計とする。 <br> モニタリングポスト，構内ダストモニタ，放射能観測車及び気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定するために必要な仕様を満足する設計とするこ とで，共用により安全性を損なわない設計とする。 | 号機共用），焼却炉建屋放射線モニタ（第 1 号機設備，第 $1, ~ 2, ~ 3$号機共用）及びサイトバンカ建屋放射線モニタ（第1号機設備，第 <br> 1，2， 3 号機共用）は，女川原子力発電所共用エリア又は設備にお ける放射線量率等を測定するために必要な仕様を満足する設計と することで，共用により安全性を損なわない設計とする。 <br> モニタリングポスト，構内ダストモニタ，放射能観測車及び気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定するために必要な仕様を満足する設計とするこ とで，共用により安全性を損なわない設計とする。 |
| 2．換気設備，生体遮蔽装置等 <br> 2.1 中央制御室の居住性を確保するための防護措置 <br> 中央制御室は，冷却材喪失等の設計基準事故時に，中央制御室内にと どまり，必要な操作及び措置を行う運転員が過度の被ばくを受けないよ ら施設し，運転員の勤務形態を考慮し，事故後 30 日間において，運転員が中央制御室に入り，とどまっても，中央制御室しやへい壁を透過す る放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室の気密性並びに中央制御室換気空調系，中央制御室しやへい壁， 2 次しやへい壁及び補助しやへいの機能とあいまっ て，「原子力発電所中央制御室の居住性に係る被ばく評価手法について （内規）」に基づく被ばく評価により，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に示 される 100 mSv を下回る設計とする。 <br> また，運転員その他の従事者が中央制御室にとどまるため，気体状の | 2．換気設備，生体遮蔽装置等 <br> 2．1 中央制御室及び緊急時対策所の居住性を確保するための防護措置中央制御室は，冷却材喪失等の設計基準事故時に，中央制御室内にと どまり，必要な操作及び措置を行う運転員が過度の被ばくを受けないよ う施設し，運転員の勤務形態を考慮し，事故後 30 日間において，運転員が中央制御室に入り，とどまっても，中央制御室しやへい壁を透過す る放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室の気密性並びに中央制御室換気空調系，中央制御室しやへい壁， 2 次しやへい壁及び補助しやへいの機能とあいまっ て，「原子力発電所中央制御室の居住性に係る被ばく評価手法について （内規）」に基づく被ばく評価により，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に示 される 100 mSv を下回る設計とする。 <br> また，運転員その他の従事者が中央制御室にとどまるため，気体状の |

## $\omega$

| 変更前 | 変更後 |
| :---: | :---: |
| 放射性物質及び中央制御室外の火災等により発生する燃焼ガス及び有毒ガスに対する換気設備の隔離その他の適切に防護するための設備を設ける設計とする。 | 放射性物質及び中央制御室外の火災等により発生する燃焼ガス，ばい煙，有毒ガス及び降下火砕物に対する換気設備の隔離その他の適切に防護するための設備を設ける設計とする。 <br> 運転員の被ばくの観点から結果が最も厳しくなる重大事故等時にお いても中央制御室に運転員がとどまるために必要な設備を施設し，中央制御室しやへい壁を透過する放射線による線量，中央制御室に取り込ま れた外気による線量及び入退域時の線量が，全面マスク等の着用及び運転員の交替要員体制を考慮し，その実施のための体制を整備すること で，中央制御室の気密性並びに中央制御室換気空調系，中央制御室待避所加圧空気供給系，中央制御室しゃへい壁，中央制御室待避所遮蔽，2次しゃへい壁及び補助しやへいの機能とあいまって，運転員の実効線量 が 7 日間で 100 mSv を超えない設計とする。炉心の著しい損傷が発生し た場合における居住性に係る被ばく評価では，設計基準事故時の手法を参考にするとともに，炉心の著しい損傷が発生した場合に放出される放射性物質の種類，全交流動力電源喪失時の中央制御室換気空調系の起動遅れ等，炉心の著しい損傷が発生した場合の評価条件を適切に考慮す る。 <br> 設計基準事故時及び炉心の著しい損傷が発生した場合において，中央制御室内及び中央制御室待避所内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあることを把握できるよう，計測制御系統施設の酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）を使用し，中央制御室内及び中央制御室待避所内の居住性を確保できる設計とする。 <br> 炉心の著しい損傷後の原子炉格納容器フィルタベント系を作動させ |


|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| $\begin{aligned} & p \\ & \frac{1}{I} \\ & \stackrel{1}{4} \end{aligned}$ |  | る場合に放出される放射性雲通過時に，運転員の被ばくを低減するた め，中央制御室内に中央制御室待避所を設け，中央制御室待避所には，遮蔽設備として，中央制御室待避所遮蔽を設ける。中央制御室待避所は，中央制御室待避所加圧設備（空気ボンベ）で正圧化することにより，放射性物質が中央制御室待避所に流入することを一定時間完全に防ぐこ とができる設計とする。 <br> 差圧計（中央制御室待避所用）（個数 1 ，計測範囲 $0 \sim 200 \mathrm{~Pa}$ ）により，中央制御室待避所と中央制御室との間が正圧化に必要な差圧が確保で きていることを把握できる設計とする。 <br> 炉心の著しい損傷が発生した場合において，原子炉格納施設の非常用 ガス処理系及び原子炉建屋ブローアウトパネル閉止装置により，運転員 の被ばくを低減できる設計とする。 <br> 重大事故等が発生し，中央制御室の外側が放射性物質により污染した ような状況下において，運転員が中央制御室の外側から中央制御室に放射性物質による污染を持込むことを防止するため，身体サーベイ及び作業服の着替え等を行らための区画を設ける設計とし，身体サーベイの結果，運転員の污染が確認された場合は，運転員の除染を行うことができ る区画を，身体サーベイを行う区画に隣接して設置する設計とする。 <br> 中央制御室及び中央制御室待避所内の区画の照明は，可搬型照明（SA） を使用し，身体サーベイ及び作業服の着替え等を行らための区画の照明 は，乾電池内蔵型照明を使用する。 <br> 中央制御室送風機，中央制御室排風機及び中央制御室再循環送風機 は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とする。 |




| 変更前 | 変更後 |
| :---: | :---: |
| これらのフィルタを内包するフィルタユニットは，フィルタの取替え が容易となるよう取替えに必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易な構造とする。 <br> 吸気口は，放射性物質に汚染された空気を吸入し難いように，排気筒， サイトバンカ建屋排気口及び焼却炉建屋排気口から十分離れた位置に設置する。 | これらのフィルタを内包するフィルタユニットは，フィルタの取替え が容易となるよう取替えに必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易な構造とする。 <br> 吸気口は，放射性物質に汚染された空気を吸入し難いように，排気筒， サイトバンカ建屋排気口及び焼却炉建屋排気口から十分離れた位置に設置する。 |
| 2．2．1 中央制御室換気空調系 <br> 中央制御室の換気及び冷暖房は，中央制御室送風機，中央制御室再循環フィルタ装置，中央制御室再循環送風機，中央制御室排風機等から構成する中央制御室換気空調系により行う。 <br> 中央制御室外の火災等により発生する燃焼ガス及び有毒ガスに対し，中央制御室換気空調系の外気との連絡口を遮断し，事故時運転モードに切替えることが可能な設計とする。 <br> 中央制御室換気空調系は，通常のラインの他，高性能エアフィル タ及びチャコールエアフィルタを内蔵した中央制御室再循環フィ ルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時には外気との連絡口を遮断し，中央制御室再循環フィルタ装置を通る事故時運転モードとし，運転員を被ばくか ら防護する設計とする。外部との遮断が長期にわたり，室内の雰囲気が悪くなった場合には，外気を中央制御室再循環フィルタ装置で浄化しながら取り入れることも可能な設計とする。 | 2．2．1 中央制御室換気空調系 <br> 中央制御室の換気及び冷暖房は，中央制御室送風機，中央制御室再循環フィルタ装置，中央制御室再循環送風機，中央制御室排風機等から構成する中央制御室換気空調系により行う。 <br> 中央制御室外の火災等により発生する燃焼ガス，ばい煙，有毒ガ ス及び降下火砕物に対し，中央制御室換気空調系の外気取入れを手動で遮断し，事故時運転モードに切替えることが可能な設計とす る。 <br> 中央制御室換気空調系は，通常のラインの他，高性能エアフィル タ及びチャコールエアフィルタを内蔵した中央制御室再循環フィ ルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時及び重大事故等時には，中央制御室換気空調系の中央制御室外気取入ダンパ（前），（後）（V30－D303，D304），中央制御室少量外気取入ダンパ（A），（B）（V30－D301A，B）及び中央制御室排風機（A），（B）出ロダンパ（V30－D305A，B）を閉とすること により外気との連絡口を遮断し，中央制御室再循環フィルタ装置入 ロダンパ（A），（B）（V30－D302A，B）を開とすることにより中央制御 |




## 2．2．2 原子炉建屋原子炉棟換気空調系

原子炉建屋原子炉棟換気空調系は，原子炉棟送風機，原子炉棟排風機等で構成し，原子炉建屋原子炉棟の換気を行う。汚染の可能性 のある区域は，給•排気量を適切に設定することによって，清浄区域より負圧に保つ。供給された空気は，フィルタを通した後，排風機により排気筒から放出する。

給気及び排気ダクトには，それぞれ 2 個の空気作動の隔離弁を設け，排気ダクトの放射能レベルが高くなった場合等に自動閉鎖 し，本換気空調系から非常用ガス処理系に切り換わることで放射性 ガスの放出を防ぐ設計とする。

## 2．2．3 タービン建屋換気空調系

タービン建屋換気空調系はタービン建屋送風機，タービン建屋排風機等から構成され，建屋内の空気の流れを適正に保ち，清浄区域

## 変更後

計にあたつては，緊急時対策所の建物の気密性に対して十分な余裕 を考慮した設計とする。また，緊急時対策所外の火災により発生す る燃焼ガス又はばい煙，有毒ガス及び降下火砕物に対する換気設備 の隔離及びその他の適切に防護するための設備を設ける設計とす る。

緊急時対策所の緊急時対策所換気空調系及び緊急時対策所加圧空気供給系は，基準地震動 S s による地震力に対し，機能を喪失し ないようにするとともに，緊急時対策所の気密性とあいまって緊急時対策所の居住性に係る判断基準を満足する設計とする。

## 2．2．3 原子炉建屋原子炉棟換気空調系

原子炉建屋原子炉棟換気空調系は，原子炉棟送風機，原子炉棟排風機等で構成し，原子炉建屋原子炉棟の換気を行う。污染の可能性 のある区域は，給•排気量を適切に設定することによって，清浄区域より負圧に保つ。供給された空気は，フィルタを通した後，排風機により排気筒から放出する。

給気及び排気ダクトには，それぞれ 2 個の空気作動の隔離弁を設け，排気ダクトの放射能レベルが高くなった場合等に自動閉鎖 し，本換気空調系から非常用ガス処理系に切り換わることで放射性 ガスの放出を防ぐ設計とする。

2．2．4 タービン建屋換気空調系
タービン建屋換気空調系はタービン建屋送風機，タービン建屋排風機等から構成され，建屋内の空気の流れを適正に保ち，清浄区域

| 変更前 | 変更後 |
| :---: | :---: |
| の污染を防止する。 <br> 建屋内に供給された空気は，フィルタを通した後，排風機により排気筒から放出する設計とする。 | の汚染を防止する。 <br> 建屋内に供給された空気は，フィルタを通した後，排風機により排気筒から放出する設計とする。 |
| 2．2．4 原子炉建屋廃棄物処理区域換気空調系 <br> 原子炉建屋廃棄物処理区域換気空調系は，廃革物処理区域送風機，廃重物処理区域排風機等で構成され，建屋内の空気の流れを適正に保ち，清浄区域の污染を防止する。 <br> 廃棄物処理区域内に供給された空気は，フィルタを通した後，排風機により排気筒から大気に放出する設計とする。 | 2．2．5 原子炉建屋廃棄物処理区域換気空調系 <br> 原子炉建屋廃棄物処理区域換気空調系は，廃重物処理区域送風機，廃妻物処理区域排風機等で構成され，建屋内の空気の流れを適正に保ち，清浄区域の污染を防止する。 <br> 廃裹物処理区域内に供給された空気は，フィルタを通した後，排風機により排気筒から大気に放出する設計とする。 |
| 2．2．5 制御建屋換気系 <br> 制御建屋換気系は， $\mathrm{C} / \mathrm{B}$ 污染区域送風機（第 1 号機設備，第 1 ， 2 号機共用）， $\mathrm{C} / \mathrm{B}$ 汚染区域排風機（第 1 号機設備，第 1,2 号機共用）等で構成する。 <br> 制御建屋内に供給された空気は，フィルタを通した後，排風機に より排気筒から大気に放出する設計とする。 | 2．2．6 制御建屋換気系 <br> 制御建屋換気系は，C／B 汚染区域送風機（第 1 号機設備，第 1 ， 2 号機共用）， $\mathrm{C} / \mathrm{B}$ 污染区域排風機（第 1 号機設備，第 1,2 号機共用）等で構成する。 <br> 制御建屋内に供給された空気は，フィルタを通した後，排風機に より排気筒から大気に放出する設計とする。 |
| 2．2．6 焼却炉建屋換気空調系 <br> 焼却炉建屋換気空調系は，焼却炉建屋給気ファン（第 1 号機設備，第 $1,2,3$ 号機共用），焼却炉建屋排気ファン（第 1 号機設備，第 1，2， 3 号機共用）等で構成する。 <br> 焼却炉建屋内に供給された空気は，フィルタを通した後，排気フ アンにより焼却炉建屋排気口から大気に放出する設計とする。 | 2．2．7 焼却炉建屋換気空調系 <br> 焼却炉建屋換気空調系は，焼却炉建屋給気ファン（第 1 号機設備，第1，2， 3 号機共用），焼却炉建屋排気ファン（第 1 号機設備，第 1，2，3号機共用）等で構成する。 <br> 焼却炉建屋内に供給された空気は，フィルタを通した後，排気フ アンにより焼却炉建屋排気口から大気に放出する設計とする。 |


| 変更前 | 変更後 |
| :---: | :---: |
| 2．2．7 サイトバンカ建屋換気空調系 <br> サイトバンカ建屋換気系は，サイトバンカ建屋送風機（第 1 号機設備，第 $1,2,3$ 号機共用），サイトバンカ建屋排風機（第 1 号機設備，第 $1,2,3$ 号機共用）等で構成する。 <br> サイトバンカ建屋内に供給された空気は，フィルタを通した後，排風機によりサイトバンカ建屋排気口から大気に放出する設計と する。 | 2．2．8 サイトバンカ建屋換気空調系 <br> サイトバンカ建屋換気系は，サイトバンカ建屋送風機（第 1 号機設備，第 $1,2,3$ 号機共用），サイトバンカ建屋排風機（第 1 号機設備，第 $1,2,3$ 号機共用）等で構成する。 <br> サイトバンカ建屋内に供給された空気は，フィルタを通した後，排風機によりサイトバンカ建屋排気口から大気に放出する設計と する。 |
| 2.3 生体遮蔽装置等 <br> 設計基準対象施設は，通常運転時において発電用原子炉施設からの直接線及びスカイシャイン線による発電所周辺の空間線量率が，放射線業務従事者等の放射線障害を防止するために必要な生体遮蔽等を適切に設置すること及び発電用原子炉施設と周辺監視区域境界までの距離と あいまって，発電所周辺の空間線量率を合理的に達成できる限り低減 し，周辺監視区域外における線量限度に比べ十分に下回る，空気カーマ で年間 $50 \mu \mathrm{~Gy}$ を超えないような遮蔽設計とする。 <br> 発電所内における外部放射線による放射線障害を防止する必要があ る場所には，通常運転時の放射線業務従事者等の被ばく線量が適切な作業管理とあいまって，「核原料物質又は核燃料物質の製鍊の事業に関す る規則等の規定に基づく線量限度等を定める告示」を満足できる遮蔽設計とする。 <br> 生体遮蔽は，主に原子炉しゃへい壁， 1 次しゃへい壁（ドライウェル外側壁）， 2 次しやへい壁（原子炉建屋原子炉棟外壁），補助しやへい及 | 2.3 生体遮蔽装置等 <br> 設計基準対象施設は，通常運転時において発電用原子炉施設からの直接線及びスカイシャイン線による発電所周辺の空間線量率が，放射線業務従事者等の放射線障害を防止するために必要な生体遮蔽等を適切に設置すること及び発電用原子炉施設と周辺監視区域境界までの距離と あいまって，発電所周辺の空間線量率を合理的に達成できる限り低減 し，周辺監視区域外における線量限度に比べ十分に下回る，空気カーマ で年間 $50 \mu \mathrm{~Gy}$ を超えないような遮蔽設計とする。 <br> 発電所内における外部放射線による放射線障害を防止する必要があ る場所には，通常運転時の放射線業務従事者等の被ばく線量が適切な作業管理とあいまって，「核原料物質又は核燃料物質の製鍊の事業に関す る規則等の規定に基づく線量限度等を定める告示」を満足できる遮蔽設計とする。 <br> 生体遮蔽は，主に原子炉しやへい壁， 1 次しやへい壁（ドライウェル外側壁）， 2 次しやへい壁（原子炬建屋原子炬棟外壁），補助しやへい， |


| 変更前 | 変更後 |
| :---: | :---: |
| び中央制御室しゃへい壁から構成し，想定する通常運転時，運転時の異常な過渡変化時，設計基準事故時に対し，地震時及び地震後においても，発電所周辺の空間線量率の低減及び放射線業務従事者等の放射線障害防止のために，遮蔽性を維持する設計とする。 <br> 生体遮蔽に開口部又は配管その他の貫通部があるものにあっては，必要に応じて次の放射線漏えい防止措置を講じた設計とするとともに，自重，附加荷重及び熱応力に耐える設計とする。 <br> －開口部を設ける場合，人が容易に接近できないような場所（通路の行 き止まり部，高所等）への開口部設置 <br> －貫通部に対する遮蔽補強（スリーブと配管との間隙への遮蔽材の充て几等） <br> －線源機器と貫通孔との位置関係により，貫通孔から線源機器が直視で きない措置 <br> 遮蔽設計は，実効線量が $1.3 \mathrm{mSv} / 3$ 月間を超えるおそれがある区域を管理区域としたらえで，日本電気協会「原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5 ）」の通常運転時の遮蔽設計に基づく設計とす る。 <br> 中央制御室しゃへい壁，2次しゃへい壁及び補助しゃへいは，「2．1 | 中央制御室しやへい壁，中央制御室待避所遮蔽及び緊急時対策所遮蔽か ら構成し，想定する通常運転時，運転時の異常な過渡変化時，設計基準事故時及び重大事故等時に対し，地震時及び地震後においても，発電所周辺の空間線量率の低減及び放射線業務従事者等の放射線障害防止の ために，遮蔽性を維持する設計とする。 <br> 生体遮蔽に開口部又は配管その他の貫通部があるものにあっては，必要に応じて次の放射線漏えい防止措置を講じた設計とするとともに，自重，附加荷重及び熱応力に耐える設計とする。 <br> －開口部を設ける場合，人が容易に接近できないような場所（通路の行 き止まり部，高所等）への開口部設置 <br> －貫通部に対する遮蔽補強（スリーブと配管との間隙への遮蔽材の充て ん等） <br> －線源機器と貫通孔との位置関係により，貫通孔から線源機器が直視で きない措置 <br> 遮蔽設計は，実効線量が $1.3 \mathrm{mSv} / 3$ 月間を超えるおそれがある区域を管理区域としたらえで，日本電気協会「原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5 ）」の通常運転時の遮蔽設計に基づく設計とす る。 <br> 原子炉格納容器フィルタベント系のフィルタ装置等は，原子炉建屋原子炉棟内に設置することにより，フィルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタベント系の使用時に本系統内に蓄積される放射性物質から放出される放射線から作業員を防護す る設計とする。 <br> 中央制御室しやへい壁，中央制御室待避所遮蔽，緊急時対策所遮蔽， |


|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
|  | 中央制御室の居住性を確保するための防護措置」に示す居住性に係る判断基準を満足する設計とする。 | 2 次しやへい壁及び補助しゃへいは，「2．1 中央制御室及び緊急時対策所の居住性を確保するための防護措置」に示す居住性に係る判断基準を満足する設計とする。 <br> 中央制御室しゃへい壁は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 |
| $\stackrel{\text { へ }}{ }$ | 3．主要対象設備 <br> 放射線管理施設の対象となる主要な設備について，「表 1 放射線管理施設の主要設備リスト」に示す。 | 3．主要対象設備 <br> 放射線管理施設の対象となる主要な設備について，「表 1 放射線管理施設の主要設備リスト」に示す。 |

O 2 （1）II R 2

表1放射線管理施設の主要設備リスト（1／4）


O 2 （1）II R 2

表1放射線管理施設の主要設備リスト（2／4）


O 2 （1）II R 2

表1放射線管理施設の主要設備リスト（3／4）

|  | $\begin{aligned} & \text { 緥 } \\ & \text { 梦 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基淮対象施設島 |  | 重大事故等対処設備可 |  | 名称 | 設計基漼对象施設島 |  | 重大事故等対処設備可 |  |
|  |  |  |  | $\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 管竞 | － |  | 中央制御室排風機 $\sim$ 排気口 | S | Non |  |  | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  | $\begin{aligned} & \text { 中 } \\ & \text { 莿 } \end{aligned}$ | 送 |  | 中央制御室送風機 | S | － |  |  | 変更なし |  |  | 常設耐震／防止常設／緩和 | － |
|  | $\begin{aligned} & \text { 蓹 } \\ & \text { 㱎 } \end{aligned}$ | 機 |  | 中央制御室再循澴送風機 | s | － |  |  | 変更なし |  |  | 常設耐震／防止常設／緩和 | － |
|  |  | 機渢 | － | 中央制御室排風機 | s | － |  |  | 変更なし |  |  | 常設耐震／防止常設／緩和 | － |
|  |  | 多フ | － | 中央制御室再循睘フイルタ装置 | s | － |  |  | 変更なし |  |  | 常設耐震／防止常設／緩和 | － |
|  |  |  |  |  | － |  |  |  | 給気口～緊急時対策所非常用送風機 |  | － | 常設／緩和 | SAクラス2 |
|  |  |  |  |  | － |  |  |  | 緊急時対策所非常用送風機～緊急時対策所非常用フィルタ装置 |  | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  |  | － |  |  |  | 緊急時対策所玤常用フィルタタ装置～緊急対策室及び資機材保管エリア |  | － | 常設緩和 | SAクラス 2 |
|  |  |  |  |  | － |  |  |  | 緊急対策室～資機材保管エリア |  | － | 常設／緩和 | SAクラス 2 |
|  | $\begin{aligned} & \text { 邹 } \\ & \text { 梨 } \\ & \text { 策 } \end{aligned}$ | 管 |  |  | － |  |  |  | 資機材保管エリア～階段室（北側）（南側） |  | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  |  | － |  |  |  | 資機材保管エリア～出入管理室及び空気ボン心゙室 |  | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  |  | － |  |  |  | 出入管理室～チェンジングエリア |  | － | 常設／緩和 | SAクラス2 |
|  |  |  |  |  | － |  |  |  | チェンジングエリア～廊下（1F） |  | － | 常設／緩和 | SAクラス2 |
|  |  | 機送 | － |  | － |  |  |  | 緊急時対策所非常用送風機 |  | － | 常設／緩和 | － |
|  |  | 多 | － |  | － |  |  |  | 緊急時対策所非常用フィルタ装置 |  | － | 常設，緩和 | SAクラス 2 |

表1放射線管理施設の主要設備リスト（4／4）


（2）適用基準及び適用規格

| 変更前 | 変更後 |
| :---: | :---: |
| 第1章 共通項目 <br> 放射線管理施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。 | 第1章 共通項目 <br> 放射線管理施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。 |
| 第2章 個別項目 <br> 放射線管理施設に適用する個別項目の基準及び規格は以下のとおり。 <br> －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） <br> －核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示（平成 27 年原子力規制委員会告示第 8 号） | 第2章 個別項目 <br> 放射線管理施設に適用する個別項目の基準及び規格は以下のとおり。 <br> －高圧ガス保安法（昭和 26 年 6 月 7 日法律第 204 号） <br> 容器保安規則（昭和 41 年 5 月 25 日通商産業省令第 50 号） <br> －労働安全衛生法（昭和 47 年法律第 57 号） <br> 酸素欠乏症等防止規則（昭和 47 年 9 月 30 日労働省令 42 号） <br> －労働安全衛生法（昭和 47 年法律第 57 号） <br> 労働安全衛生規則（昭和 47 年 9 月 30 日労働省令第 32 号） <br> －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） <br> －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） <br> －核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示（平成 27 年原子力規制委員会告示第 8 号） <br> －発電用軽水型原子炉施設周辺の線量目標値に対する評価指針（昭和 51 年 9月28日原子力委員会決定） |


| 変更前 | 変更後 |
| :---: | :---: |
| －発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和 56 年 7 月 23 日原子力安全委員会決定） <br> －原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規）（平成 $21 \cdot 07$ • 27 原院第 1 号平成 21 年 8 月 12 日原子力安全•保安院制定） <br> - 原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5－2008） <br> - 日本建築学会 1987 年 鉄骨鉄筋コンクリート構造計算規準•同解説 | －発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和 56 年 7 月 23 日原子力安全委員会決定） <br> －発電用原子炉施設の安全解析に関する気象指針（昭和57年1月28日原子力安全委員会決定） <br> －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） <br> －発電用軽水型原子炉施設の安全審査における一般公衆の線量評価につい て（平成元年 3 月 27 日原子力安全委員会了承） <br> －被ばく計算に用いる放射線エネルギー等について（平成元年 3 月 27 日原子力安全委員会了承） <br> －原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規）（平成 $21 \cdot 07 \cdot 27$ 原院第 1 号平成 21 年 8 月 12 日原子力安全•保安院制定） <br> - 原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5－2008） <br> - 原子力発電所中央制御室運転員の事故時被ばくに関する規程（J E A C 4622 －2009） <br> - 土木学会 2007年 コンクリート標準示方書［構造性能照査編］ <br> - 日本建築学会 1979年 鉄筋コンクリート構造計算規準•同解説 <br> - 日本建築学会 1987 年 鉄骨鉄筋コンクリート構造計算規準•同解説 |

上記の他「実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に係る被ばく評価に関する審査がイド」を参照する。

