本資料のうち，枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第 2 号機	
工事計画審查資料	
資料番号	02 －工－B－03－0003＿改 1
提出年月日	2021 年 10 月 28 日

工事計画に係る説明資料

核燃料物質の取扱施設及び貯蔵施設のらち
使用済燃料貯蔵槽冷却浄化設備（2．4．1 燃料プール冷却浄化系）

（添付書類）

2021年10月

女川原子力発電所第 2 号機
工事計画認可申請書本文及び添付書類

目 録

VI 添付書類

VI－1 説明書

VI－1－1－4 設備別記載事項の設定根拠に関する説明書
VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書（核燃料物質の取扱施設及び貯蔵施設）

VI－1－1－4－2－2 使用済燃料貯蔵槽冷却浄化設備に係る設定根拠に関する説明書 VI－1－1－4－2－2－1 燃料プール冷却浄化系

VI－1－1－4－2－2－1－1 燃料プール冷却浄化系熱交換器（設計基準対象施設としてのみ第1， 2 号機共用）

VI－1－1－4－2－2－1－2 燃料プール冷却浄化系ポンプ（設計基準対象施設としてのみ第 1， 2 号機共用）

VI－1－1－4－2－2－1－3 スキマサージタンク（設計基準対象施設としてのみ第1， 2 号機共用）

VI－1－1－4－2－2－1－4 燃料プール冷却浄化系 主配管（スプレイヘッダを含む。）（常設）（設計基準対象施設としてのみ第1，2号機共用）

VI－6 図面
3．核燃料物質の取扱施設及び貯蔵施設
3.2 使用済燃料貯蔵槽冷却浄化設備

3．2．1 燃料プール冷却浄化系
第 3－2－1－1－1 図【設計基準対象施設】燃料プール冷却浄化系系統図
第3－2－1－1－2 図【重大事故等対処設備】燃料プール冷却浄化系系統図
第3－2－1－2－1 図 スキマサージタンク構造図
第3－2－1－3－1 図 燃料プール冷却浄化系 機器の配置を明示した図面（その1）
第3－2－1－3－2 図 燃料プール冷却浄化系 機器の配置を明示した図面（その 2 ）
第3－2－1－3－3図 燃料プール冷却浄化系 機器の配置を明示した図面（その3）
第3－2－1－3－4 図 燃料プール冷却浄化系 機器の配置を明示した図面（その4）
第 3－2－1－3－5 図 燃料プール冷却浄化系 機器の配置を明示した図面（その5）
第3－2－1－4－1 図 燃料プール冷却浄化系 主配管の配置を明示した図面（その1）
第3－2－1－4－2 図 燃料プール冷却浄化系 主配管の配置を明示した図面（その 2）

第3－2－1－4－3 図 燃料プール泠却浄化系 主配管の配置を明示した図面（その3）第3－2－1－4－4 図 燃料プール泠却浄化系 主配管の配置を明示した図面（その4）第3－2－1－4－5 図 燃料プール泠却浄化系 主配管の配置を明示した図面（その5）第3－2－1－4－6 図 燃料プール泠却浄化系 主配管の配置を明示した図面（その6）第3－2－1－4－7 図 燃料プール冷却浄化系 主配管の配置を明示した図面（その7）

VI－1－1－4－2－2－1－1 設定根拠に関する説明書 （燃料プール泠却浄化系 燃料プール泠却浄化系熱交換器 （設計基準対象施設としてのみ第 1,2 号機共用））

名	称	燃料プール冷却浄化系熱交換器 （設計基準対象施設としてのみ第1，2号機共用）
容量（設計熱交換量）	MW／個	〕以上（1．26）
最高使用圧力	MPa	管側 1．37／胴側 1．18
最高使用温度	${ }^{\circ} \mathrm{C}$	管側 66／胴側 70
伝 熱 面 積	$\mathrm{m}^{2} /$ 個	\square
個 数	－	2

【設定根拠】

（概要）
－設計基準対象施設
燃料プール冷却浄化系熱交換器は，使用済燃料からの崩壊熱を除去するために設置する。ま た，全炉心燃料を取り出した場合においても，残留熱除去系と併用して使用済燃料プール水を十分に冷却するために設置する。
－重大事故等対処設備
燃料プール冷却浄化系熱交換器は，使用済燃料プールの冷却機能又は注水機能が喪失し，又 は使用済燃料プールからの水の漏えいその他の要因により当該使用済燃料プールの水位が低下した場合において，使用済燃料プール内の燃料体又は使用済燃料を泠却し，放射線を遮蔽し，及び臨界を防止するために設置する。

系統構成は，使用済燃料プールの水を燃料プール冷却浄化系ポンプにより燃料プール冷却浄化系熱交換器を介して循環させることで，使用済燃料プールを冷却できる設計とする。

1．容量の設定根拠
設計基準対象施設として使用する燃料プール冷却浄化系熱交換器の容量は，平衡炉心の通常 の燃料交換時，燃料プールゲート閉鎖直後（原子炉停止後 21 日）に使用済燃料プールに貯蔵 された使用済燃料から発生する崩壊熱 2.29 MW を， 2 個の熱交換器で除熱できる容量として， $\square \mathrm{MW} /$ 個を上回る \square MW／個以上とする。

表 1－1 燃料プール泠却浄化系熱交換器に対する必要伝熱面積

運転モード	通常熱負荷運転モード		
熱交換器 1 個当たりの 必要熱交換量（MW／個）			
被冷却水流量 $(\mathrm{kg} / \mathrm{h})$			
被冷却水温度 $\left({ }^{\circ} \mathrm{C}\right)$			
冷却水流量 $(\mathrm{kg} / \mathrm{h})$			
冷却水温度 $\left({ }^{\circ} \mathrm{C}\right)$	1.59×10^{5}		
必要伝熱面積 $\left(\mathrm{m}^{2} /\right.$ 個）			

燃料プール泠却浄化系熱交換器を重大事故等時において使用する場合の容量は，設計基準対象施設と同様の崩壊熱を，被冷却水温度 $\square{ }^{\circ} \mathrm{C}$ ，冷却水流量 $\square \mathrm{m}^{3} / \mathrm{h}$ ，冷却水温度 $\square{ }^{\circ} \mathrm{C}$ の時 に 1 個の熱交換器で除熱できる容量として 2．29MW／個であり，この伝熱面積が $\square \mathrm{m}^{2} /$ 個であ ることから，設計基準対象施設として使用する場合の必要伝熱面積 $\square \mathrm{m}^{2} /$ 個を下回るため，設計基準対象施設と同仕様で設計し，口 MW／個以上とする。公称値については，

\square 26MW／個とする

2．最高使用圧力の設定根拠
2.1 管側の最高使用圧力 1.37 MPa

設計基準対象施設として使用する燃料プール泠却浄化系熱交換器の管側の最高使用圧力 は，燃料プール泠却浄化系ポンプの最高使用圧力と同じ 1.37 MPa とする。

燃料プール冷却浄化系熱交換器を重大事故等時において使用する場合の管側の使用圧力 は，重大事故等時における燃料プール冷却浄化系ポンプの使用圧力と同じ 1.37 MPa とする。
2.2 胴側の最高使用圧力 1.18 MPa

設計基準対象施設として使用する燃料プール冷却浄化系熱交換器の胴側の最高使用圧力 は，主配管「燃料プール冷却浄化系熱交換器（A）入口配管合流点～燃料プール冷却浄化系熱交換器（A）」及び「燃料プール冷却浄化系熱交換器（B）入口配管合流点～燃料プール冷却浄化系熱交換器（B）」の最高使用圧力と同じ 1.18 MPa とする。

燃料プール冷却浄化系熱交換器を重大事故等時において使用する場合の胴側の使用圧力 は，主配管「燃料プール冷却浄化系熱交換器（A）入口配管合流点～燃料プール泠却浄化系熱交換器（A）」及び「燃料プール冷却浄化系熱交換器（B）入口配管合流点～燃料プール冷却浄化系熱交換器（B）」の重大事故等時における使用圧力と同じ 1.18 MPa とする。

3．最高使用温度の設定根拠
3.1 管側の最高使用温度 $66^{\circ} \mathrm{C}$

設計基準対象施設として使用する燃料プール冷却浄化系熱交換器の管側の最高使用温度 は，燃料プール冷却浄化系ポンプの最高使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

燃料プール冷却浄化系熱交換器を重大事故等時において使用する場合の管側の使用温度 は，重大事故等時における燃料プール冷却浄化系ポンプの使用温度と同じ $66^{\circ} \mathrm{C}$ とする。
3.2 胴側の最高使用温度 $70^{\circ} \mathrm{C}$

設計基準対象施設として使用する燃料プール冷却浄化系熱交換器の胴側の最高使用温度 は，燃料プール冷却浄化系熱交換器の被冷却水温度 $65^{\circ} \mathrm{C}$ の時の胴側出口温度約 $47^{\circ} \mathrm{C}$ を上回 る $70^{\circ} \mathrm{C}$ とする。

燃料プール泠却浄化系熱交換器を重大事故等時において使用する場合の胴側の使用温度 は，重大事故等時の条件における燃料プール泠却浄化系熱交換器の胴側出口温度約 $\square{ }^{\circ} \mathrm{C}$ を上回る $70^{\circ} \mathrm{C}$ とする。

4．伝熱面積の設定根拠
設計基準対象施設として使用する燃料プール冷却浄化系熱交換器の伝熱面積は，設計熱交換量 $\square \mathrm{MW} /$ 個を満足するために必要な伝熱面積 $\square \mathrm{m}^{2} /$ 個を上回る $\square \mathrm{m}^{2} /$ 個以上とする。

燃料プール冷却浄化系熱交換器を重大事故等時において使用する場合の伝熱面積は，要求さ れる容量 2．29MW／個を満足するために必要な伝熱面積 $\square \mathrm{m}^{2} /$ 個を上回る $\square \mathrm{m}^{2} /$ 個以上とす る。

公称値については，要求される伝熱面積である $\square \mathrm{m}^{2} /$ 個を上回る $\square \mathrm{m}^{2} /$ 個とする。

5．個数の設定根拠
燃料プール冷却浄化系熱交換器は，設計基準対象施設として使用済燃料プールに貯蔵された使用済燃料からの崩壊熱を除去するために必要な個数として 2 個設置する。

燃料プール冷却浄化系熱交換器は，設計基準対象施設として 2 個設置しているものを重大事故等対処設備として使用する。

VI－1－1－4－2－2－1－2 設定根拠に関する説明書 （燃料プール冷却浄化系 燃料プール泠却浄化系ポンプ （設計基準対象施設としてのみ第 1,2 号機共用））

名	称	燃料プール冷却浄化系ポンプ （設計基準対象施設としてのみ第1，2号機共用）
容 量	$\mathrm{m}^{3} / \mathrm{h} /$ 個	$\square 以 上$（160）
揚 程	m	\square 以上（80）
最高使用圧力	MPa	1． 37
最高使用温度	${ }^{\circ} \mathrm{C}$	66
原 動 機 出力	kW／個	75
個 数	－	2

【設定根拠】

（概要）
－設計基準対象施設
燃料プール泠却浄化系ポンプは，使用済燃料からの崩壊熱を除去するとともに，使用済燃料 プール水を浄化することを目的とし，燃料プール水を燃料プール冷却浄化系熱交換器及び燃料 プール冷却浄化系ろ過脱塩装置に水を供給し，使用済燃料プールへ戻すために設置する。
－重大事故等対処設備
燃料プール泠却浄化系ポンプは，使用済燃料プールの冷却機能又は注水機能が喪失し，又は使用済燃料プールからの水の漏えいその他の要因により当該使用済燃料プールの水位が低下 した場合において，使用済燃料プール内の燃料体又は使用済燃料を冷却し，放射線を遮蔽し，及び臨界を防止するために設置する。

系統構成は，使用済燃料プールの水を燃料プール泠却浄化系ポンプにより燃料プール泠却浄化系熱交換器を介して循環させることで，使用済燃料プールを冷却できる設計とする。

1．容量の設定根拠
設計基準対象施設として使用する燃料プール冷却浄化系ポンプの容量は，使用済燃料プール内に貯蔵する使用済燃料から発生する崩壊熱を冷却可能な容量として，$\square \mathrm{m}^{3} / \mathrm{h} /$ 個以上とす る。

燃料プール冷却浄化系ポンプを重大事故等時において使用する場合の容量は，設計基準対象施設と同様の使用方法であるため，設計基準対象施設と同仕様で設計し，
 $\mathrm{m}^{3} / \mathrm{h} /$ 個以上とす る。

公称値については， \square $160 \mathrm{~m}^{3} / \mathrm{h} /$ 個とする。

2．揚程の設定根拠
設計基準対象施設として使用する燃料プール冷却浄化系ポンプの揚程は，下記を考慮する。
（1）水源と移送先の圧力差
（2）静水頭 \square
燃料プール通常水位とスキマサージタンク水位低低レベルの標高差
（3）配管•機器圧力損失

（4）合計

上記より，設計基準対象施設として使用する燃料プール泠却浄化系ポンプの揚程は，（4）の合

計 $\square \mathrm{m}$ を上回る $\square \mathrm{m}$ 以上とする。
燃料プール泠却浄化系ポンプを重大事故等時において使用する場合の揚程は，設計基準対象施設と同様の使用方法であるため，設計基準対象施設と同仕様で設計し，$\square \mathrm{m}$ 以上とする。

公称値については $\square 80 \mathrm{~m}$ とする。
3．最高使用圧力の設定根拠
設計基準対象施設として使用する燃料プール冷却浄化系ポンプの最高使用圧力は，下記を考慮して決定する。
（1）静水頭：$\square \mathrm{MPa}$

上記より，燃料プール泠却浄化系ポンプの最高使用圧力は，（3）の合計 $\square \mathrm{MPa}$ を上回る 1.37 MPa とする。

燃料プール冷却浄化系ポンプを重大事故等時において使用する場合の使用圧力は，設計基準対象施設と同様の使用方法であるため，設計基準対象施設と同仕様で設計し，1．37MPaとする。

4．最高使用温度の設定根拠
設計基準対象施設として使用する燃料プール冷却浄化系ポンプの最高使用温度は，スキマサ ージタンクの最高使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

燃料プール泠却浄化系ポンプを重大事故等時において使用する場合の使用温度は，重大事故等時におけるスキマサージタンクの使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

5．原動機出力の設定根拠
設計基準対象施設として使用する燃料プール冷却浄化系ポンプの原動機出力は，下記の式を用いて，容量及び揚程を考慮して決定する。

```
\(\mathrm{P} \mathrm{w}=10^{-3} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{Q} \cdot \mathrm{H}\)
\(\eta=\frac{\mathrm{P} \mathrm{w}}{\mathrm{P}} \cdot 100\)
(引用文献: J I S B O 1 3 1-2002 ターボポンプ用語)
\(\mathrm{P}=\frac{10^{-3} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{Q} \cdot \mathrm{H}}{\eta / 100}\)
ここで,
P : 軸動力 (kW)
P w : 水動力 (kW)
\(\rho \quad\) : 密度 \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)=1000\)
\(\mathrm{g}:\) 重力加速度 \(\left(\mathrm{m} / \mathrm{s}^{2}\right)=9.80665\)
Q : 容量 \(\left(\mathrm{m}^{3} / \mathrm{s}\right)=\square / 3600\)
H : 揚程 (m)
```

$\eta \quad:$ ポンプ効率（\％）$=\square$（設計計画値）
$10^{-3} \times 1000 \times 9.80665 \times\left(\frac{\square}{3600}\right) \times \square$
$\mathrm{P}=$kW

上記から，燃料プール冷却浄化系ポンプの原動機出力は，必要軸動力を上回る出力とし， 75 kW／個とする。

燃料プール冷却浄化系ポンプを重大事故等時において使用する場合の原動機出力は，設計基準対象施設と同様の使用方法であるため，設計基準対象施設と同仕様で設計し，75kW／個とす る。

6．個数の設定根拠
燃料プール冷却浄化系ポンプ（原動機含む。）は，設計基準対象施設として使用済燃料プール に貯蔵された使用済燃料からの崩壊熱を除去するとともに，使用済燃料プール水を浄化するた めに必要な個数として 2 個設置する。

燃料プール泠却浄化系ポンプ（原動機含む。）は，設計基準対象施設として 2 個設置してい るものを重大事故等対処設備として使用する。

VI－1－1－4－2－2－1－3 設定根拠に関する説明書

 （燃料プール泠却浄化系 スキマサージタンク（設計基準対象施設としてのみ第1，2号機共用））

【設定根拠】

（概要）
－設計基準対象施設
スキマサージタンクは，使用済燃料プール水の冷却及び浄化のため，使用済燃料プールから スキマせきを越えてくるプール水を一時的に貯留するために設置する。

－重大事故等対処設備

スキマサージタンクは，使用済燃料プールの冷却機能又は注水機能が喪失し，又は使用済燃料プールからの水の漏えいその他の要因により当該使用済燃料プールの水位が低下した場合 において，使用済燃料プール内の燃料体又は使用済燃料を冷却し，放射線を遮蔽し，及び臨界 を防止するために設置する。

系統構成は，使用済燃料プールからスキマせきを越えてスキマサージタンクに流入する使用済燃料プール水を燃料プール泠却浄化系ポンプで昇圧し，燃料プール冷却浄化系熱交換器を通 した後，使用済燃料プールのディフューザから吐出させることで，使用済燃料プールを泠却で きる設計とする。

1．容量の設定根拠
設計基準対象施設として使用するスキマサージタンクの容量は，下記を考慮する。
① スキマサージタンク水位低低レベルからスキマサージタンク水位高警報レベルまでの容積：

燃料プール水の蒸発に対する補給頻度（月 1 回程度の補給頻度）及び計器誤差を考慮し， m^{3} とする。
（2）スキマサージタンク底部からスキマサージタンク水位低低レベルまでの必要容積
燃料プール冷却浄化系ポンプの有効吸込水頭の確保を考慮し，$\square \mathrm{m}^{3}$ とする。

上記から，スキマサージタンクの容量は（1）と（2）の合計 $\square \mathrm{m}^{3}$ を上回る $\square \mathrm{m}^{3} /$ 個以上とする。
スキマサージタンクを重大事故等時において使用する場合の容量は，設計基準対象施設とし て使用する場合と同様の使用方法であるため，設計基準対象施設と同仕様で設計し，$\mathrm{m}^{3} /$ 個以上とする。

公称値については，要求される容量を上回る $22 \mathrm{~m}^{3} /$ 個とする。

2．個数の設定根拠
スキマサージタンクは，設計基準対象施設として使用済燃料プール水を一時的に貯留するた めに必要な個数として 2 個設置する。

スキマサージタンクは，設計基準対象施設として 2 個設置しているものを重大事故等対処設備として使用する。

> VI-1-1-4-2-2-1-4 設定根拠に関する説明書
> (燃料プール泠却浄化系 主配管 (スプレイヘッダを含む。) (常設))

名	称	スキマサージタンク \sim 燃料プール冷却浄化系ポンプ （設計基準対象施設としてのみ第 1，2号機共用）
最高使用圧力	MPa	静水頭， 1.37
最高使用温度	${ }^{\circ} \mathrm{C}$	66
外 径	mm	165．2，267．4
－		
【設定根拠】		

（概要）
本配管は，スキマサージタンクから燃料プール冷却浄化系ポンプを接続する配管であり，設計基準対象施設として，スキマサージタンクから燃料プール冷却浄化系ポンプへ水を供給する ために設置する。

重大事故等対処設備としても，スキマサージタンクから燃料プール冷却浄化系ポンプへ水を供給するために設置する。

1．最高使用圧力の設定根拠
1.1 最高使用圧力 静水頭

設計基準対象施設として使用する本配管の最高使用圧力は，スキマサージタンクの最高使用圧力と同じ静水頭とする。

本配管を重大事故等時において使用する場合の圧力は，重大事故等時におけるスキマサー ジタンクの使用圧力と同じ静水頭とする。
1.2 最高使用圧力 1.37 MPa

設計基準対象施設として使用する本配管の最高使用圧力は，燃料プール冷却浄化系ポンプ吸込部の静水頭を上回る 1.37 MPa とする。

本配管を重大事故等時において使用する場合の圧力は，設計基準対象施設と同様の使用方法であるため，設計基準対象施設と同仕様で設計し，1．37MPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，スキマサージタンクの最高使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

本配管を重大事故等時において使用する場合の温度は，重大事故等時におけるスキマサージ タンクの使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，重大事故等時に使用する燃料プール冷却浄化系ポンプの容量を基に設定しており，重大事故等時に使用する燃料プール冷却浄化系 ポンプの容量が設計基準対象施設として使用する場合の容量と同仕様であるため，本配管の外径は，メーカ社内基準に基づき定めた標準流速を考慮し選定した設計基準対象施設の外径と同仕様で設計し， 165.2 mm ，267．4mmとする。

名	称	燃料プール冷却浄化系ポンプ ～ 燃料プール冷却浄化系ろ過脱塩器バイパス配管分岐点 （設計基準対象施設としてのみ第1，2号機共用）
最高使用圧力	MPa	1． 37
最高使用温度	${ }^{\circ} \mathrm{C}$	66
外 径	mm	114．3，165．2，216．3

【設定根拠】

（概要）
本配管は，燃料プール泠却浄化系ポンプから燃料プール泠却浄化系ろ過脱塩器バイパス配管分岐点を接続する配管であり，設計基準対象施設として，燃料プール冷却浄化系ポンプから使用済燃料プールへ水を供給するために設置する。

重大事故等対処設備としては，使用済燃料プールからスキマせきを越えてスキマサージタン クに流出する使用済燃料プール水を燃料プール冷却浄化系ポンプで昇圧し，燃料プール冷却浄化系熱交換器を通した後，使用済燃料プールへ供給するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，燃料プール冷却浄化系ポンプの最高使用圧力と同じ 1.37 MPa とする。

本配管を重大事故等時において使用する場合の使用圧力は，重大事故等時における燃料プー ル冷却浄化系ポンプの使用圧力と同じ 1.37 MPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，燃料プール冷却浄化系ポンプの最高使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

本配管を重大事故等時において使用する場合の使用温度は，重大事故等時における燃料プー ル冷却浄化系ポンプの使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，重大事故等時に使用する燃料プール冷却浄化系ポンプの容量を基に設定しており，重大事故等時に使用する燃料プール冷却浄化系 ポンプの容量が設計基準対象施設として使用する場合の容量と同仕様であるため，本配管の外径は，メーカ社内基準に基づき定めた標準流速を考慮し選定した設計基準対象施設の外径と同仕様で設計し， $165.2 \mathrm{~mm}, ~ 216.3 \mathrm{~mm}$ とする。

燃料プール泠却浄化系ポンプとの取合配管の外径は，エロージョン，圧力損失•施工性等を考慮し，先行プラントの配管実績に基づいた標準流速を目安に選定し，114．3mm とする。

名	称	燃料プール冷却浄化系ろ過脱塩器バイパス配管合流点 燃料プール冷却浄化系熱交換器 （設計基準対象施設としてのみ第1，2号機共用）
最高使用圧力	MPa	1.37
最高使用温度	${ }^{\circ} \mathrm{C}$	66
外 径	mm	165．2，216．3
－－		
【設定根拠】		

（概要）
本配管は，燃料プール泠却浄化系ろ過脱塩器バイパス配管合流点から燃料プール冷却浄化系熱交換器を接続する配管であり，設計基準対象施設として，燃料プール冷却浄化系ポンプから使用済燃料プールへ水を供給するために設置する。

重大事故等対処設備としては，使用済燃料プールからスキマせきを越えてスキマサージタン クに流出する使用済燃料プール水を燃料プール冷却浄化系ポンプで昇圧し，燃料プール冷却浄化系熱交換器を通した後，使用済燃料プールへ供給するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，燃料プール冷却浄化系ポンプの最高使用圧力と同じ 1.37 MPa とする。

本配管を重大事故等時において使用する場合の使用圧力は，重大事故等時における燃料プー ル冷却浄化系ポンプの使用圧力と同じ 1.37 MPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，燃料プール冷却浄化系ポンプの最高使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

本配管を重大事故等時において使用する場合の使用温度は，重大事故等時における燃料プー ル泠却浄化系ポンプの使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，重大事故等時に使用する燃料プール冷却浄化系ポンプの容量を基に設定しており，重大事故等時に使用する燃料プール冷却浄化系 ポンプの容量が設計基準対象施設として使用する場合の容量と同仕様であるため，本配管の外径は，メーカ社内基準に基づき定めた標準流速を考慮し選定した設計基準対象施設の外径と同仕様で設計し， 165.2 mm ， 216.3 mm とする。

名	称	燃料プール泠却浄化系熱交換器 \sim G41－F017 （設計基準対象施設としてのみ第 1,2 号機共用）
最高使用圧力	MPa	1.37
最高使用温度	${ }^{\circ} \mathrm{C}$	66
外 径	mm	165．2，216．3
－		
【設定根拠】		

（概要）
本配管は，燃料プール冷却浄化系熱交換器から G41－F017 を接続する配管であり，設計基準対象施設として，燃料プール冷却浄化系ポンプから使用済燃料プールへ水を供給するために設置する。

重大事故等対処設備としては，使用済燃料プールからスキマせきを越えてスキマサージタン クに流出する使用済燃料プール水を燃料プール冷却浄化系ポンプで昇圧し，燃料プール冷却浄化系熱交換器を通した後，使用済燃料プールへ供給するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，燃料プール冷却浄化系熱交換器 の管側の最高使用圧力と同じ 1.37 MPa とする。

本配管を重大事故等時において使用する場合の圧力は，重大事故等時における燃料プール冷却浄化系熱交換器の管側の使用圧力と同じ 1.37 MPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，燃料プール冷却浄化系熱交換器 の管側の最高使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

本配管を重大事故等時において使用する場合の温度は，重大事故等時における燃料プール冷却浄化系熱交換器の管側の使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，重大事故等時に使用する燃料プール冷却浄化系ポンプの容量を基に設定しており，重大事故等時に使用する燃料プール冷却浄化系 ポンプの容量が設計基準対象施設として使用する場合の容量と同仕様であるため，本配管の外径は，メーカ社内基準に基づき定めた標準流速を考慮し選定した設計基準対象施設の外径と同仕様で設計し， 165.2 mm ， 216.3 mm とする。

名	称	$\stackrel{\text { G41－F017 }}{\sim}$ 使用済燃料プール （設計基準対象施設としてみ第 1，2号機共用）
最高使用圧力	MPa	1.37
最高使用温度	${ }^{\circ} \mathrm{C}$	66
外 径	mm	165．2，216．3

【設定根拠】
（概要）
本配管は，G41－F017 から使用済燃料プールを接続する配管であり，設計基準対象施設とし て，燃料プール泠却浄化系ポンプから使用済燃料プールへ水を供給するために設置する。
重大事故等対処設備としては，使用済燃料プールからスキマせきを越えてスキマサージタン クに流出する使用済燃料プール水を燃料プール泠却浄化系ポンプで昇圧し，燃料プール泠却浄化系熱交換器を通した後，使用済燃料プールへ供給するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，燃料プール泠却浄化系熱交換器 の管側の最高使用圧力と同じ 1.37 MPa とする。

本配管を重大事故等時において使用する場合の圧力は，重大事故等時における燃料プール冷却浄化系熱交換器の管側の使用圧力と同じ 1.37 MPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，燃料プール冷却浄化系熱交換器 の管側の最高使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

本配管を重大事故等時において使用する場合の温度は，重大事故等時における燃料プール冷却浄化系熱交換器の管側の使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，重大事故等時に使用する燃料プール泠却浄化系ポンプの容量を基に設定しており，重大事故等時に使用する燃料プール冷却浄化系 ポンプの容量が設計基準対象施設として使用する場合の容量と同仕様であるため，本配管の外径は，メーカ社内基準に基づき定めた標準流速を考慮し選定した設計基準対象施設の外径と同仕様で設計し， $165.2 \mathrm{~mm}, ~ 216.3 \mathrm{~mm}$ とする。

名	称	燃料プール冷却浄化系ろ過脱塩器バイパス配管分岐点燃料プール冷却浄化系ろ過脱塩器バイパス配管合流点
最高使用圧力	MPa	1.37
最高使用温度	${ }^{\circ} \mathrm{C}$	66
外 径	mm	216． 3

【設定根拠】

（概要）
本配管は，燃料プール冷却浄化系ろ過脱塩器バイパス配管分岐点から燃料プール冷却浄化系 ろ過脱塩器バイパス配管合流点を接続する配管であり，重大事故等対処設備としては，燃料プ ール冷却浄化系ろ過脱塩装置に通水しないことから，燃料プール冷却浄化系ろ過脱塩装置をバ イパスするために設置する。

1．最高使用圧力の設定根拠
重大事故等対処設備として使用する本配管の使用圧力は，重大事故等時における燃料プール冷却浄化系ポンプの使用圧力と同じ 1.37 MPa とする。

2．最高使用温度の設定根拠
重大事故等対処設備として使用する本配管の使用温度は，重大事故等時における燃料プール泠却浄化系ポンプの使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，エロージョン，圧力損失•施工性等 を考慮し，先行プラントの配管実績に基づいた標準流速を目安に選定し，216． 3 mm とする。

外径 A （mm）	$\begin{gathered} \text { 厚さ } \\ \text { B } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	呼び径 （A）	流路面積 C $\left(\mathrm{m}^{2}\right)$	流量 $\underset{\left(\mathrm{m}^{3} / \mathrm{h}\right)}{\mathrm{D}}$	流速＊ E （m／s）	標準流速 $(\mathrm{m} / \mathrm{s})$
216.3	8.2	200	0.03138	160	1.4	

注記 $~: ~$ 流速及びその他のパラメータとの関係は以下のとおりとする。
$\mathrm{C}=\pi \cdot\left\{\frac{1}{2} \cdot \frac{(\mathrm{~A}-2 \cdot \mathrm{~B})}{1000}\right\}^{2}$
$E=\frac{D}{3600 \cdot C}$

[^0]| 名 | 称 | 燃料プール冷却浄化系ポンプ出口配管分岐点燃料プール冷却浄化系ろ過脱塩器出口配管合流点 |
| :---: | :---: | :---: |
| 最高使用圧力 | MPa | 1.37 |
| 最高使用温度 | ${ }^{\circ} \mathrm{C}$ | 66 |
| 外 径 | mm | 216.3 |

【設定根拠】

（概要）
本配管は，燃料プール冷却浄化系ポンプ出口配管分岐点から燃料プール冷却浄化系ろ過脱塩器出口配管合流点を接続する配管であり，重大事故等対処設備としては，燃料プール泠却浄化系ろ過脱塩装置に通水しないことから，燃料プール泠却浄化系ろ過脱塩装置をバイパスするた めに設置する。

1．最高使用圧力の設定根拠
重大事故等対処設備として使用する本配管の使用圧力は，重大事故等時における燃料プール冷却浄化系ポンプの使用圧力と同じ 1.37 MPa とする。

2．最高使用温度の設定根拠
重大事故等対処設備として使用する本配管の使用温度は，重大事故等時における燃料プール泠却浄化系ポンプの使用温度と同じ $66^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，エロージョン，圧力損失•施工性等 を考慮し，先行プラントの配管実績に基づいた標準流速を目安に選定し，216． 3 mm とする。

$\begin{gathered} \text { 外径 } \\ \text { A } \\ (\mathrm{mm}) \end{gathered}$	厚さ B （mm）	呼び径 （A）	流路面積 C $\left(\mathrm{m}^{2}\right)$	$\begin{gathered} \text { 流量 } \\ \mathrm{D} \\ \left(\mathrm{~m}^{3} / \mathrm{h}\right) \end{gathered}$	流速＊ E （m／s）	標準流速 $(\mathrm{m} / \mathrm{s})$
216． 3	8.2	200	0.03138	160	1.4	

注記＊：流速及びその他のパラメータとの関係は以下のとおりとする。
$\mathrm{C}=\pi \cdot\left\{\frac{1}{2} \cdot \frac{(\mathrm{~A}-2 \cdot \mathrm{~B})}{1000}\right\}^{2}$
$E=\frac{D}{3600 \cdot C}$

[^1]

注：寸法はmを示す。
工事計画認可申請 第3－2－1－3－3図女川原子力発電所 第2号機
名 燃料プール冷却浄化系 $^{\text {and }}$
称 機器の配置を明示した図面（その3）
東 北 電 力 株 式 会 社

注：寸法はmを示す
工事計画認可申請 第 3－2－1－3－5図女川原子力発電所 第2号機
名 燃料プール冷却浄化系
称 機器の配置を明示した図面（その5）
東 北 電 力 株 式 会 社 30

注：寸法はmを示す。

工事計画認可申請		第3－2－1－4－3図
女川原子力発電所 第2号機		
名 燃料プール冷却浄化系 称 主配管の配置を明示した図面（その3）		
東 北 電力株式会社		
	F P C	0512

＊外径及び厚さは公称値（ mm ）を示す。

工事計画認可申請		第3－2－1－4－5図
女川原子力発電所 第2号機		
名 燃料プール冷却浄化系 称 主配管の配置を明示した図面（その5）		
東 北 電 力 株 式 会 社		
	F P C	0512

＊外径及ひ厚さは公称値（ mm ）を示す。

No．	名称	部品	外径＊	厚さ＊	林質
（24）	器バイバス配管合流点 㥕料フール泠却洋化系基交换器 （設計基準对象施設としてのみ第1， 2 号機共用）	ェルポ	165.2	7.1	SUS304TP
（25）	燃料プール椧却浄化系熱交换器 ～ G41－F017 （設計基準対象施設としてのみ第1， 2 号機共用）	エルボ	165.2	7.1	SUS304TP
（26）		管	165.2	7.1	SUS304TP
（27）		レジューサ	$\begin{gathered} 216.3 \\ , \\ 165.2 \end{gathered}$	$\begin{gathered} 8.2 \\ \prime \\ 7.1 \end{gathered}$	SUS304TP
（28）		ティー	$\begin{gathered} 216.3 \\ \text { ' } \\ 216.3 \\ \text { '/ } \\ 216.3 \end{gathered}$	$\begin{gathered} \hline 8.2 \\ \prime \\ 8.2 \\ \prime \\ 8.2 \end{gathered}$	SUS304TP
（29）		管	216.3	8.2	SUS304TP
（30）		エルポ	216.3	8.2	SUS304TP

工事計画認可申請		第3－2－1－4－6図
女川原子力発電所 第2号機		
名 燃料プール冷却浄化系 称 主配管の配置を明示した図面（その6）		
東北 電力株式会社		
	FPC	0512

No．	名称	部品	外径＊	厚さ＊	材質
（31）	然料フール瀮却浄化系䳢交摸器 G41－F017 （設計基準対象施設としてのみ第1， 2 号漛其用）	ティー	$\begin{gathered} 216.3 \\ \prime \\ 216.3 \end{gathered}$	$\begin{gathered} \hline 8.2 \\ \prime \\ 8.2 \\ \prime \\ \hline- \end{gathered}$	SUS304TP
（32）	G41-F017 使用浩焱料プール （設計基準対象施設としてのみ 第1， 2 号機共用）	管	216.3	8.2	SUS304TP
（33）		エルポ	216.3	8.2	SUS304TP
（34）		ティー	$\begin{gathered} 216.3 \\ \prime \\ 216.3 \\ \prime \\ = \end{gathered}$	$\begin{gathered} 8.2 \\ \prime \\ 8.2 \\ \text { ' } \end{gathered}$	SUS304TP
（35）		ティー	$\begin{gathered} 216.3 \\ \prime \\ 216.3 \\ \prime \\ 216.3 \end{gathered}$	$\begin{gathered} \hline 8.2 \\ \prime \\ 8.2 \\ \prime \\ 8.2 \end{gathered}$	SUS304TP
（36）		レジューサ	$\begin{gathered} 216.3 \\ \mathbf{\prime} \\ 165.2 \end{gathered}$	$\begin{gathered} 8.2 \\ \prime \\ 7.1 \end{gathered}$	SUS304TP
（37）		管	165.2	7.1	SUS304TP
（38）		エルポ	165.2	7.1	SUS304TP

＊外径及び厚さは公称値（ mm ）を示す。

No．	名称	部品	外径＊	厚き＊	材質
（39）	器パイバス蓜管分岐点 然科フール泠却洋化系る週脱塩器パイバス配管合流点	管	216.3	8.2	STS410
（40）		管	216.3	8.2	SUS304TP
（41）		ティー	$\begin{gathered} 216.3 \\ \text { ' } \\ - \\ \text { ' } \\ 216.3 \end{gathered}$	$\begin{gathered} \hline 8.2 \\ \text { ' } \\ - \\ \text { ' } \\ 8.2 \end{gathered}$	SUS304TP
（42）	然料ブール泠却浄化系ボンフ出口酸管分岐点 慗料フール浍却浄化系万用脱诰器出口配管合流点	管	216.3	8.2	STS410
（43）		エルボ	216.3	8.2	STS410
（44）		管	216.3	8.2	SUS304TP

工事計画認可申請		第3－	－1－4－7図
女川原子力発電所 第2号機			
名 燃料プール冷却浄化系 称 主配管の配置を明示した図面（その7）			
東北電力株式会社			
	FPC		0512

第3－2－1－4－1～7図 燃料プール冷却浄化系 主配管の配置を明示した図面（その $1 \sim 7$ ）別紙

工事計画記載の公称値の許容範囲

［主配管］

管 NO O．39，42＊

主要寸法 （mm）		許容範囲	根拠
外径	216.3	$\pm 0.8 \%$	J I S G 3 4 5 による材料公差
厚さ	8.2	$\pm 12.5 \%$	同上

管N O．40，44＊

主要寸法 （mm）		許容範囲	根拠	
外径	216． 3	$\pm 1 \%$	J I S	こよる材料公差
厚さ	8． 2	$\pm 12.5 \%$	同上	

管NO．41＊管継手（ティー）

主要寸法 （mm）		許容範囲	根拠
外径	216.3	$\begin{aligned} & +2.4 \mathrm{~mm} \\ & -1.6 \mathrm{~mm} \end{aligned}$	【プラス側公差】 J I S B 2 3 1 2 による材料公差【マイナス側公差】 J I S B 2 3 1 2 による材料公差
厚さ	8.2	$\begin{aligned} & \text { +規定しない } \\ & \text {-12.5\% } \end{aligned}$	同上

管NO．43＊管継手（エルボ）

主要寸法 （mm）		許容範囲	根拠
外径	216． 3	$\begin{aligned} & +2.4 \mathrm{~mm} \\ & -1.6 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { 【プラス側公差】 } \\ & \text { J I S B 2 3 1 2 による材料公差 } \\ & \text { 【マイナス側公差】 } \\ & \text { J I S B 2 3 1 2 による材料公差 } \end{aligned}$
厚さ	8.2	$\begin{aligned} & \text { + 規定しない } \\ & -12.5 \% \end{aligned}$	同上

注：主要寸法は，工事計画記載の公称値。
注記＊：主配管の配置を明示した図面の管NO．を示す。

[^0]: 枠囲みの内容は商業機密の観点から公開できません。

[^1]: 枠囲みの内容は商業機密の観点から公開できません。

