本資料のうち，枠囲みの内容 は商業機密の観点から公開で きません。

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

工事計画に係る説明資料
原子炉本体
（本文）

2021年10月

東北電力株式会社

申請範囲

1．原子炉本体
1.1 炉型式，定格熱出力，過剰反応度及び反応度係数（減速材温度係数，燃料棒温度係数，減速材ボ イド係数及び出力反応度係数）並びに減速材
1．2 炉心
（1）炉心形状，格子形状，燃料集合体数，炉心有効高さ及び炉心等価直径
（2）燃料体最高燃焼度（初装荷及び取替えの別並びに燃料材，燃料要素及び燃料集合体の別に記載 すること。）及び核燃料物質の最大装荷量
（3）燃料材の最高温度
（4）熱的制限値（最小限界出力比及び最大線出力密度）
1．3 燃料体
1．4 チャンネルボックス
1.6 炉心支持構造物
（1）炉心シュラウド及びシュラウドサポート
－炉心シュラウド
－シュラウドサポート
－炉心シュラウド支持ロッド
（2）上部格子板
（3）炉心支持板
（4）燃料支持金具

- 中央燃料支持金具
- 周辺燃料支持金具
（5）制御棒案内管
1.7 原子炉圧力容器
（1）原子炉圧力容器本体及び監視試験片
－原子炉圧力容器
（2）原子炉圧力容器支持構造物
个 支持構造物
－原子炉圧力容器支持スカート
ロ 基礎ボルト
－原子炉圧力容器基礎ボルト
（3）原子炉圧力容器付属構造物
イ 原子炉圧力容器スタビライザ
ロ 原子炉格納容器スタビライザ
八 中性子束計測ハウジング
二 制御棒駆動機構ハウジング
ホ 制御棒駆動機構ハウジング支持金具

ト ジェットポンプ計測管貫通部シール
チ 差圧検出・ほう酸水注入配管
－差圧検出・ほう酸水注入系配管（ティーよりN11 ノズルまでの外管）
（4）原子炉圧力容器内部構造物
イ 蒸気乾燥器の蒸気乾燥器ユニット及び蒸気乾燥器ハウジング

- 蒸気乾燥器ユニット
- 蒸気乾燥器ハウジング

ロ 気水分離器及びスタンドパイプ
－気水分離器
－スタンドパイプ
ハ シュラウドヘッド
ニジェットポンプ
ホ スパージャ及び内部配管

- 給水スパージャ
- 高圧炉心スプレイスパージャ
- 低圧炉心スプレイスパージャ
- 残留熱除去系配管（原子炉圧力容器内部）
- 高圧炉心スプレイ系配管（原子炉圧力容器内部）
- 低圧炉心スプレイ系配管（原子炉圧力容器内部）
- 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）

へ 中性子束計測案内管

1．原子炉本体
沸騰水型発電用原子炉施設に係るものにあっては，次の事項
1.1 炉型式，定格熱出力，過剰反応度及び反応度係数（減速材温度係数，燃料棒温度係

数，減速材ボイド係数及び出力反応度係数）並びに減速材

			変 更 前＊1	変 更 後
炉	型 式	－	濃縮ウラン，軽水減速，軽水冷却型（沸騰水型）	変更なし
定	格 熱 出 力	MW	2436	
過	剰 反 応 度	$\Delta \mathrm{k}$	0.14 以下	
反 応 度 係 数	減速材温度係数	$(\Delta \mathrm{k} / \mathrm{k}) /{ }^{\circ} \mathrm{C}$	$\begin{gathered} -0.12 \times 10^{-3} \sim-0.26 \times 10^{-3} \\ \left(\text { 高温, } \begin{array}{c} \text { - } \end{array}\right. \text { ボイドなし) } \end{gathered}$	
	燃料棒温度係数 （ドップラ係数）	$(\Delta \mathrm{k} / \mathrm{k}) /{ }^{\circ} \mathrm{C}$	$-1.93 \times 10^{-5} \sim-2.09 \times 10^{-5}$ （運転状態 —原子炉定格熱出力時）	
	減速材ボイド係数	（ $\Delta \mathrm{k} / \mathrm{k}$ ）／\％ボイド	$-0.78 \times 10^{-3} \sim-0.96 \times 10^{-3}$ （運転状態 —原子炉定格熱出力時）	
	出力反応度係数	$(\Delta \mathrm{k} / \mathrm{k}) /(\Delta \mathrm{p} / \mathrm{p})$	$-0.035 \text { 以下 }$ （運転状態 一原子炉定格熱出力時）	
$\begin{aligned} & \text { 減 } \\ & \text { 速 } \\ & \text { 材 } \end{aligned}$	名 称	－	軽水	
	種 類			
	組 成	－	導電率 $100 \mu \mathrm{~S} / \mathrm{m}$ 以下	

注記＊1：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対し て，基本設計方針の変更を行うことに伴い申請することを含む。

1．2 炉心
（1）炉心形状，格子形状，燃料集合体数，炉心有効高さ及び炉心等価直径

		変 更 前＊1	変 更 後
炉 心 形 状	－	円柱状（ 9×9 型燃料集合体形状，チャン ネルボックス（断面内寸法 \square mm× \square mm，板厚 \square mm， \square ロイー 4製）付き）	変更なし
格 子 形 状	－	S 格子	
燃 料集合体数	－	560	
炉 心 有 効 高 さ	mm		
炉 心等価直径	mm		

注記 $* 1$ ：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行うことに伴い申請することを含む。
（2）燃料体最高燃焼度（初装荷及び取替えの別並びに燃料材，燃料要素及び燃料集合体 の別に記載すること。）及び核燃料物質の最大装荷量

		変更前＊${ }^{*}$		変更後
燃料体最高燃焼度	MWd／t	取替燃料集合体 $\text { タイプ } 1$ $(9 \times 9$ 燃料（A型））	55000	変更なし
		取替燃料集合体 $\text { タイプ } 2$ （ 9×9 燃料（ B 型））	55000	変更なし
核燃料物質の最大装荷量	t	9×9 燃料（ A 型）炉心	約 $97 * 2$	変更なし
		$\begin{gathered} 9 \times 9 \text { 燃料 }(B \text { 型) } \\ \text { 炉心 } \end{gathered}$	約 $96 * 2$	変更なし

注記 $* 1$ ：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行うことに伴い申請することを含む。 ＊2：ウラン装荷量を示す。
（3）燃料材の最高温度

		変 更 前＊1		変更後
燃料材の最高温度	${ }^{\circ} \mathrm{C}$	$9 \times 9 \text { 燃料 (} \mathrm{A} \text { 型) }$ 燃料集合体	約 \square （原子炉定格熱出力時）＊2	変更なし
		$9 \times 9 \text { 燃料 (} \mathrm{B} \text { 型) }$ 燃料集合体		

注記 $* 1$ ：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行うことに伴い申請することを含む。
＊2：ガドリニア混合二酸化ウラン燃料棒の場合。
（4）熱的制限値（最小限界出力比及び最大線出力密度）

			変 更 前＊1		変更後
熱 的 制 限 値	最小限界出力比	－	9×9 燃料（ A 型）	1． 23	変更なし
			9×9 燃料（ B 型）	1． 22	
	最大線出力密度	kW／m	44.0		

注記 $* 1$ ：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行うことに伴い申請することを含む。

				変更前＊${ }^{\text {1 }}$	変更後
		名称	－	取替燃料集合体タイプ 1 （ 9×9 燃料（ A 型））	変更なし
		種類	－	二酸化ウラン焼結ペレット及びガドリニア混合二酸化ウラン焼結ペレット ジルカロイ－2（ジルコニウム内張）管被覆	変更なし
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	燃 料 集 体	全長	mm		変更なし
		$\begin{gathered} \text { ウォータロッド } \\ \text { 外径 } \end{gathered}$	mm	$\square^{* 3}, * 4$	
		燃料棒ピッチ	mm		
		燃料棒間隙	mm		
	$\begin{aligned} & \text { 燃 } \\ & \text { 料 } \\ & \text { 棒 } \end{aligned}$	有効長さ	mm		
		燃料ペレット直径	mm	$\square * 3, * 4$	
		燃料ペレット長さ	mm	$\square * 3, * 4$	
		被覆管外径	mm	$\square * 3, * 4$	
		被覆管肉厚	mm	\square （うちジルコニウム内張 \square	
材 料	ペレット		－	二酸化ウラン＊4 （一部ガドリニア入りを含む）	変更なし
	被覆管		－	$\begin{gathered} \text { ジルカロイ }-2 * 4 \\ \text { (ジルコニウム内張) } \end{gathered}$	

[^0]

注記 $*$ 1：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行らことに伴い申請することを含む。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 22 年 10 月 26 日付け平成 $22 \cdot 09 \cdot 15$ 原第 5 号にて認可された工事計画の「 9×9 燃料 （A型）燃料集合体構造図」による。
＊3：公称値を示す。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 22 年 10 月 26 日付け平成 $22 \cdot 09 \cdot 15$ 原第 5 号にて認可された工事計画の添付書類「IV－4－1 熱出力計算書」による。

[^1]＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成22年 10 月 26 日付け平成 $22 \cdot 09 \cdot 15$ 原第 5 号にて認可された工事計画の「 9×9 燃料 （B型）燃料集合体構造図」による。

1．4チャンネルボックス

			変更前＊${ }^{1}$	変更後
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	断面内寸法	mm		変更なし
	板厚	mm		
	材料	－	ジルカロイ -4	変更なし

注記 $* 1$ ：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行うことに伴い申請することを含む。
＊2：公称値を示す。

1． 6 炉心支持構造物
（1）炉心シュラウド及びシュラウドサポート

注記＊ 1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原

[^2]子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「最高使用圧力」と記載。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：重大事故等時における使用時の値。
＊5 ：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊6 ：公称値を示す。
＊7 ：記載の適正化を行う。既工事計画書には「幅」と記載。
＊8 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「胴」と記載。
＊10：記載の適正化を行う。既工事計画書には「リング」と記載。

			変 更 前	変 更 後
名		称	シュラウドサポート	シュラウドサポート＊1
種	類	－	脚支持円筒形	変更なし
最	高 使 用 圧 力	MPa	\square（差圧）	\square（差圧）${ }^{\text {変更なし，}}$＊
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	302	$\begin{gathered} \hline \text { 変更なし } \\ 315 * 2, * 3 \end{gathered}$
	シ リン ダ外径	mm	$\square{ }^{4}$	
	高 さ	mm		
	シリン ン ダ厚 さ	mm	$\square \square^{4}$	
	$\begin{array}{ccc} \text { シュラウドサポート } \\ \text { ぞ } \\ \text { グ } & \text { 厚 } \\ \hline \end{array}$	mm		
	$\begin{aligned} & \text { シュラウドサポート } \\ & \text { プレート ト } \end{aligned}$	mm	$\square \square{ }^{* 4}$	
	$\begin{array}{llll} \hline & & & \text { *8 } \\ \text { シュラウドサポート } \\ \text { リ ン グ } & \text { 厚 } & \text { さ } \end{array}$	mm		変更なし
		mm	\square ＊4	
材	シ リ ン ダ	－	NCF600－P	
	レ グ	－	NCF600－P	
料	プレート	－	NCF600－P	
	リン ン	－	SUS316L	
個 数		－	1	

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：重大事故等時における使用時の値。
＊ 3 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊ 4 ：公称値を示す。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「レグ厚さ」と記載。
＊ 7 ：記載の適正化を行う。既工事計画書には「プレート厚さ」と記載。
＊8 ：記載の適正化を行う。既工事計画書には「リング幅」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「リング厚さ」と記載。

（前頁からの続き）

					変 更 後
個	数	－	2	2	変更なし

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：重大事故等時における使用時の値。
＊3 ：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊4 ：公称値を示す。
＊5：下部スタビライザと組み立てられた状態で，上部タイロッド上端から下部スタビライザ上端までの長さ。
＊6：トグル，下部スタビライザと組み立てられた状態で，トグル下端から下部スタビライザ との取合位置までの長さ。
＊7 ：記載の適正化を行う。既工事計画書には「NCF750相当材（ASME SB－637 UNS N07750）」 と記載。
＊8：記載の適正化を行う。既工事計画書には「GXM1 相当材（ASME SA－182 F XM－19）」と記載。
（2）上部格子板

注記 $~ * ~ 1 ~: ~$ 原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：重大事故等時における使用時の値。
＊4 ：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。

[^3]（3）炉心支持板

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：重大事故等時における使用時の値。
＊ 4 ：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。
（4）燃料支持金具

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：重大事故等時における使用時の値。
＊ 4 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほら酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。

枠囲みの内容は商業機密の観点から公開できません。

							変 更 前	変 更 後
名						称	周辺燃料支持金具	周辺燃料支持金具＊1
種					類	－	1 体支持形	
	高	使	用	圧	力	MPa	（差圧）$*^{2}$	
最	高	使	用	温	度	${ }^{\circ} \mathrm{C}$	$302 * 2$	$\begin{aligned} & \hline \text { 変更なし } \\ & 315 * 3, * 4 \end{aligned}$
主	外				径	mm	$\square{ }^{5}$	
要	高				さ	mm		
法	厚				さ	mm	$]^{* 2} \square{ }^{* 2, * 5}$	変更なし
材					料	－	SUS316LTP	
個					数	－	12	

注記＊1：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほら酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊3：重大事故等時における使用時の値。
＊ 4 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほら酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。
（5）制御棒案内管

						変 更 前	変 更 後
名					称	制御棒案内管	制御棒案内管＊1
種				類	－	円筒形	変更なし
最	高	使	用	圧 力	MPa	（差圧）${ }^{*}$	
最	高	使	用	温 度	${ }^{\circ} \mathrm{C}$	$302 * 2$	変更なし $315 * 3, * 4$
主	外			径	mm		変更なし
要	長			さ	mm	$\square{ }^{*}$	
法	厚			さ	mm	$\left.\square{ }^{* 2} \quad \square{ }^{* 2, * 5}\right)$	
材				ボディ＊6	－	SUS316L	
			料	ベース＊6	－	SUSF316L	
個				数	－	137	

注記 $~ * ~ 1 ~: ~$ 原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：重大事故等時における使用時の値。
＊4 ：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「材料」と記載。
1.7 原子炉圧力容器
（1）原子炉圧力容器本体及び監視試験片

（次頁へ続く）
（前頁からの続き）

（次頁へ続く）
（前頁からの続き）

（次頁へ続く）
（前頁からの続き）

注記 $* 1$ ：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び非常用炉心椧却設備そ の他原子炉注水設備（高圧炬心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：S I 単位に換算したものである。
＊3：重大事故等時における使用時の値。
＊4 ：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧灲心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。
＊6：記載の適正化を行う。既工事計画書には「全高」と記載。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画書の添付書類「IV－3－1－1－4 上部鏡板，鏡板フランジ及び胴板フランジの応力計算書」による。
＊8 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画書の添付書類「IV－3－1－1－5 下部鏡板の応力計算書」による。
＊9 ：記載の適正化を行う。既工事計画書には「板厚」と記載。
＊10：記載の適正化を行う。既工事計画書には「円筒部」と記載。
＊11：記載の適正化を行う。既工事計画書には \square（最小）」と記載。
＊ 12 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 13 ：記載の適正化を行う。既工事計画書には \square（最小）」と記載。
＊14：記載の適正化を行う。既工事計画書には「下部鏡板」と記載。
＊ 15 ：記載の適正化を行う。既工事計画書には \square（最小）」と記載。
＊ 16 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 4 年 1 月 13 日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－8 再循環水出口ノ ズル（ N 1 ）の応力計算書」による。
＊ 17 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 4 年 1 月 13 日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－9 再循環水入口ノ ズル（N2）の応力計算書」による。
＊ 18 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第10518号にて認可された工事計画の添付書類「IV－3－1－1－10 主蒸気出ロノズ ル（N3）の応力計算書」による。
＊ 19 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－11 給水ノズル（N4） の応力計算書」による。
＊ 20 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 4 年 1 月 13 日付

け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－12 低圧炉心スプレ イノズル（N5）の応力計算書」による。
＊21：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－13 低圧注水ノズル （N6）の応力計算書」による。
＊22：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－14 上蓋スプレイノ ズル（N7）の応力計算書」による。
＊ 23 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－15 ベントノズル （N8）の応力計算書」による。
＊24：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－16 ジェットポンプ計測管貫通部ノズル（N9）の応力計算書」による。
＊ 25 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－17 差圧検出・ほう酸水注入ノズル（N11）の応力計算書」による。
＊26：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－18 計装ノズル（N12， N13，N14）の応力計算書」による。
＊27：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－19 ドレンノズル （N15）の応力計算書」による。
＊28：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－20 高圧炉心スプレ イノズル（N16）の応力計算書」による。
＊29：記載の適正化を行う。既工事計画書には「内張り厚さ」と記載。
＊30：記載の適正化を行う。既工事計画書には \square（最小）」と記載。
＊31：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－3 胴板の応力計算書」による。
＊32：記載の適正化を行う。既工事計画書には「ノズル」と記載。
＊33：記載の適正化を行う。既工事計画書には「内張り材」と記載。
（2）原子炉圧力容器支持構造物

				変 更 前＊1	変 更 後	
名		称		原子炉圧力容器支持スカート	変更なし	
種		類	－	円筒形		
	高 便		${ }^{\circ} \mathrm{C}$	302		
主	内	径	mm	\square		
要	厚	さ	mm	$\left.\square^{* 2}\right)$		
法	高	さ	mm	\square		
材		料	－	SGV49		
個		数	－	1		

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：公称値を示す。

ロ 基礎ボルト

			変 更 前	変 更 後
名		称	原子炉圧力容器基礎ボルト	変更なし
種	類	－	埋込型	
最 高 便	用 温 度	${ }^{\circ} \mathrm{C}$	$171 * 1$	
主要寸法	呼 び 径	－		
	全 長	mm	${ }^{* 2}$	
材 料		－	SNCM439	
個	数	－	120	

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成元年6月8日付 け元資庁第 2015 号にて認可された工事計画の添付書類「IV－2－4－1－1 原子炉圧力容器基礎ボルトの耐震性についての計算書」による。
＊2 ：公称値を示す。
（3）原子炉圧力容器付属構造物

			変 更 前	変 更 後
名	称		原子炉圧力容器スタビライザ	変更なし
種	類	－	皿ばね支持型	
最 高 使 用 温 度		${ }^{\circ} \mathrm{C}$	$302 * 1$	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	ロッド（呼び径）	－		
	ブラケット厚さ	mm		
	ブラケット高さ	mm	$\text { .1, } * 2$	
料	ヨ－ク	－	SF45A	
	ロ ツ ド	－	SNCM439	
	ブラケケ	－	SGV49＊1	
個 数		－	8	

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－3－2 原子炉圧力
＊2 ：公称値を示す。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。

ロ 原子炉格納容器スタビライザ

			変 更 前	変 更 後
名	称		原子炉格納容器スタビライザ	変更なし
種	類	－	管形	
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$171 * 1$	
主要法	管 外 径	mm	457． $2^{* 2}$	
		mm		
	ガセットプレート厚さ	mm	$\square \square^{\left.* 1, *^{*}\right)}$	
	内側メイルシャラグ厚さ	mm	$\left.\square^{* 1} \square^{* 1, * 2}\right)$	
材 料	管＊5	－	STS42	
	ガセットプレート	－	SM41B	
	内側メイルシャラグ	－	SM41B＊1	
個 数		－	8	

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－3－1 原子炉格納容器スタビライザの応力計算書」による。
＊2 ：公称値を示す。
＊3 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「第 5－5－1 図 原子炉格納容器スタビライザ構造図」による。
＊5 ：記載の適正化を行う。既工事計画書には「パイプ」と記載。

注記＊1 ：S I 単位に換算したものである。
＊2 ：記載の適正化を行う。既工事計画書には「長さ」と記載。
＊3 ：公称値を示す。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－7 中性子束計測 ハウジング貫通孔の応力計算書」による。

ニ 制御棒駆動機構ハウジング

			変 更 前	変 更 後
名		称	制御棒駆動機構ハウジング	変更なし
種	類	－	円筒形	
	高 使 用 圧力	MPa	$\square^{* 1}$	
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	302	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	全 長＊2	mm	$\square{ }^{* 3}$	
	外径（貫通部）	mm		
	厚 さ	mm	$]^{* 4} \square{ }^{* 3}\right)$	
材	料	－	SUSF316	
個	数	－	137	

注記＊1 ：S I 単位に換算したものである。
＊2 ：記載の適正化を行う。既工事計画書には「長さ」と記載。
＊3 ：公称値を示す。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－6 制御棒駆動機構ハウジング貫通孔の応力計算書」による。

ホ 制御棒駆動機構ハウジング支持金具

			変 更 前	変更後
名		称	制御棒駆動機構 ハウジング支持金具	
種	類	－	皿ばね支持型	
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$171 * 1$	
	サポートビーム幅	mm	$\square^{* 1, * 2}$	
	サポートビーム厚さ	mm		
	吊 り 棒 外 径	mm	$]^{* 1, * 2}$	
主	グリッドプレート幅	mm		
要	グリッドプレート厚さ	mm	$\square^{* 1} \square^{\left.* 1, *_{2}\right)}$	
寸	サポートバー 1 幅	mm		
法	サポートバー 2 幅	mm		変更なし
	レストレントビーム幅	mm		
	レストレントビーム高さ	mm		
	レストレントビーム厚さ	mm		
	サポートビーム＊4	－	SM41B，STPT38＊1，＊5	
	吊 り 棒	－	S35C	
枒	グリッドプレート	－	SM50B＊1	
料	サ ポード バー	－	SM50B，STPT38＊1	
	レストレントビーム＊4	－	SS41＊1，＊5	
個	数	－	1 式	

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－3－3 制御棒駆動機構ハウジング支持金具の応力計算書」による。
＊2 ：公称値を示す。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「ビーム類」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「SM41B，STPT38，SS41」と記載。

ト ジェットポンプ計測管貫通部シール

			変 更 前 ジェットポンプ計測管貫通部シール	変 更 後
名		称		変更なし
種	類	－	円筒形	
	高 使 用 圧 力	MPa	$\square * 1$	
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	302	
主	全 長＊2	mm	？3	
要	外 径	mm	$\square{ }^{* 3}$	
法	厚 さ	mm		
材	料	－	SUSF316	
個	数	－	2	

注記＊1 ：S I 単位に換算したものである。
＊2 ：記載の適正化を行う。既工事計画書には「長さ」と記載。
＊3 ：公称値を示す。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－3－4 ジェットポン プ計測管貫通部シールの基本板厚計算書」による。

チ 差圧検出・ほら酸水注入配管

注記＊1 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子灲注水設備（ほう酸水注入系），計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系），原子炉格納施設の らち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－3－6 差圧検出・ほ ら酸水注入系配管（ティーよりN11 ノズルまでの外管）の基本板厚計算書」による。
＊3：S I 単位に換算したものである。
＊4：重大事故等時における使用時の値。
＊5 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系），計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系），原子炉格納施設の うち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）に使用する場合の記載事項。
＊6 ：公称値を示す。
（4）原子炉圧力容器内部構造物
イ 蒸気乾燥器の蒸気乾燥器ユニット及び蒸気乾燥器ハウジング

				変 更 前	変 更 後
名			称	蒸気乾燥器ユニット	変更なし
種		類	－	平行波板形	
主要寸法	高	さ	mm	${ }^{* 1}$	
材		料	－	SUS316L	
個		数	－	18	

注記＊1 ：公称値を示す。

			変 更 前	変 更 後
名		称	蒸気乾燥器ハウジング	変更なし
種	類	－	円筒形	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	外 径	mm	\square	
	高 さ	mm	（乾燥器上部） （乾燥器下部）	
	サポートリング厚さ	mm	$\square^{* 2} \square^{* 1, * 2)}$	
材	料	－	SUS316L	
個	数	－	1	

注記＊ 1 ：公称値を示す。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

ロ 気水分離器及びスタンドパイプ

			変 更 前	変 更 後
名		称	気水分離器	変更なし
種	類	－	たて形軸流遠心式	
	外 径	mm	$\square * 1, * 2, * 3$	
	厚 さ	mm	$\square^{* 2} \square^{* 1, * 2)}$	
材 料	インナーチューブ	－	SUS316L	
個	数	－	163	

注記＊ 1 ：公称値を示す。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－4 気水分離器及びスタンドパイプの応力計算書」による。
＊3：記載の適正化を行う。既工事計画書にはアウターシェルの外径として \square と記載。

				変 更 前	変 更 後
名			称	スタンドパイプ	変更なし
種		類	－	円筒形	
主要寸法	外	径	mm	\square	
	厚	さ	mm	$\square * 2 \quad \square * 1, * 2)$	
材		料	－	SUS316LTP	
個		数	－	163	

注記＊ 1 ：公称値を示す。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－4 気水分離器及びスタンドパイプの応力計算書」による。

			変 更 前	変 更 後
名		称	シュラウドヘッド	変更なし
種	類	－	さら形	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	フランジ外径	mm	\square	
	高 さ	mm	$\square * 1, * 2$	
	鏡 板内半 径	mm		
	鏡 板 厚 さ	mm	$\square \square^{* 3}{ }^{\left.* 1,{ }^{* 3}\right)}$	
	フランジ厚 さ	mm	$\square * 3 * 1, * 3)$	
材	料	－	SUS316L	
個	数	－	1	

注記＊1 ：公称値を示す。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－3 シュラウドヘ ッドの応力計算書」による。

ニジェットポンプ

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）と兼用。
＊2 ：公称値を示す。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－7 ジェットポン プの応力計算書」による。

ホ スパージャ及び内部配管

			変 更 前	変 更 後
名		称	給水スパージャ	給水スパージャ＊1
種	類	－	ヘッダ形	変更なし
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	へ ダ外径＊2	mm	\square	
	へッダ厚さ	mm	$\square * 4 \square * 3, * 4)$	
	テイ－外 径	mm		
	ティー厚さ	mm	$\square * 4(3, * 4)$	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	$へ$－ダ	－	SUS316LTP	
	テ ィ ー	－	SUS316L＊4	
個 数		－	4	

注記 $~$ 1 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系，原子炉隔離時冷却系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊ 3 ：公称値を示す。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－5 給水スパージ ヤの応力計算書」による。

			変 更 前	変 更 後
名		称	高圧炉心スプレイスパージャ	高圧炉心スプレイスパージャ＊1
種	類	－	ヘッダ形	変更なし
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	へッダ外径＊2	mm	\square	
	へ ダ厚 さ＊4	mm		
	テイ－外 径	mm		
	ティー厚さ	mm	$\square * 5 \square * 3, * 5)$	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	へ ジ	－	SUS316LTP	
	テ ィ－	－	SUSF316L＊5	
個	数	－	2	

注記＊1 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（高圧炉心スプ レイ系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊3：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－6 高圧及び低圧炉心スプレイスパージャの応力計算書」による。

			変 更 前	変 更 後
名		称	低圧炉心スプレイスパージャ	低圧炉心スプレイスパージャ＊1
種	類	－	ヘッダ形	変更なし
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	ヘッダ外径＊2	mm		
	ヘッダ厚さ＊4	mm		
	テイ－外 径	mm		
	ティー厚さ	mm	$\left.\square{ }^{* 5} \square * * 5\right)$	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	へ ツ ダ	－	SUS316LTP	
	テ ィ ー	－	SUSF316L＊5	
個	数	－	2	

注記＊1 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（低圧炉心スプ レイ系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊3：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－6 高圧及び低圧炉心スプレイスパージャの応力計算書」による。

			変 更 前	変 更 後
名		称	残留熱除去系配管 （原子炉圧力容器内部）	残留熱除去系配管＊1 （原子炉圧力容器内部）
種	類	－	継手構造	変更なし
主要法	ス リーブ外径	mm		
	ス リー ブ 厚 さ	mm	$\square^{* 3} \square^{* 2, * 3}$	
	フランジネック外径＊4	mm	＊	
	フランジネック厚さ＊5	mm	$\square^{* 6}\left(\square{ }^{* 2}\right.$	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	ス リーブ	－	SUSF316L	
	べ ロ ー ズ	－	SUS316L	
	フランジネ	－	SUSF316L	
個	数	－	3	

注記 $* 1$ ：原子炉泠却系統施設のうち非常用炉心泠却設備その他原子炉注水設備（低圧代替注水系，代替循環冷却系，残留熱除去系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，低圧代替注水系）と兼用。
＊2 ：公称値を示す。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－8 残留熱除去系配管（原子炉圧力容器内部）の応力計算書」による。
＊4 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊5 ：記載の適正化を行ら。既工事計画書には「厚さ」と記載。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－2－3－7 残留熱除去系配管（原子炉圧力容器内部）の耐震性についての計算書」による。

			変 更 前	変 更 後
名		称	高圧炉心スプレイ系配管 （原子炉圧力容器内部）	高圧炉心スプレイ系配管＊1 （原子炉圧力容器内部）
種	類	－	管形	変更なし
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	配 管 外 径＊2	mm		
	配 管 厚 さ＊4	mm	$\left.\square^{* 5} \square{ }^{3}\right)$	
	へ ツ ダ 外 径	mm	$\square^{* 3,} * 6$	
	ヘッダ厚さ	mm	$\square^{* 6} \square{ }^{* 3, * 6}$	
材 料	配 管＊7	－	SUS316LTP	
	へ シ ダ	－	SUSF316L＊5	
個 数		－	1	

注記＊1 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（高圧炉心スプ レイ系）と兼用。
＊2：記載の適正化を行う。既工事計画書には「外径」と記載。
＊3 ：公称値を示す。
＊4：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－9 高圧及び低圧灲心スプレイ系配管（原子炉圧力容器内部）の応力計算書」による。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。既工事計画書には「パイプ」と記載。

			変 更 前	変 更 後
名 称			低圧炉心スプレイ系配管 （原子炉圧力容器内部）	低圧炉心スプレイ系配管＊1 （原子炉圧力容器内部）
種	類	－	管形	変更なし
	配 管 外 径＊2	mm	\square	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	配 管 厚 さ＊4	mm		
	へッダ外径	mm		
	へッダ厚さ	mm	$\left.\square^{* 6} \square{ }^{* 3, * 6}\right)$	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	配 管＊7	－	SUS316LTP	
	へ ツ ダ	－	SUSF316L＊5	
個 数		－	1	

注記＊1 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（低圧炉心スプ レイ系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊ 3 ：公称値を示す。
＊4：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－9 高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の応力計算書」による。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。既工事計画書には「パイプ」と記載。

			変 更 前	変 更 後
名		称	差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）	差圧検出・ほう酸水注入系＊1配管（原子炉圧力容器内部）
種	類	－	管形	変更なし
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	ほう酸水注入管上部外	mm	$\square * 3, * 4$	
	$* 2$ 差 圧 検 出 管 外 径	mm	$\square * 3, * 5$	
	ほう酸注入管上部厚	mm	$\left.\square * 7{ }^{* 3, * 8}\right)$	
	$* 6$ 差 圧 検 出 管 厚 さ	mm	\square ＊3，＊9）	
材	ほう酸水注入管上部	－	SUS316LTP＊11	
料	$\begin{array}{lllll} \hline & & & & * 10 \\ \text { 差 } & \text { 圧 } & \text { 検 } & \text { 出 } & \text { 管 } \end{array}$	－	SUS316LTP＊12	
個 数		－	1	

注記 $* 1$ ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設の うち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「34．0（ほう酸水注入管上部）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「34．0（差圧検出管）」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－10 差圧検出• ほう酸水注入系配管（原子炉圧力容器内部）の応力計算書」による。
＊ 8 ：記載の適正化を行う。既工事計画書には「3．4（ほう酸水注入管上部）」と記載。
＊9：記載の適正化を行う。既工事計画書には「4．5（差圧検出管）」と記載。
＊10：記載の適正化を行う。既工事計画書には「材料」と記載。
＊11：記載の適正化を行う。既工事計画書には「SUS316LTP（ほう酸水注入管上部）」と記載。
＊ 12 ：記載の適正化を行う。既工事計画書には「SUS316LTP（差圧検出管）」と記載。
～中性子束計測案内管

注記＊1 ：記載の適正化を行う。既工事計画書には「長さ」と記載。
＊2 ：公称値を示す。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－11 中性子束計測案内管の応力計算書」による。

[^0]: 枠囲みの内容は商業機密の観点から公開できません。

[^1]: 枠囲みの内容は商業機密の観点から公開できません。

[^2]: 枠囲みの内容は商業機密の観点から公開できません。

[^3]: 枠囲みの内容は商業機密の観点から公開できません。

