\circ

 \mathfrak{C}

本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第25	号機 工事計画審査資料
資料番号	02-工-B-02-0006_改 3
提出年月日	2021年10月21日

VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに 原子炉格納容器及び原子炉本体の基礎の地震応答計算書

2021年10月 東北電力株式会社

目次

1.	概要.	
2.	基本方	針1
2.	1 構造	概要 1
2. 2	2 解析	方針 4
2.	3 適用	規格・基準等 4
3.	解析方	法 4
3.		地震動 4
3. 2	2 地震	応答解析モデル 7
	3. 2. 1	大型機器系地震応答解析モデル7
	3. 2. 2	炉内構造物系地震応答解析モデル24
3.	3 解析	方法
	3. 3. 1	動的解析45
	3. 3. 2	静的解析45
3.	4 解析	条件 46
	3. 4. 1	耐震壁の復元力特性46
	3. 4. 2	地盤の回転ばねの復元力特性46
	3. 4. 3	原子炉本体の基礎の復元力特性46
	3. 4. 4	炉心シュラウド溶接線分離想定ケースにおける荷重-変位特性50
	3. 4. <mark>5</mark>	材料物性の不確かさ等52
4.	解析結	果54
4.	1 固有	
	4. 1. 1	大型機器系地震応答解析モデル54
	4. 1. 2	炉内構造物系地震応答解析モデル54
4. 2	2 地震	応答解析 <mark>結果</mark> 及び静的解析 <mark>結果</mark> 152
		大型機器系地震応答解析モデル 152
	4. 2. 2	炉内構造物系地震応答解析モデル
5.		地震力316
5.		 設計用地震動Sd <mark>及び静的地震力</mark> 316
5. 2		地震動Ss

1. 概要

本計算書は、添付書類「VI-2-1-6 地震応答解析の基本方針」に基づく原子炉圧力容器、原子炉格納容器、原子炉しゃへい壁、原子炉本体の基礎等の地震応答解析及び炉心、原子炉圧力容器、原子炉内部構造物等の地震応答解析について説明するものである。

地震応答解析により算出した各種応答値及び静的地震力は、添付書類「VI-2-1-9 機能維持の基本方針」に示す建物・構築物及び機器・配管系の設計用地震力として用いる。

2. 基本方針

2.1 構造概要

原子炉建屋内の原子炉格納容器,原子炉圧力容器,原子炉しゃへい壁,原子炉本体の基礎等の大型機器,構築物は,その支持構造上から建屋との連成が無視できないため,図 3-1~図 3-6 に示すように原子炉建屋と連成で解析する。

原子炉格納容器は、円筒形の鋼製のドライウェル及び円環形の鋼製のサプレッションチェンバからなり、水平地震力は 0. P. 22. 500m で原子炉格納容器シヤラグを介して原子炉建屋に伝達され、下端は 0. P. 1. 150m で原子炉建屋基礎版に支持される。

原子炉しゃへい壁は原子炉圧力容器を取り囲む二重円筒鋼板の壁であり、内部にモルタルが 充てんされる。また、原子炉格納容器スタビライザを介して原子炉格納容器に結ばれ、さらに 原子炉圧力容器スタビライザを介して原子炉圧力容器に結ばれる。

原子炉圧力容器は、鋼製の円筒形容器であり、0. P. で原子炉圧力容器スタビライザにより水平方向に支持され、その下部は原子炉圧力容器支持スカートを介して 0. P. で原子炉本体の基礎により支持される。

原子炉本体の基礎は円筒形の鋼製(無筋コンクリート充てん)構造物で原子炉圧力容器基礎 ボルトにより原子炉圧力容器支持スカートを介して原子炉圧力容器を支持するとともに原子炉 しゃへい壁を支持しており、原子炉本体の基礎の下端は原子炉建屋基礎版に固定する。

所員用エアロックはドライウェルに支持される鋼製構造物であり、水平方向荷重は原子炉格 納容器シヤラグ及び基部を介して、鉛直方向荷重は基部を介して原子炉建屋に伝達される。

ベント管は、ドライウェルからサプレッションチェンバにつながる鋼製円筒構造物であり、 ベントノズルを介してドライウェルに支持される。鉛直方向荷重及び水平方向荷重は、ドライウェルを介して原子炉建屋に伝達される。

燃料交換ベローズは、原子炉圧力容器と原子炉格納容器の間を接続する鋼製構造物である。 原子炉圧力容器内には、気水分離器及びスタンドパイプ、炉心シュラウド、燃料集合体、制 御棒、制御棒案内管、制御棒駆動機構ハウジング、ジェットポンプ等が収納される。

炉心シュラウドは薄肉円筒形で、鉛直方向は下部胴下端でシュラウドサポートレグにより原子炉圧力容器に支持され、また上部胴上端とシュラウドサポートプレートが炉心シュラウド支持ロッドにより支持される。水平方向は、上部胴は上部サポートにより、中間胴下端は下部スタビライザにより、また下部胴下端はシュラウドサポートプレートにより原子炉圧力容器に支

持される構造である。炉心シュラウド上部には、さら形のシュラウドヘッドがあり(以下、炉心シュラウド及びシュラウドヘッドを「炉心シュラウド」と総称する。),その上に 163 本のスタンドパイプが立ち,その上の気水分離器を支持している。炉心シュラウド内部には 560 本の燃料集合体が収納され,下端を炉心支持板,上端を上部格子板で支持されることにより正確に位置が定められている。燃料集合体に加わる荷重は,水平方向は上部格子板及び炉心支持板を支持する炉心シュラウド,鉛直方向は制御棒案内管及び制御棒案内管を支持する制御棒駆動機構ハウジングを介し,原子炉圧力容器に伝達される。

制御棒駆動機構は、原子炉圧力容器下部鏡板を貫通し取り付けられる 137 本の制御棒駆動機構ハウジング内に納められ、その上端に取り付けられる制御棒を炉心に挿入する機能を有している。

また、炉心シュラウドと原子炉圧力容器の間には、ジェットポンプがシュラウドサポート上に 20 個据付けられているが、質量が小さく、炉内の構造物の振動に与える影響は小さいため質量のみを考慮する。

同様に中性子東計測案内管及び中性子東計測ハウジングについても炉内の構造物の振動に与える影響は小さいため質量のみを考慮する。これらの構造概要を図 2-1 及び図 2-2 に示す。

図 2-1 原子炉格納容器,原子炉しゃへい壁,原子炉本体の基礎,原子炉圧力容器等の構造概要図

図 2-2 原子炉圧力容器内部の構造概要図

2.2 解析方針

地震応答解析は、以下の2つの解析モデルを使用し、添付書類「VI-2-1-6 地震応答解析の基本方針」に基づいて行う。

- ・大型機器系地震応答解析モデル (原子炉建屋,原子炉圧力容器,原子炉格納容器,原子 炉しゃへい壁,原子炉本体の基礎等を連成)
- ・炉内構造物系地震応答解析モデル (原子炉建屋、炉心、原子炉圧力容器、原子炉内部構造物等を連成)

地震応答解析は、「3.2 地震応答解析モデル」において設定した地震応答解析モデル及び「3.1 入力地震動」において設定した入力地震動を用いて直接積分法による解析を実施し、各種応答値を算出する。

大型機器系地震応答解析モデル及び炉内構造物系地震応答解析モデルの両方でモデル化される,原子炉圧力容器,原子炉しゃへい壁及び原子炉本体の基礎については,大型機器系地震応答解析モデルによって得られる地震応答を用いた評価を基本とする。

原子炉圧力容器のうち、炉内配管に接続される<mark>原子炉圧力容器のノズル部及び炉内機器を支持するブラケット部については、</mark>炉内構造物系地震応答解析モデルによって得られる地震応答を用いて配管反力及び機器反力を設定し、評価を実施する。

2.3 適用規格·基準等

大型機器系地震応答解析モデル及び炉内構造物系地震応答解析モデルを用いた地震応答解析 において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針(JEAG4601-1987)
- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編(JEAG4601・補-1984)
- ・原子力発電所耐震設計技術指針(JEAG4601-1991追補版)

3. 解析方法

3.1 入力地震動

地震応答解析モデルへの入力地震動は、添付書類「VI-2-1-2 基準地震動Ss及び弾性設計用地震動Sdの策定概要」に示す解放基盤表面で定義された基準地震動Ss及び弾性設計用地震動Sdを用いて、添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」で建屋基礎底面レベルでの地盤の応答として評価されたものを使用する。基準地震動Ss及び弾性設計用地震動Sdの最大加速度を表 3-1 及び表 3-2 に示す。

表 3-1 基準地震動 S s の最大加速度

	最大加速度(cm/s ²)							
	基準地震動	水平方向	鉛直方向					
S s -D 1	プレート間地震の応答スペクトルに基づく手法による基準地震動	640	430					
S s -D 2	海洋プレート内地震(SMGA*マントル内)の応答スペクトルに基づく手法による基準地震動	1,000	600					
S s -D 3	海洋プレート内地震 (SMGA*地殻内) の応答スペクトルに基づく 手法による基準地震動	800	500					
S s - F 1	プレート間地震の断層モデルを用いた手法による基準地震動 (応力降下量 (短周期レベル) の不確かさ)	717	393					
S s-F 2	プレート間地震の断層モデルを用いた手法による基準地震動 (SMGA*位置と応力降下量(短周期レベル)の不確かさの重畳)	722	396					
S s-F 3	海洋プレート内地震 (SMGA*マントル内) の断層モデルを用いた 手法による基準地震動 (SMGA*マントル内集約)	835	443					
S s -N 1	2004年北海道留萌支庁南部地震 (K-NET 港町) の検討結果に 保守性を考慮した地震動	620	320					

注記*:強震動生成域

 強性設計用地震動
 最大加速度 (cm/s²)

 水平方向
 鉛直方向

 S d - D 1
 371
 249

 S d - D 2
 580
 348

 S d - D 3
 464
 290

359

361

418

310

197

198

222

160

S d-F 1

S d-F 2

S d-F 3

S d-N 1

表 3-2 弾性設計用地震動 S d の最大加速度

3.2 地震応答解析モデル

地震応答解析モデルは,添付書類「VI-2-1-6 地震応答解析の基本方針」に記載の解析モデルの設定方針に基づき,水平方向及び鉛直方向についてそれぞれ設定する。

3.2.1 大型機器系地震応答解析モデル

3.2.1.1 水平方向

水平方向地震応答解析モデルは図 3-1 及び図 3-2 に示すように,原子炉建屋,原子炉格納容器,原子炉圧力容器,原子炉しゃへい壁及び原子炉本体の基礎は,それぞれの質点間を等価な曲げ,せん断剛性を有する無質量のはり又は無質量のばねにより結合する。

原子炉格納容器は 12 質点でモデル化し、原子炉格納容器シヤラグと等価なばねで建 屋モデルと、燃料交換ベローズと等価なばねで原子炉圧力容器と、それに加えて所員用 エアロック及びベント管と結合し、下端は原子炉建屋基礎版と剛に結合する。

原子炉圧力容器,原子炉しゃへい壁及び原子炉本体の基礎はそれぞれ8質点,5質点,4 質点でモデル化する。原子炉圧力容器は原子炉圧力容器スタビライザと等価なばねで, 原子炉しゃへい壁上端と結び,さらに原子炉格納容器スタビライザと等価なばねにより 原子炉格納容器を介し,原子炉建屋に結合する。原子炉圧力容器の下端は,原子炉本体 の基礎の上端に剛に結合し,原子炉本体の基礎の下端は原子炉建屋1次しゃへい壁に剛 に結合する。

原子炉建屋は質点系でモデル化し、地盤を等価なばねで評価した建屋-地盤連成モデルとする。

建屋底面下の地盤は、水平ばね及び回転ばねで置換する。また、基礎版底面における 地盤の水平及び回転ばねは、それ以深の地盤を等価な半無限地盤とみなして、波動論に より評価する。

図 3-1 及び図 3-2 に示した大型機器系の水平方向地震応答解析モデルの各質点質量, 部材長, 断面二次モーメント, 有効せん断断面積, ばね定数等を表 3-3~表 3-16 に示す。また, 解析に用いる各構造物の物性値を表 3-24, 表 3-25 及び表 3-27 に示す。なお, 原子炉建屋のスケルトンカーブ及び地盤ばね定数については, 添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」に記載の値を使用する。

原子炉本体の基礎の復元力特性は、建屋の方向別に、原子炉本体の基礎の要素を単位 とした水平断面形状より設定した非線形の復元力特性とする。

3.2.1.2 鉛直方向

鉛直方向地震応答解析モデルは図 3-3 に示すように、原子炉建屋、原子炉格納容器、原子炉圧力容器、原子炉しゃへい壁、原子炉本体の基礎及びインナーコンクリート等の各質点間を等価な軸剛性を有する無質量のばねにより結合する。また、屋根トラスは、各質点間を等価な曲げ、せん断剛性を有する無質量のはりで結合し、支持端部の回転拘束と等価な回転ばねで結合する。なお、インナーコンクリートとは、原子炉建屋の基礎版上面からドライウェル床面までの範囲で、1 次しゃへい壁の内側のコンクリートをい

う。鉛直方向地震応答解析モデルにおいては、原子炉建屋が1軸でモデル化されており、 原子炉本体の基礎の下端を原子炉建屋に接続した場合、建屋全体の剛性を考慮すること になるため、鉛直方向地震応答解析モデルでは原子炉本体の基礎の下端の接続先として インナーコンクリートをモデル化する。なお、水平方向地震応答解析モデルでは、原子 炉本体の基礎の下端を原子炉建屋の1次しゃへい壁に接続しているため、インナーコン クリートはモデル化していない。

原子炉格納容器,原子炉圧力容器,原子炉しゃへい壁及び原子炉本体の基礎はそれぞれ10 質点,8 質点,5 質点,4 質点でモデル化する。原子炉格納容器の下端は,原子炉建屋と剛に結合される。原子炉圧力容器支持スカートの下端は,原子炉本体の基礎の上端に剛に結合されており,原子炉本体の基礎の下端は,インナーコンクリートを介して原子炉建屋と結合される。

大型機器の質点は原則として,水平方向と同一とし,部材の端点及び剛性の変化する 点,応力評価点等に設けるが,全体の振動特性が把握できるよう,質点間隔については, 工学的判断を加えて定めるものとする。

また、水平方向地震応答解析モデルで考慮している水平ばね(原子炉格納容器スタビライザ等)については、鉛直方向に対しては拘束効果がない構造となっているか、拘束効果があっても本体部材の鉛直剛性に対して無視できる程度に小さい値であるため、鉛直方向地震応答解析モデルでは考慮しない。

図 3-3 に示した鉛直方向地震応答解析モデルの各質点質量, 部材長, ばね定数等を表 3-17~表 3-23 に示す。また, 解析に用いる各構造物の物性値を表 3-26 及び表 3-28 に示す。

なお,原子炉建屋の地盤ばね定数については,添付書類「VI-2-2-1 原子炉建屋の地 震応答計算書」に記載の値を使用する。

図 3-1 大型機器系地震応答解析モデル (NS 方向)

図 3-2 大型機器系地震応答解析モデル (EW 方向)

図 3-3 大型機器系地震応答解析モデル(鉛直方向)

表 3-3 原子炉建屋のモデル諸元 (NS 方向)

質点	標高	質量	部材長	断面二次	有効せん断	回転慣性重量
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	モーメント (×10 ³ m ⁴)	断面積 (m²)	$(\times 10^5 \mathrm{kN} \cdot \mathrm{m}^2)$
61	33. 200		10. 70	29. 20	30.8	138. 3
60	22. 500		7.50	59. 40	59. 2	246. 1
59	15. 000		9.00	73. 40	75. 0	251.1
58	6.000		6.80	108. 90	107. 8	334. 4
57	-0.800					345. 2
2	-8. 100		7.30	114. 40	107.8	_
56	50. 500		9.30	3.84	10.0	13.8
55	41. 200		8.00	6. 35	18. 2	24. 7
54	33. 200		10. 70	-		600. 2
53	22. 500		7.50	54. 30	59. 4	924.8
52	15. 000			101. 20	85. 8	841.4
51	6.000		9.00	159. 50	123. 2	974.8
50	-0.800		6.80	211. 10	165. 2	1040.5
2	-8. 100		7. 30	216. 10	165. 2	_
49	33. 200		10.70	3. 83	50.6	40. 4
48	22. 500		7.50	9.63		91.4
46	15. 000				72. 7	112.8
45	6.000		9.00	11. 20	71.0	74.6
3	1.150		4.85	10. 50	66.8	_
44	50. 500		9.30	3. 90	10.0	13.8
43	41. 200		8.00	6.82	18. 2	30. 3
42	33. 200		10. 70	50. 70	59.8	499. 2
41	22. 500		7. 50	105. 30	90. 0	670.8
40	15. 000		9.00	132. 10	118. 7	696.3
39	6.000		6.80	184. 10	155. 3	771.8
38	-0.800					700. 2
2	-8. 100		7.30	188. 30	159.8	_
37	33. 200		10.70	22.40	28. 4	85. 5
36	22. 500		7.50	46. 50	52.0	132. 4
35	15. 000		9.00	62. 80	77. 0	220.6
34	6.000		6.80	84. 00	107.8	264. 8
33	-0.800					298. 1
2	-8. 100		7.30	81.60	107.8	_
3	1. 150		9. 25	15. 70	108.0	90. 3
2	-8. 100				0.400 0	3742. 2
1	-14. 100		6.00	3195. 70	6468. 0	2261.4

断面二次 有効せん断 質点 標高 質量 部材長 回転慣性重量 モーメント 断面積 番号 0. P. (m) $(\times 10^3 \text{kg})$ $(\times 10^5 \text{kN} \cdot \text{m}^2)$ (m) $(\times 10^3 \text{m}^4)$ (m^2) 50.500 44 9.30 0.0794 0.1844 43 41.200 8.00 0.4001 7.56 42 33.200 56 50.500 9.30 0.07940.1844 55 41.200 8.00 0.7001 7.56 54 33.200

表 3-4 原子炉建屋(補強部材)のモデル諸元(NS 方向)

表 3-5 原子炉建屋 (床ばね) のモデル諸元 (NS 方向)

X 0 0 /// // / ZZZ (//tiot/a/ // Z // hilly a tio/y/ i/						
質	点	ばね定数	減衰			
番	号	$(\times 10^5 \mathrm{kN/m})$	(%)			
37	42	350. 1	5. 0			
36	41	354. 4	5. 0			
35	40	374.6	5.0			
34	39	452.4	5.0			
33	38	862. 2	5. 0			
44	56	13. 4	5. 0			
42	49	240. 9	5. 0			
41	48	281. 5	5. 0			
40	46	571. 2	5. 0			
39	45	376. 6	5. 0			
38	50	80. 5	5. 0			
49	54	313. 7	5. 0			
48	53	327. 1	5. 0			
46	52	561. 2	5. 0			
45	51	396. 5	5. 0			
54	61	219. 0	5. 0			
53	60	265. 2	5. 0			
52	59	208. 4	5. 0			
51	58	250.8	5. 0			
50	57	167.8	5. 0			

 $^{\circ}$ 0

表 3-6 原子炉格納容器のモデル諸元 (NS 方向)

質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	(m^4)	的面積 (m ²)
32					
31					
30					
29					
28					
27					
26					
25					
24					
23					
22					
21					
3					

表 3-7 原子炉しゃへい壁のモデル諸元(NS方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
20					
19					
18					
17					
16					
7					

5 4 3

断面二次 有効せん断 質点 標高 質量 部材長 モーメント 断面積 番号 0. P. (m) $(\times 10^3 \text{kg})$ (m) (m^4) (m^2) 15 14 13 12 11 10 9 8 7 6

表 3-8 原子炉圧力容器及び原子炉本体の基礎のモデル諸元 (NS 方向)

表 3-9 大型機器系地震応答解析モデルのばね定数 (NS 方向)

No.	名称	ばね定数 (N/mm)	減衰定数 (%)
K_1	原子炉格納容器シヤラグ		1. 0
K_2	原子炉格納容器スタビライザ		1.0
K_3	原子炉圧力容器スタビライザ		1.0
K_4	燃料交換ベローズ		1.0
K_5	所員用エアロック		1.0
K_6	ベント管		1.0

表 3-10 原子炉建屋のモデル諸元(EW 方向)

	表 3-10 原子炉建屋のモテル諸元 (EW 方向)								
質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積	回転慣性 <mark>重量</mark>			
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^3 \text{m}^4)$	(m ²)	$(\times 10^5 \text{kN} \cdot \text{m}^2)$			
63	33. 200		10. 70	29. 90	32. 4	110.8			
62	22. 500		7.50	60.50	54. 7	186. 3			
61	15. 000		9.00	80. 30	84. 0	273. 6			
60	6.000		6.80	105. 80	109. 2	366.8			
59	-0.800					368. 7			
2	-8. 100		7.30	105. 90	117. 6	_			
58	50. 500		9.30	6. 49	13. 3	24. 2			
57	41. 200		8.00	10.30	21. 2	27. 9			
56	33. 200		10. 70	27. 30	53. 0	651. 2			
55	22. 500		7.50	107. 30	79.8	906. 1			
54	15. 000		9.00	152. 30	121. 4	883.6			
53	6.000		6.80	216. 90	170. 0	992.4			
52	-0.800					1069.9			
2	-8. 100		7.30	213. 80	167. 2	_			
51	33. 200		10.70	3. 07	63. 3	70.6			
50	22. 500		7.50	9. 63	72. 7	157. 9			
48	15. 000		9.00	11. 20	71. 0	103. 0			
47	6.000					74. 6			
3	1.150		4.85	10. 50	66.8	_			
46	50. 500		9.30	6. 49	13. 3	24. 2			
45	41. 200		8.00	12. 50	17. 4	46.6			
44	33. 200		10.70	29. 50	51.8	550. 2			
43	22. 500		7. 50	34.00	36. 5	571. 7			
42	15. 000		7.00	34.00	30. 0	9. 7			
41	22. 500		7.50	66. 10	76.6	382. 5			
40	15. 000		9.00	92. 70	107. 1	969. 9			
39	6.000		6.80	219. 90	163. 7	1120. 9			
38	-0.800		7.30	227. 80	169. 0	1093. 4			
2	-8. 100		1.00	441.00	109.0	_			
37	33. 200		10.70	37.60	41.0	254. 0			
36	22. 500		7.50	65. 30	57. 4	280. 5			
35	15. 000		9.00	85. 90	84. 0	253. 0			
34	6.000		6.80	110. 90	114.8	302.0			
33	-0.800					306.0			
2	-8. 100		7.30	113. 10	117. 6	_			
3	1. 150		9. 25	15. 70	108.0	90.3			
2	-8. 100		6.00	3803. 20	6468. 0	4451. 2			
1	-14. 100		0.00	3003. 40	0400.0	2690.9			

表 3-11 原子炉建屋(補強部材)のモデル諸元(EW 方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (×10 ³ m ⁴)	有効せん断 断面積 (m²)	回転慣性 <mark>重量</mark> (×10 ⁵ kN·m²)
45	41. 200	_	9 00	1 0000	0 50	_
44	33. 200	_	8.00	1. 8883	8. 58	_

表 3-12 原子炉建屋 (床ばね) のモデル諸元 (EW 方向)

双 5 12 /							
質	点	ばね定数	回転ばね 定数	減衰			
番	:号	$(\times 10^5 \text{kN/m})$	(×10°kN·m/rad)	(%)			
37	44	175. 5	_	5.0			
36	41	680.7	_	5.0			
35	40	511. 5	_	5.0			
34	39	583. 7	_	5.0			
33	38	679.8	_	5.0			
41	43	450.0	_	5.0			
40	42	480.3	_	5.0			
39	47	406. 7	_	5.0			
38	52	68. 3	_	5.0			
46	58	23.8	_	5.0			
44	51	530. 0	3. 55	5.0			
43	50	771.8	3. 55	5.0			
42	48	655. 1	_	5.0			
51	56	198. 0	3. 55	5.0			
50	55	232. 1	3. 55	5.0			
48	54	247. 3	_	5.0			
47	53	388. 5	_	5.0			
56	63	407.0	_	5.0			
55	62	444. 2	_	5.0			
54	61	412. 5	_	5.0			
53	60	483. 1	_	5.0			
52	59	783. 1	_	5.0			
39	42	_	97. 1	5.0			

 \simeq \odot $^{\circ}$ 0

表 3-13 原子炉格納容器のモデル諸元 (EW 方向)

質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	(m^4)	的面積 (m ²)
32					
31					
30					
29					
28					
27					
26					
25					
24					
23					
22					
21					
3					

表 3-14 原子炉しゃへい壁のモデル諸元(EW方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
20					
19					
18					
17					
16					
7					

 \circ

 \mathfrak{S}

表 3-15 原子炉圧力容器及び原子炉本体の基礎のモデル諸元 (EW 方向)

質点	標高	質量	部材長	断面二次	有効せん断
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	モーメント (m⁴)	断面積 (m²)
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
3					

表 3-16 大型機器系地震応答解析モデルのばね定数 (EW 方向)

No.	名称	ばね定数 (N/mm)	減衰定数 (%)
K_1	原子炉格納容器シヤラグ		1. 0
K_2	原子炉格納容器スタビライザ		1. 0
K_3	原子炉圧力容器スタビライザ		1. 0
K_4	燃料交換ベローズ		1. 0
K_5	所員用エアロック		1. 0
K_6	ベント管		1. 0

 \Im \circ

表 3-17	原子炉建屋のモデル諸元	(鉛直方向)
10 11		() LEL / J LEL / J

質点	標高	質量	部材長	ばね定数
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^7 \text{kN/m})$
1	48. 725		7. 525	20. 4
2	41. 200		8.000	48. 3
3	33. 200			
4	22, 500		10. 700	137. 3
5	15, 000		7. 500	279. 1
			9.000	278. 9
6	6. 000		6. 800	499. 5
7	-0.800			
8	-8, 100		7. 300	477. 2
9	-14. 100		6.000	2854.3

表 3-18 原子炉建屋(屋根トラス部)のモデル諸元(鉛直方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
1	48. 725	_	6. 400	6. 99	1. 11
10	48. 725	333	6 200	6.00	1 10
11	48. 725	326	6. 300	6. 99	1.12
12	48. 725	163	6. 300	6. 99	0. 773

表 3-19 原子炉格納容器のモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^7 \mathrm{N/mm})$
41				
40				
39				
38				
37				
36				
35				
34				
33				
32				
14				

表 3-20 原子炉しゃへい壁のモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^8 \text{N/mm})$
23				
22				
21				
20				
19				
18				

表 3-21 原子炉圧力容器及び原子炉本体の基礎のモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(imes 10^8 ext{N/mm})$
31				
30				
29				
28				
27				
26				
25				
24				
18				
17				
16				
15				
14				

表 3-22 インナーコンクリートのモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^9 \mathrm{N/mm})$
14				
8				

表 3-23 原子炉建屋屋根トラス部のばね定数

No.	名称	ばね定数 (×10 ⁶ kN・m/rad)	減衰定数 (%)
K_{θ}	トラス端部回転拘束ばね	32. 15	5. 0

表 3-24 解析に用いる建屋の物性値(NS 方向)

名称	縦弾性係数E (N/mm²)	ポアソン比ぃ	減衰定数 (%)
原子炉建屋	1.99×10^4	0. 167	5. 0
原子炉建屋(オペフロ上部)	7.94×10^3	0. 167	5. 0
原子炉建屋(補強耐震壁)	2.52×10^4	0.2	5. 0
原子炉建屋(鉄骨ブレース)	2.05×10^{5}	0.3	2. 0

表 3-25 解析に用いる建屋の物性値(EW方向)

名称	縦弾性係数E (N/mm²)	ポアソン比ν	減衰定数 (%)
原子炉建屋	2.12×10^4	0. 167	5. 0
原子炉建屋(オペフロ上部)	1.32×10^4	0. 167	5. 0
原子炉建屋(補強耐震壁)	2.52×10^4	0.2	5. 0

表 3-26 解析に用いる建屋の物性値(鉛直方向)

名称	縦弾性係数E (N/mm²)	ポアソン比ぃ	減衰定数 (%)
原子炉建屋(鉄筋コンクリート造)	_	_	5.0
原子炉建屋(屋根トラス部)	2.65×10^4	0.3	2.0

0 2

表 3-27 解析に用いる大型機器系地震応答解析モデルの物性値(水平方向)

名称	縦弾性係数E (N/mm²)	ポアソン比ぃ	減衰定数 (%)
原子炉しゃへい壁			5. 0
原子炉本体の基礎			5. 0
原子炉圧力容器			1. 0
原子炉圧力容器支持スカート			1. 0
原子炉格納容器			1.0

表 3-28 解析に用いる大型機器系地震応答解析モデルの物性値(鉛直方向)

名称	減衰定数 (%)
原子炉しゃへい壁	5. 0
原子炉本体の基礎	5. 0
原子炉圧力容器	1.0
原子炉格納容器	1.0

3.2.2 炉内構造物系地震応答解析モデル

3.2.2.1 水平方向

水平方向地震応答解析モデルは図 3-5 及び図 3-6 に示すように,原子炉建屋,原子炉 しゃへい壁,原子炉本体の基礎,原子炉圧力容器,炉心シュラウド,燃料集合体,制御 棒案内管及び制御棒駆動機構ハウジング等の各質点間を等価な曲げ,せん断剛性を有す る無質量のはり又は無質量のばねにより結合する。

原子炉しゃへい壁は 5 質点,原子炉本体の基礎は 4 質点,原子炉圧力容器は 18 質点でモデル化する。原子炉圧力容器は原子炉圧力容器スタビライザ及び原子炉本体の基礎を介して原子炉建屋に支持される。

炉心シュラウドは、下部胴下端がシュラウドサポートプレート及びシュラウドサポートレグの回転ばねにより原子炉圧力容器と結合され、上部胴上端が炉心シュラウド支持ロッドの回転ばねによりシュラウドサポートプレートと結合される。また、上部胴は上部サポートの水平ばねにより、中間胴下端は下部スタビライザの水平ばねにより原子炉圧力容器と結合される。

気水分離器及びスタンドパイプは3質点,炉心シュラウドは10質点,燃料集合体は7質点,制御棒案内管は4質点,制御棒駆動機構ハウジングは6質点でモデル化する。これらを0.P. でシュラウドサポートと等価な回転ばねを介して,原子炉圧力容器と結合する。

なお、ジェットポンプ、中性子東計測案内管、中性子東計測ハウジングについては、 質量が小さく炉内の構造物の振動に与える影響は小さいため質量のみを考慮する。また、 原子炉圧力容器内の燃料集合体、炉心シュラウド等のモデル化においては、炉水による 付加質量効果を模擬するため仮想質量を考慮する。

原子炉建屋は質点系でモデル化し、地盤を等価なばねで評価した建屋-地盤連成モデルとする。

建屋底面下の地盤は、水平ばね及び回転ばねで置換する。また、基礎版底面における 地盤の水平及び回転ばねは、それ以深の地盤を等価な半無限地盤とみなして、波動論に より評価する。

図3-5及び図3-6に示した炉内構造物系の水平方向地震応答解析モデルの各質点質量, 部材長,断面二次モーメント,有効せん断断面積,ばね定数等を表 3-29~表 3-50 に示 す。また,解析に用いる各構造物の物性値を表 3-62,表 3-63 及び表 3-65 に示す。

原子炉本体の基礎の復元力特性は、建屋の方向別に、原子炉本体の基礎の要素を単位とした水平断面形状より設定した非線形の復元力特性とする。

炉心シュラウドについては,第6回定期検査(平成15年5月22日から平成15年12月25日)において,溶接線の目視点検を行ったところ,溶接部の一部にひびが発生していることを確認しており,炉心シュラウド支持ロッドを取り付ける補修を実施している。炉心シュラウド支持ロッドは,炉心シュラウド全ての周方向溶接線が全周破断した状態

においても、炉心シュラウド支持ロッドによる拘束力により、炉心シュラウドの機能を維持し得る設計としているため、炉心シュラウド支持ロッド施工後は、炉心シュラウド全ての周方向溶接部の構造健全性及び構造強度を期待しない構造となっている。ただし、炉内構造物系の地震応答解析においては、炉心シュラウド周方向溶接線の分離(炉心シュラウド溶接線の分離想定ケース)を考慮し、炉心シュラウド,炉心シュラウド支持ロッド、上部サポート及び下部スタビライザにおいて考慮すべき地震荷重が最大となるケースとして、以下の4通りのモデルを想定する。図3-4に炉心シュラウド,炉心シュラウド支持ロッド及びシュラウドサポートの概略形状並びに炉心シュラウド周方向溶接線の位置を示す。

- シュラウド健全モデル
- ・上部胴上端(H1)分離モデル
- ・下部胴上端 (H6b) 分離モデル
- ・全溶接線(周方向)分離モデル

図 3-4 炉心シュラウド, 炉心シュラウド支持ロッド及びシュラウドサポートの概略形状並びに 炉心シュラウド周方向溶接線の位置

3.2.2.2 鉛直方向

鉛直方向地震応答解析モデルは図 3-7 に示すように,原子炉建屋,原子炉しゃへい壁,原子炉本体の基礎,インナーコンクリート,原子炉圧力容器,炉心シュラウド,制御棒案内管及び制御棒駆動機構ハウジング,炉心シュラウド支持ロッド等の各質点間を等価な軸剛性を有する無質量のばねにより結合する。また,屋根トラスは,各質点間を等価な曲げ,せん断剛性を有する無質量のはりで結合し,支持端部の回転拘束と等価な回転ばねで結合する。

原子炉しゃへい壁は 5 質点,原子炉本体の基礎は 4 質点,原子炉圧力容器は 19 質点でモデル化する。原子炉圧力容器は原子炉本体の基礎及びインナーコンクリートを介して原子炉建屋に支持される。

気水分離器及びスタンドパイプは3質点, 炉心シュラウドは11質点, 制御棒案内管は3質点, 制御棒駆動機構ハウジングは6質点でモデル化する。なお, 燃料集合体については, 鉛直方向に拘束していない構造であるため, 質量のみ制御棒案内管上端に付加し, 鉛直方向地震応答解析モデルでは考慮しない。

ジェットポンプ,中性子東計測案内管,中性子東計測ハウジングについては,水平方向と同様に質量のみを考慮する。

炉内構造物の質点は原則として,水平方向と同一とし,部材の端点及び剛性の変化する点,応力評価点等に設けるが,全体の振動特性が把握できるよう,質点間隔については,工学的判断を加えて定めるものとする。ただし,炉心シュラウドについては,シュラウドサポートレグ上下端に質点を設け,原子炉圧力容器下部鏡板に結合する。

また,水平方向解析モデルで考慮している水平ばね(原子炉圧力容器スタビライザ等) については,鉛直方向に対しては拘束効果がない構造となっているか,拘束効果があっても本体部材の鉛直剛性に対して無視できる程度に小さい値であるため,鉛直方向地震応答解析モデルでは考慮しない。

なお、鉛直方向地震応答解析モデルでは、炉水による付加質量効果は小さいため仮想 質量は考慮しない。

図 3-7 に示した鉛直方向地震応答解析モデルの各質点質量,部材長,ばね定数等を表 3-51~表 3-61 に示す。また,解析に用いる各構造物の物性値を表 3-64 及び表 3-66 に示す。

なお、原子炉建屋の地盤ばね定数については、添付書類「VI-2-2-1 原子炉建屋の地 震応答計算書」に記載の値を使用する。

図 3-5 炉内構造物系地震応答解析モデル (NS 方向)

図 3-6 炉内構造物系地震応答解析モデル (EW 方向)

図 3-7 炉内構造物系地震応答解析モデル(鉛直方向)

表 3-29 原子炉建屋のモデル諸元 (NS 方向)

質点	標高	質量	部材長	断面二次	有効せん断	回転慣性重量
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	モーメント (×10 ³ m ⁴)	断面積 (m²)	$(\times 10^5 \mathrm{kN} \cdot \mathrm{m}^2)$
89	33. 200		10. 70	29. 20	30.8	138. 3
88	22. 500		7.50	59.40	59. 2	246. 1
87	15. 000		9, 00	73. 40	75. 0	251. 1
86	6.000			+		334.4
85	-0.800		6.80	108. 90	107.8	345. 2
2	-8. 100		7.30	114. 40	107.8	_
84	50. 500		9.30	3.84	10.0	13.8
83	41. 200		8.00	6. 35	18. 2	24. 7
82	33. 200		10. 70	-		600.2
81	22. 500			54. 30	59. 4	924.8
80	15. 000		7.50	101. 20	85. 8	841.4
79	6.000		9.00	159. 50	123. 2	974.8
78	-0.800		6.80	211. 10	165. 2	1040.5
2	-8. 100		7. 30	216. 10	165. 2	_
77	33. 200		10.70	3.83	50.6	40. 4
76	22. 500		7.50	9. 63	72.7	91.4
74	15. 000					112.8
73	6.000		9.00	11. 20	71.0	74.6
3	1. 150		4.85	10.50	66.8	_
72	50. 500		9.30	3. 90	10.0	13.8
71	41. 200		8.00	6.82	18. 2	30. 3
70	33. 200		10. 70	50. 70	59.8	499. 2
69	22. 500		7. 50	105. 30	90. 0	670.8
68	15. 000		9.00	132. 10	118. 7	696.3
67	6.000		6.80	184. 10	155. 3	771.8
66	-0.800					700. 2
2	-8. 100		7.30	188. 30	159.8	_
65	33. 200		10.70	22. 40	28. 4	85. 5
64	22. 500		7.50	46. 50	52.0	132. 4
63	15. 000		9.00	62. 80	77. 0	220.6
62	6.000		6.80	84. 00	107.8	264. 8
61	-0.800					298. 1
2	-8. 100		7.30	81.60	107.8	_
3	1.150		9. 25	15. 70	108.0	90.3
2	-8. 100					3742.2
1	-14. 100		6.00	3195. 70	6468. 0	2261.4

表 3-30 原子炉建屋(補強部材)のモデル諸元(NS方向)

質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積	回転慣性重量
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^3 \text{m}^4)$	四加加 (m ²)	$(\times 10^5 \text{kN} \cdot \text{m}^2)$
72	50. 500	_	9.30	0.0794	0. 1844	_
71	41. 200	_				_
70	33. 200	_	8.00	0. 4001	7. 56	_
84	50. 500	_	9.30	0.0794	0. 1844	_
83	41. 200	_				_
82	33. 200	_	8.00	0. 7001	7. 56	_

表 3-31 原子炉建屋 (床ばね) のモデル諸元 (NS 方向)

質	点	ばね定数	減衰
番	号	$(\times 10^5 \mathrm{kN/m})$	(%)
65	70	350. 1	5. 0
64	69	354. 4	5. 0
63	68	374. 6	5. 0
62	67	452. 4	5. 0
61	66	862. 2	5. 0
72	84	13. 4	5.0
70	77	240. 9	5. 0
69	76	281. 5	5. 0
68	74	571. 2	5. 0
67	73	376. 6	5. 0
66	78	80. 5	5. 0
77	82	313. 7	5. 0
76	81	327. 1	5. 0
74	80	561. 2	5. 0
73	79	396. 5	5. 0
82	89	219. 0	5. 0
81	88	265. 2	5. 0
80	87	208. 4	5. 0
79	86	250.8	5. 0
78	85	167. 8	5. 0

表 3-32 原子炉しゃへい壁のモデル諸元 (NS 方向)

質点 番号	標高 O. P. (m)	質量 (×10 ³ kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
60					
59					
58					
57					
56					
7					

表 3-33 原子炉圧力容器及び原子炉本体の基礎のモデル諸元 (NS 方向)

質点 番号	標高 0.P.(m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
24				(III)	(111)
23					
22					
21					
20					
19					
18					
17					
16					
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
3					

表 3-34 原子炉圧力容器下部鏡板のモデル諸元 (NS 方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
8					
38					

表 3-35 気水分離器,スタンドパイプ及び炉心シュラウドのモデル諸元 (NS 方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
37				(***)	(111 /
36					
35					
34					
33					
32					
31					
30					
29					
28					
27					
26					
25					
51					

表 3-36 燃料集合体のモデル諸元 (NS 方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
55					
50					
49					
48					
47					
46					
54					

表 3-37 制御棒案内管のモデル諸元 (NS 方向)

質点番号	標高 0.P.(m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
53					
45					
44					
52					

表 3-38 制御棒駆動機構ハウジングのモデル諸元 (NS 方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
43					
38					
39					
40					
41					
42					

表 3-39 炉内構造物系地震応答解析モデルのばね定数 (NS 方向)

No.	名称	ばね定数		減衰定数 (%)
K_1	原子炉格納容器スタビライザ		(N/mm)	1. 0
K_2	原子炉圧力容器スタビライザ		(N/mm)	1.0
K ₃	制御棒駆動機構ハウジング レストレントビーム		(N/mm)	1.0
K ₄	シュラウドサポート		(N·mm/rad)	1.0
K_5	上部サポート		(N/mm)	1.0
K ₆	下部スタビライザ		(N/mm)	1.0
K_7	炉心シュラウド支持ロッド		(N·mm/rad)	1. 0

表 3-40 原子炉建屋のモデル諸元 (EW 方向)

	<u> </u>	3-40 原子炉	達座のモノル	商儿 (EW 刀间))	
質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積	回転慣性 <mark>重量</mark>
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^3 \text{m}^4)$	(m ²)	$(\times 10^5 \text{kN} \cdot \text{m}^2)$
91	33. 200		10. 70	29. 90	32. 4	110.8
90	22. 500		7.50	60.50	54. 7	186. 3
89	15. 000		9.00	80. 30	84. 0	273. 6
88	6.000		6.80	105. 80	109. 2	366. 8
87	-0.800					368. 7
2	-8. 100		7.30	105. 90	117. 6	_
86	50. 500		9.30	6.49	13. 3	24. 2
85	41. 200		8.00	10.30	21. 2	27. 9
84	33. 200		10. 70	27. 30	53. 0	651. 2
83	22. 500		7. 50	107. 30	79.8	906. 1
82	15. 000		9.00	152. 30	121. 4	883.6
81	6.000		6.80	216. 90	170. 0	992.4
80	-0.800					1069. 9
2	-8. 100		7.30	213. 80	167. 2	_
79	33. 200		10.70	3. 07	63. 3	70.6
78	22. 500		7.50	9.63	72.7	157. 9
76	15. 000		9.00	11. 20	71. 0	103.0
75	6.000					74.6
3	1. 150		4.85	10. 50	66.8	_
74	50. 500		9.30	6. 49	13. 3	24. 2
73	41. 200		8.00	12.50	17. 4	46. 6
72	33. 200		10.70	29. 50	51.8	550. 2
71	22. 500		7.50	34.00	36. 5	571.7
70	15. 000		1.00	01.00	00.0	9. 7
69	22. 500		7.50	66. 10	76.6	382. 5
68	15. 000		9.00	92. 70	107. 1	969. 9
67	6.000		6.80	219. 90	163. 7	1120. 9
66	-0.800		7.30	227. 80	169. 0	1093. 4
2	-8. 100					254.0
65	33. 200		10.70	37. 60	41.0	254. 0
64	22. 500		7.50	65. 30	57. 4	280. 5
63	15. 000		9.00	85. 90	84. 0	253. 0
62	6.000		6.80	110.90	114.8	302.0
61	-0. 800 -8. 100		7.30	113. 10	117. 6	306. 0
3	-8. 100 1. 150					90.3
2	-8. 100		9. 25	15. 70	108. 0	4451. 2
	-8. 100 -14. 100		6.00	3803. 20	6468.0	2690. 9
1	14.100					۷٥٥٥. ۶

表 3-41 原子炉建屋(補強部材)のモデル諸元(EW 方向)

質点 番号	標高 0.P.(m)	質量 (×10 ³ kg)	部材長 (m)	断面二次 モーメント (×10 ³ m ⁴)	有効せん断 断面積 (m²)	回転慣性 <mark>重量</mark> (×10 ⁵ kN·m²)
73	41. 200	_	9 00	1 0000	0 50	_
72	33. 200	_	8.00	1. 8883	8. 58	_

表 3-42 原子炉建屋 (床ばね) のモデル諸元 (EW 方向)

質		ばね定数	回転ばね定数	減衰
	: ////:	$(\times 10^5 \text{kN/m})$	$(\times 10^5 \text{kN·m/rad})$	(%)
	T		(
65	72	175. 5	_	5.0
64	69	680. 7	_	5.0
63	68	511.5	_	5.0
62	67	583. 7	_	5.0
61	66	679.8	_	5.0
69	71	450.0	_	5.0
68	70	480.3	_	5.0
67	75	406. 7	_	5. 0
66	80	68. 3	_	5.0
74	86	23.8	_	5.0
72	79	530. 0	3. 55	5.0
71	78	771.8	3. 55	5.0
70	76	655. 1	_	5. 0
79	84	198. 0	3. 55	5.0
78	83	232. 1	3. 55	5.0
76	82	247. 3	_	5.0
75	81	388. 5	_	5.0
84	91	407. 0	_	5.0
83	90	444. 2	_	5.0
82	89	412. 5	_	5.0
81	88	483. 1	_	5.0
80	87	783. 1	_	5.0
67	70	_	97. 1	5. 0

表 3-43 原子炉しゃへい壁のモデル諸元 (EW 方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
60					
59					
58					
57					
56					
7					

表 3-44 原子炉圧力容器及び原子炉本体の基礎のモデル諸元 (EW 方向)

質点 番号	標高 0.P.(m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント	有効せん断 断面積 (m²)
24				(m^4)	(III)
23					
22					
21					
20					
19					
18					
17					
16					
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
3					

表 3-45 原子炉圧力容器下部鏡板のモデル諸元 (EW 方向)

8	質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
38	8					

表 3-46 気水分離器,スタンドパイプ及び炉心シュラウドのモデル諸元(EW 方向)

質点	標高	質量	部材長	断面二次 モーメント	有効せん断 断面積
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	(m^4)	(m ²)
37					
36					
35					
34					
33					
32					
31					
30					
29					
28					
27					
26					
25					
51					

表 3-47 燃料集合体のモデル諸元 (EW 方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
55		•	•	•	
50					
49					
48					
47					
46					
54					

表 3-48 制御棒案内管のモデル諸元 (EW 方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
53					
45					
44					
52					

表 3-49 制御棒駆動機構ハウジングのモデル諸元 (EW 方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
43					
38					
39					
40					
41					
42					

表 3-50 炉内構造物系地震応答解析モデルのばね定数 (EW 方向)

No.	名称	ばね	減衰定数 (%)	
K_1	原子炉格納容器スタビライザ		(N/mm)	1.0
K_2	原子炉圧力容器スタビライザ		(N/mm)	1. 0
K ₃	制御棒駆動機構ハウジング レストレントビーム		(N/mm)	1.0
K ₄	シュラウドサポート		(N·mm/rad)	1.0
K ₅	上部サポート		(N/mm)	1.0
K ₆	下部スタビライザ		(N/mm)	1.0
K ₇	炉心シュラウド支持ロッド		(N·mm/rad)	1. 0

質点 質量 ばね定数 標高 部材長 番号 0. P. (m) $(\times 10^3 \text{kg})$ $(\times 10^7 \text{kN/m})$ (m)48.725 1 7.525 20.4 2 41.200 8.000 48.3 3 33.200 10.700 137.3 4 22.500 7.500 279.1 5 15.000 278.9 9.000 6.000 6 499.5 6.800 7 -0.8007.300 477.2 8 -8.100

表 3-51 原子炉建屋のモデル諸元(鉛直方向)

表 3-52 原子炉建屋(屋根トラス部)のモデル諸元(鉛直方向)

9

-14.100

6.000

2854.3

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m²)
1	48. 725	_	6. 400	6. 99	1. 11
10	48. 725	333	6. 300	6, 99	1. 12
11	48. 725	326	0. 500	0.99	1. 12
12	48. 725	163	6. 300	6. 99	0. 773

表 3-53 原子炉しゃへい壁のモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^8 \text{N/mm})$
23				
22				
21				
20				
19				
18				

表 3-54 原子炉圧力容器及び原子炉本体の基礎のモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^8 \text{N/mm})$
40				
39				
38				
37				
36				
35				
34				
33				
32				
31				
30				
29				
28				
27				
26				
25				
24				
18				
17				
16				
15				
14				

表 3-55 インナーコンクリートのモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^9 \mathrm{N/mm})$
14				
8				

表 3-56 原子炉圧力容器下部鏡板のモデル諸元(鉛直方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	ばね定数 (×10 ⁷ N/mm)
24				
41				
60				

表 3-57 気水分離器,スタンドパイプ及び炉心シュラウドのモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^7 \mathrm{N/mm})$
55				
54				
53				
52				
51				
50				
49				
48				
47				
46				
45				
44				
43				
42				
41				

表 3-58 炉心シュラウド支持ロッドのモデル諸元(鉛直方向)

質点	標高	質量	部材長	ばね定数
番号	0. P. (m)	$(\times 10^3 \text{kg})$	(m)	$(\times 10^5 \mathrm{N/mm})$
51				
25				

表 3-59 制御棒案内管のモデル諸元(鉛直方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	ばね定数 (×10 ⁷ N/mm)
64				
63				
62				
61				

表 3-60 制御棒駆動機構ハウジングのモデル諸元(鉛直方向)

質点 番号	標高 0. P. (m)	質量 (×10³kg)	部材長 (m)	ばね定数 (×10 ⁸ N/mm)
61		I		
60				
59				
58				
57				
56				

表 3-61 原子炉建屋屋根トラス部のばね定数

No.	名称	ばね定数 (×10 ⁶ kN・m/rad)	減衰定数 (%)
K_{θ}	トラス端部回転拘束ばね	32. 15	5.0

表 3-62 解析に用いる建屋の物性値(NS 方向)

名称	縦弾性係数E (N/mm²)	ポアソン比ぃ	減衰定数 (%)
原子炉建屋	1.99×10^4	0. 167	5. 0
原子炉建屋(オペフロ上部)	7.94×10^3	0. 167	5. 0
原子炉建屋(補強耐震壁)	2.52×10^4	0.2	5. 0
原子炉建屋(鉄骨ブレース)	2.05×10^5	0.3	2. 0

表 3-63 解析に用いる建屋の物性値(EW 方向)

名称	縦弾性係数E (N/mm²)	ポアソン比ぃ	減衰定数 (%)
原子炉建屋	2.12×10^4	0. 167	5. 0
原子炉建屋(オペフロ上部)	1.32×10^4	0. 167	5. 0
原子炉建屋(補強耐震壁)	2.52×10^4	0.2	5. 0

表 3-64 解析に用いる建屋の物性値(鉛直方向)

名称	縦弾性係数E (N/mm²)	ポアソン比ν	減衰定数 (%)
原子炉建屋(鉄筋コンクリート造)	_	_	5. 0
原子炉建屋(屋根トラス部)	2.65×10^4	0.3	2. 0

表 3-65 解析に用いる炉内構造物系地震応答解析モデルの物性値(水平方向)

名称	縦弾性係数E (N/mm²)	ポアソン比ν	減衰定数 (%)
原子炉しゃへい壁			5. 0
原子炉本体の基礎			5. 0
原子炉圧力容器			1.0
原子炉圧力容器支持スカート			1.0
炉心シュラウド			1. 0
原子炉圧力容器下部鏡板			1. 0
制御棒案内管			1. 0
制御棒駆動機構ハウジング			3. 5
燃料集合体			7. 0

表 3-66 解析に用いる炉内構造物系地震応答解析モデルの物性値(鉛直方向)

名称	減衰定数 (%)
原子炉しゃへい壁	5. 0
原子炉本体の基礎	5. 0
原子炉圧力容器	1.0
炉心シュラウド	1.0
原子炉圧力容器下部鏡板	1.0
制御棒案内管	1.0
制御棒駆動機構ハウジング	1.0
炉心シュラウド支持ロッド	1.0

3.3 解析方法

「3.2 地震応答解析モデル」において設定した地震応答解析モデルを用いて,電子計算機により,剛性マトリックス,質量マトリックスを作り,固有振動数,固有モードマトリックス等を求める。次に,入力地震動に対する各質点の加速度,変位,せん断力(軸力)等を時刻歴応答解析法により時間の関数として求め,地震継続時間中のこれらの最大値を求める。

以上の計算は、解析コード「TDAPⅢ」を使用し、時刻歴応答解析を実施する。評価に用いる解析コードの検証及び妥当性確認等の概要については、添付書類「VI-5 計算機プログラム (解析コード)の概要」に示す。

3.3.1 動的解析

大型機器系地震応答解析モデル及び炉内構造物系地震応答解析モデルを用いた動的解析は、添付書類「VI-2-1-6 地震応答解析の基本方針」に記載の解析方法に基づき、時刻歴応答解析により実施する。なお、解析に用いるモード減衰定数は、各次の振動モードにおける各部材のひずみエネルギーに比例するものとして設定する。

3.3.2 静的解析

(1) 水平地震力

水平地震力は「VI-2-2-1 原子炉建屋の地震応答計算書」に記載の方法に基づき,算出する。 水平地震力算定用の基準面は地表面 (0. P. 14.8m) とし,基準面より上の部分(地上部分)の 地震力は,地震層せん断力係数を用いて,次式により算出する。なお,機器・配管系について は,算出した値を 1.2 倍して用いる。

 $Q_i = n \cdot C_i \cdot W_i$

 $C_i = Z \cdot R_t \cdot A_i \cdot C_o$

ここで,

Qi: 第i層に生じる水平地震力

n:施設の重要度分類に応じた係数(3.0)

C_i:第i層の地震層せん断力係数

Wi: 第 i 層が支える重量

Z : 地震地域係数(1.0)

R_t:振動特性係数 (0.8)

Ai: 第i層の地震層せん断力係数の高さ方向の分布係数

C。:標準層せん断力係数 (0.2)

基準面より下の部分(地下部分)の地震力は、当該部分の重量に、次式によって算定する地下震度を乗じて定める。なお、機器・配管系については、算出した値を1.2倍して用いる。

K = 0.1 \times n \times (1-H/40) \times α = 2.7°,

K:地下部分の水平震度

n:施設の重要度分類に応じた係数(3.0)

H:地下の各部分の基準面からの深さ (m)

α : 建物・構築物側方の地盤の影響を考慮した水平地下震度の補正係数 (1.0)

(2) 鉛直地震力

鉛直地震力は、静的解析によらず、鉛直震度 0.3 を基準とし、建物・構築物の振動特性及び地盤の種類等を考慮して、次式によって算定する鉛直震度を用いて定める。なお、機器・配管系については、算出した値を 1.2 倍して用いる。ここで、鉛直方向の静的地震力は、一律に同じ値を適用する。

 $C_v = 0.3 \cdot R_v$

ここで,

Cv : 鉛直震度

R_v:鉛直方向振動特性係数(0.8)

3.4 解析条件

3.4.1 耐震壁の復元力特性

耐震壁の復元力特性については,添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」に示す。

3.4.2 地盤の回転ばねの復元力特性

地盤の回転ばねの復元力特性については、添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」に示す。

3.4.3 原子炉本体の基礎の復元力特性

女川原子力発電所第 2 号機の建設時工認で用いた基準地震動のレベルにおいては、原子 炉建屋は非線形領域付近であったため非線形の復元力特性<mark>を設定していた。一方で、</mark>原子炉 本体の基礎はおおむね線形領域に収まっていたことから、剛性一定の線形の復元力特性を 設定していた。

今回工認では基準地震動のレベルが増大し、原子炉本体の基礎の地震応答が線形領域を超えることから、適正な地震応答に基づく評価を行うために、原子炉建屋の地震応答解析モデルだけでなく、原子炉本体の基礎にもコンクリートの剛性変化を考慮した非線形の復元力特性を適用する。

(1) 原子炉本体の基礎のせん断力-せん断変形角関係 (Q-γ関係)

原子炉本体の基礎のせん断力-せん断変形角関係(Q-γ関係)は、コンクリートのひび割れを表す第 1 折点と鋼板の降伏を表す第 2 折点までを設定する。原子炉本体の基礎のせん断力-せん断変形角関係を図 3-8 に示す。

Q1:第1折点のせん断力

Q2:第2折点のせん断力

γ1:第1折点のせん断変形角

γ₂:第2折点のせん断変形角

図 3-8 原子炉本体の基礎のせん断力-せん断変形角関係

(2) 原子炉本体の基礎のせん断力-せん断変形角関係の履歴特性

原子炉本体の基礎のせん断力-せん断変形角関係の履歴特性は、最大点指向型モデルとする。原子炉本体の基礎のせん断力-せん断変形角関係の履歴特性を図 3-9 に示す。

a. 0-A 間: 弾性範囲

b. A-B 間:負側スケルトンが経験した最大点に向かう。ただし、負側最大 点が第1折点を超えていなければ、負側第1折点に向かう。

c. 各最大点は,スケルトン上を移動することにより更新される。

d. 安定ループは面積を持たない。

図 3-9 原子炉本体の基礎のせん断力-せん断変形角関係の履歴特性

(3) 原子炉本体の基礎の曲げモーメント-曲率関係 (M- φ 関係)

原子炉本体の基礎の曲げモーメント-曲率関係($M-\phi$ 関係)は、コンクリートのひび割れを表す第 1 折点と鋼板の降伏を表す第 2 折点までを設定する。原子炉本体の基礎の曲げモ

ーメント-曲率関係を図 3-10 に示す。

 M_1 : 第1折点の曲げモーメント

M₂ : 第2折点の曲げモーメント

φ₁:第1折点の曲率φ₂:第2折点の曲率

図 3-10 原子炉本体の基礎の曲げモーメント-曲率関係

(4) 原子炉本体の基礎の曲げモーメント-曲率関係の履歴特性

原子炉本体の基礎の曲げモーメント-曲率関係の履歴特性は,最大点指向型モデルとする。 原子炉本体の基礎の曲げモーメント-曲率関係の履歴特性を図 3-11 に示す。

a. 0-A 間: 弹性範囲

b. A-B 間:負側スケルトンが経験した最大点に向かう。ただし、負側最大 点が第1折点を超えていなければ、負側第1折点に向かう。

c. 各最大点は、スケルトン上を移動することにより更新される。

d. 安定ループは面積を持たない。

図 3-11 原子炉本体の基礎の曲げモーメント-曲率関係の履歴特性

(5) スケルトンカーブの諸数値

原子炉本体の基礎の各要素について算定したせん断力及び曲げモーメントのスケルトンカーブの諸数値を表 3-67~表 3-70 に示す。なお、曲げモーメントのスケルトンカーブの算定には、解析コード「SCC」を使用する。評価に用いる解析コードの検証及び妥当性確認等の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

表 3-67 原子炉本体の基礎のせん断力のスケルトンカーブ (Q-γ関係) (NS 方向)

質点番号	要素番号	$\begin{array}{c} Q_1 \\ (\times 10^4 \text{ kN}) \end{array}$	γ_1 $(\times 10^{-4})$	$\begin{array}{c} Q_2 \\ (\times 10^4 \text{ kN}) \end{array}$	γ ₂ (×10 ⁻⁴)
7	6	5. 042	1. 775	34. 90	32. 51
6	5	2. 867	1. 859	24. 63	27. 17
5	4	5. 343	1.808	29. 06	33. 23
3	3	5. 428	1.837	29. 06	33. 23

表 3-68 原子炉本体の基礎の曲げモーメントのスケルトンカーブ (M-φ関係) (NS 方向)

質点番号	要素番号	M_1 ($ imes 10^8 \; \mathrm{kN \cdot mm}$)	ϕ_{1} (×10 ⁻⁵ 1/m)	M_2 ($ imes 10^8 \ \mathrm{kN \cdot mm}$)	ϕ_2 (×10 ⁻⁵ 1/m)
7	6	1. 032	1. 036	16. 81	38. 53
6					
_	5	1. 107	1. 151	15. 98	38. 49
5	4	1.740	1. 721	16. 36	38. 39
4					
3	3	1. 738	1. 799	15. 73	38. 50

質点番号	要素番号	Q_1 ($\times 10^4$ kN)	γ_{1} (×10 ⁻⁴)	Q_2 ($\times 10^4$ kN)	γ ₂ (×10 ⁻⁴)
7	- 6	5. 042	1. 775	34. 90	32. 51
5	- 5	5. 400	1. 859	39. 48	31. 21
	4	5. 343	1. 808	29. 06	33. 23
3	3	5. 032	1.837	27. 23	33. 20

表 3-69 原子炉本体の基礎のせん断力のスケルトンカーブ $(Q-\gamma \ \mbox{関係})$ (EW 方向)

表 3-70 原子炉本体の基礎の曲げモーメントのスケルトンカーブ (M- φ 関係) (EW 方向)

質点番号	要素番号	M_1 (×10 8 kN·mm)	ϕ_1 (×10 ⁻⁵ 1/m)	M_2 ($ imes 10^8~{ m kN} \cdot { m mm}$)	ϕ_2 (×10 ⁻⁵ 1/m)
7	6	1. 032	1. 036	16.81	38. 53
6	5	0.8983	1. 441	10.66	38. 90
5	4	1.740	1.721	16. 36	38. 39
3	3	1. 767	1. 794	16. 01	38. 49

3.4.4 炉心シュラウド溶接線の分離想定ケースにおける荷重-変位特性

炉心シュラウド溶接線の分離想定ケースは、健全ケース、H1 分離ケース、H6b 分離ケース 及び全溶接線分離ケースの 4 通りを設定する。各分離想定ケースにおいて、炉心シュラウド の荷重-変位特性を以下のように設定する。

3.4.4.1 健全ケース

健全ケースにおける炉心シュラウドの荷重-変位特性は、線形として設定する。

3.4.4.2 溶接線分離ケース (H1 分離, H6b 分離及び全溶接線分離ケース)

溶接線分離ケースにおける炉心シュラウドの荷重-変位特性は非線形として設定する。 なお、溶接線分離ケースにおいては、以降に示す曲げ非線形特性を溶接線分離位置の 各要素に対して設定する。

(1) 炉心シュラウドの曲げモーメント-曲率関係 (M-φ関係)

炉心シュラウドの曲げモーメント-曲率関係 (M-φ関係) は, 炉心シュラウド溶接線に分離が生じたことを表す第 1 折点を設定し, 第 1 折点以降は曲げモーメントをそれ以上伝達しないよう設定する。炉心シュラウドの曲げモーメント-曲率関係を図 3-12 に示す。

M: 第1折点の曲げモーメント

φ :第1折点の曲率

図 3-12 炉心シュラウドの曲げモーメント-曲率関係

(2) 炉心シュラウドの曲げモーメント-曲率関係の履歴特性

炉心シュラウドの曲げモーメント-曲率関係の履歴特性は、原点指向型モデルとする。炉 心シュラウドの曲げモーメント-曲率関係の履歴特性を図 3-13 に示す。

a. 0-A 間:弾性範囲

b. A-B 間:原点に向かう

図 3-13 炉心シュラウドの曲げモーメント-曲率関係の履歴特性

(3) スケルトンカーブの諸数値

炉心シュラウドの各要素について算定した曲げモーメントのスケルトンカーブの諸数値を表 3-71 に示す。表 3-71 は代表として全溶接線分離ケースについて示したものであり、H1分離ケース及び H6b 分離ケースについては、各溶接線分離位置に基づき、以下の要素のみ表 3-71 に示す第1折点を設定し、それ以外の要素の荷重-変位特性は線形として設定する。

· H1 分離ケース:要素番号 32

H6b 分離ケース:要素番号 25

表 3-71 炉心シュラウドの曲げモーメントのスケルトンカーブ (M-φ関係) (全溶接線分離ケース)

質点番号	要素番号	$\frac{\text{M}}{(\times 10^6 \text{ kN} \cdot \text{mm})}$	$ \begin{array}{c c} \hline \phi \\ (\times 10^{-6} \ 1/\text{m}) \end{array} $	
33	32	1. 530	5. 290	
32	31	1. 531	6. 450	
31	30	1. 531	6. 450	
30				
<mark>29</mark>	29 	1. 531	6. 450	
28	28	1. 531	6. 450	
	27	1. 531	6. 450	
	<mark>26</mark>	1. 531	6. 450	
26 	25 25	1. 532	6.820	
25	24	1. 532	6. 820	
<mark>51</mark>				

3.4.5 材料物性の不確かさ等

解析においては、添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」にて考慮する材料物性の不確かさに加え、原子炉本体の基礎のコンクリート剛性を低下させたケースを考慮する。設計用地震力は基本ケースと材料物性の不確かさ等を考慮したケースの包絡値を使用する。材料物性の不確かさ等を考慮する解析ケースを表 3-72 に示す。

表 3-72 建屋-機器連成地震応答解析において材料物性の不確かさ等を考慮する解析ケース

松計なって	建屋初期剛性	地盤物性		原子炉本体の基礎	備考
検討ケース			底面地盤ばね	の初期剛性	/佣 石
ケース 1	2011 年 3 月 11 日東北地方 太平洋沖地震の観測記録 を用いたシミュレーショ ン解析により補正*1	表層上部:非線形性を考慮 表層下部:Vs 900m/s	標準地盤	コンクリート強度:設計基準強度 初期剛性低下:考慮しない	基本ケース
ケース 2	同上	表層上部:非線形性を考慮 表層下部:Vs 900+100m/s	標準地盤+σ	同上	
ケース3	同上	表層上部:非線形性を考慮 表層下部:Vs 900-100m/s	標準地盤-σ	同上	
ケース 4	基本ケースの 0.78 倍*2	表層上部:非線形性を考慮 表層下部:Vs 900m/s	標準地盤	同上	基準地震動Ss固有の 解析ケース
ケース 5	同上	表層上部:非線形性を考慮 表層下部:Vs 900+100m/s	標準地盤+σ	同上	基準地震動Ss固有の 解析ケース
ケース 6	同上	表層上部:非線形性を考慮 表層下部:Vs 900-100m/s	標準地盤-σ	同上	基準地震動Ss固有の 解析ケース
ケース7	2011 年 3 月 11 日東北地方 太平洋沖地震の観測記録 を用いたシミュレーショ ン解析により補正*1	表層上部:非線形性を考慮 表層下部:Vs 900m/s	標準地盤	コンクリート強度:設計基準強度 初期剛性低下:原子炉建屋地下3 階から地上2階の補正係数を適用	建屋-機器連成地震応答 解析固有のケース

注記*1:コンクリート強度は設計基準強度とし、添付書類「VI-2-2-1 原子炉建屋の地震応答計算書」に示す原子炉建屋の耐震壁の初期剛性の設計値に対する補正係数(地上3階及びクレーン階:NS方向0.30,EW方向0.50,地下3階から地上2階:NS方向0.75,EW方向0.80)を適用して初期剛性を設定する。

*2:原子炉建屋の基準地震動Ss入力前後の1次ピーク振動数の比から算定した剛性比

4. 解析結果

本章では、代表として、弾性設計用地震動Sd及び基準地震動Ssの基本ケースの地震応答解析結果を示す。なお、炉内構造物系については、基本ケースのうち、シュラウド健全ケースの結果を代表とする。

4.1 固有値解析結果

4.1.1 大型機器系地震応答解析モデル

計算の結果得られた固有値の中で、固有周期 0.050s までの次数についてまとめた結果を表 $4-1\sim$ 表 4-3 に示す。また、図 $4-1\sim$ 図 4-41 に振動モード図を示す。

4.1.2 炉内構造物系地震応答解析モデル

計算の結果得られた固有値の中で、固有周期 0.050s までの次数についてまとめた結果を表 $4-4\sim$ 表 4-6 に示す。また、図 $4-42\sim$ 図 4-92 に振動モード図を示す。

表 4-1 大型機器系地震応答解析モデルの固有値解析結果*1 (NS 方向)

公主1 //王城市///					
次数	固有周期(s)	刺激係数*2	卓越部位		
1	0. 236	2. 222	原子炉建屋		
2	0. 123	-2.741	原子炉建屋		
3	0.116	-1. 113	原子炉建屋		
4	0.097	2.048	原子炉建屋		
5	0.093	-1.037	原子炉建屋		
6	0.090	-1.774	原子炉圧力容器		
7	0.089	-0.033	原子炉建屋		
8	0.082	-0.001	原子炉建屋		
9	0.074	-0.614	原子炉建屋		
10	0.071	0. 445	原子炉建屋		
11	0.068	-0. 374	原子炉建屋		
12	0.065	-0. 596	原子炉建屋		
13	0.063	-0.668	原子炉建屋		
14	0.060	0.047	原子炉建屋		
15	0.058	0. 475	原子炉建屋		
16	0.055	-0.590	原子炉圧力容器		
17	0.052	1.558	原子炉建屋		
18	0.051	0.438	原子炉建屋		
19	0.050	0. 173	原子炉建屋		

注記*1:固有周期 0.050s 以上の次数について記載した。

*2:刺激係数は、固有ベクトル<mark>の最大成分</mark>を1に正規化し、質量マトリックスとの積から算出した値を示す。

17

18

次数 固有周期 (s) 刺激係数*2 卓越部位 1 0.228 2.197 原子炉建屋 2 0.125 1.928 原子炉建屋 3 0.116 0.066 原子炉建屋 0.098 0.619 原子炉建屋 4 5 0.091 -0.782原子炉建屋 6 0.090 -1.793原子炉圧力容器 2.182 原子炉建屋 7 0.086 0.0771.023 原子炉建屋 8 0.074 9 0.369 原子炉建屋 0.070 10 -0.244原子炉建屋 11 0.067 -0.521 原子炉建屋 12 0.064 0.549 原子炉建屋 13 0.062 -0.256原子炉建屋 14 0.060 1.549 原子炉建屋 15 0.059 0.109 原子炉建屋 16 0.055 -0.329原子炉建屋

表 4-2 大型機器系地震応答解析モデルの固有値解析結果*1 (EW 方向)

注記*1:固有周期 0.050s 以上の次数について記載した。

0.055

0.052

*2:刺激係数は、固有ベクトルの最大成分を1に正規化し、質量マトリックスとの積から算出した値を示す。

原子炉圧力容器

原子炉建屋

表 4-3 大型機器系地震応答解析モデルの固有値解析結果*1(鉛直方向)

0.558

-2.456

次数	固有周期(s)	刺激係数*2	卓越部位
1	0.339	1. 458	原子炉建屋(屋根トラス)
2	0.100	1. 584	原子炉建屋
3	0.079	1. 360	原子炉建屋(屋根トラス)
4	0.051	-0.381	原子炉建屋

注記*1:固有周期 0.050s 以上の次数について記載した。

*2:刺激係数は、固有ベクトル<mark>の最大成分</mark>を 1に正規化し、質量マトリックスとの積から算出した値を示す。

57

プラント名:女川原子力発電所第2号機

固有周期(s): 0.236

刺激係数 : 2.222

図 4-1 大型機器系地震応答解析モデルの振動モード図 (1 次) (NS 方向)

刺激係数 : -2.741

図 4-2 大型機器系地震応答解析モデルの振動モード図 (2 次) (NS 方向)

刺激係数 : -1.113

図 4-3 大型機器系地震応答解析モデルの振動モード図 (3 次) (NS 方向)

刺激係数 : 2.048

図 4-4 大型機器系地震応答解析モデルの振動モード図 (4 次) (NS 方向)

刺激係数: -1.037

図 4-5 大型機器系地震応答解析モデルの振動モード図 (5 次) (NS 方向)

刺激係数 : -1.774

図 4-6 大型機器系地震応答解析モデルの振動モード図 (6 次) (NS 方向)

刺激係数 : -0.033

63

刺激係数: -0.001

64

刺激係数: -0.614

65

刺激係数 : 0.445

図 4-10 大型機器系地震応答解析モデルの振動モード図(10次)(NS 方向)

刺激係数 : -0.374

図 4-11 大型機器系地震応答解析モデルの振動モード図 (11 次) (NS 方向)

刺激係数 : -0.596

図 4-12 大型機器系地震応答解析モデルの振動モード図 (12 次) (NS 方向)

刺激係数 : -0.668

図 4-13 大型機器系地震応答解析モデルの振動モード図 (13 次) (NS 方向)

刺激係数 : 0.047

図 4-14 大型機器系地震応答解析モデルの振動モード図 (14 次) (NS 方向)

刺激係数 : 0.475

図 4-15 大型機器系地震応答解析モデルの振動モード図 (15 次) (NS 方向)

_

刺激係数 : -0.590

図 4-16 大型機器系地震応答解析モデルの振動モード図 (16 次) (NS 方向)

刺激係数 : 1.558

図 4-17 大型機器系地震応答解析モデルの振動モード図 (17 次) (NS 方向)

刺激係数 : 0.438

図 4-18 大型機器系地震応答解析モデルの振動モード図 (18次) (NS 方向)

刺激係数 : 0.173

図 4-19 大型機器系地震応答解析モデルの振動モード図 (19次) (NS 方向)

刺激係数 : 2.197

図 4-20 大型機器系地震応答解析モデルの振動モード図 (1次) (EW 方向)

刺激係数 : 1.928

図 4-21 大型機器系地震応答解析モデルの振動モード図 (2次) (EW 方向)

刺激係数 : 0.066

図 4-22 大型機器系地震応答解析モデルの振動モード図 (3 次) (EW 方向)

刺激係数 : 0.619

図 4-23 大型機器系地震応答解析モデルの振動モード図 (4次) (EW 方向)

刺激係数 : -0.782

図 4-24 大型機器系地震応答解析モデルの振動モード図 (5次) (EW 方向)

刺激係数 : -1.793

図 4-25 大型機器系地震応答解析モデルの振動モード図 (6次) (EW 方向)

刺激係数 : 2.182

図 4-26 大型機器系地震応答解析モデルの振動モード図 (7次) (EW 方向)

刺激係数 : 1.023

図 4-27 大型機器系地震応答解析モデルの振動モード図 (8次) (EW 方向)

刺激係数 : 0.369

図 4-28 大型機器系地震応答解析モデルの振動モード図 (9次) (EW 方向)

刺激係数 : -0.244

図 4-29 大型機器系地震応答解析モデルの振動モード図 (10 次) (EW 方向)

刺激係数 : -0.521

図 4-30 大型機器系地震応答解析モデルの振動モード図 (11 次) (EW 方向)

刺激係数 : 0.549

図 4-31 大型機器系地震応答解析モデルの振動モード図 (12次) (EW 方向)

刺激係数 : -0.256

図 4-32 大型機器系地震応答解析モデルの振動モード図 (13 次) (EW 方向)

刺激係数 : 1.549

図 4-33 大型機器系地震応答解析モデルの振動モード図 (14 次) (EW 方向)

刺激係数 : 0.109

図 4-34 大型機器系地震応答解析モデルの振動モード図 (15次) (EW 方向)

刺激係数 : -0.329

図 4-35 大型機器系地震応答解析モデルの振動モード図 (16 次) (EW 方向)

刺激係数 : 0.558

図 4-36 大型機器系地震応答解析モデルの振動モード図 (17次) (EW 方向)

刺激係数 : -2.456

図 4-37 大型機器系地震応答解析モデルの振動モード図 (18 次) (EW 方向)

刺激係数 : 1.458

原子炉建屋 -----0------0 原子炉圧力容器及び 原子炉本体の基礎 原子炉格納容器 原子炉 しゃへい壁

図 4-38 大型機器系地震応答解析モデルの振動モード図 (1次) (鉛直方向)

刺激係数 : 1.584

図 4-39 大型機器系地震応答解析モデルの振動モード図 (2次) (鉛直方向)

刺激係数 : 1.360

原子炉建屋 原子炉圧力容器及び 原子炉本体の基礎 原子炉格納容器 原子炉 しゃへい壁

図 4-40 大型機器系地震応答解析モデルの振動モード図 (3次) (鉛直方向)

刺激係数: -0.381

原子炉建屋

図 4-41 大型機器系地震応答解析モデルの振動モード図 (4次) (鉛直方向)

表 4-4 炉内構造物系地震応答解析モデルの固有値解析結果*1 (NS 方向)

次数	固有周期(s)	刺激係数*2	卓越部位
1	0. 237	9. 023	原子炉建屋
2	0. 229	7. 968	燃料集合体
3	0. 123	2. 705	原子炉建屋
4	0. 118	-1.519	炉心シュラウド
5	0. 116	-3.848	原子炉建屋
6	0. 097	-2.066	原子炉建屋
7	0. 093	1.039	原子炉建屋
8	0.090	2.070	原子炉圧力容器
9	0.089	-0.091	原子炉建屋
10	0. 082	0.001	原子炉建屋
11	0.074	-0.717	原子炉建屋
12	0.071	-0. 527	原子炉建屋
13	0.068	-0.372	原子炉建屋
14	0.066	2. 206	制御棒案内管
15	0.065	-1.729	原子炉建屋
16	0.063	1.077	原子炉建屋
17	0.060	-0.084	原子炉建屋
18	0.059	-0.364	原子炉建屋
19	0. 058	-0.771	燃料集合体
20	0. 056	-3. 586	炉心シュラウド
21	0. 053	-5. 222	原子炉圧力容器
22	0. 052	-7.672	原子炉建屋
23	0.051	-0. 434	原子炉建屋
24	0.050	0. 311	原子炉建屋

注記*1:固有周期 0.050s 以上の次数について記載した。

*2:刺激係数は、固有ベクトル<mark>の最大成分</mark>を1に正規化し、質量マトリックスとの積から算出した値を示す。

表 4-5 炉内構造物系地震応答解析モデルの固有値解析結果*1 (EW 方向)

次数	固有周期(s)	刺激係数*2	卓越部位
1	0. 231	18. 712	燃料集合体
2	0. 227	17. 658	原子炉建屋
3	0. 125	2. 617	原子炉建屋
4	0. 117	2.888	炉心シュラウド
5	0. 116	-0.130	原子炉建屋
6	0.098	0.630	原子炉建屋
7	0.091	-0.820	原子炉建屋
8	0.090	-1.751	原子炉圧力容器
9	0.086	2. 243	原子炉建屋
10	0.077	1. 120	原子炉建屋
11	0.074	-0.379	原子炉建屋
12	0.070	0. 238	原子炉建屋
13	0.067	0.505	原子炉建屋
14	0.066	-0.366	制御棒案内管
15	0.064	-0.599	原子炉建屋
16	0.062	-0.271	原子炉建屋
17	0.060	2. 781	原子炉建屋
18	0.059	0.114	原子炉建屋
19	0.058	-1. 209	燃料集合体
20	0.056	-3. 214	炉心シュラウド
21	0.055	1. 326	原子炉建屋
22	0.053	-5. 150	原子炉圧力容器
23	0.052	7. 104	原子炉建屋

注記*1:固有周期 0.050s 以上の次数について記載した。

*2:刺激係数は、固有ベクトルの最大成分を1に正規化し、質量マトリックスとの積から算出した値を示す。

0

表 4-6 炉内構造物系地震応答解析モデルの固有値解析結果*1 (鉛直方向)

次数	固有周期(s)	刺激係数*2	卓越部位
1	0.339	1. 458	原子炉建屋
2	0. 100	1.584	原子炉建屋
3	0.079	1. 360	原子炉建屋
4	0.051	-0.380	原子炉建屋

注記*1:固有周期 0.050s 以上の次数について記載した。

*2:刺激係数は、固有ベクトル<mark>の最大成分</mark>を<mark>1に</mark>正規化し、質量マトリックスとの積から算出した値を示す。

固有周期(s): 0.237

刺激係数 : 9.023

図 4-42 炉内構造物系地震応答解析モデルの振動モード図 (1次) (NS 方向)

固有周期(s): 0.229

刺激係数 : 7.968

図 4-43 炉内構造物系地震応答解析モデルの振動モード図 (2次) (NS 方向)

固有周期(s): 0.123

刺激係数 : 2.705

図 4-44 炉内構造物系地震応答解析モデルの振動モード図 (3次) (NS 方向)

固有周期(s): 0.118

刺激係数 : -1.519

図 4-45 炉内構造物系地震応答解析モデルの振動モード図 (4次) (NS 方向)

固有周期(s): 0.116

刺激係数: -3.848

図 4-46 炉内構造物系地震応答解析モデルの振動モード図 (5次) (NS 方向)

固有周期(s): 0.097

刺激係数 : -2.066

図 4-47 炉内構造物系地震応答解析モデルの振動モード図 (6次) (NS 方向)

固有周期(s): 0.093

刺激係数 : 1.039

図 4-48 炉内構造物系地震応答解析モデルの振動モード図 (7次) (NS 方向)

固有周期(s):0.090

刺激係数 : 2.070

図 4-49 炉内構造物系地震応答解析モデルの振動モード図 (8次) (NS 方向)

固有周期(s): 0.089

図 4-50 炉内構造物系地震応答解析モデルの振動モード図 (9次) (NS 方向)

固有周期(s): 0.082

図 4-51 炉内構造物系地震応答解析モデルの振動モード図 (10次) (NS 方向)

固有周期(s): 0.074

図 4-52 炉内構造物系地震応答解析モデルの振動モード図 (11 次) (NS 方向)

固有周期(s): 0.071

図 4-53 炉内構造物系地震応答解析モデルの振動モード図 (12次) (NS 方向)

固有周期(s): 0.068

図 4-54 炉内構造物系地震応答解析モデルの振動モード図 (13 次) (NS 方向)

固有周期(s): 0.066

刺激係数 : 2.206

図 4-55 炉内構造物系地震応答解析モデルの振動モード図 (14次) (NS 方向)

固有周期(s): 0.065

刺激係数 : -1.729

図 4-56 炉内構造物系地震応答解析モデルの振動モード図 (15次) (NS 方向)

固有周期(s): 0.063

刺激係数 : 1.077

図 4-57 炉内構造物系地震応答解析モデルの振動モード図 (16 次) (NS 方向)

固有周期(s): 0.060

図 4-58 炉内構造物系地震応答解析モデルの振動モード図 (17次) (NS 方向)

固有周期(s): 0.059

図 4-59 炉内構造物系地震応答解析モデルの振動モード図 (18次) (NS 方向)

固有周期(s): 0.058

図 4-60 炉内構造物系地震応答解析モデルの振動モード図 (19次) (NS 方向)

固有周期(s): 0.056

刺激係数: -3.586

図 4-61 炉内構造物系地震応答解析モデルの振動モード図 (20次) (NS 方向)

固有周期(s): 0.053

刺激係数 : -5.222

図 4-62 炉内構造物系地震応答解析モデルの振動モード図 (21 次) (NS 方向)

固有周期(s): 0.052

刺激係数: -7.672

図 4-63 炉内構造物系地震応答解析モデルの振動モード図 (22次) (NS 方向)

固有周期(s): 0.051

図 4-64 炉内構造物系地震応答解析モデルの振動モード図 (23 次) (NS 方向)

固有周期(s):0.050

図 4-65 炉内構造物系地震応答解析モデルの振動モード図 (24次) (NS 方向)

固有周期(s): 0.231

刺激係数 : 18.712

図 4-66 炉内構造物系地震応答解析モデルの振動モード図 (1次) (EW 方向)

固有周期(s): 0.227

刺激係数 : 17.658

図 4-67 炉内構造物系地震応答解析モデルの振動モード図 (2次) (EW 方向)

固有周期(s): 0.125

刺激係数 : 2.617

図 4-68 炉内構造物系地震応答解析モデルの振動モード図 (3次) (EW 方向)

固有周期(s): 0.117

刺激係数 : 2.888

図 4-69 炉内構造物系地震応答解析モデルの振動モード図 (4次) (EW 方向)

固有周期(s): 0.116

図 4-70 炉内構造物系地震応答解析モデルの振動モード図 (5次) (EW 方向)

固有周期(s): 0.098

図 4-71 炉内構造物系地震応答解析モデルの振動モード図 (6次) (EW 方向)

固有周期(s): 0.091

図 4-72 炉内構造物系地震応答解析モデルの振動モード図 (7次) (EW 方向)

固有周期(s): 0.090

刺激係数 : -1.751

図 4-73 炉内構造物系地震応答解析モデルの振動モード図 (8次) (EW 方向)

固有周期(s):0.086

刺激係数 : 2.243

図 4-74 炉内構造物系地震応答解析モデルの振動モード図 (9次) (EW 方向)

固有周期(s):0.077

刺激係数 : 1.120

図 4-75 炉内構造物系地震応答解析モデルの振動モード図 (10次) (EW 方向)

固有周期(s): 0.074

図 4-76 炉内構造物系地震応答解析モデルの振動モード図 (11 次) (EW 方向)

固有周期(s):0.070

図 4-77 炉内構造物系地震応答解析モデルの振動モード図 (12次) (EW 方向)

固有周期(s): 0.067

図 4-78 炉内構造物系地震応答解析モデルの振動モード図 (13次) (EW 方向)

固有周期(s): 0.066

図 4-79 炉内構造物系地震応答解析モデルの振動モード図 (14次) (EW 方向)

固有周期(s): 0.064

図 4-80 炉内構造物系地震応答解析モデルの振動モード図 (15次) (EW 方向)

固有周期(s): 0.062

図 4-81 炉内構造物系地震応答解析モデルの振動モード図 (16次) (EW 方向)

固有周期(s): 0.060

刺激係数 : 2.781

図 4-82 炉内構造物系地震応答解析モデルの振動モード図 (17次) (EW 方向)

固有周期(s): 0.059

図 4-83 炉内構造物系地震応答解析モデルの振動モード図 (18次) (EW 方向)

固有周期(s): 0.058

図 4-84 炉内構造物系地震応答解析モデルの振動モード図 (19次) (EW 方向)

固有周期(s): 0.056

刺激係数 : -3.214

図 4-85 炉内構造物系地震応答解析モデルの振動モード図 (20次) (EW 方向)

固有周期(s): 0.055

図 4-86 炉内構造物系地震応答解析モデルの振動モード図 (21次) (EW 方向)

固有周期(s): 0.053

刺激係数 : -5.150

図 4-87 炉内構造物系地震応答解析モデルの振動モード図 (22次) (EW 方向)

固有周期(s): 0.052

刺激係数 : 7.104

図 4-88 炉内構造物系地震応答解析モデルの振動モード図 (23 次) (EW 方向)

固有周期(s): 0.339

図 4-89 炉内構造物系地震応答解析モデルの振動モード図 (1次) (鉛直方向)

固有周期(s): 0.100

図 4-90 炉内構造物系地震応答解析モデルの振動モード図(2次)(鉛直方向)

固有周期(s): 0.079

図 4-91 炉内構造物系地震応答解析モデルの振動モード図 (3次) (鉛直方向)

固有周期(s): 0.051

刺激係数 : -0.380

図 4-92 炉内構造物系地震応答解析モデルの振動モード図(4次)(鉛直方向)

4.2 地震応答解析結果及び静的解析結果

4.2.1 大型機器系地震応答解析モデル

(1) 弾性設計用地震動 S d 及び静的解析

水平方向の弾性設計用地震動 S d による地震応答解析及び静的解析より得られた各点の最大応答加速度,最大応答変位,最大応答せん断力及び最大応答モーメントを図 4-93~図 4-116 に,算定した原子炉本体の基礎のスケルトンカーブと最大応答値の関係を図 4-117~図 4-120 に,原子炉圧力容器スタビライザ,原子炉格納容器スタビライザ及び原子炉格納容器シヤラグに加わる力(ばね反力)を表 4-7 に示す。

鉛直方向の弾性設計用地震動 S d による地震応答解析より得られた各点の最大応答加速度, 最大応答変位及び最大応答軸力を図 4-121~図 4-129 に示す。また,鉛直方向の静的解析は 実施せず,一律に算定することから,表 4-8 に鉛直方向の静的震度を示す。

(2) 基準地震動Ss

水平方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度,最大応答変位,最大応答せん断力及び最大応答モーメントを図 4-130~図 4-153 に,算定したスケルトンカーブと最大応答値の関係を図 4-154~図 4-157 に,原子炉圧力容器スタビライザ,原子炉格納容器スタビライザ及び原子炉格納容器シヤラグに加わる力(ばね反力)を表 4-9に示す。

鉛直方向の基準地震動Ssによる地震応答解析より得られた各点の最大応答加速度,最大 応答変位及び最大応答軸力を図4-158~図4-166に示す。

			最大応答加	速度 (m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 石
9.75	11.3	9.44	5.64	7.81	8.22	7. 83	9.13	原子炉格納容器頂部
9.32	10.7	8.91	5.34	7.35	7.64	7.58	9.13	
8. 89 8. 62	10. 1 9. 69	8. 40 8. 02	5.05 4.85	6. 90 6. 61	7.03 6.65	7. 35 7. 19	9. 13 9. 13	燃料交換ベローズ位置
8.01	8.87	7.23	4.46	5.98	5.95	6.86	7.44	シヤラグ位置
6.78	7. 19	5.87	3.95	4.74	5. 16	6. 11	7.44	
5.95	6.38	5.05	3.63	4.21	4.72	5. 63	6.48	ļ
4.67	5.03	4.10	3.17	3.83	4.24	5.00	6.48	
4.18	4.23	3.94	3.36	4.01	4.04	4.45	5.53	
3.97	4.42	4.04	3.46	4.06	4.44	4. 23	5.53	
3.82	4.46	4. 15	3.50	4.03	4.65	4.06	5.53	原子炉格納容器基部

図 4-93 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉格納容器)

			最大応答	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 右
11.2	11.5	9.71	6.36	9.07	9.65	11.5	11.9	原子炉格納容器頂部
10.7	11.0	9. 24	6.07	8.64	9.22	11.0	11.3	
10. 2 9. 82	10. 5 10. 2	8.80 8.50	5.79 5.61	8. 23 7. 96	8.82 8.56	10. 5 10. 2	10. 8 10. 5	燃料交換ベローズ位置
9. 15	9.44	7.87	5.22	7.38	8.00	9.45	9.76	シヤラグ位置
7.62	7.87	6.50	4.38	6.08	6.69	7. 91	8.14	
6.63	6.84	5.62	3.84	5. 23	5.85	6. 91	7.08	
5.01	5.22	4. 19	2.96	3.86	4.48	5. 28	5.36	
3.47	3.71	2.94	2.11	2.58	3. 19	3.73	3.71	
2.86 2.43	3.11 2.69	2. 45 2. 10	1.77 1.53	2.07 1.77	2.68 2.32	3. 11 2. 67	3.06 2.59	原子炉格納容器基部

図 4-94 最大応答変位 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉格納容器)

			最大応答せん	断力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用与
147	171	140	85. 9	119	124	119	137	原子炉格納容器頂部
287	332	272	168	231	239	234	274	
1590 1930	1800 2240	1890 2280	873 1120	1210 1460	1130 1440	1300 1670	1650 2100	燃料交換ベローズ位置
12300	12800	10500	7270	10600	10700	12300	13800	シヤラグ位置
13200	13400	11200	7740	11200	11400	13100	14800	
13800	13900	11700	8030	11500	11800	13600	15400	
14700	14800	12200	8440	12000	12600	14600	16700	
15000	15100	12400	8570	12100	12900	14900	17200	
15500 15500	15700 15700	12700 12700	8800 8800	12100 12100	13700 13700	15700 15700	18400 18400	原子炉格納容器基部

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-95 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉格納容器)

	弄	ト(×10 ⁶ N・1	nm)		備考		
1 Sd-D	2 Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	湘石
0	0	0	0	0	0	0	原子炉格納容器頂部
393	323	198	273	286	274	316	
	I	556 1770	765 2260	796 2320	772 2580	902 3190	燃料交換ベローズ位置
9990	10200	5030	6500	6520	7420	9310	シヤラグ位置
0 6350	55500	36700	52600	52000	61200	69900	
10200	0 87300	58800	84400	84400	98400	112000	
16900	0 144000	97700	141000	142000	165000	187000	
00 27100	0 228000	139000 156000	198000 223000 340000	203000 228000	235000 265000 387000	268000 302000 330000	原子炉格納容器基部
	0 393 1110 3470 9990 0 63500 00 10200 00 16900 00 24100 00 27100	1 Sd-D2 Sd-D3 0 0 393 323 1110 904 3470 3520 0 9990 10200 0 63500 55500 00 102000 87300 00 169000 144000 00 241000 203000 00 271000 228000	1 Sd-D2 Sd-D3 Sd-F1 0 0 0 0 393 323 198 1110 904 556 3470 3520 1770 0 9990 10200 5030 0 63500 55500 36700 00 102000 87300 58800 00 169000 144000 97700 00 241000 203000 139000 00 271000 228000 156000	1 Sd-D2 Sd-D3 Sd-F1 Sd-F2 0 0 0 0 0 393 323 198 273 1110 904 556 765 3470 3520 1770 2260 0 9990 10200 5030 6500 0 63500 55500 36700 52600 00 102000 87300 58800 84400 00 169000 144000 97700 141000 00 241000 203000 139000 198000 00 271000 228000 156000 223000	0 0 0 0 0 393 323 198 273 286 1110 904 556 765 796 3470 3520 1770 2260 2320 0 9990 10200 5030 6500 6520 0 63500 55500 36700 52600 52000 0 102000 87300 58800 84400 84400 0 169000 144000 97700 141000 142000 0 241000 203000 139000 198000 203000 0 271000 228000 156000 223000 228000	1 Sd-D2 Sd-D3 Sd-F1 Sd-F2 Sd-F3 Sd-N1 0 <td>1 Sd-D2 Sd-D3 Sd-F1 Sd-F2 Sd-F3 Sd-N1 静的解析 0 0 0 0 0 0 0 393 323 198 273 286 274 316 1110 904 556 765 796 772 902 3470 3520 1770 2260 2320 2580 3190 0 9990 10200 5030 6500 6520 7420 9310 0 63500 55500 36700 52600 52000 61200 69900 0 102000 87300 58800 84400 84400 98400 112000 0 169000 144000 97700 141000 142000 165000 187000 0 241000 203000 139000 198000 203000 235000 268000 0 271000 228000 156000 223000 228000 265000 302000</td>	1 Sd-D2 Sd-D3 Sd-F1 Sd-F2 Sd-F3 Sd-N1 静的解析 0 0 0 0 0 0 0 393 323 198 273 286 274 316 1110 904 556 765 796 772 902 3470 3520 1770 2260 2320 2580 3190 0 9990 10200 5030 6500 6520 7420 9310 0 63500 55500 36700 52600 52000 61200 69900 0 102000 87300 58800 84400 84400 98400 112000 0 169000 144000 97700 141000 142000 165000 187000 0 241000 203000 139000 198000 203000 235000 268000 0 271000 228000 156000 223000 228000 265000 302000

図 4-96 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉格納容器)

			最大応答加	速度 (m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 与
9.26	9.75	10.6	4.81	6.74	5.79	7.20	7.44	原子炉しゃへい壁頂部
8.22	8.88	9.47	4.77	6.01	5.67	6.92	7.44	
7.79	8.33	8.23	5.08	6.04	5.42	6.72	7.44	
8.04	7.73	7. 16	5.08	5.90	5.63	6. 39	6.48	
7.38	6.69	5. 93	4.85	5. 39	5. 70	5. 80	6.48	
5.34	5. 68	4. 72	4. 25	4. 43	5. 34	4. 99	6.48	原子炉しゃへい壁基部

図 4-97 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉しゃへい壁)

			最大応答	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	7用 石
9. 23	9.90	8. 53	5.27	7.42	7.76	9. 75	10.2	原子炉しゃへい壁頂部
8.23	8.89	7.63	4.71	6.61	6.95	8. 78	9.11	
7.15	7.79	6.63	4.14	5.74	6. 10	7.73	7.97	
6.16	6.76	5. 67	3.61	4.94	5.33	6.74	6.89	
5.09	5.60	4. 57	3.03	4.03	4.48	5. 61	5. 68	
3.80	4. 18	3. 26	2.31	2.91	3.43	4. 20	4. 18	原子炉しゃへい壁基部

図 4-98 最大応答変位 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉しゃへい壁)

			最大応答せん	断力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1佣 芍
3640	3540	3530	1800	2780	2910	1350	1300	原子炉しゃへい壁頂部
3060	4210	2700	2170	3420	3230	2560	2910	
4980	5180	4820	3190	4360	3980	4730	5820	
6600	7060	6840	3990	5720	5510	6680	7950	
8410	9060	8870	5210	7480	7320	8930	10600	
8410	9060	8870	5210	7480	7320	8930	10600	原子炉しゃへい壁基部

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-99 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉しゃへい壁)

		最	大応答モーメン	⟩ ト (×10 ⁶ N • n	m)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	7/H ·与
0	0	0	0	0	0	0	0	原子炉しゃへい壁頂部
10100	9750	9720	4960	7660	8010	3710	3570	
16400	21700	17100	11100	17300	17200	11000	11900	
26200	33700	21500	18100	27700	26100	22400	26700	
43400	47200	37600	28700	40700	38800	39800	48900	
70900	73600	67600	44600	61600	59800	70100	86300	原子炉しゃへい壁基部

図 4-100 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉しゃへい壁)

			最大応答加	速度(m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 石
15. 5	18.0	18. 0	8.67	13.3	11.8	8.65	11.0	原子炉圧力容器頂部
13. 7	15.8	15. 9	7.55	11.5	9.76	8.01	11.0	燃料交換ベローズ位置
12. 2	14.0	14. 2	6.65	9.99	8.21	7.54	11.0	
10. 9	12.3	12. 7	5.83	8.64	7.29	7. 17	8.93	原子炉圧力容器スタビライザ位置
8.86	9.95	10.6	4.99	6. 75	6.63	6. 72	8.93	
7.41	8.43	8. 27	5.28	5. 46	6.01	6. 35	7.77	
7. 12 6. 63	7.08 6.23	6. 04 5. 20	5. 13 4. 89	5. 09 4. 89	6. 25 6. 11	5. 85 5. 52	7.77 7.77	原子炉圧力容器支持スカート位置
5. 34 5. 07 4. 37	5. 68 5. 53 5. 06	4. 72 4. 68 4. 47	4. 25 4. 15 3. 89	4. 43 4. 34 4. 14	5. 34 5. 26 4. 98	4. 99 4. 87 4. 71	6. 48 6. 48 5. 53	原子炉本体の基礎頂部
4.01	4.75	4.31	3.67	4.05	4.80	4. 43	5.53	
3.82	4.46	4. 15	3.50	4.03	4.65	4.06	5.53	原子炉本体の基礎基部

図 4-101 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉圧力容器及び原子炉本体の基礎)

			最大応答	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1佣 石
12. 2	13. 5	12. 0	7.03	9.80	9.83	12.7	13.6	原子炉圧力容器頂部
11.1	12.3	10.8	6.36	8.89	8.98	11.6	12.4	燃料交換ベローズ位置
10. 2	11.3	9.87	5.83	8.16	8.31	10.8	11.4	
9.41	10.4	9.05	5.36	7.52	7.73	9.95	10.5	原子炉圧力容器スタビライザ位置
8.07	8.94	7.72	4.61	6.43	6.70	8.63	9.05	
6.63	7.38	6. 26	3.84	5. 26	5.61	7. 19	7.47	
5. 31 4. 61	5. 91 5. 12	4.87 4.11	3. 13 2. 75	4. 18 3. 60	4.60 4.06	5. 83 5. 09	5. 98 5. 17	原子炉圧力容器支持スカート位置
3. 80 3. 59 3. 22 2. 79	4. 18 3. 95 3. 53	3. 26 3. 09 2. 77	2. 31 2. 20 1. 98	2. 91 2. 73 2. 40	3. 43 3. 26 2. 96	4. 20 3. 97 3. 55 3. 07	4. 18 3. 95 3. 49	原子炉本体の基礎頂部
2. 43	3. 07 2. 69	2. 41 2. 10	1.74 1.53	2. 04 1. 77	2. 61 2. 32	2. 67	3.00 2.59	原子炉本体の基礎基部

図 4-102 最大応答変位 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉圧力容器及び原子炉本体の基礎)

			最大応答せん	新力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	加力
261	308	306	148	224	201	151	188	原子炉圧力容器頂部
971	1180	1120	658	853	923	622	806	燃料交換ベローズ位置
2140	2480	2490	1260	1810	1650	1340	1880	
1590	1790	1680	963	1200	1350	585	339	原子炉圧力容器スタビライザ位置
1810	2080	1540	1240	1800	1600	1590	1840	
3430	3820	3810	1980	2840	2680	3270	4130	
4410	4930	4980	2660	3630	3670	4380	5660	
5450	5940	5950	3640	4520	4600	5480	7270	原子炉圧力容器支持スカート位置
15000 16100 17200 18100	16100 17400 18600 19700	15700 16600 17400 18100	9790 10900 12000 12900	12800 13700 14500 15200	12800 13900 15000 16100	15700 17000 18300 19500	19500 21300 23000 24500	原子炉本体の基礎頂部
18100	19700	18100	12900	15200	16100	19500	24500	原子炉本体の基礎基部

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-103 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉圧力容器及び原子炉本体の基礎)

		最	大応答モーメン	√ ト (×10 ⁶ N・n	nm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	加力
0	0	0	0	0	0	0	0	原子炉圧力容器頂部
716	844	838	405	612	549	413	515	燃料交換ベローズ位置
2840	3300	3280	1840	2480	2570	1780	2280	
6890	7990	7990	4230	5910	5690	4310	5830	原子炉圧力容器スタビライザ位置
7680	11000	7520	6150	8630	8900	6270	6970	
14300	18600	12700	10700	15200	14500	12000	13700	
25500	27500	24900	17400	23400	21100	22900	28000	
33800 45400	37000 50100	34800 48300	21700 27200	28600 37500	26400 34600	30900 42600	39200 55800	原子炉圧力容器支持スカート位置
116000 128000	124000 136000	116000 129000	27200 71500 77300	97200 106000	34600 92800 103000	113000 125000	55800 143000 158000	原子炉本体の基礎頂部
146000	157000	149000	87200	122000	120000	147000	186000	
176000	190000	181000	104000	148000	148000	181000	229000	
207000	225000	214000	123000	176000	178000	218000	276000	原子炉本体の基礎基部

図 4-104 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (NS 方向 原子炉圧力容器及び原子炉本体の基礎)

			最大応答加	速度 (m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	·/用·/与
10. 1	10.3	11. 2	5.41	8.01	6.77	7. 58	9.28	原子炉格納容器頂部
9.54	9.64	10.6	5.17	7.63	6.45	7.37	9.28	
9.04 8.69	9.05 8.65	10. 1 9. 64	4. 97 4. 86	7. 24 6. 98	6. 13 5. 92	7. 16 7. 03	9. 28 9. 28	燃料交換ベローズ位置
7.95	8.00	8.81	4.61	6.40	5.46	6. 77	7.48	シヤラグ位置
6.45	6.70	7.08	4.04	5. 28	4.58	6. 11	7.48	
5. 52	5.92	5.96	3.71	4.62	4.04	5.70	6.49	
4.66	4.82	4. 46	3.35	4. 01	3.75	5. 04	6.49	
4. 47	4.36	4.08	3. 17	3.46	4.01	4.44	5.53	
4. 37 4. 22	4. 68 4. 65	4. 36 4. 46	3. 15 3. 06	3. 41 3. 38	4. 08 4. 03	4. 20 4. 01	5. 53 5. 53	原子炉格納容器基部

図 4-105 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉格納容器)

			最大応答	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 右
11. 1	11.3	9. 91	6.25	8. 79	8.14	10.4	11.6	原子炉格納容器頂部
10.6	10.8	9.46	5.98	8.39	7.78	9.92	11.1	
10. 1 9. 73	10.3 9.93	9. 03 8. 73	5.73 5.56	8. 01 7. 76	7. 44 7. 21	9. 49 9. 21	10.6 10.3	燃料交換ベローズ位置
9.04	9.26	8.11	5.20	7. 23	6.74	8.60	9.54	シヤラグ位置
7.47	7.73	6.74	4.38	5. 98	5.63	7. 21	7.94	
6.44	6.74	5.84	3.84	5. 18	4.91	6.30	6.89	
4.79	5. 14	4.40	2.96	3.88	3.76	4.83	5. 21	
3. 23	3.62	3.06	2.12	2.66	2.67	3.42	3.60	
2.61 2.20	3. 02 2. 60	2. 54 2. 18	1.79 1.55	2. 18 1. 84	2. 24 1. 93	2. 86 2. 46	2.96 2.50	原子炉格納容器基部

図 4-106 最大応答変位 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉格納容器)

			最大応答せん	断力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 与
150	153	166	82. 4	118	101	115	140	原子炉格納容器頂部
292	297	324	161	230	196	226	279	
1760 2190	2070 2500	1890 2360	934 1140	1350 1690	1300 1590	1340 1690	1680 2150	燃料交換ベローズ位置
13300	13700	11700	6940	10600	9380	11600	14200	シヤラグ位置
14200	14500	12700	7470	11300	9970	12400	15100	
14700	15000	13200	7830	11700	10400	13000	15800	ļ
15400	15700	14000	8440	12200	11000	13900	17000	
15600	15800	14300	8700	12400	11300	14400	17600	
16000 16000	16000 16000	14700 14700	9270 9270	13000 13000	11700 11700	15300 15300	18800 18800	原子炉格納容器基部

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-107 最大応答せん断力 弾性設計用地震動Sd及び静的解析(EW方向 原子炉格納容器)

		最	大応答モーメン	√ ト (×10 ⁶ N•r	nm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	NH 42
0	0	0	0	0	0	0	0	原子炉格納容器頂部
346	353	383	190	272	232	264	321	
969 3420	986 3870	1080 3690	533 1750	763 2630	649 2440	747 2600	916 3260	燃料交換ベローズ位置
9780	11200	10600	5050	7540	7060	7500	9500	シヤラグ位置
68300	67200	62100	34800	53000	46900	58300	71600	
109000	108000	98100	56100	85000	75300	93700	115000	
180000	181000	163000	94000	142000	126000	157000	191000	
255000	257000	230000	135000	201000	179000	224000	274000	
286000 309000	288000 311000	259000 280000	153000 166000	225000 244000	201000 218000	253000 275000	309000 336000	原子炉格納容器基部

図 4-108 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉格納容器)

			最大応答加	速度(m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	·/用·与
9.91	11.8	9.83	5.53	7.63	7.10	7. 16	7.48	原子炉しゃへい壁頂部
9.16	9.96	8. 21	5.36	7. 23	6.50	6. 75	7.48	
8.46	10.1	7.49	5.16	7.16	6.47	6.43	7.48	
8.07	9.60	7.36	5.07	6.55	5.77	6. 16	6.49	
7.18	8. 18	6.60	4.60	5. 32	5. 32	5. 64	6.49	
5. 54	5.94	5. 28	3.71	3.90	4.69	4. 82	6.49	原子炉しゃへい壁基部

図 4-109 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉しゃへい壁)

			最大応答	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	7用 芍
9.56	9.93	8.75	5.36	7.36	6.76	8. 93	9.93	· 「
9. 50 8. 50	8.93	7.81	4.86	6. 59	6.05	8. 05	8.89	原子炉しゃへい壁頂部
7.34	7.83	6.80	4.31	5. 76	5.31	7.08	7.75	
6. 26	6.77	5.84	3.77	4.96	4.64	6. 16	6.68	
5.05	5.55	4.76	3.14	4.06	3.87	5. 11	5.47	
3.58	4.04	3. 44	2.33	2. 93	2. 91	3. 78	3. 97	原子炉しゃへい壁基部

図 4-110 最大応答変位 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉しゃへい壁)

171

			最大応答せん	断力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	湘石
3460	4310	3230	2350	3330	2690	1810	1280	原子炉しゃへい壁頂部
2920	4160	2760	2300	3500	2780	2120	2900	
5360	5300	5140	3080	4310	3750	4430	5830	
7100	7770	6730	4310	5900	4840	6380	7960	
9210	10300	8590	6000	7710	6760	8570	10600	
9210	10300	8590	6000	7710	6760	8570	10600	原子炉しゃへい壁基部

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-111 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉しゃへい壁)

モーメント(×10⁶ N・mm)

		最	大応答モーメン	√ ト (×10 ⁶ N・n	nm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1
0	0	0	0	0	0	0	0	原子炉しゃへい壁頂部
9540	11900	8920	6480	9180	7430	4970	3540	
17800	21900	15600	12100	19100	15100	10300	11800	
24900	33700	23800	18400	27000	23000	18900	26700	
44600	47300	42300	26300	37500	35100	36100	49000	
75400	75000	70700	43700	61700	52500	66000	86400	原子炉しゃへい壁基部

図 4-112 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉しゃへい壁)

			最大応答加	速度(m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	冲布
16. 9	23.8	16.3	9.88	13. 2	14.6	9.95	11.2	原子炉圧力容器頂部
14.0	20. 5	14. 1	8.47	11.5	12. 5	9.02	11.2	燃料交換ベローズ位置
12. 9	17.9	12.3	7.48	10.2	10.8	8. 26	11.2	
11.8	15. 4	10.8	6.83	9.21	9.16	7.59	8.98	原子炉圧力容器スタビライザ位置
10.3	11.9	8. 53	6. 16	7.90	7.71	6. 68	8.98	
8.35	8.64	6.89	5.50	6.42	6.05	5.88	7.79	
7.11	7.43	6. 07	4.83	5. 16	4.89	5. 36	7.79	
6.50	7.06	5.74	4.35	4.64	4.94	5. 12	7.79	原子炉圧力容器支持スカート位置
5. 54 5. 32 4. 98 4. 56	5. 94 5. 87 5. 64 5. 19	5. 28 5. 20 5. 04 4. 76	3. 71 3. 58 3. 43 3. 21	3. 90 3. 75 3. 63 3. 46	4. 69 4. 61 4. 47 4. 25	4. 82 4. 69 4. 59 4. 28	6. 49 6. 49 5. 53 5. 53	原子炉本体の基礎頂部
4. 22	4.65	4.46	3.06	3.38	4.03	4.01	5.53	原子炉本体の基礎基部

図 4-113 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉圧力容器及び原子炉本体の基礎)

変位(mm)

174

			最大応答	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	加州石
13. 2	13.5	12. 2	7.04	9.62	8.91	11.7	13. 4	原子炉圧力容器頂部
11. 9	12.3	11.0	6.43	8.72	8.10	10.7	12.1	燃料交換ベローズ位置
10.9	11.3	10.1	5.95	8.02	7.46	9.84	11.2	
9.95	10.4	9.18	5.52	7.41	6.89	9. 13	10.3	原子炉圧力容器スタビライザ位置
8.45	8.90	7.82	4.81	6. 36	5.94	7. 91	8.83	
6.83	7.31	6.35	4.02	5.24	4.94	6. 57	7.26	
5.32	5.81	5.00	3.26	4. 19	4.02	5. 31	5. 77	
4.51	5.00	4. 28	2.84	3.62	3.51	4.61	4.96	原子炉圧力容器支持スカート位置
3. 58 3. 34 2. 99	4. 04 3. 80 3. 44	3. 44 3. 23 2. 91	2. 33 2. 20 2. 01	2. 93 2. 75 2. 48	2. 91 2. 75 2. 51	3. 78 3. 56 3. 24	3. 97 3. 73 3. 37	原子炉本体の基礎頂部
2.55	2.99	2.52	1.76	2.14	2.20	2.82	2.91	
2.20	2.60	2.18	1.55	1.84	1.93	2.46	2.50	原子炉本体の基礎基部

図 4-114 最大応答変位 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉圧力容器及び原子炉本体の基礎)

			最大応答せん	断力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 与
289	402	278	170	224	248	173	191	原子炉圧力容器頂部
1240	1610	1110	670	928	976	658	808	燃料交換ベローズ位置
2370	3230	2280	1380	1890	2020	1480	1900	
1550	1870	1500	1200	1100	1560	699	333	原子炉圧力容器スタビライザ位置
1840	2110	1760	1140	1650	1480	1390	1840	
3670	4130	3510	2330	3020	2820	3130	4140	
4940	5250	4400	3260	3930	3660	4170	5680	
6180	6070	5310	4130	4820	4330	5180	7280	原子炉圧力容器支持スカート位置
16500 17500 18800	16200 17100 18000	15000 16100 17200	11100 12000 13000	13300 14300 15300	11800 12800 13900	15000 16200 17500	19600 21400 23000	原子炉本体の基礎頂部
20000	19100	18200	13800	16100	14900	18700	24600	
20000	19100	18200	13800	16100	14900	18700	24600	原子炉本体の基礎基部

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-115 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉圧力容器及び原子炉本体の基礎)

		最	大応答モーメン	√ ト (×10 ⁶ N・n	nm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 芍
0	0	0	0	0	0	0	0	原子炉圧力容器頂部
791	1100	763	466	613	678	474	523	燃料交換ベローズ位置
3510	4590	3140	1940	2650	2820	1920	2300	
7990	10600	7460	4540	6230	6640	4710	5880	原子炉圧力容器スタビライザ位置
8750	9700	8480	5980	8780	7710	5410	7000	
15400	16700	14800	10200	14400	12500	10400	13700	
28000	29600	26900	16000	22900	20300	21100	28000	
36900	39900	35400	21600	29500	25800	29200	39300	原子炉圧力容器支持スカート位置
48900 125000 136000	53800 128000 140000	47000 118000 129000	29100 72800 80100	39500 96900 107000	35600 85400 92300	40900 107000 119000	55900 143000 158000	原子炉本体の基礎頂部
156000	161000	148000	95300	124000	106000	139000	186000	
185000	193000	178000	120000	151000	131000	172000	230000	
217000	226000	209000	146000	180000	159000	208000	276000	原子炉本体の基礎基部

図 4-116 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (EW 方向 原子炉圧力容器及び原子炉本体の基礎)

注記*:各図上に記載の要素番号は表 3-67 に対応

図 4-117 原子炉本体の基礎の $Q-\gamma$ 関係と最大応答値(弾性設計用地震動Sd, NS方向)

注記*:各図上に記載の要素番号は表 3-68 に対応

図 4-118 原子炉本体の基礎のM-φ関係と最大応答値(弾性設計用地震動Sd,NS方向)

注記*:各図上に記載の要素番号は表 3-69 に対応

図 4-119 原子炉本体の基礎の $Q-\gamma$ 関係と最大応答値(弾性設計用地震動Sd, EW 方向)

注記*:各図上に記載の要素番号は表 3-70 に対応

図 4-120 原子炉本体の基礎のM-φ関係と最大応答値(弾性設計用地震動Sd, EW方向)

表 4-7 弾性設計用地震動 S d 及び静的解析によるばね反力

名称	方向	最大地震応答値 (×10³N)									
		Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析		
原子炉圧力容器 スタビライザ	NS	3470	4250	4250	2090	2990	2900	1760	2480		
	EW	3840	5810	3990	2520	3010	3300	2090	2520		
原子炉格納容器	NS	7130	7750	7180	4070	4310	5490	2360	2450		
スタビライザ	EW	7030	8560	7140	4510	4760	5860	2520	2500		
原子炉格納容器	NS	10900	13100	12200	7260	9130	10300	7900	8020		
シヤラグ	EW	10600	14600	10300	7970	8410	10500	7050	8270		

		最	大応答加速度(m/	s^2)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	湘石
4.26	5.42	5.01	2.45	2.77	3. 26	2. 19	原子炉格納容器頂部
4.23	5.36	5.00	2.43	2.76	3.25	2. 19	
4. 15 4. 12	5. 27 5. 20	4. 97 4. 93	2.39 2.37	2. 76 2. 75	3. 25 3. 25	2. 18 2. 18	燃料交換ベローズ位置
4.05	5.00	4.77	2.30	2.72	3. 22	2. 18	シヤラグ位置
3.87	4.70	4. 23	2.16	2.62	3.04	2. 16	
3.69	4.44	3.97	2.06	2.52	2.87	2. 14	
3.35	4.05	3.54	1.91	2. 36	2.64	2. 10	
3.09	3.65	2.98	1.88	2.17	2.40	2.01	
3.01 2.93	3.44 3.20	2.71 2.52	1.88 1.86	2.07 1.99	2. 29 2. 19	1.96 1.91	原子炉格納容器基部

図 4-121 最大応答加速度 弹性設計用地震動 S d (鉛直方向 原子炉格納容器)

		j	最大応答変位(mm))			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	加力
0.593	0.458	0.411	0. 265	0.346	0.303	0.301	原子炉格納容器頂部
0.592	0.458	0.411	0.264	0.346	0.302	0.301	
0.590 0.589	0. 456 0. 455	0. 409 0. 408	0. 264 0. 263	0.345 0.345	0.301 0.301	0.300 0.300	燃料交換ベローズ位置
0.586	0.451	0.404	0. 261	0.343	0. 299	0.298	シヤラグ位置
0.576	0.441	0.393	0. 257	0.339	0. 294	0.294	
0.567	0.433	0.383	0.253	0.335	0. 289	0.290	
0.550	0.418	0.365	0. 244	0.328	0. 280	0. 282	
0.530	0.400	0.343	0.234	0.318	0.269	0.272	
0.520 0.511	0.399 0.398	0. 335 0. 328	0. 229 0. 224	0.313 0.308	0. 263 0. 259	0. 268 0. 263	原子炉格納容器基部

図 4-122 最大応答変位 弹性設計用地震動 S d (鉛直方向 原子炉格納容器)

		最力	大応答軸力(×10 ³	N)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1)
63. 7	81.0	74.8	36.8	41. 1	49. 5	32.6	原子炉格納容器頂部
127	161	150	73. 2	82. 2	98. 7	65. 2	
491 695	619 875	584 828	284 403	324 460	387 550	257 366	燃料交換ベローズ位置
1350	1680	1600	778	901	1080	721	シャラグ位置
1850	2260	2150	1060	1250	1480	1010	
2210	2690	2520	1260	1490	1760	1210	
2840	3440	3130	1610	1940	2260	1600	
3120	3770	3410	1760	2140	2480	1780	
3730 3730	4500 4500	3990 3990	2110 2110	2600 2600	2990 2990	2210 2210	原子炉格納容器基部

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-123 最大応答軸力 弾性設計用地震動 S d (鉛直方向 原子炉格納容器)

		最	大応答加速度(m/	s^2)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	加力
6.54	8.87	7.43	4.01	4.12	7.21	2. 23	原子炉しゃへい壁頂部
6.44	8.70	7.13	3.94	4.02	6. 99	2. 22	
6.14	8.19	6.58	3.75	3.77	6.47	2. 21	
5.63	7.27	5. 83	3. 43	3. 38	5. 79	2. 19	
4.89	6.09	4.89	2.92	2.76	4.82	2.14	
3.63	4.35	3.42	2. 15	2.30	3. 17	2. 03	原子炉しゃへい壁基部

図 4-124 最大応答加速度 弾性設計用地震動 S d (鉛直方向 原子炉しゃへい壁)

			j	最大応答変位(mm)			備考
	Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	7用 石
١	0.675	0.585	0.483	0.380	0.400	0.419	0.336	原子炉しゃへい壁頂部
	0.670	0.576	0. 476	0. 375	0. 396	0.414	0.334	
	0.658	0.549	0.458	0.363	0.387	0.400	0.328	
	0.638	0.511	0.437	0.344	0.373	0.380	0.320	
	0.608	0.451	0.409	0.314	0.352	0.349	0.307	
	0.557	0.417	0.362	0.264	0.325	0. 298	0.284	原子炉しゃへい壁基部

図 4-125 最大応答変位 弾性設計用地震動 S d (鉛直方向 原子炉しゃへい壁)

		最	大応答軸力(×10 ³	N)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1)佣 与
1100	1500	1230	674	687	1210	375	原子炉しゃへい壁頂部
2500	3360	2740	1530	1550	2720	857	
4900	6510	5220	3000	3010	5230	1730	
6720	8830	7130	4110	4120	7120	2450	
8570	11100	9010	5250	5200	9030	3290	
8570	11100	9010	5250	5200	9030	3290	原子炉しゃへい壁基部

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-126 最大応答軸力 弾性設計用地震動 S d (鉛直方向 原子炉しゃへい壁)

		最	大応答加速度(m/	s ²)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	1用芍
5. 15	6.41	6. 16	3.01	3.03	5.00	2.20	原子炉圧力容器頂部
5.13	6.39	6.13	3.00	3.02	4.98	2. 20	燃料交換ベローズ位置
5.10	6.34	6.03	2.96	2.99	4.92	2. 19	
5.04	6.27	5.84	2.89	2.94	4.80	2. 18	原子炉圧力容器スタビライザ位置
4.93	6. 11	5. 44	2.75	2.84	4. 55	2. 15	
4.81	5.94	4.95	2.58	2.71	4.21	2. 13	
4.65	5.72	4.41	2.49	2.59	3.85	2. 12	
4.53	5.56	4.11	2.45	2.52	3.64	2. 11	原子炉圧力容器支持スカート位置
3. 63 3. 50 3. 22	4. 35 4. 18 3. 84	3. 42 3. 29 3. 00	2. 15 2. 12 2. 04	2. 30 2. 26 2. 18	3. 17 3. 05 2. 78	2. 03 2. 02 1. 99	原子炉本体の基礎頂部
2.94	3.47	2.70	1.96	2.09	2.49	1.95	
2.93	3.20	2.52	1.86	1.99	2.19	1.91	原子炉本体の基礎基部

図 4-127 最大応答加速度 弾性設計用地震動 S d (鉛直方向 原子炉圧力容器及び原子炉本体の基礎)

)	最大応答変位(mm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	1用 芍
0.628	0.479	0.420	0.319	0.362	0.353	0.318	原子炉圧力容器頂部
0.627	0.479	0.419	0.318	0.361	0.352	0.317	燃料交換ベローズ位置
0.626	0.477	0.418	0.317	0.361	0.351	0.317	
0.623	0.474	0.416	0.315	0.359	0.349	0.315	原子炉圧力容器スタビライザ位置
0.616	0.468	0.410	0.310	0. 355	0. 343	0.312	
0.607	0.460	0.403	0.303	0.350	0.336	0.308	
0.596	0.450	0.395	0. 295	0.344	0. 328	0.303	
0.588	0.444	0.389	0.290	0.340	0.322	0.300	原子炉圧力容器支持スカート位置
0. 557 0. 552 0. 540	0. 417 0. 414 0. 406	0. 362 0. 357 0. 347	0. 264 0. 259 0. 249	0. 325 0. 322 0. 318	0. 298 0. 293 0. 283	0. 284 0. 282 0. 277	原子炉本体の基礎頂部
0.526 0.511	0.398 0.398	0. 336 0. 328	0. 237 0. 224	0.313 0.308	0. 271 0. 259	0. 270 0. 263	原子炉本体の基礎基部
0.511	0.398	0.328	0. 224	0.308	0. 259	0.263	原丁炉平(4)/

図 4-128 最大応答変位 弾性設計用地震動 S d (鉛直方向 原子炉圧力容器及び原子炉本体の基礎)

		最大	大応答軸力(×10 ³	N)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1)用与
89. 4	112	105	51.6	51. 7	85. 4	37.8	原子炉圧力容器頂部
652	814	760	376	377	621	276	燃料交換ベローズ位置
1140	1410	1320	651	654	1080	480	
1460	1800	1680	832	838	1380	617	原子炉圧力容器スタビライザ位置
1880	2320	2150	1070	1080	1770	803	
2270	2790	2550	1280	1300	2120	977	
2660	3270	2930	1480	1520	2450	1160	
5570	6830	5570	2970	3120	4810	2540	原子炉圧力容器支持スカート位置
15100 16000 16900	18700 19800 20800	15500 16400 17300	8720 9250 9780	8230 8840 9480	14600 15500 16300	6340 6880 7450	原子炉本体の基礎頂部
17600 17600	21700 21700	18000 18000	10300 10300	10100 10100	17000 17000	7980 7980	原子炉本体の基礎基部

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-129 最大応答軸力 弾性設計用地震動 S d (鉛直方向 原子炉圧力容器及び原子炉本体の基礎)

表 4-8 静的震度(鉛直方向)

種別	鉛直方向静的震度				
建物・構築物	0. 24 (1. 0Cv)				
機器・配管系	0. 29 (1. 2Cv)				

		備考					
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	·V用·与
15. 4	19.0	17.0	10.9	14.0	14. 4	13.0	原子炉格納容器頂部
14.5	18.0	16.0	10.5	13.0	13. 4	12.8	
13. 6 13. 1	17. 0 16. 3	15. 0 14. 3	10. 1 9. 81	12. 3 11. 9	12. 4 11. 7	12. 5 12. 3	燃料交換ベローズ位置
12. 4	14.8	12.7	9. 23	11. 1	10. 2	11.8	シヤラグ位置
10.3	11.7	10.4	8.10	9.71	9.36	11. 2	
9.38	9.72	9.01	7. 33	8.84	9.04	10.7	
8.50	8.23	7. 17	6. 11	7. 50	8.40	9.79	
7.64	7.28	6.57	6.28	7.89	8.74	8.63	
7.30 7.12	7.56 7.51	6.89 7.25	6.54 6.64	8. 00 7. 96	9. 41 9. 85	8. 19 7. 84	原子炉格納容器基部

図 4-130 最大応答加速度 基準地震動 S s (NS 方向 原子炉格納容器)

			最大応答変位(mm)				備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	1佣 与
24.3	23. 2	17.9	12. 9	19. 5	18. 7	25. 0	原子炉格納容器頂部
23. 2	22. 1	17. 1	12. 4	18.6	17. 9	23.9	
22. 1 21. 4	21. 1 20. 4	16. 3 15. 7	11. 8 11. 5	17. 7 17. 1	17. 1 16. 6	22. 8 22. 1	燃料交換ベローズ位置
19.9	19.0	14.5	10.7	15. 9	15. 5	20.6	シヤラグ位置
16. 5	15. 9	12.0	8.97	13. 1	13. 0	17.2	
14.3	13.8	10.4	7.85	11.3	11. 3	15. 0	
10.8	10.5	7.69	6.04	8. 42	8.63	11.5	
7.37	7.29	5.27	4.30	5.72	6.08	8.04	
6.03 5.09	6. 02 5. 13	4. 36 3. 72	3.60 3.11	4. 67 3. 95	5. 06 4. 33	6. 70 5. 76	原子炉格納容器基部

図 4-131 最大応答変位 基準地震動 S s (NS 方向 原子炉格納容器)

		最大	応答せん断力(×1	0 ³ N)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	1佣 与
228	286	250	165	211	220	187	原子炉格納容器頂部
443	556	485	324	407	423	371	
2850 3400	3100 3920	3390 4080	1850 2300	2340 2790	2320 2880	2270 2840	燃料交換ベローズ位置
26000	25100	19600	13900	22100	21800	26700	シヤラグ位置
27300	26500	20800	14800	23100	22600	27900	
28200	27400	21500	15500	23700	23200	28700	
29500	28700	22500	16600	24600	24500	30200	
30000	29200	22700	17100	24900	25100	30800	
31000 31000	30200 30200	23200 23200	18000 18000	25000 25000	27200 27200	32300 32300	原子炉格納容器基部

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-132 最大応答せん断力 基準地震動 S s (NS 方向 原子炉格納容器)

		最大応	答モーメント($\times 10^6$	N · mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	加与
0	0	0	0	0	0	0	原子炉格納容器頂部
525	657	576	381	486	506	431	
1470 5230	1850 6160	1620 6330	1080 3560	1360 4420	1410 4580	1230 4350	燃料交換ベローズ位置
15200	17600	18300	10300	12500	13000	12600	シヤラグ位置
127000	124000	103000	69500	109000	103000	128000	
205000	200000	163000	112000	174000	167000	207000	
342000	332000	266000	186000	289000	279000	346000	
484000	471000	375000	267000	408000	397000	492000	
544000 589000	529000 573000	420000 454000	301000 327000	458000 494000	446000 485000	553000 600000	原子炉格納容器基部

図 4-133 最大応答モーメント 基準地震動 S s (NS 方向 原子炉格納容器)

		最	大応答加速度(m/s	s ²)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	湘石
16.2	16.7	18.6	9.90	13. 5	12. 9	13. 2	原子炉しゃへい壁頂部
15. 2	15. 5	16. 3	9.71	12. 3	12. 5	12. 9	
14.3	14. 4	14.0	10. 1	12. 0	11.5	12.7	
14.1	12.8	11.6	9.93	11. 3	11. 4	12. 0	
12.5	11.5	10.3	9.35	10. 3	11. 6	10.6	
9.90	9.20	8.80	8. 10	8.72	11. 2	9. 15	原子炉しゃへい壁基部

図 4-134 最大応答加速度 基準地震動 S s (NS 方向 原子炉しゃへい壁)

			最大応答変位(mm)				備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	湘石
19.9	20. 1	16.1	10.7	16. 5	15. 1	20.8	原子炉しゃへい壁頂部
17.7	18. 1	14. 5	9. 55	14. 8	13. 6	18. 7	
15. 4	15.9	12.6	8.35	13. 0	12. 0	16. 4	
13.4	13.9	10.8	7.26	11.2	10. 5	14.3	
11.1	11.5	8.73	6.07	9. 17	8.75	12. 0	
8.25	8.49	6. 18	4.65	6.66	6.63	9. 03	原子炉しゃへい壁基部

図 4-135 最大応答変位 基準地震動 S s (NS 方向 原子炉しゃへい壁)

		最大	応答せん断力(×1	0 ³ N)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1)
6500	2040	5000	9999	6070	0410	0.000	GE 7 Let) , , , , , Dit 755 der
6790	6840	5660	3390	6270	6410	3660	原子炉しゃへい壁頂部
5910	6190	4740	3760	5550	6500	5080	
8290	8560	7750	5420	7400	6870	7820	
11400	12500	11400	7250	10700	9780	11200	
15600	16600	14600	9890	14300	13200	15400	
15600	16600	14600	9890	14300	13200	15400	原子炉しゃへい壁基部

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-136 最大応答せん断力 基準地震動 S s (NS 方向 原子炉しゃへい壁)

		最大応	答モーメント($\times 10^6$	N·mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	VH.√¬
0	0	0	0	0	0	0	原子炉しゃへい壁頂部
18800	18900	15700	9340	17300	17700	10100	
32300	32200	27000	19100	33000	36100	24500	
47500	50900	37800	31300	44800	49600	43800	
73800	76800	56600	48900	67200	63700	70900	
118000	122000	108000	76200	106000	101000	116000	原子炉しゃへい壁基部

図 4-137 最大応答モーメント 基準地震動 S s (NS 方向 原子炉しゃへい壁)

		最	大応答加速度(m/s	s ²)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	湘石
28. 5	29. 7	29. 1	17. 4	24. 3	25. 9	16.6	原子炉圧力容器頂部
24. 9	26. 2	26. 2	14.9	21. 4	22. 0	15. 4	燃料交換ベローズ位置
22. 1	23. 3	23. 9	12.9	19. 1	19. 4	14.5	
19. 4	20.7	21.9	11.6	16. 9	17. 0	14.0	原子炉圧力容器スタビライザ位置
17.0	17. 2	19. 0	10.3	14. 0	14. 1	13. 5	
14.9	13.6	14.8	10.6	11.8	13. 4	12. 4	
12.6	11.4	11.1	9.98	9.89	13. 4	10.8	
11.4	10.2	10.1	9.43	9.50	12. 9	9.94	原子炉圧力容器支持スカート位置
9.90 9.52 9.00	9. 20 8. 91 8. 47	8.80 8.63 8.08	8. 10 7. 88 7. 37	8. 72 8. 57 8. 22	11. 2 11. 0 10. 5	9. 15 8. 84 8. 37	原子炉本体の基礎頂部
8.15	8.01	7.64	6.95	8.03	10. 1	8. 10	
7.12	7.51	7.25	6.64	7.96	9.85	7.84	原子炉本体の基礎基部

図 4-138 最大応答加速度 基準地震動 S s (NS 方向 原子炉圧力容器及び原子炉本体の基礎)

			最大応答変位(mm)				備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	1佣 芍
25.8	26.6	22. 4	14. 1	21.8	19. 3	26.8	原子炉圧力容器頂部
23. 5	24. 3	20. 3	12.8	19. 9	17. 6	24. 5	燃料交換ベローズ位置
21.7	22. 4	18.6	11.8	18. 3	16. 3	22.7	
20.1	20.8	17. 1	10. 9	16. 9	15. 1	21.1	原子炉圧力容器スタビライザ位置
17.3	18.0	14.6	9. 42	14. 6	13. 1	18. 4	
14.3	15. 0	11.9	7.81	12. 0	11. 0	15. 4	
11.5	12. 1	9. 27	6.32	9. 56	8.99	12.5	
10.0	10.5	7.85	5.54	8.24	7.91	10.9	原子炉圧力容器支持スカート位置
8. 25 7. 76 6. 90 5. 91	8. 49 7. 97 7. 04 5. 99	6. 18 5. 74 5. 03 4. 31	4. 65 4. 41 4. 00 3. 52	6. 66 6. 24 5. 49 4. 64	6. 63 6. 28 5. 65 4. 93	9. 03 8. 51 7. 62 6. 59	原子炉本体の基礎頂部
5.09	5.13	3.72	3.11	3.95	4.33	5. 76	原子炉本体の基礎基部

図 4-139 最大応答変位 基準地震動 S s (NS 方向 原子炉圧力容器及び原子炉本体の基礎)

		最大	応答せん断力(×1	0 ³ N)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	1用 行
482	510	495	301	410	445	281	原子炉圧力容器頂部
1690	1890	1780	1230	1490	1890	974	燃料交換ベローズ位置
3800	3960	3990	2380	3200	3540	2330	
3200	3050	2790	1860	3000	3040	1970	原子炉圧力容器スタビライザ位置
3020	3270	2330	2110	2850	2770	2920	
5850	6150	6360	3870	5440	4570	5620	
8270 10600	8260 10200	8310 9950	5210 6990	7280 8920	5960 8450	7700 9660	原子炉圧力容器支持スカート位置
28700 31200 33700 36000	28300 30200 32200 34100	25900 27100 28000 28800	18700 20600 22600 24300	24500 26100 27500 28700	21800 23700 26300 28600	27300 29600 31800 34000	原子炉本体の基礎頂部
36000	34100	28800	24300	28700	28600	34000	原子炉本体の基礎基部

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-140 最大応答せん断力 基準地震動 S s (NS 方向 原子炉圧力容器及び原子炉本体の基礎)

		最大応	答モーメント($\times 10^6$	N·mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	湘石
0	0	0	0	0	0	0	原子炉圧力容器頂部
1320	1400	1360	824	1130	1220	769	燃料交換ベローズ位置
5020	5400	5130	3410	4350	5330	2840	
12300	12700	12700	7810	10400	12100	7250	原子炉圧力容器スタビライザ位置
13000	16100	12200	10800	12700	16900	10700	
23600	27500	19000	18400	23000	26800	21200	
42000	46700	38500	29300	38600	38200	37000	
55900	59500	54900	37800	49800	46200	49900	原子炉圧力容器支持スカート位置
74600 190000 206000 240000	77800 199000 222000 261000	77700 185000 206000 240000	50100 126000 138000 161000	69200 172000 190000 222000	60100 157000 173000 202000	70900 185000 205000 243000	原子炉本体の基礎頂部
301000	321000	293000	197000	272000	248000	303000	
369000	385000	347000	237000	326000	297000	368000	原子炉本体の基礎基部

図 4-141 最大応答モーメント 基準地震動 S s (NS 方向 原子炉圧力容器及び原子炉本体の基礎)

		最	大応答加速度(m/	s^2)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	'/用·与
16.5	18.5	19.4	10.9	15. 5	14. 1	14. 0	原子炉格納容器頂部
15.5	17.5	18.4	10.4	14.8	13. 4	13.6	
14. 7 14. 2	16. 4 15. 7	17. 3 16. 6	9. 99 9. 75	14. 1 13. 6	12. 8 12. 3	13. 2 13. 0	燃料交換ベローズ位置
13. 2	14. 2	15.0	9. 23	12.8	11. 3	12. 4	シヤラグ位置
11.5	12. 3	12.0	8. 13	11.2	9.38	11.3	
11.2	10.8	10.5	7.44	10. 2	8.06	10.6	
9.93	8.07	8.86	6. 47	8. 42	7.46	9. 75	
7.58	8.63	6.65	6.31	6.89	8.17	8.88	
7. 23 6. 88	8. 82 8. 71	6. 91 6. 96	6. 25 6. 05	6. 55 6. 69	8. 35 8. 25	8. 38 8. 17	原子炉格納容器基部

図 4-142 最大応答加速度 基準地震動 S s (EW 方向 原子炉格納容器)

	最大応答変位(mm)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
24. 0	21.5	18. 2	13. 0	18. 9	16. 0	21.5	原子炉格納容器頂部			
23.0	20.5	17.4	12. 4	18. 1	15. 3	20.6				
21. 9 21. 2	19. 6 19. 0	16. 6 16. 1	11. 9 11. 6	17. 3 16. 8	14. 6 14. 2	19. 7 19. 1	燃料交換ベローズ位置			
19.8	17.7	14. 9	10.8	15. 6	13. 2	17.9	シヤラグ位置			
16.4	14.8	12. 4	9.07	13. 0	11. 1	14.9				
14.2	12.8	10.7	7.96	11.3	9.65	13.0				
10.6	9.64	7.96	6. 15	8. 54	7.41	9. 87				
7.19	6.68	5.41	4.43	5.97	5.30	6.95				
5.86 4.93	5. 51 4. 68	4. 40 3. 69	3.74 3.24	4. 96 4. 24	4. 47 3. 86	5. 80 4. 98	原子炉格納容器基部			

図 4-143 最大応答変位 基準地震動 S s (EW 方向 原子炉格納容器)

	最大応答せん断力(×10 ³ N)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
244	269	288	168	229	209	207	原子炉格納容器頂部			
475	522	560	323	446	408	407				
3060 3670	3220 3980	3190 3990	2050 2460	2700 3260	2740 3340	2380 3020	燃料交換ベローズ位置			
28900	26200	22100	14400	22300	18300	25100	シヤラグ位置			
30300	27300	23600	15400	23500	19500	26300				
31200	28100	24600	16100	24400	20200	27200				
32800	29400	26100	17400	25700	21400	28600				
33400	29800	26700	17900	26200	21800	29200				
34300 34300	31400 31400	27800 27800	18900 18900	27800 27800	22700 22700	30400 30400	原子炉格納容器基部			

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-144 最大応答せん断力 基準地震動Ss (EW 方向 原子炉格納容器)

	最大応答モーメント(×10 ⁶ N・mm)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
0	0	0	0	0	0	0	原子炉格納容器頂部			
563	619	663	386	527	481	476				
1580 5670	1740 6210	1860 6270	1080 3760	1480 5070	1360 5140	1350 4660	燃料交換ベローズ位置			
16300	17800	17900	11000	14600	14900	13500	シヤラグ位置			
142000	129000	115000	72100	111000	91900	123000				
228000	207000	183000	116000	178000	148000	198000				
379000	343000	302000	194000	296000	246000	329000				
538000	484000	428000	278000	420000	349000	468000				
604000 654000	543000 587000	481000 520000	314000 341000	472000 512000	392000 425000	526000 570000	原子炉格納容器基部			

図 4-145 最大応答モーメント 基準地震動 S s (EW 方向 原子炉格納容器)

		備考						
	Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	湘石
ı	17. 2	16.6	16. 1	11.6	15. 3	13. 9	12.9	原子炉しゃへい壁頂部
	16.3	14.6	13.6	11.3	15. 3	13. 4	12.7	
	15.9	14.6	13.0	11.5	14. 9	13. 1	12. 2	
	15. 1	13.9	12. 5	11.3	13. 3	11.6	11.4	
	12.7	12. 1	11. 1	10. 1	10. 7	11. 1	10.7	
	9.45	10.0	9. 27	7.91	8.07	9.72	9. 28	原子炉しゃへい壁基部

図 4-146 最大応答加速度 基準地震動Ss (EW 方向 原子炉しゃへい壁)

	最大応答変位(mm)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
20.2	18.3	16. 1	11.5	16. 3	13. 5	18.6	原子炉しゃへい壁頂部			
18.0	16. 4	14.4	10.5	14. 7	12. 1	16.8				
15.6	14.4	12.5	9.30	12. 9	10.6	14.7				
13. 4	12.5	10.7	8. 15	11. 2	9. 27	12.8				
10.9	10.3	8.68	6.79	9. 23	7.77	10.6				
7.93	7.49	6. 17	5. 01	6. 73	5. 85	7.83	原子炉しゃへい壁基部			

図 4-147 最大応答変位 基準地震動 S s (EW 方向 原子炉しゃへい壁)

	最大応答せん断力(×10 ³ N)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
4980	6040	5810	4660	4600	5770	3400	原子炉しゃへい壁頂部			
5260	6640	4870	4490	5490	5640	4450				
8910	8610	7940	5390	7380	6480	7540				
11700	11700	10700	8100	10700	8760	11100				
16400	14900	14600	11800	14700	12400	15100				
16400	14900	14600	11800	14700	12400	15100	原子炉しゃへい壁基部			

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-148 最大応答せん断力 基準地震動Ss (EW 方向 原子炉しゃへい壁)

	最大応答モーメント(×10 ⁶ N・mm)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
0	0	0	0	0	0	0	原子炉しゃへい壁頂部			
13800	16700	16100	12900	12700	16000	9380				
25000	35300	27300	24500	28300	32000	20500				
45400	53300	38700	34400	43600	43400	38200				
77400	75300	63700	45900	63700	59400	64700				
128000	121000	110000	76700	106000	89800	113000	原子炉しゃへい壁基部			

図 4-149 最大応答モーメント 基準地震動Ss (EW 方向 原子炉しゃへい壁)

	最大応答加速度 (m/s²)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
27. 4	31.7	27.3	23.8	26. 2	31. 2	18. 1	原子炉圧力容器頂部			
23.7	26. 3	23. 3	20.6	22. 9	26. 6	15. 9	燃料交換ベローズ位置			
21.9	22.8	20.6	17.9	20. 4	22. 9	14. 4				
20.2	20.0	18.3	15. 5	18. 1	19. 5	13.0	原子炉圧力容器スタビライザ位置			
18. 2	18.3	15. 1	12. 4	15. 2	15. 4	12. 4				
16. 3	16.0	13.5	11.0	12. 5	12. 4	11.6				
13. 2	12.4	11.0	10.2	10. 5	9.84	11.0				
11.4	10.6	9.88	9.23	9.62	10. 2	10.2	原子炉圧力容器支持スカート位置			
9. 45 9. 03 8. 39	10.0 9.93 9.71	9. 27 8. 64 8. 11	7. 91 7. 41 6. 96	8. 07 7. 66 7. 03	9. 72 9. 57 9. 25	9. 28 8. 88 8. 58	原子炉本体の基礎頂部			
7.68	9.24	7.20	6.46	6.76	8.75	8.65				
6.88	8.71	6.96	6.05	6.69	8. 25	8. 17	原子炉本体の基礎基部			

図 4-150 最大応答加速度 基準地震動Ss (EW 方向 原子炉圧力容器及び原子炉本体の基礎)

	最大応答変位(mm)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
26.8	24. 2	22. 1	15.0	21. 1	17. 9	24. 3	原子炉圧力容器頂部			
24. 4	22. 0	20.0	13.8	19. 3	16. 2	22. 2	燃料交換ベローズ位置			
22. 4	20. 2	18. 4	12.8	17.8	14. 9	20. 5				
20.6	18.7	16. 9	11.9	16. 6	13. 8	19.0	原子炉圧力容器スタビライザ位置			
17.7	16. 1	14. 4	10.4	14. 4	11. 9	16.5				
14.5	13.4	11.8	8.70	12. 0	9.90	13.8				
11.5	10.7	9.20	7.07	9.60	8.07	11. 1				
9.81	9. 25	7.82	6.15	8.31	7.07	9.60	原子炉圧力容器支持スカート位置			
7. 93 7. 41 6. 65	7. 49 7. 01 6. 30	6. 17 5. 74 5. 11	5. 01 4. 72 4. 27	6. 73 6. 31 5. 68	5. 85 5. 52 5. 03	7. 83 7. 35 6. 63	原子炉本体の基礎頂部			
5.70	5.41	4.32	3.71	4.89	4.40	5.72				
4.93	4.68	3.69	3.24	4. 24	3.86	4. 98	原子炉本体の基礎基部			

図 4-151 最大応答変位 基準地震動 S s (EW 方向 原子炉圧力容器及び原子炉本体の基礎)

	最大応答せん断力(×10 ³ N)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
468	536	463	399	441	530	320	原子炉圧力容器頂部			
1890	2130	1880	1550	1730	2060	1230	燃料交換ベローズ位置			
3760	4210	3770	3250	3500	4260	2520				
2560	2550	2770	2300	1950	2780	1720	原子炉圧力容器スタビライザ位置			
3130	3200	2600	2120	2770	2490	2600				
5970	6480	5700	4260	5140	5190	5500				
8550 1,090.0	8930 11100	7850 9870	6200 8030	7040 8950	6940 8340	7490 9540	原子炉圧力容器支持スカート位置			
29100 31600 34000 36000	27000 29100 31200 32800	26200 28000 29700 31000	21700 23700 25600 27200	25300 27400 29500 31200	21800 23900 26200 28100	26900 29300 31700 33800	原子炉本体の基礎頂部			
36000	32800	31000	27200	31200	28100	33800	原子炉本体の基礎基部			

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-152 最大応答せん断力 基準地震動Ss (EW 方向 原子炉圧力容器及び原子炉本体の基礎)

		最大応答	モーメント(×10) ⁶ N • mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	T/H 与
0	0	0	0	0	0	0	原子炉圧力容器頂部
1290	1470	1270	1100	1210	1460	878	燃料交換ベローズ位置
5410	6120	5380	4480	4990	5950	3570	
12600	14100	12600	10700	11500	14100	8350	原子炉圧力容器スタビライザ位置
15600	16900	14300	12800	16000	14400	10500	
25200	27900	21900	20100	26000	22500	19900	
45200	45000	40700	29900	39000	35900	36800	
59700	57500	54700	38700	49300	47500	49700	原子炉圧力容器支持スカート位置
79600 207000 226000 259000	77800 195000 214000 246000	74400 184000 203000 236000	53300 129000 144000 174000	66400 167000 186000 220000	64000 148000 164000 191000	69800 182000 203000 239000	原子炉本体の基礎頂部
311000	298000	291000	222000	275000	232000	298000	
368000	360000	349000	273000	333000	277000	362000	原子炉本体の基礎基部

図 4-153 最大応答モーメント 基準地震動 S s (EW 方向 原子炉圧力容器及び原子炉本体の基礎)

注記*:各図上に記載の要素番号は表 3-67 に対応

図 4-154 原子炉本体の基礎の $Q-\gamma$ 関係と最大応答値(基準地震動Ss, NS 方向)

注記*:各図上に記載の要素番号は表 3-68 に対応

図 4-155 原子炉本体の基礎のM-φ関係と最大応答値(基準地震動Ss, NS方向)

注記*:各図上に記載の要素番号は表 3-69 に対応

図 4-156 原子炉本体の基礎の $Q-\gamma$ 関係と最大応答値(基準地震動Ss, EW 方向)

注記*:各図上に記載の要素番号は表 3-70 に対応

図 4-157 原子炉本体の基礎の $M-\phi$ 関係と最大応答値(基準地震動Ss, EW 方向)

表 4-9 基準地震動 Ssによるばね反力

名称	方向	最大地震応答値 (×10 ³ N)										
		Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1				
原子炉圧力容器	NS	6690	7700	7420	4450	6260	6870	3770				
スタビライザ	EW	7200	7350	6770	5630	6090	6980	4280				
原子炉格納容器	NS	14800	13300	13200	8260	10900	13600	6160				
スタビライザ	EW	13200	12800	13200	9050	10600	12900	6650				
原子炉格納容器	NS	24700	24200	21900	13100	22600	20700	24800				
シヤラグ	EW	22500	25800	21600	15500	15900	20000	21300				

		最	大応答加速度(m/	s^2)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	1
7.35	9.35	8.64	4.90	5. 53	6. 52	4. 38	原子炉格納容器頂部
7.28	9.24	8.62	4.86	5. 52	6.49	4.37	
7. 14 7. 10	9. 08 8. 97	8. 57 8. 49	4. 78 4. 73	5. 51 5. 49	6. 50 6. 49	4. 36 4. 35	燃料交換ベローズ位置
6.98	8.62	8.22	4.60	5. 44	6. 43	4. 35	シヤラグ位置
6.66	8.09	7.29	4.31	5. 23	6.07	4. 31	
6.36	7.65	6.84	4. 11	5.04	5.74	4. 27	
5.78	6.98	6.10	3.82	4.71	5. 28	4. 19	
5.33	6.29	5.14	3.75	4.33	4.80	4.02	
5. 19 5. 05	5. 93 5. 51	4. 67 4. 35	3. 75 3. 71	4. 14 3. 97	4. 57 4. 37	3. 92 3. 81	原子炉格納容器基部

図 4-158 最大応答加速度 基準地震動Ss(鉛直方向 原子炉格納容器)

)	最大応答変位(mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1)用 与
1.03	0.790	0.709	0. 529	0.692	0.605	0.602	原子炉格納容器頂部
1.02	0.789	0.707	0.528	0.691	0.604	0.602	
1.02 1.02	0.786 0.784	0.705 0.703	0. 527 0. 526	0.690 0.689	0.602 0.601	0.600 0.599	燃料交換ベローズ位置
1.01	0.778	0.696	0. 522	0.686	0. 597	0.596	シヤラグ位置
0.993	0.761	0.677	0.513	0.678	0.587	0.587	
0.978	0.746	0.661	0.505	0.670	0.577	0.579	
0.948	0.720	0. 629	0.488	0.655	0.560	0.564	
0.913	0.690	0.592	0.467	0.635	0.537	0.544	
0.896 0.881	0.687 0.686	0.577 0.565	0. 457 0. 448	0.625 0.616	0. 526 0. 517	0.535 0.526	原子炉格納容器基部

図 4-159 最大応答変位 基準地震動Ss(鉛直方向 原子炉格納容器)

		最大	大応答軸力(×10 ³	N)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1)
110	140	129	73. 5	82. 2	99. 0	65. 2	原子炉格納容器頂部
219	278	258	147	165	198	131	
846 1200	1070 1510	1010 1430	568 805	647 920	774 1100	513 731	燃料交換ベローズ位置
2330	2900	2760	1560	1810	2160	1450	シヤラグ位置
3190	3900	3710	2120	2490	2950	2010	
3810	4640	4340	2510	2980	3520	2420	
4900	5930	5380	3210	3870	4510	3190	
5380	6500	5870	3520	4280	4960	3560	
6430 6430	7760 7760	6880 6880	4220 4220	5200 5200	5980 5980	4420 4420	原子炉格納容器基部

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-160 最大応答軸力 基準地震動Ss (鉛直方向 原子炉格納容器)

		最	大応答加速度(m/	s^2)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	湘石
11.3	15. 3	12.9	8.01	8. 23	14. 5	4. 45	原子炉しゃへい壁頂部
11.1	15.0	12. 3	7.87	8.04	14. 0	4. 44	
10.6	14.2	11.4	7.49	7.53	13. 0	4.41	
9.70	12.6	10.1	6.86	6.76	11.6	4. 37	
8.43	10.5	8.42	5.83	5. 51	9.64	4. 27	
6. 26	7.50	5.89	4.30	4. 59	6. 34	4.05	原子炉しゃへい壁基部

図 4-161 最大応答加速度 基準地震動Ss(鉛直方向 原子炉しゃへい壁)

)	最大応答変位(mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	1佣 芍
1.17	1.01	0.832	0. 759	0.799	0.837	0.671	原子炉しゃへい壁頂部
1. 16	0.992	0.820	0.750	0.792	0.827	0.667	
1.14	0.946	0. 790	0. 725	0.773	0.800	0.656	
1.10	0.880	0. 753	0.687	0.745	0. 760	0.639	
1.05	0.777	0.704	0.627	0.703	0.697	0.613	
0.960	0.719	0.623	0. 528	0.649	0. 595	0.568	原子炉しゃへい壁基部

図 4-162 最大応答変位 基準地震動 S s (鉛直方向 原子炉しゃへい壁)

		最为	大応答軸力(×10 ³	N)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1) 唯 与
1900	2580	2120	1350	1380	2420	750	原子炉しゃへい壁頂部
4300	5790	4720	3060	3100	5440	1720	
8440	11300	9000	5990	6020	10500	3450	
11600	15300	12300	8220	8230	14300	4890	
14800	19100	15600	10500	10400	18100	6570	
14800	19100	15600	10500	10400	18100	6570	原子炉しゃへい壁基部

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-163 最大応答軸力 基準地震動Ss(鉛直方向 原子炉しゃへい壁)

		最	大応答加速度(m/	s^2)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1)
8.87	11.1	10.7	6.02	6.05	10.0	4.40	原子炉圧力容器頂部
8.85	11.1	10.6	5.99	6.03	9. 95	4. 39	燃料交換ベローズ位置
8.79	11.0	10.4	5.91	5.98	9.84	4. 37	
8.69	10.8	10.1	5.78	5.88	9.60	4. 35	原子炉圧力容器スタビライザ位置
8.50	10.6	9.38	5.50	5. 67	9.09	4. 29	
8. 29	10.3	8.52	5. 16	5. 41	8. 41	4. 26	
8.01	9.85	7.60	4.97	5.17	7.70	4. 24	
7.80	9.58	7.09	4.90	5.03	7.28	4. 22	原子炉圧力容器支持スカート位置
6. 26 6. 04 5. 55	7. 50 7. 21 6. 62	5. 89 5. 66 5. 16	4.30 4.23 4.08	4. 59 4. 52 4. 36	6. 34 6. 09 5. 56	4. 05 4. 03 3. 97	原子炉本体の基礎頂部
5.06	5.97	4.66	3.91	4.18	4. 97	3.90	
5.05	5.51	4.35	3.71	3.97	4.37	3.81	原子炉本体の基礎基部

図 4-164 最大応答加速度 基準地震動 S s (鉛直方向 原子炉圧力容器及び原子炉本体の基礎)

		ĵ	最大応答変位(mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	1用 与
1.09	0.826	0.723	0.637	0.723	0.705	0.635	原子炉圧力容器頂部
1.09	0.825	0.722	0.636	0.722	0.704	0.634	燃料交換ベローズ位置
1.08	0.823	0.720	0.634	0.721	0.701	0.633	
1.08	0.818	0.716	0.630	0.717	0.697	0.630	原子炉圧力容器スタビライザ位置
1.07	0.807	0.707	0.620	0.710	0.686	0.624	
1.05	0.792	0.695	0.606	0.699	0.671	0.615	
1.03	0.776	0.680	0.590	0.687	0.655	0.605	
1.02	0.765	0.671	0.579	0.679	0.644	0.599	原子炉圧力容器支持スカート位置
0.960 0.951 0.930	0.719 0.713 0.699	0. 623 0. 615 0. 599	0. 528 0. 518 0. 498	0. 649 0. 644 0. 636	0. 595 0. 585 0. 565	0.568 0.564 0.553	原子炉本体の基礎頂部
0.907	0.686	0.579	0.474	0.626	0.542	0.540	
0.881	0.686	0.565	0.448	0.616	0.517	0.526	原子炉本体の基礎基部

図 4-165 最大応答変位 基準地震動 S s (鉛直方向 原子炉圧力容器及び原子炉本体の基礎)

		最为	大応答軸力(×10 ³	N)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	油布
155	193	181	104	104	171	75. 6	原子炉圧力容器頂部
1130	1410	1310	751	753	1250	552	燃料交換ベローズ位置
1960	2430	2270	1310	1310	2160	960	
2510	3100	2900	1670	1680	2760	1240	原子炉圧力容器スタビライザ位置
3240	4000	3700	2140	2160	3540	1610	
3910	4810	4390	2550	2600	4230	1960	
4580 9600	5640 11800	5040 9590	2950 5930	3040 6240	4890 9610	2320 5070	原子炉圧力容器支持スカート位置
25900 27500 29000 30400	32200 34000 35800 37400	26600 28200 29700 31000	17500 18500 19600 20500	16500 17700 19000 20200	29200 30900 32600 34000	12700 13800 14900 16000	原子炉本体の基礎頂部
30400	37400	31000	20500	20200	34000	16000	原子炉本体の基礎基部

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-166 最大応答軸力 基準地震動 S s (鉛直方向 原子炉圧力容器及び原子炉本体の基礎)

4.2.2 炉内構造物系地震応答解析モデル

(1) 弾性設計用地震動 S d 及び静的解析

水平方向の弾性設計用地震動 S d による地震応答解析及び静的解析より得られた各点の最大応答加速度,最大応答変位,最大応答せん断力及び最大応答モーメントを図 4-167~図 4-198 に,制御棒駆動機構ハウジングレストレントビーム,シュラウドサポート,上部格子板,炉心支持板,炉心シュラウド支持ロッド,上部サポート及び下部スタビライザに加わる力(ばね反力,せん断力)を表 4-10 に示す。燃料集合体の最大応答相対変位については,図 4-172 及び図 4-188 に示す。

上部格子板のせん断力は、上部格子板位置に付加している燃料集合体の質量に加速度を乗じた値と当該位置にピン結合されている燃料集合体最上部のせん断力を足して算出する。

炉心支持板のせん断力は、炉心支持板位置に付加している燃料集合体及び制御棒案内管の質量に加速度を乗じた値と当該位置にピン結合されている燃料集合体最下部及び制御棒案内管最上部のせん断力を足して算出する。

鉛直方向の弾性設計用地震動 S d による地震応答解析より得られた各点の最大応答加速度, 最大応答変位及び最大応答軸力を図 4-199~図 4-207 に示す。また,鉛直方向の静的解析は 実施せず,一律に算定することから,表 4-11 に鉛直方向の静的震度を示す。

(2) 基準地震動Ss

水平方向の基準地震動Ssによる地震応答解析より得られた各点の最大応答加速度,最大応答変位,最大応答せん断力及び最大応答モーメントを図4-208~図4-239に,制御棒駆動機構ハウジングレストレントビーム,シュラウドサポート,上部格子板,炉心支持板,炉心シュラウド支持ロッド,上部サポート及び下部スタビライザに加わる力(ばね反力,せん断力)を表4-12に示す。燃料集合体の最大応答相対変位については,図4-213及び図4-229に示す。

鉛直方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度,最大応答変位及び最大応答軸力を図 4-240~図 4-248 に示す。

			最大応答加	速度 (m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 与
30. 9	30.4	26. 3	15. 7	18. 7	21.7	12.1	11.0	気水分離器頂部
17. 3	18.7	14. 9	9.06	11.4	14.0	9. 01	8.93	
17.5	10.7	14. 9	9.00	11.4	14.0	9.01	0.95	
11.8	13.2	10.8	6.46	8.67	10.8	8.28	8.93	!
10.5	10.8	9. 23	6.03	7.58	9.34	7.81	8.93	シュラウドヘッド上部鏡板頂部
9.82	9.79	8.61	5.80	7.02	8.95	7.62	8.93	
9.34	9.28	8.21	5.64	6.59	8.65	7.41	8.93	上部格子板
8.84	8.77	7.90	5.46	6.32	8.31	7.24	8.93	
8.34	8.24	7.59	5.25	6.10	7.95	7.08	8.93	
7.96	7.76	7.29	5.02	5.86	7.56	6.91	7.77	
7.79	7.32	6.98	4.77	5.61	7.16	6.72	7.77	
7.62	7.03	6.66	4.61	5.32	6.74	6.48	7.77	
7.46	6.82	6.35	4.67	5.16	6.35	6.29	7.77	炉心支持板
7.03	6.52	5. 77	4.79	4.90	5.96	5. 93	7.77	
6.69	6.24	5.48	4.86	4.69	6.03	5.62	7.77	炉心シュラウド下部胴
1								
	1							

図 4-167 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (NS 方向 炉心シュラウド)

			最大応答	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	/用 与
14. 2	15. 4	13. 1	7.86	10. 2	12.8	13.5	14.7	気水分離器頂部
12. 6	13.5	11. 4	6.97	9.21	11.5	12.3	13. 2	
11. 4	12. 1	10. 2	6.33	8. 47	10.4	11.3	12.0	
10. 2	10.9	9.05	5.72	7.67	9.28	10.3	10.9	シュラウドヘッド上部鏡板頂部
9. 63 9. 21	10. 4 9. 90	8. 52 8. 12	5. 42 5. 19	7. 27 6. 96	8.76 8.37	9. 75 9. 37	10.3 9.86	上部格子板
8. 71 8. 23 7. 76	9.39 8.89 8.41	7. 67 7. 23 6. 80	4. 94 4. 69 4. 44	6. 61 6. 26 5. 91	7. 91 7. 46 7. 02	8. 94 8. 51 8. 08	9. 38 8. 91 8. 44	
7. 30 6. 86	7.95 7.51	6. 38 5. 97	4. 19 3. 95	5. 58 5. 25	6.60 6.18	7. 67 7. 26	7. 97 7. 52	
6.44	7.08	5. 58	3.71	4. 92	5. 78	6. 86	7.07	炉心支持板
5.68	6.29	4.93	3.31	4.36	5.08	6. 16	6. 29	
4.99	5.54	4.34	2.93	3.83	4.43	5.49	5.56	炉心シュラウド下部胴

図 4-168 最大応答変位 弾性設計用地震動 S d 及び静的解析 (NS 方向 炉心シュラウド)

			最大応答せん	断力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	/用 /与
236	233	201	126	149	172	95.0	87. 1	気水分離器頂部
498	507	427	269	328	367	221	229	
750	829	605	434	521	637	287	387	
924	1060	778	532	659	814	336	488	シュラウドヘッド上部鏡板頂部
1170	1350	1060	655	845	1050	399	626	
1630	1840	1460	1130	1340	1410	1130	968	上部格子板
1590	1900	1530	1120	1330	1450	1090	1020	
1530	1840	1500	1030	1290	1410	1010	1070	
1520	1710	1450	912	1240	1340	912	1120	
1550	1690	1430	908	1200	1340	841	1160	
1600	1850	1550	976	1200	1420	813	1210	
2510	3030	2290	1700	2080	2500	1960	2160	炉心支持板
2500	3090	2350	1730	2120	2540	1970	2230	
2500	3090	2350	1730	2120	2540	1970	2230	炉心シュラウド下部胴

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-169 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (NS 方向 炉心シュラウド)

モーメント(×10⁶ N・mm)

		最	大応答モーメン	√ ト (×10 ⁶ N・n	nm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	加力
0.00 303 941	0.00 299 946	0.00 257 804	0.00 162 506	0.00 190 611	0.00 220 679	0. 00 122 401	0.00 112 406	気水分離器頂部
2170 2960 2550 3250 4050 4910 5900 6900 7830 8750	2300 3220 2720 3570 4330 5220 6220 7320 8500 9750	1820 2440 2160 2700 3140 4040 5080 6090 7080 8080	1240 1710 1400 1820 2610 3380 4070 4670 5180 5660	1440 2010 1660 2190 2990 3810 4600 5340 6030 6700	1740 2450 2060 2740 3320 4010 4800 5670 6600 7600	881 1180 938 1200 1870 2580 3260 3860 4390 4910	1060 1490 1130 1540 2220 2940 3690 4470 5290 6130	シュラウドヘッド上部鏡板頂部 上部格子板 炉心支持板
11500 14300	12700 16300	10700 13400	7490 9360	9100 11600	10200 13100	7170 9470	8650 11300	炉心シュラウド下部胴

図 4-170 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (NS 方向 炉心シュラウド)

			最大応答加	速度(m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	湘石
9.34	9.28	8.21	5.64	6. 59	8.65	7.41	8.93	上部格子板
13. 6	16. 4	10.6	8.79	10.9	12. 2	10.5	8.93	
19.0	22. 7	14. 9	12. 1	14. 5	14.9	13. 4	8.93	
21.0	25. 1	16. 2	13.0	16. 4	15. 7	14. 7	7.77	燃料集合体中央
18.8	22. 3	14. 1	11.4	14.7	14.3	13. 0	7.77	
12. 5	15. 9	9.86	8.23	10.5	11.0	9.68	7.77	
7.46	6.82	6.35	4.67	5. 16	6.35	6. 29	7.77	炉心支持板

図 4-171 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (NS 方向 燃料集合体)

			最大応答相対	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 行
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	上部格子板
12. 3	15. 1	9. 57	7.31	9.91	9.30	8. 50	4. 53	
21. 2	26. 1	16.6	12.7	17. 2	16. 1	14. 7	7.75	
24. 5	30. 1	19. 1	14.6	19.9	18.6	17.0	8.89	燃料集合体中央
21. 2	26. 0	16.5	12.7	17. 2	16. 2	14.7	7.69	
12. 3	15. 0	9.50	7.28	9.94	9.34	8.48	4.47	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板

図 4-172 最大応答相対変位 弾性設計用地震動 S d 及び静的解析 (NS 方向 燃料集合体)

			最大応答せん	断力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1佣 芍
1660	2060	1320	1010	1340	1260	1170	665	上部格子板
1200	1480	927	725	969	905	823	389	
436	515	330	267	360	339	292	106	
439	560	358	278	344	355	306	141	燃料集合体中央
1200	1480	930	721	967	901	822	387	
1670	2010	1280	989	1360	1280	1150	633	
1670	2010	1280	989	1360	1280	1150	633	炉心支持板

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-173 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (NS 方向 燃料集合体)

モーメント(×10⁶ N・mm)

		最	大応答モーメン	√ ト (×10 ⁶ N • n	nm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	湘石
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	上部格子板
1170	1450	923	708	939	882	817	468	
2000	2480	1580	1210	1620	1520	1400	741	
2310	2840	1800	1390	1880	1760	1600	815	燃料集合体中央
2010	2450	1550	1200	1630	1540	1390	717	
1180	1420	895	695	951	900	809	445	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板

図 4-174 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (NS 方向 燃料集合体)

			最大応答加	速度 (m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1佣 芍
7.46	6.82	6.35	4.67	5. 16	6.35	6. 29	7.77	炉心支持板
10.8	13. 2	11.8	5.71	6.54	14. 4	7.41	7.77	
12. 8	16.6	14.0	7.01	7.73	18.8	7. 67	7.77	
8. 55	8.80	8. 50	4. 11	4. 73	11.0	6. 09	7.77	制御棒案內管下端

図 4-175 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (NS 方向 制御棒案内管)

			最大応答	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	7用 石
6.44	7.08	5. 58	3.71	4. 92	5.78	6.86	7.07	炉心支持板
6. 52	6.86	5. 32	3.58	4.60	5.37	6. 62	6.88	
6. 19	6.38	5. 15	3. 35	4. 24	4.90	6. 16	6.42	
4.78	5. 11	3.96	2.70	3. 37	4.00	5. 06	5. 22	制御棒案内管下端

図 4-176 最大応答変位 弾性設計用地震動 S d 及び静的解析 (NS 方向 制御棒案内管)

			最大応答せん	断力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 与
324	437	355	184	180	493	119	150	炉心支持板
84. 3	116	90.8	46.7	46. 6	132	22. 5	22. 3	
277	375	303	157	154	424	95. 9	117	
277	375	303	157	154	424	95. 9	117	制御棒楽内管下端

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-177 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (NS 方向 制御棒案内管)

		最	大応答モーメン	√ ト (×10 ⁶ N・n	nm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析) 拥 石
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板
380	511	416	215	211	577	140	175	
478	647	522	270	265	731	166	201	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒案内管下端

図 4-178 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (NS 方向 制御棒案内管)

			最大応答加]速度(m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析)
8. 55	8.80	8.50	4. 11	4. 73	11.0	6. 09	7.77	制御棒案内管下端
6. 28	6.65	5. 59	4.70	4. 48	6.35	5. 25	7.77	原子炉圧力容器底部
7.46	8.82	6. 03	5. 56	4.80	8.09	5. 39	7.77	
8.74	12.6	7. 52	6.62	5. 47	10.5	5. 57	6.63	
7.95	11.3	7.29	6. 22	5. 17	9.63	5. 19	6.63	
5. 26	6.20	4.99	4.45	4. 21	6.03	4.84	6.63	制御棒駆動機構ハウジング下端

図 4-179 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (NS 方向 制御棒駆動機構ハウジング)

		備考						
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	/佣-芍
4.78	5. 11	3.96	2.70	3. 37	4.00	5. 06	5. 22	制御棒案内管下端
4.02	4.47	3.49	2.44	3.05	3.66	4. 49	4. 52	原子炉圧力容器底部
3.78	4.21	3. 31	2.36	2.90	3.51	4. 28	4.35	
3. 62	4.03	3. 21	2.33	2.82	3.42	4. 15	4. 27	
3.42	3.79	3. 03	2. 21	2.64	3. 24	3. 91	4.00	
3. 15	3.46	2. 75	1.98	2.34	2.96	3. 55	3.54	制御棒駆動機構ハウジング下端

図 4-180 最大応答変位 弾性設計用地震動 S d 及び静的解析 (NS 方向 制御棒駆動機構ハウジング)

		備考						
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	VIII ^¬¬
400	556	440	232	229	632	165	251	制御棒案内管下端
203	270	167	155	128	235	141	189	原子炉圧力容器底部
107	158	95. 0	83. 6	69. 5	131	73. 1	89. 4	
8.28	9.80	10. 3	4.66	8.04	7.44	7.85	4.49	
107	150	92. 5	80.7	65. 6	129	60. 2	80. 4	
107	150	92. 5	80.7	65. 6	129	60. 2	80. 4	制御棒駆動機構ハウジング下端

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-181 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (NS 方向 制御棒駆動機構ハウジング)

	最大応答モーメント(×10 ⁶ N・mm)									
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	備考		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒案内管下端		
440 210	611 290	483 179	255 166	252 145	694 246	181 167	276 215	原子炉圧力容器底部		
22.8	25. 4	26. 0	14. 5	19. 7	19. 7	21. 4	14. 2			
119	164	103	86.8	69. 6	142	60. 0	80.6			
114	159	98. 2	85. 6	69. 6	137	63. 9	85. 4			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒駆動機構ハウジング下端		

図 4-182 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (NS 方向 制御棒駆動機構ハウジング)

	最大応答加速度 (m/s^2)								
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	備考	
47. 9	53. 9	47. 0	24. 5	28. 5	31.7	13.8	11.2	気水分離器頂部	
27. 4	29.7	27. 5	15.9	17. 1	21.0	9.70	8.98		
19. 1	19.8	19.3	11.6	13. 2	16.2	8.30	8.98		
15.8	17. 1	15. 9	9.67	11.6	14.2	7.82	8.98	シュラウドヘッド上部鏡板頂部	
14.3 13.1 12.2 11.3 10.3 9.17 8.21 7.33	15. 9 14. 9 14. 0 13. 0 11. 9 10. 7 9. 48 8. 26 7. 02	14. 3 13. 0 11. 9 10. 9 9. 73 8. 54 7. 96 7. 45	8. 86 8. 36 7. 86 7. 33 6. 78 6. 22 5. 64 5. 07	10. 8 10. 2 9. 54 8. 86 8. 13 7. 35 6. 54 5. 73 4. 85	13. 2 12. 4 11. 7 10. 9 9. 99 9. 16 8. 33 7. 53 6. 35	7. 50 7. 29 7. 07 6. 87 6. 62 6. 37 6. 12 5. 88	8. 98 8. 98 8. 98 8. 98 7. 79 7. 79 7. 79 7. 79	上部格子板	
6.45	6.64	6.04	4.38	4. 37	5. 36	5. 14	7.79	炉心シュラウド下部胴	

図 4-183 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (EW 方向 炉心シュラウド)

		備考						
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	/用/与
17. 2	16.1	13.0	10.9	10.7	13.6	12.1	14.5	気水分離器頂部
14. 2	13.8	10.2	9.13	8.70	11.3	10.9	13.0	
12. 1	12.1	8.89	7.86	7.29	9.70	9.94	11.8	
10.5	10.6	7.87	6.87	6.53	8.43	9.04	10.7	シュラウドヘッド上部鏡板頂部
9.65	9.89	7.37	6.40	6. 18	7.83	8. 59	10.1	
9.06	9.33	6.99	6.03	5.90	7.35	8. 24	9.66	上部格子板
8.43	8.75	6.61	5.64	5.63	6.85	7.86	9.18	
7.81	8.16	6.23	5.26	5.34	6.35	7.47	8.71	
7.20	7.57	5.85	4.88	5.06	5.85	7.09	8.23	
6.62	6.99	5.48	4.51	4.77	5.35	6.72	7.77	
6.06	6.41	5. 10	4.15	4.48	4.86	6.36	7.31	
5.54	5.86	4.77	3.81	4. 25	4.39	6.00	6.86	炉心支持板
4.86	5.27	4.47	3.30	3.86	3.65	5.38	6.08	
4.41	4.74	4. 15	2.89	3.50	3.45	4. 80	5.35	炉心シュラウド下部胴

図 4-184 最大応答変位 弾性設計用地震動 S d 及び静的解析 (EW 方向 炉心シュラウド)

		備考						
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用 与
383	433	376	198	231	251	112	88. 5	気水分離器頂部
816	905	814	454	499	581	269	231	
1300	1440	1330	728	838	932	321	390	
1610	1870	1650	941	1110	1230	382	491	シュラウドヘッド上部鏡板頂部
2090	2420	2170	1250	1480	1640	479	630	
1870	1710	1440	1160	1530	1540	1010	973	上部格子板
2120	2020	1710	1210	1620	1650	962	1030	
2360	2380	2080	1390	1730	1890	906	1080	
2590	2720	2490	1580	1820	2160	867	1120	
2830	3150	2830	1750	1960	2390	848	1170	
3140	3450	3080	1870	2110	2560	852	1210	
3500	3380	3030	2080	2440	3030	1720	2170	炉心支持板
3590	3550	3130	2110	2490	3090	1730	2240	
3590	3550	3130	2110	2490	3090	1730	2240	炉心シュラウド下部胴

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-185 最大応答せん断力 弾性設計用地震動Sd及び静的解析(EW方向 炉心シュラウド)

	最大応答モーメント(×10 ⁶ N・mm)									
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	備考		
0.00 491	0.00 555	0.00 482	0.00 253	0.00 295 934	0.00	0. 00 143 488	0.00	気水分離器頂部		
3690 5080 4490 5750 6500 7940 9590 11400 13400	1720 4020 5560 4860 6260 7310 8720 10400 12300 14400 16700	3750 5180 4490 5780 6670 7720 8930 10500 12500 14600	835 2050 2850 2440 3170 3730 4510 5480 6590 7800 9110	2310 3200 2750 3570 4410 5530 6720 7980 9280 10700	2550 3550 3100 4050 4940 6100 7300 8640 10400 12200	1030 1350 1100 1380 2050 2720 3340 3890 4400 4900	410 1070 1500 1150 1250 2240 2960 3710 4500 5320 6170	シュラウドヘッド上部鏡板頂部 上部格子板 炉心支持板		
19500 23600	20300 24100	17900 21200	11600 14100	13500 16400	15700 19300	6880 8880	8700 11400	炉心シュラウド下部胴		

図 4-186 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (EW 方向 炉心シュラウド)

			最大応答加	速度 (m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用石
13. 1	14.9	13. 0	8.36	10.2	12. 4	7. 29	8.98	上部格子板
12. 1	13.8	10.8	7.75	9.63	10.7	9. 01	8.98	
14. 0	18.5	12. 2	9.97	12.6	11.5	11.0	8.98	
15.8	20. 4	12.8	10.5	14. 0	12. 1	11. 4	7.79	燃料集合体中央
13.8	18.7	11.7	8.83	12. 9	11.1	10. 2	7.79	
9.00	13. 1	8. 23	6.00	9.34	7.91	7. 99	7.79	
7.33	8.26	7.45	5.07	5. 73	7.53	5. 88	7.79	炉心支持板

図 4-187 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (EW 方向 燃料集合体)

			最大応答相対	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	THI 15
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	上部格子板
10. 3	13. 2	8.43	6.44	8.73	7.97	7.05	4.54	
17. 7	22.8	14.7	11.3	15. 1	13. 9	12. 2	7.78	
20. 5	26. 3	17. 0	13. 1	17. 4	16. 1	14. 1	8.92	燃料集合体中央
17. 7	22.8	14.7	11.4	15. 1	14.0	12.3	7.72	
10. 3	13. 2	8.50	6.59	8.67	8.09	7. 07	4.48	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板

図 4-188 最大応答相対変位 弾性設計用地震動 S d 及び静的解析 (EW 方向 燃料集合体)

せん断力(×10³ N)

253

			最大応答せん	断力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析) 拥 与
1380	1760	1120	896	1190	1040	950	668	上部格子板
1010	1300	841	660	863	811	688	390	
369	489	324	282	308	330	257	106	
367	493	297	242	337	275	250	142	燃料集合体中央
1010	1300	832	652	860	803	687	388	
1390	1790	1160	909	1160	1110	964	635	
1390	1790	1160	909	1160	1110	964	635	炉心支持板

図 4-189 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (EW 方向 燃料集合体)

		最	大応答モーメン	√ ト (×10 ⁶ N・n	nm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	冲力
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	上部格子板
965	1240	785	630	835	728	668	470	
1680	2160	1380	1060	1440	1300	1160	744	
1940	2490	1610	1250	1650	1530	1340	818	燃料集合体中央
1680	2160	1400	1100	1420	1340	1170	719	
971	1260	816	640	813	777	678	446	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板

図 4-190 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (EW 方向 燃料集合体)

			最大応答加	速度 (m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	/ / // // // // // // // // // // // //
7.33	8. 26	7.45	5.07	5. 73	7.53	5. 88	7.79	炉心支持板
6.58	9.01	6.90	4.87	5. 38	6.63	5. 51	7.79	
7.09	9.97	8. 24	5. 11	5. 48	7. 35	5. 48	7. 79	
6.41	7.22	5. 54	4.54	4.44	5. 15	4. 67	7.79	制御棒案内管下端

図 4-191 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (EW 方向 制御棒案内管)

			最大応答	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1佣 与
5. 54	5.86	4. 77	3.81	4. 25	4. 39	6. 00	6.86	炉心支持板
5. 08	5. 58	4.59	3.64	4.00	4.10	5. 63	6.67	
4.61	5. 16	4. 32	3.34	3. 68	3. 67	5. 17	6. 21	
3.86	4.26	3. 74	2. 68	3. 13	3. 18	4. 31	5. 01	制御棒案内管下端

図 4-192 最大応答変位 弾性設計用地震動 S d 及び静的解析 (EW 方向 制御棒案内管)

			最大応答せん	新力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	佣巧
183	263	192	110	113	180	81. 4	150	炉心支持板
46. 4	64. 3	47. 3	26. 6	25. 1	45.8	14. 1	22. 3	
156	223	163	92. 5	93. 1	153	64. 4	117	
156	223	163	92. 5	93. 1	153	64. 4	117	制御棒案内管下端

図 4-193 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (EW 方向 制御棒案内管)

		最	大応答モーメン	√ ト (×10 ⁶ N • n	nm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	佣石
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板
214	308	225	129	132	210	95. 4	176	
268	383	280	160	161	264	111	202	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒案內管下端

図 4-194 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (EW 方向 制御棒案内管)

加速度(m/s2)

			最大応答加	速度(m/s²)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6. 41	7.22	5. 54	4.54	4. 44	5. 15	4. 67	7.79	制御棒案内管下端
5. 96	7.01	5. 71	4. 12	4.02	5. 31	4. 91	7.79	原子炉圧力容器底部
7.45	9.74	6. 99	4.81	5. 01	5. 61	4. 84	7.79	
10. 1	12. 7	9. 60	6.71	6. 31	8.42	4. 93	6.63	
9. 29	11.9	8.85	6.24	6.00	7.91	4. 78	6.63	
5.31	7.64	5. 68	4.00	3.94	4.65	4. 48	6.63	制御棒駆動機構ハウジング下端

図 4-195 最大応答加速度 弾性設計用地震動 S d 及び静的解析 (EW 方向 制御棒駆動機構ハウジング)

			最大応答	変位(mm)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1佣 芍
3.86	4. 26	3.74	2.68	3. 13	3. 18	4. 31	5.01	制御棒案内管下端
3.44	3.78	3.35	2.39	2.83	2.88	3.90	4.31	原子炉圧力容器底部
3. 25	3.49	3. 17	2.35	2. 75	2.83	3. 73	4. 15	
3.24	3.45	3.09	2.38	2. 75	2.85	3. 64	4.08	
3.05	3. 28	2. 92	2. 25	2.60	2.71	3. 45	3.85	
2.73	2.96	2.66	1.97	2. 28	2.41	3. 13	3.42	制御棒駆動機構ハウジング下端

図 4-196 最大応答変位 弾性設計用地震動 S d 及び静的解析 (EW 方向 制御棒駆動機構ハウジング)

			最大応答せん	断力(×10 ³ N)				備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析)
212	305	232	133	135	214	111	252	制御棒案内管下端
222	282	209	147	146	174	129	191	原子炉圧力容器底部
126	158	120	84.8	81. 9	108	67.7	90.9	
9. 23	12. 3	9.84	4. 91	7.65	6.89	6. 87	5. 99	
123	159	119	81.0	79.0	102	54. 5	78.9	
123	159	119	81.0	79. 0	102	54. 5	78.9	制御棒駆動機構ハウジング下端

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-197 最大応答せん断力 弾性設計用地震動 S d 及び静的解析 (EW 方向 制御棒駆動機構ハウジング)

		最	大応答モーメン	√ ト (×10 ⁶ N・n	nm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析	1用芍
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒案内管下端
233 234	335 292	255 218	146 159	148 170	236 190	122 157	277 221	原子炉圧力容器底部
28.0	28. 5	29. 4	14. 2	20. 4	18.6	21.8	18.9	
135	175	131	87. 1	86.8	109	51.8	77.4	
131	169	127	86. 0	83. 9	109	57. 9	83. 8	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒駆動機構ハウジング下端

図 4-198 最大応答モーメント 弾性設計用地震動 S d 及び静的解析 (EW 方向 制御棒駆動機構ハウジング)

表 4-10 弾性設計用地震動 S d 及び静的解析によるばね反力, せん断力

衣4-10 弾性設計用地展到50及び評別牌別によるは42及力,せん例力										
名称	単位	方向				最大地震				
477	平位.	<i>/</i> / I ^H J	Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	静的解析
制御棒駆動機構ハウジング	$ imes 10^3 \mathrm{N}$	NS	155	199	138	122	102	184	102	142
レストレントビーム	/\ 10 N	EW	172	229	164	113	113	136	95. 6	141
シュラウドサポート	$ imes 10^6 ext{N} \cdot ext{mm}$	NS	14300	16300	13400	9360	11600	13100	9470	11300
	× 10 N·mm	EW	23600	24100	21200	14100	16400	19300	8880	11400
上部サポート	$ imes 10^3 \mathrm{N}$	NS	921	1080	874	596	726	786	479	547
工部・ハルート	^ 1U ⁻ N	EW	1540	1610	1450	869	1170	1240	485	551
下部スタビライザ	$\times 10^3$ N	NS	243	299	232	162	202	219	148	167
自動本グモブイリ		EW	399	397	360	226	297	323	137	168
炉心シュラウド支持ロッド	$ imes 10^3 m N$	NS	96. 3	104	87. 9	63. 4	74. 4	83. 0	58. 4	70.8
が心シュノッド又行ロッド	∧ 10 N	EW	163	171	149	95. 5	113	129	57. 2	71. 2
上部格子板	$ imes 10^3 m N$	NS	1740	2140	1390	1060	1400	1340	1240	739
上部格士板	^ 10 N	EW	1490	1890	1230	965	1280	1150	1010	742
炉心支持板	$ imes 10^3 m N$	NS	2160	2600	1780	1280	1660	1920	1410	956
<i>外</i> 一心又1寸似	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	EW	1740	2240	1520	1140	1400	1460	1180	958

		備考					
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	1
5.93	7.56	6. 29	3.53	3.23	5.87	2.28	気水分離器頂部
5.93	7.55	6. 28	3.53	3.23	5.86	2.28	
5.90	7.51	6. 25	3, 51	3. 21	5.84	2. 27	
0.30	7.01	0.20	0.01	0.21	0.04	2.21	
5.84	7.43	6. 19	3.47	3.18	5.79	2.27	シュラウドヘッド上部鏡板頂部
5.44	6.79	5.69	3.18	2.95	5.45	2.20	
5.39	6.72	5.63	3.15	2.92	5.41	2.20	上部格子板
5.31	6.62	5.55	3.10	2.89	5.35	2.19	
5. 23	6.52	5.46	3.05	2.85	5.29	2.19	
5.15	6.41	5. 38	2.99	2.82	5.22	2.18	
5.07	6.30	5. 29	2.94	2.78	5.16	2.18	
5.00	6.19	5. 22	2.88	2.74	5.09	2.18	
4.93	6.08	5. 14	2.83	2.70	5.02	2. 17	炉心支持板
4.78	5.88	4.97	2.73	2.65	4.86	2. 16	
4.62	5. 67	4.80	2.63	2.62	4.71	2. 15	炉心シュラウド下部胴
4.37	5.34	4. 54	2.46	2.57	4.44	2. 13	

図 4-199 最大応答加速度 弾性設計用地震動 S d (鉛直方向 炉心シュラウド)

		j	最大応答変位(mm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	加州石
0.644	0.538	0.459	0.350	0.382	0.389	0.325	気水分離器頂部
0.644	0.538	0.459	0.350	0.382	0.389	0.325	
0.643	0.536	0.458	0.349	0.381	0.388	0.324	
0.641	0.532	0.456	0.347	0.380	0.386	0.324	シュラウドヘッド上部鏡板頂部
0.628	0.503	0.441	0.334	0.371	0.372	0.317	
0.626	0.499	0.439	0.332	0.369	0.370	0.317	上部格子板
0.624	0.495	0.436	0.330	0.368	0.368	0.316	
0.621	0.490	0.433	0.328	0.366	0.366	0.314	
0.619	0.485	0.431	0.325	0.365	0.363	0.313	
0.617	0.480	0.428	0.323	0.363	0.361	0.312	
0.614	0.475	0.425	0.321	0.361	0.358	0.311	
0.611	0.470	0.422	0.318	0.360	0.355	0.310	炉心支持板
0.606	0.459	0.416	0.313	0.356	0.350	0.307	
0.600	0.448	0.410	0.307	0.352	0.344	0.305	炉心シュラウド下部胴
0.590	0.439	0.398	0.297	0.346	0. 333	0.300	

図 4-200 最大応答変位 弾性設計用地震動 S d (鉛直方向 炉心シュラウド)

		最大	大応答軸力(×10 ³	N)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	加州石
47.0	59.8	49. 3	27.8	25. 7	46. 1	18. 1	気水分離器頂部
141	179	148	83. 0	76.8	139	54. 2	
218	276	228	128	119	213	83. 6	
308	390	322	181	168	302	119	シュラウドヘッド上部鏡板頂部
448	567	469	264	245	443	176	
526	664	550	309	287	521	208	上部格子板
542	684	567	319	296	538	214	
557	704	583	328	304	554	221	
573	723	599	337	313	569	228	
588	742	615	346	321	585	234	
603	761	631	354	330	601	241	
748	941	783	439	410	751	306	炉心支持板
761	957	796	446	417	765	312	
767	965	803	450	421	771	315	炉心シュラウド下部胴
767	965	803	450	421	771	315	

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-201 最大応答軸力 弾性設計用地震動 S d (鉛直方向 炉心シュラウド)

		最	大応答加速度(m/	s^2)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1) 加 与
5.84	7.48	6. 27	3.48	3. 24	5.74	2. 25	炉心支持板
5. 56	7.04	5.94	3. 28	3.08	5.54	2. 23	
5. 26	6.61	5. 62	3.09	2.92	5. 33	2. 21	
4.87	6.03	5. 16	2.80	2. 71	5. 02	2. 18	制御棒楽内管下端

図 4-202 最大応答加速度 弾性設計用地震動 S d (鉛直方向 制御棒案内管)

		j	最大応答変位(mm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	1用 芍
0.643	0.534	0.457	0.348	0.380	0. 387	0.324	炉心支持板
0.634	0.515	0. 447	0.340	0.374	0. 378	0. 320	
0.625	0.496	0. 437	0.331	0.368	0. 369	0.316	
0.611	0.469	0.421	0.317	0.359	0.354	0.310	制御棒案內管下端

図 4-203 最大応答変位 弾性設計用地震動 S d (鉛直方向 制御棒案内管)

		最大	大応答軸力(×10 ³	N)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	湘石
1110	1420	1180	654	616	1090	428	炉心支持板
1140	1460	1210	671	633	1110	439	
1170	1490	1240	687	648	1140	451	
1170	1490	1240	687	648	1140	451	制御棒案内管下端

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-204 最大応答軸力 弹性設計用地震動 S d (鉛直方向 制御棒案内管)

		最	大応答加速度(m/	s ²)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	1用 芍
4.87	6.03	5. 16	2.80	2.71	5.02	2. 18	制御棒案内管下端
4.73	5.84	5. 01	2.70	2.67	4.90	2. 17	原子炉圧力容器底部
4.76	5. 88	5. 04	2.71	2.68	4.95	2. 17	
4.78	5. 91	5. 07	2.72	2.69	5.00	2. 17	
4.80	5.94	5. 10	2.73	2.70	5.04	2. 17	
4.82	5.98	5. 12	2.74	2.71	5.08	2. 17	制御棒駆動機構ハウジング下端

図 4-205 最大応答加速度 弾性設計用地震動 S d (鉛直方向 制御棒駆動機構ハウジング)

		j	最大応答変位(mm)			備考
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	1佣 芍
0.611	0.469	0.421	0.317	0.359	0.354	0.310	制御棒案内管下端
0.606	0.459	0.416	0.312	0. 356	0.349	0.307	原子炉圧力容器底部
0.607	0.461	0.417	0.313	0.356	0.350	0.308	
0.608	0.463	0.418	0.314	0.357	0.351	0.308	
0.609	0.464	0.419	0.315	0.358	0.352	0.309	
0.610	0.466	0.420	0.316	0.358	0.353	0.309	制御棒駆動機構ハウジング下端

図 4-206 最大応答変位 弾性設計用地震動 S d (鉛直方向 制御棒駆動機構ハウジング)

			備考				
Sd-D1	Sd-D2	Sd-D3	Sd-F1	Sd-F2	Sd-F3	Sd-N1	1用 行
1200	1540	1280	708	668	1180	467	制御棒案内管下端
309	384	331	176	176	327	141	原子炉圧力容器底部
282	351	302	161	160	299	129	
255	317	273	145	145	270	116	
227	283	244	130	129	241	104	
227	283	244	130	129	241	104	制御棒駆動機構ハウジング下端

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-207 最大応答軸力 弾性設計用地震動 S d (鉛直方向 制御棒駆動機構ハウジング)

表 4-11 静的震度(鉛直方向)

種別	鉛直方向静的震度				
建物・構築物	0. 24 (1. 0Cv)				
機器・配管系	0. 29 (1. 2Cv)				

Ss-F1		最大応答加速度(m/s²)									
03 11	Ss-F2	Ss-F3	Ss-N1	備考							
23.7	45.9	56. 3	25.8	気水分離器頂部							
15. 1	24. 9	27. 0	17.7								
10.8	18. 2	16. 5	15. 4								
0.69	16 5	14.1	14.6	シュラウドヘッド上部鏡板頂部							
				シュノグトペット上部現板頂部							
				上部格子板							
				上 部 俗 丁 似							
	10.6	12. 8	12. 0	炉心支持板							
8. 97	9.75	12. 6	11.4								
9.19	9. 19	12. 4	10.7	炉心シュラウド下部胴							
0 5 6 4 4 3 4 1 9	15. 1 10. 8 10. 8 10	15.1 24.9 10.8 18.2 10.8 18.2 10.8 18.2 10.8 18.2 10.8 18.2 10.8 12.8 10.8 12.9 10.8 12.9 10.8 12.9 10.8 12.9 10.8 12.2 10.8 12.9 10.8 12.9 10.8 12.9 10.8 12.9 10.8 12.9 10.8 12.9	15.1 24.9 27.0 10.8 18.2 16.5 10.8 18.2 16.5 4 9.62 16.5 14.1 4 9.14 15.8 13.7 4 8.75 15.0 13.3 4 8.33 14.3 12.9 3 7.91 13.6 12.4 7.80 12.9 11.9 4 8.08 12.2 12.1 1 8.34 11.3 12.5 9 8.59 10.6 12.8 4 8.97 9.75 12.6	15.1 24.9 27.0 17.7 10.8 18.2 16.5 15.4 6 9.62 16.5 14.1 14.6 4 9.14 15.8 13.7 14.1 4 8.75 15.0 13.3 14.0 4 8.33 14.3 12.9 13.6 3 7.91 13.6 12.4 13.3 7.80 12.9 11.9 12.8 4 8.08 12.2 12.1 12.6 1 8.34 11.3 12.5 12.3 9 8.59 10.6 12.8 12.0 4 8.97 9.75 12.6 11.4							

図 4-208 最大応答加速度 基準地震動 S s (NS 方向 炉心シュラウド)

備考)	最大応答変位(mm)	j		
1佣 与	Ss-N1	Ss-F3	Ss-F2	Ss-F1	Ss-D3	Ss-D2	Ss-D1
気水分離器頂部	27. 9	23. 6	23. 9	15.5	25. 1	30. 2	27. 0
	25. 5	20.7	21.8	13.5	21.9	25. 9	24.1
	23. 5	18. 9	19. 9	12. 2	19. 4	23. 0	22. 1
シュラウドヘッド上部鏡板頂部	21.4	17. 1	18. 0	11.0	17. 4	21.1	20.1
上部格子板	20. 4 19. 6	16. 2 15. 6	17. 0 16. 3	10. 4 9. 90	16. 4 15. 6	20. 1 19. 4	19. 1 18. 4
	18. 7 17. 8	14. 8 14. 0	15. 4 14. 6	9. 37 8. 87	14.8 14.0	18. 4 17. 6	17.5 16.6
	17. 0 16. 1	13. 2 12. 5	13. 8 13. 0	8. 44 8. 03	13. 1 12. 3	16. 7 15. 8	15. 8 14. 9
炉心支持板	15. 3 14. 5	11. 8 11. 1	12. 2 11. 4	7.63 7.24	11.6 10.8	15. 0 14. 2	14. 1 13. 4
	13.0	9.79	10. 1	6.54	9.52	12.7	11.9
炉心シュラウド下部胴	11.6	8.64	8.81	5.88	8.36	11.2	10.6

図 4-209 最大応答変位 基準地震動 S s (NS 方向 炉心シュラウド)

備考	最大応答せん断力(×10 ³ N)									
用っつ	Ss-N1	Ss-F3	Ss-F2	Ss-F1	Ss-D3	Ss-D2	Ss-D1			
気水分離器頂部	210	458	365	194	278	443	323			
	486	892	755	437	651	909	694			
	716	1060	1400	596	1030	1350	1120			
シュラウドヘッド上部鏡板頂部	878	1270	1760	710	1370	1690	1450			
Laborate and the	1090	1670	2220	932	1810	2120	1880			
上部格子板	2210	2630	2690	2160	2500	2990	2950			
	2110	2400	2760	2050	2660	2790	2750			
	1870	2270	2730	1770	2660	2520	2570			
	1610	2090	2650	1420	2580	2850	2610			
	1460	2090	2600	1330	2480	3110	2620			
	1400	2190	2850	1320	2530	3330	2680			
炉心支持板	3670	4240	4430	2860	4130	4810	4440			
	3660	4340	4470	2890	4210	4730	4350			
炉心シュラウド下部胴	3660	4340	4470	2890	4210	4730	4350			

図 4-210 最大応答せん断力 基準地震動 S s (NS 方向 炉心シュラウド)

		最大応答	モーメント(×10) ⁶ N • mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	VIII 45
0.00 414	0.00 567	0.00	0.00	0.00 468	0.00 587	0.00	気水分離器頂部
3050 4250 3500 4650 6100 7680 9330 11100 12700	1740 3990 5380 4630 5870 7550 9230 10800 12200 13600	2610 3810 3140 4310 5520 7210 8950 10700	808 1810 2420 1960 2500 3770 5010 6110 7030 7800	3770 5310 4460 5880 7640 9490 11300 13100	3510 4490 3890 4640 6490 8100 9340 10200 10700	2060 2830 2280 2980 4340 5660 6860 7920 8850	シュラウドヘッド上部鏡板頂部 上部格子板
14500 18800	15100 15100 19300	12400 14100 18500	8500 11600	16300 20400	12000 15000	9730 13100	炉心支持板
23200	23800	23300	15000	24600	20000	17300	炉心シュラウド下部胴

図 4-211 最大応答モーメント 基準地震動 S s (NS 方向 炉心シュラウド)

		備考					
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	VIII ^¬¬
17.6	16.4	15. 4	8.75	15. 0	13. 3	14. 0	上部格子板
24.5	26. 2	20.6	16.8	21. 1	21.7	20. 5	
34.5	35. 3	26. 9	24.8	29. 6	28. 3	25. 3	
37.2	39. 4	28.9	27.1	33. 0	30. 4	27. 4	燃料集合体中央
32. 1	36.6	25. 4	23.5	30. 1	27.6	24. 2	
22.1	26.9	18.7	16.5	21. 2	21.0	18.6	
13.3	13. 1	10.9	8.59	10.6	12.8	12.0	炉心支持板

図 4-212 最大応答加速度 基準地震動 S s (NS 方向 燃料集合体)

備考	最大応答相対変位(mm)									
1佣 芍	Ss-N1	Ss-F3	Ss-F2	Ss-F1	Ss-D3	Ss-D2	Ss-D1			
上部格子板	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	15. 9	16. 8	19. 7	15. 9	17. 2	23. 2	21.7			
	10.0	10.0	10.1	10.0	11.2	20.2	21.1			
	27. 4	29. 1	34. 0	27. 5	29. 6	40. 1	37. 5			
燃料集合体中央	31.6	33. 6	39. 3	31.7	34. 0	46. 2	43. 2			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0110	55.5	307.5	0111	0110	10.2	10.2			
	27. 4	29. 2	34. 1	27. 4	29. 4	40.0	37.3			
	15.8	16. 9	19. 7	15. 9	17. 0	23. 1	21.6			
炉心支持板	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

図 4-213 最大応答相対変位 基準地震動 S s (NS 方向 燃料集合体)

		備考					
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	ح ^د #N
2990	3180	2370	2180	2660	2330	2170	上部格子板
2090	2240	1650	1550	1920	1630	1520	
743	809	586	548	705	602	537	
803	832	653	590	714	721	556	燃料集合体中央
2090	2230	1660	1550	1920	1620	1520	
2900	3130	2260	2130	2680	2350	2160	
2900	3130	2260	2130	2680	2350	2160	炉心支持板

図 4-214 最大応答せん断力 基準地震動 S s (NS 方向 燃料集合体)

		備考					
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	加力
0.00	0.00	0.00	0.00	0.00	0.00	0.00	上部格子板
2100	2240	1670	1530	1870	1640	1530	
3570	3810	2830	2620	3220	2760	2590	
4070	4350	3210	3000	3710	3160	2970	燃料集合体中央
3500	3770	2750	2590	3230	2770	2580	
2040	2200	1590	1500	1880	1650	1520	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板
ı							

図 4-215 最大応答モーメント 基準地震動 S s (NS 方向 燃料集合体)

		最	大応答加速度(m/	s^2)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1) 加 与
13.3	13. 1	10.9	8.59	10.6	12. 8	12. 0	炉心支持板
22.0	22. 5	20.4	11.9	16. 4	36. 9	13.9	
24.8	28. 5	24. 4	14. 6	19. 0	47. 6	14. 3	
17.1	15. 2	14.1	8.36	12. 2	24. 5	11.5	制御棒案内管下端

図 4-216 最大応答加速度 基準地震動 S s (NS 方向 制御棒案内管)

		備考					
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1)用 与
13. 4	14. 2	10.8	7.24	11. 4	11. 1	14. 5	炉心支持板
13. 1	14. 2	10.1	6.90	10. 4	10. 0	13.8	
12.3	13. 4	9. 58	6.41	9. 43	9. 02	12. 9	
9.78	10.6	7.42	5.40	7.64	7.64	10.6	制御棒案内管下端

図 4-217 最大応答変位 基準地震動 S s (NS 方向 制御棒案内管)

		備考					
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1) 唯 与
573	688	620	364	426	1230	220	炉心支持板
147	178	163	91.9	106	323	46. 5	
489	587	532	310	361	1060	178	
489	587	532	310	361	1060	178	制御棒案内管下端

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-218 最大応答せん断力 基準地震動 S s (NS 方向 制御棒案内管)

		最大応答	モーメント(×10) ⁶ N • mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	湘石
0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板
671	805	726	426	499	1440	258	
843	1020	917	534	623	1820	308	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒案內管下端

図 4-219 最大応答モーメント 基準地震動 S s (NS 方向 制御棒案内管)

		最	大応答加速度(m/	s^2)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	加力
17.1	15. 2	14. 1	8.36	12. 2	24. 5	11.5	制御棒案内管下端
11.2	10.9	9.61	8.87	8.93	13. 0	9.83	原子炉圧力容器底部
13.6	15.1	11.5	10. 1	9.82	16. 5	10.3	
16.3	21.1	14.0	11.8	13. 0	25. 3	10.8	
14.6	19.4	13. 1	11.3	12. 4	23. 2	10.8	
8.91	10.9	9. 10	8.20	8. 73	12. 2	9. 69	制御棒駆動機構ハウジング下端

図 4-220 最大応答加速度 基準地震動 S s (NS 方向 制御棒駆動機構ハウジング)

		j	最大応答変位(mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	7用 石
9.78	10.6	7.42	5.40	7.64	7.64	10.6	制御棒案内管下端
8.49	9.01	6.48	4.88	6. 99	7.07	9. 36	原子炉圧力容器底部
7.95	8.46	6. 14	4.68	6.56	6. 79	8. 85	
7.59	8.11	5.94	4.59	6. 29	6.65	8. 56	
7. 15	7.59	5. 57	4.36	5. 89	6. 29	8. 05	
6.61	6.87	5.00	3.97	5.32	5.66	7.31	制御棒駆動機構ハウジング下端

図 4-221 最大応答変位 基準地震動 S s (NS 方向 制御棒駆動機構ハウジング)

		最大师	な答せん断力(×1	.0 ³ N)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	湘石
734	900	801	465	548	1580	306	制御棒案内管下端
374	454	322	277	289	524	282	原子炉圧力容器底部
200	261	175	151	176	316	151	
17.5	20. 5	18.0	9.60	15. 3	18. 5	18.7	
195	255	177	142	156	299	124	
195	255	177	142	156	299	124	制御棒駆動機構ハウジング下端

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-222 最大応答せん断力 基準地震動 S s (NS 方向 制御棒駆動機構ハウジング)

		最大応答	モーメント(×10	0 ⁶ N • mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	νπ ^σ σ
0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒案内管下端
807 391	989 479	880 332	510 296	603 333	1740 569	336 342	原子炉圧力容器底部
53. 7	59. 1	49.8	29. 1	46. 0	48. 4	50. 0	
217	279	195	153	159	322	116	
207	271	188	151	165	318	132	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒駆動機構ハウジング下端

図 4-223 最大応答モーメント 基準地震動 S s (NS 方向 制御棒駆動機構ハウジング)

	最大応答加速度 (m/s²)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
76.0	75.8	74. 5	48.8	54. 1	67. 5	30.9	気水分離器頂部			
45. 7	36. 4	43.3	30. 3	35. 3	42. 0	16.8				
10.1	00.1	10.0	00.0	00.0	12. 0	10.0				
32.8	22.6	29.8	23. 3	24. 0	30. 2	15.7				
27. 1	20.3	24. 3	19.3	20.0	26.8	14.7	シュラウドヘッド上部鏡板頂部			
24.5	18.9	21.8	18.0	18.9	25. 1	14.3				
22.4	17.9	20.0	17.0	18.0	23. 7	14.0	上部格子板			
20.3	16.8	18.7	16.1	17. 1	22. 2	13.6				
18.4	15.5	17.4	15. 1	16. 2	20.8	13.3				
16.6	14.2	15.9	14.0	15. 1	19. 2	12.9				
14.7	13.0	14.7	12.9	13.9	17.6	12.5				
13.1	12.6	13.9	11.8	12.7	16. 1	12.0				
12.1	12.2	13. 2	10.7	11.7	14. 7	11.7	炉心支持板			
11.4	11.2	11.8	9.48	10. 5	12. 5	11.4				
11.4	10.7	10.6	9.32	9.44	10.8	11.2	炉心シュラウド下部胴			

図 4-224 最大応答加速度 基準地震動 S s (EW 方向 炉心シュラウド)

	最大応答変位(mm)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
28.4	24. 2	21.3	22. 2	20. 5	26. 6	24. 7	気水分離器頂部			
24. 1	21.3	17. 9	18.6	17. 4	21. 5	22. 3				
2111	2110	1110	10,0	11	21.0	22.0				
21.0	19. 2	15.8	16.1	15. 7	18.6	20.4				
18.4	17.5	14.2	14.1	14. 3	16. 2	18.5	シュラウドヘッド上部鏡板頂部			
17. 2	16.6	13.4	13.1	13.6	15. 1	17.6				
16.3	15.9	12.8	12.4	13. 1	14. 2	16.8	上部格子板			
15.3	15.1	12.2	11.6	12.5	13. 2	16.0				
14.5	14.4	11.6	10.8	11.9	12. 2	15.3				
13.7	13.6	11.0	10.1	11.4	11.3	14.5				
13.0	12.9	10.4	9.31	10.8	10.4	13.7				
12.4	12.2	9.72	8.60	10.3	9.52	13.0				
11.7	11.5	9.12	7.94	9.76	8.74	12.3	炉心支持板			
10.6	10.2	8.33	6.97	8.89	7.49	11.0				
9.45	8.99	7.63	6.21	8.07	6.96	9.80	炉心シュラウド下部胴			
I		1	I	ı		I	1			

図 4-225 最大応答変位 基準地震動 S s (EW 方向 炉心シュラウド)

		最大區	な答せん断力(×:	10 ³ N)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	加与
608	603	596	395	431	532	250	気水分離器頂部
1340	1190	1290	875	992	1190	515	
2260	1420	2070	1430	1690	1800	835	
							and the second s
2850	1820	2560	1880	2250	2330	1010	シュラウドヘッド上部鏡板頂部
3750	2350	3330	2480	2980	3070	1210	
3470	2690	2460	2460	3180	2890	1990	上部格子板
3910	2480	2970	2560	3210	3080	2010	
4240	2650	3420	2790	3300	3610	1890	
4530	3030	3850	3130	3580	4100	1710	
5000	3350	4390	3430	3850	4510	1570	
5480	3590	4780	3670	4140	4810	1730	
6110	4330	4880	4200	4720	5860	3160	炉心支持板
6240	4480	5050	4250	4810	5980	3180	
6240	4480	5050	4250	4810	5980	3180	炉心シュラウド下部胴

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-226 最大応答せん断力 基準地震動 S s (EW 方向 炉心シュラウド)

備考	最大応答モーメント(×10 ⁶ N・mm)									
·VIII 45	Ss-N1	Ss-F3	Ss-F2	Ss-F1	Ss-D3	Ss-D2	Ss-D1			
気水分離器頂部	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	321	682	553	506	764	773	779			
	981	2210	1830	1620	2410	2300	2500			
シュラウドヘッド上部鏡板頂部 上部格子板	2380 3260 2740 3520 4840	4960 6850 5990 7820 9170	4520 6320 5500 7140 8880	3950 5470 4690 6080 7480	5880 8100 7050 9040 10400	4660 5980 5460 6480 7120	6240 8710 7670 9950 11500			
	6100 7200 8160	11300 13400 16200	11000 13300 15700	9180 11200 13400	12100 13900 16200	8660 10300 12000	14200 17100 20100			
炉心支持板	9260 10400	19300 22700	18400 21200	15700 18300	19000 22300	13600 15700	23300 26600			
	13700	29500	26500	23200	27400	20800	33500			
炉心シュラウド下部胴	17000	36400	32000	28100	33000	26000	40600			

図 4-227 最大応答モーメント 基準地震動 S s (EW 方向 炉心シュラウド)

	最大応答加速度 (m/s²)										
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考				
22. 4	17.9	20.0	17.0	18. 0	23. 7	14.0	上部格子板				
20.8	21.9	17.5	15. 9	19. 6	21. 0	16.8					
26. 3	28.9	22. 0	21.3	26. 9	21. 9	21.8					
29. 5	32. 5	23. 2	23. 3	30. 5	23. 8	22. 6	燃料集合体中央				
26. 1	29. 1	20.8	20.0	28. 0	22. 7	20. 1					
17.9	21.5	14.7	12.9	19. 6	16. 3	15. 4					
12.1	12.2	13. 2	10.7	11.7	14. 7	11.7	炉心支持板				

図 4-228 最大応答加速度 基準地震動 S s (EW 方向 燃料集合体)

		備考					
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.00	0.00	0.00	0.00	0.00	0.00	0.00	上部格子板
18.8	20.6	15. 5	15. 0	18. 7	15. 2	13.7	
32. 5	35. 6	26.8	25. 9	32. 3	26. 5	23. 7	
37. 5	41.2	31.0	29. 9	37. 3	30. 7	27.3	燃料集合体中央
32. 5	35.8	26. 9	25. 9	32. 3	26. 7	23.6	
18.8	20.7	15.6	14.9	18. 7	15. 5	13.7	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板

図 4-229 最大応答相対変位 基準地震動Ss (EW 方向 燃料集合体)

		備考					
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	油石
2550	2750	2060	2040	2520	1980	1890	上部格子板
1850	2020	1530	1500	1820	1550	1330	
685	783	584	631	683	628	504	
682	736	549	547	689	548	486	燃料集合体中央
1850	2020	1520	1480	1830	1530	1320	
2530	2840	2120	2040	2540	2130	1870	
2530	2840	2120	2040	2540	2130	1870	炉心支持板

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-230 最大応答せん断力 基準地震動Ss (EW 方向 燃料集合体)

		備考					
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	湘石
0.00	0.00	0.00	0.00	0.00	0.00	0.00	上部格子板
1800	1930	1450	1440	1770	1400	1330	
3080	3350	2520	2460	3050	2480	2250	
3550	3900	2930	2820	3520	2920	2570	燃料集合体中央
3070	3410	2560	2480	3060	2560	2240	
1780	2000	1490	1440	1790	1500	1320	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板
0.00	0.00	0.00	0.00	0.00	0.00	0.00	光心又付似
ì							

図 4-231 最大応答モーメント 基準地震動 S s (EW 方向 燃料集合体)

		備考					
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1)
12.1	12. 2	13. 2	10.7	11. 7	14. 7	11.7	炉心支持板
12. 1	17.8	13. 2	9.77	10. 5	13. 0	10.5	
12.2	23. 1	13.7	9.78	10.9	12.9	9.86	
10.1	12. 3	10.2	9.81	8.60	10.2	10.4	制御棒案內管下端

図 4-232 最大応答加速度 基準地震動 S s (EW 方向 制御棒案内管)

		j	最大応答変位(mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	1用 与
11.7	11.5	9. 12	7.94	9.76	8.74	12. 3	炉心支持板
11.1	11.1	8.66	7.59	9. 10	8. 15	11.4	
10.3	10.3	8.05	6.97	8.36	7.32	10.5	
8.49	8.24	6.81	5. 69	7. 21	6. 45	8. 75	制御棒案內管下端

図 4-233 最大応答変位 基準地震動 S s (EW 方向 制御棒案内管)

		最大局	5答せん断力(×1	10 ³ N)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	·/用·与
325	633	331	217	241	307	158	炉心支持板
80.0	170	81.7	53. 3	54. 6	72.8	38. 2	
275	546	280	184	201	258	134	
275	546	280	184	201	258	134	制御棒案内管下端

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-234 最大応答せん断力 基準地震動Ss (EW 方向 制御棒案内管)

		備考					
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	冲与
0.00	0.00	0.00	0.00	0.00	0.00	0.00	炉心支持板
380	742	387	254	283	359	185	
474	941	483	316	346	445	230	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒案内管下端

図 4-235 最大応答モーメント 基準地震動 S s (EW 方向 制御棒案内管)

	最大応答加速度(m/s²)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
10.1	12. 3	10. 2	9.81	8.60	10. 2	10.4	制御棒案内管下端			
10.4	11.0	9.66	8.76	8.30	10.8	10.6	原子炉圧力容器底部			
11.7	14.5	11.6	9.85	10. 2	12. 2	11.4				
14.3	20.0	16.6	12.7	13. 9	16. 1	14. 2				
13.6	18. 5	15. 5	11.8	13. 1	15. 4	13. 3				
9. 26	11.7	9.15	7.87	8.03	10. 6	10.6	制御棒駆動機構ハウジング下端			

図 4-236 最大応答加速度 基準地震動 S s (EW 方向 制御棒駆動機構ハウジング)

備考	最大応答変位(mm)									
湘石	Ss-N1	Ss-F3	Ss-F2	Ss-F1	Ss-D3	Ss-D2	Ss-D1			
制御棒案内管下端	8.75	6.45	7.21	5.69	6.81	8.24	8.49			
原子炉圧力容器底部	7.86	5. 80	6. 52	5. 11	6.00	7.21	7.46			
	7.54	5. 67	6.30	5.01	5.65	6.82	6.93			
	7.42	5. 67	6. 24	5.04	5.50	6.67	6.63			
	6. 99	5.40	5. 89	4. 77	5. 16	6.26	6. 28			
制御棒駆動機構ハウジング下端	6. 24	4.83	5. 21	4. 17	4.62	5.60	5.82			

図 4-237 最大応答変位 基準地震動 S s (EW 方向 制御棒駆動機構ハウジング)

	最大応答せん断力(×10 ³ N)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
378	807	390	274	286	376	191	制御棒案内管下端			
325	437	353	281	297	328	326	原子炉圧力容器底部			
177	253	206	161	171	208	192				
19. 1	18.8	18.5	11.1	17. 9	13. 8	20. 3				
181	236	202	153	170	200	163				
181	236	202	153	170	200	163	制御棒駆動機構ハウジング下端			

注:要素上端の質点位置にせん断力を記載。なお、最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4-238 最大応答せん断力 基準地震動 S s (EW 方向 制御棒駆動機構ハウジング)

		最大応答	モーメント(×10	⁶ N • mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	VIII 77
0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒案内管下端
416 382	886 479	428 373	301 321	314 344	413 360	210 385	原子炉圧力容器底部
57. 0	59.8	50.7	29. 9	44. 9	38.8	55. 2	
199	253	220	164	185	212	170	
192	251	215	162	181	212	173	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒駆動機構ハウジング下端

図 4-239 最大応答モーメント 基準地震動 S s (EW 方向 制御棒駆動機構ハウジング)

表 4-12 基準地震動Ss によるばね反力, せん断力

tr TL	从什		<u> </u>			最大地震応答値	<u> </u>		
名称	単位	方向	Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1
制御棒駆動機構ハウジング	$ imes 10^3 \mathrm{N}$	NS	278	350	260	218	218	393	213
レストレントビーム	~ 10 N	EW	264	327	279	215	242	264	237
シュラウドサポート	$ imes 10^6 ext{N} \cdot ext{mm}$	NS	23200	23800	23300	15000	24600	20000	17300
	× 10 N·IIIII	EW	40600	26000	33000	28100	32000	36400	17000
上部サポート	$ imes 10^3 m N$	NS	1590	1680	1540	922	1680	1170	1020
工即りが一下	× 10°N	EW	2770	1720	2250	1770	2210	2390	1130
下部スタビライザ	$ imes 10^3 \mathrm{N}$	NS	433	453	409	261	430	346	273
下部ペクモノイリ	↑10 N	EW	709	441	573	458	560	621	298
炉心シュラウド支持ロッド	$ imes 10^3 m N$	NS	157	164	153	95. 9	174	125	110
が心シュノット文符ロット	∧10 N	EW	280	168	228	192	222	242	114
L立F校 乙七	$ imes 10^3 m N$	NS	3140	3320	2500	2260	2790	2440	2290
上部格子板	↑10 N	EW	2740	2900	2230	2180	2670	2180	2010
	$ imes 10^3 m N$	NS	3770	4110	3130	2690	3350	3870	2650
炉心支持板	∧10 N	EW	3130	3750	2750	2500	3050	2770	2290

	最大応答加速度(m/s²)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
10.3	13. 1	10.9	7.06	6.46	11.8	4. 56	気水分離器頂部			
10.3	13.1	10.9	7.05	6.45	11.8	4. 55				
10.2	13.0	10.8	7.01	6.42	11. 7	4. 55				
10.1	12.8	10.7	6.94	6.36	11.6	4. 53	シュラウドヘッド上部鏡板頂部			
9.37	11.8	9.81	6.36	5. 90	10. 9	4.40	1 += 16 = 1=			
9.28	11.6	9.71	6.29	5.84	10. 9	4. 39	上部格子板			
9.15	11.5	9.56	6. 19	5.78	10. 7	4. 38				
9.02	11.3	9.42	6.09	5. 70	10.6	4. 37				
8.88	11.1	9.26	5.98	5.63	10.5	4. 37				
8.75	10.9	9.12	5.87	5.56	10.4	4.36				
8.63	10.7	8.99	5.76	5.48	10.2	4.35				
8.50	10.5	8.86	5.65	5.40	10. 1	4.34	炉心支持板			
8.23	10.2	8.57	5.45	5.30	9.72	4. 32				
7.95	9.78	8.28	5.25	5.24	9.42	4. 29	炉心シュラウド下部胴			
7.53	9. 21	7.82	4.91	5. 13	8.87	4. 26				

図 4-240 最大応答加速度 基準地震動 S s (鉛直方向 炉心シュラウド)

)	最大応答変位(mm)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	加持
1.12	0.927	0.792	0.700	0.764	0.778	0.649	気水分離器頂部
1.11	0.926	0.791	0.700	0.763	0.777	0.649	
1.11	0.923	0.790	0.698	0.762	0.776	0.648	
1.11	0.917	0.786	0.694	0.760	0.772	0.647	シュラウドヘッド上部鏡板頂部
1.09	0.867	0.759	0.667	0.741	0.744	0.634	Laterator to the
1.08	0.861	0.756	0.664	0.738	0.740	0.633	上部格子板
1.08	0.852	0.752	0.660	0.735	0.735	0.631	
1.08	0.844	0.747	0.655	0.732	0.731	0.628	
1.07	0.836	0.742	0.650	0.729	0.726	0.626	
1.07	0.828	0.738	0.646	0.726	0.721	0.624	
1.06	0.819	0.733	0.641	0.722	0.715	0.622	F > +4+F
1.06	0.810	0.728	0.635	0.719	0.710	0.619	炉心支持板
1.05	0.792	0.717	0.625	0.711	0.699	0.614	
1.04	0.773	0.706	0.614	0.704	0.687	0.609	炉心シュラウド下部胴
1.02	0.757	0.687	0.594	0.691	0.666	0.600	

図 4-241 最大応答変位 基準地震動 S s (鉛直方向 炉心シュラウド)

		最大	大応答軸力(×10 ³	N)			備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	加持
81.1	103	85. 0	55. 5	51.3	92. 2	36. 2	気水分離器頂部
243	309	255	166	154	277	109	
2.0		200	100	101	211	100	
375	476	393	256	237	426	168	
530	673	555	362	335	604	237	シュラウドヘッド上部鏡板頂部
772	977	808	527	489	886	351	
906	1150	948	618	574	1050	415	上部格子板
933	1180	977	637	591	1080	428	
960	1220	1010	655	608	1110	441	
987	1250	1040	673	625	1140	455	
1020	1280	1060	691	642	1170	468	
1040	1320	1090	708	659	1210	481	
1290	1630	1350	877	819	1510	611	炉心支持板
1320	1650	1380	892	834	1530	623	
1330	1670	1390	899	841	1550	629	炉心シュラウド下部胴
1330	1670	1390	899	841	1550	629	

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-242 最大応答軸力 基準地震動Ss (鉛直方向 炉心シュラウド)

	最大応答加速度(m/s²)									
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考			
10. 1	12.9	10.9	6.95	6.48	11.5	4. 50	炉心支持板			
9.58	12. 2	10.3	6. 56	6. 15	11. 1	4.46				
9.07	11.4	9.69	6. 17	5.84	10. 7	4. 42				
8.40	10.4	8.90	5. 59	5. 42	10. 1	4. 35	制御棒案内管下端			

図 4-243 最大応答加速度 基準地震動Ss(鉛直方向 制御棒案内管)

	最大応答変位(mm)						備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	£¢ ⊞Λ
1.11	0.920	0.788	0.696	0.759	0.773	0.647	炉心支持板
1.10	0.888	0. 770	0. 679	0.747	0. 755	0. 639	
1.08	0.855	0.753	0.661	0.735	0. 737	0.631	
1.06	0.808	0.726	0.634	0.717	0.708	0.619	制御棒案内管下端

図 4-244 最大応答変位 基準地震動 S s (鉛直方向 制御棒案内管)

	最大応答軸力(×10 ³ N)						
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	備考
1910	2440	2030	1310	1240	2170	855	炉心支持板
1970	2510	2090	1350	1270	2220	878	
2010	2570	2140	1380	1300	2280	902	
2010	2570	2140	1380	1300	2280	902	制御棒案內管下端

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-245 最大応答軸力 基準地震動 S s (鉛直方向 制御棒案内管)

備考	最大応答加速度 (m/s²)						
/III ^¬¬	Ss-N1	Ss-F3	Ss-F2	Ss-F1	Ss-D3	Ss-D2	Ss-D1
制御棒案内管下端	4. 35	10. 1	5. 42	5.59	8.90	10.4	8.40
原子炉圧力容器底部	4. 33	9.80	5. 34	5.39	8.64	10.1	8.16
	4. 33	9.90	5. 36	5. 41	8.69	10.2	8.20
	4. 33	9.99	5. 38	5. 43	8.74	10.2	8.24
	4. 33	10. 1	5. 39	5. 45	8. 79	10.3	8.28
制御棒駆動機構ハウジング下端	4. 33	10. 2	5. 41	5.48	8.83	10. 4	8.31

図 4-246 最大応答加速度 基準地震動 S s (鉛直方向 制御棒駆動機構ハウジング)

	最大応答変位 (mm)						備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	/用 芍
1.06	0.808	0.726	0.634	0.717	0.708	0.619	制御棒案內管下端
1.05	0.790	0.716	0.624	0.711	0. 698	0.614	原子炉圧力容器底部
1.05	0.794	0.718	0.626	0.712	0.700	0.615	
1.05	0.797	0.720	0.628	0.714	0.702	0.616	
1.05	0.800	0.722	0.630	0.715	0.704	0.617	
1.06	0.803	0.724	0.632	0.716	0.706	0.618	制御棒駆動機構ハウジング下端

図 4-247 最大応答変位 基準地震動 S s (鉛直方向 制御棒駆動機構ハウジング)

	最大応答軸力(×10 ³ N)						備考
Ss-D1	Ss-D2	Ss-D3	Ss-F1	Ss-F2	Ss-F3	Ss-N1	`W# ∕5
2070	2640	2200	1 420	1340	2350	933	制御棒案内管下端
533	662	571	352	351	654	282	原子炉圧力容器底部
486	605	521	321	320	597	257	
439	546	470	290	289	540	232	
392	488	420	259	258	482	207	
392	488	420	259	258	482	207	制御棒駆動機構ハウジング下端

注:要素上端の質点位置に軸力を記載。なお、最下端の要素は要素下端の質点位置にも軸力を記載。

図 4-248 最大応答軸力 基準地震動 S s (鉛直方向 制御棒駆動機構ハウジング)

5. 設計用地震力

設計用地震力は、基本ケースと材料物性の不確かさ等を考慮したケースの包絡値とし、以下のとおり整理する。なお、設計用最大応答加速度及び設計用床応答曲線は、添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に記載する。

5.1 弾性設計用地震動 S d 及び静的地震力

弾性設計用地震動S d C 対する地震力D が静的地震力を表 5-1~表 5-5 に示す。ここでは、地震力として、せん断力、モーメント、軸力、ばね反力及び燃料集合体相対変位を示している。なお、弾性設計用地震動S d C は対する地震力と静的地震力のうちいずれか大きい方をS d *として評価に用いる。

5.2 基準地震動 S s

基準地震動Ssに対する地震力を表 5-6~表 5-10 に示す。ここでは、地震力として、せん断力、モーメント、軸力、ばね反力及び燃料集合体相対変位を示している。

表 5-1 <mark>弾性設計用地震動 S d に対する</mark>地震力及び静的地震力(せん断力)(1/2)

		せん断力(kN)			
構造物	標高 0.P. (m)	弾性設計用地震動Sd に対する地震力	静的地震力		
		422	191		
		1.66×10^3	808		
		3.37×10^3	1.90×10^{3}		
医乙烷医五烷甲		1.98×10^3	339		
原子炉圧力容器		2.11×10^3	1.84×10^3		
		4. 18×10^3	4.14×10^3		
		5.27×10^3	5.68×10^3		
		6.31×10^3	7.28×10^{3}		
		1.69×10^4	1.96×10^4		
E 7 E 4 4 0 # r#		1.82×10^4	2.14×10^4		
原子炉本体の基礎		1.95×10^4	2.30×10^4		
		2.05×10^4	2.46×10^4		
		4.41×10^3	1.30×10^3		
		4.25×10^3	2.91×10^3		
原子炉しゃへい壁		5.54×10^3	5.83×10^3		
		7.85×10^3	7.96×10^{3}		
		1.03×10^4	1.06×10^4		
		175	140		
		340	279		
		2.17×10^3	1.68×10^3		
		2.62×10^3	2.15×10^{3}		
百乙后妆幼宏型		1.40×10^4	1.42×10^4		
原子炉格納容器		1.49×10^4	1.51×10^4		
		1.54×10^4	1.58×10^4		
		1.62×10^4	1.70×10^4		
		1.64×10^4	1.76×10^4		
		1.68×10^4	1.88×10^4		

表 5-1 <mark>弾性設計用地震動 S d に対する</mark>地震力及び静的地震力(せん断力)(2/2)

		せん断	力(kN)
構造物	標高 O.P. (m)	弾性設計用地震動 S d に対する地震力	静的地震力
		460	88. 5
		968	231
		1.64×10^3	390
		2.05×10^3	491
		2.55×10^3	630
		2.48×10^3	973
炉心シュラウド		2.53×10^3	1.03×10^3
		2.60×10^3	1.08×10^3
		2.87×10^3	1.12×10^3
		3.34×10^3	1.17×10^3
		3.67×10^3	1.21×10^{3}
		3.84×10^3	2.17×10^3
		3.88×10^3	2.24×10^3
		624	150
制御棒案内管		165	22. 3
		535	117
		803	252
		284	191
制御棒駆動機構 ハウジング		164	90. 9
, • • •		13. 7	5. 99
		160	80. 4
		2.25×10^3	668
		1.60×10^3	390
燃料焦入床		593	106
燃料集合体		620	142
		1.60×10^3	388
		2.20×10^{3}	635

表 5-2 <mark>弾性設計用地震動 S d に対する</mark>地震力及び静的地震力(モーメント)(1/2)

<u> </u>	[m; -l-	モーメント(kN·mm)			
構造物	標高 0.P. (m)	弾性設計用地震動Sd に対する地震力	静的地震力		
		0	0		
		1.16×10^6	5. 23×10^5		
		4.72×10^6	2.30×10^6		
		1.11×10^7	5.88×10^6		
原子炉圧力容器		1.14×10^7	7. 00×10^6		
		1.88×10^{7}	1.37×10^7		
		3.00×10^7	2.80×10^7		
		4.01×10^7	3.93×10^7		
		5.40×10^7	5.59×10^7		
		1.30×10^{8}	1.43×10^{8}		
		1.43×10^{8}	1.58×10^{8}		
原子炉本体の基礎		1.64×10^{8}	1.86×10^{8}		
		1.96×10^{8}	2.30×10^{8}		
		2.33×10^{8}	2.76×10^{8}		
		0	0		
		1.22×10^7	3.57×10^6		
		2.24×10^7	1.19×10^7		
原子炉しゃへい壁		3.39×10^7	2.67×10^7		
		4.79×10^7	4.90×10^{7}		
		7.80×10^{7}	8.64×10^7		
		0	0		
		4.02×10^5	3.21×10^{5}		
		1.13×10^6	9. 16×10^5		
		4.05×10^{6}	3.26×10^6		
		1.17×10^7	9. 50×10^6		
原子炉格納容器		7.16×10^{7}	7. 16×10^7		
		1.14×10^{8}	1.15×10^{8}		
		1.89×10^{8}	1.91×10^{8}		
		2.67×10^{8}	2.74×10^{8}		
		3.00×10^{8}	3.09×10^{8}		
		3.24×10^8	3.36×10^{8}		

 \mathfrak{S}

表 5-2 <mark>弾性設計用地震動 S d に対する</mark>地震力及び静的地震力(モーメント)(2/2)

		モーメン	ト (kN⋅mm)
構造物	標高 0.P. (m)	弾性設計用地震動 S d に対する地震力	静的地震力
		0	0
		5.90×10^5	1.14×10^5
		1.83×10^6	4.10×10^{5}
		4.27×10^6	1.07×10^{6}
		6. 07×10^6	1.50×10^{6}
		5. 13×10^6	1.15×10^{6}
		6.63×10^6	1.55×10^6
炉心シュラウド		7.76×10^6	2.24×10^6
		9.25×10^6	2.96×10^6
		1.11×10^7	3.71×10^6
		1.30×10^{7}	4.50×10^6
		1.52×10^7	5.32×10^6
		1.76×10^7	6. 17×10^6
		2.15×10^7	8.70×10^6
		2.55×10^7	1.14×10^7
		0	0
制御棒案内管		7. 31×10^5	1.76×10^5
的种件来门目		9. 23×10^5	2.02×10^5
		0	0
		0	0
		8.83×10^{5}	2.77×10^5
生1/40/14年度7手4-148/14年		2.97×10^{5}	2.21×10^5
制御棒駆動機構 ハウジング		3.18×10^4	1.89×10^4
		1.77×10^{5}	8.06×10^4
		1.70×10^{5}	8.54×10^4
		0	0
		0	0
		1.58×10^6	4.70×10^5
		2.69×10^6	7.44×10^5
燃料集合体		3.09×10^6	8.18×10^5
		2.67×10^6	7.19×10^5
		1.55×10^6	4.46×10^5
		0	0

M - 2 - 3 - 2 \odot $^{\circ}$

表 5-3 <mark>弾性設計用地震動 S d に対する</mark>地震力(軸力)(1/2)

		軸力(kN)
構造物	標高 O.P. (m)	弾性設計用地震動 S d
	0.1. (III)	<mark>に対する</mark> 地震力
		119
		860
		1.50×10^{3}
医乙烷医五烷明		1.92×10^3
原子炉圧力容器		2.47×10^3
		2.96×10^3
		3.46×10^3
		7. 13×10^3
		1.96×10^4
西フ に ナ		2.07×10^4
原子炉本体の基礎		2.18×10^4
		2.28×10^4
		1.53×10^3
		3.44×10^3
原子炉しゃへい壁		6.68×10^3
		9.06×10^3
		1.15×10^4
		82. 9
		165
		634
		896
原子炉格納容器		1.73×10^3
		2.33×10^3
		2.77×10^3
		3.54×10^3
		3.88×10^3
		4.64×10^3

表 5-3 <mark>弾性設計用地震動 S d に対する</mark>地震力(軸力)(2/2)

	JO WICKITY D	軸力(kN)
構造物	標高 0.P. (m)	弾性設計用地震動Sd に対する地震力
		62. 6
		188
		289
		409
		592
		693
炉心シュラウド		714
// · · · · · · · · · · · · · · · · · ·		734
		754
		774
		793
		981
		998
		1.01×10^3
		1.48×10^3
制御棒案内管		1.52×10^3
		1.56×10^3
		1.60×10^3
4-11/6n 1-1-120-5-1 1/1/- 1-44-		402
制御棒駆動機構 ハウジング		367
		332
		296
炉心シュラウド 支持ロッド		795

表 5-4 **弾性設計用地震動 S d に対する**地震力及び静的地震力(ばね反力, せん断力)

名称	応答種別	弾性設計用地震動Sd に対する地震力	静的地震力
原子炉圧力容器スタビライザ	ばね反力(kN)	6.05×10^3	2.52×10^3
原子炉格納容器スタビライザ	ばね反力(kN)	9. 04×10^3	2.50×10^3
原子炉格納容器シヤラグ	ばね反力(kN)	1.48×10^4	8. 27×10^3
制御棒駆動機構ハウジング レストレントビーム	ばね反力(kN)	231	142
炉心シュラウド回転ばね	回転ばね反力(kN·mm)	2.55×10^7	1.14×10^7
上部格子板	せん断力(kN)	2.35×10^{3}	742
炉心支持板	せん断力(kN)	2.74×10^3	<mark>958</mark>
上部サポート	ばね反力(kN)	3.41×10^3	551
下部スタビライザ	ばね反力(kN)	874	168

注:燃料交換ベローズ,所員用エアロック及びベント管は,モデル化しているが,ばね反力を設備の評価に用いないため記載しない。

表 5-5 <mark>弾性設計用地震動 S d に対する</mark>地震力及び静的地震力(相対変位)

		相対変位(mm)		
名称	標高 0.P. (m)	弾性設計用地震動Sd に対する地震力	静的地震力	
		0	0	
		16. 4	4.6	
		28. 3	7.8	
燃料集合体		32. 7	9.0	
		28. 3	7.8	
		16. 3	4.5	
		0	0	

表 5-6 基準地震動 S s に対する地震力(せん断力)(1/2)

に対する地震力	
標高	せん断力(kN)
0. P. (m)	基準地震動Ss に対する地震力
	559
	2.22×10^3
	4.40×10^3
	3.69×10^3
	3.90×10^3
	6.74×10^3
	9.30×10^3
	1.15×10^4
	3.06×10^4
	3.33×10^4
	3.64×10^4
	3.93×10^4
	7.41×10^3
	7.84×10^3
	1.02×10^4
	1.35×10^4
	1.75×10^4
	312
	609
	3.46×10^3
	4. 17×10^3
	3.45×10^4
	3.57×10^4
	3.65×10^4
	3.79×10^4
	3.85×10^4
	3.99×10^4
	標高

 $^{\circ}$ 0

 \mathfrak{S} \simeq \odot

表 5-6 基準地震動 S s に対する地震力(せん断力)(2/2)

		プ(ゼル例/J) (2/2) せん断力(kN)
構造物	標高	基準地震動 S s
III JE W	0. P. (m)	に対する地震力
		665
		1.47×10^3
		2.43×10^3
		3.01×10^3
		3.88×10^3
		3.75×10^3
炉心シュラウド		4.08×10^3
		4.39×10^3
		4.69×10^3
		5.15×10^3
		5.72×10^3
		6. 34×10^3
		6. 46×10^3
		1.54×10^3
制御棒案内管		406
		1.32×10^3
		2.00×10^3
		608
制御棒駆動機構 ハウジング		345
		27. 4
		328
燃料集合体		3.81×10^3
		2.62×10^3
		981
		1.05×10^3
		2.63×10^3
		3.62×10^3

表 5-7 基準地震動 S s に対する地震力 (モーメント) (1/2)

	I-m²	モーメント(kN·mm)
構造物	標高 O.P. (m)	基準地震動Ss に対する地震力
		0
		1.54×10^6
		6.38×10^6
		1.48×10^7
原子炉圧力容器		1.97×10^7
		3.26×10^7
		5.21×10^7
		6. 59×10^7
		8.91×10^7
		2.34×10^{8}
		2.57×10^{8}
原子炉本体の基礎		2.96×10^{8}
		3.60×10^{8}
		4.28×10^{8}
		0
		2.05×10^7
原子炉しゃへい壁		4.16×10^7
派 1 が しや・(*) 聖		6. 37×10^7
		9. 11×10^7
		1.45×10^{8}
		0
		7.20×10^{5}
原子炉格納容器		2.02×10^6
		6. 57×10^6
		1.87×10^7
		1.64×10^8
		2.65×10^{8}
		4.42×10^{8}
		6. 25×10^8
		7.02×10^8
		7. 59×10^8

表 5-7 基準地震動 S s に対する地震力 (モーメント) (2/2)

表 5-7 基準地震動 S s	に刈りる地展刀	(モーメント) (2/2)
	標高	モーメント(kN·mm)
構造物	0. P. (m)	基準地震動Ss
		に対する <mark>地震力</mark>
		0
		8.53×10^{5}
		2.73×10^6
		6.72×10^6
		9. 34×10^6
		8.24×10^6
		1.07×10^7
炉心シュラウド		1.21×10^7
		1.49×10^7
		1.79×10^7
		2.10×10^7
		2.43×10^7
		2.77×10^7
		3.48×10^7
		4.21×10^{7}
		0
statum libaria li bata		1.81×10^6
制御棒案内管		2.28×10^6
		0
		0
		2.19×10^6
		6.60×10^{5}
制御棒駆動機構 ハウジング		7.90×10^4
		3.51×10^{5}
		3.49×10^{5}
		0
燃料集合体		0
		2.68×10^{6}
		4.52×10^{6}
		5.11×10^6
		4.38×10^{6}
		4.58×10 2.54×10^{6}
		0

 \odot $^{\circ}$

表 5-8 <mark>基準地震動 S s に対する</mark>地震力(軸力)(1/2)

表 5 0 <mark> </mark>		マノJ (平四ノJ) (1/2)
構造物	標高 O.P. (m)	軸力(kN)
		基準地震動Ss に対する地震力
		204
		1.49×10^3
		2.58×10^3
医乙烷医五烷明		3.30×10^3
原子炉圧力容器		4.25×10^3
		5. 10×10^3
		5.96×10^3
		1.23×10^4
		3.38×10^4
		3.57×10^4
原子炉本体の基礎		3.76×10^4
		3.92×10^4
		2.64×10^3
		5.92×10^3
原子炉しゃへい壁		1.16×10^4
		1.57×10^4
		1.98×10^4
		143
		285
原子炉格納容器		1.10×10^{3}
		1.55×10^3
		2.97×10^3
		4.01×10^3
		4.77×10^3
		6. 10×10^3
		6.69×10^3
		7.99×10^3

表 5-8 **基準地震動Ssに対する**地震力(軸力)(2/2)

衣 5-8 <mark> </mark>		受力 (押力力) (2/2)
Litte NA of L	標高 O.P. (m)	軸力(kN)
構造物		基準地震動Ss に対する地震力
		108
		324
		498
		704
		1.02×10^3
		1.20×10^3
炉心シュラウド		1.23×10^3
, , , , , , , , , , , , , , , , , , ,		1.27×10^3
		1.30×10^{3}
		1.34×10^3
		1.37×10^3
		1.70×10^3
		1.72×10^3
		1.74×10^3
制御棒案内管		2.55×10^3
		2.62×10^3
		2.68×10^3
制御棒駆動機構 ハウジング		2.76×10^3
		693
		633
		572
		511
炉心シュラウド 支持ロッド		1.38×10^{3}

表 5-9 基準地震動 S s に対する地震力(ばね反力, せん断力)

名称	応答種別	基準地震動Ssに対する地震力
原子炉圧力容器スタビライザ	ばね反力(kN)	8.25×10^3
原子炉格納容器スタビライザ	ばね反力(kN)	1.58×10^4
原子炉格納容器シヤラグ	ばね反力(kN)	3.41×10^4
制御棒駆動機構ハウジング レストレントビーム	ばね反力(kN)	473
炉心シュラウド回転ばね	回転ばね反力(kN·mm)	4.21×10^7
上部格子板	せん断力(kN)	3.96×10^{3}
炉心支持板	せん断力(kN)	4.52×10^{3}
上部サポート	ばね反力(kN)	5.91×10^3
下部スタビライザ	ばね反力(kN)	1.61×10^{3}

注:燃料交換ベローズ,所員用エアロック及びベント管は、モデル化しているが、ばね反力を設備の評価に用いないため記載しない。

表 5-10 基準地震動 S s に対する地震力(相対変位)

衣 5 10 医中地展期 5 5 (こ N y 6) 地展 力 (相対 を 位)			
	標高 0.P. (m)	相対変位(mm)	
名称		基準地震動Ss に対する地震力	
燃料集合体		0	
		27. 4	
		47. 2	
		54. 2	
		46.8	
		27. 0	
		0	