本資料のうち，枠囲みの内容 は商業機密の観点から公開で
きません。

女川原子力発電所第2号機	工事計画審査資料
資料番号	02 －工－B－02－0006＿改 3
提出年月日	2021 年 10 月 21 日

VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書

2021年10月
東北電力株式会社
1．概要 1
2．基本方針 1
2.1 構造概要 1
2．2 解析方針 4
2.3 適用規格•基準等 4
3．解析方法 4
3.1 入力地震動 4
3.2 地震応答解析モデル 7
3．2．1 大型機器系地震応答解析モデル 7
3．2．2 炉内構造物系地震応答解析モデル 24
3.3 解析方法 45
3．3．1 動的解析 45
3．3．2 静的解析 45
3.4 解析条件 46
3．4．1 耐震壁の復元力特性 46
3．4．2 地盤の回転ばねの復元力特性 46
3．4．3 原子炉本体の基礎の復元力特性 46
3．4．4 炉心シュラウド溶接線分離想定ケースにおける荷重－変位特性， 50
3．4．5 材料物性の不確かさ等 52
4．解析結果 54
4． 1 固有値解析結果 54
4．1．1 大型機器系地震応答解析モデル 54
4．1．2 炉内構造物系地震応答解析モデル 54
4．2 地震応答解析結果及び静的解析結果 152
4．2．1 大型機器系地震応答解析モデル 152
4．2．2 炉内構造物系地震応答解析モデル 230
5．設計用地震力 316
5.1 弾性設計用地震動 S d 及び静的地震力 316
5.2 基準地震動 S s 316

1．概要

本計算書は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づく原子炉圧力容器，原子炉格納容器，原子炉しゃへい壁，原子炉本体の基礎等の地震応答解析及び炉心，原子炉圧力容器，原子炉内部構造物等の地震応答解析について説明するものである。

地震応答解析により算出した各種応答値及び静的地震力は，添付書類「VI－2－1－9 機能維持の基本方針」に示す建物•構築物及び機器•配管系の設計用地震力として用いる。

2．基本方針

2.1 構造概要

原子炉建屋内の原子炉格納容器，原子炉圧力容器，原子炉しやへい壁，原子炉本体の基礎等 の大型機器，構築物は，その支持構造上から建屋との連成が無視できないため，図 3－1～図 3－ 6 に示すように原子炉建屋と連成で解析する。

原子炉格納容器は，円筒形の鋼製のドライウェル及び円環形の鋼製のサプレッションチェン バからなり，水平地震力は 0. P． 22.500 m で原子炉格納容器シヤラグを介して原子炉建屋に伝達 され，下端は 0．P． 1.150 m で原子炉建屋基䂣版に支持される。
原子炉しゃへい壁は原子炉圧力容器を取り囲む二重円筒鋼板の壁であり，内部にモルタルが充てんされる。また，原子炉格納容器スタビライザを介して原子炉格納容器に結ばれ，さらに原子炉圧力容器スタビライザを介して原子炉圧力容器に結ばれる。

原子炉圧力容器は，鋼製の円筒形容器であり，0．P．\square で原子炉圧力容器スタビライザに より水平方向に支持され，その下部は原子炬圧力容器支持スカートを介して0．P．\square で原子炉本体の基礎により支持される。

原子炉本体の基礎は円筒形の鋼製（無筋コンクリート充てん）構造物で原子炉圧力容器基礎 ボルトにより原子炉圧力容器支持スカートを介して原子炉圧力容器を支持するとともに原子炉 しやへい壁を支持しており，原子炉本体の基礎の下端は原子炉建屋基礎版に固定する。
所員用エアロックはドライウェルに支持される鋼製構造物であり，水平方向荷重は原子炉格納容器シヤラグ及び基部を介して，鉛直方向荷重は基部を介して原子炉建屋に伝達される。

ベント管は，ドライウェルからサプレッションチェンバにつながる鋼製円筒構造物であり， ベントノズルを介してドライウェルに支持される。鉛直方向荷重及び水平方向荷重は，ドライ ウェルを介して原子炉建屋に伝達される。
燃料交換ベローズは，原子炉圧力容器と原子炉格納容器の間を接続する鋼製構造物である。
原子炉圧力容器内には，気水分離器及びスタンドパイプ，炬心シュラウド，燃料集合体，制御棒，制御棒案内管，制御棒駆動機構ハウジング，ジェットポンプ等が収納される。

灲心シュラウドは薄肉円筒形で，鈖直方向は下部胴下端でシュラウドサポートレグにより原子炉圧力容器に支持され，また上部胴上端とシュラウドサポートプレートが炉心シュラウド支持ロッドにより支持される。水平方向は，上部胴は上部サポートにより，中間胴下端は下部ス タビライザにより，また下部胴下端はシュラウドサポートプレートにより原子炉圧力容器に支

持される構造である。炉心シュラウド上部には，さら形のシュラウドヘッドがあり（以下，炉心シュラウド及びシュラウドヘッドを「炉心シュラウド」と総称する。），その上に 163 本のスタ ンドパイプが立ち，その上の気水分離器を支持している。炉心シュラウド内部には560本の燃料集合体が収納され，下端を炉心支持板，上端を上部格子板で支持されることにより正確に位置が定められている。燃料集合体に加わる荷重は，水平方向は上部格子板及び炉心支持板を支持する炉心シュラウド，鉛直方向は制御棒案内管及び制御棒案内管を支持する制御棒駆動機構 ハウジングを介し，原子炉圧力容器に伝達される。

制御棒駆動機構は，原子炉圧力容器下部鏡板を貫通し取り付けられる 137 本の制御棒駆動機構ハウジング内に納められ，その上端に取り付けられる制御棒を炉心に挿入する機能を有して いる。

また，炉心シュラウドと原子炉圧力容器の間には，ジェットポンプがシュラウドサポート上 に 20 個据付けられているが，質量が小さく，炉内の構造物の振動に与える影響は小さいため質量のみを考慮する。

同様に中性子束計測案内管及び中性子束計測ハウジングについても炉内の構造物の振動に与 える影響は小さいため質量のみを考慮する。これらの構造概要を図 2－1 及び図 2－2 に示す。

図 2－1 原子炉格納容器，原子炉しやへい壁，原子炉本体の基礎，原子炉圧力容器等の構造概要図

図 2－2 原子炉圧力容器内部の構造概要図

2.2 解析方針

地震応答解析は，以下の 2 つの解析モデルを使用し，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づいて行う。
－大型機器系地震応答解析モデル（原子炉建屋，原子炉圧力容器，原子炉格納容器，原子炉しやへい壁，原子炉本体の基礎等を連成）
－炉内構造物系地震応答解析モデル（原子炉建屋，炉心，原子炉圧力容器，原子炉内部構造物等を連成）

地震応答解析は，「3．2 地震応答解析モデル」において設定した地震応答解析モデル及び「3．1入力地震動」において設定した入力地震動を用いて直接積分法による解析を実施し，各種応答値を算出する。

大型機器系地震応答解析モデル及び炉内構造物系地震応答解析モデルの両方でモデル化され る，原子炉圧力容器，原子炉しやへい壁及び原子炉本体の基礎については，大型機器系地震応答解析モデルによって得られる地震応答を用いた評価を基本とする。

原子炉圧力容器のうち，炉内配管に接続される原子炉圧力容器のノズル部及び炉内機器を支持するブラケット部については，炉内構造物系地震応答解析モデルによって得られる地震応答 を用いて配管反力及び機器反力を設定し，評価を実施する。

2.3 適用規格•基準等

大型機器系地震応答解析モデル及び炉内構造物系地震応答解析モデルを用いた地震応答解析 において適用する規格•基準等を以下に示す。

- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 O 1•補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）

3．解析方法

3.1 入力地震動

地震応答解析モデルへの入力地震動は，添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」に示す解放基盤表面で定義された基準地震動 S s 及び弾性設計用地震動 S d を用いて，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」で建屋基礎底面レベ ルでの地盤の応答として評価されたものを使用する。基準地震動 S s 及び弾性設計用地震動S d の最大加速度を表3－1 及び表3－2に示す。

表 3－1 基準地震動 S s の最大加速度

基準地震動		最大加速度（cm／s ${ }^{2}$ ）	
		水平方向	鉛直方向
S s－D 1	プレート間地震の応答スペクトルに基づく手法による基準地震動	640	430
S s－D 2	海洋プレート内地震（SMGA＊マントル内）の応答スペクトルに基 づく手法による基準地震動	1，000	600
S s－D 3	海洋プレート内地震（SMGA＊地殻内）の応答スペクトルに基づく手法による基準地震動	800	500
S s－F 1	プレート間地震の断層モデルを用いた手法による基準地震動 （応力降下量（短周期レベル）の不確かさ）	717	393
S s－F 2	プレート間地震の断層モデルを用いた手法による基準地震動 （SMGA＊位置と応力降下量（短周期レベル）の不確かさの重畳）	722	396
S s－F 3	海洋プレート内地震（SMGA＊マントル内）の断層モデルを用いた手法による基準地震動（SMGA＊マントル内集約）	835	443
S s－N 1	2004 年北海道留萌支庁南部地震（K—NET 港町）の検討結果に保守性を考慮した地震動	620	320

[^0]表 3－2 弾性設計用地震動 S d の最大加速度

弾性設計用地震動	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	
	水平方向	鉛直方向
S d－D 1	371	249
S d－D 2	580	348
S d－D 3 d－F 1	464	290
S d－F 2	359	197
S d－F 3－N 1	361	198
S		

3.2 地震応答解析モデル

地震応答解析モデルは，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の解析モデ ルの設定方針に基づき，水平方向及び鉛直方向についてそれぞれ設定する。

3．2．1 大型機器系地震応答解析モデル

3．2．1．1 水平方向

水平方向地震応答解析モデルは図 3－1 及び図 3－2 に示すように，原子炉建屋，原子炉格納容器，原子炉圧力容器，原子炉しやへい壁及び原子炉本体の基礎は，それぞれの質点間を等価な曲げ，せん断剛性を有する無質量のはり又は無質量のばねにより結合する。

原子炉格納容器は 12 質点でモデル化し，原子炉格納容器シヤラグと等価なばねで建屋モデルと，燃料交換ベローズと等価なばねで原子炉圧力容器と，それに加えて所員用 エアロック及びベント管と結合し，下端は原子炉建屋基礎版と剛に結合する。

原子炉圧力容器，原子炉しやへい壁及び原子炉本体の基礎はそれぞれ 8 質点， 5 質点， 4質点でモデル化する。原子炉圧力容器は原子炉圧力容器スタビライザと等価なばねで，原子炉しゃへい壁上端と結び，さらに原子炉格納容器スタビライザと等価なばねにより原子炉格納容器を介し，原子炉建屋に結合する。原子炉圧力容器の下端は，原子炉本体 の基礎の上端に剛に結合し，原子炉本体の基礎の下端は原子炉建屋 1 次しやへい壁に剛 に結合する。

原子炉建屋は質点系でモデル化し，地盤を等価なばねで評価した建屋一地盤連成モデ ルとする。

建屋底面下の地盤は，水平ばね及び回転ばねで置換する。また，基礎版底面における地盤の水平及び回転ばねは，それ以深の地盤を等価な半無限地盤とみなして，波動論に より評価する。

図 3－1 及び図 3－2 に示した大型機器系の水平方向地震応答解析モデルの各質点質量，部材長，断面二次モーメント，有効せん断断面積，ばね定数等を表3－3～表3－16に示す。 また，解析に用いる各構造物の物性値を表 3－24，表3－25 及び表 3－27に示す。なお，原子炉建屋のスケルトンカーブ及び地盤ばね定数については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に記載の値を使用する。

原子炉本体の基礎の復元力特性は，建屋の方向別に，原子炉本体の基礎の要素を単位 とした水平断面形状より設定した非線形の復元力特性とする。

3．2．1．2 鉛直方向

鉛直方向地震応答解析モデルは図 3－3 に示すように，原子炉建屋，原子炉格納容器，原子炉圧力容器，原子炉しやへい壁，原子炉本体の基礎及びインナーコンクリート等の各質点間を等価な軸剛性を有する無質量のばねにより結合する。また，屋根トラスは，各質点間を等価な曲げ，せん断剛性を有する無質量のはりで結合し，支持端部の回転拘束と等価な回転ばねで結合する。なお，インナーコンクリートとは，原子炉建屋の基礎版上面からドライウェル床面までの範囲で，1 次しやへい壁の内側のコンクリートをい

う。鉛直方向地震応答解析モデルにおいては，原子炉建屋が 1 軸でモデル化されており，原子炉本体の基礎の下端を原子炉建屋に接続した場合，建屋全体の剛性を考慮すること になるため，鉛直方向地震応答解析モデルでは原子炉本体の基礎の下端の接続先として インナーコンクリートをモデル化する。なお，水平方向地震応答解析モデルでは，原子炉本体の基礎の下端を原子炉建屋の 1 次しゃへい壁に接続しているため，インナーコン クリートはモデル化していない。

原子炉格納容器，原子炉圧力容器，原子炉しやへい壁及び原子炉本体の基礎はそれぞ れ 10 質点， 8 質点， 5 質点， 4 質点でモデル化する。原子炉格納容器の下端は，原子炉建屋と剛に結合される。原子炉圧力容器支持スカートの下端は，原子炉本体の基礎の上端 に剛に結合されており，原子炉本体の基礎の下端は，インナーコンクリートを介して原子炉建屋と結合される。

大型機器の質点は原則として，水平方向と同一とし，部材の端点及び剛性の変化する点，応力評価点等に設けるが，全体の振動特性が把握できるよう，質点間隔については，工学的判断を加えて定めるものとする。

また，水平方向地震応答解析モデルで考慮している水平ばね（原子炉格納容器スタビ ライザ等）については，鉛直方向に対しては拘束効果がない構造となっているか，拘束効果があっても本体部材の鉛直剛性に対して無視できる程度に小さい値であるため，鉛直方向地震応答解析モデルでは考慮しない。

図 3－3 に示した鉛直方向地震応答解析モデルの各質点質量，部材長，ばね定数等を表 3－17～表3－23に示す。また，解析に用いる各構造物の物性値を表3－26及び表3－28に示す。

なお，原子炉建屋の地盤ばね定数については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に記載の値を使用する。

K_{1}	原子炉格納容器シヤラグ
K_{2}	原子炉格納容器スタビライザ
K_{3}	原子炉圧力容器スタビライザ
K_{4}	燃料交換ベローズ
K_{5}	所員用エアロック
K_{6}	ベント管

記号	内容
$○$	質点
1	はり
－	水平ばね
（	回転ばね

原子炉格納容器
原子炉圧力容器及び原子炉本体の基礎

K_{1}	原子炉格納容器シヤラグ
K_{2}	原子炉格納容器スタビライザ
K_{3}	原子炉圧力容器スタビライザ
K_{4}	燃料交換ベローズ
K_{5}	所員用エアロック
K_{6}	ベント管

記号	内容
\bigcirc	質点
1	はり
－WM－	水平ばね
ϕ－©	回転ばね

原子炉格納容器

原子炉圧力容器及原子炉本体の基礎

図 3－3 大型機器系地震応答解析モデル（鉛直方向）

> 枠囲みの内容は商業機密の镮点から公開できません。

表 3－3 原子炉建屋のモデル諸元（NS 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \\ \hline \end{gathered}$	有効せん断断面積 （m²）	回転慣性重量 $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}^{2}\right)$
61	33.200		10． 70	29． 20	30.8	138.3
60	22.500					246． 1
59	15.000		7.50	59.40	59.2	251.1
58	6.000		9.00	73． 40	75.0	334.4
57	－0． 800		6.80	108.90	107.8	345.2
2	－8．100		7． 30	114． 40	107.8	－
56	50.500		9． 30	3.84	10.0	13.8
55	41.200		8.00	6． 35	18.2	24.7
54	33.200			54.30		600.2
53	22.500		10.70	54.30	59.4	924.8
52	15． 000		7.50	101． 20	85.8	841.4
51	6.000		9． 00	159.50	123.2	974.8
50	－0．800		6.80	211.10	165.2	1040.5
2	－8．100		7． 30	216． 10	165.2	－
49	33.200		10． 70	3． 83	50.6	40.4
48	22.500		7.50	9.63	72.7	91.4
46	15． 000			63		112.8
45	6.000		9.00	11． 20	71.0	74.6
3	1． 150		4． 85	10.50	66.8	－
44	50.500		9． 30	3.90	10.0	13.8
43	41.200		8.00	6.82	18.2	30.3
42	33.200					499． 2
41	22.500		10.70	50.70	59.8	670.8
40	15． 000		7.50	105． 30	90.0	696.3
39	6.000		9.00	132． 10	118.7	771.8
38	－0．800		6.80	184． 10	155． 3	700.2
2	－8．100		7． 30	188． 30	159.8	－
37	33.200		10． 70	22.40	28.4	85.5
36	22.500					132.4
35	15.000		7． 50	46.50	52.0	220.6
34	6.000		9.00	62.80	77.0	264.8
33	－0．800		6.80	84.00	107.8	298． 1
2	－8．100		7． 30	81.60	107.8	－
3	1． 150		9． 25	15． 70	108.0	90.3
2	－8． 100					3742.2
1	－14．100		6.00	3195． 70	6468.0	2261.4

表 3－4 原子炉建屋（補強部材）のモデル諸元（NS 方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\times 10^{3} \mathrm{~m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$	回転慣性重量 $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2}\right)$
44	50.500	-	9.30	0.0794	0.1844	-
43	41.200	-	8.00	0.4001	7.56	-
42	33.200	-		7.30	0.0794	0.1844
56	50.500	-	9.30	-		
55	41.200	-	8.00	0.7001	7.56	-
54	33.200	-		7	-	

表 3－5 原子炉建屋（床ばね）のモデル諸元（NS 方向）

質点 番号		ばね定数 $\left(\times 10^{5} \mathrm{kN} / \mathrm{m}\right)$	減衰 $(\%)$
37	42	350.1	5.0
36	41	354.4	5.0
35	40	374.6	5.0
34	39	452.4	5.0
33	38	862.2	5.0
44	56	13.4	5.0
42	49	240.9	5.0
41	48	281.5	5.0
40	46	571.2	5.0
39	45	376.6	5.0
38	50	80.5	5.0
49	54	313.7	5.0
48	53	327.1	5.0
46	52	561.2	5.0
45	51	396.5	5.0
54	61	219.0	5.0
53	60	265.2	5.0
52	59	208.4	5.0
51	58	250.8	5.0
50	57	167.8	5.0

表 3－6 原子炉格納容器のモデル諸元（NS 方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
32					
31					
30					
29					
28					
27					
26					
25					
24					
23					
22					

表 3－7 原子炉しやへい壁のモデル諸元（NS 方向）

質点番号	標高 0. P. (m)	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
20					
19					
18					
17					
16					
7					

表 3－8 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（NS 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
3					

表 3－9 大型機器系地震応答解析モデルのばね定数（NS 方向）

No．	は名称	ばね定数 $(\mathrm{N} / \mathrm{mm})$	減衰定数 $(\%)$
K_{1}	原子炉格納容器シヤラグ		1.0
$\mathrm{~K}_{2}$	原子炉格納容器スタビライザ		1.0
$\mathrm{~K}_{3}$	原子炉圧力容器スタビライザ		1.0
$\mathrm{~K}_{4}$	燃料交換ベローズ		1.0
$\mathrm{~K}_{5}$	所員用エアロック		1.0
$\mathrm{~K}_{6}$	ベント管		1.0

表 3－10 原子炉建屋のモデル諸元（EW 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \\ \hline \end{gathered}$	有効せん断断面積 （m）	回転慣性重量 $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}^{2}\right)$
63	33.200		10． 70	29． 90	32.4	110.8
62	22.500					186.3
61	15.000		7.50	60.50	54.7	273.6
60	6.000		9.00	80． 30	84.0	366.8
59	－0． 800		6.80	105.80	109.2	368.7
2	－8．100		7． 30	105.90	117.6	－
58	50.500		9． 30	6． 49	13．3	24.2
57	41.200		8.00	10． 30	21.2	27.9
56	33.200		8.00	10． 30	21.2	651.2
55	22.500		10.	27． 30	53.	906.1
54	15.000		7.50	107.30	79．8	883.6
53	6． 000		9.00	152.30	121．4	992.4
52	－0． 800		6.80	216． 90	170.0	1069．9
2	－8．100		7． 30	213.80	167.2	－
51	33.200		10.70	3.07	63.3	70.6
50	22.500		7.50	9.63	727	157.9
48	15． 000		7.50	9.63	12.7	103.0
47	6． 000		9.00	11.20	71.0	74.6
3	1． 150		4． 85	10.50	66.8	－
46	50.500		9． 30	6． 49	13.3	24.2
45	41.200		8． 00	12． 50	17.4	46.6
44	33.200		8． 10.70	12． 50	51.8	550.2
43	22.500		10.70	29.50	51.8	571.7
42	15.000		7.50	34.00	36.5	9． 7
41	22.500		7.50	66． 10	76.6	382.5
40	15.000		900	9270	107.1	969.9
39	6． 000		6.00	219.90	107.1	1120.9
38	-0.800		6． 80	219.90	163.7	1093.4
2	－8． 100		7． 30	227.80	169.0	－
37	33.200		10． 70	37.60	41.0	254.0
36	22.500		7.50	65． 30	57.4	280.5
35	15.000		9.50	65． 85	87.4	253.0
34	6.000		9.00	85.90	84.0	302.0
33	－0． 800		6.80	110.90	114.8	306.0
2	-8.100		7． 30	113.10	117.6	－
3	1． 150		9． 25	15． 70	108.0	90.3
2	－8．100					4451.2
1	－14．100		6.00	3803． 20	6468.0	2690.9

表 3－11 原子炉建屋（補強部材）のモデル諸元（EW 方向）

質点 番号	標高 $0 . P . ~$$(\mathrm{~m})$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\times 10^{3} \mathrm{~m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$	回転慣性重量 $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2}\right)$
45	41.200	-	8.00	1.8883	8.58	-
44	33.200	-		-		

表 3－12 原子炉建屋（床ばね）のモデル諸元（EW 方向）

質点番号		$\begin{aligned} & \text { ばね定数 } \\ & \left(\times 10^{5} \mathrm{kN} / \mathrm{m}\right) \end{aligned}$	$\begin{gathered} \text { 回転ばね } \\ \text { 定数 } \\ \left(\times 10^{9} \mathrm{kN} \cdot \mathrm{~m} / \mathrm{rad}\right) \\ \hline \end{gathered}$	減衰 （\％）
37	44	175.5	－	5.0
36	41	680.7	－	5.0
35	40	511.5	－	5.0
34	39	583.7	－	5.0
33	38	679.8	－	5.0
41	43	450.0	－	5.0
40	42	480.3	－	5.0
39	47	406． 7	－	5.0
38	52	68.3	－	5.0
46	58	23.8	－	5.0
44	51	530.0	3． 55	5.0
43	50	771.8	3.55	5.0
42	48	655.1	－	5.0
51	56	198.0	3.55	5.0
50	55	232.1	3.55	5.0
48	54	247.3	－	5.0
47	53	388.5	－	5.0
56	63	407.0	－	5.0
55	62	444.2	－	5.0
54	61	412.5	－	5.0
53	60	483.1	－	5.0
52	59	783.1	－	5.0
39	42	－	97.1	5.0

表 3－13 原子炉格納容器のモデル諸元（EW 方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
32					
31					
30					
29					
28					
27					
26					
25					
24					
23					
22					

表 3－14 原子炉しやへい壁のモデル諸元（EW 方向）

質点番号	標高 0. P. (m)	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
20					
19					
18					
17					
16					
7					

表 3－15 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（EW 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
3					

表 3－16 大型機器系地震応答解析モデルのばね定数（EW 方向）

No．	名称	ばね定数 $(\mathrm{N} / \mathrm{mm})$	減衰定数 $(\%)$
K_{1}	原子炉格納容器シヤラグ		1.0
$\mathrm{~K}_{2}$	原子炉格納容器スタビライザ		1.0
$\mathrm{~K}_{3}$	原子炉圧力容器スタビライザ		1.0
$\mathrm{~K}_{4}$	燃料交換ベローズ		1.0
$\mathrm{~K}_{5}$	所員用エアロック		1.0
$\mathrm{~K}_{6}$	ベント管		1.0

表 3－17 原子炉建屋のモデル諸元（鉛直方向）

質点 番号	標高 0. P. (m)	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{aligned} & \text { ばね定数 } \\ & \left(\times 10^{7} \mathrm{kN} / \mathrm{m}\right) \end{aligned}$
1	48． 725		7.525	20.4
2	41.200		0	48.3
3	33.200			
4	22.500		10． 700	137.3
5	15．000		7． 500	279.1
6	6． 000		9． 000	278.9
7	－0． 800		6． 800	499.5
7	－0．800		7． 300	477． 2
8	－8． 100			
9	－14． 100		6.000	2854.3

表 3－18 原子炉建屋（屋根トラス部）のモデル諸元（鉛直方向）

質点 番号	標高 $0 . P . ~(m)$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
1	48.725	-	6.400	6.99	1.11
10	48.725	333	6.300	6.99	1.12
11	48.725	326	6.300	6.99	0.773
12	48.725	163	6		

表 3－19 原子炉格納容器のモデル諸元（鉛直方向）

質点番号	標高 0．P．（m）	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	ばね定数 $\left(\times 10^{7} \mathrm{~N} / \mathrm{mm}\right)$
41				
40				
39				
38				
37				
36				
35				
34				
33				
32				
14				

表 3－20 原子炉しやへい壁のモデル諸元（鉛直方向）

質点 番号	標高 0．P．（m）	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{aligned} & \text { ばね定数 } \\ & \left(\times 10^{8} \mathrm{~N} / \mathrm{mm}\right) \end{aligned}$
23				
22				
21				
20				
19				
18				

表 3－21 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（鉛直方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	ばね定数 $\left(\times 10^{8} \mathrm{~N} / \mathrm{mm}\right)$
31				
30				
29				
28				
27				
26				
25				
24				
18				
17				

表 3－22 インナーコンクリートのモデル諸元（鉛直方向）

質点 番号	標高 $0 . P . ~(m)$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	ばね定数 $\left(\times 10^{9} \mathrm{~N} / \mathrm{mm}\right)$
14				
8				

表 3－23 原子炉建屋屋根トラス部のばね定数

No．	名称	ばね定数 $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m} / \mathrm{rad}\right)$	減衰定数 $(\%)$
K_{θ}	トラス端部回転拘束ばね	32.15	5.0

表 3－24 解析に用いる建屋の物性値（NS 方向）

名称	縦弾性係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比 v	減衰定数 （\％）
原子炉建屋	1.99×10^{4}	0． 167	5.0
原子炉建屋（オペフロ上部）	7.94×10^{3}	0． 167	5.0
原子炉建屋（補強耐震壁）	2.52×10^{4}	0.2	5.0
原子炉建屋（鉄骨ブレース）	2． 05×10^{5}	0.3	2.0

表 3－25 解析に用いる建屋の物性値（EW 方向）

| 名称 | $\begin{array}{c}\text { 縦弾性係数 } \mathrm{E} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right)\end{array}$ | ポアソン比 v |
| :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}減衰定数

(\%)\end{array}\right]\)

表 3－26 解析に用いる建屋の物性値（鉛直方向）

名称	縦弾性係数 E （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	ポアソン比 v	減衰定数 （\％）
原子炉建屋（鉄筋コンクリート造）	－	－	5.0
原子炉建屋（屋根トラス部）	2.65×10^{4}	0.3	2.0

表 3－27 解析に用いる大型機器系地震応答解析モデルの物性値（水平方向）

名称	縦弾性係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比 v	減衰定数 （\％）
原子炉しやへい壁			5.0
原子炉本体の基礎			5.0
原子炉圧力容器			1.0
原子炉圧力容器支持スカート			1.0
原子炉格納容器			1.0

表 3－28 解析に用いる大型機器系地震応答解析モデルの物性値（鉛直方向）

名称	減衰定数 $(\%)$
原子炉しやへい壁	5.0
原子炉本体の基礎	5.0
原子炉圧力容器	1.0
原子炉格納容器	1.0

3．2．2 炉内構造物系地震応答解析モデル

3．2．2．1 水平方向

水平方向地震応答解析モデルは図 3－5 及び図 3－6に示すように，原子炉建屋，原子炉 しやへい壁，原子炉本体の基礎，原子炉圧力容器，炉心シュラウド，燃料集合体，制御棒案内管及び制御棒駆動機構ハウジング等の各質点間を等価な曲げ，せん断剛性を有す る無質量のはり又は無質量のばねにより結合する。

原子炉しやへい壁は 5 質点，原子炉本体の基礎は 4 質点，原子炉圧力容器は 18 質点 でモデル化する。原子炉圧力容器は原子炉圧力容器スタビライザ及び原子炉本体の基礎 を介して原子炉建屋に支持される。

炉心シュラウドは，下部胴下端がシュラウドサポートプレート及びシュラウドサポー トレグの回転ばねにより原子炉圧力容器と結合され，上部胴上端が炉心シュラウド支持 ロッドの回転ばねによりシュラウドサポートプレートと結合される。また，上部胴は上部サポートの水平ばねにより，中間胴下端は下部スタビライザの水平ばねにより原子炉圧力容器と結合される。

気水分離器及びスタンドパイプは3質点，炉心シュラウドは10質点，燃料集合体は 7質点，制御棒案内管は 4 質点，制御棒駆動機構ハウジングは 6 質点でモデル化する。こ れらをO．P．\downarrow でシュラウドサポートと等価な回転ばねを介して，原子炉圧力容器 と結合する。
なお，ジェットポンプ，中性子束計測案内管，中性子束計測ハウジングについては，質量が小さく炉内の構造物の振動に与える影響は小さいため質量のみを考慮する。また，原子炉圧力容器内の燃料集合体，炉心シュラウド等のモデル化においては，炉水による付加質量効果を模擬するため仮想質量を考慮する。

原子炉建屋は質点系でモデル化し，地盤を等価なばねで評価した建屋－地盤連成モデ ルとする。

建屋底面下の地盤は，水平ばね及び回転ばねで置換する。また，基礎版底面における地盤の水平及び回転ばねは，それ以深の地盤を等価な半無限地盤とみなして，波動論に より評価する。

図 3－5 及び図 3－6に示した炉内構造物系の水平方向地震応答解析モデルの各質点質量，部材長，断面二次モーメント，有効せん断断面積，ばね定数等を表 3－29～表3－50に示 す。また，解析に用いる各構造物の物性値を表 3－62，表 3－63 及び表 3－65 に示す。

原子炉本体の基礎の復元力特性は，建屋の方向別に，原子炉本体の基礎の要素を単位 とした水平断面形状より設定した非線形の復元力特性とする。

炉心シュラウドについては，第 6 回定期検査（平成 15 年 5 月 22 日から平成 15 年 12月 25 日）において，溶接線の目視点検を行ったところ，溶接部の一部にひびが発生して いることを確認しており，炉心シュラウド支持ロッドを取り付ける補修を実施している。炉心シュラウド支持ロッドは，炉心シュラウド全ての周方向溶接線が全周破断した状態

においても，炉心シュラウド支持ロッドによる拘束力により，炉心シュラウドの機能を維持し得る設計としているため，炉心シュラウド支持ロッド施工後は，炉心シュラウド全ての周方向溶接部の構造健全性及び構造強度を期待しない構造となっている。ただし，炉内構造物系の地震応答解析においては，炉心シュラウド周方向溶接線の分離（炉心シ ュラウド溶接線の分離想定ケース）を考慮し，炉心シュラウド，炉心シュラウド支持ロ ッド，上部サポート及び下部スタビライザにおいて考慮すべき地震荷重が最大となるケ ースとして，以下の 4 通りのモデルを想定する。図 3－4に炉心シュラウド，炉心シュラ ウド支持ロッド及びシュラウドサポートの概略形状並びに炉心シュラウド周方向溶接線 の位置を示す。

- シュラウド健全モデル
- 上部胴上端（H1）分離モデル
- 下部胴上端（H6b）分離モデル
- 全溶接線（周方向）分離モデル

図 3－4 炉心シュラウド，炉心シュラウド支持ロッド及びシュラウドサポートの概略形状並びに炉心シュラウド周方向溶接線の位置

3．2．2．2 鉛直方向

鉛直方向地震応答解析モデルは図 3－7 に示すように，原子炉建屋，原子炉しやへい壁，原子炉本体の基礎，インナーコンクリート，原子炉圧力容器，炉心シュラウド，制御棒案内管及び制御棒駆動機構ハウジング，炉心シュラウド支持ロッド等の各質点間を等価 な軸剛性を有する無質量のばねにより結合する。また，屋根トラスは，各質点間を等価 な曲げ，せん断剛性を有する無質量のはりで結合し，支持端部の回転拘束と等価な回転 ばねで結合する。

原子炉しゃへい壁は5質点，原子炉本体の基礎は 4 質点，原子炉圧力容器は 19 質点 でモデル化する。原子炉圧力容器は原子炉本体の基礎及びインナーコンクリートを介し て原子炉建屋に支持される。

気水分離器及びスタンドパイプは 3 質点，炬心シュラウドは 11 質点，制御棒案内管は 3 質点，制御棒駆動機構ハウジングは 6 質点でモデル化する。なお，燃料集合体につい ては，鉛直方向に拘束していない構造であるため，質量のみ制御棒案内管上端に付加し，鉛直方向地震応答解析モデルでは考慮しない。

ジェットポンプ，中性子束計測案内管，中性子束計測ハウジングについては，水平方向と同様に質量のみを考慮する。

炉内構造物の質点は原則として，水平方向と同一とし，部材の端点及び剛性の変化す る点，応力評価点等に設けるが，全体の振動特性が把握できるよう，質点間隔について は，工学的判断を加えて定めるものとする。ただし，灲心シュラウドについては，シュ ラウドサポートレグ上下端に質点を設け，原子炉圧力容器下部鏡板に結合する。
また，水平方向解析モデルで考慮している水平ばね（原子炉圧力容器スタビライザ等） については，鉛直方向に対しては拘束効果がない構造となっているか，拘束効果があっ ても本体部材の鉛直剛性に対して無視できる程度に小さい値であるため，鉛直方向地震応答解析モデルでは考慮しない。

なお，鉛直方向地震応答解析モデルでは，炉水による付加質量効果は小さいため仮想質量は考慮しない。

図 3－7 に示した鉛直方向地震応答解析モデルの各質点質量，部材長，ばね定数等を表 3－51～表 3－61 に示す。また，解析に用いる各構造物の物性値を表3－64 及び表 3－66に示す。

なお，原子炉建屋の地盤ばね定数については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に記載の値を使用する。

図 3－5 炉内構造物系地震応答解析モデル（NS 方向）

図 3－6 炉内構造物系地震応答解析モデル（EW 方向）

K_{θ}	トラス端部回転拘束ばね
記号	内容
－	質点
｜	軸ばね（構造物）
－	はり（屋根トラス部）
8	回転ばね
ξ	鉛直ばね（地盤）

枠囲みの内容は商業機密の観点から公開できません

表 3－29 原子炉建屋のモデル諸元（NS 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \\ \hline \end{gathered}$	有効せん断断面積 （ m^{2} ）	回転慣性重量 $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}^{2}\right)$
89	33.200		10.70	29． 20	30.8	138.3
88	22.500			59.		246.1
87	15.000		7.50	59.40	59.2	251.1
86	6.000		9.00	73． 40	75.0	334.4
85	－0．800		6． 80	108.90	107.8	345.2
2	－8．100		7． 30	114.40	107.8	－
84	50.500		9． 30	3． 84	10.0	13.8
83	41.200		00	6． 35	18.	24.7
82	33.200		0	6． 35	18． 2	600.2
81	22.500		10.	54． 30	59.	924.8
80	15． 000		7.50	101.20	85.8	841.4
79	6． 000		9.00	159.50	123.2	974.8
78	－0．800		6.80	211.10	165.2	1040.5
2	－8．100		7． 30	216． 10	165.2	－
77	33.200		10.70	3． 83	50.6	40.4
76	22.500		7.50	9.63	72.7	91.4
74	15． 000		9． 00			112.8
73	6.000		9.00	11． 20	71.0	74.6
3	1． 150		4． 85	10.50	66.8	－
72	50.500		9． 30	3.90	10.0	13.8
71	41.200		8.00	6.82	18.2	30.3
70	33.200		10.70	50，70	598	499.2
69	22.500		10.70	50．70	59.8	670.8
68	15.000		7.50	105.30	90．0	696.3
67	6.000		6.80	13.10	118.7	771.8
66	－0．800		6． 80	184． 10	155． 3	700.2
2	－8．100		7． 30	188.30	159.8	－
65	33.200		10.70	22.40	28． 4	85.5
64	22.500		7.50	46．50	520	132.4
63	15． 000		9.50	46.50	77.0	220.6
62	6.000		9.00	62． 80	107.8	264.8
61	－0． 800		6.80	84.00	107.8	298.1
2	－8．100		7． 30	81.60	107.8	－
3	1． 150		9． 25	15． 70	108.0	90.3
2	－8．100					3742.2
1	－14．100		6.00	3195． 70	6468.0	2261.4

表3－30 原子炉建屋（補強部材）のモデル諸元（NS 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）	回転慣性重量 $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}^{2}\right)$
72	50.500	－	9． 30	0． 0794	0． 1844	－
71	41． 200	－				－
70	33.200	－	8． 00	0． 4001	7.56	－
84	50.500	－	9． 30	0． 0794	0． 1844	－
83	41.200	－				－
82	33.200	－	8． 00	0.7001	7.56	－

表 3－31 原子炉建屋（床ばね）のモデル諸元（NS 方向）

質点 番号		ばね定数 $\left(\times 10^{5} \mathrm{kN} / \mathrm{m}\right)$	減衰 $(\%)$
65	70	350.1	5.0
64	69	354.4	5.0
63	68	374.6	5.0
62	67	452.4	5.0
61	66	862.2	5.0
72	84	13.4	5.0
70	77	240.9	5.0
69	76	281.5	5.0
68	74	571.2	5.0
67	73	376.6	5.0
66	78	80.5	5.0
77	82	313.7	5.0
76	81	327.1	5.0
74	80	561.2	5.0
73	79	396.5	5.0
82	89	219.0	5.0
81	88	265.2	5.0
80	87	208.4	5.0
79	86	250.8	5.0
78	85	167.8	5.0

表 3－32 原子炉しやへい壁のモデル諸元（NS 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 $\left(\mathrm{m}^{2}\right)$
60					
59					
58					
57					
56					
7					

表 3－33 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（NS 方向）

質点番号	標高 0. P. (m)	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m）
24					
23					
22					
21					
20					
19					
18					
17					
16					
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
3					

表 3－34 原子炉圧力容器下部鏡板のモデル諸元（NS 方向）

質点 番号	標高 0．P．(m)	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
8					
38					

表 3－35 気水分離器，スタンドパイプ及び炉心シュラウドのモデル諸元（NS 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
37					
36					
35					
34					
33					
32					
31					
30					
29					
28					
27					
26					
25					
51					

表 3－36 燃料集合体のモデル諸元（NS 方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
55					
50					
49					
48					
47					
46					

表 3－37 制御棒案内管のモデル諸元（NS 方向）

質点 番号	標高 0．P．(m)	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
53					
45					
44					
52					

表 3－38 制御棒駆動機構ハウジングのモデル諸元（NS 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m）
43					
38					
39					
40					
41					
42					

表 3－39 炉内構造物系地震応答解析モデルのばね定数（NS 方向）

No．	名称	ばね定数	減衰定数 （\％）
K_{1}	原子炉格納容器スタビライザ	（ N / mm ）	1.0
K_{2}	原子炉圧力容器スタビライザ	（ N / mm ）	1.0
K_{3}	制御棒駆動機構ハウジング レストレントビーム	（ N / mm ）	1.0
K_{4}	シュラウドサポート	（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）	1.0
K_{5}	上部サポート	（ N / mm ）	1.0
K_{6}	下部スタビライザ	（ N / mm ）	1.0
K_{7}	炉心シュラウド支持ロッド	（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）	1.0

表 3－40 原子炉建屋のモデル諸元（EW 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \\ \hline \end{gathered}$	有効せん断断面積 （m）	回転慣性重量 $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}^{2}\right)$
91	33.200		10． 70	29． 90	32.4	110.8
90	22.500					186.3
89	15.000		9.50	80.50	84.7	273.6
88	6.000		9.00	80． 30	84.0	366.8
87	－0． 800		6.80	105.80	109.2	368.7
2	－8．100		7． 30	105.90	117.6	－
86	50.500		9． 30	6． 49	13．3	24.2
85	41.200		8.00	10． 30	21.2	27.9
84	33.200		8.00	10． 30	21.2	651.2
83	22.500		10.	27． 30	53.	906.1
82	15.000		7.50	107.30	79．8	883.6
81	6.000		9.00	152.30	121．4	992.4
80	－0． 800		6.80	216． 90	170.0	1069．9
2	－8．100		7． 30	213.80	167.2	－
79	33.200		10.70	3.07	63.3	70.6
78	22.500		7.50	9.63	727	157.9
76	15． 000		7.50	9.63	12.7	103.0
75	6． 000		9.00	11.20	71.0	74.6
3	1． 150		4． 85	10.50	66.8	－
74	50.500		9． 30	6． 49	13.3	24.2
73	41.200		8． 00	12． 50	17.4	46.6
72	33.200		8． 10.70	12． 50	51.8	550.2
71	22.500		10.70	29.50	51.8	571.7
70	15.000		7.50	34.00	36.5	9． 7
69	22.500		7.50	66． 10	76.6	382.5
68	15.000		900	9270	107.1	969.9
67	6． 000		6.00	219.90	107.1	1120.9
66	-0.800		6． 80	219.90	163.7	1093.4
2	－8． 100		7． 30	227.80	169.0	－
65	33.200		10． 70	37.60	41.0	254.0
64	22.500		7.50	65． 30	57.4	280.5
63	15．000		7.50	65． 30	57.4	253.0
62	6.000		9.00	85.90	84.0	302.0
61	-0.800		6． 8	110.90	114.8	306.0
2	-8.100		7． 30	113.10	117.6	－
3	1． 150		9． 25	15． 70	108.0	90.3
2	－8．100					4451.2
1	－14．100		6.00	3803． 20	6468.0	2690.9

表 3－41 原子炉建屋（補強部材）のモデル諸元（EW 方向）

| 質点
 番号 | 標高
 0．P．(m) | 質量
 $\left(\times 10^{3} \mathrm{~kg}\right)$ | 部材長
 (m) | 断面二次
 モーメント
 $\left(\times 10^{3} \mathrm{~m}^{4}\right)$ | 有効せん断
 断面積
 $\left(\mathrm{m}^{2}\right)$ | 回転慣性重量
 $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 73 | 41.200 | - | 8.00 | 1.8883 | 8.58 | - |
| 72 | 33.200 | - | | | - | |

表 3－42 原子炉建屋（床ばね）のモデル諸元（EW 方向）

質点番号		ばね定数 $\left(\times 10^{5} \mathrm{kN} / \mathrm{m}\right)$	回転ばね定数 $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m} / \mathrm{rad}\right)$	減衰 （\％）
65	72	175.5	－	5.0
64	69	680.7	－	5.0
63	68	511.5	－	5.0
62	67	583.7	－	5.0
61	66	679.8	－	5.0
69	71	450.0	－	5.0
68	70	480.3	－	5.0
67	75	406.7	－	5.0
66	80	68.3	－	5.0
74	86	23.8	－	5.0
72	79	530.0	3.55	5.0
71	78	771.8	3.55	5.0
70	76	655.1	－	5.0
79	84	198.0	3.55	5.0
78	83	232.1	3.55	5.0
76	82	247.3	－	5.0
75	81	388.5	－	5.0
84	91	407.0	－	5.0
83	90	444.2	－	5.0
82	89	412.5	－	5.0
81	88	483.1	－	5.0
80	87	783.1	－	5.0
67	70	－	97.1	5.0

表 3－43 原子炉しやへい壁のモデル諸元（EW 方向）

質点 番号	標高 0．P．(m)	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
60					
59					
58					
57					
56					
7					

表 3－44 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（EW 方向）

質点 番号	標高 0. P. (m)	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
24					
23					
22					
21					
20					
19					
18					
17					
16					
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
3					

表 3－45 原子炉圧力容器下部鏡板のモデル諸元（EW 方向）

質点 番号	標高 0．P．(m)	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
8					
38					

表 3－46 気水分離器，スタンドパイプ及び炬心シュラウドのモデル諸元（EW 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
37					
36					
35					
34					
33					
32					
31					
30					
29					
28					
27					
26					
25					
51					

表 3－47 燃料集合体のモデル諸元（EW 方向）

質点 番号	標高 $0 . P . ~(m)$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
55					
50					
49					
48					
47					
46					

表 3－48 制御棒案内管のモデル諸元（EW 方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
53					
45					
44					
52					

表 3－49 制御棒駆動機構ハウジングのモデル諸元（EW 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m）
43					
38					
39					
40					
41					
42					

表 3－50 炉内構造物系地震応答解析モデルのばね定数（EW 方向）

No．	名称	ばね定数	減衰定数 （\％）
K_{1}	原子炉格納容器スタビライザ	（ N / mm ）	1.0
K_{2}	原子炉圧力容器スタビライザ	（ N / mm ）	1.0
K_{3}	制御棒駆動機構ハウジング レストレントビーム	（ N / mm ）	1.0
K_{4}	シュラウドサポート	（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）	1.0
K_{5}	上部サポート	（ N / mm ）	1． 0
K_{6}	下部スタビライザ	（ N / mm ）	1.0
K_{7}	炉心シュラウド支持ロッド	（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）	1.0

表 3－51 原子炉建屋のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{aligned} & \text { ばね定数 } \\ & \left(\times 10^{7} \mathrm{kN} / \mathrm{m}\right) \end{aligned}$
1	48.725		7.525	20.4
2	41.200		0	48.3
3	33.200			
4	22.500		10． 700	137.
5	15．000		7． 500	279． 1
			9． 000	278.9
6	6.000		6． 800	499.5
7	－0．800		7300	477． 2
8	－8． 100		7． 300	
9	－14． 100		6． 000	2854.3

表 3－52 原子炉建屋（屋根トラス部）のモデル諸元（鉛直方向）

質点 番号	標高 0．P．(m)	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
1	48.725	-	6.400	6.99	1.11
10	48.725	333	6.300	6.99	1.12
11	48.725	326	6.300	6.99	0.773
12	48.725	163	$6 n n n n$		

表 3－53 原子炉しゃへい壁のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{aligned} & \text { ばね定数 } \\ & \left(\times 10^{8} \mathrm{~N} / \mathrm{mm}\right) \end{aligned}$
23				
22				
21				
20				
19				
18				

表 3－54 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（鉛直方向）

質点 番号	標高 0．P．（m）	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	$\begin{aligned} & \text { ばね定数 } \\ & \left(\times 10^{8} \mathrm{~N} / \mathrm{mm}\right) \end{aligned}$
40				
39				
38				
37				
36				
35				
34				
33				
32				
31				
30				
29				
28				
27				
26				
25				
24				
18				
17				
16				
15				
14				

表 3－55 インナーコンクリートのモデル諸元（鉛直方向）

質点 番号	標高 $0 . P . ~$ $(\mathrm{~m})$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	ばね定数 $\left(\times 10^{9} \mathrm{~N} / \mathrm{mm}\right)$
14				
8				

表 3－56 原子炉圧力容器下部鏡板のモデル諸元（鉛直方向）

質点 番号	標高 $0 . P .(m)$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	ばね定数 $\left(\times 10^{7} \mathrm{~N} / \mathrm{mm}\right)$
24				
41				
60				

表 3－57 気水分離器，スタンドパイプ及び炉心シュラウドのモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	$\begin{gathered} \text { 質量 } \\ \left(\times 10^{3} \mathrm{~kg}\right) \end{gathered}$	部材長 （m）	ばね定数 $\left(\times 10^{7} \mathrm{~N} / \mathrm{mm}\right)$
55				
54				
53				
52				
51				
50				
49				
48				
47				
46				
45				
44				
43				
42				
41				

表 3－58 炉心シュラウド支持ロッドのモデル諸元（鉛直方向）

質点 番号	標高 $0 . P . ~(m)$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	ばね定数 $\left(\times 10^{5} \mathrm{~N} / \mathrm{mm}\right)$
51				
25				

表 3－59 制御棒案内管のモデル諸元（鉛直方向）

質点 番号	標高 $0 . P .(m)$	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	ばね定数 $\left(\times 10^{7} \mathrm{~N} / \mathrm{mm}\right)$
64				
63				
62				
61				

表 3－60 制御棒駆動機構ハウジングのモデル諸元（鉛直方向）

質点 番号	標高 0．P．(m)	質量 $\left(\times 10^{3} \mathrm{~kg}\right)$	部材長 (m)	ばね定数 $\left(\times 10^{8} \mathrm{~N} / \mathrm{mm}\right)$
61				
60				
59				
58				
57				
56				

表 3－61 原子炉建屋屋根トラス部のばね定数

No．	名称	ばね定数 $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m} / \mathrm{rad}\right)$	減衰定数 $(\%)$
K_{θ}	トラス端部回車拘束ばね	32.15	5.0

表 3－62 解析に用いる建屋の物性値（NS 方向）

名称	縦弾性係数 E （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	ポアソン比 v	減衰定数 （\％）
原子炉建屋	1.99×10^{4}	0． 167	5.0
原子炉建屋（オペフロ上部）	7.94×10^{3}	0． 167	5.0
原子炉建屋（補強耐震壁）	2.52×10^{4}	0.2	5.0
原子炉建屋（鉄骨ブレース）	2.05×10^{5}	0.3	2.0

表 3－63 解析に用いる建屋の物性値（EW 方向）

名称	縦弹性係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比 v	減衰定数 （\％）
原子炉建屋	2.12×10^{4}	0． 167	5.0
原子炉建屋（オペフロ上部）	1． 32×10^{4}	0． 167	5.0
原子炉建屋（補強耐震壁）	2.52×10^{4}	0.2	5.0

表 3－64 解析に用いる建屋の物性値（鉛直方向）

| 名称 | $\begin{array}{c}\text { 縦弾性係数 } \mathrm{E} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right)\end{array}$ | ポアソン比 v |
| :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}減衰定数

(\%)\end{array}\right]\)

表 3－65 解析に用いる炉内構造物系地震応答解析モデルの物性値（水平方向）

名称	縦弾性係数 E （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	ポアソン比 v	減衰定数 （\％）
原子炉しやへい壁			5.0
原子炉本体の基礎			5.0
原子炉圧力容器			1.0
原子炉圧力容器支持スカート			1.0
炉心シュラウド			1.0
原子炉圧力容器下部鏡板			1.0
制御棒案内管			1.0
制御棒駆動機構ハウジング			3.5
燃料集合体			7.0

表 3－66 解析に用いる炉内構造物系地震応答解析モデルの物性値（鉛直方向）

名称	減衰定数 $(\%)$
原子炉しゃへい壁	5.0
原子炉本体の基礎	5.0
原子炉圧力容器	1.0
炉心シュラウド	1.0
原子炉圧力容器下部鏡板	1.0
制御棒案内管	1.0
制御棒駆動機構ハウジング	1.0
炉心シュラウド支持ロッド	1.0

3.3 解析方法

「3．2 地震応答解析モデル」において設定した地震応答解析モデルを用いて，電子計算機に より，剛性マトリックス，質量マトリックスを作り，固有振動数，固有モードマトリックス等 を求める。次に，入力地震動に対する各質点の加速度，変位，せん断力（軸力）等を時刻歴応答解析法により時間の関数として求め，地震継続時間中のこれらの最大値を求める。

以上の計算は，解析コード「T D A P III」を使用し，時刻歴応答解析を実施する。評価に用い る解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム （解析コード）の概要」に示す。

3．3．1 動的解析
大型機器系地震応答解析モデル及び炉内構造物系地震応答解析モデルを用いた動的解析 は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の解析方法に基づき，時刻歴応答解析により実施する。なお，解析に用いるモード減衰定数は，各次の振動モードにおける各部材のひずみエネルギーに比例するものとして設定する。

3．3．2 静的解析

（1）水平地震力
水平地震力は「VI－2－2－1 原子炉建屋の地震応答計算書」に記載の方法に基づき，算出する。水平地震力算定用の基準面は地表面（0．P．14．8m）とし，基準面より上の部分（地上部分）の地震力は，地震層せん断力係数を用いて，次式により算出する。なお，機器•配管系について は，算出した値を 1.2 倍して用いる。
$\mathrm{Q}_{\mathrm{i}}=\mathrm{n} \cdot \mathrm{C}_{\mathrm{i}} \cdot \mathrm{W}_{\mathrm{i}}$
$\mathrm{C}_{\mathrm{i}}=\mathrm{Z} \cdot \mathrm{R}_{\mathrm{t}} \cdot \mathrm{A}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{o}}$
ここで，
Q_{i} ：第 i 層に生じる水平地震力
n ：施設の重要度分類に応じた係数（3．0）
C_{i} ：第 i 層の地震層せん断力係数
W_{i} ：第 i 層が支える重量
Z ：地震地域係数（ 1.0 ）
R_{t} ：振動特性係数（0．8）
A_{i} ：第 i 層の地震層せん断力係数の高さ方向の分布係数
C_{0} ：標準層せん断力係数（0．2）

基準面より下の部分（地下部分）の地震力は，当該部分の重量に，次式によって算定する地下震度を乗じて定める。なお，機器•配管系については，算出した値を 1.2 倍して用いる。
$\mathrm{K}=0.1 \times \mathrm{n} \times(1-\mathrm{H} / 40) \times \alpha$
ここで，

K ：地下部分の水平震度
n ：施設の重要度分類に応じた係数（3．0）
H ：地下の各部分の基準面からの深さ（m）
α ：建物•構築物側方の地盤の影響を考慮した水平地下震度の補正係数（1．0）
（2）鉛直地震力
鉛直地震力は，静的解析によらず，鉛直震度 0.3 を基準とし，建物•構築物の振動特性及び地盤の種類等を考慮して，次式によって算定する鉛直震度を用いて定める。なお，機器•配管系については，算出した値を 1.2 倍して用いる。ここで，鉛直方向の静的地震力は，一律に同 じ値を適用する。
$\mathrm{C}_{\mathrm{v}}=0.3 \cdot \mathrm{R}_{\mathrm{v}}$
ここで，
C_{v} ：鉛直震度
R_{v} ：鉛直方向振動特性係数（0．8）

3.4 解析条件

3．4．1 耐震壁の復元力特性
耐震壁の復元力特性については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す。

3．4．2 地盤の回転ばねの復元力特性
地盤の回転ばねの復元力特性については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す。

3．4．3 原子炉本体の基礎の復元力特性
女川原子力発電所第 2 号機の建設時工認で用いた基準地震動のレベルにおいては，原子炉建屋は非線形領域付近であったため非線形の復元力特性を設定していた。一方で，原子炉本体の基礎はおおむね線形領域に収まっていたことから，剛性一定の線形の復元力特性を設定していた。

今回工認では基準地震動のレベルが増大し，原子炉本体の基礎の地震応答が線形領域を超えることから，適正な地震応答に基づく評価を行うために，原子炉建屋の地震応答解析モ デルだけでなく，原子炉本体の基礎にもコンクリートの剛性変化を考慮した非線形の復元力特性を適用する。
（1）原子炉本体の基礎のせん断力－せん断変形角関係（ $Q^{-} \gamma$ 関係）
原子炉本体の基礎のせん断力－せん断変形角関係（Q－γ 関係）は，コンクリートのひび割 れを表す第1折点と鋼板の降伏を表す第2折点までを設定する。原子炉本体の基礎のせん断力－せん断変形角関係を図3－8に示す。

Q_{1} ：第 1 折点のせん断力
Q_{2} ：第 2 折点のせん断力
γ_{1} ：第 1 折点のせん断変形角
$\gamma_{2}:$ 第 2 折点のせん断変形角
図 3－8 原子炉本体の基礎のせん断力－せん断変形角関係
（2）原子炉本体の基礎のせん断力－せん断変形角関係の履歴特性
原子炉本体の基礎のせん断力－せん断変形角関係の履歴特性は，最大点指向型モデルとす る。原子炉本体の基礎のせん断力－せん断変形角関係の履歴特性を図3－9 に示す。

a．0－A 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第 1 折点を超えていなければ，負側第 1 折点に向から。
c．各最大点は，スケルトン上を移動することにより更新される。
d．安定ループは面積を持たない。
図 3－9 原子炉本体の基礎のせん断力－せん断変形角関係の履歴特性
（3）原子炉本体の基礎の曲げモーメント－曲率関係（M－ϕ 関係）
原子炉本体の基整の曲げモーメント－曲率関係（M－ϕ 関係）は，コンクリートのひび割れ を表す第 1 折点と鋼板の降伏を表す第 2 折点までを設定する。原子炉本体の基礎の曲げモ

ーメントー曲率関係を図 3－10に示す。

M_{1} ：第1折点の曲げモーメント
M_{2} ：第2折点の曲げモーメント
ϕ_{1} ：第 1 折点の曲率
ϕ_{2} ：第 2 折点の曲率
図 3－10 原子炉本体の基礎の曲げモーメント－曲率関係
（4）原子炉本体の基礎の曲げモーメント－曲率関係の履歴特性
原子炉本体の基礎の曲げモーメント－曲率関係の履歴特性は，最大点指向型モデルとする。原子炉本体の基礎の曲げモーメントー曲率関係の履歴特性を図 3－11に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第 1 折点を超えていなければ，負側第 1 折点に向かう。
c．各最大点は，スケルトン上を移動することにより更新される。
d．安定ループは面積を持たない。
図 3－11 原子炉本体の基礎の曲げモーメント－曲率関係の履歴特性
（5）スケルトンカーブの諸数値
原子炉本体の基礎の各要素について算定したせん断力及び曲げモーメントのスケルトン カーブの諸数値を表 3－67～表3－70に示す。なお，曲げモーメントのスケルトンカーブの算定には，解析コード「SCC」を使用する。評価に用いる解析コードの検証及び妥当性確認等 の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

表 3－67 原子炉本体の基礎のせん断力のスケルトンカーブ（ $Q-\gamma$ 関係）（NS 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{Q}_{1} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{1} \\ \left(\times 10^{-4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{2} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{2} \\ \left(\times 10^{-4}\right) \end{gathered}$
7	6	5． 042	1.775	34.90	32.51
6					
	5	2． 867	1． 859	24.63	27． 17
	4	5． 343	1． 808	29． 06	33.23
3	3	5． 428	1． 837	29． 06	33.23

表 3－68 原子炉本体の基礎の曲げモーメントのスケルトンカーブ（M－ $\boldsymbol{\phi}$ 関係）（NS 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{M}_{1} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{1} \\ \left(\times 10^{-5} 1 / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{2} \\ \left(\times 10^{-5} 1 / \mathrm{m}\right) \end{gathered}$
7	6	1． 032	1． 036	16． 81	38.53
6					
	5	1． 107	1． 151	15.98	38． 49
	4	1． 740	1． 721	16． 36	38． 39
3	3	1． 738	1． 799	15． 73	38． 50

表 3－69 原子炉本体の基礎のせん断力のスケルトンカーブ（ $Q-\gamma$ 関係）（EW 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{Q}_{1} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{1} \\ \left(\times 10^{-4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{2} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{2} \\ \left(\times 10^{-4}\right) \end{gathered}$
7	6	5． 042	1.775	34.90	32.51
6					
	5	5． 400	1． 859	39． 48	31.21
	4	5． 343	1． 808	29． 06	33． 23
3	3	5． 032	1． 837	27． 23	33.20

表 3－70 原子炉本体の基礎の曲げモーメントのスケルトンカーブ（M— ϕ 関係）（EW 方向）

質点番号	要素番号	M_{1} $\left(\times 10^{8} \mathrm{kN} \cdot \mathrm{mm}\right)$	ϕ_{1} $\left(\times 10^{-5} 1 / \mathrm{m}\right)$	M_{2} $\left(\times 10^{8} \mathrm{kN} \cdot \mathrm{mm}\right)$	ϕ_{2} $\left(\times 10^{-5} \mathrm{1} / \mathrm{m}\right)$
7	6	1.032	1.036	16.81	38.53

3．4．4 炉心シュラウド溶接線の分離想定ケースにおける荷重－変位特性
炉心シュラウド溶接線の分離想定ケースは，健全ケース，H1 分離ケース，H6b 分離ケース及び全溶接線分離ケースの 4 通りを設定する。各分離想定ケースにおいて，炉心シュラウド の荷重－変位特性を以下のように設定する。

3．4．4．1 健全ケース

健全ケースにおける炉心シュラウドの荷重－変位特性は，線形として設定する。
3．4．4．2 溶接線分離ケース（H1 分離，H6b 分離及び全溶接線分離ケース）
溶接線分離ケースにおける炉心シュラウドの荷重－変位特性は非線形として設定する。 なお，溶接線分離ケースにおいては，以降に示す曲げ非線形特性を溶接線分離位置の各要素に対して設定する。
（1）炬心シュラウドの曲げモーメント－曲率関係（M－ϕ 関係）
炉心シュラウドの曲げモーメント－曲率関係（M－ϕ 関係）は，灲心シュラウド溶接線に分離が生じたことを表す第 1 折点を設定し，第 1 折点以降は曲げモーメントをそれ以上伝達 しないよう設定する。炉心シュラウドの曲げモーメントー曲率関係を図 3－12 に示す。

M ：第1折点の曲げモーメント
ϕ ：第 1 折点の曲率
図 3－12 炉心シュラウドの曲げモーメント－曲率関係
（2）炉心シュラウドの曲げモーメント－曲率関係の履歴特性
炬心シュラウドの曲げモーメント－曲率関係の履歴特性は，原点指向型モデルとする。炉心シュラウドの曲げモーメント－曲率関係の履歴特性を図 3－13に示す。

a．0－A 間：弾性範囲
b．A－B 間：原点に向かう
図 3－13 炉心シュラウドの曲げモーメント－曲率関係の履歴特性
（3）スケルトンカーブの諸数値
炉心シュラウドの各要素について算定した曲げモーメントのスケルトンカーブの諸数値 を表3－71に示す。表3－71は代表として全溶接線分離ケースについて示したものであり，H1分離ケース及び H6b 分離ケースについては，各溶接線分離位置に基づき，以下の要素のみ表 3－71 に示す第 1 折点を設定し，それ以外の要素の荷重－変位特性は線形として設定する。

- H1 分離ケース：要素番号 32
- H6b 分離ケース：要素番号 25

表 3－71 炉心シュラウドの曲げモーメントのスケルトンカーブ（M—中関係）（全溶接線分離ケース）

質点番号	要素番号	$\frac{\mathrm{M}}{\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{mm}\right)}$	$\left(\times 10^{-6} 1 / \mathrm{m}\right)$
33	32	1． 530	5． 290
32			
	31	1． 531	6． 450
	30	1． 531	6． 450
	29	1． 531	6． 450
	28	1． 531	6． 450
	27	1． 531	6． 450
	26	1． 531	6． 450
	25	1． 532	6． 820
51	24	1． 532	6． 820

3．4．5 材料物性の不確かさ等
解析においては，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」にて考慮する材料物性の不確かさに加え，原子炉本体の基礎のコンクリート剛性を低下させたケースを考慮 する。設計用地震力は基本ケースと材料物性の不確かさ等を考慮したケースの包絡値を使用する。材料物性の不確かさ等を考慮する解析ケースを表3－72に示す。

表 3－72 建屋－機器連成地震応答解析において材料物性の不確かさ等を考慮する解析ケース
\mathfrak{c}

検討ケース	建屋初期剛性	地盤物性		原子炉本体の基礎 の初期剛性	備考
		入力地震動	底面地盤ばね		
ケース1	2011年3月11日東北地方太平洋沖地震の観測記録 を用いたシミュレーショ ン解析により補正＊1	表層上部：非線形性を考慮表層下部：Vs $900 \mathrm{~m} / \mathrm{s}$	標準地盤	コンクリート強度：設計基準強度初期剛性低下：考慮しない	基本ケース
ケース 2	同上	表層上部：非線形性を考慮 表層下部：Vs $900+100 \mathrm{~m} / \mathrm{s}$	標準地盤＋+	同上	
ケース 3	同上	表層上部：非線形性を考慮 表層下部：Vs 900－100m／s	標準地盤－σ	同上	
ケース 4	基本ケースの 0.78 倍＊2	表層上部：非線形性を考慮 表層下部：Vs $900 \mathrm{~m} / \mathrm{s}$	標準地盤	同上	基準地震動 S s 固有の解析ケース
ケース 5	同上	表層上部：非線形性を考慮表層下部：Vs $900+100 \mathrm{~m} / \mathrm{s}$	標準地盤＋$+\sigma$	同上	基準地震動 S s 固有の解析ケース
ケース 6	同上	表層上部：非線形性を考慮 表層下部：Vs $900-100 \mathrm{~m} / \mathrm{s}$	標準地盤－σ	同上	基準地震動 S s 固有の解析ケース
ケース 7	2011年3月11日東北地方太平洋沖地震の観測記録 を用いたシミュレーショ ン解析により補正＊1	表層上部：非線形性を考慮表層下部：Vs $900 \mathrm{~m} / \mathrm{s}$	標準地盤	コンクリート強度：設計基準強度初期剛性低下：原子炉建屋地下 3階から地上2階の補正係数を適用	建屋－機器連成地震応答解析固有のケース

注記＊1：コンクリート強度は設計基準強度とし，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す原子炉建屋の耐震壁の初期剛性の設計値に対する補正係数（地上 3 階及びクレーン階：NS 方向 0.30 ，EW 方向 0.50 ，地下 3 階から地上 2 階：NS 方向 0.75 ，EW 方向 0.80 ）を適用して初期剛性を設定する。
＊2：原子炉建屋の基準地震動 S s 入力前後の 1 次ピーク振動数の比から算定した剛性比

4．解析結果
本章では，代表として，弾性設計用地震動 S d 及び基準地震動S s の基本ケースの地震応答解析結果を示す。なお，炉内構造物系については，基本ケースのらち，シュラウド健全ケースの結果 を代表とする。
4． 1 固有値解析結果
4．1．1 大型機器系地震応答解析モデル
計算の結果得られた固有値の中で，固有周期 0.050 s までの次数についてまとめた結果を表 4－1～表 4－3 に示す。また，図 4－1～図 4－41 に振動モード図を示す。
4． 1.2 炉内構造物系地震応答解析モデル
計算の結果得られた固有値の中で，固有周期 0.050 s までの次数についてまとめた結果を表 4－4～表 4－6に示す。また，図 4－42～図4－92に振動モード図を示す。

表 4－1 大型機器系地震応答解析モデルの固有値解析結果＊1（NS 方向）

次数	固有周期（s）	刺激係数＊2	卓越部位
1	0． 236	2． 222	原子炉建屋
2	0． 123	－2． 741	原子炉建屋
3	0.116	－1．113	原子炉建屋
4	0.097	2． 048	原子炉建屋
5	0.093	－1．037	原子炉建屋
6	0.090	－1．774	原子炉圧力容器
7	0.089	－0． 033	原子炉建屋
8	0.082	－0． 001	原子炉建屋
9	0． 074	－0．614	原子炉建屋
10	0． 071	0． 445	原子炉建屋
11	0.068	－0． 374	原子炉建屋
12	0． 065	－0． 596	原子炉建屋
13	0． 063	－0． 668	原子炉建屋
14	0.060	0.047	原子炉建屋
15	0.058	0． 475	原子炉建屋
16	0.055	－0． 590	原子炉圧力容器
17	0.052	1． 558	原子炉建屋
18	0.051	0.438	原子炉建屋
19	0.050	0.173	原子炉建屋

注記 $* 1$ ：固有周期 0.050 s 以上の次数について記載した。
＊2：刺激係数は，固有ベクトルの最大成分を 1 に正規化し，質量マトリックスとの積か ら算出した値を示す。

表 4－2 大型機器系地震応答解析モデルの固有値解析結果＊1（EW 方向）

次数	固有周期（s）	刺激係数＊2	卓越部位
1	0． 228	2． 197	原子炉建屋
2	0． 125	1．928	原子炉建屋
3	0.116	0． 066	原子炉建屋
4	0.098	0.619	原子炉建屋
5	0.091	－0． 782	原子炉建屋
6	0.090	－1．793	原子炉圧力容器
7	0.086	2． 182	原子炉建屋
8	0.077	1． 023	原子炉建屋
9	0． 074	0． 369	原子炉建屋
10	0.070	－0． 244	原子炉建屋
11	0.067	－0． 521	原子炉建屋
12	0． 064	0.549	原子炉建屋
13	0.062	－0． 256	原子炉建屋
14	0． 060	1． 549	原子炉建屋
15	0.059	0． 109	原子炉建屋
16	0.055	－0． 329	原子炉建屋
17	0.055	0.558	原子炉圧力容器
18	0.052	－2． 456	原子炉建屋

注記＊1：固有周期 0.050 s 以上の次数について記載した。
＊2：刺激係数は，固有ベクトルの最大成分を 1 に正規化し，質量マトリックスとの積か ら算出した値を示す。

表 4－3 大型機器系地震応答解析モデルの固有値解析結果＊1（鉛直方向）

次数	固有周期（s）	刺激係数＊2	卓越部位
1	0.339	1.458	原子炉建屋（屋根トラス）
2	0.100	1.584	原子炉建屋
3	0.079	1.360	原子炉建屋（屋根トラス）
4	0.051	-0.381	原子炉建屋

注記 $* 1$ ：固有周期 0.050 s 以上の次数について記載した。
＊2：刺激係数は，固有ベクトルの最大成分を 1 に正規化し，質量マトリックスとの積か ら算出した値を示す。
O 2
（3） $\mathrm{VI}-2-3-2$
R 3

プラント名：女川原子力発電所第2号機
固有周期（s）：0． 236
刺激係数 ：2．222

図 4－1 大型機器系地震応答解析モデルの振動モード図（1次）（NS 方向）

原子炬建屋

図 4－2 大型機器系地震応答解析モデルの振動モード図（2 次）（NS 方向）

原子炉建屋

図 4－3 大型機器系地震応答解析モデルの振動モード図（3 次）（NS 方向）

原子炉建屋

図 4－4 大型機器系地震応答解析モデルの振動モード図（4 次）（NS 方向）
O 2
（3） $\mathrm{VI}-2-3-2$
R 3

プラント名：女川原子力発電所第2号機
固有周期（s）：0．093
刺激係数 ：－ 1.037

原子炉建屋

図 4－5 大型機器系地震応答解析モデルの振動モード図（5 次）（NS 方向）

原子炉建屋

原子炉圧力容器及び原子炉本体の基礎
原子炉格納容器

図 4－6 大型機器系地震応答解析モデルの振動モード図（6 次）（NS 方向）

原子炉建屋

原子炉建屋

O 2
（3） $\mathrm{VI}-2-3-2$
R 3

プラント名：女川原子力発電所第2号機
固有周期（s）：0．071
刺激係数 ：0．445

原子炉建屋

原子炉格納容器

O 2
（3） $\mathrm{VI}-2-3-2$
R 3

プラント名：女川原子力発電所第 2 号機
固有周期（s）：0． 068
刺激係数 ：－ 0.374

原子炉建屋

原子炉建屋

原子炉建屋

原子炉格納容器

原子炉圧力容器及び原子炉本体の基礎

図 4－14 大型機器系地震応答解析モデルの振動モード図（14 次）（NS 方向）

原子炉建屋
O 2
（3） $\mathrm{VI}-2-3-2$
R 3

プラント名：女川原子力発電所第 2 号機

刺激係数 ：－ 0.590

原子炉建屋

原子炉建屋

原子炬圧力容器及び原子炬本体の基礎

原子炉建屋

原子炉建屋

原子炉格納容器

図 4－19 大型機器系地震応答解析モデルの振動モード図（19 次）（NS 方向）

原子炉建屋

図 4－20 大型機器系地震応答解析モデルの振動モード図（1 次）（EW 方向）
O 2
（3） $\mathrm{VI}-2-3-2$
R 3

プラント名：女川原子力発電所第 2 号機
固有周期（s）：0． 125
刺激係数 ：1．928

原子炉建屋

図 4－21 大型機器系地震応答解析モデルの振動モード図（2 次）（EW 方向）
O 2
（3） $\mathrm{VI}-2-3-2$
R 3

プラント名：女川原子力発電所第 2 号機

原子炉建屋

原子炬格納容器

原子炬圧力容器及び原子炉本体の基礎

図 4－22 大型機器系地震応答解析モデルの振動モード図（3 次）（EW 方向）

原子炉建屋

図 4－23 大型機器系地震応答解析モデルの振動モード図（4 次）（EW 方向）

原子炉建屋

図 4－26 大型機器系地震応答解析モデルの振動モード図（7 次）（EW 方向）

図 4－27 大型機器系地震応答解析モデルの振動モード図（8次）（EW 方向）

原子炉建屋

図 4－28 大型機器系地震応答解析モデルの振動モード図（9 次）（EW 方向）

図 4－29 大型機器系地震応答解析モデルの振動モード図（10 次）（EW 方向）

原子炉建屋

図 4－30 大型機器系地震応答解析モデルの振動モード図（11 次）（EW 方向）

原子炉建屋

図 4－31 大型機器系地震応答解析モデルの振動モード図（12 次）（EW 方向）

原子炉建屋

図 4－32 大型機器系地震応答解析モデルの振動モード図（13 次）（EW 方向）

原子炉建屋

原子炉格納容器
原子炬圧力容器及び原子炉本体の基礎

図 4－33 大型機器系地震応答解析モデルの振動モード図（14 次）（EW 方向）

原子炉建屋

図 4－34 大型機器系地震応答解析モデルの振動モード図（15 次）（EW 方向）

原子炉建屋

図 4－35 大型機器系地震応答解析モデルの振動モード図（16 次）（EW 方向）

原子炉建屋

図 4－36 大型機器系地震応答解析モデルの振動モード図（17 次）（EW 方向）

プラント名：女川原子力発電所第2号機

原子炉建屋

図 4－37 大型機器系地震応答解析モデルの振動モード図（18 次）（EW 方向）

原子炬建屋

図 4－38 大型機器系地震応答解析モデルの振動モード図（ 1 次）（鋁直方向）

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.100$
刺激係数 ：1．584

原子炉建屋

原子炉格納容器
原子炉圧力容器及び

図 4－39 大型機器系地震応答解析モデルの振動モード図（2 次）（鋁直方向）

原子炉建屋

図 4－40 大型機器系地震応答解析モデルの振動モード図（3次）（鉛直方向）

原子炉建屋

原子炬圧力容器及び原子炉本体の基礎
原

図 4－41 大型機器系地震応答解析モデルの振動モード図（4 次）（鉛直方向）

表 4－4 炉内構造物系地震応答解析モデルの固有値解析結果＊1（NS 方向）

次数	固有周期（s）	刺激係数＊2	卓越部位
1	0． 237	9． 023	原子炉建屋
2	0． 229	7． 968	燃料集合体
3	0.123	2． 705	原子炉建屋
4	0.118	－1．519	炉心シュラウド
5	0.116	－3．848	原子炉建屋
6	0.097	－2． 066	原子炉建屋
7	0.093	1． 039	原子炉建屋
8	0.090	2． 070	原子炉圧力容器
9	0.089	－0． 091	原子炉建屋
10	0.082	0.001	原子炉建屋
11	0． 074	－0． 717	原子炉建屋
12	0.071	－0． 527	原子炉建屋
13	0.068	－0． 372	原子炉建屋
14	0.066	2． 206	制御棒案内管
15	0． 065	－1． 729	原子炉建屋
16	0． 063	1． 077	原子炉建屋
17	0． 060	－0． 084	原子炉建屋
18	0.059	－0． 364	原子炉建屋
19	0.058	－0． 771	燃料集合体
20	0.056	－3．586	炉心シュラウド
21	0.053	－5． 222	原子炉圧力容器
22	0． 052	－7． 672	原子炉建屋
23	0.051	－0． 434	原子炉建屋
24	0.050	0.311	原子炉建屋

注記 $* 1$ ：固有周期 0.050 s 以上の次数について記載した。
＊2：刺激係数は，固有ベクトルの最大成分を 1 に正規化し，質量マトリックスとの積か ら算出した値を示す。

表 4－5 炉内構造物系地震応答解析モデルの固有値解析結果＊1（EW 方向）

次数	固有周期（s）	刺激係数＊2	卓越部位
1	0． 231	18．712	燃料集合体
2	0． 227	17． 658	原子炉建屋
3	0． 125	2． 617	原子炉建屋
4	0.117	2． 888	炉心シュラウド
5	0.116	－0． 130	原子炉建屋
6	0.098	0.630	原子炉建屋
7	0． 091	－0． 820	原子炉建屋
8	0． 090	－1．751	原子炉圧力容器
9	0.086	2． 243	原子炉建屋
10	0． 077	1． 120	原子炉建屋
11	0． 074	－0． 379	原子炉建屋
12	0.070	0.238	原子炉建屋
13	0． 067	0.505	原子炉建屋
14	0.066	－0． 366	制御棒案内管
15	0.064	－0． 599	原子炉建屋
16	0． 062	－0． 271	原子炉建屋
17	0． 060	2． 781	原子炉建屋
18	0． 059	0.114	原子炉建屋
19	0． 058	－1． 209	燃料集合体
20	0.056	－3． 214	炉心シュラウド
21	0.055	1． 326	原子炉建屋
22	0.053	－5． 150	原子炉圧力容器
23	0.052	7． 104	原子炉建屋

注記＊ 1 ：固有周期 0.050 s 以上の次数について記載した。
＊2：刺激係数は，固有ベクトルの最大成分を 1 に正規化し，質量マトリックスとの積か ら算出した値を示す。

表 4－6 炉内構造物系地震応答解析モデルの固有値解析結果＊1（鉛直方向）

次数	固有周期 (s)	刺激係数＊2	卓越部位
1	0.339	1.458	原子炉建屋
2	0.100	1.584	原子炉建屋
3	0.079	1.360	原子炉建屋
4	0.051	-0.380	原子炉建屋

注記 $* 1$ ：固有周期 0.050 s 以上の次数について記載した。
＊2：刺激係数は，固有ベクトルの最大成分を 1 に正規化し，質量マトリックスとの積か ら算出した値を示す。

原子炉建屋

図 4－42 炉内構造物系地震応答解析モデルの振動モード図（1次）（NS 方向）

原子炉建屋

原子炉圧力容器及び原子炉本体の基礎

原了炉

制御棒案内管

制御棒駆動機構 ハウジング

図 4－43 炉内構造物系地震応答解析モデルの振動モード図（2 次）（NS 方向）

原子炉建屋

図 4－44 炉内構造物系地震応答解析モデルの振動モード図（3次）（NS 方向）

原子炉建屋

図 4－45 炉内構造物系地震応答解析モデルの振動モード図（4 次）（NS 方向）

図 4－46 炉内構造物系地震応答解析モデルの振動モード図（5 次）（NS 方向）

プラント名：女川原子力発電所第2号機

原子炉建屋

図 4－47 炉内構造物系地震応答解析モデルの振動モード図（6 次）（NS 方向）

原子炉建屋

図 4－48 炉内構造物系地震応答解析モデルの振動モード図（7次）（NS 方向）

原子炉建屋

原子炉圧力容器及び原子炉本体の基礎

図 4－49 炉内構造物系地震応答解析モデルの振動モード図（8 次）（NS 方向）

図 4－50 炉内構造物系地震応答解析モデルの振動モード図（9 次）（NS 方向）

原子炉建屋

図 4－51 炉内構造物系地震応答解析モデルの振動モード図（10 次）（NS 方向）

原子炉建屋

原子炬圧力容器及び原子炉本体の基礎

制御棒案内管

図 4－52 炉内構造物系地震応答解析モデルの振動モード図（11次）（NS 方向）

原子炉建屋

図 4－53 炉内構造物系地震応答解析モデルの振動モード図（12 次）（NS 方向）

原子炉建屋

制御棒駆動機構 ハウジング

図 4－54 炉内構造物系地震応答解析モデルの振動モード図（13 次）（NS 方向）

原子炉建屋

原子炉圧力容器及び原子炉本体の基礎

図 4－55 炉内構造物系地震応答解析モデルの振動モード図（14 次）（NS 方向）

原子炉建屋

図 4－56 炉内構造物系地震応答解析モデルの振動モード図（15 次）（NS 方向）

原子炉建屋

図 4－57 炉内構造物系地震応答解析モデルの振動モード図（16 次）（NS 方向）

原子炉建屋

制御棒案内管

図 4－58 炉内構造物系地震応答解析モデルの振動モード図（17 次）（NS 方向）

原子炉建屋

原子炉圧力容器及び原子炉本体の基礎

制御棒案内管

図 4－59 炉内構造物系地震応答解析モデルの振動モード図（18 次）（NS 方向）

図 4－60 炉内構造物系地震応答解析モデルの振動モード図（19 次）（NS 方向）

原子炉建屋

原子炬圧力容器及び原子炉本体の基礎

制御棒案内管

図 4－61 炉内構造物系地震応答解析モデルの振動モード図（20 次）（NS 方向）

原子炉建屋

制御棒案内管

図 4－62 炉内構造物系地震応答解析モデルの振動モード図（21次）（NS 方向）

原子炉建屋

図 4－63 炉内構造物系地震応答解析モデルの振動モード図（22 次）（NS 方向）

原子炉建屋

制御棒案内管

図 4－64 炉内構造物系地震応答解析モデルの振動モード図（23 次）（NS 方向）

原子炉建屋

図 4－65 炉内構造物系地震応答解析モデルの振動モード図（24 次）（NS 方向）

原子炬建屋

原子炉圧力容器及び原子炉本体の基礎

図 4－66 炉内構造物系地震応答解析モデルの振動モード図（1次）（EW 方向）

原子炉建屋

原子炉圧力容器及び原子炉本体の基礎

図 4－67 炉内構造物系地震応答解析モデルの振動モード図（2次）（EW 方向）

図 4－68 炉内構造物系地震応答解析モデルの振動モード図（3 次）（EW 方向）

図 4－69 炉内構造物系地震応答解析モデルの振動モード図（4 次）（EW 方向）

原子炉建屋

原子炬圧力容器及び

制御棒案内管

図 4－70 炉内構造物系地震応答解析モデルの振動モード図（5 次）（EW 方向）

原子炉建屋

原子炉圧力容器及び
原子炉本体の基礎

[^1]原子炉建屋

図 4－72 炉内構造物系地震応答解析モデルの振動モード図（7次）（EW 方向）

図 4－73 炉内構造物系地震応答解析モデルの振動モード図（8 次）（EW 方向）

原子炉建屋

図 4－74 炉内構造物系地震応答解析モデルの振動モード図（9次）（EW 方向）

原子炉圧力容器及び原子炉本体の基礎
原子炉建屋

原子炉建屋

制御棒案内管

ハウジング

図 4－76 炉内構造物系地震応答解析モデルの振動モード図（11 次）（EW 方向）

図 4－77 炉内構造物系地震応答解析モデルの振動モード図（12 次）（EW 方向）

原子炉建屋

図 4－78 炉内構造物系地震応答解析モデルの振動モード図（13 次）（EW 方向）
O 2
（3） $\mathrm{VI}-2-3-2$
R 3

プラント名：女川原子力発電所第 2 号機
固有周期（s）：0．066
刺激係数：－ 0.366

図 4－79 炉内構造物系地震応答解析モデルの振動モード図（14 次）（EW 方向）

原子炉建屋

図 4－80 炉内構造物系地震応答解析モデルの振動モード図（15 次）（EW 方向）

図 4－81 炉内構造物系地震応答解析モデルの振動モード図（16 次）（EW 方向）

原子炉建屋

図 4－82 炉内構造物系地震応答解析モデルの振動モード図（17 次）（EW 方向）

原子炉圧力容器及び原子炉本体の基礎
原子炉建屋

制御棒案内管

図 4－83 炉内構造物系地震応答解析モデルの振動モード図（18 次）（EW 方向）

図 4－84 炉内構造物系地震応答解析モデルの振動モード図（19 次）（EW 方向）

原子炉建屋

ハウジング

図 4－85 炉内構造物系地震応答解析モデルの振動モード図（20 次）（EW 方向）

原子炉建屋

図 4－86 炉内構造物系地震応答解析モデルの振動モード図（21次）（EW 方向）

原子炉建屋

原子炉圧力容器及び

制御棒案内管

図 4－87 炉内構造物系地震応答解析モデルの振動モード図（22 次）（EW 方向）

原子炉建屋

原子炉圧力容器及び原子炉本体の基礎

ハウジング

原子炬建屋

図 4－89 炉内構造物系地震応答解析モデルの振動モード図（1次）（鉛直方向）

原子炉建屋

図 4－90 炉内構造物系地震応答解析モデルの振動モード図（2 次）（鉛直方向）

原子炉建屋

図 4－91 炉内構造物系地震応答解析モデルの振動モード図（3 次）（鉛直方向）

原子炉建屋

4．2 地震応答解析結果及び静的解析結果

4．2．1 大型機器系地震応答解析モデル

（1）弾性設計用地震動 S d 及び静的解析
水平方向の弾性設計用地震動 S d による地震応答解析及び静的解析より得られた各点の最大応答加速度，最大応答変位，最大応答せん断力及び最大応答モーメントを図 4－93～図 4－ 116 に，算定した原子炉本体の基礎のスケルトンカーブと最大応答値の関係を図 4－117～図 4－120に，原子炉圧力容器スタビライザ，原子炉格納容器スタビライザ及び原子炉格納容器 シヤラグに加わる力（ばね反力）を表 4－7に示す。

鉛直方向の弾性設計用地震動 S d による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－121～図 4－129 に示す。また，鉛直方向の静的解析は実施せず，一律に算定することから，表 4－8 に鉛直方向の静的震度を示す。
（2）基準地震動 S s
水平方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大 ケルトンカーブと最大応答値の関係を図4－154～図4－157に，原子炉圧力容器スタビライザ，原子炉格納容器スタビライザ及び原子炉格納容器シヤラグに加わる力（ばね反力）を表 4－9 に示す。

鉛直方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－158～図4－166に示す。

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
3640	3540	3530	1800	2780	2910	1350	1300	原子炉しやへい壁頂部
3060	4210	2700	2170	3420	3230	2560	2910	
4980	5180	4820	3190	4360	3980	4730	5820	
6600	7060	6840	3990	5720	5510	6680	7950	
8410	9060	8870	5210	7480	7320	8930	10600	
8410	9060	8870	5210	7480	7320	8930	10600	原子炉しやへい壁基部

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－99 最大応答せん断力 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉しやへい壁）

最大応答加速度（m／s ${ }^{2}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
15.5	18.0	18.0	8.67	13.3	11.8	8.65	11.0	原子炉圧力容器頂部
13.7	15.8	15.9	7.55	11.5	9． 76	8.01	11.0	燃料交換べローズ位置
12.2	14.0	14.2	6.65	9.99	8.21	7.54	11.0	
10.9	12.3	12.7	5.83	8.64	7． 29	7.17	8.93	原子炉圧力容器スタビライサ位置
8.86	9． 95	10.6	4.99	6． 75	6． 63	6． 72	8.93	
7.41	8． 43	8.27	5.28	5.46	6.01	6． 35	7.77	
7.12	7.08	6.04	5.13	5． 09	6.25	5.85	7.77	
6.63	6.23	5． 20	4.89	4.89	6.11	5.52	7.77	原子炉圧力容器支持スカート位置
5． 5.34	5． 5.68	4.72 4.68	4.25	4.43 4.34	5． 34	4.99 4.87	6． 68	原子炉本体の基碡頂部
4.37	5.06	4． 47	3.89	4． 14	4.98	4.71	5.53	
4.01	4.75	4.31	3.67	4.05	4.80	4.43	5.53	
3.82	4． 46	4.15	3.50	4.03	4.65	4.06	5.53	原子炉本体の基硠基部

図 4－101 最大応答加速度 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

図 4－102 最大応答変位 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4－103 最大応答せん断力 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

図 4－104 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

最大応答加速度（m／s ${ }^{2}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
16.9	23.8	16.3	9.88	13.2	14.6	9.95	11.2	原子炉圧力容器頂部
14.0	20.5	14.1	8.47	11.5	12.5	9． 02	11.2	燃料交換べローズ位置
12.9	17.9	12.3	7.48	10.2	10.8	8.26	11.2	
11.8	15.4	10.8	6.83	9.21	9． 16	7.59	8.98	原子炉圧力容器スタビライサ位置
10.3	11.9	8.53	6． 16	7.90	7.71	6． 68	8.98	
8.35	8.64	6.89	5.50	6． 42	6． 05	5.88	7． 79	
7.11	7.43	6． 07	4.83	5． 16	4.89	5． 36	7.79	
6.50	7.06	5.74	4.35	4.64	4.94	5.12	7．79	原子炉圧力容器支持スカート位置
5． 54	5.94	5． 28	3．${ }^{3} .71$	3． 90	4.69 4.61	4.82 4.69	6． 49	原子炉本体の基碛頂部
4.98	5.64	5.04	3.43	3.63	4.47	4.59	5.53	
4.56	5.19	4.76	3.21	3． 46	4.25	4.28	5.53	
4.22	4.65	4． 46	3.06	3.38	4.03	4.01	5.53	原子炬本体の基礎基部

図 4－113 最大応答加速度 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉圧力容器及び原子炉本体の基礎）

図 4－114 最大応答変位 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉圧力容器及び原子炉本体の基礎）

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4－115 最大応答せん断力 弾性設計用地震動 Sd 及び静的解析（EW 方向 原子炉圧力容器及び原子炉本体の基礎）
枠囲みの内容は商業機密の観点から公開できません。

図 4－116 最大応答モーメント 弾性設計用地震動 Sd d び静的解析（EW 方向 原子炉圧力容器及び原子炉本体の基礎）
$\square: ~ \mathrm{~S} \mathrm{~d}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－67に対応

図 4－117 原子炉本体の基礎の $\mathrm{Q}-\gamma$ 関係と最大応答値（弾性設計用地震動 $\mathrm{S} d, ~ \mathrm{NS}$ 方向）

凡例

$\square: ~ \mathrm{~S} \mathrm{~d}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－68に対応

図 4－118 原子炉本体の基礎の $\mathrm{M}-\phi$ 関係と最大応答値（弾性設計用地震動 $\mathrm{S} d, \mathrm{NS}$ 方向）
$\square: ~ \mathrm{~S} \mathrm{~d}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－69に対応

図 4－119 原子炉本体の基礎の $\mathrm{Q}-\gamma$ 関係と最大応答値（弾性設計用地震動 $\mathrm{S} \mathrm{d}, ~ \mathrm{EW}$ 方向）

凡例

$\square: ~ \mathrm{~S} \mathrm{~d}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－70に対応

図 4－120 原子炉本体の基礎の $\mathrm{M}-\phi$ 関係と最大応答値（弾性設計用地震動 $\mathrm{S} d, E W$ 方向）

表 4－7 弾性設計用地震動 Sd 及び静的解析によるばね反力

	名称	方向	最大地震応答値$\left(\times 10^{3} \mathrm{~N}\right)$							
			Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析
	原子炬圧力容器スタビライザ	NS	3470	4250	4250	2090	2990	2900	1760	2480
		EW	3840	5810	3990	2520	3010	3300	2090	2520
	原子炉格納容器スタビライザ	NS	7130	7750	7180	4070	4310	5490	2360	2450
		EW	7030	8560	7140	4510	4760	5860	2520	2500
	原子炉格納容器シヤラグ	NS	10900	13100	12200	7260	9130	10300	7900	8020
$\stackrel{\sim}{\bullet}$		EW	10600	14600	10300	7970	8410	10500	7050	8270

$\stackrel{\varnothing}{\infty}$

最大応答軸力 $\left(\times 10^{3} \mathrm{~N}\right)$							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
63.7	81.0	74.8	36.8	41.1	49.5	32.6	原子炉格納容器頂部
127	161	150	73.2	82.2	98.7	65.2	
$\begin{aligned} & 491 \\ & 695 \end{aligned}$	$\begin{aligned} & 619 \\ & 875 \end{aligned}$	$\begin{aligned} & 584 \\ & 828 \end{aligned}$	$\begin{aligned} & 284 \\ & 403 \end{aligned}$	$\begin{aligned} & 324 \\ & 460 \end{aligned}$	$\begin{aligned} & 387 \\ & 550 \end{aligned}$	$\begin{aligned} & 257 \\ & 366 \end{aligned}$	燃料交換べローズ位置
1350	1680	1600	778	901	1080	721	シヤラグ位置
1850	2260	2150	1060	1250	1480	1010	
2210	2690	2520	1260	1490	1760	1210	
2840	3440	3130	1610	1940	2260	1600	
3120	3770	3410	1760	2140	2480	1780	
$\begin{aligned} & 3730 \\ & 3730 \end{aligned}$	$\begin{aligned} & 4500 \\ & 4500 \end{aligned}$	$\begin{aligned} & 3990 \\ & 3990 \end{aligned}$	$\begin{aligned} & 2110 \\ & 2110 \end{aligned}$	$\begin{aligned} & 2600 \\ & 2600 \end{aligned}$	$\begin{aligned} & 2990 \\ & 2990 \end{aligned}$	$\begin{aligned} & 2210 \\ & 2210 \end{aligned}$	原子炉格納容器基部

図 4－123 最大応答軸力 弾性設計用地震動 S d（鉛直方向 原子炉格納容器）

O 2
（3） $\mathrm{VI}-2-3-2$
R 2

表 4－8 静的震度（鉛直方向）

種別	鉛直方向静的震度
建物•構築物	0.24 $(1.0 \mathrm{Cv})$
機器•配管系	0.29 $(1.2 \mathrm{Cv})$

図 4－132 最大応答せん断力 基準地震動S s（NS 方向 原子炉格納容器）

O 2 （3）VI－2－3－2 R 2

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

図 4－140 最大応答せん断力 基準地震動 S s（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

枓囲みの内容は商業機密の絸点から公開できません。

210

最大応答せん断力 $\left(\times 10^{3} \mathrm{~N}\right)$							供考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
4980	6040	5810	4660	4600	5770	3400	原子炉しやへい壁䫁部
5260	6640	4870	4490	5490	5640	4450	
8910	8610	7940	5390	7380	6480	7540	
11700	11700	10700	8100	10700	8760	11100	
16400	14900	14600	11800	14700	12400	15100	
16400	14900	14600	11800	14700	12400	15100	原子炉しやへい壁基部

図 $4-148$
注：要素上端の質点位置にせん断力を記
注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

凡例

$\square: ~ \mathrm{~S} \mathrm{~s}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－67に対応

図 4－154 原子炉本体の基礎の $\mathrm{Q}-\gamma$ 関係と最大応答値（基準地震動 S s，NS 方向）

凡例

$\square: ~ \mathrm{~S} \mathrm{~s}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－68に対応

図 4－155 原子炉本体の基礎の $\mathrm{M}-\phi$ 関係と最大応答値（基準地震動 S s ，NS 方向）

凡例

$\square: ~ \mathrm{~S} \mathrm{~s}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－69に対応

図 4－156 原子炉本体の基礎の $\mathrm{Q}-\gamma$ 関係と最大応答値（基準地震動 S s，EW 方向）

凡例

$\square: ~ \mathrm{~S} \mathrm{~s}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－70に対応

図 4－157 原子炉本体の基礎の $\mathrm{M}-\phi$ 関係と最大応答値（基準地震動 S s ，EW 方向）

表 4－9 基準地震動S s によるばね反力

名称	方向	最大地震応答値$\left(\times 10^{3} \mathrm{~N}\right)$						
		Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
原子炉圧力容器スタビライザ	NS	6690	7700	7420	4450	6260	6870	3770
	EW	7200	7350	6770	5630	6090	6980	4280
原子炉格納容器スタビライザ	NS	14800	13300	13200	8260	10900	13600	6160
	EW	13200	12800	13200	9050	10600	12900	6650
原子炉格納容器シヤラグ	NS	24700	24200	21900	13100	22600	20700	24800
	EW	22500	25800	21600	15500	15900	20000	21300

最大応答軸力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1900	2580	2120	1350	1380	2420	750	原子炉しゃへい壁頂部
4300	5790	4720	3060	3100	5440	1720	
8440	11300	9000	5990	6020	10500	3450	
11600	15300	12300	8220	8230	14300	4890	
14800	19100	15600	10500	10400	18100	6570	
14800	19100	15600	10500	10400	18100	6570	原子炉しやへい壁基部

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。
図 4－163 最大応答軸力 基準地震動 S s（鉛直方向 原子炉しやへい壁）

枓囲みの内容は商業機密の微点から公開できません。

		$\begin{aligned} & -\mathrm{x}-\mathrm{Ss}-\mathrm{D} 2 \\ & -\mathrm{O}-\mathrm{Ss}-\mathrm{F} 2 \end{aligned}$	$\begin{aligned} & \rightarrow-\mathrm{Ss}-\mathrm{D} 3 \\ & -\mathrm{x}-\mathrm{Ss}-\mathrm{F} 3 \end{aligned}$	最大応答軸力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
	$\triangle \cdot$ Ss－F1										
	$\rightarrow-\mathrm{Ss}-\mathrm{N} 1$			Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
$\begin{gathered} \geqq \\ \vdots \\ \vdots \end{gathered}$ N N	2			155	193	181	104	104	171	75.6	原子炉圧力容器頂部
	家			1130	1410	1310	751	753	1250	552	燃料交換べローズ位置
	䎡烈			1960	2430	2270	1310	1310	2160	960	
				2510	3100	2900	1670	1680	2760	1240	原子炉圧力容器スタビライザ位置
	0			3240	4000	3700	2140	2160	3540	1610	
				3910	4810	4390	2550	2600	4230	1960	
				4580	5640	5040	2950	3040	4890	2320	
	ceso			9600	11800	9590	5930	6240	9610	5070	原子炉圧力容器支持スカート位置
			－－－	25900 27500	$\begin{aligned} & 32200 \\ & 34000 \end{aligned}$	$\begin{aligned} & 26600 \\ & 28200 \end{aligned}$	17500 18500	16500 17700	$\begin{aligned} & 29200 \\ & 30900 \end{aligned}$	12700 13800	原子炬本体の基礎頂部
			$8 \times x \times x$	29000	35800	29700	19600	19000	32600	14900	
		$\infty \infty$	＊＊＊＊x	30400	37400	31000	20500	20200	34000	16000	
		\diamond	¢＊\times	30400	37400	31000	20500	20200	34000	16000	原子炉本体の基礎基部

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。

図 4－166 最大応答軸力 基準地震動 S s（鉛直方向 原子炉圧力容器及び原子炉本体の基礎）

4．2．2 炉内構造物系地震応答解析モデル
（1）弾性設計用地震動 S d 及び静的解析
水平方向の弾性設計用地震動 S d による地震応答解析及び静的解析より得られた各点の最大応答加速度，最大応答変位，最大応答せん断力及び最大応答モーメントを図4－167～図4－ 198 に，制御棒駆動機構ハウジングレストレントビーム，シュラウドサポート，上部格子板，炉心支持板，炉心シュラウド支持ロッド，上部サポート及び下部スタビライザに加わる力（ば ね反力，せん断力）を表 4－10に示す。燃料集合体の最大応答相対変位については，図 4－172及び図 4－188に示す。

上部格子板のせん断力は，上部格子板位置に付加している燃料集合体の質量に加速度を乗 じた値と当該位置にピン結合されている燃料集合体最上部のせん断力を足して算出する。

炉心支持板のせん断力は，炉心支持板位置に付加している燃料集合体及び制御棒案内管の質量に加速度を乗じた値と当該位置にピン結合されている燃料集合体最下部及び制御棒案内管最上部のせん断力を足して算出する。

鉛直方向の弾性設計用地震動 S d による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－199～図4－207に示す。また，鉛直方向の静的解析は実施せず，一律に算定することから，表4－11に鉛直方向の静的震度を示す。
（2）基準地震動 S s
水平方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大応答変位，最大応答せん断力及び最大応答モーメントを図 4－208～図4－239 に，制御棒駆動機構ハウジングレストレントビーム，シュラウドサポート，上部格子板，炉心支持板，炉心 シュラウド支持ロッド，上部サポート及び下部スタビライザに加わる力（ばね反力，せん断力）を表 4－12に示す。燃料集合体の最大応答相対変位については，図4－213及び図4－229に示す。

鉛直方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－240～図4－248に示す。

枓囲みの内容は商業機密の钼点から公開できません。

237

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
1660	2060	1320	1010	1340	1260	1170	665	上部格子板
1200	1480	927	725	969	905	823	389	
436	515	330	267	360	339	292	106	
439	560	358	278	344	355	306	141	燃料集合体中央
1200	1480	930	721	967	901	822	387	
1670	2010	1280	989	1360	1280	1150	633	
1670	2010	1280	989	1360	1280	1150	633	炬心支持板

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－173 最大応答せん断力 弾性設計用地震動 S d 及び静的解析（NS 方向 燃料集合体）

241

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
324	437	355	184	180	493	119	150	炉心支持板
84.3	116	90.8	46.7	46.6	132	22.5	22.3	
277	375	303	157	154	424	95.9	117	
277	375	303	157	154	424	95.9	117	制御棒案内管下端

注 ：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－177 最大応答せん断力 弾性設計用地震動 S d 及び静的解析（NS 方向 制御棒案内管）

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－181 最大応答せん断力 弾性設計用地震動S d 及び静的解析（NS 方向 制御棒駆動機構ハウジング）

図 4－198 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（EW 方向 制御棒駆動機構ハウジング）

表 4－10 弾性設計用地震動 S d 及び静的解析によるばね反力，せん断力

名称	単位	方向	最大地震応答値							
			Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析
制御棒駆動機構ハウジングレストレントビーム	$\times 10^{3} \mathrm{~N}$	NS	155	199	138	122	102	184	102	142
		EW	172	229	164	113	113	136	95.6	141
シュラウドサポート	$\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}$	NS	14300	16300	13400	9360	11600	13100	9470	11300
		EW	23600	24100	21200	14100	16400	19300	8880	11400
上部サポート	$\times 10^{3} \mathrm{~N}$	NS	921	1080	874	596	726	786	479	547
		EW	1540	1610	1450	869	1170	1240	485	551
下部スタビライザ	$\times 10^{3} \mathrm{~N}$	NS	243	299	232	162	202	219	148	167
		EW	399	397	360	226	297	323	137	168
炬心シュラウド支持ロッド	$\times 10^{3} \mathrm{~N}$	NS	96.3	104	87.9	63.4	74.4	83.0	58.4	70.8
		EW	163	171	149	95.5	113	129	57.2	71.2
上部格子板	$\times 10^{3} \mathrm{~N}$	NS	1740	2140	1390	1060	1400	1340	1240	739
		EW	1490	1890	1230	965	1280	1150	1010	742
炉心支持板	$\times 10^{3} \mathrm{~N}$	NS	2160	2600	1780	1280	1660	1920	1410	956
		EW	1740	2240	1520	1140	1400	1460	1180	958

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。

図 4－201 最大応答軸力 弾性設計用地震動 $\mathrm{S} d$（鉛直方向 炉心シュラウド）

O 2
（3） $\mathrm{VI}-2-3-2$
R 3

表 4－11	静的震度
鉛別直方向）	
建物•構築物	0.24 鉛直方向静的震度
機器•配管系	0.29 $(1.0 \mathrm{Cv})$
1.2 Cv$)$	

枓囲みの内容は商業機密の微点から公開できません。

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
573	688	620	364	426	1230	220	炉心支持板
147	178	163	91.9	106	323	46.5	
489	587	532	310	361	1060	178	
489	587	532	310	361	1060	178	制御棒案内管下端

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－218 最大応答せん断力 基準地震動 S S（NS 方向 制御棒案内管）

注 ：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－222 最大応答せん断力 基準地震動 S s（NS 方向 制御棒駆動機構ハウジング）

体囲みの内容は商業㙨密の钼点から公開できません。

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
325	633	331	217	241	307	158	炉心支持板
80.0	170	81.7	53.3	54.6	72.8	38.2	
275	546	280	184	201	258	134	
275	546	280	184	201	258	134	制御棒案内管下端

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－234 最大応答せん断力 基準地震動S s（EW 方向 制御棒案内管）

表 4－12 基準地震動 S s によるばね反力，せん断力

名称	単位	方向	最大地震応答値						
			Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
制御棒駆動機構ハウジングレストレントビーム	$\times 10^{3} \mathrm{~N}$	NS	278	350	260	218	218	393	213
		EW	264	327	279	215	242	264	237
シュラウドサポート	$\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}$	NS	23200	23800	23300	15000	24600	20000	17300
		EW	40600	26000	33000	28100	32000	36400	17000
上部サポート	$\times 10^{3} \mathrm{~N}$	NS	1590	1680	1540	922	1680	1170	1020
		EW	2770	1720	2250	1770	2210	2390	1130
下部スタビライザ	$\times 10^{3} \mathrm{~N}$	NS	433	453	409	261	430	346	273
		EW	709	441	573	458	560	621	298
炉心シュラウド支持ロッド	$\times 10^{3} \mathrm{~N}$	NS	157	164	153	95.9	174	125	110
		EW	280	168	228	192	222	242	114
上部格子板	$\times 10^{3} \mathrm{~N}$	NS	3140	3320	2500	2260	2790	2440	2290
		EW	2740	2900	2230	2180	2670	2180	2010
炉心支持板	$\times 10^{3} \mathrm{~N}$	NS	3770	4110	3130	2690	3350	3870	2650
		EW	3130	3750	2750	2500	3050	2770	2290

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。

図 4－242 最大応答軸力 基準地震動 S s（鉛直方向 炉心シュラウド）

5．設計用地震力
設計用地震力は，基本ケースと材料物性の不確かさ等を考慮したケースの包絡値とし，以下の とおり整理する。なお，設計用最大応答加速度及び設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に記載する。
5.1 弾性設計用地震動 Sd 及び静的地震力

弾性設計用地震動S d に対する地震力及び静的地震力を表 5－1～表5－5 に示す。ここでは，地震力として，せん断力，モーメント，軸力，ばね反力及び燃料集合体相対変位を示している。 なお，弾性設計用地震動 S d に対する地震力と静的地震力のらちいずれか大きい方を S d ＊と して評価に用いる。
5.2 基準地震動 S s

基準地震動S s に対する地震力を表5－6～表5－10に示す。ここでは，地震力として，せん断力，モーメント，軸力，ばね反力及び燃料集合体相対変位を示している。

表 5－1 弾性設計用地震動 S d に対する地震力及び静的地震力（せん断力）（1／2）

			せん断	
	構造物	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} . \quad(\mathrm{m}) \end{gathered}$	弾性設計用地震動 S d に対する地震力	静的地震力
			422	191
			1． 66×10^{3}	808
			3.37×10^{3}	1． 90×10^{3}
	原子师压力容呂		1.98×10^{3}	339
	皂于炉圷ノ容器		2.11×10^{3}	1． 84×10^{3}
			4.18×10^{3}	4． 14×10^{3}
			5.27×10^{3}	5.68×10^{3}
			6． 31×10^{3}	7.28×10^{3}
			1.69×10^{4}	1． 96×10^{4}
	原子师本体の其䂾		1.82×10^{4}	2． 14×10^{4}
\sim	炉本体の基礎		1.95×10^{4}	2.30×10^{4}
			2． 05×10^{4}	2． 46×10^{4}
1 \cdots \cdots			4.41×10^{3}	1． 30×10^{3}
5			4.25×10^{3}	2.91×10^{3}
	原子炉しゃへい壁		5.54×10^{3}	5.83×10^{3}
（			7.85×10^{3}	7.96×10^{3}
N			1． 03×10^{4}	1． 06×10^{4}
			175	140
			340	279
			2.17×10^{3}	1.68×10^{3}
			2.62×10^{3}	2.15×10^{3}
	原子师格納容器		1． 40×10^{4}	1． 42×10^{4}
	原子戌格納容器		1． 49×10^{4}	1.51×10^{4}
			1.54×10^{4}	1.58×10^{4}
			1． 62×10^{4}	1． 70×10^{4}
			1.64×10^{4}	1． 76×10^{4}
			1． 68×10^{4}	1． 88×10^{4}

表 5－1 弾性設計用地震動 S d に対する地震力及び静的地震力（せん断力）（2／2）

			せん断	
	構造物	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} . \end{gathered}$	弾性設計用地震動 S d に対する地震力	静的地震力
			460	88.5
			968	231
			1． 64×10^{3}	390
			2.05×10^{3}	491
			2.55×10^{3}	630
			2． 48×10^{3}	973
	炉心シュラウド		2.53×10^{3}	1． 03×10^{3}
			2.60×10^{3}	1.08×10^{3}
			2． 87×10^{3}	1． 12×10^{3}
			3.34×10^{3}	1． 17×10^{3}
			3.67×10^{3}	1.21×10^{3}
∞			3． 84×10^{3}	2． 17×10^{3}
¢			3.88×10^{3}	2.24×10^{3}
1			624	150
$\stackrel{1}{5}$	制御棒案内管		165	22.3
			535	117
			803	252
\bigcirc			284	191
	制御棒駆動機構		164	90.9
			13.7	5.99
			160	80.4
			2.25×10^{3}	668
			1.60×10^{3}	390
	料集合休		593	106
	然料集合体		620	142
			1.60×10^{3}	388
			2.20×10^{3}	635

表 5－2 弾性設計用地震動 S d に対する地震力及び静的地震力（モーメント）（1／2）

表 5－2 弾性設計用地震動 S d に対する地震力及び静的地震力（モーメント）（2／2）

	表 5－3 弾性設計用地	dに対	也震力（軸力）（ $1 / 2$ ）
			軸力（kN）
	構造物	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	弾性設計用地震動 S d に対する地震力
			119
			860
			1． 50×10^{3}
	原子师压力容品		1.92×10^{3}
	原于阬圷ノ容器		2.47×10^{3}
			2.96×10^{3}
			3.46×10^{3}
			7.13×10^{3}
			1.96×10^{4}
	原子炉本体の其碟		2.07×10^{4}
\bigcirc	原子队本体の基碮		2.18×10^{4}
			2.28×10^{4}
¢			1.53×10^{3}
S			3.44×10^{3}
	原子炉しやへい壁		6.68×10^{3}
			9.06×10^{3}
N			1． 15×10^{4}
			82.9
			165
			634
			896
	原子师格納容㗊		1． 73×10^{3}
	原		2.33×10^{3}
			2． 77×10^{3}
			3.54×10^{3}
			3.88×10^{3}
			4． 64×10^{3}

表 5－3 弾性設計用地震動 S d に対する地震力（軸力）（2／2）

表 5－4 弾性設計用地震動 S d に対する地震力及び静的地震力（ばね反力，せん断力）

名称	応答種別	弾性設計用地震動 S d に対する地震力	静的地震力
原子炉圧力容器スタビライザ	ばね反力 (kN)	6.05×10^{3}	2.52×10^{3}
原子炉格納容器スタビライザ	ばね反力 (kN)	9.04×10^{3}	2.50×10^{3}
原子炉格納容器シヤラグ	ばね反力 (kN)	1.48×10^{4}	8.27×10^{3}
制御棒駆動機構ハウジング レストレンドーム	ばね反力 (kN)	231	142
炉心シュラウド回転ばね	回転ばね反力 $(\mathrm{kN} \cdot \mathrm{mm})$	2.55×10^{7}	1.14×10^{7}
上部格子板	せん断力 (kN)	2.35×10^{3}	742
炉心支持板	せん断力 (kN)	2.74×10^{3}	958
上部サポート	ばね反力 (kN)	3.41×10^{3}	551
下部スタビライザ	ばね反力 (kN)	874	168

注：燃料交換ベローズ，所員用エアロック及びベント管は，モデル化しているが，ばね反力を設
備の評価に用いないため記載しない。

表 5－5 弾性設計用地震動 S d に対する地震力及び静的地震力（相対変位）

名称	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} . \quad(\mathrm{m}) \end{gathered}$	相対変位（mm）	
		弾性設計用地震動 S d に対する地震力	静的地震力
燃料集合体		0	0
		16． 4	4.6
		28.3	7.8
		32.7	9.0
		28.3	7.8
		16.3	4.5
		0	0

表 5－6 基準地震動 S s に対する地震力（せん断力）（1／2）

			せん断力（kN）
	構造物	$\begin{gathered} \text { 椤㿥 } \\ 0 . \mathrm{P} . \quad(\mathrm{m}) \end{gathered}$	基準地震動S s に対する地震力
			559
			2.22×10^{3}
			4． 40×10^{3}
			3.69×10^{3}
	皂子阶生今容器		3.90×10^{3}
			6． 74×10^{3}
			9.30×10^{3}
			1． 15×10^{4}
			3.06×10^{4}
			3.33×10^{4}
	原子阶本体の		3.64×10^{4}
\sim			3.93×10^{4}
\uparrow			7.41×10^{3}
$\stackrel{1}{1}$			7.84×10^{3}
＞	原子炉しやへい壁		1． 02×10^{4}
（a）			1． 35×10^{4}
			1． 75×10^{4}
\bigcirc			312
			609
			3.46×10^{3}
			4.17×10^{3}
	原子师格納容吕		3.45×10^{4}
	京子戠格納容器		3.57×10^{4}
			3.65×10^{4}
			3.79×10^{4}
			3.85×10^{4}
			3.99×10^{4}

表 5－6 基準地震動 S s に対する地震力（せん断力）（2／2）

			せん断力（kN）
	構造物	$\begin{gathered} \text { 椤㿥 } \\ 0 . \mathrm{P} . \quad(\mathrm{m}) \end{gathered}$	基準地震動S s に対する地震力
			665
			1． 47×10^{3}
			2． 43×10^{3}
			3.01×10^{3}
			3.88×10^{3}
			3.75×10^{3}
	炉心シュラウド		4． 08×10^{3}
			4． 39×10^{3}
			4.69×10^{3}
			5.15×10^{3}
			5． 72×10^{3}
∞			6． 34×10^{3}
¢			6． 46×10^{3}
ָ			1． 54×10^{3}
$\stackrel{\square}{1}$	制御棒案内管		406
			1． 32×10^{3}
（c）			2.00×10^{3}
\sim			608
	制御棒駆動機構		345
			27.4
			328
			3.81×10^{3}
			2.62×10^{3}
	燃料集合休		981
	然料集合体		1.05×10^{3}
			2.63×10^{3}
			3.62×10^{3}

	表 5－7 基準地震動 S	対する地	（モーメント）（1／2）
			モーメント（kN•mm）
	構造物	$\begin{gathered} \text { 標吕 } \\ \text { 0. P. (m) } \end{gathered}$	基準地震動 S s に対する地震力
			0
			1.54×10^{6}
			6.38×10^{6}
			1． 48×10^{7}
	原子炉圧力容器		1． 97×10^{7}
			3.26×10^{7}
			5.21×10^{7}
			6.59×10^{7}
			8.91×10^{7}
			2.34×10^{8}
			2.57×10^{8}
	原子炉本体の基礎		2.96×10^{8}
∞			3.60×10^{8}
¢			4.28×10^{8}
$\stackrel{1}{1}$			0
1 \sim			2.05×10^{7}
$\stackrel{1}{5}$	原子师しやへい壁		4.16×10^{7}
	京子炉しやへい壁		6.37×10^{7}
（2）			9.11×10^{7}
N			1． 45×10^{8}
\bigcirc			0
			7.20×10^{5}
			2． 02×10^{6}
			6.57×10^{6}
			1.87×10^{7}
	原子炉格納容器		1.64×10^{8}
			2.65×10^{8}
			4． 42×10^{8}
			6.25×10^{8}
			7.02×10^{8}
			7.59×10^{8}

表 5－7 基準地震動 S s に対する地震力（モーメント）（2／2）

表 5－8 基準地震動 S s に対する地震力（軸力）（1／2）

表 5－8 基準地震動 S s に対する地震力（軸力）（2／2）

表 5－9 基準地震動 S s に対する地震力（ばね反力，せん断力）

名称	応答種別	基準地震動 S s に対する地震力
原子炉圧力容器スタビライザ	ばね反力 (kN)	8.25×10^{3}
原子炉格納容器スタビライザ	ばね反力 (kN)	1.58×10^{4}
原子炉格納容器シヤラグ	ばね反力 (kN)	3.41×10^{4}
制御棒駆動機構ハウジング レストレントビーム	ばね反力 (kN)	473
炉心シュラウド回転ばね	回転ばね反力 $(\mathrm{kN} \cdot \mathrm{mm})$	4.21×10^{7}
上部格子板	せん断力 (kN)	3.96×10^{3}
炉心支持板	せん断力 (kN)	4.52×10^{3}
上部サポート	ばね反力 (kN)	5.91×10^{3}
下部スタビライザ	ばね反力 (kN)	1.61×10^{3}

注：燃料交換ベローズ，所員用エアロック及びベント管は，モデル化しているが，ばね反力を設備 の評価に用いないため記載しない。

表 5－10 基準地震動 S s に対する地震力（相対変位）

名称	$\begin{gathered} \text { 標高 } \\ 0 .{ }^{2} . \end{gathered}$	相対変位（mm）
		基準地震動 S s に対する地震力
燃料集合体		0
		27． 4
		47.2
		54.2
		46.8
		27.0
		0

[^0]: 注記＊：強震動生成域

[^1]: 図 4－71 炉内構造物系地震応答解析モデルの振動モード図（6 次）（EW 方向）

