| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料 \(~\left(\begin{array}{c|c|}\hline 資料番号 \& 02 －工－D－01－0010＿改 10 \\

\hline 提出年月日 \& 2021 年 10 月 20 日 \\
\hline\end{array}\right.\)

基本設計方針に関する説明資料

【第5条 地震による損傷の防止】
【第50条 地震による損傷の防止】

- 先行審査プラントの記載との比較表
- 要求事項との対比表
（設計及び工事比係る品質マネジメントシステムに関する説明書に係る様式－7）
－各条文の設計の考え方
（設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式－6）

2021年10月
東北電力株式会社

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》的崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		2．自然現象 2．1 地震による損傷の防止 2．1．1 耐震設計 （1）耐震設計の基本方針 耐震設計は，以下の項目に従って行う。 a．設計基準対象施設のらち，耐震重要施設は，その供用中に当該耐震重要施設に大きな影響を及ぼすおそ れがある地震（基準地震動S s）による加速度によっ て作用する地震力に対して，その安全機能が損なわれ るおそれがない設計とする。 【5条1】 重大事故等対処施設のうち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）は，基準地震動S s による地震力に対して，重大事故等に対処する ために必要な機能が損なわれるおそれがないように設計する。 【50 条2】【50条6】 b．設計基準対象施設は，耐震重要度に応じて， S クラ ス，Bクラス又はCクラスに分類し，それぞれに応じ た地震力に十分耐えられる設計とする。 【5 条2】	表現の相違 （基準地震動 S s の定義は「1．地盤等」に おいて記載しているため，ここでは記載しな い。） 表現の相違 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。） 表現の相違 （耐震重要度，耐震重要度分類の定義は「1．地盤等」において記載しているため，ここで は記載しない。）
		重大事故等対処施設については，施設の各設備が有 する重大事故等に対処するために必要な機能及び設置状態を踏まえて，常設耐震重要重大事故防止設備が設置される重大事故等対処施設，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重	

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

赤字：設備，運用又は体制の相違点（設計方針の相違）
赤子：設作，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
等対処施設については，基準地震動 S s による地震力 を適用するものとする。 \\
【50 条 9】 \\
なお，特定重大事故等対処施設に該当する施設は本申請の対象外である。 \\
【50 条 10】
\end{tabular} \& \begin{tabular}{l}
記載方針の相違 \\
（用語の定義は冒頭の「1．1 地盤」に記載 する。）
\end{tabular} \\
\hline c． S クラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）は，基準地震動 S s による地震力に対してその安全機能が保持できる設計とする。 \& 表現の相違記載方針の相違 \\
\hline \begin{tabular}{l}
建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）に対して十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有す る設計とする。 \\
機器•配管系については，その施設に要求される機能を保持する設計とし，塑性ひずみが生じる場合であ っても，その量が小さなレベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能 に影響を及ぼさない，また，動的機器等については，基準地震動S s による応答に対してその設備に要求さ れる機能を保持する設計とする。なお，動的機能が要求される機器については，当該機器の構造，動作原理等を考慮した評価を行い，既往の研究等で機能維持の確認がなされた機能確認済加速度等を超えていないこ とを確認する。 \\
また，弾性設計用地震動 S d による地震力又は静的
\end{tabular} \& 表現の相違

表現の相違

\hline
\end{tabular}

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	差異理由
		地震力のいずれか大きい方の地震力に対しておおむねね弾性状態にとどまる範囲で耐えられる設計とする。	（弾性設計用地震動 $\mathrm{S} d$ の定義は 1 1，地盤等」において記載しているため，ここでは記載しない。）
		建物•構築物については，発生する応力に対して， 建築基準法」等の安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 機器•配管系については，応答が全体的におおむね弾性状態にとどまる設計とする。 【5 条3】	表現の相違
		常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準抁張）が設置される重大事故等対処施設は，基準地震動 S s による地震力に対して，重大事故等に対処するために必要な機能が損 なわれるおそれがないよらに設計する。 【50条2】【50条6】	表現の相違 （SA 設備に対する設計方針を明碓化するた めに記載。）
		建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）について十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有す る設計とする。機器•配管系については，その施設に要求される機能を保持する設計とし，塑性ひずみが生 じる場合であっても，その量が小さなレベルにとどま って破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさない，また，動的機器等 については，基準地震動S s による応答に対して，そ の設備に要求される機能を保持する設計とする。なお，動的機能が要求される機器については，当該機器の構造，動作原理等を考慮した評価を行い，既往の研究等 で機能維持の確認がなされた機能確認済加速度等を超 えていないことを確認する。 【50条3】【50条7】	表現の相違
		d．Sクラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）につい	記載方針の相違表現の相違

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）
不利な方向の組合せで作用するものとする。
また, 基準地震動 S s 及び弾性設計用地震動 S d に
よる地震力は, 水平 2 方向及び鉛直方向について適切
に組み合わせて算定するものとする。
【5 条4】
常設耐震重要重大事故防止設備, 常設重大事故緩和
設備, 常設重大事故防止設備 (設計基準拡張) (当該設
備が属する耐震重要度分類が S クラスのもの) 又は常
設重大事故緩和設備 (設計基準拡張) が設置される重
大事故等対処施設については, 基準地震動 S s 及び弾
性設計用地震動S d による地震力は水平 2 方向及び鉛
直方向について適切に組み合わせて算定するものとす
る。
【50 条 11】
e. 屋外重要土木構造物, 津波防護施設, 浸水防止設
備及び津波監視設備並びに浸水防止設備又は津波監視
設備が設置された建物•構築物は, 基準地震動 S s に
よる地震力に対して, 構造物全体として変形能力 (終
局耐力時の変形) について十分な余裕を有するととも
に, それぞれの施設及び設備に要求される機能が保持
できる設計とする。
【5条5】【50条13】

常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物は，基準地震動 S s に よる地震力に対して，重大事故等に対処するために必要な機能が損なわれるおそれがない設計とする。
【50条12】

B クラスの施設は，静的地震力に対しておおむね弹性状態にとどまる範囲で耐えられる設計とする。

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		また，共振のおそれのある施設については，その影響についての検討を行ら。その場合，検討に用いる地震動は，弾性設計用地震動S d に 2 分の 1 を乗じたも のとする。なお，当該地震動による地震力は，水平 2 方向及び鉛直方向について適切に組み合わせて算定する ものとする。 【5 条6】 C クラスの施設は，静的地震力に対しておおむねる弾性状態にとどまる範囲で耐えられる設計とする。 【5 条 7】 常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設は，上記に示す，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用される地震力に対して，おおむねね弾性状態にとどまる範囲で耐えられ る設計とする。 【50条14】 常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの） が設置される重大事故等対処施設は，上記に示す，当該設備が属する耐震重要度分類のクラスに適用される地震力に対して，おおむねる弾性状態にとどまる範囲で耐えられる設計とする。 【50条15】 g．耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSク ラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設が，それ以外の発電所内にある施設（資機材等含む。）の波及的影響に よって，その安全機能及び重大事故等に対処するため に必要な機能を損なわない設計とする。 【5条8】【50条16】	表現の相違 表現の相違 表現の相違 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。） 記載方針の相違 表現の相違 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）
（原子炉冷却系統施設（共通項目）の基本設計方針）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		（2）耐震重要度分類及び重大事故等対処施設の設備 の分類 a．耐震重要度分類 設計基準対象施設の耐震重要度を以下のとおり分類 する。 （a） S クラスの施設 地震により発生するおそれがある事象に対して，原子炉を停止し，炉心を泠却するために必要な機能を持 つ施設，自ら放射性物質を内蔵している施設，当該施設に直接関係しておりその機能喪失により放射性物質 を外部に拡散する可能性のある施設，これらの施設の機能喪失により事故に至った場合の影響を緩和し，放射線による公衆への影響を軽減するために必要な機能 を持つ施設及びこれらの重要な安全機能を支援するた めに必要となる施設，並びに地震に伴って発生するお それがある津波による安全機能の喪失を防止するため に必要となる施設であって，その影響が大きいもので あり，次の施設を含む。 －原子炉泠却材圧力バウンダリを構成する機器•配管系 - 使用済燃料を貯蔵するための施設 - 原子炉の緊急停止のために急激に負の反応度を付加 するための施設，及び原子炉の停止状態を維持するた めの施設 －原子炉停止後，炉心から崩壊熱を除去するための施設 －原子炉冷却材圧力バウンダリ破損事故後，炉心から崩壊熱を除去するための施設 －原子炉冷却材圧力バウンダリ破損事故の際に，圧力	

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

障壁となり放射性物質の放散を直接防ぐための施設 －放射性物質の放出を伴うような事故の際に，その外部放散を抑制するための施設であり，上記の「放射性物質の放散を直接防ぐための施設」以外の施設 - 津波防護施設及び浸水防止設備 - 津波監視設備 【5 条 10】	
（b）Bクラスの施設 安全機能を有する施設のらち，機能喪失した場合の影響がSクラス施設と比べ小さい施設であり，次の施設を含む。 －原子炉泠却材圧力バウンダリに直接接続されてい て，一次冷却材を内蔵しているか又は内蔵し得る施設 －放射性廃棄物を内蔵している施設（ただし，内蔵量 が少ない又は貯蔵方式により，その破損により公衆に与える放射線の影響が「実用発電用原子炉の設置，運転等に関する規則（昭和 53 年通商産業省令第 77 号）」第 2 条第 2 項第 6 号に規定する「周辺監視区域」外に おける年間の線量限度に比べ十分小さいものは除く。） －放射性廃棄物以外の放射性物質に関連した施設で， その破損により，公衆及び従事者に過大な放射線被ば くを与える可能性のある施設 - 使用済燃料を泠却するための施設 - 放射性物質の放出を伴うような場合に，その外部放散を抑制するための施設で，Sクラスに属さない施設 【5 条 11】	表現の相違
（c）Cクラスの施設 S クラスに属する施設及び B クラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求 される施設である。 上記に基づく耐震重要度分類を第2．1．1表に示す。 なお，同表には当該施設を支持する構造物の支持機能が維持されることを確認する地震動及び波及的影響 を考慮すべき施設に適用する地震動についても併記す る。 【5 条 12】	表現の相違 （基本設計方針に記載する表の名称と合わ せた記載としている。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

待する設備であって，重大事故の拡大を防止し，又は その影響を緩和するための機能を有する（b）以外の常設のもの 【50 条 23】	ている。）
（e）可搬型重大事故等対処設備 重大事故等対処設備であって可搬型のもの	記載方針の相違
重大事故等対処設備のうち，耐震評価を行う主要設備の設備分類について，第2．1．2表に示す。 【50 条 24】	
（3）地震力の算定方法 耐震設計に用いる地震力の算定は以下の方法によ る。 a．静的地震力 設計基準対象施設に適用する静的地震力は，S クラ スの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。），B クラス及びCクラスの施設に適用す ることとし，それぞれ耐震重要度分類に応じて次の地震層せん断力係数 C_{i} 及び震度に基づき算定する。 【5条13】	
重大事故等対処施設については，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置され る重大事故等対処施設に，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用される静的地震力を，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B ク ラス又はC クラスのもの）が設置される重大事故等対処施設に，当該設備が属する耐震重要度分類のクラス に適用される静的地震力を，それぞれ適用する。 【50 条 25】	設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。）
（a）建物•構築物 水平地震力は，地震層せん断力係数 C_{i} に，次に示す施設の耐震重要度分類に応じた係数を乗じ，さらに当	

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

```
該層以上の重量を乗じて算定するものとする。
    S クラス 3.0
    B クラス 1.5
    Cクラス 1.0
    ここで, 地震層せん断力係数Ciは, 標準せん断力係
数Coを 0.2 以上とし, 建物•構築物の振動特性,地盤
の種類等を考慮して求められる値とする。
    また, 必要保有水平耐力の算定においては, 地震層
    せん断力係数Ci\mp@code{乗じる施設の耐震重要度分類に応}
    じた係数は, S クラス, B クラス及びC クラスともに
    1.0とし, その際に用いる標準せん断力係数C。は1.0
    以上とする。
    S クラスの施設については, 水平地震力と鉛直地震
    力が同時に不利な方向の組合せで作用するものとす
    る。鉛直地震力は,震度 0.3 以上を基準とし, 建物•
    構築物の振動特性, 地盤の種類等を考慮し, 高さ方向
    に一定として求めた鉛直震度より算定するものとす
    る。
    ただし, 土木構造物の静的地震力は, 安全上適切と
認められる規格及び基準を参考に, C クラスに適用さ
れる静的地震力を適用する
    \5 条 14】
    (b) 機器•配管系
    静的地震力は, 上記(a)に示す地震層せん断力係数C
    に施設の耐震重要度分類に応じた係数を乗じたもの
    を水平震度として,当該水平震度及び上記(a)の鉛直震
    度をそれぞれ 20%増しとした震度より求めるものとす
    る
    S クラスの施設については,水平地震力と鉛直地震
    力は同時に不利な方向の組合せで作用するものとす
    る。ただし, 鉛直震度は高さ方向に一定とする。
    上記 (a)及び(b)の標準せん断力係数C。等の割増し
    係数の適用については,耐震性向上の観点から, 一般
    産業施設,公共施設等の耐震基準との関係を考慮して
    設定する。
    \5 条 15】
b. 動的地震力
設計基準対象施設については, 動的地震力は, S クラ
スの施設, 屋外重要土木構造物及び B クラスの施設の
```

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		らち共振のおそれのあるものに適用する。 Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）については，基準地震動 S s 及び弾性設計用地震動 Sd から定める入力地震動を適用す る。 B クラスの施設のうち共振のおそれのあるものにつ いては，弾性設計用地震動Sdから定める入力地震動 の振幅を 2 分の 1 にしたものによる地震力を適用する。 屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物については，基準地震動 S s による地震力 を適用する。 【5 条 16】 重大事故等対処施設のうち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抎張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基淮拡張）が設置される重大事故等対処施設につい ては，基準地震動S s による地震力を適用する。 【50条26】 常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設のうち，B ク ラスの施設の機能を代替する共振のおそれのある施設，常設重大事故防止設備（設計基準拡張）が設置さ れる重大事故等対処施設のらち，当該設備が属する耐震重要度分類が B クラスで共振のおそれのある施設に ついては，共振のおそれのある B クラスの施設に適用 する地震力を適用する。 【50条27】 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準抁張）が設置される重大事故等対処施設の土木構造物については，基準地震動 S s による地震力を適用する。 重大事故等対処施設のうち，設計基準対象施設の既往評価を適用できる基本構造と異なる施設について	設計の相違 （津波監視設備が設置された建物•構築物の設計方針は別途記載することから記載しな い。） 表現の相違 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。） 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。） 表現の相違 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		は，適用する地震力に対して，要求される機能及び構造健全性が維持されることを確認するため，当該施設 の構造を適切にモデル化した上で地震応答解析，加振試験等を実施する。 【50条28】 動的解析においては，地盤の諸定数も含めて材料の ばらつきによる変動幅を適切に考慮する。 動的地震力は水平 2 方向及び鉛直方向について適切 に組み合わせて算定する。動的地震力の水平 2 方向及 び鉛直方向の組合せについては，水平 1 方向及び鉛直方向地震力を組み合わせた既往の耐震計算への影響の可能性がある施設•設備を抽出し， 3 次元応答性状の可能性も考慮したうえで既往の方法を用いた耐震性に及 ぼす影響を評価する。 【5条17】 （a）入力地震動 原子炉格納施設設置位置周辺は，地質調查の結果に よれば，約 $1.4 \mathrm{~km} / \mathrm{s}$ の S 波速度を持つ堅硬な岩盤が十分な広がりをもって存在することが確認されており，建物•構築物はこの堅硬な岩盤に支持させる。 敷地周辺には中生界ジュラ系の砂岩，頁岩等が広く分布し，原子炬建屋の設置レベルにもこの岩盤が分布 していることから，解放基盤表面は，この岩盤が分布 する原子炬建屋の設置位置 0．P．－14．1mに設定する。 建物•構築物の地震応答解析における入力地震動は，解放基盤表面で定義される基準地震動 S s 及び弹性設計用地震動 Sd を基に，対象建物•構築物の地盤の非線形特性等の条件を適切に考慮した上で，必要に応じ 2 次元 FEM 解析， 1 次元波動論又は 1 次元地盤応答解析 により，地震応答解析モデルの入力位置で評価した入力地震動を設定する。地盤条件を考慮する場合には，地震動評価で考慮した敷地全体の地下構造との関係や対象建物•構築物位置と炉心位置での地質•速度構造 の違いにも留意するとともに，地盤の非線形応答に関 する動的変形特性を考慮する。また，必要に応じ敷地 における観測記録による検証や最新の科学的•技術的知見を踏まえ，地質•速度構造等の地盤条件を設定す	プラント固有条件の差異 （サイト特有の立地条件の相違による，地盤条件の相違。） 設計の差異 （適用する解析手法の相違。） 表現の相違

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》䄸崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		る。 また，設計基準対象施設における耐震 B クラスの建物•構築物及び重大事故等対処施設における耐震 B ク ラスの施設の機能を代替する常設重大事故防止設備又 は当該設備が属する耐震重要度分類が B クラスの常設重大事故防止設備（設計基準抁張）が設置される重大事故等対処施設の建物•構築物のらち共振のおそれが あり，動的解析が必要なものに対しては，弾性設計用地震動S dに2分の1を乗じたものを用いる。 【5 条18】【50条29】	設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。）
		（b）地震応答解析 1．動的解析法 （イ）建物•構築物 動的解析による地震力の算定に当たっては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，建物•構築物に応じた適切な解析条件を設定する。動的解析は，時刻歴応答解析法又は線形解析に適用可能な周波数応答解析法によ る。	表現の相違表現の相違
		建物•構築物の動的解析に当たつては，建物•構築物の剛性はそれらの形状，構造特性等を十分考慮して評価し，集中質点系等に置換した解析モデルを設定す る。	
		動的解析には，建物•構築物と地盤との相互作用を考慮するものとし，解析モデルの地盤のばね定数は，基礎版の平面形状，基礎側面と地盤の接触状況，地盤 の剛性等を考慮して定める。設計用地盤定数は，原則 として，弾性波試験によるものを用いる。 【5 条 19】	
		地盤－建物•構築物連成系の減衰定数は，振動エネ ルギの地下逸散及び地震応答における各部のひずみレ ベルを考慮して定める。	

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》䄸崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	差異理由
		基準地震動 S s 及び弾性設計用地震動S d に対する応答解析において，主要構造要素がある程度以上弾性範囲を超える場合には，実験等の結果に基づき，該当 する建物部分の構造特性に応じて，その弾塑性挙動を適切に模擬した復元力特性を考慮した応答解析を行 う。 また，Sクラスの施設を支持する建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準扩張）（当誩設備が属 する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準抁張）が設置される重大事故等対处施設を支持する建物•構築物の支持機能を検討 するための動的解析において，施設を支持する建物•構築物の主要構造要素がある程度以上弹性範囲を超え る場合には，その弾塑性挙動を適切に模擬した復元力特性を考慮した応答解析を行う。 応答解析に用いる材料定数については，地盤の諸定数も含めて材料のばらつきによる変動幅を適切に考慮 する。なお，平成 23 年（2011 年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下については，観測記録や試験 データなどから適切に応答解析モデルへ反映し，保守性を碓認した上で適用する。屋外重要士木構造物につ いては，平成 23 年（2011 年）東北地方太平洋沖地震等 の地震に起因する構造上問題となるひび割れが認めら れないこと及び地中構造物である屋外重要土木構造物 に対する支配的な地震時荷重である土圧は，ひび割れ等に起因する初期剛性低下を考慮しない方が保守的な評価となる。したがって，屋外重要土木構造物につい ては，初期剛性低下を考慮しないが，必要に応じて機器•配管系の設計用地震力に及ぼす影響を検討する。更に，材料のばらつきによる変動が建物•構築物の振動性状や応答性状に及ぼす影響として考慮すべき要因 を選定した上で，選定された要因を考慮した動的解析 により設計用地震力を設定する。 【5 条 20】【50 条 30】 建物•構築物の動的解析にて，地震時の地盤の有効応力の変化に応じた影響を考慮する場合は，有効応力解析を実施する。有効応力解析に用いる液状化強度特	表現の相違 表現の相違 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。） 表現の相違 プラント固有条件の差異 （建屋モデルの鉄筋コンクリート造耐震壁，及び屋外重要土木構造物の剛性の決定方法 の相違。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）
《参考》柏崎刈羽原子力発電所第7号機 \quad 東海第二発電所

原子炉建屋については， 3 次元 FEM 解析等から，建物•構築物の 3 次元応答性状及びそれによる機器•配管系への影響を評価する。
動的解析に用いる解析モデルは，地震観測網により得られた観測記録により振動性状の把握を行い，解析 モデルの妥当性の確認を行う。

屋外重要土木構造物及び常設耐震重要重大事故防止
設備，常設重大事故緩和設備，常設重大事故防止設備
（設計基準拡張）（当該設備が属する耐震重要度分類が
S クラスのもの）又は常設重大事故緩和設備（設計基準
拡張）が設置される重大事故等対処施設の土木構造物
の動的解析は，構造物と地盤の相互作用を考慮できる
連成系の地震応答解析手法とし，地盤及び構造物の地
震時における非線形挙動の有無や程度に応じて，線形，
等価線形又は非線形解析のいずれかにて行う。
地震力については，水平 2 方向及び鉛直方向につい て適切に組み合わせて算定する。
【5 条 22】【50 条 31】
（ロ）機器•配管系
動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，解析条件として考慮すべ き減衰定数，剛性等の各種物性値は，適切な規格及び基準又は試験等の結果に基づき設定する。ここで，原子炉本体の基礎については，鋼板とコンクリートの複合構造物として，より現実に近い適正な地震応答解析

プラント固有条件の差異
（原子炉本体の基礎の物性値の決定方法の相違。）

表現の相違
設計の差異
（女川 2 号では設計基準拡張の区分を設け ている。）

表現の相違

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》䄸崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		を実施する観点から，コンクリートの剛性変化を適切 に考慮した復元力特性を設定する。復元力特性の設定 に当たっては，既往の知見や実物の原子炉本体の基䂰 を模擬した試験体による加力試験結果を踏まえて，妥当性，適用性を確認するとともに，設定における不確実性や保守性を考慮し，機器•配管系の設計用地震力 を設定する。なお，原子炉本体の基礎の構造強度は，鋼板のみで地震力に耐える設計とする。 機器の解析に当たつては，形状，構造特性等を考慮 して，代表的な振動モードを適切に表現できるよう質点系モデル，有限要素モデル等に置換し，設計用床応答曲線を用いたスペクトルモーダル解析法又は時刻歴応答解析法により応答を求める。 また，時刻歴応答解析法及びスペクトルモーダル解析法を用いる場合は地盤物性等のばらつきを適切に考慮する。スペクトルモーダル解析法には地盤物性等の ばらつきを考慮した床応答曲線を用いる。 配管系については，その仕様に応じて適切なモデル に置換し，設計用床応答曲線を用いたスペクトルモー ダル解析法又は時刻歴応答解析法により応答を求め る。 スペクトルモーダル解析法及び時刻歴応答解析法の選択に当たつては，衝突・すべり等の非線形現象を模擬する観点又は既往研究の知見を取り入れ実機の挙動 を模擬する観点で，建物•構築物の剛性，地盤物性の ばらつきへの配慮をしつつ時刻歴応答解析法を用いる等，解析対象とする現象，対象設備の振動特性•構造特性等を考慮し適切に選定する。 また，設備の 3 次元的な広がりを踏まえ，適切に応答を評価できるモデルを用い，水平 2 方向及び鉛直方向の応答成分について適切に組み合わせるものとす る。 剛性の高い機器は，その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて構造強度評価に用いる地震力を算定する。 【5 条23】	表現の相違

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》和崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		c．設計用減衰定数 地震応答解析に用いる減衰定数は，安全上適切と認 められる規格及び基準に基づき，設備の種類，構造等 により適切に選定するとともに，試験等で妥当性を確認した値も用いる。 なお，建物•構築物の地震応答解析に用いる鉄筋コ ンクリートの減衰定数の設定については，既往の知見 に加え，既設施設の地震観測記録等により，その妥当性を検討する。 また，地盤と屋外重要土木構造物の連成系地震応答解析モデルの減衰定数については，地中構造物として の特徴，同モデルの振動特性を考慮して適切に設定す る。 【5 条 24】【50条 32】 （4）荷重の組合せと許容限界 耐震設計における荷重の組合せと許容限界は以下に よる。 a．耐震設計上考慮する状態地震以外に設計上考慮する状態を以下に示す。 （a）建物•構築物 設計基準対象施設については以下のイ。～ハ。の状態，重大事故等対処施設については以下のイ。～ニ．の状態を考慮する。 イ．運転時の状態 発電用原子炉施設が運転状態にあり，通常の自然条件下におかれている状態。 ただし，運転状態には通常運転時，運転時の異常な過渡変化時を含むものとする。 ロ．設計基準事故時の状態 発電用原子炉施設が設計基準事故時にある状態。 八．設計用自然条件 設計上基本的に考慮しなければならない自然条件 （風，積雪）。 【5 条 25】【50 条 33】	表現の相違 表現の相違 表現の相違

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

雪による荷重を考慮し，以下のとおり設定する。
【5 条 30】【50 条 42】
（a）建物•構築物（（c）に記載のものを除く。
イ．S クラスの建物•構築物及び常設耐震重要重大事
故防止設備，常設重大事故緩和設備，常設重大事故防
止設備（設計基準拡張）（当該設備が属する耐震重要度
分類がS クラスのもの）又は常設重大事故緩和設備（設
計基準拡張）が設置される重大事故等対処施設の建物•
構築物については，常時作用している荷重及び運転時
（通常運転時又は運転時の異常な過渡変化時）の状態
で施設に作用する荷重と地震力とを組み合わせる。
【5 条 31】【50 条 43】

ロ．S クラスの建物•構築物については，常時作用し ている荷重及び設計基準事故時の状態で施設に作用す る荷重のうち長時間その作用が続く荷重と弾性設計用地震動 S d による地震力又は静的地震力とを組み合わ せる。＊1，
【5 条 32】

八．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重，設計基準事故時の状態及び重大事故等時の状態で施設に作用する荷重のうち，地震によ って引き起こされるおそれがある事象によって作用す る荷重と地震力とを組み合わせる。重大事故等による荷重は設計基準対象施設の耐震設計の考え方及び確率論的な考察を踏まえ，地震によって引き起こされるお それがない事象による荷重として扱う
【50 条 44】

二．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物については，常時

表現の相違
設計の差異
（女川 2 号では設計基準拡張の区分を設け ている。）

表現の相違
設計の差異
（女川 2 号では設計基準拡張の区分を設け ている。

表現の相違
設計の差異
（女川では設計基準拡張の区分を設けてい る。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	差異理由
		作用している荷重，設計基準事故時の状態及び重大事故等時の状態で施設に作用する荷重のうち，地震によ って引き起こされるおそれがない事象による荷重は， その事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力（基準地震動S s 又は弾性設計用地震動 S d による地震力）と組み合 わせる。この組合せについては，事故事象の発生確率，継続時間及び地震動の年超過確率の積等を考慮し，工学的，総合的に勘案の上設定する。なお，継続時間に ついては対策の成立性も考慮した上で設定する。 以上を踏まえ，原子炉格納容器バウンダリを構成す る施設（原子炉格納容器内の圧力，温度の条件を用い て評価を行うその他の施設を含む。）については，いっ たん事故が発生した場合，長時間継続する事象による荷重と弹性設計用地震動S dによる地震力とを組み合 わせ，その状態からさらに長期的に継続する事象によ る荷重と基準地震動 S s による地震力を組み合わせ る。なお，格納容器破損モードの評価シナリオのうち，原子炉圧力容器が破損する評価シナリオについては，重大事故等対処設備による原子炉注水は実施しない想定として評価しており，本来は機能を期待できる高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ）又は低圧代替注水系（常設）（直流駆動低圧注水系ポン プ）による原子炉注水により炉心損傷の回避が可能で あることから荷重条件として考慮しない。 また，その他の施設については，いったん事故が発生した場合，長時間継続する事象による荷重と基準地震動 S s による地震力とを組み合わせる。 【50条45】 ホ．B クラス及びCクラスの建物•構築物並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はC クラスの もの）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用する荷重と動的地震力又は静的地震力 とを組み合わせる。 【5 条 33】【50 条 46】	設備名称の相違 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		＊1：S クラスの建物•構築物の設計基準事故の状態で施設に作用する荷重については，（b）機器•配管系の考 え方に沿った下記の 2 つの考え方に基づき検討した結果として後者を踏まえ，施設に作用する荷重のうち長時間その作用が続く荷重と弾性設計用地震動 S d によ る地震力又は静的地震力とを組み合わせることとして いる。この考え方は，JEAG4601における建物•構築物の荷重の組合せの記載とも整合している。 －常時作用している荷重及び設計基準事故時の状態の らち地震によって引き起こされるおそれのある事象に よって施設に作用する荷重は，その事故事象の継続時間との関係を踏まえ，適切な地震力と組み合わせて考慮する。 －常時作用している荷重及び設計基準事故時の状態の らち地震によって引き起こされるおそれのない事象で あっても，いったん事故が発生した場合，長時間継続 する事象による荷重は，その事故事象の発生確率，継続時間及び地震動の超過確率の関係を踏まえ，適切な地震力と組み合わせる。 ＊2：原子炉格納容器バウンダリを構成する施設につい ては，異常時圧力の最大値と弾性設計用地震動 S d に よる地震力とを組み合わせる。 【5条34】 （b）機器•配管系（（c）に記載のものを除く。） イ．Sクラスの機器•配管系及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，通常運転時の状態で施設に作用す る荷重と地震力とを組み合わせる。 【5 条 35】【50条47】 ロ．Sクラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のう ち地震によって引き起こされるおそれのある事象によ って施設に作用する荷重と地震力とを組み合わせる。【5 条 36】	表現の相違 表現の相違 表現の相違 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。） 表現の相違 （設置（変更）許可の記載を踏襲した。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》䄸崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		以上を踏まえ，重大事故等時の状態で作用する荷重 と地震力（基準地震動 S s 又は弹性設計用地震動S d による地震力）との組合せについては，以下を基本設計とする。 原子炉冷却材圧力バウンダリを構成する設備につい ては，いったん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動S d による地震力 とを組み合わせ，その状態からさらに長期的に継続す る事象による荷重と基準地震動S s による地震力とを組み合わせる。 原子炉格納容器バウンダリを構成する設備（原子炉格納容器内の圧力，温度の条件を用いて評価を行らそ の他の施設を含む。）については，いつたん事故が発生 した場合，長時間継続する事象による荷重と弾性設計用地震動Sdによる地震力とを組み合わせ，その状態 からさらに長期的に継続する事象による荷重と基準地震動S s による地震力とを組み合わせる。 なお，格納容器破損モードの評価シナリオのうち，原子炉圧力容器が破損する評価シナリオについては，重大事故等対処設備による原子炬注水は実施しない想定として評価しており，本来は機能を期待できる高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ）又は低圧代替注水系（常設）（直流駆動低圧注水系ポン プ）による原子炉注水により炬心損傷の回避が可能で あることから荷重条件として考慮しない。	表現の相違 表現の相違 設備名称の相違 設置（変更）許可における設計方針の差異 （女川 2 号では設備の復旧に期待した荷重 の設定をしていない。）
		その他の施設については，いったん事故が発生した場合，長時間継続する事象による荷重と基準地震動S s による地震力とを組み合わせる。 【50条49】 へ．Bクラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はC クラスの	設計の差異 （女川 2 号では設計基準拡張の区分を設け

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

もの）が設置される重大事故等対処施設の機器•配管系については，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用 する荷重と，動的地震力又は静的地震力とを組み合わ せる。
【5 条 38】【50条50】

ト。 炉心内の燃料被覆管の放射性物質の閉じ込めの機能の確認においては，通常運転時の状態で燃料被覆管に作用する荷重及び運転時の異常な過渡変化時の状態のらち地震によって引き起こされるおそれのある事象によって燃料被覆管に作用する荷重と地震力とを組 み合わせる。
【5 条 39】
＊3：原子炉格納容器バウンダリを構成する設備につい ては，異常時圧力最大値と弾性設計用地震動 S d によ る地震力とを組み合わせる。
（c）津波防護施設，浸水防止設備及び津波監視設備並 びに浸水防止設備が設置された建物•構築物

イ．津波防護施設及び浸水防止設備が設置された建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用する荷重と基準地震動 S s に よる地震力とを組み合わせる
口．浸水防止設備及び津波監視設備については，常時作用している荷重及び運転時の状態で施設に作用する荷重と基準地震動 S s による地震力とを組み合わせ る。

なお，上記（c）イ．，ロ．については，地震と津波が同時に作用する可能性について検討し，必要に応じて基準地震動S s による地震力と津波による荷重の組合せ を考慮する。また，津波以外による荷重については，
「b．荷重の種類」に準じるものとする。
【5 条 40】

ている。

資料のうち伜囲みの内容は，他社の機密事項を今む可能性があるため公間できませ

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）
《参考》柏崎刈羽原子力発電所第 7 号機
（原子炉冷却系統施設（共通項目）の基本設計方針）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）
《参考》柏崎刈羽原子力発電所第 7 号機 \quad 東海第二発電所
［5条45］［50条55］
ニ．建物•構築物の保有水平耐力（ 。 及びト．に記載 のものを除く。）

建物•構築物については，当該建物•構築物の保有水平耐力が必要保有水平耐力に対して耐震重要度分類又は重大事故等対処施設が代替する機能を有する設計
基準事故対処設備が属する耐震重要度分類に応じた安全余裕を有しているものとする

ここでは，常設重大事故緩和設備又は常設重大事故
緩和設備（設計基準拡張）が設置される重大事故等対
処施設については，上記における重大事故等対処施設
が代替する機能を有する設計基準事故対処設備が属す る耐震重要度分類をSクラスとする。
【5 条 46】【50 条 56】

木．気密性，止水性，遮蔽性，通水機能，貯水機能を考慮する施設
構造強度の確保に加えて気密性，止水性，遮蔽性，通水機能，貯水機能が必要な建物•構築物については，
その機能を維持できる許容限界を適切に設定するもの とする。
【5 条 47】【50 条 57】

人．屋外重要土木構造物及び常設耐震重要重大事故構造物

設計の差異
（女川 2 号では設計基準拡張の区分を設け ている。）

防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がS クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木
（イ）静的地震力との組合せに対する許容限界
安全上適切と認められる規格及び基準による許容応力度を許容限界とする。
（口）基準地震動 S s による地震力との組合せに対す る許容限界

表現の相違
設計の差異
（女川 2 号では設計基準拡張の区分を設け ている。）

設計の差異
（女川 2 号では 3 次元静的材料非線形解析等の評価において，ひずみを許容値として設

資料のうち枠囲みの内容は，他社の機密事項を含む可能性があるため公開できません。

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	差異理由
		構造部材の曲げについては限界層間変形角，限界ひ ずみ，降伏曲げモーメント又は許容応力度，構造部材 のせん断についてはせん断耐力，許容応力度又は限界 せん断ひずみに対して，妥当な安全余裕を持たせるこ ととする。 3 次元静的材料非線形解析により評価を行うもの等， ひずみを許容値とする場合は，構造物の要求機能に応 じた許容值に対し妥当な安全余裕を持たせることとす る。 【5 条48】【50条58】	
		ト．その他の土木構造物及び常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準抎張）（当該設備が属する耐震重要度分類が B クラス又はC クラスのもの）が設置され る重大事故等対処施設の土木構造物 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 【5 条 49】【50 条 59】	設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。）
		（b）機器•配管系（（c）に記載のものを除く。） イ．Sクラスの機器•配管系 （イ）弾性設計用地震動 Sd による地震力又は静的地震力との組合せに対する許容限界 応答が全体的におおむかね弾性状態にとどまるものと する（評価項目は応力等）。 ただし，泠却材喪失事故時に作用する荷重との組合 せ（原子炉格納容器バウンダリ及び非常用炉心椧却設備等における長期的荷重との組合せを除く。）に対して	表現の相違表現の相違

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》䄸崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		は，下記イ。（ロ）に示す許容限界を適用する。 （口）基準地震動 S s による地震力との組合せに対す る許容限界 塑性ひずみが生じる場合であっても，その量が小さ なレベルにとどまって破断延性限界に十分な余裕を有 し，その施設に要求される機能に影響を及ぼさないよ うに応力，荷重等を制限する値を許容限界とする。 また，地震時又は地震後に動的機能又は電気的機能 が要求される機器については，基準地震動S s による応答に対して，実証試験等により確認されている機能確認済加速度等を許容限界とする。 【5 条 50】 口．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系 イ．（ロ）に示す許容限界を適用する。 ただし，原子炉格納容器バウンダリを構成する設備及び非常用炉心泠却設備等の弾性設計用地震動 S d と設計基準事故時の状態における長期的荷重との組合せ に対する許容限界は，イ．（イ）に示す許容限界を適用す る。 【50 条 60】 ハ．B クラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類 B クラス又は C クラスのも の）が設置される重大事故等対処施設の機器•配管系応答が全体的におおむね弾性状態にとどまることと する（評価項目は応力等）。 【5 条 51】【50 条 61】 ニ．チャンネルボックス チャンネルボックスは，地震時に作用する荷重に対 して，燃料集合体の原子炉冷却材流路を維持できるこ と及び過大な変形や破損を生ずることにより制御棒の挿入が阻害されないものとする	表現の相違 表現の相違 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。） 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。） 表現の相違 設備名称の相違

赤字：設備，運用又は体制の相違点（設計方針の相違） 緑字：記載表現，設備名称の相違（実質的な相違なし） 前回提出時からの変更箇所 【】 番号：様式一7との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）	先行審査プラントの記載との比較表 （原子炉冷却系統施設（共通項目）の基本設計方針）		
《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		【5 条 52】 ホ．燃料被覆管 炬心内の燃料被覆管の放射性物質の閉じ込めの機能 についての許容限界は，以下のとおりとする。 （イ）弾性設計用地震動 Sd による地震力又は静的地震力との組合せに対する許容限界 応答が全体的におおむねね弾性状態にとどまることと する。 （口）基準地震動 S s による地震力との組合せに対す る許容限界 塑性ひずみが生じる場合であっても，その量が小さ なレべルにとどまって破断延性限界に十分な余裕を有 し，放射性物質の閉じ达めの機能に影響を及ぼさない こととする。 【5 条53】 へ．主蒸気逃がし安全弁排気管及び主蒸気系（主蒸気第二隔離弁から主蒸気止め弁まで） 主蒸気逃がし安全弃排気管は基準地震動 S s に対し て，主蒸気系（主蒸気第二隔離弁から主蒸気止め弁ま で）は弾性設計用地震動S d に対してイ。（口）に示す許容限界を適用する。 【5 条54】	工事計画の申請範囲の相違 （女川 2 号は燃料被覆管の耐震性について本工事計画の範囲に含める。） 設備名称の相違

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）
（c）津波防護施設，浸水防止設備及び津波監視設備並 びに浸水防止設備が設置された建物•構築物

津波防護施設及び浸水防止設備が設置された建物•構築物については，当該施設及び建物•構築物が構造物全体としての変形能力（終局耐力時の変形）及び安定性について十分な余裕を有するとともに，その施設 に要求される機能（津波防護機能及び浸水防止機能） が保持できるものとする（評価項目はせん断ひずみ，応力等）。

浸水防止設備及び津波監視設備については，その設備に要求される機能（浸水防止機能及び津波監視機能）が保持できるものとする。
【5 条55】
（5）設計における留意事項
a．波及的影響
耐震重要施設及び常設耐震重要重大事故防止設備，
常設重大事故緩和設備，常設重大事故防止設備（設計
基準抎張）（当該設備が属する耐震重要度分類がSクラ スのもの）又は常設重大事故緩和設備（設計基準抎張） が設置される重大事故等対処施設（以下「上位クラス施設」という。）は，下位クラス施設の波及的影響によ って，その安全機能及び重大事故等に対処するために必要な機能を損なわない設計とする。
波及的影響については，耐震重要施設の設計に用い る地震動又は地震力を適用して評価を行ら。なお，地震動又は地震力の選定に当たつては，施設の配置状況，使用時間等を踏まえて適切に設定する。また，波及的影響においては水平 2 方向及び鋁直方向の地震力が同時に作用する場合に影響を及ぼす可能性のある施設，設備を選定し評価する。
波及的影響の評価に当たっては，敷地全体を俯瞰し た調查•検討等を行ら。
ここで，下位クラス施設とは，上位クラス施設以外 の発電所内にある施設（資機材等含む。）をいら。

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》䄸崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	差異理由
		波及的影響を防止するよう現場を維持するため，機器設置時の配慮事項等を保安規定に定めて管理する。 耐震重要施設に対する波及的影響については，以下 に示す（a）～（d）の 4 つの事項から検討を行ら。 なお，原子力発電所の地震被害情報等から新たに検討すべき事項が抽出された場合には，これを追加する。 常設而震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がS クラスのもの）又は常設重大事故緩和設備（設計基準抎張）が設置される重大事故等対処施設に対する波及的影響については，以下に示す（a）～（d）の 4 つの事項について「耐震重要施設」を「常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抎掁） （当該設備が属する耐震重要度分類が S クラスのも の）又は常設重大事故緩和設備（設計基準扩張）が設置される重大事故等対処施設」に，「安全機能」を「重大事故等に対処するために必要な機能」に読み替えて適用する。 【5 条 56】【50条62】【50条63】 （a）設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位による影響 ィ．不等沈下 耐震重要施設の設計に用いる地震動又は地震力に対 して，不等沈下による耐震重要施設の安全機能への影響。 ㅁ．相対変位 耐震重要施設の設計に用いる地震動又は地震力に対 して，下位クラス施設と耐震重要施設の相対変位によ る耐震重要施設の安全機能への影響。 【5条57】 （b）耐震重要施設と下位クラス施設との接続部にお ける相互影響 耐震重要施設の設計に用いる地震動又は地震力に対 して，耐震重要施設に接続する下位クラス施設の損傷 による耐震重要施設の安全機能への影響。	表現の相違 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。） 表現の相違 表現の相違 表現の相違

《参考》柏崎刈羽原子力発電所第 7 号
（原子炉冷却系統施設（共通項目）の基本設計方針）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》䄸崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機	差異理由
		予備品は，復旧措置にあたり機器の交換が必要な場合に備え，各エリアを 1 系統復旧できる数量を配備す る。 【5 条 72】【50 条 78】 可搬ポンプユニットは，各エリアの排水機能の維持 を可能とする配備数とし，高台の堅固な地盤に外部事象を考慮して分散配置する。 【5 条 73】【50 条 79】 地下水位低下設備は，保安規定において運転上の制限を設定し，地下水位を一定の範囲に保持できない場合又はそのおそれがある場合には，可搬ポンプユニッ トによる水位低下措置を速やかに開始するとともに，原子炉を停止する。 また，地下水位低下設備の復旧措置に的確かつ柔軟 に対処できるように，復旧措置に係る資機材の配備，手順書及び体制の整備並びに教育訓練の実施方針を自然災害発生時等の体制の整備及び重大事故等発生時の体制の整備として，保安規定に定めた上で，社内規定 に定める。 【5 条63】50 条66】 地下水位低下設備の機能喪失を想定しても，地震時 の液状化に伴ら地中埋設構造物の浮上りに対して，ア クセスルートの通行性を外部からの支援が可能となる までの一定期間碓保するとともに，アクセスルートの通行性に影響を与える場合は対策を講ずる設計とす る。 【5 条 74】【50 条 80】 （6）緊急時対策所 緊急時対策所については，基準地震動S s による地震力に対して，重大事故等に対処するために必要な機能が損なわれるおそれがない設計とする。 【50条67】	設計の差異 （地下水位低下設備の予備品の配備につい て具体的に記載している。） 設計の差異 （可搬型設備の配備について具体的に記載 している。） 設計の差異 （地下水位低下設備機能霛失に係る運用担保事項の相違。） 設計の差異 （地下水位低下設備機能霝失を想定しても アクセスルートの通行性に影響を与えない よう必要な対策を講ずる設計としている。） 設備名称の相違

赤字：設備，運用又は体制の相違点（設計方針の相違）
赤子：設作，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

《参考》䄸崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	差異理由
		緊急時対策所を設置する緊急時対策建屋について は，耐震構造とし，基準地震動 S s による地震力に対 して，遮蔽性能を確保する。また，緊急時対策所の居住性を確保するため，基淮地震動S s による地震力に対して，緊急時対策所の換気設備の性能とあいまって十分な気密性を確保する。 【50条68】 更に，施設全体の更なる安全性を碓保するため，基準地震動S s による地震力との組合せに対して，短期許容応力度以内に収める設計とする。 【50 条69】	表現の相違 設計の差異 （緊急時対策所の設計方針の相違。）
		なお，地震力の算定方法及び荷重の組合せと許容限界については，「2．1．1（3）地震力の算定方法」及び 「2．1．1（4）荷重の組合せと許容限界」に示す建物•構築物及び機器•配管系のものを適用する。 【50条70】 2．1．2 地震による周辺斜面の崩壊に対する設計方針耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がSクラ スのもの）又は常設重大事故緩和設備（設計基準抁張） が設置される重大事故等対処施設については，基準地震動S s による地震力により周辺斜面の崩壊の影響が ないことが確認された場所に設置する。 【5 条64】50 条71】	表現の相違 表現の相違 設計の差異 （女川 2 号では設計基準拡張の区分を設け ている。）

要求事項との対比表

```赤色:様式-6に関する記載(付番及び下線) 青色: 設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更䚽可と基本設計方針(後) との対比 緑色:技術基淮規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比```	I 1 ○条○○1：関連する資料と基本設計方針を紐づけるための付番 ＜関連する資料＞   - 様式 -1 への展開表（補足説明資料）   - 技術基淮要求機器リスト（設定根拠に関する説明書 別添 -1 ） $\qquad$ ：前回提出時からの変更箇所

は，これに作用する地震力
（設置許可基準規則第四条第二項の規定により算定す る地震力をいう。）による損壊により公衆に放射線障害 を及ぼさないように施設し なければならない。

## （2）（4）（5）（6）

## 【解釈】

1 第 1 項の規定は，設置許可基準規則第 4 条第 1 項の規定に基づき設置許可で確認した設計方針に基づき，設計基準対象施設が，設置許可基準規則第 4 条第 2 項 の地震力に対し，施設の機能を維持していること又は構造強度を確保しているこ とをいう。
（2）（4）（5）6

2 耐震重要施設（設置許可基準規則第三条第一項に規定する耐震重要施設をい う。以下同じ。）は，基準地震動による地震力（設置許可基準規則第四条第三項に規定する基準地震動による地震力をいう。以下同じ。） に対してその安全性が損な われるおそれがないように施設しなければならない。

$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
イ 発電用原子炬施設の位置   （1）敷地の面積及び形状   発電用原子炉施設を設置 する敷地は，宮城県牡鹿半島のほぼ中央東部に位置 し，北東側は太平洋に面し ており，三方を山に囲まれ た山地と狭小な平地からな っている。   敷地内の地質は，中生界 ジュラ系及びそれを不整合 で覆う第四系からなる。   敷地の形状は海岸線に直径を持つほぼ半円形であ り，敷地全体の広さは約 173万 $\mathrm{m}^{2}$ である。   常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設については，基準地震動 S s による地震力が作用した場合において も，接地圧に対する十分な支持力を有する地盤に設置 する。   また，上記に加え，基準地震動 S s による地震力が作用することによって弱面上 のずれが発生しないことを含め，基準地震動 S s によ る地震力に対する支持性能 を有する地盤に設置する。   常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設は，地震発生			

$\stackrel{\oplus}{\omega}$

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】
要求事項との対比表

技術基準規則•解釈	
（3）（4）（5）（6）（7）	
【解釈】	
2 第2項の規定は，設置許	

2 第2項の規定は，設置許可基準規則第4条第3項の規定に基づき設置許可で確認した設計方針に基づき，耐震重要施設が，設置許可基準規則第 4 条第 3 項の基準地震動による地震力に対 し，施設の機能を維持して いること又は構造強度を確保していることをいう。
（3）（4）（5）（6）（7）
3 動的機器に対する「施設 の機能を維持しているこ と」とは，基準地震動による応答に対して，当該機器に要求される機能を保持する ことをいう。具体的には，当該機器の構造，動作原理等 を考慮した評価を行うこ と，既往研究で機能維持の確認がなされた機能確認済加速度等を超えていないこ とを確認することをいう。 （2）（3）（4）（5）（6）（7）

	IOO条OO1：関連する資料と基本設計方針を細づけるための付番   ＜関連する資料＞   - 様式 -1 への展開表（補足説明資料）   - 技術基準要求機器リスト（設定根执に関する説明書 別添－1）   ：前回提出時からの変更箇所

——童本設訪方針（前）と基本設計方針（後）との対比
$\qquad$


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】
要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	2．自然現象   2.1 地震による損傷の防止   2．1．1．耐震設計   （1）耐震設計の基本方針耐震設計は，以下の項目 に従って行う。   a．設計基準対象施設のう ち，耐震重要施設は，その供用中に当該耐震重要施設に大きな影響を及ぼすおそれ がある地震（設置（変更）許可を受けた基準地震動（以下「基準地震動」という。）） による加速度によって作用 する地震力に対して，その安全機能が損なわれるおそ れがない設計とする。   【5 条1】   b．設計基準対象施設は，地震により発生するおそれ がある安全機能の喪失（地震に伴って発生するおそれ がある津波及び周辺斜面の崩壊等による安全機能の喪失を含む。）及びそれに続く放射線による公衆への影響 を防止する観点から，各施設の安全機能が喪失した場	2．自然現象   2.1 地震による損傷の防止   2．1．1 耐震設計   （1）耐震設計の基本方針耐震設計は，以下の項目 に従って行う。   a．設計基準対象施設のう ち，耐震重要施設は，その供用中に当該耐震重要施設に大きな影響を及ぼすおそれ がある地震（設置（変更）許可を受けた基準地震動 S s （以下「基準地震動 S s 」と いう。））による加速度によ って作用する地震力に対し て，その安全機能が損なわ れるおそれがない設計とす る。 （2）a（3）a（3）b【5条1】   b．設計基準対象施設は，耐震重要度に応じて，Sクラ ス，Bクラス又はCクラスに分類し，それぞれに応じた地震力に十分耐えられる設計とする。   （2） b （4） a 【5 条 2】	（i）設計基準対象施設の耐震設計   設計基準対象施設につい ては，耐震重要度分類に応 じて，適用する地震力に対 して，以下の項目に従って耐震設計を行う。   a．耐震重要施設は，基準地震動 S s による地震力に対 して，安全機能が損なわれ るおそれがないように設計 する。（3）b   b．設計基準対象施設は，地震により発生するおそれが ある安全機能の喪失及びそ れに続く放射線による公衆 への影響を防止する観点か ら，各施設の安全機能が喪失した場合の影響の相対的 な程度に応じて，耐震重要度分類を以下のとおり，S クラス，Bクラス又はCク	構造」及び「1．4．4 地震検知 による耐震安全性の碓保」 に従って行う。（1）   1．4．1 設計基準対象施設の耐震設計   1．4．1．1 設計基準対象施設 の耐震設計の基本方針   設計基準対象施設の耐震設計は，以下の項目に従っ て行う。   （1）地震により生じるおそ れがあるその安全機能の喪失に起因する放射線による公衆への影響の程度が特に大きいもの（以下「耐震重要施設」という。）は，その供用中に当該耐震重要施設に大きな影響を及ぼすおそれ がある地震による加速度に よって作用する地震力に対 して，その安全機能が損な われるおそれがないように設計する。（2）a（3）a   （2）設計基準対象施設は，地震により発生するおそれ がある安全機能の喪失（地震に伴って発生するおそれ がある津波及び周辺斜面の崩壊等による安全機能の喪失を含む。）及びそれに続く放射線による公衆への影響 を防止する観点から，各施設の安全機能が喪失した場	同趣旨の記載であるが，表現の違いによる差異あり   同趣旨の記載であるが，表現の違いによる差異あり	原子炉冷却系統施設（共通）   2．1．1 耐震設計   同上

要求事項との対比表

```赤色:様式-6汇関する記載(付番及び下線) 青色: 設㯰変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更許可と基本設計方針(後) との対比 緑色:技術基淮規則と基本設計方針(後) との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比```	1 10 条 $\mathrm{OO1}$ ：関連する資料と基本設計方針を紐づけるための付番 ＜関連する資料＞   - 様式 -1 への展開表（補足説明資料）   - 技術基準要求機器リスト（設定根拠に関する説明書 別添－1）   ：前回提出時からの変更䉡所


技術基漼規則•解䄧	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	合の影響の相対的な程度 （以下「耐震重要度」とい う。）に応じて，Sクラス，B クラス又はC クラスに分類 （以下「耐震重要度分類」と いう。）し，それぞれに応じ た地震力に十分耐えられる設計とする。 【5 条2】 c．建物•構築物とは，建物，構築物及び土木構造物 （屋外重要土木構造物及び その他の土木構造物）の総称とする。 また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系の間接支持機能又は非常時における海水 の通水機能を求められる土木構造物をいう。 【5 条2－1】 d．Sクラスの施設は，基準地震動による地震力に対し てその安全機能が保持でき る設計とする。	c．S クラスの施設（e．に記載のもののらち，津波防護施設，浸水防止設備及び津波監視設備を除く。）は，基準地震動 S s による地震力 に対してその安全機能が保持できる設計とする。（3）c	ラスに分類し，それぞれに応じた地震力に十分耐えら れるように設計する。 2（2） b，（4）a 重複）	合の影響の相対的な程度 （以下「耐震重要度」とい ら。）に応じて，耐震重要度分類をSクラス，Bクラス又はCクラスに分類し，そ れぞれに応じた地震力に十分耐えられるように設計す る。（2） 4 （4）a （3）建物•構築物について は，耐震重要度分類の各ク ラスに応じて算定する地震力が作用した場合において も，接地圧に対する十分な支持力を有する地盤に設置 する。 なお，建物•構築物とは，建物，構築物及び土木構造物（屋外重要土木構造物及 びその他の土木構造物）の総称とする。 また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系の間接支持機能又は非常時における海水 の通水機能を求められる土木構造物をいう。 （4）Sクラスの施設（ 6 ）に記載のもののうち，津波防護機能を有する設備（以下「津波防護施設」という。），浸水防止機能を有する設備 （以下「浸水防止設備」とい う。）及び敷地における津波監視機能を有する施設（以	同趣旨の記載であるが，表現の違いによる差異あり 基準要求への適合性を明確化 追加要求事項に伴ら差異 （津波防護施設，浸水防止設備及び津波監視設備，動的機能維持の評価方針の明確化。）	原子炉冷却采統施設（共通） 2．1．1 耐震設計 同上

要求事項との対比表

```赤色:樣式-6汇関する記載(付番及び下線) 青色: 設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更䚽可と基本設計方針(後) との対比 緑色:技術基淮規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比```	IOO条OO1：関連する資料と基本設計方針を紐づけるための付番   ＜関連する資料＞   - 様式 -1 への展開表（禣足説明資料）   - 技術基準要求機器りスト（設定根执に関する説明書 別添 -1 ） $\square$前回提出時からの変更箇所


技術基準規則•解釈	設工認申請書 基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\text { 設置許可申請書 }}{\text { 本文 }}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）に対 して十分な余裕を有し，建物•構築物の終局耐力に対 し妥当な安全余裕を有する設計とする。   機器•配管系については， その施設に要求される機能 を保持する設計とし，塑性 ひずみが生じる場合であっ ても，その量が小さなしベ ルにとどまって破断延性限界に十分な余裕を有し，そ の施設に要求される機能に影響を及ぼさない，また，動的機器等については，基準地震動による応答に対して その設備に要求される機能 を保持する設計とする。   また，設置（変更）許可を受けた弾性設計用地震動 （以下「弾性設計用地震動」 という。）による地震力又は	建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）に対 して十分な余裕を有し，建物•構築物の終局耐力に対 し妥当な安全余裕を有する設計とする。   機器•配管系については， その施設に要求される機能 を保持する設計とし，塑性 ひずみが生じる場合であっ ても，その量が小さなレべ ルにとどまって破断延性限界に十分な余裕を有し，そ の施設に要求される機能に影響を及ぼさない，また，動的機器等については，基準地震動S s による応答に対 してその設備に要求される機能を保持する設計とす る。なお，動的機能が要求さ れる機器については，当該機器の構造，動作原理等を考慮した評価を行い，既往 の研究等で機能維持の確認 がなされた機能碓認済加速度等を超えていないことを確認する。（3）d   また，設置（変更）許可を受けた弾性設計用地震動 S d（以下「弾性設計用地震動 Sd」という。）による地震		下「津波監視設備」という。） を除く。）は，基準地震動S sによる地震力に対してそ の安全機能が保持できるよ らに設計する。（3） c   また，弾性設計用地震動 Sdによる地震力又は静的地震力のいずれか大きい方 の地震力に対しておおむね弾性状態にとどまる範囲で耐えられる設計とする。③ （2）重複）		（3）d引用元：P16

要求事項との対比表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	f．屋外重要土木構造物 は，基準地震動による地震力に対して，構造物全体と して変形能力（終局耐力時 の変形）について十分な余裕を有するとともに，それ ぞれの施設及び設備に要求 される機能が保持できる設計とする。   【5 条5】   g．B クラスの施設は，静的地震力に対しておおむね弾性状態にとどまる範囲で耐 えられる設計とする。   また，共振のおそれのあ る施設については，その影響についての検討を行う。 その場合，検討に用いる地震動は，弾性設計用地震動 に 2 分の 1 を乗じたものと	e．屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置された建物•構築物は，基準地震動 S s に よる地震力に対して，構造物全体として変形能力（終局耐力時の変形）について十分な余裕を有するととも に，それぞれの施設及び設備に要求される機能が保持 できる設計とする。   （3）e【5条5】   f．Bクラスの施設は，静的地震力に対しておおむね弾性状態にとどまる範囲で耐 えられる設計とする。（2）f   また，共振のおそれのあ る施設については，その影響についての検討を行う。 その場合，検討に用いる地震動は，弾性設計用地震動 S dに 2 分の 1 を乗じたも		（6）屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物は，基準地震動 S s による地震力に対し て，構造物全体としての変形能力（終局耐力時の変形） について十分な余裕を有す るとともに，それぞれの施設及び設備に要求される機能が保持できるように設計 する。（3）e なお，基準地震動 S s の水平 2 方向及び鉛直方向の地震力の組合せにつ いては，上記（5）と同様とす る。③（5）a 重複）   また，重大事故等対処施設を津波から防護するため の津波防護施設，浸水防止設備及び津波監視設備並び に浸水防止設備が設置され た建物•構築物についても同様の設計方針とする。〈4   （7）Bクラスの施設は，静的地震力に対しておおむね弾性状態にとどまる範囲で耐えられるように設計す る。（2）f   また，共振のおそれのあ る施設については，その影響についての検討を行う。 その場合，検討に用いる地震動は，弾性設計用地震動	同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴う差異   （津波防護施設，浸水防止設備及び津波監視設備）   同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴う差異 （水平2方向及び鉛直方向 の組合せ）	原子炉泠却系統施設（共通）   2．1．1 耐震設計   原子炉冷却系統施設（共通）   2．1．1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{gathered} \begin{array}{c} \text { 設置許可申請書 } \\ \text { 本文 } \end{array} \\ \hline \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	する。   【5 条6】   C クラスの施設は，静的地震力に対しておおむね弾性状態にとどまる範囲で耐え られる設計とする。   【5 条 7】	のとする。なお，当該地震動 による地震力は，水平 2 方向及び鉛直方向について適切 に組み合わせて算定するも のとする。   （5）【5 条6】   C クラスの施設は，静的地震力に対しておおむ数弾性状態にとどまる範囲で耐え られる設計とする。   （2）【5 条7】   g．耐震重要施設は，それ以外の発電所内にある施設 （資機材等含む。）の波及的影響によって，その安全機能を損なわない設計とす る。   （3）【5 条8】		Sdに2分の1を乗じたも のとする。なお，当該地震動 による地震力は，水平 2 方向及び鉛直方向について適切に組み合わせて算定する ものとし，Sクラス施設と同様に許容限界の範囲内に とどまることを確認する。 （5）b   （8）Cクラスの施設は，静的地震力に対しておおむね弾性状態にとどまる範囲で耐えられるように設計す る。（2）g   （9）耐震重要施設は，耐震重要度分類の下位のクラス に属するものの波及的影響 によって，その安全機能を損なわないように設計す る。③（3）h（7）a 重複）   （10）設計基準対象施設の構造計画及び配置計画に際 しては，地震の影響が低減 されるように考慮する。⑤   （11）設計基準対象施設の設計においては，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内 の地下水位が地表面付近ま で上昇するおそれがあるこ とを踏まえ，地下水位を一定の範囲に保持する地下水位低下設備を設置し，同設	同趣旨の記載であるが，表現の違いによる差異あり   同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴ら差異 （波及的影響の検討）	原子炉冷却系統施設（共通）   2．1．1 耐震設計   同上   （3）f引用元：P45

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	（2）耐震重要度分類	j．耐震重要施設について は，液状化，揺すり込み沈下等の周辺地盤の変状を考慮 した場合においても，その安全機能が損なわれないよ う，適切な対策を講ずる設計とする。   （3）g【5 条9】   （2）耐震重要度分類		備の効果が及ぶ範囲におい ては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ば ない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。③（33）重複）   （12）耐震重要施設は，液状化，揺すり込み沈下等の周辺地盤の変状を考慮した場合においても，その安全機能が損なわれるおそれがな いように設計する。（3）g   （13）炉心内の燃料被覆管 の放射性物質の閉じ込めの機能については，以下のと おり設計する。   弾性設計用地震動 S d に よる地震力又は静的地震力 のいずれか大きい方の地震力に対して，炉心内の燃料被覆管の応答が全体的にお おむね弾性状態にとどまる ように設計する。   基準地震動 S s による地震力に対して，放射性物質 の閉じ込めの機能に影響を及ぼさないように設計す る。（3）（6）y，8 b 重複）   1．4．1．2 耐震重要度分類	同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴ら差異 （地盤変状の考慮）	原子炉冷却系統施設（共通） 2．1．1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 (後) } \\ \hline \end{gathered}$	$\underset{\substack{\text { 設置許可中請書 } \\ \text { 本文 }}}{ }$	設置許可申請書添付書頑八	設置許可，技術基準規則及び基本設計方針との対比	備考
	a．耐震重要度分類   設計基準対象施設の耐震重要度を以下のとおり分類 する。   （a） S クラスの施設   地震により発生するおそ れがある事象に対して，原子炉を停止し，炉心を泠却 するために必要な機能を持 つ施設，自ら放射性物質を内蔵している施設，当該施設に直接関係しておりその機能喪失により放射性物質 を外部に拡散する可能性の ある施設，これらの施設の機能喪失により事故に至っ た場合の影響を緩和し，放射線による公衆への影響を軽減するために必要な機能 を持つ施設及びこれらの重要な安全機能を支援するた めに必要となる施設，並び に地震に伴って発生するお それがある津波による安全機能の喪失を防止するため に必要となる施設であっ て，その影響が大きいもの であり，次の施設を含む。 －原子炉冷却材圧力バウン ダリを構成する機器•配管系   －使用済燃料を貯蔵するた めの施設   －原子炉の緊急停止のため に急激に負の反応度を付加するための施設，及び原子炉の停止状態を維持す	a．耐震重要度分類   設計基準対象施設の耐震重要度を以下のとおり分類 する。   （a） S クラスの施設   地震により発生するおそ れがある事象に対して，原子炉を停止し，炉心を椧却 するために必要な機能を持 つ施設，自ら放射性物質を内蔵している施設，当該施設に直接関係しておりその機能襄失により放射性物質 を外部に拡散する可能性の ある施設，これらの施設の機能喪失により事故に至っ た場合の影響を緩和し，放射線による公衆への影響を軽減するために必要な機能 を持つ施設及びこれらの重要な安全機能を支援するた めに必要となる施設，並び に地震に伴って発生するお それがある津波による安全機能の襄失を防止するため に必要となる施設であっ て，その影響が大きいもの であり，次の施設を含む。   －原子炉冷却材圧力バウン ダリを構成する機器•配管系   －使用済燃料を貯蔵するた めの施設   －原子炉の緊急停止のため に急激に負の反応度を付加するための施設，及び原子炉の停止状態を維持す	Sクラス   地震により発生するおそれ がある事象に対して，原子炉を停止し，炉心を椧却す るために必要な機能を持つ施設，自ら放射性物質を内蔵している施設，当該施設 に直接関係しておりその機能喪失により放射性物質を外部に拡散する可能性のあ る施設，これらの施設の機能喪失により事故に至った場合の影響を緩和し，放射線による公衆への影響を軽減するために必要な機能を持つ施設及びこれらの重要 な安全機能を支援するため に必要となる施設，並びに地震に伴って発生するおそ れがある津波による安全機能の喪失を防止するために必要となる施設であって， その影響が大きいもの 2（4）b 重複）	設計基準対象施設の耐震重要度分類を，次のように分類する。   （1）Sクラスの施設   地震により発生するおそ れがある事象に対して，原子炉を停止し，炉心を椧却 するために必要な機能を持 つ施設，自ら放射性物質を内蔵している施設，当該施設に直接関係しておりその機能喪失により放射性物質 を外部に拡散する可能性の ある施設，これらの施設の機能喪失により事故に至つ た場合の影響を緩和し，放射線による公衆への影響を軗減するために必要な機能 を持つ施設及びこれらの重要な安全機能を支援するた めに必要となる施設，並び に地震に伴って発生するお それがある津波による安全機能の喪失を防止するため に必要となる施設であっ て，その影響が大きいもの であり，次の施設を含む。   －原子炬冷却材圧カバウン ダリを構成する機器•配管系 －使用済燃料を貯蔵するた めの施設   －原子炉の緊急停止のため に急激に負の反応度を付加 するための施設，及び原子师の停止状態を維持するた	同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴ら差異 （津波防護施設，浸水防止設備及び津波監視設備。）	原子炉冷却系統施設（共通）   2．1．1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\text { 本文 }}{\text { 設置許可申青書 }}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備
	が少ない又は貯蔵方式に より，その破損により公衆 に与える放射線の影響が「実用発電用原子炉の設置，運転等に関する規則 （昭和53年通商産業省令第 77 号）」 第 2 条第 2 項第 6 号に規定する「周辺監視区域 1 外における年間の線量限度に比べ十分小さい ものは除く。）   －放射性廃棄物以外の放射性物質に関連した施設で， その破損により，公衆及び従事者に過大な放射線被 ばくを与える可能性のあ る施設   －使用済燃料を椧却するた めの施設   －放射性物質の放出を伴う ような場合に，その外部放散を抑制するための施設 で， S クラスに属さない施設   【5条11】   （c）Cクラスの施設   S クラスに属する施設及 び B クラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求 される施設である。   上記に基づく耐震重要度分類を第2．1．1表に示す。   なお，同表には当該施設 を支持する構造物の支持機能が維持されることを確認	が少ない又は貯蔵方式に より，その破損により公衆 に与える放射線の影響が「実用発電用原子炉の設置，運転等に関する規則 （昭和53年通商産業省令第 77 号）」第 2 条第 2 項第 6 号に規定する「周辺監視区域」外における年間の線量限度に比べ十分小さい ものは除く。）   －放射性廃棄物以外の放射性物質に関連した施設で， その破損により，公衆及び従事者に過大な放射線被 ばくを与える可能性のあ る施設   －使用済燃料を泠却するた めの施設   －放射性物質の放出を伴う ような場合に，その外部放散を抑制するための施設 で，Sクラスに属さない施設   （4）【5 条 11】   （c）Cクラスの施設   S クラスに属する施設及 び B クラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求 される施設である。   上記に基づく耐震重要度分類を第2．1．1表に示す。   なお，同表には当該施設 を支持する構造物の支持機能が維持されることを確認	Cクラス   Sクラスに属する施設及び Bクラスに属する施設以外 の一般産業施設又は公共施設と同等の安全性が要求さ れる施設   2（4）d 重複）	り，その破損により公衆に与える放射線の影響が「実用発電用原子炉の設置，運転等に関する規則（昭和 53年通商産業省令第 77 号）」第 2 条第 2 項第 6 号に規定 する「周辺監視区域」外に おける年間の線量限度に比 べ十分小さいものは除く。）   －放射性廃棄物以外の放射性物質に関連した施設で， その破損により，公衆及び従事者に過大な放射線被ば くを与える可能性のある施設   －使用済燃料を泠却するた めの施設   －放射性物質の放出を伴う ような場合に，その外部放散を抑制するための施設 で，Sクラスに属さない施設   （4） c   （3）Cクラスの施設   Sクラスに属する施設及 びBクラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求 される施設である。   上記に基づく耐震重要度分類を第1．4．1－1 表に示 す。   なお，同表には当該施設 を支持する構造物の支持機	同趣旨の記載であるが，表現の違いによる差異あり	原子炉冷却系統施設（共通） 2．1．1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】
耐震設計に用いる地震力 の算定は以下の方法によ る。
a．静的地震力
設計基準対象施設に適用 する静的地震力は，Sクラス の施設，Bクラス及びCクラ スの施設に適用することと し，それぞれ耐震重要度分類に応じて次の地震層せん断力係数 $\mathrm{C}_{\mathrm{i}}$ 及び震度に基 づき算定する。
【5条13】

## （a）建物•構築物

水平地震力は，地震層せ ん断力係数 $\mathrm{C}_{\mathrm{i}}$ に，次に示す施設の耐震重要度分類に応 じた係数を乗じ，さらに当該層以上の重量を乗じて算定するものとする。
Sクラス 3.0
Bクラス 1.5
Cクラス 1.0
ここで，地震層せん断力係数Ciは，標準せん断力係数Coを 0.2 以上とし，建物．

要求事項との対比表

| $\substack{\text { 設工認申請書復 } \\ \text { 基本設計方針 } \\ \text {（後）}}$ |
| :--- | :--- |$|$

（3）地震力の算定方法
耐震設計に用いる地震力 の算定は以下の方法によ る。
a．静的地震力
設計基準対象施設に適用 する静的地震力は，sクラス の施設（津波防謢施設，浸水防止設備及び津波監視設備 を除く。），Bクラス及びCク ラスの施設に適用すること とし，それぞれ耐震重要度分類に応じて次の地震層せ ん断力係数 $\mathrm{C}_{\mathrm{i}}$ 及び震度に基づき算定する。
（5）【5 条13】
（a）建物•構築物水平地震力は，地震層せ ん断力係数 $\mathrm{C}_{\mathrm{i}}$ に，次に示す施設の耐震重要度分類に応 じた係数を乗じ，さらに当該層以上の重量を乗じて算定するものとする。
Sクラス 3.0
Bクラス 1.5
Cクラス 1.0
ここで，地震層せん断力係数 $\mathrm{C}_{\mathrm{i}}$ は，標準せん断力係
数C

```赤色:様式-6江関する記載(付番及び下線) 青色:設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更許可と基本設計方針(後) との対比 緑色:技術基淮规則と基本設計方針(後) との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比```	＜関速する資料〉   －㭬式 -1 への展開表（禣足説明資料）      ：前回规出時からの変更箘所


設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比

c．Sクラスの施設（e．に記載のもののうち，津波防護機能を有する設備（以下「津波防護施設」という。），浸水防止機能を有する設備 （以下「浸水防止設備」とい
う。）及び敷地における津波監視機能を有する施設（以下「津波監視設備」という。） を除く。），Bクラス及びC クラスの施設は，建物•構築物については，地震層せん断力係数 C_{i} に，それぞれ 3． 0 ， 1.5 及び 1.0 を乗じて求められる水平地震力，機器•配管系については，それ ぞれ $3.6,1.8$ 及び 1.2 を乗じた水平震度から求めら れる水平地震力に十分に耐 えられるように設計する。建物•構築物及び機器•配管系ともに，おおむね弾性状態にとどまる範囲で耐えら れるように設計する。

ここで，地震層せん断力係数C i_{i} は，標準せん断力係数C。を 0.2 以上とし，建物•構築物の振動特性，地盤 の種類等を考慮して求めら れる値とする。

同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴う差異 （津波防護施設，浸水防止設備及び津波監視設備。）

原子炉冷却系統施設（共通） 2．1．1 耐震設計
．4．1．3 地震力の算定方法
設計基準対象施設の耐震設計に用いる地震力の算定

は以下の方法による。

（1）静的地震力
静的地震力は，Sクラス の施設（津波防護施設，浸水防止設備及び津波監視設備 を除く。），Bクラス及びC クラスの施設に適用するこ ととし，それぞれ耐震重要度分類に応じて次の地震層 せん断力係数 Ci 及び震度 に基づき算定する。 （5） c
a．建物•構築物
水平地震力は，地震層せ ん断力係数 C_{i} に，次に示す施設の耐震重要度分類に応 じた係数を乗じ，さらに当該層以上の重量を乗じて算定するものとする。
Sクラス 3.0
Bクラス 1.5
Cクラス 1.0
ここで，地震層せん断力
係数 $\mathrm{C}_{\mathrm{i}} \mathrm{i}$ は，標準せん断力係

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

赤色：様式－6に関する記載（付番及び下線） 青色：設置変更許可本文及び添付書類八からの引用以外の記載 茶色：設置変更許可と基本設計方針（後）との対比 緑色：技術基淮規則と基本設計方針（後）との対比 紫色：基本設計方針（前）と基本設計方針（後）との対比	I 1 O条 OO I：関連する資料と基本設計方針を紐づけるための付番 ＜開連する資料＞ - 様式 -1 への展閎表（禣足説明資料） - 技術基準要求機器リスト（設定根执に関する説明書 別添－1） ：前回提出時からの変更箇所

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	構築物の振動特性，地盤の種類等を考慮して求められ る値とする。 また，必要保有水平耐力 の算定においては，地震層 せん断力係数 C_{i} に乗じる施設の耐震重要度分類に応 じた係数は，Sクラス，Bク ラス及びCクラスともに1．0 とし，その際に用いる標準 せん断力係数Coは1．0以上 とする。 S クラスの施設について は，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとす る。鉛直地震力は，震度 0.3以上を基準とし，建物•構築物の振動特性，地盤の種類等を考慮し，高さ方向に一定として求めた鉛直震度よ り算定するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認められる規格及び基準を参考に，Cクラスに適用され る静的地震力を適用する。 【5 条 14】 （b）機器•配管系 静的地震力は，上記（a）に示す地震層せん断力係数C iに施設の耐震重要度分類 に応じた係数を乗じたもの を水平震度として，当該水平震度及び上記（a）の鉛直震度をそれぞれ 20% 増しと	構築物の振動特性，地盤の種類等を考慮して求められ る値とする。 また，必要保有水平耐力 の算定においては，地震層 せん断力係数 C_{i} 汽乗じる施設の耐震重要度分類に応 じた係数は，Sクラス，Bク ラス及びCクラスともに1．0 とし，その際に用いる標準 せん断力係数 Coは1．0以上 とする。 S クラスの施設について は，水平地震力と鋁直地震力が同時に不利な方向の組合せで作用するものとす る。鉛直地震力は，震度 0.3以上を基準とし，建物•構築物の振動特性，地盤の種類等を考慮し，高さ方向に一定として求めた鉛直震度よ り算定するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認められる規格及び基準を参考に，cクラスに適用され る静的地震力を適用する。 （5）d【5条14】 （b）機器•配管系 静的地震力は，上記（a）に示す地震層せん断力係数C i に施設の耐震重要度分類 に応じた係数を乗じたもの を水平震度として，当該水平震度及び上記（a）の鉛直震度をそれぞれ 20% 増しと	ただし，土木構造物の静的地震力は，Cクラスに適用される静的地震力を適用 する。 Sクラスの施設（e．に記載のもののらち，津波防護施設，浸水防止設備及び津波監視設備を除く。）につい ては，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとす る。鉛直地震力は，建物•構築物については，震度 0.3以上を基準とし，建物•構築物の振動特性，地盤の種類等を考慮して求められる鉛直震度，機器•配管系につい ては，これを 1.2 倍した鉛直震度より算定する。ただ し，鉛直震度は高さ方向に一定とする。 （2）（2） c, （2） $\mathrm{d},(2 \mathrm{f},(2) \mathrm{g},(5 \mathrm{c}$ ， （5）d，（5）e 重複）	物•構築物の振動特性，地盤 の種類等を考慮して求めら れる値とする。 また，必要保有水平耐力 の算定においては，地震層 せん断力係数 C_{i} に乗じる施設の耐震重要度分類に応じ た係数は，Sクラス，Bクラ ス及びCクラスともに 1.0 とし，その際に用いる標準 せん断力係数C。は1．0 以上とする。 Sクラスの施設について は，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとす る。鉛直地震力は，震度 0.3以上を基準とし，建物•構築物の振動特性，地盤の種類等を考慮し，高さ方向に一定として求めた鉛直震度よ り算定するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認められる規格及び基準を参考に，Cクラスに適用さ れる静的地震力を適用す る。 （5）d b．機器•配管系 静的地震力は，上記 a．に示す地震層せん断力係数 C_{i} に施設の耐震重要度分類に応じた係数を乗じたものを水平震度として，当該水平震度及び上記 a 。 の鉛直震度をそれぞれ 20% 増しとし	同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴ら差異 （標準せん断係数 C_{0} 等の割増し係数の適用）	原子炉泠却采䖻施設（共通） 2．1．1 而震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】
要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）		設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	した震度より求めるものと する。 S クラスの施設について は，水平地震力と鉛直地震力は同時に不利な方向の組合せで作用するものとす る。ただし，鉛直震度は高さ方向に一定とする。 【5条15】	した震度より求めるものと する。 S クラスの施設について は，水平地震力と鉛直地震力は同時に不利な方向の組合せで作用するものとす る。ただし，鉛直震度は高さ方向に一定とする。 上記（a）及び（b）の標準せ ん断力係数 Co 等の割増し係数の適用については，耐震性向上の観点から，一般産業施設，公共施設等の耐震基準との関係を考慮して設定する。 （5） e 【5 条 15】	d．Sクラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）は，基準地震動 S s による地震力に対して安全機能が保持 できるように設計する。 2 （2）a，（3）a 重複）建物•構築物については，構造物全体 としての変形能力（終局耐力時の変形）について土分 な余裕を有し，建物•構築物 の終局耐力に対し妥当な安全余裕を有するように設計 する。機器•配管系について は，その施設に要求される機能を保持するように設計 し，塑性ひずみが生じる場合であっても，その量が小 さなレベルにとどまって破断延性限界に十分な余裕を	た震度より求めるものとす る。 なお，Sクラスの施設に ついては，水平地震力と鉛直地震力は同時に不利な方向の組合せで作用するもの とする。ただし，鉛直震度は高さ方向に一定とする。 上記a．及びb ．の標準せ几断力係数 C 。等の割増し係数の適用については，耐震性向上の観点から，一般産業施設，公共施設等の耐震基準との関係を考慮して設定する。 （5）		

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	b．動的地震力 設計基準対象施設につい ては，動的地震力は，Sクラ スの施設，屋外重要士木構造物及び B クラスの施設の らち共振のおそれのあるも のに適用する。 S クラスの施設について	b．動的地震力設計基準対象施設につい ては，動的地震力は，Sクラ スの施設，屋外重要土木構造物及び B クラスの施設の らち共振のおそれのあるも のに適用する。 S クラスの施設（津波防護	有し，その施設に要求され る機能に影響を及ぼさない ように，また，動的機器等に ついては，基準地震動S s による応答に対して，その設備に要求される機能を保持するように設計する。（3）d また，弾性設計用地震動 Sdによる地震力又は静的地震力のいずれか大きい方 の地震力に対しておおむね弾性状態にとどまる範囲で耐えられるように設計す る。（2）c建物•構築物につい ては，発生する応力に対し て，「建築基準法」等の安全上適切と認められる規格及 び基準による許容応力度を許容限界とする。機器•配管系については，応答が全体的におおむ叔弾性状態にと どまるように設計する。（2）d なお，基準地震動 S s 及 び弾性設計用地震動 S d に よる地震力は，水平 2 方向及び鉛直方向について適切 に組み合わせて算定するも のとする。 2（5）a 重複）	（2）動的地震力 動的地震力は，Sクラス の施設，屋外重要土木構造物及びBクラスの施設のう ち共振のおそれのあるもの に適用することとし，基準地震動 S s 及び弾性設計用地震動S d から定める入力	同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴ら差異 （津波防護施設，浸水防止設備及び津波監視設備。）	原子炉冷却系統施設（共通） 2．1． 1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

	IOO条OO1：関連する資料と基本設計方針を細づけるための付番 ＜開連する資料＞ - 様式 -1 への展開表（補足説明資料） - 技術基準要求機器リスト（設定根执に関する説明書 別添－1） ：前回提出時からの変更箇所

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	は，基準地震動及び弾性設計用地震動から定める入力地震動を適用する。 B クラスの施設のらち共振のおそれのあるものにつ いては，弾性設計用地震動 から定める入力地震動の振幅を 2 分の 1 にしたものに よる地震力を適用する。 屋外重要土木構造物につ いては，基準地震動による地震力を適用する。 【5 条 16】	施設，浸水防止設備及び津波監視設備を除く。）につい ては，基準地震動 S s 及び弾性設計用地震動 S d から定める入力地震動を適用す る。（5）f B クラスの施設のらち共振のおそれのあるものにつ いては，弾性設計用地震動 S d から定める入力地震動 の振幅を 2 分の 1 にしたも のによる地震力を適用す る。（5）g 屋外重要士木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物については，基準地震動S s による地震力を適用する。 （5） h 【5 条 16】 動的解析においては，地盤の諸定数も含めて材料の ばらつきによる変動幅を適切に考慮する。 動的地震力は水平 2 方向及び鉛直方向について適切 に組み合わせて算定する。動的地震力の水平 2 方向及 び鉛直方向の組合せについ ては，水平 1 方向及び鉛直方向地震力を組み合わせた既往の耐震計算への影響の可能性がある施設•設備を抽出し， 3 次元応答性状の可能性も考慮したらえで既往の		地震動を入力として，（5）f 動的解析により水平 2 方向及 び鉛直方向について適切に組み合わせて算定する。（5）i なお，構造特性から水平 2方向及び鋁直方向の地震力 の影響が考えられる施設及 び設備については，水平 2方向及び鉛直方向の地震力 の組合せに対して，許容限界の範囲内にとどまること を碓認する。③（2）c，（2）d，（3） d 重複） Bクラスの施設のうち共振のおそれのあるものにつ いては，弾性設計用地震動 Sdから定める入力地震動 の振幅を 2 分の 1 にしたも のによる地震力を適用す る。（5）g 屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物については，基準地震動S s による地震力を適用する。（5h	設備設計の明確化 （評価時の考慮事項を明確化）追加要求事項化伴ら差異 （ばらつき等の考慮並びに水平 2 方向及び鉛直方向の組合せ）	原子炉冷却系統施設（共通） 2．1． 1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】
要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\text { 設置許可申請書 }}{\text { 本文 }}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
		方法を用いた耐震性に及ぽ す影響を評価する。 （5） i 【5条17】	基準地震動S s は，敷地 ごとに震源を特定して策定 する地震動及び震源を特定 せず策定する地震動につい て，敷地の解放基盤表面に おける水平方向及び鉛直方向の地震動としてそれぞれ策定する。策定した基準地震動S s の応答スペクトル を第 1 図及び第 2 図に，基準地震動S s の加速度時刻歴波形を第 3 図から第 5 図 に示す。3 原子炬格納施設設置位置周辺は，地質調查の結果に よれば，約 $1.4 \mathrm{~km} / \mathrm{s}$ のS波速度を持つ堅硬な岩盤が十分な広がりをもって存在す ることが碓認されており，建物•構築物はこの堅硬な岩盤に支持させる。 敷地周辺には中生界ジュ ラ系の砂岩，頁岩等が広く分布し，原子炉建屋の設置 レベルにもこの岩盤が分布 していることから，解放基盤表面は，この岩盤が分布 する原子炉建屋の設置位置 0．P．－14．1m に設定する。 2（5） j 重複） また，弾性設計用地震動 Sdは，基準地震動 s s と の応答スペクトルの比率が目安として 0.5 を下回らな	「添付書類六 5．地震」に示す基準地震動S s は，「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」 について，解放基盤表面に おける水平方向及び鉛直方向の地震動としてそれぞれ策定した。「敷地ごとに震源 を特定して策定する地震動」に基づき策定した基準地震動Ss－D 1～D 3 の年超過碓率は $10^{-4} \sim 10^{-6}$ 程度で，Ss－F1～F2の年超過確率は，Ss－D1 を超過する帯域で 10^{-6} よ り低くなっており，S s－ F3 の年超過確率は，短周期側でおおむね 10^{-4} 程度 である。「震源を特定せず策定する地震動」に基づき設定した基準地震動S s－N 1 の年超過確率は $10^{-4} \sim 10$ －7程度である。 また，弾性設計用地震動 Sdは，基準地震動S s と の応答スペクトルの比率が目安として 0.5 を下回らな いよう基準地震動S s に係数を乗じて設定する。ここ で，係数は工学的判断とし $て$ ，原子炉施設の安全機能限界と弾性限界に対する入力荷重の比率が 0.5 程度で		（5）i引用元：P17

要求事項との対比表

| | IOO条OO1：関連する資料と基本設計方針を細づけるための付番
 ＜関連する資料＞
 - 様式 -1 への展開表（補足説明資料）
 - 技術基準要求機器リスト（設定根执に関する説明書 別添－1）
 ：前回提出時からの変更䉪所 |
| :---: | :---: |青色：設置変更誰可本文及び添付書類八力

緑色：技訹基推㚘則と基本敦計方針（後）との対比
紫色：基本設計方針（前）と基本設計方針（俊）との対比

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			い値とし，さらに応答スペ クトルに基づく手法による基準地震動 S s－D 1，D 2 に対しては，「発電用原子炉施設に関する耐震設計審查指針（昭和 56 年 7 月 20日原子力安全委員会決定，平成 13 年 3 月 29 日一部改訂）」における基準地震動S 1を踏まえて設定する。具体的には，工学的判断によ り，基準地震動 S s－F 1 ， F2，F3及びS s－N 1 は係数 0.5 を乗じた地震動，基準地震動S s－D 1 ， D 2，D 3 は係数 0.58 を乗 じた地震動を弾性設計用地震動 S_{d} として設定する。 3	あるという知見（1）を踏ま え，さらに，「発電用原子炉施設に関する耐震設計審査指針（昭和 56 年 7 月 20 日原子力安全委員会決定，平成13年3月29日一部改訂）」における基準地震動S 1の応答スペクトルをおお むね下回らないよう配慮し た値とする。具体的には，S s－F1～F3及びS s－ N 1 は係数 0.5 を乗じた地震動，応答スペクトルに基 づく地震動評価による基準地震動S s－D 1 ～D 3 は係数 0.58 を乗じた地震動 を弾性設計用地震動 S d と して設定する。また，建物•構築物及び機器•配管系と もに係数 0.5 又は 0.58 を採用することで，弾性設計用地震動 S d に対する設計 に一貫性をとる。弾性設計用地震動 S d の年超過確率 は短周期側で $10^{-2} \sim 10^{-4}$程度，長周期側で $10^{-3} \sim 10^{-}$程度である。弾性設計用地震動S d の応答スペクトル を第1．4－1 図に，弾性設計用地震動 S d の加速度時刻歴波形を第 1．4－2 図～第 1．4－8 図に，弾性設計用地震動S d と基準地震動S 1 の応答スペクトルの比較を第1．4－9 図に，弾性設計用地震動S d と解放基盤表面 における地震動の一様ハザ		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 (前) } \\ \hline \end{gathered}$	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 (後) } \\ \hline \end{gathered}$	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	（a）入力地震動 原子炉格納施設設置位置周辺は，地質調查の結果に よれば，約 $1.4 \mathrm{~km} / \mathrm{s}$ の S 波速度を持つ堅硬な岩盤が十分な広がりをもって存在す ることが確認されており，建物•構築物はこの堅硬な岩盤に支持させる。 敷地周辺には中生界ジュ ラ系の砂岩，頁岩等が広く分布し，原子炉建屋の設置 レベルにもこの岩盤が分布 していることから，解放基盤表面は，この岩盤が分布 する原子炉建屋の設置位置 0．P．－14．1m に設定する。 建物•構築物の地震応答解析における入力地震動 は，解放基盤表面で定義さ れる基準地震動及び弾性設計用地震動を基に，対象建物•構築物の地盤の非線形特性等の条件を適切に考慮 した上で，必要に応じ 2 次元 FEM 解析，1次元波動論又は 1 次元地盤応答解析により，地震応答解析モデルの入力位置で評価した入力地震動 を設定する。地盤条件を考慮する場合には，地震動評価で考慮した敷地全体の地下構造との関係や対象建	（a）入力地震動 原子炉格納施設設置位置周辺は，地質調査の結果に よれば，約 $1.4 \mathrm{~km} / \mathrm{s}$ の S 波速度を持つ堅硬な岩盤が十分な広がりをもって存在す ることが確認されており，建物•構築物はこの堅硬な岩盤に支持させる。 敷地周辺には中生界ジュ ラ系の砂岩，頁岩等が広く分布し，原子炉建屋の設置 レベルにもこの岩盤が分布 していることから，解放基盤表面は，この岩盤が分布 する原子炉建屋の設置位置 0．P．-14.1 m に設定する。 建物•構築物の地震応答解析における入力地震動 は，解放基盤表面で定義さ れる基準地震動 S s 及び弾性設計用地震動S d を基 に，対象建物•構築物の地盤 の非線形特性等の条件を適切に考慮した上で，必要に応じ 2 次元 FEM 解析， 1 次元波動論又は1次元地盤応答解析により，地震応答解析 モデルの入力位置で評価し た入力地震動を設定する。地盤条件を考慮する場合に は，地震動評価で考慮した敷地全体の地下構造との関		ードスペクトルの比較を第 1．4－10 図に示す。 a．入力地震動 原子炉格納施設設置位置周辺は，地質調查の結果に よれば，約 $1.4 \mathrm{~km} / \mathrm{s}$ の S 波速度を持つ堅硬な岩盤が十分な広がりをもって存在す ることが確認されており，建物•構築物はこの堅硬な岩盤に支持させる。 敷地周辺には中生界ジュ ラ系の砂岩，頁岩等が広く分布し，原子炉建屋の設置 レベルにもこの岩盤が分布 していることから，解放基盤表面は，この岩盤が分布 する原子炉建屋の設置位置 0．P．-14.1 m に設定する。 建物•構築物の地震応答解析における入力地震動 は，解放基盤表面で定義さ れる基準地震動 S s 及び弾性設計用地震動S d を基 に，対象建物•構築物の地盤 の非線形特性等の条件を適切に考慮した上で，必要に応じ 2 次元 F EM解析， 1次元波動論又は 1 次元地盤応答解析により，地震応答解析モデルの入力位置で評価した入力地震動を設定す る。地盤条件を考慮する場合には，地震動評価で考慮 した敷地全体の地下構造と	同趣旨の記載であるが，表現の違いによる差異あり	原子炉冷却系統施設（共通） 2．1． 1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】
要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	物•構築物位置と炉心位置 での地質•速度構造の違い にも留意するとともに，地盤の非線形応答に関する動的変形特性を考慮する。ま た，必要に応じ敷地におけ る観測記録による検証や最新の科学的•技術的知見を踏まえ，地質•速度構造等の地盤条件を設定する。 また，設計基準対象施設 における耐震 B クラスの建物•構築物のうち共振のお それがあり，動的解析が必要なものに対しては，弾性設計用地震動に 2 分の 1 を乗じたものを用いる。 【5条18】	係や対象建物•構築物位置 と炉心位置での地質•速度構造の違いにも留意すると ともに，地盤の非線形応答 に関する動的変形特性を考慮する。また，必要に応じ敷地における観測記録による検証や最新の科学的•技術的知見を踏まえ，地質•速度構造等の地盤条件を設定す る。（5） j また，設計基準対象施設 における耐震 B クラスの建物•構築物のらち共振のお それがあり，動的解析が必要なものに対しては，弾性設計用地震動S dに 2 分の 1 を乗じたものを用いる。 （5） k 【5条18】	なお，Bクラスの施設の らち，共振のおそれのある施設については，弾性設計用地震動S dに2分の1を乗じた地震動によりその影響についての検討を行う。 建物•構築物及び機器•配管系ともに，おおむ数弾性状態にとどまる範囲で耐え られるように設計する。（5）k e．津波防護施設，浸水防止設備及び津波監視設備並び に浸水防止設備が設置され た建物•構築物は，基準地震動S sによる地震力に対し て，それぞれの施設及び設備に要求される機能が保持 できるように設計する。 2 （3）e 重複）	の関係にも留意し，地盤の非線形応答に関する動的変形特性を考慮する。また，必要に応じ敷地における観測記録による検証や最新の科学的•技術的知見を踏まえ設定する。（5）j		
	（b）地震応答解析 1．動的解析法 （イ）建物•構築物 動的解析による地震力の算定に当たっては，地震応	（b）地震応答解析 个．動的解析法 （イ）建物•構築物 動的解析による地震力の 算定に当たっては，地震応		b．地震応答解析 （a）動的解析法 i．建物•構築物 動的解析による地震力の 算定に当たっては，地震応	同趣旨の記載であるが，表現の違いによる差異あり	原子炉冷却采統施設（共通） 2．1． 1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】
要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{gathered} \begin{array}{c} \text { 設置許可申請書 } \\ \text { 本文 } \end{array} \\ \hline \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するととも に，建物•構築物に応じた適切な解析条件を設定する。動的解析は，時刻歴応答解析法又は線形解析に適用可能な周波数応答解析法によ る。 建物•構築物の動的解析 に当たっては，建物•構築物 の剛性はそれらの形状，構造特性等を十分考慮して評価し，集中質点系等に置換 した解析モデルを設定す る。 動的解析には，建物•構築物と地盤との相互作用を考慮するものとし，解析モデ ルの地盤のばね定数は，基礎版の平面形状，基礎側面 と地盤の接触状況，地盤の剛性等を考慮して定める。設計用地盤定数は，原則と して，弾性波試験によるも のを用いる。 【5条19】	答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するととも に，建物•構築物に応じた適切な解析条件を設定する。動的解析は，時刻歴応答解析法又は線形解析に適用可能な周波数応答解析法によ る。 建物•構築物の動的解析 に当たっては，建物•構築物 の剛性はそれらの形状，構造特性等を十分考慮して評価し，集中質点系等に置換 した解析モデルを設定す る。 動的解析には，建物•構築物と地盤との相互作用を考慮するものとし，解析モデ ルの地盤のばね定数は，基礎版の平面形状，基礎側面 と地盤の接触状況，地盤の剛性等を考慮して定める。設計用地盤定数は，原則と して，弾性波試験によるも のを用いる。 （5）【5 条 19】 地盤—建物•構築物連成系の減衰定数は，振動エネ ルギの地下逸散及び地震応答における各部のひずみレ ベルを考慮して定める。 基準地震動 S s 及び弾性設計用地震動S d に対する応答解析において，主要構造要素がある程度以上弾性		答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するととも に，建物•構築物に応じた適切な解析条件を設定する。動的解析は，時刻歴応答解析法又は線形解析に適用可能な周波数応答解析法によ る。 建物•構築物の動的解析 に当たつては，建物•構築物 の剛性はそれらの形状，構造特性等を十分考慮して評価し，集中質点系等に置換 した解析モデルを設定す る。 動的解析には，建物•構築物と地盤との相互作用を考慮するものとし，解析モデ ルの地盤のばね定数は，基礎版の平面形状，地盤の剛性等を考慮して定める。設計用地盤定数は，原則とし て，弾性波試験によるもの を用いる。（5） 地盤—建物•構築物連成系の減衰定数は，振動エネ ルギーの地下逸散及び地震応答における各部のひずみ レベルを考慮して定める。 基準地震動 S s 及び弾性設計用地震動S d に対する応答解析において，主要構造要素がある程度以上弹性	設備設計の明確化 （設計用地震力の設定方法 を記載） 同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴ら差異 （ひずみレベルの考慮並び に応答解析の検討）	原子炉冷却系統施設（共通） 2．1．1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
		範囲を超える場合には，実験等の結果に基づき，該当 する建物部分の構造特性に応じて，その弾塑性挙動を適切に模擬した復元力特性 を考慮した応答解析を行 ら。 また，Sクラスの施設を支持する建物•構築物の支持機能を検討するための動的解析において，施設を支持 する建物•構築物の主要構造要素がある程度以上弾性範囲を超える場合には，そ の弾塑性挙動を適切に模擬 した復元力特性を考慮した応答解析を行う。 応答解析に用いる材料定数については，地盤の諸定数も含めて材料のばらつき による変動幅を適切に考慮 する。なお，平成 23 年（2011年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等 に伴う初期剛性の低下につ いては，観測記録や試験デ ータなどから適切に応答解析モデルへ反映し，保守性 を碓認した上で適用する。屋外重要土木構造物につい ては，平成 23 年（2011年）東北地方太平洋沖地震等の地震に起因する構造上問題 となるひび割れが認められ ないこと及び地中構造物で ある屋外重要土木構造物に		範囲を超える場合には，実験等の結果に基づき，該当 する建物部分の構造特性に応じて，その弾塑性挙動を適切に模擬した復元力特性 を考慮した応答解析を行 ら。 また，Sクラスの施設を支持する建物•構築物の支持機能を検討するための動的解析において，施設を支持する建物•構築物の主要構造要素がある程度以上弾性範囲を超える場合には， その弾塑性挙動を適切に模擬した復元力特性を考慮し た応答解析を行う。 応答解析に用いる材料定数については，地盤の諸定数も含めて材料のばらつき による変動幅を適切に考慮 する。なお，平成 23 年（2011年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等 に伴う初期剛性の低下につ いては，観測記録や試験デ一タなどから適切に応答解析モデルへ反映し，保守性 を確認した上で適用する。屋外重要土木構造物につい ては，平成 23 年（2011 年）東北地方太平洋沖地震等の地震に起因するひび割れが認められないこと及び地中構造物である屋外重要土木構造物に対する支配的な地		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{gathered} \begin{array}{c} \text { 設置許可申請書 } \\ \text { 本文 } \end{array} \\ \hline \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
		対する支配的な地震時荷重 である土圧は，ひび割れ等 に起因する初期剛性低下を考慮しない方が保守的な評価となることから，初期剛性低下は考慮しないが，必要に応じて機器•配管系の設計用地震力に及ぼす影響 を橏討する。更に，材料のば らつきによる変動が建物•構築物の振動性状や応答性状に及ぼす影響として考慮 すべき要因を選定した上 で，選定された要因を考慮 した動的解析により設計用地震力を設定する。 （5）m 【5 条 20】 建物•構築物の動的解析 にて，地震時の地盤の有効応力の変化に応じた影響を考慮する場合は，有効応力解析を実施する。有効応力解析に用いる液状化強度特性は，敷地の原地盤におけ る代表性及び網羅性を踏ま えた上で実施した液状化強度試験結果に基づき，保守性を考慮して設定する。 （5）n【5条21】 原子炉建屋については， 3次元 FEM 解析等から，建物•構築物の 3 次元応答性状及 びそれによる機器•配管系 への影響を評価する。		震時荷重である土圧は，ひ び割れ等に起因する初期剛性低下を考慮しない方が保守的な評価となることか ら，初期剛性低下は考慮し ない。また，必要に応じて建物•構築物及び機器•配管系 の設計用地震力に及ぼす影響を検討する。（5）m 建物•構築物の動的解析 において，地震時における地盤の有効応力の変化に伴 ら影響を考慮する場合に は，有効応力解析等を実施 する。有効応力解析に用い る液状化強度特性は，敷地 の原地盤における代表性及 び網羅性を踏まえた上で実施した液状化強度試験結果 に基づき，保守性を考慮し て設定する。（5）n 原子炉建屋については， 3 次元 F EM解析等から，建物•構築物の 3 次元応答性状及び機器•配管系への影響を評価する。	同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴う差異 （有効応力解析の実施と設定） 設備設計の明確化 （解析モデル関する考慮事項の明確化） 追加要求事項に伴う差異 （解析による評価並びに水	原子炉冷却系統施設（共通） 2．1．1 耐震設計 同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

赤色：様式－6 汇関する記載（付番及び下線） 青色：設置変更許可本文及び添付書類八からの引用以外の記載 茶色：設置変更許可と基本設計方針（後）との対比 緑色：技術基熦規則と基本設計方針（後）との対比 紫色：基本設計方針（前）と基本設計方針（後）との対比	IOO条OO1：関連する資料と基本設計方針を細づけるための付番 ＜開連する資料＞ - 様式 -1 への展開表（補足説明資料） - 技術基準要求機器リスト（設定根执に関する説明書 別添－1） ：前回提出時からの変更笝所

技術基潐規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	（ロ）機器•配管系 動的解析による地震力の算定に当たっては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するととも に，解析条件として考慮す べき減衰定数，剛性等の各種物性値は，適切な規格及 び基準又は試験等の結果に基づき設定する。なお，原子炉本体の基礎の構造強度 は，鋼板のみで地震力に耐 える設計とする。	動的解析に用いる解析モ デルは，地震観測網により得られた観測記録により振動性状の把握を行い，解析 モデルの妥当性の確認を行 ら。 屋外重要土木構造物の動的解析は，構造物と地盤の相互作用を考慮できる連成系の地震応答解析手法と し，地盤及び構造物の地震時における非線形挙動の有無や程度に応じて，線形，等価線形又は非線形解析のい ずれかにて行う。 地震力については，水平 2方向及び鉛直方向について適切に組み合わせて算定す る。 （5）【5 条 22】 （口）機器•配管系 動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するととも に，解析条件として考慮す べき減衰定数，剛性等の各種物性値は，適切な規格及 び基準又は試験等の結果に基づき設定する。ここで，原子炉本体の基礎について は，鋼板とコンクリートの複合構造物として，より現実に近い適正な地震応答解析を実施する観点から，コ		屋外重要土木構造物の動的解析は，構造物と地盤の相互作用を考慮できる連成系の地震応答解析手法と し，地盤及び構造物の地震時における非線形挙動の有無や程度に応じて，線形，等価線形又は非線形解析のい ずれかにて行ら。 また，地震力については，水平 2 方向及び鉛直方向に ついて適切に組み合わせて算定する。（5） ii ．機器•配管系 動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するととも に，解析条件として考慮す べき減衰定数，剛性等の各種物性値は，適切な規格及 び基準又は試験等の結果に基づき設定する。ここで，原子炬本体の基整について は，鋼板とコンクリートの複合構造物として，より現実に近い適正な地震応答解析を実施する観点から，コ	平 2 方向及び鉛直方向の組合せ） 設備設計の明確化 （評価時の考慮事項を明確化） 追加要求事項に伴ら差異 （原子炉本体基礎の復元力特性の設定並びに加力試験結果を踏まえた不確実性，保守性の考慮）	原子炉冷却系統施設（共通） 2．1． 1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

機器の解析に当たつて
は，形状，構造特性等を考慮 して，代表的な振動モード を適切に表現できるよう質点系モデル，有限要素モデ ル等に置換し，設計用床応答曲線を用いたスペクトル モーダル解析法又は時刻歴応答解析法により応答を求 める。

また，時刻歴応答解析法及びスペクトルモーダル解析法を用いる場合は地盤物性等のばらつきを適切に考慮する。スペクトルモーダ ル解析法には地盤物性等の ばらつきを考慮した床応答曲線を用いる。
配管系については，その
仕様に応じて適切なモデル に置換し，設計用床応答曲線を用いたスペクトルモー

設置許可申請書
$\left.\begin{array}{|l|l|}\hline \text { 技術基準規則•解釈 } & \text { 設工認中請書 } \\ \text { 基本設計方針（前）}\end{array}\right]$ ンクリートの剛性変化を適切に考慮した復元力特性を設定する。復元力特性の設定に当たっては，既往の知見や実物の原子炉本体の基礎を模擬した試験体による加力試験結果を踏まえて，妥当性，適用性を確認する とともに，設定における不確実性や保守性を考慮し，機器•配管系の設計用地震力を設定する。なお，原子炉本体の基礎の構造強度は，鋼板のみで地震力に耐える設計とする。

機器の解析に当たつて は，形状，構造特性等を考慮 して，代表的な振動モード を適切に表現できるよう質点系モデル，有限要素モデ ル等に置換し，設計用床応答曲線を用いたスペクトル モーダル解析法又は時刻歴応答解析法により応答を求 める。（5）p

また，時刻歴応答解析法及びスペクトルモーダル解析法を用いる場合は地盤物性等のばらつきを適切に考慮する。スペクトルモーダ ル解析法には地盤物性等の ばらつきを考慮した床応答曲線を用いる。⑤
配管系については，その仕様に応じて適切なモデル に置換し，設計用床応答曲線を用いたスペクトバ品

赤色：様式－6に関する記載（付翻及て下線） 紫色：基本設计方针（前）と基本設啚方针（後）との対比		100 条 O O1：関連する資料と基本設計方針を組づけるための付番 ＜関連する資料〉 - 様式 -1 への展開表（禣足説明資料） - 技術基準要求機器リスト（設定根拠に関する説明書 別添－1） ：前回提出時からの変更笝所	
設置許可申請書 添付書類八	$\begin{aligned} & \text { 設置許 } \\ & \text { 及び基本 } \end{aligned}$	可，技術基準規則設計方針との対比	備考
ンクリートの剛性変化を適切に考慮した復元力特性を設定する。復元力特性の設定に当たっては，既往の知見や実物の原子炉本体の基礎を模擬した試験体による加力試験結果を踏まえて，妥当性，適用性を確認する とともに，設定における不確実性や保守性を考慮し，機器•配管系の設計用地震力を設定する。なお，原子炉本体の基礎の構造強度は，鋼板のみで地震力に耐える設計とする。 機器の解析に当たって は，形状，構造特性等を考慮 して，代表的な振動モード を適切に表現できるよう質点系モデル，有限要素モデ ル等に置換し，設計用床応答曲線を用いたスペクトル モーダル解析法又は時刻歴応答解析法により応答を求 める。（5）p 配管系について は，配管の形状や構造を考慮して，代表的な振動モー ドを適切に表現できるモデ ルを作成し，設計用床応答曲線を用いたスペクトルモ ーダル解析法又は時刻歴応答解析法により応答を求め る。（5）q スペクトルモーダ ル解析法及び時刻歴応答解析法の選択に当たつては，衝突，すべり等の非線形現象を模擬する観点又は既往			

| 設置許可申請書 |
| :---: | :---: |
| 添付書類八 | \(\begin{gathered}設置許可，技術基漼規則

及び基本設計方針との対比\end{gathered}\)備考

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

	IOO条OO1：関連する資料と基本設計方針を細づけるための付番 ＜開連する資料＞ - 様式 -1 への展開表（補足説明資料） - 技術基準要求機器リスト（設定根执に関する説明書 別添－1） ：前回提出時からの変更箇所

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{gathered} \begin{array}{c} \text { 設置許可申請書 } \\ \text { 本文 } \end{array} \\ \hline \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	ダル解析法又は時刻歴応答	ダル解析法又は時刻歴応答		研究の知見を取り入れ実機		
	解析法により応答を求め	解析法により応答を求め		の挙動を模擬する観点で，		
	る。	る。（5） q		建物•構築物の剛性，地盤物		（5）q 引用元：P26
	スペクトルモーダル解析	スペクトルモーダル解析		性のばらつき等への配慮を		
	法及び時刻歴応答解析法の	法及び時刻歴応答解析法の		しつつ時刻歴応答解析法を		
	選択に当たつては，衝突・す	選択に当たつては，衝突・す		用いる等，解析対象とする		
	べり等の非線形現象を模擬	べり等の非線形現象を模擬		現象，対象設備の振動特性，		
	する観点又は既往研究の知	する観点又は既往研究の知		構造特性等を考慮し適切に		
	見を取り入れ実機の挙動を	見を取り入れ実機の挙動を		選定する。		
	模擬する観点で，建物•構築	模擬する観点で，建物•構築		また，設備の3次元的な		
	物の剛性，地盤物性のばら	物の剛性，地盤物性のばら		広がりを踏まえ，適切に応		
	つきへの配慮をしつつ時刻	つきへの配慮をしつつ時刻		答を評価できるモデルを用		
	歴応笭解析法を用いる等，	歴応笭解析法を用いる等，		い，水平 2 方向及び鉛直方		
	解析対象とする現象，対象	解析対象とする現象，対象		向の応答成分について適切		
	設備の振動特性•構造特性	設備の振動特性•構造特性		に組み合わせるものとす		
	等を考慮し適切に選定す	等を考慮し適切に選定す		$\underline{\underline{3}}$		
	また，設備の 3 次元的な広	また，設備の 3 次元的な広		その機器の設置床面の最大		
	がりを踏まえ，適切に応答	がりを踏まえ，適切に応答		応答加速度の 1.2 倍の加速		
	を評価できるモデルを用	を評価できるモデルを用		度を震度として作用させて		
	$い, ~$ 水平 2 方向及び鉛直方向	い，水平 2 方向及び鉛直方向		地震力を算定する。（5）r		
	の応答成分について適切に	の応答成分について適切に				
	組み合わせるものとする。剛性の高い機器は，その	組み合わせるものとする。剛性の高い機器は，その				
	機器の設置床面の最大応答	機器の設置床面の最大応答				
	加速度の 1.2 倍の加速度を	加速度の 1.2 倍の加速度を				
	震度として作用させて構造	震度として作用させて構造				
	強度評価に用いる地震力を	強度評価に用いる地震力を				
	算定する。【5条23】	算定する。 （5） 【5条23】				
	c．設計用減衰定数地震応答解析に用いる減	c．設計用減衰定数地震応答解析に用いる減		（3）設計用減衰定数応答解析に用いる減衰定	同趣旨の記載であるが，表現の違いによる差異あり	原子炬冷却系統施設（共通） 2．1．1 耐震設計
	衰定数は，安全上適切と認	衰定数は，安全上適切と認		数は，安全上適切と認めら	追加要求事項に伴ら差異	
	められる規格及び基準に基	められる規格及び基準に基		れる規格及び基準，既往の	（屋外重要土木構造物の地	
	づき，設備の種類，構造等に	づき，設備の種類，構造等に		振動実験，地震観測の調查	震応答解析モデルの減衰定	

要求事項との対比表

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{aligned} & \text { 設置許可申請書 } \\ & \text { 本文 } \end{aligned}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	運転時，運転時の異常な過渡変化時を含むものとす る。 口．設計基準事故時の状態 発電用原子炉施設が設計基準事故時にある状態。八。設計用自然条件 設計上基本的に考慮しな ければならない自然条件 （風，積雪）。 【5条25】 （b）機器•配管系 設計基準対象施設につい ては以下のイ．～ニ，の状態 を考慮する。 イ．通常運転時の状態 発電用原子炉の起動，停止，出力運転，高温待機，燃料取替等が計画的又は頻繁 に行われた場合であって運転条件が所定の制限値以内 にある運転状態。 ロ．運転時の異常な過渡変化時の状態 通常運転時に予想される機械又は器具の単一の故障若しくはその誤作動又は運転員の単一の誤操作及びこ れらと類似の頻度で発生す ると予想される外乱によっ て発生する異常な状態であ って，当該状態が継続した場合には炉心又は原子炉冷却材圧力バウンダリの著し い損傷が生じるおそれがあ	常運転時，運転時の異常な過渡変化時を含むものとす る。 口．設計基準事故時の状態 発電用原子炉施設が設計基準事故時にある状態。 八。設計用自然条件 設計上基本的に考慮しな ければならない自然条件 （風，積雪）。 （6）【5 条25】 （b）機器•配管系 設計基準対象施設につい ては以下のイ．～ニ．の状態 を考慮する。 イ．通常運転時の状態発電用原子炉の起動，停止，出力運転，高温待機，燃料取替等が計画的又は頻繁 に行われた場合であって運転条件が所定の制限値以内 にある運転状態。 口．運転時の異常な過渡変化時の状態 通常運転時に予想される機械又は器具の単一の故障若しくはその誤作動又は運転員の単一の誤操作及びこ れらと類似の頻度で発生す ると予想される外乱によっ て発生する異常な状態であ って，当該状態が継続した場合には炬心又は原子炬冷却材圧力バウンダリの著し い損傷が生じるおそれがあ		（b）設計基準事故時の状態 発電用原子炉施設が設計基準事故時にある状態。 （c）設計用自然条件 設計上基本的に考慮しな ければならない自然条件 （風，積雪等）。 （6） a b．機器•配管系 （a）通常運転時の状態発電用原子炉の起動，停止，出力運転，高温待機，燃料取替等が計画的又は頻繁 に行われた場合であって運転条件が所定の制限値以内 にある運転状態。 （b）運転時の異常な過渡変化時の状態 通常運転時に予想される機械又は器具の単一の故障若しくはその誤作動又は運転員の単一の誤操作及びこ れらと類似の頻度で発生す ると予想される外乱によっ て発生する異常な状態であ つて，当該状態が継続した場合には炉心又は原子炉冷却材圧力バウンダリの著し い損傷が生じるおそれがあ るものとして安全設計上想定すべき事象が発生した状態。	同趣旨の記載であるが，表現の違いによる差異あり	原子炉泠却系統施設（共通） 2．1．1 耐震設計

要求事項との対比表

赤色：様式－6 に関する記載（付番及び下線） 青色：設㯰変更許可本文及び添付書類八からの引用以外の記載 茶色：設置変更許可と基本設計方針（後）との対比 緑色：技術基淮規則と基本設計方針（後）との対比 紫色：基本設計方針（前）と基本設計方針（後）との対比	IOO条OO1：関連する資料と基本設計方針を細づけるための付番 ＜開連する資料＞ - 様式 -1 への展開表（禣足説明資料） - 技術基準要求機器リスト（設定根执沉関する説明書 別添－1） ：前回提出時からの変更䉪所

技術基準規則•解积	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	るものとして安全設計上想定すべき事象が発生した状態。 八。 設計基準事故時の状態 発生頻度が運転時の異常 な過渡変化より低い異常な状態であって，当該状態が発生した場合には発電用原子炉施設から多量の放射性物質が放出するおそれがあ るものとして安全設計上想定すべき事象が発生した状態。 二．設計用自然条件 設計上基本的に考慮しな ければならない自然条件 （風，積雪）。 【5 条 26】 b．荷重の種類 （a）建物•構築物 設計基準対象施設につい ては以下のイ．～ニ，の荷重 とする。 イ．発電用原子炉のおか れている状態にかかわらず常時作用している荷重，す なわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重口．運転時の状態で施設 に作用する荷重 八．設計基準事故時の状態で施設に作用する荷重二．地震力，風荷重，積雪荷重	るものとして安全設計上想定すべき事象が発生した状態。 設計基準事故時の状態 発生頻度が運転時の異常 な過渡変化より低い異常な状態であって，当該状態が発生した場合には発電用原子炬施設から多量の放射性物質が放出するおそれがあ るものとして安全設計上想定すべき事象が発生した状態。 二．設計用自然条件 設計上基本的に考慮しな ければならない自然条件 （風，積雪）。 （6）【5 条 26】 b．荷重の種類 （a）建物•構築物設計基準対象施設につい ては以下のイ，～ニ，の荷重 とする。 イ．発電用原子炉のおか れている状態にかかわらず常時作用している荷重，す なわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重口．運転時の状態で施設 に作用する荷重 八。設計基準事故時の状態で施設に作用する荷重二。地震力，風荷重，積雪荷重		（c）設計基準事故時の状態 発生頻度が運転時の異常 な過渡変化より低い異常な状態であって，当該状態が発生した場合には発電用原子炉施設から多量の放射性物質が放出するおそれがあ るものとして安全設計上想定すべき事象が発生した状態。 （d）設計用自然条件 設計上基本的に考慮しな ければならない自然条件 （風，積雪等）。 （6）b （2）荷重の種類 a．建物•構築物 （a）発電用原子炉のおかれ ている状態にかかわらず常時作用している荷重，すな わち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重 （b）運転時の状態で施設に作用する荷重 （c）設計基準事故時の状態 で施設に作用する荷重 （d）地震力，風荷重，積雪荷重等 （6） c	同趣旨の記載であるが，表現の違いによる差異あり	原子炬冷却系統施設（共通） 2．1．1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

	IOO条OOI：関連する資料と基本設計方針を細づけるための付番 ＜開連する資料＞ - 様式 -1 への展開表（禣足説明資料） - 技術基淮要求機器リスト（設定根拠に関する説明書 別添－1） ：前回提出時からの変更箇所

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	【5 条 27】 ただし，運転時の状態及 び設計基準事故時の状態で の荷重には，機器•配管系か ら作用する荷重が含まれる ものとし，地震力には，地震時土圧，機器•配管系からの反力，スロッシング等によ る荷重が含まれるものとす る。 【5 条 28】 （b）機器•配管系 設計基準対象施設につい ては，以下のイ．～ニ，の荷重とする。 ィ．通常運転時の状態で施設に作用する荷重 ロ．運転時の異常な過渡変化時の状態で施設に作用 する荷重 八．設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 【5 条 29】 c．荷重の組合せ 地震と組み合わせる荷重 については，以下のとおり設定する。 【5条30】	（6）【5条27】 ただし，運転時の状態及 び設計基準事故時の状態で の荷重には，機器•配管系か ら作用する荷重が含まれる ものとし，地震力には，地震時土圧，機器•配管系からの反力，スロッシング等によ る荷重が含まれるものとす る。 （6）【5 条28】 （b）機器•配管系 設計基準対象施設につい ては，以下のイ．～ニ．の荷重とする。 イ．通常運転時の状態で施設に作用する荷重 口．運転時の異常な過渡変化時の状態で施設に作用 する荷重 八。設計基準事故時の状態で施設に作用する荷重二．地震力，風荷重，積雪荷重 （6）【5 条29】 c．荷重の組合せ 地震と組み合わせる荷重 については，「2．3 外部か らの衝撃による損傷の防止」で設定している風及び積雪による荷重を考慮し，以下のとおり設定する。 （6）【5 条 30】		ただし，運転時の状態及 び設計基準事故時の状態で の荷重には，機器•配管系か ら作用する荷重が含まれる ものとし，地震力には，地震時土圧，機器•配管系からの反力，スロッシング等によ る荷重が含まれるものとす る。（6）d b．機器•配管系 （a）通常運転時の状態で施設に作用する荷重 （b）運転時の異常な過渡変化時の状態で施設に作用す歹荷重 （c）設計基準事故時の状態 で施設に作用する荷重 （d）地震力，風荷重，積雪荷重等 （6） （3）荷重の組合せ地震力と他の荷重との組合せを以下に示す。	同趣旨の記載であるが，表現の違いによる差異あり 基準要求への適合性を明確化	（6）c 引用元：P30 原子炉冷却系統施設（共通） 2．1．1 耐震設計 同上 同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基漼規則及び基本設計方針との対比	備考
	（a）建物•構築物 イ．S クラスの建物•構築物については，常時作用し ている荷重及び運転時（通常運転時又は運転時の異常 な過渡変化時）の状態で施設に作用する荷重と地震力 とを組み合わせる。 【5条31】 ロ．S クラスの建物•構築物については，常時作用し ている荷重及び設計基準事故時の状態で施設に作用す る荷重のらち長時間その作用が続く荷重と弹性設計用地震動による地震力又は静的地震力とを組み合わせ る。 【5 条 32】 ハ．B クラス及びC クラス の建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用 する荷重と動的地震力又は静的地震力とを組み合わせ る。 【5 条 33】	（a）建物•構築物（（c）に記載のものを除く。） イ．S クラスの建物•構築物については，常時作用し ている荷重及び運転時（通常運転時又は運転時の異常 な過渡変化時）の状態で施設に作用する荷重と地震力 とを組み合わせる。 （6） f 【5条31】 ロ．S クラスの建物•構築物については，常時作用し ている荷重及び設計基準事故時の状態で施設に作用す る荷重のらち長時間その作用が続く荷重と弾性設計用地震動S dによる地震力又 は静的地震力とを組み合わ せる。＊1，＊2 （6）g【5条32】 ホ，Bクラス及びCクラス の建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用 する荷重と動的地震力又は静的地震力とを組み合わせ る。 （6） h 【5条33】 ＊1：Sクラスの建物•構築物 の設計基準事故の状態で施設に作用する荷重について は，（b）機器•配管系の考 え方に沿った下記の 2 つの		a．建物•構築物（c．に記載のものを除く。） （a）Sクラスの建物•構築物については，常時作用し ている荷重及び運転時（通常運転時又は運転時の異常 な過渡変化時）の状態で施設に作用する荷重と地震力 とを組み合わせる。（6）f （b）Sクラスの建物•構築物については，常時作用し ている荷重及び設計基準事故時の状態で施設に作用す る荷重のらち長時間その作用が続く荷重と弾性設計用地震動Sdによる地震力又 は静的地震力とを組み合わ せる。（6）g （c）Bクラス及びCクラス の建物•構築物については，虽時作用している荷重及び運転時の状態で施設に作用 する荷重と動的地震力又は静的地震力とを組み合わせ る。（6h	同趣旨の記載であるが，表現の違いによる差異あり 同趣旨の記載であるが，表現の違いによる差異あり 同趣旨の記載であるが，表現の違いによる差異あり 設備設計の明確化 追加要求事項に伴う差異	原子炉冷却系統施設（共通） 2．1．1 耐震設計 同上 同上 同上

要求事項との対比表

```赤色:様式-6江関する記載(付番及び下綵) 青色:設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更許可と基本設計方針(後) との対比 緑色:技衍基淮規則と基本設計方針(後) との対比 紫色:基本設計方針(前)と基本設計方針(後) との対比```	100 条 OO ：関連する資料と基本設啚方䶿を組つけるための付番 ＜関連する資料＞   －柡式一 1 への展開表（補足説明資料）      ：前回㧹出時からの変更斋所


技術基潐規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
		考え方に基づき検討した結果として後者を踏まえ，施設に作用する荷重のらち長時間その作用が続く荷重と弾性設計用地震動S d によ る地震力又は静的地震力と を組み合わせることとして いる。この考え方は，JEA G4601次おける建物•構築物の荷重の組合せの記載とも整合している。   －常時作用している荷重及 び設計基準事故時の状態 のらち地震によって引き起こされるおそれのある事象によって施設に作用 する荷重は，その事故事象 の継続時間との関係を踏 まえ，適切な地震力と組み合わせて考慮する。   －常時作用している荷重及 び設計基準事故時の状態 のらち地震によって引き起こされるおそれのない事象であっても，いったん事故が発生した場合，長時間継続する事象による荷重は，その事故事象の発生確率，継続時間及び地震動 の超過確率の関係を踏ま え，適切な地震力と組み合 わせる。   ＊2：原子炉格納容器バウン ダリを構成する施設につい ては，異常時圧力の最大値 と弾性設計用地震動 S d に よる地震力とを組み合わせ				

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

赤色：様式－6に関する記載（付番及び下線）   青色：設惪変更許可本文及び添付書類八からの引用以外の記載   茶色：設置変更許可と基本設計方針（後）との対比   緑色：技術基準規則と基本設計方針（後）との対比   紫色：基本設計方針（前）と基本設計方針（後）との対比	IOO条OOI：関連する資料と基本設計方針を紐づけるための付番   ＜関連する資料＞   - 様式 -1 への展開表（禣足説明資料）   - 技術基潐要求機器リスト（設定根拠に関する説明書 別添－1）   ：前回提出時からの変更箇所


技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	（b）機器•配管系   イ．S クラスの機器•配管系については，通常運転時 の状態で施設に作用する荷重と地震力とを組み合わせ る。   【5 条 35】   ロ．S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のう ち地震によって引き起こさ れるおそれのある事象によ って施設に作用する荷重と地震力とを組み合わせる。   【5 条 36】   ハ。S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のう ち地震によって引き起こさ れるおそれのない事象であ っても，いったん事故が発生した場合，長時間継続す る事象による荷重は，その事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力と組み合わせる。   【5条37】	る。   （6）【5条34】   （b）機器•配管系（（c）に記載のものを除く。）   イ．S クラスの機器•配管系については，通常運転時 の状態で施設に作用する荷重と地震力とを組み合わせ る。 （6）【5 条 35】   ロ．S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のう ち地震によって引き起こさ れるおそれのある事象によ って施設に作用する荷重と地震力とを組み合わせる。   （6） j 【条36】   ＝． S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のう ち地震によって引き起こさ れるおそれのない事象であ ってもっいったん事故が発生した場合，長時間継続す る事象による荷重は，その事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力と組み合わせる。＊3 （6）【5条37】		b．機器•配管系（c．江記載のものを除く。）   （a）Sクラスの機器•配管系については，通常運転時 の状態で施設に作用する荷重と地震力とを組み合わせ る。（6） i   （b）Sクラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のう ち地震によって引き起こさ れるおそれのある事象によ つて施設に作用する荷重と地震力とを組み合わせる。 （6） j   （c）Sクラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のう ち地震によって引き起こさ れるおそれのない事象であ っても，いったん事故が発生した場合，長時間継続す る事象による荷重は，その事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力と組み合わせる。（6）k	同趣旨の記載であるが，表現の違いによる差異あり   設備設計の明確化   （地震力との組み合わせ時 の考え方を明確化した）   同趣旨の記載であるが，表現の違いによる差異あり	原子炉冷却系統施設（共通）   2．1．1 耐震設計   同上   同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】
要求事項との対比表

赤色：椂式－6に関する記裁（付番及ひ下線）            紫色：基本設计方针（前）と基本設故方针（胻）との対比	100 条 OO I：関連する資料と基本設計方針を紐づけるための付番 ＜関連する資料＞   - 樣式 -1 への展開表（補足説明資料）   - 技術基準要求機器リスト（設定根执に関する説明書 別添 -1 ） ：前回提出時からの変更箇所


紫色：基本設計方针（前）と基本設計方㓌（後）との対比 －技術基淮要求筬闌表（禣足説明資料）
－ ．

設置許可申請書   添付書類八	設置許可，技術基漼規則   及び基本設計方針との対比


備考	
表	原子炉冷却系統施設（共通）
	2．1．1 耐震設計

の機器•配管系については，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用する荷重と，動的地震力又は静的地震力と を組み合わせる。
【5 条 38】

の機器•配管系については，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用する荷重と，動的地震力又は静的地震力と を組み合わせる
（6）【5 条 38】
ト．炉心内の燃料被覆管 の放射性物質の閉じ込めの機能の確認においては，通常運転時の状態で燃料被覆管に作用する荷重及び運転時の異常な過渡変化時の状態のらち地震によって引き起こされるおそれのある事象によって燃料被覆管に作用する荷重と地震力とを組 み合わせる。 （6） m （8） a 【5 条 39】 ＊3：原子炉格納容器バウン ダリを構成する設備につい ては，異常時圧力最大値と弾性設計用地震動 S d によ る地震力とを組み合わせ る。

## （6）【5条76】

（c）津波防護施設，浸水防止設備及び津波監視設備並 びに浸水防止設備が設置さ れた建物•構築物
イ．津波防護施設及び浸水防止設備が設置された建物•構築物については，常時作用している荷重及び運転設置許可申請書
（d）Bクラス及びCクラス
の機器•配管系については，
通常運転時の状態で施設に
作用する荷重及び運転時の
異常な過渡変化時の状態で
施設に作用する荷重と，動的地震力又は静的地震力と を組み合わせる。⑥1
（e）炉心内の燃料被覆管の放射性物質の閉じ込めの機能の確認においては，通常運転時の状態で燃料被覆管 に作用する荷重及び運転時 の異常な過渡変化時の状態 のうち地震によって引き起 こされるおそれのある事象 によって燃料被覆管に作用 する荷重と地震力とを組み合わせる。（6）m（8）a
c．津波防護施設，浸水防止設備及び津波監視設備並び に浸水防止設備が設置され た建物•構築物
（a）津波防護施設及び浸水
防止設備が設置された建物•構築物については，常時作用している荷重及び運転
同趣旨の記載であるが，表現の違いによる差異あり

司趣旨の記載であるが，表現の違いによる差異あり
追加要求事項に伴う差異 （燃料被覆管の耐震性につ いては追加要求事項であ る。）

司趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴う差異 （津波防護施設，浸水防止設備及び津波監視設備並び に浸水防止設備が設置され た建物•構築物に関する耐震設計は追加要求事項であ

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{gathered} \begin{array}{c} \text { 設置許可申請書 } \\ \text { 本文 } \end{array} \\ \hline \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
		時の状態で施設に作用する荷重と基準地震動S s によ る地震力とを組み合わせ る。   口。浸水防止設備及び津波監視設備については，常時作用している荷重及び運転時の状態で施設に作用す る荷重と基準地震動 S s に よる地震力とを組み合わせ る。   なお，上記（c）イ．，ロ．に ついては，地震と津波が同時に作用する可能性につい て検討し，必要に応じて基準地震動 S s による地震力 と津波による荷重の組合せ を考慮する。また，津波以外 による荷重については，「b．荷重の種類」に準じるもの とする。   （6） n 【5 条 40】   （d）荷重の組合せ上の留意事項   動的地震力については，水平 2 方向と鉛直方向の地震力とを適切に組み合わせ算定するものとする。   （5） t 【5 条 41】		時の状態で施設に作用する荷重と基準地震動 S s によ る地震力とを組み合わせ る。   （b）浸水防止設備及び津波監視設備については，常時作用している荷重及び運転時の状態で施設に作用する荷重と基準地震動 S s によ る地震力とを組み合わせ る。   なお，上記 c．（a）（b）に ついては，地震と津波が同時に作用する可能性につい て検討し，必要に応じて基準地震動S s による地震力 と津波による荷重の組合せ を考慮する。また，津波以外 による荷重については，   「（2）荷重の種類」に準じ るものとする。（6）$n$   d ．荷重の組合せ上の留意事項   （a）Sクラスの施設に作用 する地震力のうち動的地震力については，水平 2 方向 と鉛直方向の地震力とを適切に組み合わせ算定するも のとする。（5）t   （b）ある荷重の組合せ状態 での評価が明らかに厳しい ことが判明している場合に は，その他の荷重の組合せ状態での評価は行わないこ	る。）   同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴う差異 （動的地震力の荷重の組合 せについては追加要求事項 である。）	原子炉冷却系統施設（共通）   2．1．1 耐震設計

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	d．許容限界各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は次のとお りとし，安全上適切と認め	d．許容限界各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は次のとお りとし，安全上適切と認め		とがある。｣   （c）複数の荷重が同時に作用する場合，それらの荷重 による応力の各ピークの生起時刻に明らかなずれがあ ることが判明しているなら ば，必ずしもそれぞれの応力のピーク値を重ねなくて もよいものとする。（b）   （d）上位の耐震重要度分類 の施設を支持する建物•構築物の当該部分の支持機能 を確認する場合において は，支持される施設の耐震重要度分類に応じた地震力 と常時作用している荷重，運転時の状態で施設に作用 する荷重及びその他必要な荷重とを組み合わせる。   なわ，第1．4．1－1 表に対象となる建物•構築物及び その支持機能が維持されて いることを検討すべき地震動等について記載する。⑧ （e）地震と組み合わせる自然現象として，風及び積雪 を考慮し，風荷重及び積雪荷重については，施設の設置場所，構造等を考慮して，地震荷重と組み合わせる。 （b）   （4）許容限界   各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は次のとお りとし，安全上適切と認め	同趣旨の記載であるが，表現の違いによる差異あり	原子炉冷却系統施設（共通） 2．1． 1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

赤色：様式－6に関する記載（付番及び下線）   青色：設㯰変更許可本文及び添付書類八からの引用以外の記載   茶色：設置変更許可と基本設計方針（後）との対比   緑色：技術基淮規則と基本設計方針（後）との対比   紫色：基本設計方針（前）と基本設計方針（後）との対比	IOO条OO1：関連する資料と基本設計方針を細づけるための付番 ＜開連する資料＞   - 様式 -1 への展開表（禣足説明資料）   - 技術基準要求機器リスト（設定根执沉関する説明書 別添－1）   ：前回提出時からの変更䉪所


技術基準規則•解积	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	られる規格及び基準，試験等で妥当性が碓認されてい る値を用いる。   【5条42】   （a）建物•構築物   イ．S クラスの建物•構築物   （イ）弾性設計用地震動に よる地震力又は静的地震力 との組合せに対する許容限界   「建築基準法」等の安全上適切と認められる規格及 び基準による許容応力度を許容限界とする。   （口）基準地震動による地震力との組合せに対する許容限界   構造物全体としての変形能力（終局耐力時の変形）に ついて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持た せることとする（評価項目 はせん断ひずみ，応力等）。   なお，終局耐力は，建物•構築物に対する荷重又は応	られる規格及び基準，試験等で妥当性が確認されてい る値を用いる。   （6）【5条42】   （a）建物•構築物（（c）㲹記載のものを除く。）   イ．S クラスの建物•構築物   （イ）弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界   「建築基準法」等の安全上適切と認められる規格及 び基準による許容応力度を許容限界とする。   ただし，泠却材喪失事故時に作用する荷重との組合 せ（原子炉格納容器バウン ダリを構成する設備におけ る長期的荷重との組合せを除く。）に対しては，下記イ，   （口）に示す許容限界を適用する。   （口）基準地震動 S s によ る地震力との組合せに対す る許容限界   構造物全体としての変形能力（終局耐力時の変形）に ついて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持た せることとする（評価項目 はせん断ひずみ，応力等）。   なお，終局耐力は，建物•構築物に対する荷重又は応		られる規格及び基準，試験等で妥当性が確認されてい る許容応力等を用いる。（6）   a．建物•構築物（c．に記載のものを除く。）   （a）Sクラスの建物•構築物   i．弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界   「建築基準法」等の安全上適切と認められる規格及 び基準による許容応力度を許容限界とする。   ただし，冷却材進失事故時に作用する荷重との組合 せ（原子炉格納容器バウン ダりにおける長期的荷重と の組合せを除く。）に対して は，下記ii．に示す許容限界 を適用する。   ii．基準地震動 S s による地震力との組合せに対する許容限界   構造物全体としての変形能力（終局耐力時の変形）に ついて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持た せることとする（評価項目 はせん断ひずみ，応力等）。   なお，終局耐力は，建物•構築物に対する荷重又は応力を漸次増大していくと	同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴う差異   （長期的荷重に対する許容限界，東北地方太平洋沖地震やコンクリートの乾燥収縮によるひび割れの影響に ついては追加要求事項であ る）	原子炉冷却系統施設（共通）   2．1．1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

赤色：様式－6に関する記載（付番及び下線）   青色：設置変更許可本文及び添付書類八からの引用以外の記載   茶色：設置変更許可と基本設計方針（後）との対比   緑色：技術基淮規則と基本設計方針（後）との対比   紫色：基本設計方針（前）と基本設計方針（捘）との対比	IOO条OO1：関連する資料と基本設計方針を紐づけるための付番 ＜開連する資料＞   - 様式 -1 への展開表（禣足説明資料）   - 技術基準要求機器リスト（設定根执汇関する説明書 別添－1） $\qquad$ ：前回提出時からの変更箇所


技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	力を漸次増大していくと き，その変形又はひずみが著しく増加するに至る限界 の最大耐力とし，既往の実験式等に基づき適切に定め るものとする。   【5 条43】	力を漸次増大していくと き，その変形又はひずみが著しく増加するに至る限界 の最大耐力とし，初期剛性 の低下の要因として考えら れる平成 23 年（2011年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等が鉄筋 コンクリート造耐震壁の変形能力及び終局耐力に影響 を与えないことを確認して いることから，既往の実験式等に基づき適切に定める ものとする。   （6） p 【5条43】		き，その変形又はひずみが著しく増加するに至る限界 の最大耐力とし，初期剛性 の低下の要因として考えら れる平成 23 年（2011 年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等が鉄筋コンクリート造耐震壁の変形能力及び終局耐力に影響を与えないことを確認し ていることから，既往の実験式等に基づき適切に定め るものとする。（6）p		
	ロ．B クラス及びCクラス の建物•構築物（へ，及びト。 に記載のものを除く。）   上記イ．（イ）による許容応力度を許容限界とする。   【5 条44】	ロ．B クラス及びCクラス の建物•構築物（へ．及びト， に記載のものを除く。）   上記イ，（イ）による許容応力度を許容限界とする。   （6）【 5 条44】		（b）Bクラス及びCクラス の建物•構築物（（e）及び（f） に記載のものを除く。）   上記（a）i ．による許容応力度を許容限界とする。（6）q	同趣旨の記載であるが，表現の違いによる差異あり	原子炉冷却系統施設（共通） 2．1．1 耐震設計
	八。 耐震重要度分類の異 なる施設を支持する建物•構築物（へ，及びト，に記載 のものを除く。）   上記イ，（ロ）を適用する ほか，耐震重要度分類の異 なる施設がそれを支持する建物•構築物の変形等に対 して，その支持機能を損な わないものとする。   当該施設を支持する建物•構築物の支持機能が維持されることを確認する際	八。耐震重要度分類の異 なる施設を支持する建物•構築物（へ，及びト，に記載 のものを除く。）   上記イ。（ロ）を適用する ほか，耐震重要度分類の異 なる施設がそれを支持する建物•構築物の変形等に対 して，その支持機能を損な わないものとする。   当該施設を支持する建物•構築物の支持機能が維持されることを確認する際		（c）耐震重要度分類の異な る施設を支持する建物•構築物（（e）及び（f）に記載の ものを除く。）   上記（a）ii ．を適用するほ か，耐震重要度分類の異な る施設を支持する建物•構築物が，変形等に対してそ の支持機能を損なわないも のとする。   なお，当該施設を支持す る建物•構築物の支持機能 が損なわれないことを確認	同趣旨の記載であるが，表現の違いによる差異あり	同上

要求事項との対比表

赤色：様式－6 に関する記載（付番及び下線）   青色：設置変更許可本文及び添付書類八からの引用以外の記載   茶色：設㯰変更許可と基本設計方針（後）との対比   緑色：技術基淮規則と基本設計方針（後）との対比   紫色：基本設計方針（前）と基本設計方針（後）との対比	100条 OO ：䦎連する資料と楽本設計方針を組がけるための付番 ＜関速する資料〉   －椂式一 -1 への展開表（神足跘明資料）      ：前回规出時からの変更䈏所



設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

赤色：様式－6に関する記載（付番及び下線）   青色：設置変更許可本文及び添付書類八からの引用以外の記載   茶色：設置変更許可と基本設計方針（後）との対比   緑色：技術基淮規則と基本設計方針（後）との対比   紫色：基本設計方針（前）と基本設計方針（後）との対比	100 条 001 ：㸚蓮する資料と基本設計方針を組かけるための付番 ＜関速する資料〉   －栚式 -1 への展開表（禣足説明資料）    ：前回提出時からの変更简所


技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \\ \hline \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	構造部材の曲げについては限界層間変形角，許容応力度等，構造部材のせん断に ついてはせん断耐力，許容応力度に対して，妥当な安全余裕を持たせることとす る。   3 次元静的材料非線形解析により評価を行らもの等，ひずみを許容値とする場合は，構造物の要求機能 に応じた許容値に対し妥当 な安全余裕を持たせること とする。   【5 条48】   ト．その他の土木構造物安全上適切と認められる規格及び基準による許容応力度を許容限界とする。   【5 条49】   （b）機器•配管系   イ．S クラスの機器•配管系   （イ）弾性設計用地震動に よる地震力又は静的地震力 との組合せに対する許容限界   応答が全体的におおむねね弾性状態にとどまるものと する（評価項目は応力等）	構造部材の曲げについて は限界層間変形角，限界ひ ずみ，降伏曲げモーメント又は許容応力度，構造部材 のせん断についてはせん断耐力，許容応力度又は限界 せん断ひずみに対して，妥当な安全余裕を持たせるこ ととする。   3 次元静的材料非線形解析により評価を行うもの等，ひずみを許容値とする場合は，構造物の要求機能 に応じた許容値に対し妥当 な安全余裕を持たせること とする。   （6） t 【5条48】   ト，その他の土木構造物安全上適切と認められる規格及び基準による許容応力度を許容限界とする。   （6）【 【5 条 49】   （b）機器•配管系（（c）に記載のものを除く。）   イ．S クラスの機器•配管系   （イ）弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界   応答が全体的におおむね弾性状態にとどまるものと する（評価項目は応力等）。   ただし，冷却材喪失事故時に作用する荷重との組合		構造部材の曲げについて は限界層間変形角，許容応力度等，構造部材のせん断 についてはせん断耐力，許容応力度等に対して，妥当 な安全余裕を持たせること とする。 3 次元静的材料非線形解析により評価を行う もの等，ひずみを許容値と する場合は，構造物の要求機能に応じた許容値に対し妥当な安全余裕を持たせる こととする。   （6） t   （f）その他の土木構造物安全上適切と認められる規格及び基準による許容値 を許容限界とする。（6）   b．機器•配管系（c．に記載のものを除く。）   （a）Sクラスの機器•配管系   i．弾性設計用地震動 $\mathrm{S}_{\mathrm{d}}$ に よる地震力又は静的地震力 との組合せに対する許容限界   応答が全体的におおむね弾性状態にとどまることと する（評価項目は応力等）。   ただし，泠却材震失事故時に作用する荷重との組合	同趣旨の記載であるが，表現の違いによる差異あり   設備設計の明確化   （動的機能の他，電気的機能を発揮するものがあるた め具体的に記載した。）追加要求事項に伴ら差異 （荷重の組合せの考え方に ついては追加要求に該当す る。）	原子炉冷却系統施設（共通）   2．1．1 耐震設計   同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】
要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	（ロ）基準地震動による地震力との組合せに対する許容限界   塑性ひずみが生じる場合 であっても，その量が小さ なレベルにとどまって破断延性限界に十分な余裕を有 し，その施設に要求される機能に影響を及ぼさないよ らに応力，荷重等を制限す る値を許容限界とする。   また，地震時又は地震後 に動的機能又は電気的機能 が要求される機器について は，基準地震動による応答 に対して，実証試験等によ り確認されている機能確認済加速度等を許容限界とす る。   【5 条 50】   ロ．B クラス及びC クラス の機器•配管系   応答が全体的におおむね弾性状態にとどまることと する（評価項目は応力等）。【5 条 51】 $\begin{array}{r} \text { ハ. チャンネルボックス } \\ \text { チャンネルボックスは, } \end{array}$   地震時に作用する荷重に対	せ（原子炉格納容器バウン ダリ及び非常用炉心泠却設備等における長期的荷重と の組合せを除く。）に対して は，下記イ．（ロ）に示す許容限界を適用する。   （ロ）基準地震動 S s によ る地震力との組合せに対す る許容限界   塑性ひずみが生じる場合 であっても，その量が小さ なレベルにとどまって破断延性限界に十分な余裕を有 し，その施設に要求される機能に影響を及ぼさないよ うに応力，荷重等を制限す る値を許容限界とする。   また，地震時又は地震後 に動的機能又は電気的機能 が要求される機器について は，基準地震動 S s による応答に対して，実証試験等 により確認されている機能確認済加速度等を許容限界 とする。   （6） V 【5 条50】   八．B クラス及びCクラス の機器•配管系   応答が全体的におおむねね弾性状態にとどまることと する（評価項目は応力等）。   （6）W【5条51】   二．チャンネルボックス チャンネルボックスは，地震時に作用する荷重に対		せ（原子灲格納容器バウン ダリを構成する設備，非常用炉心冷却設備等における長期的荷重との組合せを除 く。）に対しては，下記ii ． に示す許容限界を適用す る。   ii ．基準地震動 S s による地震力との組合せに対する許容限界   塑性ひずみが生じる場合 であっても，その量が小さ なレベルにとどまって破断延性限界に十分な余裕を有 し，その施設に要求される機能に影響を及ぼさないよ らに応力，荷重等を制限す る値を許容限界とする。   また，地震時又は地震後 に動的機能が要求される機器等については，基準地震動 S s による応答に対し て，実証試験等により確認 されている機能碓認済加速度等を許容限界とする。 （6） V   （b）Bクラス及びCクラス の機器•配管系   応答が全体的におおむね弾性状態にとどまることと する（評価項目は応力等）。 （6） w   （c）チャンネルボックス地震時に作用する荷重に対して，燃料集合体の泠却	同趣旨の記載であるが，表現の違いによる差異あり   同趣旨の記載であるが，表現の違いによる差異あり	原子炉泠却系統施設（共通）   2．1．1 耐震設計   同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

赤色：様式－6に関する記載（付番及び下線）   青色：設置変更許可本文及び添付書類八からの引用以外の記載   茶色：設㯰変更許可と基本設計方針（後）との対比   緑色：技術基推規則と基本設計方針（後）との対比   紫色：基本設計方針（前）と基本設計方針（後）との対比	I $○$ ○条 $O$ ○1：関連する資料と基本設計方針を紐づけるための付番   ＜関連する資料＞   - 様式 -1 への展開表（補足説明資料）   - 技術基準要求機器リスト（設定根执沉関する説明書 別添－1）   ：前回提出時からの変更笝所


技術基潐規則•解积	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	して，燃料集合体の原子炉冷却材流路を維持できるこ と及び過大な変形や破損を生ずることにより制御棒の挿入が阻害されないものと する。   【5 条 52】   二．主蒸気逃がし安全弁排気管及び主蒸気系（主蒸気第二隔離弁から主蒸気止 め弁まで）   主蒸気逃がし安全弁排気	して，燃料集合体の原子炉泠却材流路を維持できるこ と及び過大な変形や破損を生ずることにより制御棒の挿入が阻害されないものと する。   （6） 【5条52】   小．燃料被覆管   炉心内の燃料被覆管の放射性物質の閉じ込めの機能 についての許容限界は，以下のとおりとする。   （イ）弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界   応答が全体的におおむね弾性状態にとどまることと する。   （口）基準地震動S s によ る地震力との組合せに対す る許容限界   塑性ひずみが生じる場合 であっても，その量が小さ なレベルにとどまって破断延性限界に十分な余裕を有 し，放射性物質の閉じ达め の機能に影響を及ぼさない こととする。   （6）y（8b【5条53】   ～。主蒸気逃がし安全弁排気管及び主蒸気系（主蒸気第二隔離弁から主蒸気止 め弁まで）   主蒸気逃がし安全弁排気		材流路を維持できること及 び過大な変形や破損を生じ ることにより制御棒の插入 が阻害されることがないこ とを碓認する。（6）x   （d）燃料被覆管   炬心内の然料被覆管の放射性物質の閉じ込めの機能 についての許容限界は，以下のとおりとする。   i．弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界   応答が全体的におおむねね弾性状態にとどまることと する。   ii．基準地震動 S s による地震力との組合せに対する許容限界   塑性ひずみが生じる場合 であっても，その量が小さ なレベルにとどまって破断延性限界に十分な余裕を有 し，放射性物質の閉じ込め の機能に影響を及ぼさない こととする。（6）y8b	同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴う差異 （燃料被覆材の耐震性につ いては追加要求に該当す る。）	原子炉冷却采統施設（共通）   2．1．1 而震設計   同上

要求事項との対比表

		100 条 001 ：関連する資料と基本設計方针を組かけるための付番 ＜開述寸る资料〉   －様式一1 への展開表（禣足説明資料）      前回拱出時加らの変更箇所	
設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比		備考
c．津波防護施設，浸水防止設備及び津波監視設備並び に浸水防止設備が設置され た建物•構築物   津波防護施設及び浸水防止設備が設置された建物•構築物については，当該施設及び建物•構築物が構造物全体としての変形能力 （終局耐力時の変形）につ いて十分な余裕を有すると ともに，その施設に要求さ れる機能（津波防護機能及 び浸水防止機能）が保持で きることを確認する（評価項目はせん断ひずみ，応力等）。   浸水防止設備及び津波監視設備については，その設備に要求される機能（浸水防止機能及び津波監視機能）が保持できることを確認する。②z   d．基礎地盤の支持性能（2） （a）Sクラスの建物•構築物及びSクラスの機器•配管系（津波防護施設，浸水防止設備及び津波監視設備を	同趣旨の記載であるが，表現の違いによる差異あり追加要求事項に伴ら差異   （津波防護施設，浸水防止設備及び津波監視設備並び に浸水防止設備が設置され た建物•構築物については追加要求事項に該当する。）		原子炉冷却系統施設（共通）   2．1． 1 耐震設計

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
		（5）設計における留意事項	f．耐震重要施設は，耐震重要度分類の下位のクラスに属する施設の波及的影響に よって，その安全機能を損 なわないように設計する。	除く。）の基礎地盤   i．弾性設計用地震動S d による地震力又は静的地震力との組合せに対する許容限界   接地圧に対して，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とす る。   ii．基準地震動S s による地震力との組合せに対する許容限界   接地圧が，安全上適切と認められる規格，基準等に よる地盤の極限支持力度に対して妥当な余裕を有する ことを碓認する。   （b）屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物の基礎地盤 i．基準地震動S s による地震力との組合せに対する許容限界   （c）Bクラス及びCクラ スの建物•構築物，Bクラス及びCクラスの機器•配管系並びにその他の土木構造物の基礎地盤   上記（a）i．による許容支持力度を許容限界とす る。   1．4．1．5 設計における留意事項	設備設計の明碓化 （波及的影響を防止するた	原子炉泠却系統施設（共通） 2．1．1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】


要求事項との対比表

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】
要求事項との対比表


要求事項との対比表

	I 1 ○条 $○$ ○1：関連する資料と基本設計方針を紐づけるための付番 ＜関連する資料＞   - 様式 -1 への展開表（禣足説明資料）   - 技術基潐要求機器リスト（設定根拠汇関する説明書 別添 -1 ）   ：前回提出時からの変更箇所


技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備
		するために，原子炉建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリアに地下水位低下設備を各エリ ア 2 系統設置する。   耐震評価において，地下水位の影響を受ける施設及 びアクセスルートについ て，地下水位低下設備の効果が及ぶ範囲（0．P．+14.8 m盤）においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮す る。なお，地下水位低下設備 の効果が及ばない範囲にお いては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮す る。 （3） m 【5条61】   地下水位低下設備は，ド レーン，接続桝，揚水井戸，蓋，揚水ポンプ，配管，水位計，制御盤，電源（非常用デ イーゼル発電機），電源盤及 び電路により系統を構成す る。 （3）【5 条66】   地下水位低下設備は，ド レーン及び接続桝により揚水井戸に地下水を集水し，揚水ポンプ（容量 $375 \mathrm{~m}^{3} / \mathrm{h} /$個，揚程 52 m ，原動機出力 $110 \mathrm{~kW} /$ 個）により，揚水ポン	が及ばない範囲において は，自然水位より保守的に設定した水位又は地表面に て設計用地下水位を設定し水圧の影響を考慮する。（3）		（地下水位低下設備の要求 は追加要求に該当）   設備設計の明確化   （地下水位低下設備の設計方針について明確化）追加要求事項に伴う差異   （地下水位低下設備の要求 は追加要求に該当）   設備設計の明確化   （地下水位低下設備の設計方針（設置する設備とその仕様）について明確化）追加要求事項に伴ら差異 （地下水位低下設備の要求	（3）m 引用元：P48   原子炉冷却系統施設（共通）   2．1．1耐震設計   （3）$n$ 引用元：P66   同上

要求事項との対比表

```赤色:様式-6に関する記載(付番及び下線) 青色: 設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更䚽可と基本設計方針(後) との対比 緑色:技術基汻规則と基本設計方針(後) との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比```	100 条 001 ：用蓮する資料と基本設計方䟔を組ちけするための付番 ＜関連寸る資料〉   －様式一 -1 への展曻表（禣足説明資料）    前回提出時からの変更鄙所

C：基本設計方針（前）と基本設計方針（後）との対比

技術基潐規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
		プに接続された配管を通し て地下水を屋外排水路へ排水する。 揚水ポンプは，地下水の最大流入量を排水可能な容量を有する設計とし，設備 の信頼性向上のため 100%容量のポンプを1系統当た り2個（計 8 個）設置し，集水した地下水を排水できる設計とする。 （3）【5条67】 地下水位低下設備は，1 系統当たり 3 個（計 12 個）設置した水位計からの水位信号を用いて， 2 out of 3 論理により揚水ポンプの自動起動及び自動停止を行らこ とで，揚水井戸の水位を自動で制御できる設計とす る。また，各系統の水位を，原子炉建屋及び中央制御室 に設置した制御盤から監視可能な設計とする。水位や設備の異常時には，これら を確実に検出して自動的に中央制御室に警報（水位低又は高，水位高高，電源霛失，揚水ポンプ故障）を発信 する装置を設けるととも に，表示ランプの点灯，ブザ ー鳴動により運転員に通報 できる設計とする。 制御盤は， 2 系統の独立し た設備を1系統当たり現場及び中央制御室に 1 面ずつ			は追加要求に該当） 設備設計の明確化 （地下水位低下設備の設計方針（設置する設備とその仕様）について明確化）追加要求事項に伴う差異 （地下水位低下設備の要求 は追加要求に該当）	原子炉泠却采統施設（共通） 2．1． 1 耐震設計

要求事項との対比表

	IOO条OO1：関連する資料と基本設計方針を紐がけるための付番 ＜開連する資料＞ - 様式 -1 への展開表（禣足説明資料） - 技術基準要求機器リスト（設定根执に関する説明書 別添－1） ：前回提出時からの変更箇所

C：基木諁計方針（前）と基本設計方針（後）との対比

：前回提世時からの変更䉡所－る説明書 別添－1）

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書	設置許可，技術基準規則及び基本設計方針との対比	備考
		設置し，原子炉建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリアのそれ ぞれ 1 系統の設備ごとに，監視•制御可能な設計とする。 （3）【5条68】 地下水位低下設備は，電源盤（容量 296kVA），及び電路を設置し，非常用交流電源設備である非常用ディー ゼル発電機から設備に必要 な電力を供給できる設計と する。 電源盤は， 2 系統の独立し た設備を 1 系統当たり 1 面 ずつ設置し，原子炉建屋•制御建屋エリア及び第3号機海水熱交器建屋エリアのそ れぞれ 1 系統の設備ごとに電力を供給できる設計とす る。 （3）【5 条69】 揚水ポンプ，配管及び水位計は揚水井戸内に設置 し，揚水井戸により支持す るとともに，揚水井戸上部 に蓋を設置することで，外部事象の影響を受けない設計とする。 （3）【5 条70】 地下水位低下設備は，地震時及び地震後を含む，原子力発電所の供用期間の全 ての状態（通常運転時（起動			設備設計の明碓化 （地下水位低下設備の設計方針（設置する設備とその仕様）について明碓化）追加要求事項に伴ら差異 （地下水位低下設備の要求 は追加要求に該当） 設備設計の明碓化 （地下水位低下設備の設計方針（設置する設備とその仕様）について明確化）追加要求事項に伴ら差異 （地下水位低下設備の要求 は追加要求に該当） 設備設計の明碓化 （設置許可基準 12 条 2 項 の適合性を明記） 追加要求事項に伴う差異	原子炉冷却系統施設（共通） 2．1．1 耐震設計 同上 同上

要求事項との対比表

	IOO条OO1：関連する資料と基本設計方針を紐がけるための付番 ＜開連する資料＞ - 様式 -1 への展開表（禣足説明資料） - 技術基準要求機器リスト（設定根执に関する説明書 別添－1） ：前回提出時からの変更箇所

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可中請書 } \\ \text { 本文 }}}{ }$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
		時，停止時含む），運転時の異常な過渡変化時，設計基準事故時及び重大事故等時）において機能維持を可能とするため，基準地震動 S s による地震力に対して機能維持する設計とする。 また，「実用発電用原子炬及びその附属施設の位置，構造及び設備の基準に関す る規則」第十二条第 2 項に基 づき，地下水位低下設備を設置する原子炉建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリアの各 エリアで，多重性及び独立性を備える設計とするとと もに，外部事象等による機能喪失要因に対し機能維持 する設計とする。 さらに，プラント供用期間中において発生を想定す る大規模損壊時の対応も考慮する。 （3）（3）p【5 条62】 地下水位低下設備の機能喪失が発生した場合を想定 し，復旧措置に必要な資機材として，原子炉建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリアにお ける全ての地下水位低下設備の機能䨤失を考慮し，予備品及び可搬ポンプ（個数 3 ，容量 $114 \mathrm{~m}^{3} / \mathrm{h} /$ 個（計 $\left.342 \mathrm{~m}^{3} / \mathrm{h}\right)$ ）を搭載した可搬ポ			（地下水位低下設備の要求 は追加要求に該当） 設備設計の明確化 （地下水位低下設備機能喪失時の対応方針を明記）追加要求事項に伴う差異 （地下水位低下設備の要求 は追加要求に該当）	（3）$(3) p$ 引用元：P65 原子炉冷却系統施設（共通） 2．1．1 耐震設計

要求事項との対比表

```赤色:樣式-6 に関する記載(付番及び下線) 青色: 設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更䚽可と基本設計方針(後) との対比 緑色:技術基淮規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比```	1 10 条 $\mathrm{OO1}$ ：関連する資料と基本設計方針を紐づけるための付番 ＜関連する資料＞   - 様式 -1 への展開表（禣足説明資料）   - 技術基準要求機器リスト（設定根拠に関する説明書 別添－1）   ：前回提出時からの変更箇所

思基本設計方針（前）と基本設計方針（後）との対比

：前回提出時办らの変更䉡所

技術基潐規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
		ンプユニット（個数 2）を配備する。   （3）【5 条 71】   予備品は，復旧措置にあ たり機器の交換が必要な場合に備え，各エリアを1系統復旧できる数量を配備す る。   （3）【5 条 72】   可搬ポンプユニットは，各エリアの排水機能の維持 を可能とする配備数とし，高台の堅固な地盤に外部事象を考慮して分散配置す る。   （3）【5 条 73】   地下水位低下設備は，保安規定において運転上の制限を設定し，地下水位を一定の範囲に保持できない場合又はそのおそれがある場合には，可搬ポンプユニッ トによる水位低下措置を速 やかに開始するとともに，原子炉を停止する。   また，地下水位低下設備 の復旧措置に的確かつ柔軟 に対処できるように，復旧措置に係る資機材の配備，   手順書及び体制の整備並び に教育訓練の実施方針を自然災害発生時等の体制の整備として，保安規定に定め た上で，社内規定に定める。			設備設計の明確化   （地下水位低下設備機能喪失時の対応方針を明記）追加要求事項に伴う差異   （地下水位低下設備の要求 は追加要求に該当）   設備設計の明確化   （地下水位低下設備機能霝失時の対応方針を明記）   追加要求事項に伴う差異   （地下水位低下設備の要求 は追加要求に該当）   設備設計の明確化   （地下水位低下設備機能霛失時の対応方針を明記）   追加要求事項に伴う差異 （地下水位低下設備の要求 は追加要求に該当）	原子炉冷却系統施設（共通）   2．1． 1 耐震設計   同上   同上

要求事項との対比表

```赤色:様式-6に関する記截(付番及び下線) 青色:設置変更許可本文及び添付書類八からの引用以外の記載 茶色:設㯰変更詳可と基本設計方針(後)との対比 緑色:技術基淮規則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比```	100 条 OO I：関連する資料と基本設計方針を紐づけるための付番 ＜関連する資料＞   - 様式 -1 への展開表（補足説明資料）   - 技術基準要求機器リスト（設定根执に関する説明書 別添－1） ：前回提出時からの変更箇所


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第5条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
い。（1） 【解釈】 4 第 3 項の規定は，設置許可基準規則第 4 条第 4 項の規定に基づき設置許可で碓認した設計方針に基づき，設置許可基準規則第 4 条第 3 項の地震により斜面の崩壊が生じるおそれがある場合には，耐震重要施設の安全性を損なわないよう，數地内土木工作物によるる斜面 の保持等の措置を講ずるこ と及びその機能を維持して いることをいう。（1） 4 炬心内の燃料被覆材は，基準地震動による地震力に対して放射性物質の閉じ込 めの機能が損なわれるおそ れがないように施設しなけ ればならない。（8） 【解釈】 5第4項に规定する「基準地震動による地震力に対し て放射性物質の閉じ还めの機能が損なわれるおそれが ない」とは，通常運転時及び運転時の異常な過渡変化時 に生じるそれぞれの荷重と基準地震動による地震力を組み合わせた荷重条件によ り塑性ひずみが生じる場合 であっても，その量が小さ なレベルに留まって破断延性限界に十分な余裕を有		（1）【5 条64】 使用済燃料を貯蔵する兼用キャスクは保有しない。 （9）【5条65】	h．炉心内の燃料被覆材（燃料被覆管）の放射性物質の閉じ込めの機能について は，以下のとおり設計する。 弾性設計用地震動 S d に よる地震力又は静的地震力 のいずれか大きい方の地震力に対して，炉心内の燃料被覆管の応答が全体的にお おむね弾性状態にとどまる ように設計する。 基準地震動 S s による地震力に対して，放射性物質 の閉じ込めの機能に影響を及ぼさないように設計す る。2（6）y，8b 重複）	討に当たっては，溢水及び火災の観点からも波及的影響がないことを確認する。 上記の観点で検討した波及的影響を考慮する施設 を，第1．4．1－1 表中に「波及的影響を考慮すべき施設」として記載する。 1．4．1．6 構造計画と配置計画 設計基準対象施設の構造計画及び配置計画に際して	基準要求への適合性を明確化 兼用キャスクの要求に対し ては，当該設備を保有しな い旨を記載 追加要求事項に伴う差異	（1）引用元：P2 核燃料物質の取扱施設及び貯蔵施設 2.1 燃料貯蔵設備の基本方針

要求事項との対比表

赤色：様式－6 江関する記載（付番及び下線） 青色：設置変更許可本文及び添付書類八からの引用以外の記載 茶色：設萱変更許可と基本設計方針（後）との対比 緑色：技術基淮規則と基本設計方針（㣭）との対比 紫色：基本設計方針（前）と基本設計方針（後）との対比	100条 OO ：䦎連する資料と楽本設計方針を組がけるための付番 ＜関速する資料〉 －椂式一 -1 への展開表（神足跘明資料） ：前回规出時からの変更䈏所

技術基準規則•解釈	役工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{gathered} \begin{array}{c} \text { 設置許可申請書 } \\ \text { 本文 } \end{array} \\ \hline \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
の機能に影響を及ぼさない ことをいう。（8） 5 兼用キャスクは，設置許可基準規則第四条第六項に規定する地震力に対してそ の安全性が損なわれるおそ れがないように施設しなけ ればならない。（9） 【解粏】 6 第 5 項の規定は，設置許可基準規則第 4 条第 6 項の規定に基づき設置許可で確認した設計方針に基づき，兼用キャスクが，同項の地震力に対し，施設の機能を維持していること又は構造強度を碓保していることを いう。（9） 6 兼用キヤスクが設置許可基準規則第四条第七項の地震により生ずる斜面の崩壊によりその安全性が損な われるおそれがないよう，防護措置その他の適切な措置を講じなければならな い。（9） 【解利】 7 第 6 項の規定は，設置許可基準規則第 4 条第 7 項の規定に基づき設置許可で確認した設計方針に基づき，同項の斜面の崩壊が生じる おそれがある場合には，兼用キャスクの安全性を損な わないよう，數地内土木工作物による斜面の保持等の				は，地震の影響が低減され るように考慮する。 建物•構築物は，原則とし て剛構造とし，重要な建物•構築物は，地震力に対し十分な支持性能を有する地盤 に支持させる。剛構造とし ない建物•構築物は，剛構造 と同等又はそれを上回る耐震安全性を確保する。 機器•配管系は，応答性状 を適切に評価し，適用する地震力に対して構造強度を有する設計とする。配置に自由度のあるものは，耐震上の観点からできる限り重心位置を低くし，かつ，安定性のよい据付け状態になる よう配置する。 また，建物•構築物の建屋間相対変位を考慮しても，建物•構築物及び機器•配管系の耐震安全性を確保する設計とする。 下位クラス施設は原則，耐震重要施設に対して離隔 をとり配置する，又は基準地震動 S s に対し構造強度 を保つようにし，耐震重要施設の安全機能を損なわな い設計とする。 1．4．3主要施設の耐震構造 1．4．3．1 原子炉建屋 原子炉建屋は，中央部に地上3階，地下 3 階で，平面 が約 66 m （南北方向）\times 約 53 m		

要求事項との対比表

赤色：様式－6 に関する記載（付番及び下線） 青色：設置変更許可本文及び添付書類八からの引用以外の記載 茶色：設置変更許可と基本設計方針（後）との対比 緑色：技術基沙規則と基本設計方針（後）との対比 紫色：基本設計方針（前）と基本設計方針（後）との対比	100 条 OO ：関連する資料と基本設啚力方众を組かけるための付番 ＜関速する資料＞ ：前回㧹出時からの変更綯所

技術基準規則•解釈	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 (前) } \\ \hline \end{gathered}$	設工認申請書基本設計方針（後）	$\underset{\text { 設置許可申請書 }}{\text { 本文 }}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
措置を講ずること及びその機能を維持していることを いう。（9）				（東西方向）の原子炉建屋原子炉棟があり，その周囲 に地上 2 階，地下 3 階の原子炉建屋付属棟を配置した鉄筋コンクリート造（一部鉄骨鉄筋コンクリート造及 び鉄骨造）の建物である。原子炉建屋原子炉棟と原子炉建屋付属棟は，一体構造で同一基礎版上に設置され，本建屋の平面は外側で約 77 m （南北方向）\times 約 84 m （東西方向）である。最下階床面 からの高さは約 59 m で，地上高さは約 36 m である。原子炉建屋原子炉棟中央部 には，鋼製の原子炉格納容器を囲む厚さ約 2 m の鉄筋 コンクリート造の生体遮蔽壁があり，その外側に内部 ボックス壁及び原子炉建屋付属棟の外側である外部ボ ックス壁がある。 これらは，原子炬建屋の主要な耐震壁を構成し，そ れぞれ壁の間を強固な床板 で一体に連結しているの で，全体として剛な構造と なっている。 1．4．3．2 タービン建屋 タービン建屋は，地上 2階，地下 2 階で，平面が約 96 m （南北方向）\times 約 58 m （東西方向）の鉄筋コンクリー ト造（一部鉄骨鉄筋コンク リート造及び鉄骨造）の建		

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
				物である。 建物の内部は，多くの遮蔽壁をもち，剛性が高い。し たがって十分な耐震性を有 する構造となっている。 1．4．3．3 制御建屋 制御建屋は，地上3階，地下 2 階で，平面が約 41 m （南北方向）\times 約 40 m （東西方向） の鉄筋コンクリート造（一部鉄骨造）の建物である。 1．4．3．4防潮堤 防潮堤は，鋼管式鉛直壁 （一般部），鋼管式鉛直壁 （岩盤部）及び盛土堤防の 3 種類の構造形式に区分さ れ，敷地の前面に設置する。 鋼管式鉛直壁（一般部） は，延長約 420 m ，直径 2.2 m及び 2.5 m の鋼管杭に天端高さ $0 . P .+29 m *$ の鋼製遮水壁を取り付け，周囲に背面補強工（コンクリート），セ メント改良土，改良地盤及 び置換コンクリートを配置 した剛な構造物であり，鋼管杭及び改良地盤を介して砂岩，頁岩，砂岩頁岩互層で ある荻の浜累層に着岩して いる。 鋼管式鉛直壁（岩盤部） は，延長約 260 m ，直径 2.2 m及び 2.5 m の鋼管杭に天端高 さ $0 . P .+29 \mathrm{~m}$ の鋼製遮水壁 を取り付けた剛な構造物で		

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
				あり，鋼管杭を介して砂岩，頁岩，砂岩頁岩互層である荻の浜累層に着岩してい る。 盛土堤防は，延長約 120 m ，天端高さ 0．P．+29 m のセメ ント改良土で盛り立てた盛土構造物であり，直接又は改良地盤を介して砂岩，頁岩，砂岩頁岩互層である荻 の浜累層に着岩している。 ＊防潮堤の高さは，平成 23 年（2011 年）東北地方太平洋沖地震に よる約 1 m の沈降を考慮した表記とする。 1．4．3． 5 防潮壁 防潮壁は，鋼製遮水壁（鋼板），鋼製遮水壁（鋼标），鋼製扉及び鉄筋コンクリート （ R C）遮水壁の 4 種類の構造形式に区分され， 2 号及び 3 号炬海水ポンプ室， 2 号及び 3 号炉放水立坑並 びに 3 号炬海水熱交換器建屋取水立坑に設置する。 鋼製遮水壁（鋼板）のう ち， 2 号及び 3 号炬海水术 ンプ室， 2 号及び 3 号炉放水立坑に設置する防潮壁 は，フーチング上に設置す るH形鋼に，鋼板をボルト で接合した構造物であり， フーチングと一体化した鋼管杭を介して砂岩，頁岩，砂岩頁岩互層である荻の浜累		

要求事項との対比表

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
				の半球殻をつけた高さ約 37 m の鋼製圧力容器であ り，ベント管を介してサプ レッションチェンバと接続 している。 半球殼上部付近にはシヤ ラグを設けて，原子炬圧力容器から原子炉格納容器に伝えられる水平力及び原子炉格納容器にかかる水平力 の一部を周囲の生体遮蔽壁 に伝える構造としている。 サプレッションチェンバ は，円環形をしており，断面径約 9．4m，円環部の中心径約 38 m の銅製容器である。 \qquad 1．4．3．7 原子炉圧力容器原子炉圧力容器は，内径約 5.6 m ，高さ約 22 m ，質量は原子炬圧力容器内部構造物，内部冷却材及び燃料集合体を含めて約 1,250 t で ある。 原子炬圧力容器は，底部 の鋼製スカートで支持さ れ，スカートは鋼製円筒形基礎にアンカボルトで接続 されている。原子炉圧力容器は，容器外周に位置する円筒状の原子炬遮蔽壁頂部 で原子炉圧力容器スタビラ イザによって水平方向に支持され，原子炬遮蔽壁の頂部は原子炉格納容器スタビ ライザによって原子炉格納容器と結合する。原子炬压		

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
				力容器スタビライザは地震力に対し，原子炉圧力容器 の上部を水平方向に支持し ている。 したがって，原子炉圧力容器は，スカートで下端固定，スタビライザで上部ピ ン支持となっている。 1．4．3．8 原子炉圧力容器内部構造物 炉心に作用する水平力 は，ステンレス鋼製の炉心 シュラウド及び炬心シュラ ウド支持ロッドで支持す る。炉心シュラウドは周囲 に炉心シュラウド支持ロッ ドを設置した円筒形の構造 で，シュラウドサポートを介して原子炬圧力容器の下部に溶接する。 燃料集合体に作用する水平力は，上部格子板及び炉心支持板を通して炝心シュ ラウドに伝える。燃料集合体は，ジルカロイ製の細長 いチャンネルボックスに納 める。燃料棒は，燃料集合体頂部及び底部のタイプレー トで押さえられ，中間部も スペーサによって押さえら れるので過度の変形を生じ ることはない。 気水分離器は，シュラウ ドヘッドに取り付けられた スタンドパイプに溶接す る。蒸気乾燥器は，原子炬圧		

要求事項との対比表

要求事項との対比表

	100 条 001 ：関連する資料と基本設計方卻を組つけるための付番 ＜開連する資㳆＞ －㥞式 -1 への展归表（禣足説明資料） ：前回提出㫲からの変更箇所

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
				プを設け，再び立ち上げて ヘッダに入れ，そこから5本の外径約 0.28 m のステン レス鋼管に分け，原子炉圧力容器に接続する。この系 の支持方法は，熱膨張によ る動きを拘束せず，できる限り剛な系になるように， スプリングハンガ，スナッ バ等を採用する。原子炉再循環ポンプは，ケーシング に取り付けたコンスタント ハンガ等で支持する。 1．4．3．10 原子炉本体の基礎 原子炉本体の基礎につい ては，内筒及び外筒の円筒鋼板の間にコンクリートを充填した，鋼材とコンクリ ートの複合構造となってい る。 1．4．3．11 その他 その他の機器，配管につ いては，運転荷重，地震荷重，熱膨張による荷重を考慮して，必要に応じてリジ ットハンガ，スナッバ，その他の支持装置を使用して耐震性に対しても熱的にも十分な設計を行う。 1．4．4 地震検知による耐震安全性の碓保 1．4．4．1 地震感知器安全保護系の一つとして		

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
				地震感知器を設け，ある程度以上の地震が起こった場合に原子炉を自動的に停止 させる。スクラム設定値は弾性設計用地震動 S_{d} の加速度しベルに余裕を持たせ た値とする。安全保護系は， フェイル・セイフ設備とす るが，地震以外のショック によって原子炉をスクラム させないよう配慮する。 地震感知器は，基盤の地震動をできるだけ直接的に検出するため建屋基礎版の位置，また主要な機器が設置されている代表的な床面 に設置する。なお，設置に当 たっては試験及び保守が可能な原子炉建屋の適切な場所に設置する。 1．4．4．2 地震観測等による耐震性の確認 発電用原子炉施設のらち安全上特に重要なものに対 しては，地震観測網を適切 に設置し，地震観測等によ り振動性状の把握を行い， それらの測定結果に基づく解析等により施設の機能に支障がないことを碓認して いくものとする。また，原子炉をスクラムさせるような ある程度以上の地震が起こ った場合には，平成 23 年 （2011 年）東北地方太平洋沖地震等の影響を踏まえて		

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
				設計体系に反映した事項 （初期剛性低下の考慮等） について分析し，設計の妥当性を確認する。 なお，地震観測装置の設置に当たつては，地震観測 を継続して実施するため に，地震観測網の適切な維持管理を行らとともに，平成 23 年（2011 年）東北地方太平洋沖地震等に対する振動性状の詳細検討結果に応じて観測装置の充実を図 る。 10．その他発電用原子炉の附属施設 10． 15 地下水位低下設備 10．15． 1 概要 地下水位低下設備は，防潮堤下部の地盤改良等によ り地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれが あることを踏まえ，発電用原子炉施設周辺の地下水位 を一定の範囲に保持するた めのものである。 地下水位低下設備は $0 . P$ ． +14.8 m 盤の発電用原子炉施設周辺に設置する。 ③（3）m 重複） 10．15．2設計方針 （1）地下水位低下設備は， 基準地震動 S s に対して機 能維持する設計とする。（3）		

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（前）	設工認申請書基本設計方針（後）	$\begin{aligned} & \text { 設置許可申請書 } \\ & \text { 本文 } \end{aligned}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
				（2）地下水位低下設備は，設置許可基準規則第十二条第 2 項に基づく設計とす る。（1） （3）地下水位低下設備は，全交流動力電源喪失に配慮 し，常設代替交流電源設備 からの電源供給が可能な設計とする。（1） （4）地下水位低下設備は，外部事象へ配慮した設計と する。（3） 10． 15.3 主要設備 地下水位低下設備は，ド レーン，揚水井戸，揚水ポン プ，配管及び計測制御装置 により構成される。（3）n 10． 15.4 手順等 地下水位低下設備の機能喪失への対応として，復旧 のための予備品の確保及び可搬型設備を用いた機動的 な措置について手順書及び体制を整備するとともに，地下水位を一定の範囲に保持できないと判断した場合 には，プラントを停止する。 また，地下水位低下設備の機能喪失時の措置について は，運転管理上の方針とし て保安規定に定めて，管理 していく。（3）q		

	100 条 O O1：関連する資料と基本設計方針を組づけるための付番 ＜関連する資料＞ - 様式 -1 への展開表（補足説明資料） - 技術基準要求機器リスト（設定根执氾関する説明書 別添－1） ：前回提出時からの変更箇所

要求事項との対比表 \qquad


```赤色:様式-6に関する記載(付番及び下線) 青色:設蕒変更許可本文及び添付書類八からの引用以外の記載 茶色:設置変更許可と基本設計方針(後) との対比 緑色:技㣫基淮㚘則と基本設計方針(後)との対比 紫色:基本設計方針(前)と基本設計方針(後)との対比```	＜関速する資料〉   －㭬式 -1 への展開表（禣足説明資料）      ：前回规出時からの変更箘所

要求事項との対比表

$\left.\begin{array}{rl}\text { 設工認申請書 } \\ \text { 基本設計方針（後）}\end{array}\right)$


要求事項との対比表

赤色：様式－6 江関する記載（付番及び下線）   青色：設置変更許可本文及び添付書類八からの引用以外の記載   茶色：設置変更許可と基本設計方針（後）との対比   緑色：技術基淮規則と基本設計方針（後）との対比   紫色：基本設計方針（前）と基本設計方針（後）との対比	100 条 OO 1 ：関連する資料と基本設計方針を紐づけるための付番 ＜関連する資料＞   - 椂式 -1 への展開表（補足説明資料）   - 技術基潐要求機器リスト（設定根拠に関する説明書 別添－1）   ：前回提出時加らの変更笝所


| 設置許可，技術基漼規則 |
| :---: | :---: |
| 備考 |

追加要求事項に伴う差異 （津波防護施設，浸水防止設備，津波監視設備は追加要求事項に該当）

要求事項との対比表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第5条 地震による損傷の防止】

要求事項との対比表

赤色：様式－6 汇関する記載（付番及び下線）   青色：設置変更許可本文及び添付書類八からの引用以外の記載   茶色：設置変更許可と基本設計方針（後）との対比   緑色：技術基淮規則と基本設計方針（後）との対比   紫色：基本設計方針（前）と基本設計方針（後）との対比	IOO条OO1：関連する資料と基本設計方針を紐がけるための付番 ＜関連する資料＞   - 様式 -1 への展開表（補足説明資料）   - 技術基準要求機器リスト（設定根拠に関する説明書 別添－1）   ：前回提出時からの変更箇所





E

要求事項との対比表

| 赤色：様式－6に関する記載（付番及び下線） <br> 青色：設置変更許可本文及び添付書類八からの引用以外の記載 <br> 茶色：設置変更許可と基本設計方針（後）との対比 <br> 緑色：技術基淮規則と基本設計方針（後）との対比 <br> 紫色：基本設計方針（前）と基本設計方針（後）との対比 | 100 条 OO I：関連する資料と基本設計方針を紐づけるための付番 ＜関連する資料＞ <br> - 様式 -1 への展開表（禣足説明資料） <br> - 技術基準要求機器リスト（設定根执に関する説明書 別添－1） ：前回提出時加らの変更箇所 |
| :---: | :---: | －技怵基準要求機曼り，スト（設定根执に



$\stackrel{\longmapsto}{\Perp}$

	設工認申請書基本設計方針（前）
$\text { 注記 } * 1 \text { 家 }$	
	補助設備とは，当該幾能に間接的に関連し，主要設備の補助的役割を持つ設備をい う。
＊3：	直接支持構造物とは，主要設備，補助設備に直接取り付けられる支持構造物又は二 れらの設備の荷重を直接的に受ける支持構造物をいら。
＊4	
＊5：	
	$\mathrm{S}_{\mathrm{B}}$ ： B アラスス施䚺に適用される地震力
＊6：	ほう酸水注入奚は，安全傃能の重要度を考慮して，sクラスに進じて取り扱う。
＊7．	原子炉圧力容器内部構造物は，炉内にあることの重要度を考慮して，Sクラスに準 じて取り扱う。
＊8：	
＊9：	主蒸気逃がし安全并排気管については，基漼地震動S



要求事項との対比表

           紫色：基本設叶方针（前）と基本設计方针（㖟）との対比	IOO条OO1：関連する資料と基本設計方針を紐がけるための付番 ＜関連する資料＞   - 様式 -1 への展開表（禣足説明資料）   - 技術基準要求機器リスト（設定根拠に関する説明書 別添－1）   ：前回提出時からの変更箇所

設工認申請書
其木設計方針 $($ 後 $)$






交支持構造物から伝達される荷重を受ける構造物（建物• いら。







＊8：原子炉圧力容器内相構造物は，炉内にあることの重要度を考慮して，sクラズで


＊ 11 ：C

設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
（注1）主要設備とは，当該機施に直接的に関連寸る設偳をいう。   持つ双傦をいう。         （注5） のある施設をいう   （注6）   S s ：基準地震動 S s により定まる地震力   S d ：弼性設計用地震動 S d により定まる地震力   $\mathrm{S}_{\mathrm{B}}$ ：Bクラス施設に適用される地震力   $\mathrm{S}_{\mathrm{C}}: \mathrm{C}$ クラス施設に適用される静的地震力   （注7）取り扱う。   （注8）原子炉圧力容器内部構造物は，炉内にあることの重要度を考慮して，   Sクラスに準じて取り扱う。   （注 9 ）    W゙れなる。   （注10）   主慗逃がし安全弁排気管については，基淮地震動 S S に对して破抑   （注11） しないことを確認することで，蒸気凝縮性能の信頼性を担保する。   Cクラスではあるが，基誰地震動S sに対し機能維持することを碓認 する。	追加要求事項に伴う差異   （波及的影響については追加要求事項に該当）	

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—6
【第5条 地震による損傷の防止】

$-:$ 該当なし
$\square$
前回提出時からの変更箇所

様式－6
各条文の設計の考え方
第5条（地震による損傷の防止）
1．技術基準の条文，解釈への適合性に関する考え方

No．	基本設計方針で記載する事項	適合性の考え方（理由）	項－号	解釈	添付書類
（1）	設計基準対象施設の地震 による周辺斜面の崩壊に対する設計方針	技術基準の要求を受けた内容とし て記載している。	3	4	a
（2）	設計基準対象施設の耐震設計の基本方針	同 上	1	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	a，b，e
（3）	基準地震動に対する耐震重要施設の耐震設計の基本方針	技術基準の要求を受けた内容とし て記載している。   また，地下水位低下設備の機能喪失時の措置については，保安規定で担保する旨を記載している。	2	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	a，b，e
（4）	設計基準対象施設の耐震重要度分類	技術基準の要求を受けた内容とし て記載している。	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	a
（5）	地震力の算定方法	同 上	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	a
（6）	荷重の組合せと許容限界	同 上	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	a，h
（7）	設計における留意事項の うち，各段階における波及的影響の評価方針	技術基準の要求を受けた内容とし て記載している。   また，波及的影響を防止するための機器設置時の配慮事項については，保安規定で担保する旨を記載して いる。	2	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	a
（8）	燃料被覆管の耐震性	技術基準の要求を受けた内容とし て記載している。	4	5	a
（9）	兼用キャスクの耐震性	兼用キャスクを用いた使用済燃料 の貯蔵設備を設置しない旨を記載 している。	$5$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	－
2．設置許可本文のらち，基本設計方針に記載しないことの考え方					
No．	項目	考え方			添付書類
1	敷地の面積及び形状	本項目については発電所敷地の概要を示したものであ るため，基本設計方針には記載しない。			－
2	重複記載	設置許可の中で重複記載があるため記載しない。			－
3	基準地震動 S s 及び弾性設計用地震動 S d の策定方針	設置許可で担保されている事項であるため記載しない。			－

【第5条 地震による損傷の防止】

- ：該当なL
：前回提出時からの変更䈏所

様式—6

No．	項目	考え方	添付書類
＜1）	発電用原子炉施設の耐震設計方針	設置許可内での呼び込みに関する記載のため記載しな い。	－
（2）	設計基準対象施設の地盤 に対する設置方針	第4条に対する内容であり，本条文では記載しない。	－
3）	重複記載	設置許可の中で重複記載があるため記載しない。	－
4．	重大事故等対処施設を津波から防護するための津波防護施設等に対する設計方針	津波防護施設に対する設計方針は DB とSA で同様のた め，SA に対する設計方針は記載しない。	a
（5）	設計基準対象施設の構造計画•設置計画	第5条の要求事項にないことから，添付書類に地震の影響を低減するための構造計画及び配置計画について記載する。	a
（6）	基準地震動 S s 及び弾性設計用地震動 S d の策定方針	設置許可で担保されている事項であるため記載しない。	a
（7）	波及的影響を考慮すべき施設	耐震重要度分類を示した耐震重要度分類表を基本設計方針に記載するにあたり，波及的影響を考慮すべき施設 を基本設計方針に記載した場合，抽出の都度，工事計画認可申請が必要となり，合理的でないため，添付書類に記載し，機器設置時等における波及的影響の防止につい ては，保安規定にて担保する。   波及的影響を考慮すべき施設に適用する地震動及びそ の評価については添付書類に記載する。また，溢水及び火災の観点から抽出した施設の溢水評価及び火災評価 について，それぞれ第 12 条及び第 7 条に記載するため，記載しない。	a
（8）	主要施設の耐震構造	主要設備の構造に関する記載であり，当該構造を踏まえ た耐震性については添付書類に記載するため，記載しな い。	a
（9）	地震検知による耐震安全性の確保	地震感知器及び地震トリップ設定値については，建設工認の添付書類を踏襲し，地震トリップ設定値は設計用地震動 $\mathrm{S}_{1}$ を基に設定しており，今回設定した $\mathrm{S} d$ は $\mathrm{S}_{1}$ の応答スペクトルを概ね下回らないよう配慮している ことから記載しない。   以上を踏まえ，地震観測を継続して実施するために，地震観測網の維持管理については，保安規定にて担保す る。	a
（10）	地下水位低下設備の設計方針	地下水位低下設備の詳細事項については添付書類に記載するため記載しない。	a
（11）	多様性等	基本設計方針に具体的な内容を記載するため記載しな い。	a

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式－6
【第5条 地震による損傷の防止】

	詳細な検討が必要な事項
No．	書類名
a	耐震性に関する説明書
b	原子炉本体の基礎に関する説明書及びその基礎の状況を明示した図面
c	蒸気発生器及び蒸気タービンの基礎に関する説明書及びその基礎の状況を明示した図面
d	排気筒の基礎に関する説明書及びその基礎の状況を明示した図面（自立型のものに限る。）
e	原子炉格納施設の基礎に関する説明書及びその基礎の状況を明示した図面
f	補助ボイラーの基礎に関する説明書
g	斜面安定性に関する説明書
h	発電用原子炉施設の自然現象等による損傷の防止に関する説明書
i	発電用原子炉の設置の許可との整合性に関する説明書
j	設計及び工事に係る品質マネジメントシステムに関する説明書

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
（地震による損傷の防止）   第五十条 重大事故等対処施設 は，次に掲げる施設の区分に応 じ，それぞれ次に定めるところに より施設しなければならない。   【解釈】   1 第5 O 条の適用に当たつて は，第5条の解釈に準ずるものと する。   一 常設耐震重要重大事故防止設備が設置される重大事故等対処施設（特定重大事故等対処施設 を除く。）基準地震動による地震力に対して重大事故に至るおそ れがある事故に対処するために必要な機能が損なわれるおそれ がないこと。   （2）（3）（4）（8）（9）（10   二 常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。）設置許可基準規則第四条第二項の規定により算定する地震力に十分に耐えること。（2）（3） （5）（8）（9）	2．自然現象   2．1 地震による損傷の防止   2．1．1 耐震設計   （1）耐震設計の基本方針耐震設計は，以下の項目に従っ て行う。   重大事故等対処施設について は，施設の各設備が有する重大事故等に対処するために必要な機能及び設置状態を踏まえて，常設耐震重要重大事故防止設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。），常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。），常設重大事故緩和設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。），常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。），常設重大事故緩和設備（設計基準拡張）か設置 される重大事故等対処施設（特定重大事故等対処施設を除く。以下	ィ 発電用原子炉施設の位置   （1）敷地の面積及び形状   常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設 については，基準地震動S s によ る地震力によって生じるおそれ がある周辺の斜面の崩壊に対し て，重大事故等に対処するために必要な機能が損なわれるおそれ がない場所に設置する。（1）   口 発電用原子炉施設の一般構造 （1）耐震構造   （ii）重大事故等対処施設の耐震設計   重大事故等対処施設について は，設計基漼対象施設の耐震設計 における動的地震力又は静的地震力に対する設計方針を踏襲し，重大事故等対処施設の構造上の特徴，重大事故等における運転状態，重大事故等時の状態で施設に作用する荷重等を考慮し，適用す る地震力に対して重大事故等に対処するために必要な機能が損 なわれるおそれがないことを目的として，四 設備分類に応じ て，以下の項目に従って耐震設計 を行う。（2）	1．安全設計   1.4 耐震設計   1．4．2 重大事故等対処施設の耐震設計   1．4．2．1 重大事故等対処施設の耐震設計の基本方針   重大事故等対処施設については，設計基準対象施設の耐震設計に おける動的地震力又は静的地震力に対する設計方針を踏襲し，重大事故等対処施設の構造上の特徵，重大事故等における運転状態，重大事故等時の状態で施設に作用する荷重等を考慮し，適用す る地震力に対して重大事故等に対処するために必要な機能が損 なわれるおそれがないことを目的として，設備分類に応じて，以下の項目に従って耐震設計を行 う。（1）（2）a 重複）	設備設計の明確化   （重大事故等対処設備の設備区分を記載）	原子炉冷却系統施設（共通）   2．1．1 耐震設計

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
【解釈】   2 第 1 項第 2 号に規定する「設置許可基準規則第4条第2項の規定により算定する地震力」 とは，設置許可基淮規則解釈第3 9条2の地震力とする。（2）（5）（8）   三 常設重大事故緩和設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。）基準地震動による地震力に対し て重大事故に対処するために必要な機能が損なわれるおそれが ないこと。（2）（3）（6）（8）（11）	同じ。）及び可搬型重大事故等対処設備に分類する。   （2）【50 条 1】   重大事故等対処施設のらち，常設耐震重要重大事故防止設備又 は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）が設置される重大事故等対処施設 は，基準地震動 S s による地震力 に対して，重大事故に至るおそれ がある事故に対処するために必要な機能が損なわれるおそれが ない設計とする。   （4）a（6） a 【50条2】   建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）について十分な余裕 を有し，建物•構築物の終局耐力 に対し妥当な安全余裕を有する設計とする。機器•配管系につい ては，その施設に要求される機能 を保持する設計とし，塑性ひずみ が生じる場合であっても，その量 が小さなレベルにとどまって破断延性限界に十分な余裕を有し， その施設に要求される機能に影響を及ぼさない，また，動的機器等については，基準地震動 S s に よる応答に対して，その設備に要求される機能を保持する設計と する。なお，動的機能が要求され る機器については，当該機器の構造，動作原理等を考慮した評価を		（1）常設耐震重要重大事故防止設備が設置される重大事故等対処施設（特定重大事故等対処施設 を除く。）   基準地震動S s による地震力 に対して，重大事故に至るおそれ がある事故に対処するために必要な機能が損なわれるおそれが ないように設計する。 ①（4）（6）a 重複）	同趣旨の記載であるが，表現の違 いによる差異あり   基準要求への適合性を明確化	（2）$引$ 用元：P1   原子炉泠却系統施設（共通）   2．1． 1 耐震設計   （4）${ }^{(6) a 引 \text { 引元：P13 }}$   同上

要求事項との対比表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式 -7【第50条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	設は，基準地震動 Ss による地震力に対して，重大事故に対処する ために必要な機能が損なわれる おそれがないように設計する。   （6）【50条6】   建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）について十分な余裕 を有し，建物•構築物の終局耐力 に対し妥当な安全余裕を有する設計とする。機器•配管系につい ては，その施設に要求される機能 を保持する設計とし，塑性ひずみ が生じる場合であっても，その量 が小さなレベルにとどまって破断延性限界に十分な余裕を有し， その施設に要求される機能に影響を及ぼさない，また，動的機器等については，基準地震動S s に よる応答に対して，その設備に要求される機能を保持する設計と する。なお，動的機能が要求され る機器については，当該機器の構造，動作原理等を考慮した評価を行い，既往の研究等で機能維持の確認がなされた機能確認済加速度等を超えていないことを確認 する。   （2）【50条7】   重大事故等対処施設のうち，常設重大事故防止設備（設計基準挔張）（当該設備が属する耐震重要度分類が B クラス又はCクラス のもの）が設置される重大事故等対処施設は，当該設備が属する耐		（4）常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。）   当該設備が属する耐震重要度分類のクラスに適用される地震	基準要求への適合性を明確化   同趣旨の記載であるが，表現の違 いによる差異あり	（6）d引用元：P15   原子炉冷却系統施設（共通）   2．1．1耐震設計   （2）c引用元：P15   同上

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
四 特定重大事故等対処施設設置許可基準規則第四条第二項 の規定により算定する地震力に十分に耐え，かつ，基準地震動に よる地震力に対して重大事故等 に対処するために必要な機能が損なわれるおそれがないこと。（11）   【解釈】   3 第 1 項第 4 号に規定する「設置許可基準規則第 4 条第 2項の規定により算定する地震力」 とは，設置許可基準規則解釈第3 9条3の地震力とする。（11）   2 重大事故等対処施設（前項第二号の重大事故等対処施設を除 く。）が設置許可基準規則第四条第三項の地震により生ずる斜面	震重要度分類のクラスに適用さ れる地震力に十分に耐えること ができる設計とする。   （5）d【50条8】   常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類が B クラス又はC ク ラスのもの）が設置される重大事故等対処施設と常設重大事故緩和設備又は常設重大事故緩和設備（設計基準抎張）が設置される重大事故等対処施設の両方に属 する重大事故等対処施設につい ては，基準地震動 S s による地震力を適用するものとする。   （5）（6）【50条9】   なお，特定重大事故等対処施設 に該当する施設は本申請の対象外である。   （11）【50条10】		$\qquad$ ように設計する。（5） d   （5）可搬型重大事故等対処設備地震による周辺斜面の崩壊，溢水，火災等の影響を受けない場所 に適切に保管する。   －（7）b 重複）   （6）常設耐震重要重大事故防止設備，常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，基準地震動S sによる地震力が作用した場合 においても，接地圧に対する十分 な支持力を有する地盤に設置す る。   また，常設耐震重要重大事故防	同趣旨の記載であるが，表現の違 いによる差異あり   特定重大事故等対処施設は本工事の計画対象外	原子炉泠却系統施設（共通）   2．1．1 耐震設計   （5）e（6）e引用元：P3   同上

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
の崩壊によりその重大事故等に対処するために必要な機能が損 なわれるおそれがないよう，防護措置その他の適切な措置を講じ なければならない。（1）	d．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，基準地震動S s及び弹性設計用地震動 S d によ る地震力は水平 2 方向及び鉛直方向について適切に組み合わせ て算定するものとする。   （4）b（6）f【50条11】   e．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物は，基準地震動		止設備以外の常設重大事故防止設備が設置される重大事故等対処施設については，代替する機能 を有する設計基準事故対処設備 が属する耐震重要度分類のクラ スに適用される地震力，常設重大事故防止設備（設計基準抁張）が設置される重大事故等対処施設 については，当該設備が属する耐震重要度分類のクラスに適用さ れる地震力が作用した場合にお いても，接地圧に対する十分な支持力を有する地盤に設置する。 （2）   （7）重大事故等対処施設に適用 する動的地震力は，水平 2 方向及 び鉛直方向について適切に組み合わせて算定するものとする。な お，水平 2 方向及び鉛直方向の地震力が同時に作用し，影響が考え られる施設及び設備については許容限界の範囲内にとどまるこ とを確認する。（4）b（6）f   （8）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物は，基準地震動	同趣旨の記載であるが，表現の違 いによる差異あり   同趣旨の記載であるが，表現の違 いによる差異あり	原子炬冷却系統施設（共通）   2．1．1 耐震設計   同上

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	S s による地震力に対して，重大事故等に対処するために必要な機能が損なわれるおそれがない設計とする。   （4）（6）g【50条12】   津波防護施設，浸水防止設備及 び津波監視設備並びに浸水防止設備又は津波監視設備が設置さ れた建物•構築物は，基準地震動 S s による地震力に対して，構造物全体として変形能力（終局耐力時の変形）について十分な余裕を有するとともに，それぞれの施設及び設備に要求される機能が保持できる設計とする。   （4）（6） h （7）【50 条 13】   f．常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設は，上記に示す，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のク ラスに適用される地震力に対し て，おおむをね弾性状態にとどまる範囲で耐えられる設計とする。   （5）【50条14】   常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がBクラス又はCク ラスのもの）が設置される重大事		S s による地震力に対して，重大事故等に対処するために必要な機能が損なわれるおそれがない ように設計する。（4）（6）g   （9）重大事故等対処施設を津波 から防護するための津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置さ れた建物•構築物は，基準地震動 S s による地震力に対して，それ ぞれの施設及び設備に要求され る機能が保持できるように設計 することとし，「1．4．1 設計基準対象施設の耐震設計」に示す津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物の設計方針に基づき設計する。（4）d（6）h（7）a	同趣旨の記載であるが，表現の違 いによる差異あり   基準要求への適合性を明碓化	原子炉冷却系統施設（共通）   2．1．1 耐震設計   同上   同上

要求事項との対比表


要求事項との対比表

技術基淮規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	の崩溒等の影響を受けないよう   に「5．1．5 環境条件等」に基づ   く設計とする。   （7）【50条17】		（11）重大事故等対処施設の構造計画及び配置計画に際しては，地震の影響が低減されるように考慮する。   （12）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備 （設計基準拡張）が設置される重大事故等対处施設については，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇 するおそれがあることを踏まえ，地下水位を一定の範囲に保持す る地下水位低下設備を設置し，同設備の効果が及ぶ範囲において は，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果 が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位 を設定し水圧の影響を考慮する。 （1）（4） g （6） 1 重複） $\qquad$設備，常設重大事故緩和設備，常設重大事故防止設備（設計基漼拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処		（7）引 ${ }^{\text {用元：P16 }}$

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第50条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\underset{\text { 設置許可申請書 }}{\text { 本文 }}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			施設については，液状化，揺すり込み沈下等の周辺地盤の変状を考慮した場合においても，重大事故等に対処するために必要な機能が損なわれるおそれがないよ らに設計する。（4）f（6）k		
	i．緊急時対策所の耐震設計の基本方針については，「（6）緊急時対策所」に示す。   （6） j 【50 条 18】		（14）緊急時対策所の耐震設計の基本方針については，「1．4．2．7緊急時対策所」に示す。（6）	同趣旨の記載であるが，表現の違 いによる差異あり	原子炉冷却采統施設（共通） 2．1． 1 耐震設計
	j．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基淮拡張）が設置される重大事故等対処施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，重大事故等に対処するために必要な機能が損なわれるおそれがないよ ら，適切な対策を講ずる設計とす る。 （4）f（6）【50 条 19】			同趣旨の記載であるが，表現の違 いによる差異あり	同上
	（2）耐震重要度分類及び重大事故等対処施設の設備の分類   b．重大事故等対処施設の設備分類   重大事故等対処設備について，施設の各設備が有する重大事故 $\qquad$	a ．重大事故等対処設備につい て，施設の各設備が有する重大事故等に対処するために必要な機	1．4．2．2 重大事故等対処設備の設備分類   重大事故等対処設備について，施設の各設備が有する重大事故等に対処するために必要な機能	同趣旨の記載であるが，表現の違 いによる差異あり	同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】

：前回提出時からの変更遈近

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	及び設置状態を踏まえて，以下の設備分類に応じて設計する。（3）a   （a）常設重大事故防止設備重大事故等対処設備のらち，重大事故に至るおそれがある事故 が発生した場合であって，設計基準事故対処設備の安全機能又は使用済燃料プールの椧却機能若 しくは注水機能が䨤失した場合 において，その喪失した機能（重大事故に至るおそれがある事故 に対処するために必要な機能に限る。）を代替することにより重大事故の発生を防止する機能を有する設備であって常設のもの （3）   1．常設耐震重要重大事故防止設備   常設重大事故防止設備であっ て，耐震重要施設に属する設計基準事故対処設備が有する機能を代替するもの（3）c   口．常設耐震重要重大事故防止設備以外の常設重大事故防止設備   常設重大事故防止設備であっ   て，イ．以外のもの（3）d   【50条20】   （b）常設重大事故緩和設備重大事故等対処設備のらち，重大事故が発生した場合において，当該重大事故の拡大を防止し，又	能及び設置状態を踏まえて，（a），   （b），（c），（d）及び（e）のとおり分   類し，以下の設備分類に応じて設計する。（3）a   （a）常設重大事故防止設備   重大事故等対処設備のうち，重大事故に至るおそれがある事故 が発生した場合であって，設計基準事故対処設備の安全機能又は使用済燃料貯蔵プール（以下「使用済燃料プール」という。）の泠却機能若しくは注水機能が喪失 した場合において，その喪失した機能（重大事故に至るおそれがあ る事故に対処するために必要な機能に限る。）を代替することに より重大事故の発生を防止する機能を有する設備であって常設 のもの（3）b   （ $\mathrm{a}-1$ ）常設耐震重要重大事故防止設備   常設重大事故防止設備であっ て，耐震重要施設に属する設計基準事故対処設備が有する機能を代替するもの（3）c   （ $\mathrm{a}-2$ ）常設耐震重要重大事故防止設備以外の常設重大事故防止設備   常設重大事故防止設備であつ て，（ ${ }^{-1}$－$)$ 以外のもの（3）d   （b）常設重大事故緩和設備重大事故等対処設備のらち，重大事故が発生した場合において，当該重大事故の拡大を防止し，又	及び設置状態を踏まえて，以下の区分に分類する。   （1）（3）a重複）   （1）常設重大事故防止設備   重大事故等対処設備のらち，重大事故に至るおそれがある事故 が発生した場合であって，設計基準事故対処設備の安全機能又は使用済燃料プールの泠却機能若 しくは注水機能が䨤失した場合 において，その喪失した機能（重大事故に至るおそれがある事故 に対処するために必要な機能に限る。）を代替することにより重大事故の発生を防止する機能を有する設備であって常設のもの ①（3）b 重複）   a．常設耐震重要重大事故防止設備   常設重大事故防止設備であっ   て，耐震重要施設に属する設計基準事故対処設備が有する機能を代替するもの   （1）（3）c 重複）   b．常設耐震重要重大事故防止設備以外の常設重大事故防止設備   常設重大事故防止設備であっ   て，a．以外のもの   （1）（3）d 重複）   （2）常設重大事故緩和設備重大事故等対処設備のらち，重大事故が発生した場合において，当該重大事故の拡大を防止し，又		原子炉冷却系統施設（共通） 2．1． 1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】


要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	はその影響を緩和するための機能を有する設備であって常設の もの   （3）【50条21】   （c）常設重大事故防止設備（設計基準拡張）   設計基準対象施設のうち，重大事故等時に機能を期待する設備 であって，重大事故の発生を防止 する機能を有する（a）以外の常設 のもの   （3）【50条22】   （d）常設重大事故緩和設備（設計基準昖張）   設計基準対象施設のうち，重大事故等時に機能を期待する設備 であって，重大事故の拡大を防止 し，又はその影響を緩和するため の機能を有する（b）以外の常設の もの   （3）【50条23】   （e）可搬型重大事故等対処設備重大事故等対処設備であって可搬型のもの（3）h   重大事故等対処設備のらち，耐震評価を行う主要設備の設備分類について，第2．1．2表に示す。 （3）【50条24】	はその影響を緩和するための機態を有する設備であって常設の もの（3）   （c）常設重大事故防止設備（設計基準拡張）   設計基漼対象施設のうち，重大事故等時に機能を期待する設備 であって，重大事故の発生を防止 する機能を有する $(\mathrm{a}-1)$ 及び（ $\mathrm{a}^{-}$ 2）以外の常設のもの（3）f   （d）常設重大事故緩和設備（設計基準拡張）   設計基準対象施設のうち，重大事故等時に機能を期待する設備 であって，重大事故の拡大を防止 し，又はその影響を緩和するため の機能を有する（b）以外の常設の もの（3） g   （e）可搬型重大事故等対処設備重大事故等対処設備であって可搬型のもの（3）h   b．常設耐震重要重大事故防止設備又は常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がSクラスのも の）が設置される重大事故等対処施設（特定重大事故等対処施設を	はその影響を緩和するための機能を有する設備であって常設の もの（1）（3）e 重複）   （3）常設重大事故防止設備（設計基準拡張）   設計基準対象施設のらち，重大事故等時に機能を期待する設備 であって，重大事故の発生を防止 する機能を有する（1）以外の常設 のもの 1（3）f 重複）   （4）常設重大事故緩和設備（設計基準抁張）   設計基準対象施設のらち，重大事故等時に機能を期待する設備 であって，重大事故の拡大を防止 し，又はその影響を緩和するため の機能を有する（2）以外の常設の もの（1）（3） g 重複）   （5）可搬型重大事故等対処設備重大事故等対処設備であって可搬型のもの（1）（3）h 重複）   重大事故等対処設備のらち，耐震評価を行う主要設備の設備分類について，第1．4．2－1 表に示 す。（3）	同趣旨の記載であるが，表現の違 いによる差異あり   同趣旨の記載であるが，表現の違 いによる差異あり	原子炉冷却系統施設（共通）   2．1．1耐震設計   同上   同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式 -7【第50条 地震による損傷の防止】

要求事項との対比表


要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	が設置される重大事故等対処施設に，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用され る静的地震力を，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラスのもの）が設置される重大事故等対処施設に，当該設備が属する耐震重要度分類のクラスに適用される静的地震力を，それぞれ適用する。 （8b（8）【50条25】	設（特定重大事故等対処施設を除 く。）は，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用 される地震力に十分に耐えるこ とができるように設計する。常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCク ラスのもの）が設置される重大事故等対処施設は，当該設備が属す る耐震重要度分類のクラスに適用される地震力に十分に耐える ことができるように設計する。（8） b $\qquad$替する常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設のうち，共振のおそれのあ る施設又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラ ス又はCクラスのもの）が設置さ れる重大事故等対処施設が属す る耐震重要度分類がBクラスの もののらち，共振のおそれのある施設については，弾性設計用地震動Sdに2分の1を乗じた地震動によりその影響についての検討を行う。8h機器•配管系ともに，おおむね弾性状態にとどまる範囲で耐えら れるように設計する。园（9）ay 重複）   建物•構築物については，発生 する応力に対して，「建築基準法」	基準抎張）（当該設備が属する耐震重要度分類がBクラス又はC クラスのもの）が設置される重大事故等対処施設について，   「1．4．1．3地震力の算定方法」の   「（1）静的地震力」に示すBクラ   ス又はCクラスの施設に適用す   る静的地震力を適用する。（8）		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式 -7【第50条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
		等の安全上適切と認められる規格及び基準による許容応力度を許容限界とする。2（9）ao重複）   機器•配管系については，応答 が全体的におおむね弾性状態に とどまるように設計する。 2（9） ay 重複）   d．常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。）は，基準地震動 S s によ る地震力に対して，重大事故に対処するために必要な機能が損な われるおそれがないように設計 する。（6）d   建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）について十分な余裕 を有し，建物•構築物の終局耐力 に対し妥当な安全余裕を有する ように設計する。   機器•配管系については，その施設に要求される機能を保持す るように設計し，塑性ひずみが生 じる場合であっても，その量が小 さなレベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさないように，また，動的機器等については，基準地震動S s による応答に対して，その設備に要求される機能を保持するよう に設計する。（2）			

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第50条 地震による損傷の防止】


要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	b．動的地震力   重大事故等対処施設のらち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類 が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設 については，基準地震動S s によ る地震力を適用する。   （8）【50 条 26】   常設耐震重要重大事故防止設備以外の常設重大事故防止設備 が設置される重大事故等対処施設のらち，Bクラスの施設の機能 を代替する共振のおそれのある施設，常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設のうち，当該設備が属する耐震重要度分類が B クラ スで共振のおそれのある施設に ついては，共振のおそれのある B クラスの施設に適用する地震力 を適用する。   （8）【 50 条 27】   常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要	は，地震による周辺斜面の崩壊，溢水，火災等の影響を受けない場所に適切に保管する。（7）b	（2）動的地震力   常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設について，「1．4．1．3 地震力 の算定方法」の「（2）動的地震力」 に示す入力地震動を用いた地震応答解析による地震力を適用す る。（8）d   常設耐震重要重大事故防止設備以外の常設重大事故防止設備 が設置される重大事故等対処施設のらち，Bクラスの施設の機能 を代替する共振のおそれのある施設，常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設のうち，当該設備が属する耐震重要度分類が B クラ スで共振のおそれのある施設に ついては，「1．4．1．3 地震力の算定方法」の「（2）動的地震力」に示す共振のおそれのあるBクラ スの施設に適用する地震力を適用する。（8）e   常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常	同趣旨の記載であるが，表現の違 いによる差異あり   同趣旨の記載であるが，表現の違 いによる差異あり	原子炉冷却系統施設（共通）   2．1． 1 耐震設計   同上   同上

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物については，基準地震動S s による地震力を適用する。（8）f   重大事故等対処施設のうち，設計基準対象施設の既往評価を適用できる基本構造と異なる施設 については，適用する地震力に対 して，要求される機能及び構造健全性が維持されることを確認す るため，当該施設の構造を適切に モデル化した上で地震応答解析，加振試験等を実施する。   （8）【50条28】   （a）入力地震動   重大事故等対処施設における耐震 B クラスの施設の機能を代替する常設重大事故防止設備又 は当該設備が属する耐震重要度分類が B クラスの常設重大事故防止設備（設計基準拡張）が設置 される重大事故等対処施設の建物•構築物のらち共振のおそれが あり，動的解析が必要なものに対 しては，弾性設計用地震動 S d に 2 分の 1 を乗じたものを用いる。 （8）【50 条 29】   （b）地震応答解析   个．動的解析法   （イ）建物•構築物   常設耐震重要重大事故防止設   備，常設重大事故緩和設備，常設		設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物については，   「1．4．1．3 地震力の算定方法」の   $「(2)$ 動的地震力」に示す屋外重要土木構造物に適用する地震力 を適用する。（8）f   なお，重大事故等対処施設のう ち，設計基準対象施設の基本構造 と異なる施設については，適用す る地震力に対して，要求される機能及び構造健全性が維持される ことを確認するため，当該施設の構造を適切にモデル化した上で地震応答解析，加振試験等を実施 する。 8 g	同趣旨の記載であるが，表現の違 いによる差異あり   基準要求への適合性を明確化	原子炉冷却系統施設（共通）   2．1．1 耐震設計   （8）h 引用元：P14   同上

第 50 条 -17

要求事項との対比表

技術基潐規則•解釈	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設を支持する建物•構築物の支持機能を検討するための動的解析において，施設を支持する建物•構築物の主要構造要素がある程度以上弾性範囲を超える場合 には，その弾塑性挙動を適切に模擬した復元力特性を考慮した地震応答解析を行う。   （4）5）【50条30】   常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物の動的解析は，構造物と地盤の相互作用を考慮 できる連成系の地震応答解析手法とし，地盤及び構造物の地震時 における非線形挙動の有無や程度に応じて，線形，等価線形又は非線形解析のいずれかにて行う。 （4）（5）   地震力については，水平 2 方向及び鉛直方向について適切に組 み合わせて算定する。   （8） i 【50 条 31】	f．重大事故等対処施設に適用す る動的地震力は，水平 2 方向及び鉛直方向について適切に組み合 わせて算定するものとする。（8）i   g．重大事故等対処施設を津波か ら防護するための津波防護施設，		基漼要求への適合性を明碓化	原子炉冷却系統施設（共通）   2．1． 1 耐震設計

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	c．設計用減衰定数   「2．1．1（3）地震力の算定方法」の「c．設計用減衰定数」を適用する。（8）【50 条32】   （4）荷重の組合せと許容限界耐震設計における荷重の組合 せと許容限界は以下による。（9）a a．耐震設計上考慮する状態地震以外に設計上考慮する状態を以下に示す。   （a）建物•構築物   重大事故等対処施設について は以下のイ，～ニ，の状態を考慮 する。   イ．運転時の状態   「2．1．1（4）荷重の組合せと許容限界」の「a．耐震設計上考慮 する状態（a）建物•構築物」に示す「イ．運転時の状態」を適用する。（9b   口．設計基準事故時の状態「2．1．1（4）荷重の組合せと許容限界」の「a，耐震設計上考慮 する状態（a）建物•構築物」に示す「口，設計基準事故時の状態」を適用する。（9）八．設計用自然条件   「2．1．1（4）荷重の組合せと許容限界」の「a．耐震設計上考慮	浸水防止設備及び津波監視設備並びに浸水防止設備が設置され た建物•構築物は，基準地震動S sによる地震力に対して，それぞ れの施設及び設備に要求される機能が保持できるように設計す る。2（4）d（6）h（7）a重複）	（3）設計用減衰定数   「1．4．1．3 地震力の算定方法」   の「（3）設計用減衰定数」を適用 する。（8） j   1．4．2．4 荷重の組合せと許容限界   重大事故等対処施設の耐震設計における荷重の組合せと許容限界は以下による。（9）a   （1）耐震設計上考慮する状態   地震以外に設計上考慮する状態を次に示す。   a．建物•構築物   （a）運転時の状態   「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮す る状態 a．建物•構築物」に示 す「（a）運転時の状態」を適用す る。（9）b   （b）設計基準事故時の状態「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮す る状態 a．建物•構築物」に示す「（b）設計基準事故時の状態」を適用する。（9） c   （c）重大事故等時の状態   発電用原子炉施設が，重大事故 に至るおそれがある事故又は重	同趣旨の記載であるが，表現の違 いによる差異あり   同趣旨の記載であるが，表現の違 いによる差異あり	原子炬冷却采統施設（共通）   2．1．1 耐震設計   同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式 -7【第50条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	する状態（a）建物•構築物」に示す「八。設計用自然条件」を適用する。   （9）d【50条33】   二．重大事故等時の状態   発電用原子炉施設が，重大事故 に至るおそれがある事故又は重大事故時の状態で，重大事故等対処施設の機能を必要とする状態。   （9） e 【50 条 34 】   （b）機器•配管系   重大事故等対処施設について は以下のイ，～ホ，の状態を考慮 する。   イ．通常運転時の状態   「2．1．1（4）荷重の組合せと許容限界」の「a．耐震設計上考慮 する状態（b）機器•配管系」に示す「イ．通常運転時の状態」 を適用する。（9）f   口．運転時の異常な過渡変化時 の状態   「2．1．1（4）荷重の組合せと許容限界」の「a．耐震設計上考慮 する状態（b）機器•配管系」に示す「口。 運転時の異常な過渡変化時の状態」を適用する。（9）g八。設計基準事故時の状態   「2．1．1（4）荷重の組合せと許容限界」の「a．耐震設計上考慮 する状態（b）機器•配管系」に		大事故時の状態で，重大事故等対処施設の機能を必要とする状態。 （9）   （d）設計用自然条件   「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮す る状態 a．建物•構築物」に示す「（c）設計用自然条件」を適用す る。（9）d   b．機器•配管系   （a）通常運転時の状態   「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮す る状態 b．機器•配管系」に示す「（a）通常運転時の状態」を適用 する。（9）f   （b）運転時の異常な過渡変化時 の状態   「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮す る状態 b．機器•配管系」に示す   「（b）運転時の異常な過渡変化時 の状態」を適用する。⑨g   （c）設計基準事故時の状態   「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮す る状態 b．機器•配管系」に示す	同趣旨の記載であるが，表現の違 いによる差異あり   同趣旨の記載であるが，表現の違 いによる差異あり	原子炉冷却系統施設（共通）   2．1．1 耐震設計   同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式 -7【第50条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	示す「八。設計基準事故時の状態」を適用する。⑨h二．設計用自然条件   「2．1．1（4）荷重の組合せと許容限界」の「a．耐震設計上考慮 する状態（b）機器•配管系」に示す「ニ。 設計用自然条件」を適用する。   （9） i 【50 条 35】   ホ。重大事故時の状態   発電用原子炬施設が，重大事故 に至るおそれがある事故又は重大事故時の状態で，重大事故等対処施設の機能を必要とする状態。   （9） j 【50 条 36】   b．荷重の種類   （a）建物•構築物   重大事故等対処施設について は以下のイ．～ホ，の荷重とする。 イ。 発電用原子炉のおかれてい る状態にかかわらず常時作用し ている荷重，すなわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重（9）k   ロ。運転時の状態で施設に作用 する荷重（9）   八。設計基準事故時の状態で施設に作用する荷重 ${ }^{(9) m}$   二．地震力，風荷重，積雪荷重 （9） n 【50 条 37】		「（c）設計基準事故時の状態」を適用する。⑨h   （d）重大事故等時の状態   発電用原子炉施設が，重大事故 に至るおそれがある事故又は重大事故時の状態で，重大事故等対処施設の機能を必要とする状態。 （9） j   （e）設計用自然条件   「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮す る状態 b．機器•配管系」に示す「（d）設計用自然条件」を適用す る。（9） i   （2）荷重の種類   a．建物•構築物   （a）発電用原子炉のおかれてい る状態にかかわらず常時作用し ている荷重，すなわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重   （9） k   （b）運転時の状態で施設に作用 する荷重（9）   （c）設計基準事故時の状態で施設に作用する荷重（9）m   （d）重大事故等時の状態で施設 に作用する荷重（9）。	同趣旨の記載であるが，表現の違 いによる差異あり   同趣旨の記載であるが，表現の違 いによる差異あり	原子炉冷却系統施設（共通）   2．1．1 耐震設計   同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式 -7【第50条 地震による損傷の防止】

要求事項との対比表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】


LOO条OO1）
＜関連する資料》

- 様式一1～の展開表（禣足説明資料）
- 技庥基淮要求機機器り


要求事項との対比表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】


要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	として报う。   （9） x 【50条44】   二．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重，設計基準事故時の状態及び重大事故等時 の状態で施設に作用する荷重の らち，地震によって引き起こされ るおそれがない事象による荷重 は，その事故事象の発生確率，継続時間及び地震動の年超過確率 の関係を踏まえ，適切な地震力 （基準地震動 S s 又は弾性設計用地震動Sdによる地震力）と組 み合わせる。この組合せについて は，事故事象の発生碓率，継続時間及び地震動の年超過碓率の積等を考慮し，工学的，総合的に勘案の上設定する。なお，継続時間 については対策の成立性も考慮 した上で設定する。（9）y以上を踏まえ，原子炬格納容器 バウンダリを構成する施設（原子炬格納容器内の圧力，温度の条件 を用いて評価を行うその他の施設を含む。）については，いつた ん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動Sdによる地震力と を組み合わせ，その状態からさら		察も考慮した上で設定する。（9）x   （c）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重，設計基準事故時の状態及び重大事故等時 の状態で施設に作用する荷重の うち，地震によって引き起こされ るおそれがない事象による荷重 は，その事故事象の発生確率，継続時間及び地震動の年超過確率 の関係を踏まえ，適切な地震力 （基準地震動 S s 又は弾性設計用地震動S dによる地震力）と組 み合わせる。この組合せについて は，事故事象の発生確率，継続時間及び地震動の年超過確率の積等を考慮し，工学的，総合的に勘案の上設定する。なお，継続時間 については対策の成立性も考慮 した上で設定する。（9）y   以上を踏まえ，原子炉格納容器 バウンダリを構成する施設（原子炬格納容器内の圧力，温度の条件 を用いて評価を行うその他の施設を含む。）については，いった ん事故が発生した場合，長時間継続する事象による荷重と弹性設計用地震動 S d による地震力と を組み合わせ，その状態からさら	設備設計の明碓化   （過重条件の設定方法について明記）	原子炉冷却采統施設（共通）   2．1．1 耐震設計

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	に長期的に継続する事象による荷重と基準地震動 S s による地震力を組み合わせる。（9）z   なお，格納容器破損モードの評価シナリオのうち，原子炬圧力容器が破損する評価シナリオにつ いては，重大事故等対処設備によ る原子炬注水は実施しない想定 として評価しており，本来は機能 を期待できる高圧代替注水系，低圧代替注水系（常設）（復水移送 ポンプ）又は低圧代替注水系（常設）（直流駆動低圧注水系ポンプ） による原子灲注水により炉心損傷の回避が可能であることから荷重条件として考慮しない。（9）   また，その他の施設について は，いったん事故が発生した場合，長時間継続する事象による荷重と基準地震動 S s による地震力とを組み合わせる。   （9）aa 【50 条45】   ホ．常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はC クラスのもの）が設置される重大事故等対処施設の建物•構築物に ついては，常時作用している荷重及び運転時の状態で施設に作用 する荷重と動的地震力又は静的地震力とを組み合わせる。   （9）ab【50条46】   （b）機器•配管系		に長期的に継続する事象による荷重と基準地震動S s による地震力とを組み合わせる。（9）ま た，その他の施設については，い ったん事故が発生した場合，長時間継続する事象による荷重と基準地震動S s による地震力とを組み合わせる。（9）aa   （d）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基漼扩張）（当該設備が属する耐震重要度分類がBクラス又は Cクラスのもの）が設置される重大事故等対処施設の建物•構築物 については，常時作用している荷重及び運転時の状態で施設に作用する荷重と，動的地震力又は静的地震力とを組み合わせる。（9）ab   b ．機器•配管系	同趣旨の記載であるが，表現の違 いによる差異あり	原子炉冷却系統施設（共通） 2．1．1 耐震設計

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】


100条 0 関連する資料〉
－様式一1～の展閴表（禣足説明資料）



要求事項との対比表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】


要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，運転時の異常な過渡変化時の状態，設計基準事故時の状態及び重大事故等時の状態で施設に作用 する荷重のらち地震によって引 き起こされるおそれがない事象 による荷重は，その事故事象の発生確率，継続時間及び地震動の年超過碓率の関係を踏まえ，適切な地震力（基準地震動S s 又は弾性設計用地震動 Sdによる地震力） と組み合わせる。この組合せにつ いては，事故事象の発生確率，継続時間及び地震動の年超過確率 の積等を考慮し，工学的，総合的 に勘案の上設定する。なお，継続時間については対策の成立性も考慮した上で設定する。（9）ae   以上を踏まえ，重大事故等時の状態で作用する荷重と地震力（基準地震動 S s 又は弾性設計用地震動Sdによる地震力）との組合 せについては，以下を基本設計と する。（9）af原子炉泠却材圧力バウンダリ を構成する設備については，いつ たん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動 S d による地震力 とを組み合わせ，その状態からさ らに長期的に継続する事象によ る荷重と基準地震動S s による		設重大事故防止設備（設計基準拡   張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，運転時の異常な過渡変化時の状態，設計基準事故時の状態及び重大事故等時の状態で作用する荷重のらち地震によって引き起こ されるおそれがない事象による荷重は，その事故事象の発生確率，継続時間及び地震動の年超過碓率の関係を踏まえ，適切な地震力（基準地震動 S s 又は弾性設計用地震動Sdによる地震力）と組 み合わせる。この組合せについて は，事故事象の発生碓率，継続時間及び地震動の年超過確率の積等を考慮し，工学的，総合的に勘案の上設定する。なお，継続時間 については対策の成立性も考慮 した上で設定する。（9）ae   以上を踏まえ，重大事故等時の状態で作用する荷重と地震力（基準地震動 S s 又は弾性設計用地震動Sdによる地震力）との組合 せについては，以下を基本設計と する。（9）af $\qquad$ を構成する設備については，いつ たん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動 Sd による地震力 とを組み合わせ，その状態からさ らに長期的に継続する事象によ る荷重と基準地震動S s による	明記）	

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	地震力とを組み合わせる。（9）ag   原子炉格納容器バウンダリを   構成する設備（原子炉格納容器内 の圧力，温度の条件を用いて評価 を行らその他の施設を含む。）に ついては，いったん事故が発生し た場合，長時間継続する事象によ る荷重と弾性設計用地震動 S d による地震力とを組み合わせ，そ の状態からさらに長期的に継続 する事象による荷重と基準地震動S s による地震力とを組み合 わせる。（9）ah   なお，格納容器破損モードの評価シナリオのらち，原子炉圧力容器が破損する評価シナリオにつ いては，重大事故等対処設備によ る原子炉注水は実施しない想定 として評価しており，本来は機能 を期待できる高圧代替注水系，低圧代替注水系（常設）（復水移送 ポンプ）又は低圧代替注水系（常設）（直流駆動低圧注水系ポンプ） による原子炉注水により炉心損傷の回避が可能であることから荷重条件として考慮しない。⑨ その他の施設については，いっ たん事故が発生した場合，長時間継続する事象による荷重と基準地震動 S s による地震力とを組 み合わせる。   （9）ai【50条49】   常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する		地震力とを組み合わせる。（9）ag   原子炉格納容器バウンダリを構成する設備（原子炉格納容器内 の圧力，温度の条件を用いて評価 を行うその他の施設を含む。）に ついては，いったん事故が発生し た場合，長時間継続する事象によ る荷重と弾性設計用地震動 S d による地震力とを組み合わせ，そ の状態からさらに長期的に継続 する事象による荷重と基準地震動 S s による地震力とを組み合 わせる。（9）ah その他の施設につ いては，いったん事故が発生した場合，長時間継続する事象による荷重と基準地震動 S s による地震力とを組み合わせる。（9）ai   （d）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する	同趣旨の記載であるが，表現の違 いによる差異あり	原子炉冷却系統施設（共通） 2．1．1 耐震設計

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	耐震重要度分類が B クラス又はC クラスのもの）が設置される重大事故等対処施設の機器•配管系に ついては，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設 に作用する荷重と，動的地震力又 は静的地震力とを組み合わせる。   （9）aj【50条50】   （d）荷重の組合せ上の留意事項動的地震力については，水平2方向と鉛直方向の地震力とを適切に組み合わせ算定するものと する。   （9）ak【50条51】		耐震重要度分類が B クラス又は   Cクラスのもの）が設置される重   大事故等対処施設の機器•配管系   については，通常運転時の状態又   は運転時の異常な過渡変化時の   状態で作用する荷重と動的地震   力又は静的地震力とを組み合わ   せる。（9）aj   c．荷重の組合せ上の留意事項   （a）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設に作用する地震力のらち動的地震力については，水平 2 方向 と鉛直方向の地震力とを適切に組み合わせ算定するものとする。 （9） ak   （b）ある荷重の組合せ状態での評価が明らかに厳しいことが判明している場合には，その他の荷重の組合せ状態での評価は行わ ないことがある。   （c）複数の荷重が同時に作用す る場合，それらの荷重による応力 の各ピークの生起時刻に明らか なずれがあることが判明してい るならば，必ずしもそれぞれの応力のピーク値を重ねなくてもよ	同趣旨の記載であるが，表現の違 いによる差異あり	原子炬冷却系統施設（共通）   2．1．1 耐震設計

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\begin{gathered} \begin{array}{c} \text { 設置許可申請書 } \\ \text { 本文 } \end{array} \\ \hline \end{gathered}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	d．許容限界   各施設の地震力と他の荷重と を組み合わせた状態に対する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されてい る値を用いる。   （9）a1【50 条 52】   （a）建物•構築物   个．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物（へ，に記載 のものを除く。）   「2．1．1（4）荷重の組合せと許容限界」の「d．許容限界」に示すSクラスの建物•構築物の基準地震動S s による地震力との組み合わせに対する許容限界を適用する。（9）am   ただし，原子炉格納容器バウン		いものとする。   （d）重大事故等対処施設を支持 する建物•構築物の当該部分の支持機能を碓認する場合において は，支持される施設の設備分類に応じた地震力と常時作用してい る荷重，重大事故等時の状態で施設に作用する荷重及びその他必要な荷重とを組み合わせる。   （4）許容限界   各施設の地震力と他の荷重と を組み合わせた状態に対する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されてい る許容応力等を用いる。（9）al   a．建物•構築物   （a）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物（（e）に記載 のものを除く。）   「1．4．1．4荷重の組合せと許容限界」の「（4）許容限界」に示す Sクラスの建物•構築物の基準地震動S s による地震力との組合 せに対する許容限界を適用する。 （9）am   ただし，原子炬格納容器バウン	同趣旨の記載であるが，表現の違 いによる差異あり   同趣旨の記載であるが，表現の違 いによる差異あり	原子炬冷却系統施設（共通） 2．1．1 耐震設計   同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】


要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	ダリを構成する施設の設計基準事故時の状態における長期的荷重と弾性設計用地震動 S d によ る地震力の組合せに対する許容限界は，「2．1．1（4）荷重の組合 せと許容限界」の「d。 許容限界」 に示すS クラスの建物•構築物の弾性設計用地震動S dによる地震力又は静的地震力との組合せ に対する許容限界を適用する。 （9）an【50条53】   口．常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はC クラスのもの）が設置される重大事故等対処施設の建物•構築物 （ト，に記載のものを除く。）   「2．1．1（4）荷重の組合せと許容限界」の「d．許容限界」に示すBクラス及びCクラスの建物•構築物の許容限界を適用す る。 （9）ao【50条54】   八。設備分類の異なる重大事故等対処施設を支持する建物•構築物（へ，及びト，に記載のものを除く。）   「2．1．1（4）荷重の組合せと許容限界」の「d．許容限界」に示 す耐震重要度分類の異なる施設 を支持する建物•構築物の許容限界を適用する。⑨ap   なお，適用に当たっては，「耐		ダリを構成する施設の設計基準事故時の状態における長期的荷重と弾性設計用地震動 S d によ る地震力との組合せに対する許容限界は，「1．4．1．4荷重の組合 せと許容限界」の「（4）許容限界」 に示すSクラスの建物•構築物の弾性設計用地震動 S d による地震力又は静的地震力との組合せ に対する許容限界を適用する。（9） an   （b）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又は Cクラスのもの）が設置される重大事故等対処施設の建物•構築物 （（f）に記載のものを除く。）「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示す B クラス及びCクラスの建物•構築物の許容限界を適用する。（9）a。   （c）設備分類の異なる重大事故等対処施設を支持する建物•構築物（ $(e)$ 及び（f）に記載のものを除 く。）   「1．4．1．4荷重の組合せと許容限界」の「（4）許容限界」に示す耐震重要度分類の異なる施設を支持する建物•構築物の許容限界 を適用する。（9）ap   なお，適用に当たつては，「耐	同趣旨の記載であるが，表現の違 いによる差異あり   同趣旨の記載であるが，表現の違 いによる差異あり	原子炬冷却采統施設（共通）   2．1．1 耐震設計   同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式 -7【第50条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	震重要度分類」を「設備分類」に読み替える。   （9）aq【50条55】   二．建物•構築物の保有水平耐力（へ，及びト，に記載のものを除く。）   「2．1．1（4）荷重の組合せと許容限界」の「d．許容限界」に示す建物•構築物の保有水平耐力 に対する許容限界を適用する。（9） ar   なお，適用に当たつては，「耐震重要度分類」を「重大事故等対処施設が代替する機能を有する設計基準事故対処設備が属する耐震重要度分類」に読み替える。 （9）as   ここでは，常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，上記に おける重大事故等対処施設が代替する機能を有する設計基準事故対処設備が属する耐震重要度分類をSクラスとする。   （9）at【50条56】   木．気密性，止水性，遮蔽性，通水機能，貯水機能を考慮する施設   構造強度の確保に加えて気密性，止水性，遮蔽性，通水機能，貯水機能が必要な建物•構築物に ついては，その機能を維持できる許容限界を適切に設定するもの とする。		震重要度分類」を「設備分類」に読み替える。（9）aq   （d）建物•構築物の保有水平耐力   （（e）及び（f）に記載のものを除   $\leq 0)$   「1．4．1．4荷重の組合せと許容限界」の「（4）許容限界」に示す建物•構築物の保有水平耐力に対 する許容限界を適用する。（9）ar   なお，適用に当たつては，「耐震重要度分類」を「重大事故等対処施設が代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラス」に読み替える。（9）as   ただし，常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，当該クラ スをSクラスとする。（9）at	同趣旨の記載であるが，表現の違 いによる差異あり   設備設計の明確化   （技術基準規則の要求事項に対 する基本設計方針を記載。）	原子炉冷却系統施設（共通）   2．1．1 耐震設計   同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】


要求事項との対比表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】



要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系   「2．1．1（4）荷重の組合せと許容限界」の「d．許容限界」に示すSクラスの機器•配管系の基準地震動 S s による地震力との組合せに対する許容限界を適用 する。（9）aw   ただし，原子炉格納容器バウン ダリを構成する設備及び非常用炉心冷却設備等の弾性設計用地震動 S d と設計基準事故時の状態における長期的荷重との組合 せに対する許容限界は，「2．1．1（4）荷重の組合せと許容限界」の「d．許容限界」に示 すSクラスの機器•配管系の弾性設計用地震動 S d による地震力又は静的地震力との組合せに対 する許容限界を適用する。 （9）ax【50条60】   八。常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類Bクラス又はC ラスのもの）が設置される重大事故等対処施設の機器•配管系   「2．1．1（4）荷重の組合せと許容限界」の「d．許容限界」に示す B クラス及び C クラスの機器•配管系の許容限界を適用す る。 （9）ay【50条61】		設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系   「1．4．1．4荷重の組合せと許容限界」の「（4）許容限界」に示す Sクラスの機器•配管系の基準地震動 S s による地震力との組合 せに対する許容限界を適用する。 （9）aw   ただし，原子炉格納容器バウン ダリを構成する設備，非常用炬心冷却設備等の弾性設計用地震動 Sdと設計基準事故時の状態に おける長期的荷重との組合せに対する許容限界は，「1．4．1．4值重の組合せと許容限界」の「（4）許容限界」に示すSクラスの機器•配管系の弾性設計用地震動S dによる地震力又は静的地震力 との組合せに対する許容限界を適用する。（9）ax   （b）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又は Cクラスのもの）が設置される重大事故等対処施設の機器•配管系「1．4．1．4荷重の組合せと許容限界」の「（4）許容限界」に示す Bクラス及びCクラスの機器•配管系の許容限界を適用する。（9）ay   c．基礎地盤の支持性能   （a）常設耐震重要重大事故防止	同趣旨の記載であるが，表現の違 いによる差異あり	原子炉冷却系統施設（共通） 2．1．1 耐震設計

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物，機器•配管系及び土木構造物の基礎地盤「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示す Sクラスの建物•構築物及びSク ラスの機器•配管系の基整地盤並 びに屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物の基礎地艦 の基準地震動 S s による地震力 との組合せに対する許容限界を適用する。   （b）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準扩張）（当該設備が属する耐震重要度分類がBクラス又は Cクラスのもの）が設置される重大事故等対処施設の建物•構築物，機器•配管系及び土木構造物 の基礎地盤   「1．4．1．4荷重の組合せと許容限界」の「（4）許容限界」に示 すBクラス及びCクラスの建物•構築物，Bクラス及びCクラスの機器•配管系並びにその他の土木構造物の基礎地盤の許容限界を適用する。		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】


要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	（5）設計における留意事項   a．波及的影響   「2．1．1（5）設計における留意事項」の a．波及的影響を適用 する。   適用に当たつては，「耐震重要施設」を「常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設」に，「安全機能」を「重大事故等に対処するために必要な機能」に読み替える。 （11）【50条62】   なお，耐震重要度分類の下位の クラスに属する施設の波及的影響については，Bクラス及びCク ラスの施設に加え，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準扩張）（当該設備が属する耐震重要度分類 がBクラス又はCクラスのもの） が設置される重大事故等対処施設，可搬型重大事故等対処設備，常設重大事故防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準抁張）及び常設重大事故緩和設備（設計基準抁張）のいずれにも属さない常設の重大事故等対処施設の影響についても評価する。   （11）【50条63】	h．上記b。及びd．の施設は， Bクラス及びCクラスの施設，上記c．の施設，上記e．の設備，常設重大事故防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備（設計基準抎張）のいずれにも属さない常設の重大事故等対処施設の波及的影響によって，重大事故等に対処するために必要な機能を損 なわないように設計する。   波及的影響の評価に当たって は，敷地全体を俯㒈した調査•検討を行い，事象選定及び影響評価 を行う。なお，影響評価において は，上記b．及びd．の施設の設計に用いる地震動又は地震力を適用する。   2（10a 重複）	1．4．2．5 設計における留意事項「1．4．1．5 設計における留意事項」を適用する。   ただし，適用に当たっては，「耐震重要施設」を「常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備 （設計基準拡張）（当該設備が属 する耐震重要度分類がSクラス のもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設」に，「安全機能」を「重大事故等に対処する ために必要な機能」に読み替え る。（10）   なお，耐震重要度分類の下位の クラスに属する施設の波及的影響については，Bクラス及びCク ラスの施設に加え，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類 がBクラス又はCクラスのもの） が設置される重大事故等対処施設，可搬型重大事故等対処設備，常設重大事故防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備（設計基準拡張）のいずれにも属さない常設の重大事故等対処施設の影響についても評価する。   （10）$b$	同趣旨の記載であるが，表現の違 いによる差異あり	原子炉冷却系統施設（共通）   2．1．1 而震設計   同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第50条 地震による損傷の防止】


要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	b．主要施設への地下水の影響   防潮堤下部の地盤改良等によ り山から海に向から地下水の流 れが遮断され，敷地内の地下水位 が地表面付近まで上昇するおそ れがあることを踏まえ，原子炉建屋，制御建屋及び第 3 号機海水熱交換器建屋に作用する揚圧力の低減及び周辺の土木構造物等に生じる液状化影響の低減を目的 とし，地下水位を一定の範囲に保持するために，原子炉建屋•制御建屋エリア及び第 3 号機海水熱交换器建屋エリアに地下水位低下設備を各エリア 2 系統設置す る。   耐震評価において，地下水位の影響を受ける施設及びアクセス ルートについて，地下水位低下設備の効果が及ぶ範囲（0．P．＋14．8m盤）においては，その機能を考慮 した設計用地下水位を設定し水圧の影響を考慮する。なお，地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面 にて設計用地下水位を設定し水圧の影響を考慮する。   （4） g （6）【50 条64】	i ．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備 （設計基準拡張）が設置される重大事故等対処施設は，防潮堤下部 の地盤改良等により地下水の流 れが遮断され敷地内の地下水位 が地表面付近まで上昇するおそ れがあることを踏まえ，地下水位 を一定の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。   地下水位低下設備の効果が及 ばない範囲においては，自然水位 より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。（4）g （6） 1	また，可搬型重大事故等対処設備については，地震による周辺斜面の崩壊，溢水，火災等の影響を受けない場所に適切な保管がな されていることを併せて碓認す る。（1）（7）b 重複）	設備設計の明確化   （地下水位による耐震性への影響が生じらる建屋範囲を明確化。地下水位低下設備の設置目的（揚圧力•液状化影響低減）と設置す るエリア，各エリア 2 系統設置す る方針を明確化。また，地下水位低下設備の効果が及ぶ範囲が 0．P．＋14． 8 m 盤であることを明確化。）	原子炉冷却系統施設（共通）   2．1．1 耐震設計

要求事項との対比表


要求事項との対比表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式 -7【第50条 地震による損傷の防止】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	上部に蓋を設置することで，外部事象の影響を受けない設計とす る。   （4）（6）【50条76】   地下水位低下設備は，地震時及 び地震後を含む，原子力発電所の供用期間の全ての状態（通常運転時（起動時，停止時含む），運転時の異常な過渡変化時，設計基準事故時及び重大事故等時）におい て機能維持を可能とするため，基準地震動S s による地震力に対 して機能維持する設計とする。   また，「実用発電用原子炬及び その附属施設の位置，構造及び設備の基準に関する規則」第十二条第 2 項に基づき，地下水位低下設備を設置する原子炉建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアの各エリアで，多重性及び独立性を備える設計と するとともに，外部事象等による機能衰失要因に対し機能維持す る設計とする。   さらに，プラント供用期間中に おいて発生を想定する大規模損壊時の対応も考慮する。   （4） j （4） k （6） 0 （6） p 【50 条65】   地下水位低下設備の機能啔失 が発生した場合を想定し，復旧措置に必要な資機材として，原子炉建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリアにお ける全ての地下水位低下設備の機能喪失を考慮し，予備品及び可			いて明確化）   設備設計の明確化   （設置許可基準 12 条 2 項への適合性を明記）   設備設計の明確化   （地下水位低下設備機能喪失時 の対応方針を明記）	原子炉冷却系統施設（共通）   2．1．1 耐震設計   （4） j （4） k （6） o （6） p 引用元：P45同上

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	搬ポンプ（個数 3 ，容量 $114 \mathrm{~m}^{3} / \mathrm{h} /$個（計 $342 \mathrm{~m}^{3} / \mathrm{h}$ ））を搭載した可搬 ポンプユニット（個数 2 ）を配備 する。   （4）（6）【50 条 77】   予備品は，復旧措置にあたり機器の交換が必要な場合に備え，各 エリアを1系統復旧できる数量 を配備する。   （4）（6）【50 条 78】   可搬ポンプユニットは，各エリ アの排水機能の維持を可能とす る配備数とし，高台の堅固な地盤 に外部事象を考慮して分散配置 する。   （4）（6）【50 条 79】   地下水位低下設備は，保安規定 において運転上の制限を設定し，地下水位を一定の範囲に保持で きない場合又はそのおそれがあ る場合には，可搬ポンプユニット による水位低下措置を速やかに開始するとともに，原子炉を停止 する。   また，地下水位低下設備の復旧措置に的確かつ柔軟に対処でき るように，復旧措置に係る資機材 の配備，手順書及び体制の整備並 びに教育訓練の実施方針を自然災害発生時等の体制の整備及び重大事故等発生時の体制の整備 として，保安規定に定めた上で，社内規定に定める。   （4）1（6）$q$ 【50 条66】			設備設計の明碓化   （地下水位低下設備機能喪失時 の対応方針を明記）   設備設計の明碓化   （地下水位低下設備機能战失時 の対応方針を明記）   設備設計の明碓化   （地下水位低下設備機能喪失時 の対応方針を明記）	原子炉冷却系統施設（共通）   2．1．1 耐震設計   同上   同上   （4）1（6）$q$ 引用元：P45

要求事項との対比表


要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			て構造強度を有する設計とする。配置に自由度のあるものは，耐震上の観点からできる限り重心位置を低くし，かつ，安定性のよい据付け状態になるよう配置する。   また，建物•構築物の建屋間相対変位を考慮しても，建物•構築物及び機器•配管系の耐震安全性 を確保する設計とする。   Bクラス及びCクラスの施設，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラ スのもの）が設置される重大事故等対処施設，可搬型重大事故等対処設備，常設重大事故防止設備及 び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備 （設計基準拡張）のいずれにも属 さない常設の重大事故等対処施設は，原則，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準抎張）が設置される重大事故等対処施設に対して離隔をとり配置する，若しくは基準地震動S s に対し構造強度を保つように し，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第50条 地震による損傷の防止】


要求事項との対比表


要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	方法」及び「2．1．1（4）荷重の組合せと許容限界」に示す建物•構築物及び機器•配管系のものを適用する。   （8）k（9ba 【50条70】   2．1．2 地震による周辺斜面の崩壊に対する設計方針   常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，基準地震動S s による地震力により周辺斜面の崩壊の影響がないことが確認さ れた場所に設置する。   （1）【50条71】		及び「1．4．1．4荷重の組合せと許容限界」に示す建物•構築物及び機器•配管系のものを適用する。   （8k（9）ba	同趣旨の記載であるが，表現の違 いによる差異あり	原子炉冷却采統施設（共通）   2．1．2 地震による周辺斜面の崩壊に対する設計方針   （1）引用元：P1
			10．その他発電用原子炉の附属施設   10． 15 地下水位低下設備   10． 15.1 概要   地下水位低下設備は，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するお それがあることを踏まえ，発電用原子炉施設周辺の地下水位を一定の範囲に保持するためのもの である。   地下水位低下設備は 0．P．＋ 14.8 m 盤の発電用原子炉施設周辺记設置する。   （1）（4）g（6） 1 重複）		

要求事項との対比表

技術基潐規則•解釈	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 (後) } \end{gathered}$	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			10． 15.2 設計方針   （1）地下水位低下設備は，基準地震動 S s に対して機能維持する設計とする。（4）${ }^{(6)}$ ）   （2）地下水位低下設備は，設置許可基準規則第十二条第 2 項に基 づく設計とする。   （3）地下水位低下設備は，全交流動力電源喪失に配慮し，常設代替交流電源設備からの電源供給が可能な設計とする。（4） i （6） n   （4）地下水位低下設備は，外部事象へ配慮した設計とする。（4）k（6）   10．15． 3 主要設備   地下水位低下設備は，ドレーン，揚水井戸，揚水ポンプ，配管及び計測制御装置により構成される。 （4） h （6）   10． 15.4 手順等   地下水位低下設備の機能霛失 への対応として，復旧のための予備品の確保及び可搬型設備を用 いた機動的な措置について手順書及び体制を整備するとともに，地下水位を一定の範囲に保持で きないと判断した場合には，プラ ントを停止する。また，地下水位低下設備の機能喪失時の措置に ついては，運転管理上の方針とし て保安規定に定めて，管理してい く。（4） 16 q		



100 条 O 1 ：関連する資料と基本設計方釷を紐つけするための付番 ＜関連する資料〉
－檥式一1～の展閎表（禣足説明資料）
様式 -7
要求事項との対比表

設工認申請書基本設計方針（後）		
第2．1．2表 重大事故等対処設備（主要設備）の設備分類（1／18）		
設備分類	定義	主要設備   （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分頪）
1．常設耐震重要重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有の する機能 を代替するもの	1．核然料物質の取扱施設及び貯蔵施設   －使用済然料プール   （設計基凖対象施設としてのみ第 1,2 号機共用） ［S］   －使用済然料則蔵ラッシ   （設計基淮対象施設としてのみ第 1,2 号機共用）   ［s］   - 制御棒•破損燃料貯蔵ラック［S］   - 燃料プール冷規争化采熱交換器   （設計基淮対象施設としてのみ第 1,2 号機共用） ［B］   －燃料ブール泠却浄化系ポンプ   （設計基淮対象施設としてのみ第 1,2 号機共用） ［B］   －スキマサージタンク   （設計基凖対象施設としてのみ第 1,2 号機共用） ［B］   - 関連配管 $[S, B]$   - サイフォンブレーク孔
		2．原子炬椧却系統施設   －主蒸気逃がし安全弁逃がし弁機能用 アキュムレータ［S］   －并蒸気逃がし安全弁自動減圧機能用 アキュムレータ［S］   - 主蒸気逃がし安全弁［S］   - 高圧代替注水系タービンポンブ   - 復水貯蔵タンク   - 直流駆㮔低圧注水系ボンフ   - 復水移送ポンプ   - ほう酸水社入系小゚ンノ゚   - ほう酸水注入系貯藏タンク   - 原了厉補機泠却水サージクング   - 関連配管［S，B］   - 開連弁   - 原子炋格納容器   - フィルタタ装置出口側ラプチャディスク   - フィルタ装置   - 遠隔手動弁操作設備   - 排気筒   - 炉心支持構造物



設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】

縁色：技桩基淮規則と基本設計方针（难）との対比



要求事項との対比表

設工認申請書基本設計方針（後）					設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
第2．1．2表 重大事故等対処設備（主要設偳）の設備分類（2／18）							
			設倄分類	定義	主要設備   （［ ］内は設計基熦対象施設を兼ねる設備の耐震乗要度分類）		
1．常設耐震重要重大事故防止設備	常設重人事敌防止設備であって，耐震重要施設に属する設計基淮事故対処設備が有する機能 を代替するもの	- 原子炻圧」容器   - 原子炉建屋ブローアウトパネル   - 給水スパンジイ   - 残留熱除去采配管（原子炉圧力容器内部）   - 高圧炻心スプレイ辛配管（原子哣圧力容器内   部）   - 高圧炉心スブレイスパージャ   - 差圧検出・ほう酸水注入系配管   （ティーよりN11ノズルまでの外管）   －差圧検出・ほう酸水注人系配管   （原子炉圧力容器内部）   －残留熱除去系熱交換器   3．計測制御系統施設   - 制御棒［S］   - 制御恃駆動機構［s］   - 水圧制御ユニット（アキュムレータ）［S］   - 水圧制御ユニット（空素容器）［S］   - ほう酸水注入系ポンプ［S］   - ほう酸水注入稀宁藏タンク［S］   - 起動領域モニタ［S］   - 出力領域モニタ［S］   - 高圧代替注水系ポンプ出口圧力   - 直流駆動低圧注水系ポンプ出口圧力   - 復水移送ボンブ出口圧力   - 残留熱除去系熱交換器出口温度［C］   - 高圧代澘注水系ポンノ゚出口流量   - 残留熱除去系洗浄ライン流量（残留熱除去系へ   ッドスプレ・イライン洗浄流量）   －残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器泠切ライン洗浄流量）   - 直流駆動低圧注水系ポンプ出口流量   - 原子炉圧力「S］   - 原子炬圧力（SA）   - 原子炉水位（広帯域）［S］   - 原子炉水位（燃料域）［S］   - 原子炉水位（SA 広帯域）	設施		- 非常用ガス処理系配管•弁（流路）［S］   - 排気简（流路）［S］   （4）計测制御系統施設   - ATWS 緩和設俑（代替制御㤽插入機能）   - 制御椿［S］   - 制御椮騒動機構［S］   - 制御桋隺動水圧系水圧制御ユニット［S］   - 制御桋㸚動水圧系配管（流路）［S］   - ATWS緩和諮備（代㭲原子炉再循嬹ボンプトリッ フ機能）   - ほう酸水注入系ボンプ［ s ］   - ほう酸水注入系詝藏タンク［S］   - ほう酸水注人系配管•异（流路）［S］   - ATWS級和設備（自動減圧系作動阻止機能）   - 代替自動减圧回路（代替自動減压機能）    （流路）［S］   - 高圧窒素力ス供給系配管•弁（流路）［S］   - 主蒸気系配管•弁（流路）［S］   - 代替高圧空素力ス供給系酷管•并（流路）   - 格納容器内水素㵋度（D／W）   - 格納容器内水素溃度（ $\mathrm{S} / \mathrm{C}$ ）   - 原子炉圧力容器温度   - 原子炉压力［S］   - 原子炉圧力（SA）   - 原子炉水位（広带城）［S］   - 原子炉水位（燃料域）［S］   - 原子炉水位（SA広带域）   - 原子炉水位（SA燃料域）   - 高圧代替注水系ボンプ出口流是   - 残留熱除去系洗浄ライン流量（残留熱除去系へッド スブレイライン洗海流量）   －残留熱除去系洗浄ライン流星（残留熱除去系 B 系格納容器椧却ライン洗浄流最）   －直流駆䡃低圧注水系ボンブ出口流量		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】

系色：技桩基淮規則と基本設計方针（後）との対比
 ：前回提出時からの変更通可所

要求事項との対比表 $\qquad$

設工認申請書基本設計方針（後）					設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
第2．1．2表 重大事故等対処設備（主要設備）の設備分類（3／18）							
設備分類	定義	主要設備 （［］］内は設計基洨詨象施設を 兼ねるる設備の耐陙重重要度分類）	設備分類	定義	主要設備 （［］］内は設計基淮対象施設を 兼ねる設借の耐震重要度分類）		
1．棉設相振重要重大事故防止設備	常設重大事故防止   設備であって，耐震   重要施設に属する   設計基準事故対処   設備が有する機能   を代替するもの	- 原子炉水位（SA 燃料域）   - 圧力抑制室圧力［S］   - 圧力抑制室内空気温度［S］   - サプレッションプール水温度［S］   - 格納容器内水素濃度（D／W）   - 格納容器内水素濃度（S／C）   - 復水眝蔵タンク水位   - 原子炻格納容器代替スプレイ流量   - 圧力抑制室水位 $[\mathrm{S}]$   - 関連配管［S］   - 関連弁［S］   - フィルタ装惪出口水素濃度   - 原子炉圧力容器温度   - ノィルウ装置入い圧ノ（厷域带）   - フィルタ装置出口圧力（広域帯）   - ファルア装置水位（広域曺）   - フィルタ装置水温度   - 高圧空素ガス供給采ADS 入п圧力   - 代替高圧窒素ガス供給系窒素ガス供給止め弁入口圧力   - 6－2F－1 母線電圧   - 6－2F－2 母線電圧   - 6－2C 母線電圧［S］   - 6－2D母線電圧［S］   - 4－20 母線電再［5］   - 4－2D 母線電圧［S］   -  125 V 直流主母線 2 A 電圧［3］   -  125 V 直流主母線 2 B 電圧［S］   -  125 V 直流立母線 $2 \Lambda-1$ 電圧   -  125 V 直流主母線2B－1 電圧   -  250 V 直流主母線雷干［S］   - 差圧検出・ほう酸水注入采配管   （ティーよりN11ノズルまでの外管）   －差圧検出・ほう酸水注入系配管 （原子炉圧力容器内部）	2．常設耐震重要重大事故防止設備		- 直流㖵動低圧注水系ポンプ出口圧力   - 原子炬格納容器代替スブレイ流量   - 圧力抑制室内空気温度［S］   - サブレッションプール水温度［S］   - 圧力抑制室圧力   - 圧力抑制室水位   - 起動領域モ二夕［S］   - 平均出力領域モ二夕［S］   - 残留熱除去系熱交換器出口温度［C］   - フィル夕装置入口圧力（広带域）   - フィルタ装置出口圧力（広带域）   - フィルタ装置水位（広帯域）   - フィルタ装置水温度   - フィルタ装置出口水素濃度   - 復水貯藏タンク水位   - 高圧代替注水系ボンブ出口圧力   - 後水移送ボンブ山口天龶力   - 高圧窒素ガス供給系AD S 人口圧力［S］   - 代替高圧窒素ガス供給系窒素ガス供給止め弁入口圧力   - 6－2C 母線電圧［S］   - 6－2D 母線電圧［S］   - 6－2F－1母線電圧   - 6－2F－2 母線電圧   - 4－2C 母線電圧［S］   - 4－2D 母線電圧［S］   -  125 V 直流主母線 2 A 電圧［S］   -  125 V 直流主母縩 2 B 電圧［S］   - 125V 直流主母線 2A－1 電圧   -  125 V 直流主母線 2B－1 電圧   -  250 V 直流主母線電圧［S］   （5）放射線管理施設   －使用済燃料プール上部空間放射線モ二夕（高線量，低線量）   －格納容器内雰囲気放射線モニタ（D／W）［S］		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】

顈色：技桩基淮規則と基本設計方针（後）との対比



要求事項との対比表 $\qquad$

設置許可申請書添付書類八			設置許可，技術基準規則及び基本設計方針との対比	備考
設偳分類	定義	主要微信     		
		- 格納容器内类囲気放射線モ二タ（S／C）［S］   - フィルタタ装珽出口放射綵モ二タ   - 耐圧強化ペント系放射綵モニタ   - 中央制御室遮蔽［S］   - 中央制御室送風機［S］   - 中央制御室排風機［S］   - 中央制御室再循睘送風機［S］   - 中央制御室再循噮フィルタ装植［S］   - 中央制御室換気空社系タタト・ダンバ（流路）［S］   （6）原子炉格納施設   - 原子炬格納容器［ S ］   - 原子炉建屋プローアウトパネル［－］   - フィルタタ装置   - フィルタ装置出口側圧力開放板   - 原子炉格納容器洞気系配管•弁（流路）［S］   - 原了规恪的察器フイルクーシン1系䄫管一介（流路）   - 適隔手動弁操作設備   - スプレイ管（流路）［S］   （7）非常用電源設備   - カスタービン発電機   - カスタービン発電設備㹩油タンク   - ガスタービン発電微備燃料移送ボンフ   - カスタービン発電設備燃料移送系配管•弁（燃料流   路）   - 怪油タンク［S］   - 非常用ディーゼル発電設侑燃料移送系配管•弁（燃料流路）［S］   －高压扔心スブレイ系ディーゼル発電設備燃料移送系配管•弁（燃料流路）［S］   -  125 V 萻電池 $2 \mathrm{~A}[\mathrm{~S}$ ］   -  125 V 蓄電池 $2 \mathrm{~B}[\mathrm{~S}$ ］   - 125V 充電器 2 A ［S］   -  125 V 充電器 $2 \mathrm{~B}[\mathrm{~S}]$   -  125 V 代替蓄電池		


設工認申請書基本設計方針（後）		
第2．1．2 表 重大事故等対処钤備（主要訶備）の設備分類（4／18）		
設備分類	定義	主要設備   （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分類
1．常設耐震重要重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能	- 炬心支持構造物   - 原子炉圧力容器   - 土蒸気逃がし安全升自動減圧機能用 アキュムレータ   －土蒸気逃がし安全分
		4．放射線管理施設   - 格納容器内雰囲気放射線モニタ（D／W）［S］   - 格納容器内雰囲気放射線モ二タ（ $\mathrm{S} / \mathrm{C}$ ） SS$\rceil$   - フィルタ装置出口放射線モニタ   - 耐圧強化ベント系放射線モ二タ   - 使用済燃料プール上部空間放射線モ二タ（低線量）   －使用済燃料フール上部空間放射緑モ二夕（高線量）   - 中夷制御主送四㙨［S］   - 中央制御室再循睘送風機［S］   - 中央制御室非風機［S］   - 中央制御室再循睘フィルタ装置［S］   - 中央制御室L．．へい 壁［S］   - 閏連配管［S］
		5．原子炬格納施設   - 原子㚸格納容器［S］   - 機器般出入用ハッチ［S］   - 逃がし安全弁搬出入口［S］      - サプレッションチェンバ出入口［S］   - 所員用土ナムツシ［s］   - 配管貫通部［S］   - 電気配線貫通部［S］   - 真空破壊弁［S］   －ダウンカマ［s］   - ベント管［s］   - ベント管ベローズ［S］   －ベントヘッダ［S］   - ドライウェルスプレイ管［S］   - サブレッションチェンバスプレイ管［S］   - 復水移送ポンプ

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】







100 条 001 ：関連する資料と基本設計方針を組かけるための付番〈閉連する資料〉
－樣式 -1 への展聞表（禣足説明資料）
 ：前回提出時からの変吏箇所
要求事項との対比表

設置許可申請書添付書類八			設置許可，技術基準規則及び基本設計方針との対比	備考
設備分類	定義	主要設備 （［］内は設計基準対象施設を兼ねる設備の耐震重要度分類）		
2．常設耐震重要重大事故防止設備		-  250 V 蓄電池［C］   -  125 V 代替充電器   -  250 V 充電器［C］   - ガスタービン発電機接続盤   - 緊急用高圧母線 2 F 系   - 緊急用高圧母線 2 G 系   - 緊急用動力変圧器 $2 G$ 系   - 緊急用低圧母線 $2 G$ 采   - 緊急用交流電源切替盤 2 G 系   - 緊急用交流電源切替盤 2 C 采   - 緊急用交流電源切替盤 2 D 采   - 非常用高压母綵 2 C 系［S］   - 非常用高圧母線2D 系［S］   - 緊急時対策所軽油タンク   - 緊急時対策所用高圧母線 J 采   - 緊急時対策所燃料移送系配管•弁（燃料流路）   （8）非常用取水設備   －貯留殹［S］		


設置許可申請書添付書類八			設置許可，技術基準規則及び基本設計方針との対比	備考
設備分類	定義			
2．常設耐震重要重大事故防止設備		-  250 V 蓄電池［C］   -  125 V 代替充電器   -  250 V 充電器［C］   - ガスタービン発電機接続盤   - 緊急用高圧母線 2 F 系   - 緊急用高圧母線 2 G 系   - 緊急用動力変圧器 $2 G$ 系   - 緊急用低圧母線 $2 G$ 采   - 緊急用交流電源切替盤 2 G 系   - 緊急用交流電源切替盤 2 C 采   - 緊急用交流電源切替盤 2 D 采   - 非常用高压母綵 2 C 系［S］   - 非常用高圧母線2D 系［S］   - 緊急時対策所軽油タンク   - 緊急時対策所用高圧母線 J 采   - 緊急時対策所燃料移送系配管•弁（燃料流路）   （8）非常用取水設備   －貯留殹［S］		


設置許可申請書添付書類八			設置許可，技術基準規則及び基本設計方針との対比	備考
設備分類	定義			
2．常設耐震重要重大事故防止設備		-  250 V 蓄電池［C］   -  125 V 代替充電器   -  250 V 充電器［C］   - ガスタービン発電機接続盤   - 緊急用高圧母線 2 F 系   - 緊急用高圧母線 2 G 系   - 緊急用動力変圧器 $2 G$ 系   - 緊急用低圧母線 $2 G$ 采   - 緊急用交流電源切替盤 2 G 系   - 緊急用交流電源切替盤 2 C 采   - 緊急用交流電源切替盤 2 D 采   - 非常用高压母綵 2 C 系［S］   - 非常用高圧母線2D 系［S］   - 緊急時対策所軽油タンク   - 緊急時対策所用高圧母線 J 采   - 緊急時対策所燃料移送系配管•弁（燃料流路）   （8）非常用取水設備   －貯留殹［S］		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】
色：様式－6に関する記載（付翻及ひ下絲）
青色：設置変更隡可本文及び添付書類八からの引用以外の記載
家色：技䏫基䘖規則と基本設計方针（後）との対此

100条001：〈関連する資料〉
－檥式一1 1 の展開表（禣足説明資料）


要求事項との対比表


要求事項との対比表

設工認申請書基本設計方針（後）		
第2．1．2表 重大事故等対処設備（主要設備）の設備分類（ $7 / 18$ ）		
設備分類	定義	主要設備   （［ ］队は設計基淮対象施設を兼ねる設備の耐震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を白する設俑じあ って常設のもの	1．椟燃籼肳質の取扱及び貯蔵施設   －使用済然料プール   （設計基淮対潒施設としてのみ第 1.2 号機共用） ［S］   －使用済燃料貯蔵ラック   （設計基淮対象施設としてのみ第1，2号機共用）   ［S］   - 制御偰•破損燃枓販蔵フック［ S ］   - 使用済然料プール水位／温度 （ガイドパック，式）［C］   －使用済然料プール水位／温度   （ヒートサーモ式）   - 関連配管   - 使用済然料プール監視カメラ

## 2．原子炬泠却采統施設


アキュムレータ［s］

- 亡蒸気逃がし安全分［ s ］
- 高圧代替注水系タービンポンプ
- 復水眝蔵タン力
- 復水移送ポンフ
- 代替循睘冷却ポンファ
- 残留熱除去系ストレーナ
- 原子炉補機冷却水サージタンク［S］
- 関連配管［S，B］
- 関連弁
- 炉心支持構造物
- 原子炉圧力容器
- 給水スパージャ
- 残留熱除去系配管（原子炉圧力容器内部）
- 残留熱除去系熱交換器
- 原子炉格納容器

設置許可申請書添付書類八			設置許可，技術基準規則及び基本設計方針との対比	備考
設備分類	定義	主要設備   （［ ］内は設計基準対象施設を   兼ねる設備の而震重要度分類）		
3．常設重大事故綬和設備	重大事故等対処設備のら ち，重大事故 が発生した場合において，当硋重大事故 の拡大を防止   し，又はその影響を緩和す るための機能 を有する設備 であって常設 のもの	（1）原子炉本体   －原子炉圧力容器［S］   （2）核燃料物質の取扱施設及び貯藏施設   - 使用済燃料プール［S］   - 使用済燃料ブール水位／温度（ヒートサーモ式）   - 使用済燃料プール水位／温度（ガイドバルス式）［C］   - 使用済燃料プール監視カメラ   - 燃料プール椧却浄化系配管•弁（流路）［S，B］   （3）原子炉椧却系統施設   - 高圧代替注水系ポンブ   - 復水貯蔵タンク［B］   - 高圧代替注水系（蒸気系）配管•弁（流路）   - 主蒸気采配管•弁・クエンチャ（流路）［S，B］   - 原子炉隔離時椧却系（蒸気系）配管•弁（流路） ［s］   - 高圧代替注水系（注水采）配管•弁（流路）   - 補給水采配管•弁（流路）［B］   - 燃料プール補給水采弁（流路）［B］   - 原子炉椧却材浄化系配管（流路）［S］   - 復水給水系配管•弁・スバージャ（流路）［S］   - 高圧炉心スプレイ采配管•弁（流路）［S］   - 主蒸気逃がし安全㚏［S］   - 主蒸気逃がし安全弁自動減圧機能用アキュムレータ ［S］   - 復水移送ポンプ［ B ］   - 原子炉補機椧却水亲配管•弃・サージタンク（流   路）［S］   －残留熱除去系熱交換器［S］   （4）計測制御系統施設   - ほう酸水注入系ポンプ［ S ］   - ほう酸水注入采貯蔵タンク［S］   - ほう酸水注人采配管•升（流路）［S］   - 格納容器内水素源度（D／W）		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】

縁色：技桩基隹規則と基本設計方针（後）との対比

：前回拱出時からの変更毘所

要求事項との対比表

設工認申請書基本設計方針（後）		
第2．1．2表 重大事故等対处設備（主要設備）の設備分類（8／18）		
設供分類	定義	主要設備   （［ ］内は設計基推対象施設を兼ねる設備の耐震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	3．訳測制御系統施設   - ほう酸水注人系ポンプ［S］   - ほら酸水注入系眝蔵タンク［S］   - 高圧代替注水系ポンプ出口圧力   - 代替循環冷却ポンプ出口圧力   - 復水移送ポンプ出口圧力   - 残留熱除去系熱交換器入口温度［C］   - 高化代焽住水糸ボンブ出口流量   - 残留熱除去采洗浄ライン流量（残留熱除去采へ ッドスプレ・イテイン洗浄流量）   －残留熱除去系洗浄ライン流量（残留熱除去系 B采格納容器椧却ライン洗浄流量）   - 代替循環冷却ポンプ出口流量   - 原子炉圧力［S］   - 原子炉圧力（SA）   - 原子炉水位（広帯域）［S］   - 原子炉水位（燃料域）［S］   - 原子炉水位（ SA 広帯域）   - 原了炉水位（ SA 燃料域）   - ドライウェル圧力［S］   - 下力抑制室下力［S］   - ドライウェル温度［S］   - 圧力抑制室内空気温度［S］   - サプレッションプール水温度［S］   - 原子炉格納容器下部温度   - 格納谷器内㞣井気㖟素濃度［S］   - 格納容器内水素濃度（D／W）   - 格納容器内水素濃度（ $\mathrm{E} / \mathrm{C}$ ）   - 格納容器内雾囲気水素濃度［S］   - 復水眝蔵タンク水位   - 原子炉格納容器代替スプレイ流量   - 原子炉格納容器下部注水流量   - 圧力抑制室水位［S］   - 原子炉格納容器下部水位


設置許可申請書添付書類八			設置許可，技術基準規則及び基本設計方針との対比	備考
設備分類	定義	主要設備   （［］内は設計基準対象施設を兼ねる設備の耐震重要度分類）		
3．常設重大事故緩和設備		- 格納容器内水素濃度（S／C）   - 格納容器内粉囲気水素濃度［S］   - 格納容器内雰囲気酸素懐度［S］   - 静的触媒式水素再結合装置動作監視装置   - 原子炉建屋内水素浱度   - 原子炉圧力容器温度   - 原子炉圧力 $[\mathrm{S}]$   - 原子炉圧力（S A）   - 原子炉水位（広帯域）［S］   - 原子炉水位（燃料域）［S］   - 原子炉水位（ SA A広䍗域）   - 原子炉水位（S A燃料域）   - 高圧代替注水系ボンブ出口流量   - 残留熱除去系洗浄ライン流量（残留熱除去系へッド スブレイライン洗浄流量）   －残留熱除去采洗浄ライン流量（残留熱除去系 B 采格納容器活却テーアン・洗浄流是）   - 代替循環椧却ボンブ出口流量   - 代替循嬹椧却ボンプ出口圧力   - 原子炻格納容器下部注水流量   - 原子炉格納容器代替スブレイ流量   - ドライウェル温度   - 圧力抑制室内空気温度［S］   - サブレッションブール水温度［S］   - ドライウェル圧力   - 圧力抑制室圧力   - 圧力抑制室水位   - 原子炬格納容器下部水位   - 原子炬格納容器下部温度   - ドライウェル水位   - 残留熱除去系熟交換器人口温度［C］   - フィルタ装置入口圧力（広带域）   - フィルタ装置出口圧力（広带域）   - フィルタ装置水位（広带域）   - フィルタ装置水温度   - フィルタ装置出口水素濃度		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】

赤色：核式－6に関する礼轙（付翻及び下綵）         緑色：技術基推規則と基本没䑒方针（後）との対比	100 条 OO ：関連する資料と基本設計方卦を組かけるための付番 ＜関速する資㳆〉   - 㭬式 -1 への展開表（禣足説明資料）   - 技㣩基淮要求機器りスト（設定根执に関する㙂明書 别添－1）   ：前回撰出時からの変更箇所

要求事項との対比表

青色：設置変更許可本文及び添付書粏へかからの引用以外の記載
縁色：技桩基隹規則と基本設計方针（後）との対比

〈関連于る資料〉
 $\stackrel{\text {－技訹基準要求機機器りスト（設定根执に関 }}{\text { ：}}$
$\left.\begin{array}{|l|l|}\text { 設置許可，技術基漼規則 } \\ \text { 及び基本設計方針との対比 }\end{array}\right]$

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（9／18）
設備分類

## 2．光設重大

垂人事故等対処設 ・ドライウェル水位備のうち，重大事故－原子炬建屋内水素濃度 が発生した場合に •関連配管［S］おいて，当該重大事 •関連弁［S］
故の拡大を防止し，－無線連絡設備（固定型）［C］又はその影響を緩 ••衛星電話設備（固定型）［C］
和するための機能－－安全パラメータ表示シンステン，（SPDS）［C］ を有する設備であ って常設のもの

- データ伝送設備［C］
- フィルタ装置H口水素濃庶
- 静的触䗋式水素再結合装置動作監視装置
- 原子炉圧力容器温度
- フィルタタ装置人口圧力（広帯域）
- フィルタ装置出口圧力（広带域）
- フィルタ装置水位（広帯域）
- フィルタ装置水温度
- 6－2F－1 甘緑電圧
$\cdot 6-2 F-2$ 母線電圧

$\cdot 6-2$ 母線電圧［D］
$\cdot 6-2 D$ 母線電圧［S］
$-6-2 \mathrm{D}$ 母線電圧［S］
$-4-2 \mathrm{C}$ 日線電圧［3］
$-4-2 \mathrm{C}$ 日線電圧［3］
$-4-2 \mathrm{D}$ 母線電圧［S］
- 125 V 直流立母線 $2 \Lambda$ 電圧 $[\mathrm{S}]$
- 125 V 直流主母線2B 電圧［S］
- 125 V 直流主丹線 2A－1 電厈
- 125 V 直流主母線2B－1 電圧
- 差圧検出・ほう酸水注入系配管
（ティーよりN11ノズルまでの外管）
－差圧検出・ほう酸水注入系配管
（原子炉圧力容器内部）
- 炬心支持構造物
- 原子炉圧力容器

設直許可申請書
添付書類八

設備分類	定義	主要設備   （［］内は設計基準対象施設を兼ねる設備の耐震重要度分類）
3．常設重大事故緩和設備		- 復水眝藏タンク水位   - 高圧代替注水系ポンブ出口圧力   - 復水移送ボンブ出口圧力   - 安全パラメータ表示システム（SPDS）   - 6－2C母綵電圧［ S ］   - 6－2D 母綵電圧［ S ］   - 6－2F－1 母線電圧   - 6－2F－2 母線電圧   - 4－2C 母綵霉圧［S］   - 4－2D 母線電圧［S］   -  125 V 直流主母線 2 A 電圧［S］   -  125 V 直流主母綵 2 B 電圧［ S ］   -  125 V 直流主母線 $2 \mathrm{~A}-1$ 電圧   -  125 V 直流主母綵 $2 \mathrm{~B}-1$ 電圧   - 無線連絡設備（固定型）   - 衡星電話設備（固定型）   無線速絡設備（屋外アンーテナ）   - 衛星電話設備（屋外アンテナ）   - 無線通信装淠

- 無線通信装睛
- 有線（建屋内）（無線連絡設備（固定型），衛星電話設備（固定型）に係るもの）
－有線（建屋内）（安全パラメータ表示システム（S PDS）に係るもの）


## （5）放射線管理施設

－使用済燃料プール上部空閭放射線モニタ（高線量，
低線量）

- 格納容器内雰囲気放射線モ二タ（D／W）［S］
- 格納容器内雲囲気放射線モ二夕（S／C）［S］
- フィルタ装置出口放射線モ二夕
- 中央制御室遮蔽［S］
- 中央制御室待避所遮蔽
- 中央制御室送風機［S］
- 中央制御室排風機［ S ］
- 中央制御室再瞃噮送風機［S］
- 中央制御室再循環フィルタ装置［S］

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】

绿色：技訹基》誰規則と基本設計方针（後）との対比
 $\square$ ：前回提出時からの変更通苞所

要求事項との対比表


設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】


100 条 O O ：棥蓮する資料と基本設計方卻を組つけるための付番 ＜開連する資料〉
－樣式 -1 への展聞表（禣足説明資料）



要求事項との対比表

設工認申請書基本設計方針（後）			設置許可申請書			設置許可，技術基準規則及び基本設計方針との対比	備考
第2．1．2表	重大事故等対処設備	（主要設備） 設備分類（11／18）					
設備分類	定義	主要設備   （［ ］内は設計基淮対象施設を   兼ねる設備の而振重要度分類	設偳分類	定義			
2．常設重大事故緩	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の㹡大を防止し，又はその影響を皧和するための機能 を有する設備であ って常設のもの	－真空破壊弁［S］   －ダウンカマ［S］   - ベント管［S］   - ベント管ベローズ［S］   －ベントヘッダ［S］   - ドライウェルスプレイ管［S］   - サブレッションチェンバスブレイ管［S］   - 復水移送ポンブ   - 代替循環冷却ポンプ   - 復水貯藏タンク   - 残留熱除去系ストレーナ   - 残留熱除去系熱交換器   - 高圧代替注水系タービンポンプ   - ほう酸水注入系ポンプ   - ほう酸水注入紵藏タンク   - 非常用ガス処理系排風機［S］   - 静的触媒式水素再結合装置   - フィルタ装置   - フィルタ装置出口側ラブチャディスク   - 関連配管［S］   - 関連弁   - 炉心支持構造物   - 原子炉圧力容器   - 残留熱除去系配管（原子炉圧力容器内部）   - 給水スパージャ   - 差圧検出・ほう酸水注入采配管（ティー よりN11ノズルまでの外管）   －差圧検出・ほう酸水注入至配管（原子炉圧力容器内部）   - 非常用ガス処理系空気乾燥装置   - 非常用ガス処理系フィルタ装置   - 排気筒   - 原子炉建屋プローアウトパネル閉止装置   - 遠隔手動升操作設備   - 遠隔手動茾操作設備熫蔽	3．常設重大事故級和設碝		料流路）［S］   －高圧炉心スプレイ系ディーゼル発電設備燃料移送系配管•弁（燃料流路）［S］   -  125 V 蓄電池 $2 \mathrm{~A}[\mathrm{~S}]$   -  125 V 蓄雨池 $2 \mathrm{~B}[\mathrm{~S}$ ］   -  125 V 充電器 $2 \mathrm{~A}[\mathrm{~S}]$   -  125 V 充電器 $2 \mathrm{~B}[\mathrm{~S}]$   -  125 V 代替湆電池   -  125 V 代替充電器   - カスタービン発電機接続艦   - 緊急用高圧母線 2 F 系   - 緊急用高圧母線2G系   - 緊急用動力変圧器 2 G 系   - 緊急用低圧母緗 2 G 采   - 緊急用交流電源切替䒇 26 系   - 緊急用交流電源切替䒇 $2 C$ 系      - 非常用高圧母綵 2 C 系［s］   - 非常用高圧母綵 2D 系［S］   - 緊急時対策所怪油タンク   - 緊急時対策所用高圧母線 J 系   - 繁急時対策所败料移送系配管•弁（流路）   （8）非常用取水設備   - 貯留聅［S］   - 取水口［C］   - 取水路［C］   - 海水ボンプ室［C］		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】
様式－6に関する記載（付番及び下
色：設置变更許可本文及び添付書頬八かから引用以外の記載
录色：技訹基推規則と基本設計方针（後）との対比
〈関連する資料〉
－様式－1への展闌表（禣足説明資料）

要求事項との対比表

設工認申請書基本設計方針（後）			設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
第2．1．2表 重大事故等対处設備（主要設備）の設備分類（12／18）					
設備分類	定義	主要設備   （［ ］内は設計基淮対象施設を兼ねる設備の侕震重要度分類）			
2．常設重大事做緩 和殳信備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故や拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	6．非常用電源設備   - 非常用ディーゼル発電設備軽油タンク［S］   - ガスタービン発電設備ガスタービン機関   - ガスタービン発電設備調速装置   - カカスタービン発電設備非常調速装置   - ガスタービン発電設備然料移送ポンプ   - ガスタービン発電設備軽油タンク   - ガスタービン発電設備然料小出槽   - 高圧炉心スプレイ系ディーゼル発電設備軽油夕 ンク［S］   - ガスタード，発電設備ガスタードノ発電機   - ガスタービン発電設備ガスタービン発電機矿磁装置   －ガスタービン発電設備ガスタービン発電機保護継電装置   - 緊急時刘策所軽油タンク   -  125 V 蓄電池 2 A 及び $2 \mathrm{~B}[\mathrm{~S}]$   -  125 V 代替蓄電池   - 関連配管［S］   - メタルクラッドスイッチギア（非常用）   - メタルクラッドスイッチギア（高圧炬心スプレ イ系用）   - パワーセンタ（非常用）   - モータコントロールセンタ（非常用）   - モータコントロールセンタ（高圧炉心スプレイ系用）   - 動力変圧器（非常用）   - 動力変压器（高圧炬心スプレイ系用）   - 460V 原子炉建屋交流電源切替盤（非常用）   - 中央制御室 120 V 交流分電盤（非常用）   - ガスタービン発電機接続盤   - メタルクラッドスイッチギア（緊急用）   - 動力変圧器（緊急用）   - パワーセンタ（緊急用）   - モータコントロールセンタ（緊急用）   - ガスタービン発電設僙然料移送ポンフ接続盤   -  460 V 原子炉建屋交流電源切替盤（緊急用）   -  120 V 原子炉建屋交流電源切替盤（緊急用）   - 中央制御室 120 V 交流分電盤（緊急用）   - 125V 充電器 2 A 及び 2 B			

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】


要求事項との対比表

設工認申請書基本設計方針（後）			設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
第2．1．2表 重大事故等対処設備（主要設備）の設備分類（13／18）					
設備分類	定義	主要設備   （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分類			
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	-  125 V直流主母線盤 $2 A$ 及び $2 B$   - 125V 直流主母線盤2A－1 及び2B－1   -  125 V 直流分電盤 $2 \mathrm{~A}-1,2 \mathrm{~A}-2,2 \mathrm{~A}-3,2 \mathrm{~B}-1,2 \mathrm{~B}-2$及び2B－3   -  125 V 直流電源切替盤 2 A 及び 2 B   - 125V直流RCIC モータコントロールセンタ   -  125 V 充電器 2 H   - 125V 直流主母線盤2H   -  $125 V$ 代替充電器   - メタルクラッドスイッチギア（緊急時対策所用）   - 動力変㢄器（緊急時対策所用）   - モータコントロールセンタ（緊急時対策所用）   - 105V 交流電源切替盤（緊急時対策所用）   -  105 V 交流分電盤（緊急時対策所用）   -  120 V 交流分電盤（緊急時対策所用）   -  210 V 交流分電盤（緊急時対策所用）   - 125V 直流主母線船（緊急時対策所用）   7．補機駆動用燃料設備   - 非常用ディーゼル発電設備軽油タンク   - 高圧灲心スプレイ系ディーゼル発電設備軽油 タンク   - ガスタービン発電設備軽油タンク   - 関連配管   8．非常用取水設備   - 貯留聅［C］   - 取水口［C］   - 取水路［C］   - 海水ポンプ室［C］			



100 条 001 ：関連する資料と基本殿啚方伞を組つけけるための付番 ＜開連する資料〉
－檥式一1への展闌表（禣足説明資料）



要求事項との対比表

設工認申請書基本設計方針（後）		
第2．1．2表 重大事故等対处設犕（主要設備）の設傦分頒（14／18）		
設偌分類	定義	主要設備   （［．］内は設計基其淮橡施設を兼ねる設備の耐震重要度分類
3．常設重大事故蝺 和設備（設計基 潐昿振）	設計基凖対象施設 のうち，重大事故等時に機能を期待す る設備であって，重大事故の拉大を防止し，又はその影響 を緩和するための	1．原于炉防却采統他設   - 原子炉補機冷却水系熱交換器［S］   - 原了炉䊇機朎却水ポンプ［5］   - 原子炉補機椧去海水ポンプ［S］      - 原子炉補機椧却海水系ストレーナ［S］   - 関連配管［S］
	重大事故緩和設備以外の常設のもの	2．非常用電源段備   －非常用ディーゼル発電設備㭋常用ディーゼル機識［S］      －非常用ディーゼル発電設偏輩常調速装置［S］    ［s］   - 非常用ディーゼッ，発雪設满空気だめ（白動）［s］   - 非常用ディーゼル発雷設龦然粐デイタンク［S］      －非常用ディーゼル発電設備非常用ディーゼル発電機［S］   - 非常用ディーゼル発電設備历校校装置［S］   - 非常用ディーゼル発電設霍保㺃䋊電装置［S］   - 関連升［S］


設置許可申請書添付書類八		
設備分類	定義	主要設備   （［］内は設計基花対象施設を兼ねる設偏の耐震重要度分類）
5．常設重大事故緮和設備（設計基準抆張）	設計基準対象施設のうち，重大事故等時 に機能を期待 する設侑であ って，重大事故の拡大を防止し，又はそ の影響を緩和 するための機能を有する常設重大事故級和設備以外の常設のもの	（1）原子炉椧却系統施設   - 原子炉補機椧却水ボンブ［S］   - 原子炬補機椧却海水ポンプ［ S ］   - 原子炉補機椧却水系熱交換器［S］   - 原子炉補機冷却水采（原子炉補機椧却海水系を含 む。）配管•弁•海水系ストレーナ・サージタンク （流路）［S］   （2）非常用電源設備   - 非常用ディーゼル発電機［S］   - 非常用ディーゼル発電設備燃料移送ポンブ［ S ］   - 非常用ディーゼル発電設備燃料デイタンク［S］

要求事項との対比表

赤色：様式－6に関する記載（付番及び下線）   青色：設置変更許可本文及び添付書類八からの引用以外の記載   茶色：設惪変更許可と基本設計方針（後）との対比   緑色：技術基準規則と基本設計方針（後）との対比	100条 001 ：関連する資料と基本設計方針を紐づけるための付番 ＜関連する資料＞   - 樣式 -1 への展開表（補足説明資料）   - 技術基準要求機器リスト（設定根执に関する説明書 別添－1） $\qquad$ ：前回提出時からの変更箇所

〈関連する資料〉

：前回暴出時からの変更毘所

設工認申請書基本設計方針（後）		
第2．1．2表 重大事故等対处設備（主要設俑）の設備分類（15／18）		
設備分類	定義	主要設備   （［ ］内は設計基準対象施設を兼ねる設備の而振重要度分類
4．常設而震重要重大事故防止設備以外の常設重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの以	1．核燃料物質の取扱施設及び貯蔵施設 －使用済燃料プール水位 $/$ 温度（ガイドパル ス式）［C］   －使用済然料プール水位／温度（ヒートサー モ式   －使用済燃料プール監視カメラ
		2．原子炉椧却系統施設   －関連配管
		3．計測制御系統施設   - ドライウェッル圧力［s］   - ドライウェル温度［S］   - 無線連絡設備（固定型）［C］   - 衛星電話設備（固定型）   ［C］
		4．放射線管理施設   － 2 次しゃへい壁（原子炬建屋原子灯棟外壁［B］   - 補助しやへい（原子炬建屋）［B］   - 補助しやへい（制御建屋）［B］
		5．非常用取水設備   - 取水口［C］   - 取水路［C］   - 海水ポンプ室［C］


設置許可申請書添付書頪八			設置許可，技術基準規則及び基本設計方針との対比	備考
設偳分類	定義			
1．常設耐震重要重大事故防止設備以外の常設重大事故防止設備	常設重大事故防止設倨であ って，耐震重要施設に属す る設計基深事故対処設備が有する機能を代替するもの以外のもの	  - 使用济橪料ブール水位／温度（ヒートサーモ式）   - 使用济䢞枓フール水位／温度（カイトにパレス式）［C］   - 使用济橪枓ブール監視カメラ   （2）原子炉洽却系䖻施設   －補緰水采㢬管•升（流路）［B］   （3）計剖制御系䖻旅設   - ドライウェル温度   - ドライウェル压力   - 無緗犍絡設借（固定型）   - 衡星電話放備（固定型）   - 無綡犍絡設偳（屋外アンテナ）      －有絲（建屋内）（無線进絡設傏（固定型），衛星電話改候（固定型）に係るもの）   （4）非常用取水設倫   - 取水口 $[\mathrm{C}]$   - 取水路［C］   - 海水ポンブ室［C］		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】

縁色：技行基推規則と基本設計方针（後）との対比
 －前回揘出時からの変吏毘所

要求事項との対比表

設工認申請書基本設計方針（後）					設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
第2．1．2表 重大事故等対処設備（主要設備）の設備分類（16／18）							
		主要設備 （［ ］内は設計基顀対象施設を 兼ねる設犕の耐裖重要度分類）	設俑分類	定義	主要設備   （［］内は設計基淮対象施設を兼ねる設備の耐震重要度分類）		
5．常設重大象故防止設備（設計基淮拡掁）	設計基淮対象施設 のうち，重大事故等洔に機能を期待す る設備であって，重大事故の発生を防止する機能を有す る常設重大事故防止設備以外の常設 のもの	1．原子炉椧却絲統施設   - 残留熱除去系熱交換器［ S ］   - 残留熱除去系ポンプ［ S ］   - 残留熱除去系ストレーナ［S］   - ドライウェッスプレイ管   - サブレッションチェンバスプレイ管   - 高干炬心スプレイ系ポンプ［S］   - 復水貯蔵タンク   - 高圧炉心スプレイ系ストレーナ［S］   - 低圧炉心スプレイ系ポンプ［S］   - 低圧炉心スプレイ系ストレーナ［S］   - 原子炉隔離時泠却系ポンプ   - 原子炬補機冷却水系熱交換器［S］   - 原子炉補機椧却水ボンフ！S」   - 原子炬補機冷去却海水ポンプ［S］   - 原子小相機冷却小系リージタンシ［ s ］   - 原子炉補機泠却海水采ストレーナ［S］   - 高圧灯心スプレイ補機冷却水系熱交愌器［S］   - 高圧炬心スプレイ補機冷却水ポンプ［S］   - 高厈鿉心スプレイ補機椧规海水ポンプ［S］   - 高圧炉心スプレイ補機冷却水系サージタンク ［S］   －高圧炉心スプレイ補機冷却海水系ストレーナ ［S］   - 関連配管［S，B］   - 関連弁［S］   - 炉心文持構造物   - 原子炉圧力容器   - 原子小㭲秘容器   －ジェットポンプ   －高压炕心スプレーイ系配管（原了炉工力容器内部）   - 高圧鿉ふスプレイスパージャ   - 低王炉心スプレイ系配管（原子炉圧力容器内部）   - 低圧炉心スプレイスパージャ   - 給水スパージャ   - 残留熱除去采配管（原子炉圧力容器内部）	4．常設重大事故防止設備（設計基準拡張）	設計基準対象施設のうち，重大事故等発生時に機能を期待する設備 であってて，重大事故の発生 を防止する機能を有する常設重大事故防止設備以外の常設のもの	（1）原子炉冷却系統施設   - 主蒸気采配管•弁（流路）［S］   - 原子炉隔離時冷却采（蒸気系）配管•弁（流路） ［S］   －補給水系配管（流路）［B］   - 原了炕泠却材浄化买配管（流路）［s］   - 復水給水系配管•弁・スパージャ（流路）   - 原子炉隔離時冷却系ボンブ［S］   - 原子炉隔離時冾却系（注水采）配管•弁（流路）   - 高圧炉心スプレイ系ボンプ［S］   - 高圧炉心スプレイ系配管•弁・ストレーナ・スパー ジャ（流路）［S］   - HPC S 注入隔離弁［S］   - 残留熱除去采配管•弁・ストレーナ（流路）   - 残留熱除去系ボンフ LS」   - 残留熱除去系熱交換器［S］   - 原子炉再循環系配管•弁・ジェットポンプ（流路） ［S］   - 低圧炬心スプレイ紊ボンプ［S］   - 低圧炬心スブレイ系配管•弁・ストレーナ・スパー ジャ（流路）［S］   - 原子炉補機冷却水ポンブ［S］   - 原子炬補機冾却海水ボンプ［S］   - 原子炉補機椧却水采熱交換器［S］   - 原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）配管•弁•海水系ストレーナ・サージタンク （流路）［S］   - 高圧顺心人ノ゙レで槽機冷却水小゙ンノ゙［S］   - 高圧炉心スブレイ補機椧却海水ポンブ［S］   - 高圧炉心スブレイ補機椧却水系熱交換器［S］   - 高圧炉心スプレイ補機椧却水系（高圧灯心スプレイ補機椧却海水系孝侌すく。）配管•弁•海水系ストレ一ナ・サージタンク（流路）［S］		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第50条 地震による損傷の防止】





```
录色：技訹基維規則と基本設計方针（後）との対比
```

100 条 001 ：関連する資料と基本設計方釬を組らけるための付番 ＜開連する資料〉
－樣式 -1 への展聞表（禣足説明資料）

要求事項との対比表
: 前回提出時からの変更备所

設工認申請書基本設計方針（後）					設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
第2．1．2 表 重大事故等対処設備（主要設備）の設備分類（17／18）							
設備分類	定義	主要設備   （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分類）	設備分類	定義	主要設偏   （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分類）		
5．常設重大事故防止設備（設計基準拡張）	設計基準対象施設 のうち，重大事故等時に機能を期待す る設備であって，重大事故の発生を防止する機能を有す る常設重大事故防止設備以外の常設 のもの	3．計測制御系統施設      - 高圧炬ふスブレイ系ポンブ出口圧力［S］   - 残留熱除去系ポンプ出口圧力［C］   - 低历炬心スプレ・イ系ボンプ出口历力［C］   - 残留熱除去系熱交換器入口温度［C］   - 原子炬隔離侍椧却系ポンプ出口流量［S］   - 高圧炬心スブレイ系ボンブ出口流量［S］   - 残留熱除去系ポンプ出口流量［S］   - 低圧炬心スプレイ系ボンブ出口流量［S］   - 原子炉補機冷却水系系統流量［S］   - 残留熱除去系熱交換器椧却水入口流量［C］   - 6－2H 母線電王［S］   - HPCS125V 直流主团線電圧［S］   4．原子炉格納施設   - 残留熱除去系熱交換器   - 残留熱除去系ポンプ   - 残留熱除去系ストレーナ   - ドライウェルスプレイ管   - サブレッションチェンバスブレイ管   - 関連配管   - 関連弁   - 原子炉格納容器   5．非常用電源設備   －非常用ディーゼル発電設備非常用ディーゼル機関［S］   - 非常用ディーゼル発電設備調速装置［S］   - 北常用ディーヤ゙ル登雷設備非常劏涑装置［S］   - 非常用ディーゼル発電設備機関付清水ポンプ ［S］   - 非常用ディーゼル発電設備空気だめ（自動）［S］   - 非常用ディーゼル発電設備燃料デイタンク［S］   - 非常用ディーゼル発電設備然料移送ポンプ［S］   - 非常用ディーゼル発電設備非常用ディーゼル発電機［S］   －非常用ディーゼル発電設備励䜌装置［S］	4．常設重大事故防止設備（設計基淮拡張）		（2）計測制御系統施設   - 原子炉隔離時椧却系ボンブ出口流量［S］   - 高圧炬心スブレイ亲ボンブ出口流量［S］   - 低圧炬心スブレイ系ボンプ出口流量［S］   - 残留熱除去系ボンブ出口流量［S］   - 残留熱除去采熱交換器入口温度［C］   - 原子炉隔離時椧却系ボンプ出口圧力［S］   - 高圧炬心スブレイ系ボンプ出口圧力［S］   - 低圧炬心スプレイ采ボンプ出口圧力［C］   - 残留熱除去系ボンプ出口圧力［C］   - 残留熱除去系熱交換器冷却水入口流量［C］   - 原子炉補機椧却水系系䖻流量［S］   - 6－2H 母：線電圧［S］   - HPC S 125 V 直流主母線電圧［S］   （3）原子炉格納施設 -スプレイ管 (流路) [S]   （4）非常用電源設備   - 非常用ディーゼル発電機［S］   - 非常用ディーゼル発電設備燃料移送ボンブ［S］   - 非常用ディーゼル発電設備燃料デイタンク［S］   - 高圧炉心スブレイ采ディーゼル発電機［ S ］   - 高圧炬心スブレイ系ディーセル発電設備燃料移送ボ ンブ［ S ］   －高圧炉心スプレイ采ティーゼル発電設備燃料ディタ ンク［S］   -  125 V 蓄電池 $2 \mathrm{H}[\mathrm{S}]$   -  125 V 充電器 $2 \mathrm{H}[\mathrm{S}]$		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式 -7
【第50条 地震による損傷の防止】


要求事項との対比表

設工認申請書基本設計方針（後）			設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
第2．1．2表 重大事故等対処設備（主要設備）の設備分類（18／18）					
設備分類	定義	主要設備   （L 」内は設計基准対象施設を兼ねる設備の耐振重要度分類）			
5．常設重大事故队止設備（設計基淮拡振）	設計基隼対象施設 のうち，重大事故等洔に機能を期待 $\downarrow$ る設備であって，重大事故の発生を防止する機能を有す る常設重大事故防止設備以外の常設 のもっの	- 非常用ブィーゼル発電設備保護祼電装直［S］   - 高圧炬心スプレイ系ディーゼル発電設備高圧炉心スプレイ系ブィービル機関［s］   －高圧炉心スプレイ系ディーゼル発電設備調速装置［S］   －高圧炬心スプレイ系ディーゼル発電設備非常調速塉置［S］   －高圧炬心スプレイ采ディーゼル発電設備機関付清水ポンプ「S1   －高圧炉心スプレイ系ディーゼル発電設僙空気 だめ（自動）［S］   －高圧炉ふスプレイ系ディーゼル発電設備燃料 デイタンク［S］   －高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンブ［S］   －尚生炉心スフレイ紋ディーセル発筺設樋軽油 タンク［S］   －高圧厌心スプレペ系ブィービル発東設備高圧炉心スプレイ系ディーゼル発雨機［S］   －高厂炉心スプレーイ系ディ ゼル発雨設備厉磁装置［S］   －高圧炬心スプルイ系ディーぜ儿発電設備保護継電装置［S］   -  125 V 蓄雷洲2 $2 \mathrm{H}[\mathrm{S} 7$   - 関連配管［S］   - 関連弁［S］   - 125V 充電器 $2 A$ 及び $2 B$   - 125V 充電器 2 H   - 125V直流分電盤2H			

【第50条 地震による損傷の防止】 $\square$様式－6
各条文の設計の考え方
第50条（地震による損傷の防止）
1．技術基準の条文，解釈への適合性に関する考え方

No．	基本設計方針で記載する事項	適合性の考え方（理由）	項－号	解釈	添付書類
（1）	重大事故等対処施設の地震による周辺斜面の崩壊 に対する設計方針	技術基準の要求を受けた内容とし て記載している。	2	1	c
（2）	重大事故等対処施設の耐震設計の基本方針	同 上	$\begin{aligned} & 1 \text { 一 } \\ & \sim 三 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	c
（3）	重大事故等対処設備の設備分類	同 上	$\begin{aligned} & 1 \text { 一 } \\ & \sim \equiv \end{aligned}$	－	c
（4）	常設耐震重要重大事故防止設備等が設置される重大事故等対処施設の耐震設計方針	技術基準の要求を受けた内容とし て記載している。   また，地下水位低下設備の機能喪失時の措置については，保安規定で担保する旨を記載している。	1 －	1	c，d，e，f
（5）	常設耐震重要重大事故防止設備以外の常設重大事故防止設備等が設置され る重大事故等対処施設の耐震設計方針	技術基準の要求を受けた内容とし て記載している。	1 二	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	c
（6）	常設重大事故緩和設備等 が設置される重大事故等対処施設の耐震設計方針	技術基準の要求を受けた内容とし て記載している。   また，地下水位低下設備の機能喪失時の措置については，保安規定で担保する旨を記載している。	1 三	1	c，d，e，f
（7）	可搬型重大事故等対処設備の地震による影響（溢水，火災を除く。）を考慮 した保管方針	設置許可との整合を鑑み記載して いる。	－	－	a，b，c
（8）	地震力の算定方法	同 上	$\begin{aligned} & 1 \text { 一 } \\ & \sim 三 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	c
（9）	荷重の組合せと許容限界	同 上	$\begin{aligned} & 1 \text { 一 } \\ & \sim \end{aligned}$	1	c，g
（10）	設計における留意事項の らち，各段階における波及的影響の評価方針	同 上	$\begin{aligned} & 1 \text { 一 } \\ & 1 \text { 三 } \end{aligned}$	1	c
（11）	特定重大事故等対処設備 の耐震設計方針	特定重大事故等対処設備は，今回の変更申請対象外であるため記載し ない。	1 四	3	－
2.	設置許可本文のうち，基本設計方針に記載しないことの考え方				
No．	項目	考え方			添付書類
1	重大事故等対処施設の耐震設計	基本設計方針に具体的な内容を記載するため記載しな い。			c

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—6
【第50条 地震による損傷の防止】

- ：該当なし	


2	重複記載	設置許可の中で重複記載があるため記載しない。	－
3．設置許可添八のうち，基本設計方針に記載しないことの考え方			
No．	項目	考え方	添付書類
（1）	重複記載	設置許可の中で重複記載があるため記載しない。	－
（2）	重大事故等対処施設の地盤に対する設置方針	第49条に対する内容であり，本条文では記載しない。	c
（3）	重大事故等対処施設の構造計画•設置計画	第50条の要求事項にないことから，添付書類に地震の影響を低減するための構造計画と配置計画について記載する。	c
4）	荷重の組合せ上の留意事項（水平 2 方向と鉛直方向の組合せ及び自然現象 による荷重の組合せに関 する記載を除く。）	第50条の要求事項にないことから，添付書類に荷重の組合せにおいて包含できるケース等の留意事項につい て記載する。	c
（5）	地下水位低下設備の設計方針	地下水位低下設備の詳細事項については添付書類に記載するため記載しない。	c
4．詳細な検討が必要な事項			
No．	書類名		
a	要目表		
b	主要設備の配置の状況を明示した平面図及び断面図		
c	耐震性に関する説明書		
d	原子炉本体の基礎に関する説明書及びその基礎の状況を明示した図面		
e	原子炉格納施設の基礎に関する説明書及びその基礎の状況を明示した図面		
f	排気筒の基礎に関する説明書及びその基礎の状況を明示した図面（自立型のものに限る。）		
g	発電用原子炉施設の自然現象等による損傷の防止に関する説明書		
h	発電用原子炉の設置の許可との整合性に関する説明書		
i	設計及び工事に係る品質マネジメントシステムに関する説明書		

