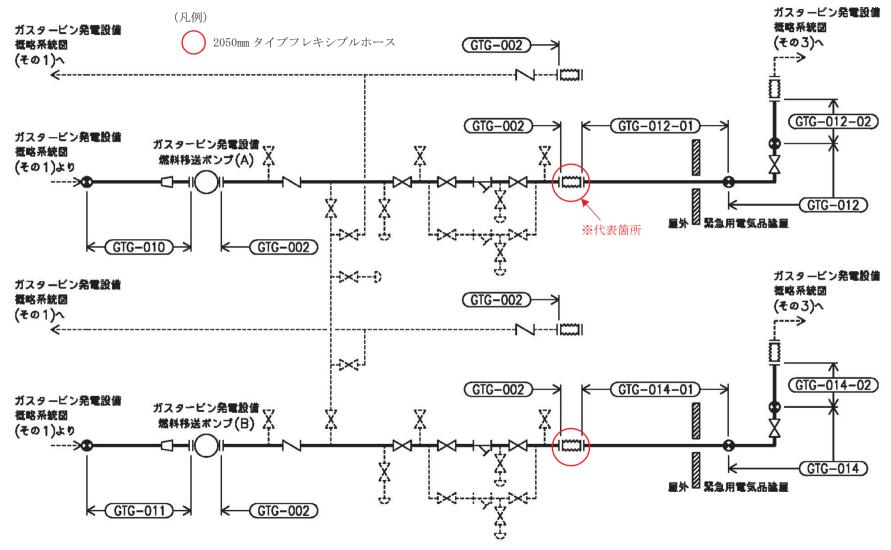
本資料のうち、枠囲みの内容 は商業機密の観点から公開 できません。


女川原子力発電所第2号機 工事計画審査資料						
資料番号	02-補-E-19-0600-40-47_改 1					
提出年月日	2021年10月19日					

補足-600-40-47 ガスタービン発電設備燃料移送系主配管の地震相対変位 に対する考慮について

1. はじめに

ガスタービン発電設備燃料移送系主配管のうち、ガスタービン発電設備軽油タンク室上部(以下「屋外」という。)に敷設されている配管については、緊急用電気品建屋と屋外間の地震相対変位を吸収する目的でフレキシブルホースを設置している。

本資料では、ガスタービン発電設備燃料移送系主配管に使用するフレキシブルホースが地震相対変位を吸収可能であることを説明するものである。フレキシブルホースの設置箇所を図 1-1 に示す。

ガスタービン発電設備概略系統図(その2)

図 1-1 ガスタービン発電設備概略系統図(抜粋)

2. フレキシブルホースの構造

フレキシブルホースの構造図を図 2-1, 材質を表 2-1, 代表箇所の鳥瞰図を図 2-2 に示す。

ガスタービン発電設備燃料移送系主配管で使用するフレキシブルホースは消防法 (昭和 23 年 7 月 24 日法律第 186 号) に適合する必要があり、消防法性能評定可撓管継手 (消防危第 20 号油配管用)を使用する。消防危第 20 号「可撓管継手の設置等に関する運用基準について」では、5(1)で「可撓管継手は、圧縮又は伸長して用いないこと。」と定められている。そのため、ここで用いるフレキシブルホースは「軸直角方向の変位のみを吸収する」ものとし、フレキシブルホースを図 2-2 の鳥瞰図に示すとおりの形状で設置することで 3 方向の地震相対変位を吸収するものである。

フレキシブルホースは鳥瞰図に示す座標系のX,Y,Z方向の相対変位を吸収するものである。 なお、フレキシブルホースは原子力発電所の主蒸気系(高圧窒素ガス供給配管)の配管で使用 実績を有する。

表 2-1 フレキシブルホースの材質

部品名称	材質			
端管	SUS304TP			
ベローズ	SUS304			

図 2-1 フレキシブルホース構造図

枠囲みの内容は商業機密の観点から公開できません。

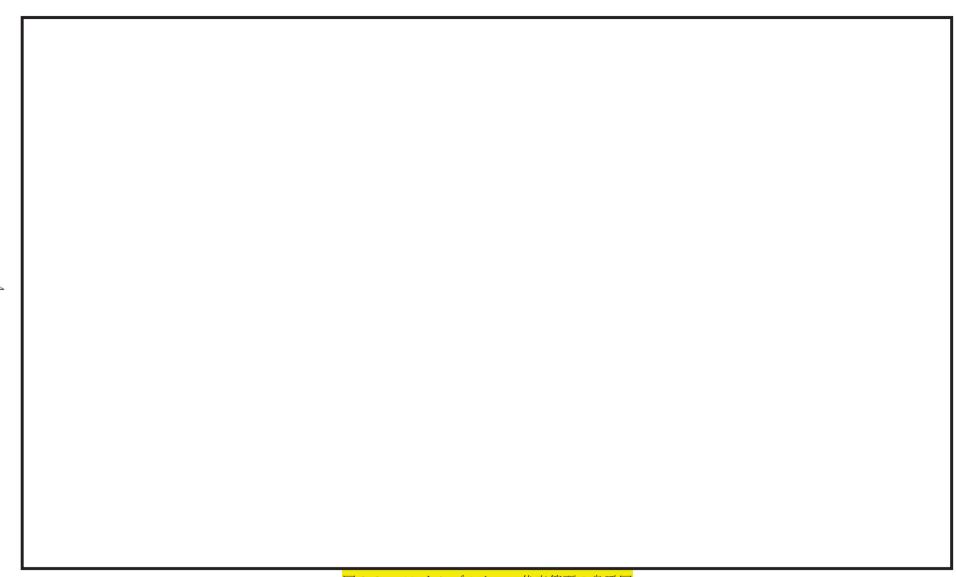


図 2-2 フレキシブルホース代表箇所の鳥瞰図

3. 地震相対変位を吸収可能であることの確認

屋外-緊急用電気品建屋間の地震相対変位は、各構築物(ガスタービン発電設備地下軽油タンク室、緊急用電気品建屋)の地震応答解析により得られた最大応答変位同士の絶対値和により算定したものとなるように表 3-1 のとおり設定している。

フレキシブルホースの設計に用いる屋外-緊急用電気品建屋間の地震相対変位は、屋外の軽油 タンク室頂板で支持される解析モデルと緊急用電気品建屋で支持される解析モデルの各々の地震 応答を用いた配管解析により得られたフレキシブルホース取合フランジ部の最大応答変位同士の 絶対値和により算定したものに、屋外-緊急用電気品建屋間の地震相対変位を加算した表 3-2 に 示す地震相対変位を用いる。

フレキシブルホースの設計に用いる屋外-緊急用電気品建屋間の地震相対変位に対し、屋外-緊急用電気品建屋間に使用しているフレキシブルホースが地震相対変位を十分に吸収可能である ことを確認した。フレキシブルホースの変位可能量を表 3-3 に示す。

フレキシブルホースの疲労評価は、表 3-2 に示す設計に用いる屋外-緊急用電気品建屋間の地 震相対変位を用いて評価を行う。

表 3-1 屋外-緊急用電気品建屋間の地震相対変位(基準地震動 S s)

	地震相対変位[mm]						
O. P. [m]	X方向	Y方向	Z方向				
	(EW方向)	(鉛直方向)	(NS方向)				
62. 30	1. 20*	0.40	1.20*				

注記*: 包絡値を示す。

表 3-2 設計に用いる屋外-緊急用電気品建屋間の地震相対変位(基準地震動Ss)

		地震相対変位[mm]		
O. P. [m]	X方向	Y方向	Z方向	
	(EW方向)	(鉛直方向)	(NS方向)	
62. 30	4. 27	1.48	3. 86	

表 3-3 フレキシブルホースの変位可能量

地震相対変位[mm]							
X方向	Z方向						
(EW方向)	(鉛直方向)	(NS方向)					
20.00	5.00	20.00					

4. 地震相対変位に対する疲労評価

地震相対変位に対する疲労評価<mark>に使用する記号の説明を表 4-1 に、評価</mark>結果を表 4-2 に示す。なお、評価方法は設計・建設規格 PPC-3416 を準用した。

評価の結果、実際の繰り返し回数(Nr)と許容繰り返し回数(N)の比(U=Nr/N)は 1以下であり、伸縮継手の強度は十分であることを確認した。

なお、伸縮継手の地震慣性力による影響は、配管側についてはVI-2-10-1-2-3-5「ガスタービン発電設備 管の耐震性についての計算書」において、解析モデルに伸縮継手の質量を付加質量として考慮した上で評価しており、十分な構造強度を有していることを確認している。また、伸縮継手側についてはフレキシブルホースの伸縮量に地震慣性力による配管変位と地震相対変位を考慮して疲労評価を行った。

表 4-1 記号の説明

記号	表示内容	単位
b	継手部の波のピッチの2分の1	mm
С	継手部の層数	_
E	材料の縦弾性係数 設計・建設規格 付録材料図表 Part6 表 1 による。	MPa
h	継手部の波の高さ	mm
N	許容繰返し回数	_
N r	実際の繰返し回数	_
n	継手部の波数の2倍の値	_
t	継手部の板の厚さ	mm
U	実際の繰返し回数(N _r)/許容繰返し回数(N)	_
δ	全伸縮量	mm
σ	継手部応力	MPa

表 4-2 フレキシブルホースの疲労評価結果

No.	最高使用 圧力 P (MPa)	最高 使用 温度 (℃)	材料	E (MPa)	t (mm)	δ (mm)	b (mm)	h (mm)	n	С	σ*2 (MPa)	N ×10 ^{3*3}	N _r × 10 ³	U
1	0.95	50	SUS304	193000	0.80	5.00^{*1}	6.50	13.00	290	1	159	2790. 93	1.0^{*4}	0.0004

注記*1: 地震相対変位 (EW方向: <mark>4.27</mark>mm, 鉛直方向: <mark>1.48</mark>mm, NS方向: <mark>3.86</mark>mm) により<mark>フレキシブルホース</mark>に生じる最大変位から換算した等 価軸方向変位量。

*2:継手部応力は以下の計算式による。

$$\sigma = \frac{1.5 \cdot E \cdot t \cdot \delta}{n \cdot \sqrt{b \cdot h^{3}}} + \frac{P \cdot h^{2}}{2 \cdot t^{2} \cdot c}$$

*3:許容繰り返し回数は以下の計算式による。

$$N = \left(\frac{11031}{\sigma}\right)^{3.5}$$

*4: 地震動による繰り返し回数 264 回に余裕を持たせ 1000 回とする。

評価:U≦1,よって十分である。