```
本資料のうち, 枠囲みの内容は
防護上の観点から公開できま
せん。
```

| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－11－2－2 竜巻防護ネットの耐震性についての計算書

2021年10月
東北電力株式会社

目 次

1．概要1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2.3 評価方針 4
2.4 適用規格•基準等 5
2.5 記号の説明 6
2.6 計算精度と数値の丸め方 10
3．評価部位 11
4．地震応答解析及び構造強度評価 11
4.1 地震応答解析及び構造強度評価方法 11
4．2 荷重の組合せ及び許容限界 12
4．2．1 荷重の組合せ及び許容応力状態 12
4．2．2 許容限界 12
4．2．3 許容限界評価条件 12
4.3 解析モデル及び諸元 16
4． 4 固有周期 20
4.5 設計用地震力 23
4． 6 計算方法 25
4．6．1 大梁及びフレームの応力の計算方法 25
4．6．2 ゴム支承のせん断ひずみ及び応力の計算方法 26
4．6．3 可動支承の発生荷重の計算方法 30
4．6．4 フレームの移動量の計算方法 30
4．7 計算条件 31
4．8 応力の評価 31
4．8．1 大梁及びフレームの応力評価 31
4．8．2 ゴム支承の評価 32
4．8．3 可動支承の評価 33
4．8．4 フレームの移動量の評価 33
5．評価結果 34
5.1 設計基準対象施設としての評価結果 34
5.2 重大事故等対処設備としての評価結果 34

1．概要

本計算書は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設 の耐震評価方針」の耐震評価方針に基づき，下位クラス設備である竜巻防護ネットが基準地震動 S s に対して十分な構造強度を有していることを確認することで，下部に設置 された上位クラス施設である原子炉補機泠却海水ポンプ等に対して，波及的影響を及ぼ さないことを説明するものである。

2．一般事項
2.1 配置概要

竜巻防護ネットは海水ポンプ室（補機ポンプエリア）上部に設置される。
竜巻防護ネットは，図2－1 の位置関係図に示すように，上位クラス施設である原子炉補機冷却海水ポンプ等の上部に設置されており，落下時に原子炉補機冷却海水ポン プ等に対して波及的影響を及ぼすおそれがある。
\square

図 2－1 竜巻防護ネットの設置位置図

2.2 構造計画

竜巻防護ネットの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
竜巻防護ネット の支持部材はフ レーム，大梁， ゴム支承，可動支承により構成 され，ゴム支承 は海水ポンプ室躯体に基礎ボル トにより固定す る。	支持部材 (フレーム, 大 梁，ゴム支承， 可動支承） ネット 防護板	 （平面図） （ $\mathrm{A} \sim \mathrm{A}$ 矢視） （ $\mathrm{B} \sim \mathrm{B}$ 矢視）

2.3 評価方針

竜巻防護ネットの応力評価は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれの ある下位クラス施設の耐震評価方針」に従い実施する。

評価については，「2．2 構造計画」にて示す竜巻防護ネットの部位を踏まえ，「3．評価部位」にて設定する箇所において，「4．3 解析モデル及び諸元」及び「4．4 固有周期」により算出した基準地震動 S s による荷重等に基づく応力等が許容限界内に収 まることを，「4． 6 計算方法」にて示す方法にて確認することで実施する。確認結果 を「5．評価結果」に示す。

竜巻防護ネットの耐震評価フローを図2－2に示す。

図 2－2 竜巻防護ネットの耐震評価フロー
2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。

- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 460 1•補—1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991追補版）
- J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）
- 日本道路協会 平成14年3月 道路橋示方書•同解説 V 耐震設計編
- 日本道路協会 平成16年4月 道路橋支承便覧
- 日本産業規格（J I S ）
2.5 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\mathrm{b}} \mathrm{e}$ i	ボルトの有効断面積（ $\mathrm{i}=1,2)$	mm^{2}
$\mathrm{A}_{\mathrm{b}} \mathrm{i}$	ボルトの呼び径断面積（ $\mathrm{i}=1,2)$	mm^{2}
$A_{c e}$	せん断変形による移動量を控除した，ゴム本体の圧縮応力算出 に有効な面積	mm^{2}
A ${ }_{\text {e }}$	ゴム支承本体の側面被覆ゴムを除く面積	mm^{2}
A_{f}	圧縮フランジの断面積	mm^{2}
A ${ }_{\text {s }}$	大梁及びフレームの断面積	mm^{2}
$A_{s} \mathrm{y}$	大梁及びフレームのy軸に関するせん断断面積	mm^{2}
$\mathrm{A}_{5 \mathrm{z}}$	大梁及びフレームのz軸に関するせん断断面積	mm^{2}
$\mathrm{A}_{\mathrm{te}}{ }^{\text {e }}$	せん断変形による移動量を控除した，ゴム本体の引張応力算出 に有効な面積	mm^{2}
a	ゴム支承本体有効平面寸法（軸方向）	mm
B	大梁及びフレームの幅	mm
B ${ }^{\prime}$	ゴム支承の上沓の寸法（直角方向）	mm
b	ゴム支承本体有効平面寸法（直角方向）	mm
C	（4．8．1．4）式により計算した値又は 2.3 のうちいずれか小さい値（ただし，座屈区間中間の強軸まわりの曲げモーメントが M_{1} より大きい場合は，1とする）	－
d	上沓の端から取付ボルトまでの距離のうち，長い方の値	mm
E	緃弾性係数	MPa
e	ゴム支承本体の偏心量	mm
F＊	設計•建設規格 SSB－3121．3及びSSB－3133に定める値	MPa
F_{x}	x軸方向のせん断力	N
F_{y}	y軸方向のせん断力	N
F ${ }_{\text {z }}$	z 軸方向の軸力	N

記号	記号の説明	単位
f b＊	許容曲げ応力	MPa
$\mathrm{f}_{\mathrm{b}}^{\mathrm{y}}$＊	大梁及びフレームのy軸周りの許容曲げ応力	MPa
$\mathrm{fl}_{\mathrm{b}}^{\mathrm{z}}$＊	大梁及びフレームのz軸周りの許容曲げ応力	MPa
f c＊	許容圧縮応力	MPa
f c	圧縮応力の分布を考慮した引張応力の係数（ $=2.0$ ）	－
f c r	荷重の大きさ及び発生頻度を考慮した係数（ $=1.5$ ）	－
f s＊	許容せん断応力	MPa
f t＊	許容引張応力	MPa
f t s ＊	引張応力とせん断応力を同時に受けるボルトの許容引張応力	MPa
G_{e}	ゴムのせん断弾性率	$\mathrm{N} / \mathrm{mm}^{2}$
H	大梁及びフレームの高さ	mm
h	はりのせい	mm
h＇	ゴム支承本体の高さ	mm
i 1	座屈軸についての断面二次半径	mm
i 2	圧縮フランジとはりのせいの6分の1とからなるT型断面のウェ ブ軸周りの断面二次半径	mm
ℓ	大梁及びフレームの長さ	mm
ℓ_{b}	圧縮フランジの支点間距離	mm
ℓ_{j}	上沓中心からのボルト距離（ $\mathrm{j}=1,2)$	mm
ℓ_{k}	座屈長さ	mm
$\mathrm{M}_{1}, \mathrm{M}_{2}$	それぞれ座屈区間端部における強軸周りの曲げモーメント。こ の場合において， M_{2} と M_{1} との比は1より小さいものとし，単曲率の場合を正に，複曲率の場合を負とする。	$\mathrm{N} \cdot \mathrm{mm}$
M_{b}	ゴム支承本体の回転モーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{h}	ゴム支承本体の水平反力による回転モーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{v}	ゴム支承本体の鉛直反力による回転モーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{x}	x 軸周りの曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{y}	y 軸周りの曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{z}	z軸周りの曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$

記号	記号の説明	単位
N	軸力	N
n	縦弾性係数比（ $=1$ ）	－
n b ${ }^{\text {，}}$	引張力を受けるゴム支承端部のボルト本数	－
n b i	ボルト総数（ $\mathrm{i}=1,2)$	－
n e	ゴム本体のゴム層数	－
n j	各位置でのボルト数（ $\mathrm{j}=1,2$ ）	－
Q b	基礎ボルト 1 本あたりのせん断力	N
Q y	y軸方向のせん断力	N
Q	z 軸方向のせん断力	N
R	ゴム支承本体の鉛直反力	N
R ${ }_{\text {h }}$	ゴム支承本体の水平反力	N
R L	ゴム本体の下向きの反力	N
R U	ゴム本体の上向きの反力	N
S_{1}	ゴム支承本体の1次形状係数	－
S_{2}	ゴム支承本体の 2 次形状係数	－
Su	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
T $\mathrm{bi}_{\text {i }}$	ボルト一本あたりの引抜力（ $\mathrm{i}=1,2)$	N
t ${ }_{1}$	大梁及びフレームの板厚	mm
t ${ }_{2}$	大梁及びフレームの板厚	mm
t e	ゴム本体の一層の厚さ	mm
$t_{\text {p }}$	内部鋼板の厚さ	mm
x	上沓端部から中立軸までの距離	mm
$\mathrm{Z}_{\mathrm{b} \times}$	x 軸に関するボルト群の断面係数	mm
$\mathrm{Z}_{\mathrm{b}} \mathrm{y}$	y 軸に関するボルト群の断面係数	mm
$\mathrm{Z} \times$	x軸に関する断面係数	mm^{3}
Z y	y軸に関する断面係数	mm^{3}
Z ${ }_{\text {z }}$	z 軸に関する断面係数	mm^{3}

	記号	記号の説明	単位
	γ se	ゴム支承本体のせん断ひずみ	－
	γ ea	ゴム支承本体の許容せん断ひずみ	－
	$\Delta \mathrm{L}$	ゴム支承本体の移動量	mm
	Λ	限界細長比	－
	λ	有効細長比	－
	v	安全率	－
	v_{1}	ポアソン比	－
	$\Sigma \mathrm{t}$ 。	総ゴム厚	mm
	$\sigma \mathrm{bys}$	大梁及びフレームのy軸周りの曲げ応力	MPa
	$\sigma \mathrm{bzs}$	大梁及びフレームのz軸周りの曲げ応力	MPa
	$\sigma \mathrm{ce}$	ゴム本体の圧縮応力	MPa
	$\sigma \mathrm{cra}$	ゴム支承本体の許容圧縮応力	MPa
\checkmark	$\sigma \mathrm{cs}$	大梁及びフレームの圧縮応力	MPa
$\stackrel{1}{4}$	$\sigma \mathrm{pmax}$	ゴム支承端部の最大圧縮応力	MPa
$\stackrel{\text { I }}{1}$	$\sigma \mathrm{ta}$	ゴム支承本体の許容引張応力	MPa
$\xrightarrow{\top}$	$\sigma \mathrm{tbi}$	ボルトの引張応力（ $\mathrm{i}=1,2)$	MPa
5	$\sigma_{\text {t }}$ e	ゴム本体の引張応力	MPa
（1）	$\sigma \mathrm{tp}$	内部鋼板の引張応力	MPa
\sim	$\tau \mathrm{bi}$	ボルトのせん断応力（ $\mathrm{i}=1,2)$	MPa
\bigcirc	$\tau \mathrm{ys}$	大梁及びフレームのy軸方向のせん断応力	MPa
	$\tau{ }_{\mathrm{z}}$	大梁及びフレームのz軸方向のせん断応力	MPa

2.6 計算精度と数値の丸め方

数値の丸め方は表2－2に示すとおりである。
表2－2に記載のない数値，力，及びモーメントの計算精度は，有効数字 6 桁以上を確保する。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
質量	t	小数点以下第 3 位	四捨五入	小数点以下第 2 位
縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁
断面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊1
断面二次モーメント	mm^{4}	有効数字 5 桁目	四捨五入	有効数字 4 桁 ${ }^{* 1}$
断面係数	mm^{3}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊1
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊1
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊1
算出応力	MPa	小数点以下第 1 位	切上げ	整数位＊2
許容応力	MPa	小数点以下第 1 位	切捨て	整数位＊2，${ }^{\text {a }}$
算出変位	mm	小数点以下第1位	切上げ	整数位
震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位

注記＊1 ：絶対値が 1000 以上のときは，べき数表示とする。
＊2：規格により定められた許容値が小数点以下第1位の場合は，小数点以下第1位 とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切捨て，整数位まで の値とする。

3．評価部位

竜巻防護ネットの耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，落下により，上位クラス施設である原子炉補機泠却海水ポンプ等が損傷す ることを防止するため，大梁，フレーム，ゴム支承及び可動支承について実施する。竜巻防護ネットの耐震評価部位については，表 2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価

4． 1 地震応答解析及び構造強度評価方法

（1）海水ポンプ室（補機ポンプエリア）の南側隔壁のコーベル上に，フレーム支持用の大梁を設置する。この大梁と北側隔壁天面に支持部を設け，ネット及び防護板を取り付けたフレームを支持する。
（2）南側隔壁と大梁の接続部及び北側隔壁とフレームとの支持部にはそれぞれ 2 個 ずつのゴム支承を設置する。ゴム支承の採用は，ゴム支承のアイソレート機能 により竜巻防護ネットの固有周期をやや長周期化することで，海水ポンプ室へ の反力を低減することを目的としている。
（3）大梁とフレームとの接続部にはフレームごとに 2 個の可動支承を設置する。可動支承を採用することで，フレームや大梁の熱伸びによる変位を吸収する構造とし，メンテナンス性（分解作業の作業性）を向上することを目的としてい る。
（4）竜巻防護ネットの質量には，フレーム自身の質量のほか，ネット，防護板，大梁，ゴム支承及び可動支承の質量を考慮する。
（5）水平 2 方向及び鉛直方向の地震力を考慮した評価を実施する。地震力は，竜巻防護ネットに対して水平方向及び鉛直方向から個別に作用するものとし，作用 する荷重の算出において組み合せるものとする。
（6）耐震計算に用いる寸法は，公称値を使用する。

4.2 荷重の組合せ及び許容限界

4．2．1 荷重の組合せ及び許容応力状態
竜巻防護ネットの荷重の組合せ及び許容応力状態のうち，設計基準対象施設の評価に用いるものを表 4－1に，重大事故等対処設備の評価に用いるものを表4－2 に示す。

4．2．2 許容限界

竜巻防護ネットの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3に示す。

基礎ボルトの許容応力は，「設計•建設規格」に基づき設定する。
ゴム支承の許容応力は，「設計•建設規格」及び「日本道路協会 平成14年3月 道路橋示方書•同解説 V 耐震設計編」に基づき設定する。

可動支承の許容荷重は，「設計•建設規格」及びメーカ試験結果に基づく許容応力から設定する。

竜巻防護ネットの部材間の移動量の許容限界は，フレーム間及びフレームと側壁のクリアランスより設定する。

4．2．3 許容限界評価条件

竜巻防護ネットの許容限界評価条件を表4－4に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分	機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
その他	竜巻防護ネット	-			

注記＊：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

施設区分	機器名称	設備分類	機器等の区分	荷重の組合せ	許容応力状態
その他	竜巻防護ネット	－	—＊	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { として, } \end{gathered}$ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－3 許容応力（設計基準対象施設及び重大事故等対処設備）

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 許容限界評価条件（設計基準対象施設及び重大事故等対処設備）

評価対象			材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
大梁	大梁		$\begin{gathered} \text { SM490A } \\ (16<⿸ 厂 ⿱ 日 子 ⿱ ⿱ 亠 䒑 十 子 さ ~ \end{gathered}$	周辺環境温度	40	315	490
フレーム	主桁						
	横補強材						
	ブレース		$\begin{gathered} \text { SS400 } \\ \text { (厚さ } 516 \text {) } \end{gathered}$	周辺環境温度	40	245	400
大梁ゴム支承 及び フレームゴム支承	ゴム支承本体	ゴム本体	NR	周辺環境温度	40	－	－
		内部鋼板	$\begin{gathered} \text { SS400 } \\ \text { (厚さ } \leqq 16 \text {) } \end{gathered}$	周辺環境温度	40	245	400
	取付ボルト		強度区分 8.8 （呼び径 $\leqq 16 *$ ）	周辺環境温度	40	640	800
	基礎ボルト		$\begin{gathered} \text { SNR490B } \\ (6 \leqq \text { 厚さ } \end{gathered}$	周辺環境温度	40	325	490

注記＊：呼び径は 16 mm 以上であるが，保守的に強度区分 8.8 の 16 mm 以下の小さい値を選定。

4．3 解析モデル及び諸元

竜巻防護ネットの解析モデルを図4－1に，解析モデルの概要を以下に示す。また，機器の諸元を本計算書の【竜巻防護ネットの耐震性についての計算結果】の機器要目 に示す。
（1）竜巻防護ネットの大梁及びフレームをはり要素，ゴム支承及び可動支承を図4－1中の表のばね要素でモデル化したモデルによって求める。
（2）拘束条件は，隔壁部を完全固定とする。なお，基礎ボルト部は剛体として評価 する。
（3）地震応答解析に用いる減衰定数は，水平方向 4.0% ，鉛直方向 2.0% を用いる。
（4）解析コードは「DYNA2E ver．8．1．0」を使用し，固有値と各要素に発生する荷重及びモーメントを求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，VI－5「計算機プログラム（解析コード）の概要」に示す。

全体座標系
フレーム 伏図
大梁 伏図

全体座標系

全体座標系
k通り軸組図

注）－印はゴム支承を示す。 \triangle 印は可動支承を示す。

図 4－1 竜巻防護ネットの解析モデル（ $1 / 3$ ）

図 4－1 竜巻防護ネットの解析モデル（2／3）

$\xrightarrow[\rightarrow]{\substack{\mathrm{Y}}}$
全体座標系

ばね支持条件			
記号	ゴム支承		可動支承
	大梁 ゴム支承	フレーム ゴム支承	
	弾性	弾性	
K_{Y}	弾性	弾性	剛
K_{Z}	弾性	弾性	剛

図 4－1 竜巻防護ネットの解析モデル（3／3）

4． 4 固有周期
固有値解析の結果を表 4－5 に，振動モード図を図4－2 に示す。固有周期は 0.05 秒 を超えており，柔構造であることを確認した。また，鉛直方向は 12 次モード以降で卓越し，固有周期は 43 次で 0.05 秒以下であることを確認した。

表 4－5 固有値解析結果

モード	卓越方向	固有周期 （s）	水平方向刺激係数＊		鉛直方向刺激係数＊
			X	Y	
1 次	水平方向	0.795	0.000	1． 275	0.000
2 次	水平方向	0.685	1． 003	0.000	0.000
3 次	水平方向	0.684	0.000	－0．050	0.000
4 次	水平方向	0.658	1． 002	0.000	0.000
5 次	水平方向	0.658	0.000	0.000	0.000
6 次	水平方向	0.466	1． 051	0.000	0.000
7 次	水平方向	0.392	－0．017	0.000	0.000
8 次	水平方向	0.387	0.000	0.532	0.000
9 次	水平方向	0.378	0.001	0.000	0.000
10 次	水平方向	0.369	0.000	0.991	0.000
11 次	水平方向	0． 304	0.000	0.000	0.000
12 次	鉛直方向	0． 293	0.000	0.000	1． 461
13 次	鉛直方向	0.250	0.000	0.000	0.000
14 次	鉛直方向	0.250	0.000	0.000	1． 441
15 次	鉛直方向	0.224	0.000	0.000	0.000
16 次	鉛直方向	0.222	0.000	0.000	0.357
17 次	鉛直方向	0.222	0.000	0.000	0.000
18 次	鉛直方向	0.221	0.000	0.000	0． 473
19 次	鉛直方向	0.221	0.000	0.000	0.000
20 次	鉛直方向	0.184	0.000	0.000	0.060
21 次	水平方向	0.089	0.000	0.000	0.000
22 次	水平方向	0.089	0.000	0.002	0.000
23 次	水平方向	0.089	－0．001	0.000	0.000
24 次	水平方向	0.085	0.000	0.058	0.000
25 次	水平方向	0.078	0.074	0.000	0.000
26 次	鉛直方向	0.068	0.000	0.000	0.000
27 次	鉛直方向	0.066	0.000	0.000	0.076
28 次	鉛直方向	0.066	0.000	0.000	0.000
29 次	鉛直方向	0.059	0.000	0.000	－0．015

モード	卓越方向	固有周期	水平方向刺激係数＊		鉛直方向
		(s)	X	Y	刺激係数＊

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリクスの積から算出した値を示す。

O 2 （5）VI－2－11－2－2 R 1

モード 1
振動数 1.257

モード 2
振動数 1.461

N モード 3
振動数 1.461

図 4－2 振動モード図（3 次モードまでを示す）
4.5 設計用地震力

評価に用いる設計用地震力を表4－6に示す。
「基準地震動 S s 」による地震力は，添付資料「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 4－6 設計用地震力（設計基準対象施設）

		固有周期	応答	度＊3	
		（s）	NS 方向	EW 方向	答鋁龺震度
	23 次	0.089	3.561	20.213	12． 367
	24 次	0.085	3.546	22.435	12． 367
	25 次	0.078	3.380	22． 662	11． 113
	26 次	0.068	2． 899	20.255	10． 411
	27 次	0.066	2． 732	16． 146	10.675
	28 次	0.066	2． 732	16． 146	10．675
	29 次	0.059	2． 603	14．563	10．411
	30 次	0.059	2． 603	14.563	10．411
	31 次	0.059	2． 603	14.563	10． 411
	32 次	0.059	2． 603	14.563	10．411
\checkmark	33 次	0.058	2． 603	14.563	10．411
$\xrightarrow{4}$	34 次	0.058	2． 603	14.563	10.411
$\begin{gathered} N \\ \uparrow \\ \uparrow \end{gathered}$	35 次	0.057	2． 456	13.795	9.300
\cdots	36 次	0.057	2． 456	13.795	9．300
5	37 次	0.056	2． 423	12.927	8.297
（1）	38 次	0.056	2． 423	12.927	8.297
\bigcirc	39 次	0.055	2． 353	12．195	8． 297
\bigcirc	40 次	0.054	2． 232	12． 155	8.297
	41 次	0.054	2． 232	12．155	8． 297
	42 次	0.051	2.211	14.599	8． 536
	43 次	0.044	－	－	－
		力＊4	1． 32	1． 56	7.34

注記＊1：基準床レベルを示す。
＊2： 1 次固有周期について記載。
＊3：各モードの固有周期に対し，設計用床応答曲線（S s）より得られる震度を示す。
＊4：S s に基づく設計用最大応答加速度（1．2•ZPA）より定めた震度を示す。

4．6 計算方法
4．6．1 大梁及びフレームの応力の計算方法
大梁及びフレームに生じる各応力は，解析による計算で得られる各要素端での軸力 N ，せん断力 $Q_{y}, ~ Q_{z}$ 及び曲げモーメント $M_{y}, ~ M_{z}$ より次のように求める。
（1）圧縮応力

$$
\begin{equation*}
\sigma_{\mathrm{cs}}=\frac{|\mathrm{N}|}{\mathrm{A}_{\mathrm{s}}} \tag{4.6.1.1}
\end{equation*}
$$

（2）曲げ応力

$$
\begin{align*}
& \sigma_{\mathrm{bys}}=\frac{\left|\mathrm{M}_{\mathrm{y}}\right|}{\mathrm{Z}_{\mathrm{y}}} . \tag{4.6.1.2}\\
& \sigma_{\mathrm{bzs}}=\frac{\left|\mathrm{M}_{\mathrm{z}}\right|}{\mathrm{Z}_{\mathrm{z}}} . \tag{4.6.1.3}
\end{align*}
$$

（3）せん断応力

$$
\begin{align*}
& \tau_{\mathrm{ys}}=\frac{\left|\mathrm{Q}_{\mathrm{y}}\right|}{\mathrm{A}_{\mathrm{sy}}} \tag{4.6.1.4}\\
& \tau_{\mathrm{zs}}=\frac{\left|\mathrm{Q}_{\mathrm{z}}\right|}{\mathrm{A}_{\mathrm{sz}}}
\end{align*}
$$

（4）組合せ応力
a．圧縮＋曲げ

$$
\begin{equation*}
\frac{\sigma \mathrm{c} \mathrm{~s}^{*}}{1.5 \cdot \mathrm{f}_{\mathrm{c}}^{*}}+\frac{\sigma_{\mathrm{by} \mathrm{~s}}}{1.5 \cdot \mathrm{f}_{\mathrm{b} \mathrm{y}}} * \frac{\sigma \mathrm{~b} \mathrm{z} \mathrm{~s}}{1.5 \cdot \mathrm{f}_{\mathrm{b} \mathrm{z}}} . \tag{4.6.1.6}
\end{equation*}
$$

b．圧縮＋曲げ＋せん断

$$
\begin{equation*}
\sqrt{\left(\sigma_{\mathrm{css}}+\sigma_{\mathrm{byss}}+\sigma_{\mathrm{bzs}}\right)^{2}+3 \cdot\left(\tau_{\mathrm{yss}^{2}}{ }^{2} \tau_{\mathrm{zs}}{ }^{2}\right)} \cdot \tag{4.6.1.7}
\end{equation*}
$$

c．せん断

$$
\begin{equation*}
\sqrt{\tau_{\mathrm{ys}^{2}}{ }^{2}+\tau_{\mathrm{zs}}{ }^{2}} . \tag{4.6.1.8}
\end{equation*}
$$

4．6．2 ゴム支承のせん断ひずみ及び応力の計算方法

4．6．2．1 ゴム本体のせん断ひずみの計算方法
ゴム本体の変形概要図を図4－3に示す。
ゴム支承のゴム本体に生じるせん断ひずみ $\gamma \mathrm{se}$ は，解析による計算で得ら れる地震時の移動量 $\Delta \mathrm{L}$ と総ゴム厚 $\Sigma \mathrm{t}$ eより次のように求める。
$\gamma_{\mathrm{se}}=\frac{\Delta \mathrm{L}}{\sum \mathrm{t}_{\mathrm{e}}}$

図4－3 ゴム本体の変形概要図

4．6．2．2 ゴム本体の応力の計算方法
ゴム支承のせん断変形概要図を図4－4に示す。
ゴム支承のゴム本体に生じる各応力は，解析による計算で得られる下向き の反力 R_{L} ，上向きの反力 R_{U} ，及び地震時のせん断変形による移動量を控除 した応力算出に有効な面積より次のように求める。

図4－4 ゴム支承のせん断変形概要図
（1）圧縮応力

$$
\begin{aligned}
& \sigma_{c e}=\frac{\left|\mathrm{R}_{\mathrm{L}}\right|}{\mathrm{A}_{\mathrm{c} \text { e }}} . \\
& \text { ここで, }
\end{aligned}
$$

（2）引張応力

$$
\begin{aligned}
& \sigma_{t e}=\frac{\left|R_{U}\right|}{A_{t e}} \cdots \ldots \ldots(4.6 .2 .2 .3) \\
& \text { ここで, }
\end{aligned}
$$

4．6．2．3 内部鋼板の応力の計算方法

ゴム支承の内部鋼板に作用する荷重及び応力の概要図を図4－5に示す。
ゴム支承の内部鋼板には，鉛直荷重によって圧縮応力 $\sigma \mathrm{ce}$ が作用した際に，水平方向への引張力 N_{p} が生じ，引張応力 σ_{t} が作用する。

ゴム支承の内部鋼板に作用する引張応力 $\sigma \mathrm{tp}$ は，圧縮応力 $\sigma \mathrm{ce}$ より次の ように求める。

$$
\begin{equation*}
\sigma_{\mathrm{tp}}=\frac{\mathrm{f}_{\mathrm{c}} \cdot \sigma_{\mathrm{ce}} \cdot \mathrm{t}_{\mathrm{e}}}{\mathrm{t}_{\mathrm{p}}} \tag{4.6.2.3.1}
\end{equation*}
$$

ここで，ゴム支承本体に生じる圧縮応力 $\sigma \mathrm{ce}$ は，（4．6．2．2．1）式による。

図 4－5 内部鋼板に作用する荷重及び応力の概要図

4．6．2．4 取付ボルトの応力の計算方法

取付ボルトに生じる応力は，解析による計算で得られる各要素端の反力 R e及び R_{h} から手計算により，次のように求める。
（1）引張応力
a．中立軸が断面内にあり，一部の取付ボルトが引張状態となる場合
図 4－6に一部の取付ボルトが引張状態となる場合の荷重の発生イメージ図 を示す。取付ボルトには，ゴム支承端部に作用する圧縮応力 σ_{pmax} と中立軸 の移動量 e に対応した引張応力 $\sigma \mathrm{tb} 1$ が作用する。取付ボルトの引張応力 $\sigma \mathrm{tb}$ は，次のように求める。

図 4－6 荷重の発生イメージ図（一部の取付ボルトが引張状態となる場合）

$$
\begin{align*}
& \sigma_{\mathrm{tb} 1}=\left(\frac{\sigma_{\mathrm{pmax}} \cdot \mathrm{n} \cdot(\mathrm{~d}-\mathrm{x})}{\mathrm{x}}\right) \cdot \frac{\mathrm{A}_{\mathrm{be} 1}}{\mathrm{~A}_{\mathrm{b} 1}} \ldots \ldots \ldots \ldots . \tag{4.6.2.4.1}\\
& \text { ここで, } \\
& \sigma_{\mathrm{pmax}}=\frac{2 \cdot \mathrm{R}_{\mathrm{e}}}{\mathrm{~B}^{\prime} \cdot \mathrm{x}-\frac{2 \cdot \mathrm{n}^{2} \cdot \mathrm{~A}_{\mathrm{be} 1} \cdot \mathrm{n}_{\mathrm{b}}{ }^{\prime}}{\mathrm{x}} \cdot(\mathrm{~d}-\mathrm{x})} . \\
& \text { ここで, }
\end{align*}
$$

b．全ての取付ボルトが引張状態となる場合
図4－7に全ての取付ボルトが引張状態となる場合の荷重の発生イメージ図 を示す。

中心から最も離れた位置にある取付ボルト1本あたりに作用する引張応力 $\sigma_{\mathrm{t}}^{\mathrm{b}} \mathrm{H}^{2}$ は， R_{e} 及び R_{h} より求めた取付ボルト 1 本あたりの引抜力 $\mathrm{T}_{\mathrm{b}} 1$ より次のように求める。

図 4－7 発生荷重のイメージ図 （全ての取付ボルトが引張状態となる場合）

$$
\begin{align*}
& \sigma_{\mathrm{tb} 1}=\frac{\mathrm{T}_{\mathrm{b} 1}}{\mathrm{~A}_{\mathrm{b} 1}} . \tag{4.6.2.4.3}\\
& \text { ここで, } \\
& \mathrm{T}_{\mathrm{b} 1}=\frac{\mathrm{M}_{\mathrm{b}} \cdot \ell_{2}}{2 \cdot \Sigma\left(\mathrm{n}_{\mathrm{j}} \cdot \ell_{\mathrm{j}}{ }^{2}\right)}-\frac{\mathrm{R}_{\mathrm{e}}}{\mathrm{n}_{\mathrm{b} 1}} \tag{4.6.2.4.4}\\
& M_{b}=\left|M_{h}+M_{v}\right| \\
& M_{h}=R_{h} \cdot h^{\prime} \tag{4.6.2.4.6}\\
& M_{v}=R_{e} \cdot e^{-} \tag{4.6.2.4.7}\\
& \text {こで, } \\
& \text { (4.6.2.4.5) }
\end{align*}
$$

（2）せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b} 1}=\frac{\mathrm{R}_{\mathrm{h}}}{\mathrm{~A}_{\mathrm{b} 1} \cdot \mathrm{n}_{\mathrm{b} 1}} \tag{4.6.2.4.8}
\end{equation*}
$$

（3）組合せ応力
（4．6．2．4．1）式で算出した応力を用いる。

4．6．2．5 基礎ボルトの応力の計算方法

基礎ボルトに生じる応力は，解析による計算で得られる各要素端での荷重 $\mathrm{F}_{\mathrm{x}}, \mathrm{F}_{\mathrm{y}}, \mathrm{F}_{\mathrm{z}}$ ，曲げモーメント $\mathrm{M}_{\mathrm{x}}, \mathrm{M}_{\mathrm{y}}$ から求める基礎ボルトの引抜力 T b 2 及びせん断力 Q_{b} を用いて，次のように求める。
（1）引張応力
$\sigma_{\mathrm{tb}_{2}}=\frac{\mathrm{T}_{\mathrm{b} 2}}{\mathrm{~A}_{\mathrm{b}_{2}}}$.
ここで，
$\mathrm{T}_{\mathrm{b} 2}=\frac{\mathrm{F}_{\mathrm{z}}}{\mathrm{n}_{\mathrm{b} 2}}+\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{Z}_{\mathrm{b} x}}+\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{Z}_{\mathrm{by}}}$
（2）せん断応力

$$
\begin{align*}
& \tau_{\mathrm{b} 2}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b} 2}} \tag{4.6.2.5.3}\\
& \text { ここで, }
\end{align*}
$$

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}=\sqrt{\left(\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{n}_{\mathrm{b} 2}}\right)^{2}+\left(\frac{\mathrm{F}_{\mathrm{y}}}{\mathrm{n}_{\mathrm{b} 2}}\right)^{2}} . \tag{4.6.2.5.4}
\end{equation*}
$$

（3）組合せ応力
（4．6．2．5．1）式で算出した応力を用いる。

4．6．3 可動支承の発生荷重の計算方法
可動支承の発生荷重は，解析により求める。

4．6．4 フレームの移動量の計算方法
各部の移動量は，解析による計算で得られる地震時の移動量から相対変位とし て求める。

4．7 計算条件

応力解析に用いる自重及び荷重（地震荷重）は，本計算書の【竜巻防護ネットの耐震性についての計算結果】の設計条件及び機器要目に示す。

4．8 応力の評価
4．8．1 大梁及びフレームの応力評価
4．6．1 項で定めた応力が許容値以下であること。ただし，組合せ応力が応力比 の場合は1以下であること。

	基準地震動S s による荷重との組合せの場合
許容引張応力 $1.5 \cdot \mathrm{f}_{\mathrm{t}} *$	$1.5 \cdot \frac{\mathrm{~F}^{*}}{1.5}$
許容せん断応力 $1.5 \cdot \mathrm{f}_{\mathrm{s}}^{*}$	$1.5 \cdot \frac{\mathrm{~F}^{*}}{1.5 \cdot \sqrt{3}}$
許容圧縮応力$1.5 \cdot \mathrm{f}_{\mathrm{c}} \text { * }$	$1.5 \cdot\left\{1-0.4 \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}\right\} \cdot \frac{\mathrm{F}^{*}}{v} \quad(\lambda \leq \Lambda$ の場合）
	$1.5 \cdot 0.277 \cdot \mathrm{~F}^{*} \cdot\left(\frac{\Lambda}{\lambda}\right)^{2} \quad(\lambda>\Lambda$ の場合）
許容曲げ応力 $1.5 \cdot \mathrm{f}_{\mathrm{b}} *$	$\operatorname{MAX}\left(1.5 \cdot\left(1-0.4 \cdot \frac{\ell_{\mathrm{b}}{ }^{2}}{\mathrm{C} \cdot \Lambda^{2} \cdot \mathrm{i}_{2}^{2}}\right) \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}, 1.5 \cdot \frac{0.433 \cdot \mathrm{E} \cdot \mathrm{A}_{\mathrm{f}}}{\ell_{\mathrm{b}} \cdot \mathrm{h}}\right)$

$$
\begin{align*}
& \text { ただし, } \\
& \lambda=\frac{\ell_{\mathrm{k}}}{\mathrm{i}_{1}} \tag{4.8.1.1}
\end{align*}
$$

$$
\begin{equation*}
\Lambda=\sqrt{\frac{\pi^{2} \cdot \mathrm{E}}{0.6 \cdot \mathrm{~F}^{*}}} \tag{4.8.1.2}
\end{equation*}
$$

$$
\begin{equation*}
v=1.5+\frac{2}{3} \cdot\left(\frac{\lambda}{\Lambda}\right)^{2} \tag{4.8.1.3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}=1.75+1.05 \cdot\left(\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}\right)+0.3 \cdot\left(\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}\right)^{2} \tag{4.8.1.4}
\end{equation*}
$$

4．8．2 ゴム支承の評価

4．6．2項で求めたひずみ及び各応力が下表で定めた許容限界以下であること。

			基準地震動S s による荷重との組合せの場合
$\begin{gathered} \text { ゴム支承 } \\ \text { 本体 } \end{gathered}$	ゴム本体	許容せん断ひずみ γ e a	γ e a
		許容引張応力 $\sigma \quad \mathrm{ta}$	$\sigma \mathrm{ta}$
		許容圧縮応力 $\sigma \mathrm{cra}$	$\sigma_{\mathrm{cra}}=\frac{\mathrm{G}_{\mathrm{e}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}}{\mathrm{f}}$
	内部鋼板	許容引張応力 $1.5 \cdot \mathrm{f}_{\mathrm{t}} \text { * }$	$1.5 \cdot \frac{\mathrm{~F}^{*}}{1.5}$
取付ボルト 及び 基礎ボルト		許容引張応力 $1.5 \cdot \mathrm{ft}_{\mathrm{t}} \text { * }$	$1.5 \cdot \frac{\mathrm{~F}^{*}}{2}$
		許容せん断応力 $1.5 \cdot \mathrm{f} \text { s }$	$1.5 \cdot \frac{\mathrm{~F}^{*}}{1.5 \cdot \sqrt{3}}$
		引張応力とせん断応力を同時に受けるボ ルトの許容引張応力 $1.5 \cdot \mathrm{f}_{\mathrm{t} \mathrm{~s}} \text { * }$	$\begin{aligned} \operatorname{MIN}(1.4 \cdot & 1.5 \cdot \mathrm{f}_{\mathrm{t}}^{*} \\ & \left.-1.6 \cdot \tau_{\mathrm{b} i}, 1.5 \cdot \mathrm{f}_{\mathrm{t}} *\right) \end{aligned}$

ただし，

$$
\begin{align*}
& \mathrm{S}_{1}=\frac{\mathrm{a} \cdot \mathrm{~b}}{2 \cdot(\mathrm{a}+\mathrm{b}) \cdot \mathrm{t}_{\mathrm{e}}} \tag{4.8.2.1}\\
& \mathrm{~S}_{2}=\frac{\mathrm{MIN}(\mathrm{a}, \mathrm{~b})}{\sum \mathrm{t}_{\mathrm{e}}} \cdots \tag{4.8.2.2}
\end{align*}
$$

4．8．3 可動支承の評価
4．6．3 項で求めた発生荷重が下表で定めた許容限界以下であること。

		許容限界（N）
構造部材	水平荷重	2.900×10^{6}
	鉛直荷重（圧縮）	5.600×10^{6}
	鉛直荷重（引張）	1.800×10^{6}

4．8．4 フレームの移動量の評価
4．6．4項で求めたフレームの移動量が下表で定めた許容限界以下であること。

位置	移動量の許容限界（mm）		許容限界の根拠
	X方向（NS方向）	Y方向（EW方向）	
フレーム／北側隔壁接続部 （1）フレームー隔壁 （2）フレームーストッパー	300	250	$\begin{gathered} \text { 部材間の } \\ \text { クリアランス } \end{gathered}$
フレーム／南側隔壁接続部 （3）フレームー隔壁	300	－	
フレーム／側壁接続部 （4）フレームー浸水防止壁	－	350	
フレーム／大梁接続部 （5）フレームー大梁	350	－	

5．評価結果

5.1 設計基準対象施設としての評価結果

竜巻防護ネットの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

設計基準対象施設における評価と条件が同じであるため，記載を省略する。

O 2 （5）VI－2－11－2－2 R 1

【竜巻防護ネットの耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		基準地震動S s		最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度		
竜巻防護ネット	－	海水ポンプ室 （補機ポンプエリア） 0．P．15． $0^{* 1}$（北側）， 0．P．13．3（南側）	0． 795	0． 293	$\begin{gathered} \mathrm{C}_{\mathrm{H}}=1.56(\mathrm{NS}), \\ \mathrm{C}_{\mathrm{H}}=7.34 \text { (EW) } \\ \text { 又は*2 } \end{gathered}$	$\begin{gathered} C v=2.72 \\ \text { 又は } 22 \end{gathered}$	－	40

注記 $* 1$ ：基準床レベルを示す。
＊2：基準地震動S s に基づく設計用床応答曲線から得られる値。

O 2 （5）VI－2－11－2－2 R 1
1.2 機器要目

部材		記号	$\begin{gathered} \ell \\ (\mathrm{mm}) \end{gathered}$	断面寸法（mm）				
		H		B	t_{1}	t_{2}		
大梁			L1－（1），（3）	22100	1300	1580	32	36
フレーム	主桁	G1－（1）	1790	1000	560	19	28	
		G1－（3），（4）	4065	1000	560	19	28	
	横補強材	C3	5400	400	450	19	25	
	ブレース	B1	6759	400	200	8	13	

$\begin{aligned} & \hline \text { B' } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} a \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{b} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t}_{\mathrm{e}} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} t_{p} \\ (m) \\ \hline(0) \end{gathered}$	$\begin{aligned} & \mathrm{h}^{\prime} \\ & (\mathrm{mm}) \end{aligned}$
870	800	800	810	24	4.5	354
n e	$\begin{gathered} \mathrm{A}_{\mathrm{e}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	$v 1$	S 1	S_{2}	
8	6． 400×10^{5}	2． 02×10^{6}	0.3	8． 33	4.17	

ω_{0}^{ω}

部 材	A_{bi} $\left(\mathrm{mm}^{2}\right)$	$\mathrm{A}_{\mathrm{b} \mathrm{e}_{\mathrm{i}}}$ $\left(\mathrm{mm}^{2}\right)$	n_{bi}
取付ボルト $(\mathrm{i}=1)$	706.9	561	16
基礎ボルト $(\mathrm{i}=2)$	855.3	-	16

大梁

O 2 （5）VI－2－11－2－2 R 1

注記＊：呼び径は 16 mm 以上であるが，保守的に強度区分 8.8 の 16 mm 以下の小さい値を選定。

O 2 （5）VI－2－11－2－2 R 1
1.3 計算数値

部材		記号	基漼地震動S s			
		N	$\mathrm{Q}_{\mathrm{y}}{ }^{*}$	$\mathrm{Q}_{2}{ }^{*}$		
大梁			L1－（1）	8． 169×10^{5}	5． 102×10^{5}	2． 240×10^{6}
		L1－3）	2． 977×10^{5}	2． 395×10^{5}	1． 030×10^{6}	
フレーム	主桁	G1－（1）	4． 064×10^{5}	3． 178×10^{5}	5． 204×10^{5}	
		G1－3）	5． 666×10^{5}	1． 586×10^{4}	1． 839×10^{5}	
		G1－（4）	6． 020×10^{5}	6． 404×10^{4}	4． 182×10^{5}	
	横補強材	C3	8． 498×10^{4}	8． 405×10^{4}	930.5	
	ブレース	B1	1． 414×10^{5}	0	0	

注記＊：添字y，z は要素に与えられた座標軸。

O 2 （5）VI－2－11－2－2 R 1

部材		記号	基漼地震動S s		
		M y＊	Mz＊		
大梁			L1－11	4． 424×10^{9}	1． 021×10^{9}
		L1－3）	1． 309×10^{10}	2． 889×10^{9}	
フレーム	主桁	G1－1	9． 195×10^{8}	3． 398×10^{8}	
		G1－3）	2． 748×10^{9}	1． 363×10^{7}	
		G1－4）	3． 189×10^{9}	9． 767×10^{7}	
	横補強材	C3	2． 001×10^{6}	2． 290×10^{8}	
	ブレース	B1	0	0	

注記＊：添字y，zは要素に与えられた座標軸。

O 2 （5）VI－2－11－2－2 R 1

1.3 .3 ゴム支承の移動量	（単位： mm ）
部材	基準地震動 S s
	$\Delta \mathrm{L}$
大梁ゴム支承	209.3
フレームゴム支承	180.5

1.3 .4 ゴム支承の荷重		
部材	$\mathrm{R}_{\mathrm{L}}{ }^{*}$ 位： N ）	
	基準地震動 S s	
大梁ゴム支承	1.453×10^{6}	$\mathrm{R}_{\mathrm{U}}{ }^{*}$
フレームゴム支承	5.613×10^{5}	-2.773×10^{5}

注記＊：添字Lは下向き，添え字Uは上向きを示す。

1．3．5 取付ボルトの荷重		（単位：N）
部材	基準地震動S s	
	$\mathrm{R}_{\mathrm{h}}{ }^{*}$	Re＊
大梁ゴム支承	6． 969×10^{5}	1． 453×10^{6}
フレームゴム支承	6． 010×10^{5}	5． 613×10^{5}

注記 $*$ ：添字 h は水平方向，添え字 e は鉛直方向を示す。

部材	基準地震動 S S		
	F_{x}＊	F_{y}＊	F_{z}＊
大梁ゴム支承	3． 275×10^{5}	6． 119×10^{5}	-2.774×10^{5}
フレームゴム支承	4． 251×10^{5}	4． 148×10^{5}	-2.099×10^{5}

注記 $*$ ：添字 x, y, z は要素に与えられた座標軸。

O 2 （5）VI－2－11－2－2 R 1

1．3．7 基礎ボルトのモーメント		
部材	基準地 $\mathrm{N} \cdot \mathrm{N} \cdot \mathrm{mm}$ 震動 S s	
	$\mathrm{M}_{\mathrm{x}}{ }^{*}$	$\mathrm{M} \mathrm{y}^{*}$
大梁ゴム支承	2.268×10^{8}	1.213×10^{8}
フレームゴム支承	1.621×10^{8}	1.661×10^{8}

注記＊：添字x，yは要素に与えられた座標軸。

O 2 (5) VI-2-11-2-2 R 1
1.4 結論

O 2 （5）VI－2－11－2－2 R 1

1．4．2ゴム支承のひずみ （単位：一）

1．4．2．2 ゴム支承のひずみ		
部仏	基準地震動 S s	
	せん断ひずみ	許容せん断ひずみ
大梁ゴム支承	109	250
フレームゴム支承	94	250

O 2 （5）VI－2－11－2－2 R 1

1．4．2．3 ゴム文承の応力			（単位： MPa ）		
部材		応力	基準地震動S s		
		算出応力	許容応力		
大梁ゴム支承	本体		圧縮	4	23
		引張	0.6	2.0	
	内部鋼板	引張	43	280	
フレームゴム支承	本体	圧縮	2	23	
		引張	0.5	2.0	
	内部鋼板	引張	22	280	

\pm	1．4．2．4 取付ボル			（単位： MPa ）
	部材	応力	基準地震動S s	
			算出応力	許容応力
	大梁ゴム支承	引張	136	420
		せん断	62	323
		組合せ	136	420
	フレームゴム支承	引張	117	420
		せん断	54	323
		組合せ	117	420

O 2 （5）VI－2－11－2－2 R 1

部材	応力	基準地震動S s	
		算出応力	許容応力
大梁ゴム支承	引張	82	257
	せん断	51	198
	組合せ	82	257
フレームゴム支承	引張	74	257
	せん断	44	198
	組合せ	74	257

＊	1．4．2．6 可動支承の荷重		（単位：N）
	荷重	基淮地震動S s	
		算出荷重	許容荷重
	水平	3． 150×10^{5}	2． 900×10^{6}
	鉛直（圧絔）	6． 880×10^{5}	5． 600×10^{6}
	鉛直（引張）	2． 840×10^{5}	1． 800×10^{6}

1．4．2．7 フレームの移動量				
	（単位： mm ）			
	基準地震動 S s			
フレーム／北側隔壁	移動方向	算出移動量	許容移動量	
	X	128	300	
フレーム／南側隔壁	Y	125	250	
フレーム／側壁接続部	Y	129	300	
フレーム／大梁接続部	X	205	350	

1.5 その他の機器要目
（1）節点データ

節点番号	節点座標（mm）			節点番号	節点座標（mm）		
	X	Y	Z		X	Y	Z
1	0	0	0	45	13985	12700	0
2	1790	0	0	46	18050	12700	0
3	5855	0	0	47	19700	12700	0
4	9920	0	0	48	21900	12700	0
5	13985	0	0	51	0	18100	0
6	18050	0	0	52	1790	18100	0
7	19700	0	0	53	5855	18100	0
8	21900	0	0	54	9920	18100	0
11	0	4300	0	55	13985	18100	0
12	1790	4300	0	56	18050	18100	0
13	5855	4300	0	57	19700	18100	0
14	9920	4300	0	58	21900	18100	0
15	13985	4300	0	61	0	19600	0
16	18050	4300	0	62	1790	19600	0
17	19700	4300	0	63	5855	19600	0
18	21900	4300	0	64	9920	19600	0
21	0	5800	0	65	13985	19600	0
22	1790	5800	0	66	18050	19600	0
23	5855	5800	0	67	19700	19600	0
24	9920	5800	0	68	21900	19600	0
25	13985	5800	0	71	0	23900	0
26	18050	5800	0	72	1790	23900	0
27	19700	5800	0	73	5855	23900	0
28	21900	5800	0	74	9920	23900	0
31	0	11200	0	75	13985	23900	0
32	1790	11200	0	76	18050	23900	0
33	5855	11200	0	77	19700	23900	0
34	9920	11200	0	78	21900	23900	0
35	13985	11200	0	101	19700	0	－1550
36	18050	11200	0	102	19700	900	－1550
37	19700	11200	0	103	19700	2950	－1550
38	21900	11200	0	104	19700	4300	－1550
41	0	12700	0	105	19700	5800	－1550
42	1790	12700	0	106	19700	8950	－1550
43	5855	12700	0	107	19700	11200	－1550
44	9920	12700	0	108	19700	11950	－1550

	節点番号	節点座標（mm）			節点番号	節点座標（mm）		
		X	Y	Z		X	Y	Z
	109	19700	12700	－1550	236	16017.5	11200	0
	110	19700	14950	－1550	237	20800	11200	0
	111	19700	18100	－1550	241	3822.5	12700	0
	112	19700	19600	－1550	242	6960	12700	0
	113	19700	20950	－1550	243	7887.5	12700	0
	114	19700	23000	－1550	244	11952.5	12700	0
	115	19700	23900	－1550	245	12880	12700	0
	121	18950	900	－1550	246	16017.5	12700	0
	122	20450	900	－1550	247	20800	12700	0
	131	18950	23000	－1550	251	3822.5	18100	0
	132	20450	23000	－1550	252	6960	18100	0
	201	3822.5	0	0	253	7887.5	18100	0
	202	6960	0	0	254	11952.5	18100	0
\checkmark	203	7887.5	0	0	255	12880	18100	0
\square	204	11952.5	0	0	256	16017.5	18100	0
$\begin{aligned} & \underset{N}{N} \\ & \uparrow \end{aligned}$	205	12880	0	0	257	20800	18100	0
$\stackrel{\square}{\square}$	206	16017.5	0	0	261	3822.5	19600	0
$\stackrel{N}{\stackrel{1}{1}}$	207	20800	0	0	262	6960	19600	0
1	211	3822.5	4300	0	263	7887.5	19600	0
（1）	212	6960	4300	0	264	11952.5	19600	0
\sim	213	7887.5	4300	0	265	12880	19600	0
	214	11952.5	4300	0	266	16017.5	19600	0
	215	12880	4300	0	267	20800	19600	0
	216	16017.5	4300	0	271	3822.5	23900	0
	217	20800	4300	0	272	6960	23900	0
	221	3822.5	5800	0	273	7887.5	23900	0
	222	6960	5800	0	274	11952.5	23900	0
	223	7887.5	5800	0	275	12880	23900	0
	224	11952.5	5800	0	276	16017.5	23900	0
	225	12880	5800	0	277	20800	23900	0
	226	16017.5	5800	0	1001	0	0	0
	227	20800	5800	0	1011	0	4300	0
	231	3822.5	11200	0	1021	0	5800	0
	232	6960	11200	0	1031	0	11200	0
	233	7887.5	11200	0	1041	0	12700	0
	234	11952.5	11200	0	1051	0	18100	0
	235	12880	11200	0	1061	0	19600	0

節点番号	節点座標（mm）		
	X	Y	Z
1071	0	23900	0
1121	18950	900	-1550
1122	20450	900	-1550
1131	18950	23000	-1550
1132	20450	23000	-1550

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料番号	断面特性番号 （要素番号）	要素両端の節点番号	材料番号
1	101， 102	1	130	15， 216	5
2	102， 103	1	131	216， 16	5
3	103， 104	2	132	16， 17	5
4	104， 105	3	133	17， 217	5
5	105， 106	4	134	217， 18	7
6	106， 107	4	141	21， 22	5
7	107， 108	4	142	22， 221	5
8	108， 109	4	143	221， 23	5
9	109， 110	4	144	23， 222	6
10	110， 111	4	145	222， 223	6
11	111， 112	3	146	223， 24	6
12	112， 113	2	147	24， 224	6
13	113， 114	1	148	224， 225	6
14	114， 115	1	149	225， 25	6
101	1， 2	5	150	25， 226	5
102	2， 201	5	151	226， 26	5
103	201， 3	5	152	26， 27	5
104	3， 202	6	153	27， 227	5
105	202， 203	6	154	227， 28	7
106	203， 4	6	161	31， 32	5
107	4， 204	6	162	32， 231	5
108	204， 205	6	163	231， 33	5
109	205， 5	6	164	33， 232	6
110	5， 206	5	165	232， 233	6
111	206， 6	5	166	233， 34	6
112	6， 7	5	167	34， 234	6
113	7， 207	5	168	234， 235	6
114	207， 8	7	169	235， 35	6
121	11， 12	5	170	35， 236	5
122	12， 211	5	171	236， 36	5
123	211， 13	5	172	36， 37	5
124	13， 212	6	173	37， 237	5
125	212， 213	6	174	237， 38	7
126	213， 14	6	181	41， 42	5
127	14， 214	6	182	42， 241	5
128	214， 215	6	183	241， 43	5
129	215， 15	6	184	43， 242	6

	断面特性番号 （要素番号）	要素両端の節点番号	材料番号	断面特性番号 （要素番号）	要素両端の節点番号	材料番号
	185	242， 243	6	234	267， 68	7
	186	243， 44	6	241	71， 72	5
	187	44， 244	6	242	72， 271	5
	188	244， 245	6	243	271， 73	5
	189	245， 45	6	244	73， 272	6
	190	45， 246	5	245	272， 273	6
	191	246， 46	5	246	273， 74	6
	192	46， 47	5	247	74， 274	6
	193	47， 247	5	248	274， 275	6
	194	247， 48	7	249	275， 75	6
	201	51， 52	5	250	75， 276	5
	202	52， 251	5	251	276， 76	5
	203	251， 53	5	252	76， 77	5
	204	53， 252	6	253	77， 277	5
\sim	205	252， 253	6	254	277， 78	7
\sim	206	253， 54	6	301	1， 11	8
$\stackrel{1}{1}$	207	54， 254	6	302	2， 12	9
$\stackrel{1}{1}$	208	254， 255	6	303	3， 13	9
$>$	209	255， 55	6	304	4， 14	9
（1）	210	55， 256	5	305	5， 15	9
	211	256， 56	5	306	6， 16	9
\bigcirc	212	56， 57	5	307	7， 17	8
	213	57， 257	5	311	21， 31	8
	214	257， 58	7	312	22， 32	9
	221	61， 62	5	313	23， 33	9
	222	62， 261	5	314	24， 34	9
	223	261， 63	5	315	25， 35	9
	224	63， 262	6	316	26， 36	9
	225	262， 263	6	317	27， 37	8
	226	263， 64	6	321	41， 51	8
	227	64， 264	6	322	42， 52	9
	228	264， 265	6	323	43， 53	9
	229	265， 65	6	324	44， 54	9
	230	65， 266	5	325	45， 55	9
	231	266， 66	5	326	46， 56	9
	232	66， 67	5	327	47， 57	8
	233	67， 267	5	331	61， 71	8

	断面特性番号 （要素番号）	要素両端の節点番号	材料番号
	332	62， 72	9
	333	63， 73	9
	334	64， 74	9
	335	65， 75	9
	336	66， 76	9
	337	67， 77	8
	401	121， 102	31
	402	102， 122	31
	411	131， 114	31
	412	114， 132	31
	501	2， 13	10
	502	4， 13	11
	503	4， 15	11
	504	6， 15	10
\square	511	22， 33	10
\sim	512	24， 33	11
\uparrow	513	24， 35	11
1	514	26， 35	10
，	521	43， 52	10
（1）	522	43， 54	11
	523	45， 54	11
\bigcirc	524	45， 56	10
	531	63， 72	10
	532	63， 74	11
	533	65， 74	11
	534	65， 76	10

（3）ばね結合部の指定

ばねの 両端の 節点番号	X軸方向の ばね定数 （kN／mm）	Y軸方向の ばね定数 （kN／mm）	Z軸方向の ばね定数 （ $\mathrm{kN} / \mathrm{mm}$ ）	X軸周りの回転剛性 （ $\mathrm{kN} \cdot \mathrm{mm} / \mathrm{rad}$ ）	$\begin{gathered} \mathrm{Y} \text { 軸周りの } \\ \text { 回転剛性 } \\ (\mathrm{kN} \cdot \mathrm{~mm} / \mathrm{rad}) \\ \hline \end{gathered}$	Z軸周りの 回転剛性 （ $\mathrm{kN} \cdot \mathrm{mm} / \mathrm{rad}$ ）
7, 101 17, 104 27, 105 37, 107 47, 109 57, 111 67, 112 77, 115	0	1． 00×10^{6}	1． 00×10^{6}	0	0	0
$\begin{array}{cc} \hline 1, & 1001 \\ 11, & 1011 \\ 21, & 1021 \\ 31, & 1031 \\ 41, & 1041 \\ 51, & 1051 \\ 61, & 1061 \\ 71, & 1071 \\ \hline \end{array}$	3.33	3． 33	972	0	0	0
$\begin{array}{ll} 121, & 1121 \\ 122, & 1122 \\ 131, & 1131 \\ 132, & 1132 \end{array}$	3.33	3.33	972	0	0	0

（4）節点の質量

節点番号	質量（t）	節点番号	質量（t）	節点番号	質量（t）
1	3.13	35	5.58	71	3． 13
2	5.08	36	4． 36	72	5.08
3	7.08	37	6． 22	73	7.08
4	7.08	38	2.08	74	7.08
5	7.08	41	2． 89	75	7.08
6	5． 26	42	4． 10	76	5． 26
7	6.56	43	5.58	77	6． 56
8	2． 29	44	5.58	78	2． 29
11	2． 78	45	5． 58	101	1． 22
12	3.97	46	4． 36	102	3.85
13	5． 55	47	6． 22	103	4． 45
14	5． 55	48	2． 08	104	3.76
15	5.55	51	2． 89	105	6． 12
16	4． 17	52	4． 10	106	7.06
17	5． 84	53	5.58	107	3.96
18	1． 87	54	5． 58	108	1.96
21	2． 89	55	5.58	109	3.96
22	4． 10	56	4． 36	110	7.06
23	5． 58	57	6． 22	111	6． 12
24	5． 58	58	2.08	112	3． 76
25	5.58	61	2． 78	113	4． 45
26	4． 36	62	3． 97	114	3.85
27	6． 22	63	5． 55	115	1． 22
28	2.08	64	5.55	121	1． 53
31	2． 89	65	5.55	122	1.53
32	4． 10	66	4． 17	131	1． 53
33	5.58	67	5.84	132	1.53
34	5.58	68	1． 87		

（5）材料物性値

材料番号	A_{s} $\left(\mathrm{mm}^{2}\right)$	I_{z} $\left(\mathrm{mm}^{4}\right)$	I_{y} $\left(\mathrm{mm}^{4}\right)$	I_{x} $\left(\mathrm{mm}^{4}\right)$	$\mathrm{A}_{\mathrm{s}} \mathrm{y}$ $\left(\mathrm{mm}^{2}\right)$	A_{sz} $\left(\mathrm{mm}^{2}\right)$
1	1.924×10^{5}	6.788×10^{10}	5.533×10^{10}	8.866×10^{10}	1.138×10^{5}	7.859×10^{4}
2	1.924×10^{5}	6.788×10^{10}	5.533×10^{10}	8.866×10^{10}	1.138×10^{5}	7.859×10^{4}
3	1.924×10^{5}	6.788×10^{10}	5.533×10^{10}	8.866×10^{10}	1.138×10^{5}	7.859×10^{4}
4	1.924×10^{5}	6.788×10^{10}	5.533×10^{10}	8.866×10^{10}	1.138×10^{5}	7.859×10^{4}
5	4.930×10^{4}	8.201×10^{8}	8.741×10^{9}	1.035×10^{7}	3.136×10^{4}	1.794×10^{4}
6	4.930×10^{4}	8.201×10^{8}	8.741×10^{9}	1.035×10^{7}	3.136×10^{4}	1.794×10^{4}
7	4.930×10^{4}	8.201×10^{8}	8.741×10^{9}	1.035×10^{7}	3.136×10^{4}	1.794×10^{4}
8	2.915×10^{4}	3.799×10^{8}	8.601×10^{8}	5.488×10^{6}	2.250×10^{4}	6.650×10^{3}
9	2.436×10^{4}	2.349×10^{8}	7.008×10^{8}	3.653×10^{6}	1.760×10^{4}	6.764×10^{3}
10	1.611×10^{4}	-	-	-	-	-
11	8.337×10^{3}	-	-	-		-
31	1.000×10^{7}	1.000×10^{12}	1.000×10^{12}	1.000×10^{12}	1.000×10^{7}	1.000×10^{7}

A_{s} ：部材の断面積
I_{z} ：部材 z 軸周りの断面二次モーメント
I_{y} ：部材 y 軸周りの断面二次モーメント
I_{x} ：部材のねじり剛性
$\mathrm{A}_{\mathrm{s} \text { y }}$ ：部材 y 軸方向のせん断断面積
$\mathrm{A}_{\mathrm{s} z}$ ：部材 z 軸方向のせん断断面積

