女川原子力発電所第2号機 工事計画審査資料	
資料番号	02－補－E－01－0220－1＿改6
提出年月日	2021年10月15日

補足－220－1 発電用原子炉施設の溢水防護に関する補足説明資料

目 次

1．没水影響評価

1.1 機能喪失高さについて
1.2 防護すべき設備のうち溢水影響評価対象外とする設備について

2．没水影響評価について
2.1 溢水伝播経路概念図
2.2 溢水伝播経路モデル図
2.3 想定破損により生じる溢水に対する没水影響評価について
2.4 想定破損により生じる溢水に対する没水影響評価結果（溢水防護対象設備）
2.5 想定破損により生じる溢水に対する没水影響評価結果（重大事故等対処設備）
2.6 消火栓からの放水による没水影響評価結果（溢水防護対象設備）
2.7 消火栓からの放水による没水影響評価結果（重大事故等対処設備）
2.8 地震に起因する溢水による没水影響評価結果（溢水防護対象設備）
2.9 地震に起因する溢水による没水影響評価結果（重大事故等対処設備）

3．被水影響評価について
3.1 想定破損により生じる溢水に対する被水影響評価について
3.2 想定破損により生じる溢水に対する被水影響評価結果（溢水防護対象設備）
3.3 想定破損により生じる溢水に対する被水影響評価結果（重大事故等対処設備）
3.4 地震に起因する溢水による被水影響評価結果（溢水防護対象設備）
3.5 地震に起因する溢水による被水影響評価結果（重大事故等対処設備）

4．蒸気影響評価について
4.1 想定破損により生じる溢水に対する蒸気影響評価結果（溢水防護対象設備）
4.2 想定破損により生じる溢水に対する蒸気影響評価結果（重大事故等対処設備）
4.3 地震に伴い発生する溢水による蒸気影響評価結果（溢水防護対象設備）

4． 4 地震に伴い発生する溢水による蒸気影響評価結果（重大事故等対処設備）
5．想定破損による溢水影響評価について
5.1 想定破損により生じる溢水影響評価における溢水源リスト
5.2 高エネルギー及び低エネルギー配管の分類について
5.3 高エネルギー及び低エネルギー配管の応力評価について

5．4 想定破損における減肉の考慮について
6．消火水の放水による溢水の影響評価について
6.1 消火水の放水による溢水に対する評価の概要について
6.2 消火水の放水による溢水に対する評価例

7．地震起因による溢水影響評価について

7.1 地震に起因する溢水源について

7.2 耐震 B，C クラス機器の耐震工事の内容

7.3 溢水防護に係わる設備の耐震評価対象設備•部位の代表性及び網羅性について
7.4 使用済燃料プール等のスロッシングによる溢水量の算出
7.5 溢水源としない耐震 B，C クラス機器の耐震評価の内容
7.6 溢水源としない耐震 B，C クラス配管の耐震評価の考え方
7.7 水平 2 方向及び鉛直方向地震力の組合せによる影響評価に関する補足説明

8．その他の溢水による溢水影響評価について
8.1 タービン建屋内で発生する溢水の溢水影響評価について
8.2 屋外タンクからの溢水影響評価について
8.3 地下水の溢水による影響について
8.4 その他漏えい事象に対する確認について

9．全般
9.1 溢水防護区画毎における機能喪失高さについて
9.2 ケーブルの被水影響評価について
9.3 没水評価における床勾配について
9.4 貫通部止水処置に関する健全性について
9.5 蒸気防護カバーの性能試験について
9.6 放射性物質を含む液体の管理区域外漏えい防止評価について
9.7 床ドレンラインからの排水に期待する区画について
9.8 流下開口を考慮した没水高さについて
9.9 鉄筋コンクリート壁の水密性について

9． 10 経年劣化事象と保全内容
9.11 水密扉の開閉運用について

9． 12 床ドレンラインの応力評価について
9.13 循環水系隔離システムの内，復水器水室出入口弁への地震時復水器の影響について
9.14 浸水防護施設の止水性について

9． 15 水密扉の設計に関する補足説明
9． 16 堰の設計に関する補足説明
9.17 逆流防止装置を構成する各部材の評価及び機能維持の確認方法について
9.18 内部溢水影響評価に用いる各項目の保守性と有効数字の処理について

9． 19 現場操作の実施可能性について
9.20 ほう酸水漏えい等による影響について

9．21 漏えい系統の検知時間及び溢水量評価について
9． 22 溢水発生後の復旧について
9． 23 内部溢水影響評価における判定表
9.24 建屋地下外壁の地下水に対する健全性について

別紙（1）工認添付資料と設置許可まとめ資料との関係【溢水防護に関する施設】
別紙（2）添付VI－1－1－8 の各資料と工認補足説明資料との関係【溢水防護に関する施設】

（I）欮活

添付書類	発電用原子炉施設の溢水防護に関する説明書	DB			
$\mathrm{VI}-1-1-8$	第 9 条	溢水による損傷の防止等	資料そのものを概ね引用		

工認添付書類VI－1－1－8 の各資料と工認補足説明資料との関係【溢水防護に関する施設】

工認添付書類		工認補足説明資料
VI－1－1－8－1	溢水等による損傷防止の基本方針	－
VI－1－1－8－2	防護すべき設備の設定	1.1 機能喪失高さについて
		1.2 防護すべき設備のらち溢水影響評価対象外とする設備について
		9.1 溢水防護区画毎における機能喪失高さに ついて
VI－1－1－8－3	溢水評価条件の設定	2.1 溢水伝播経路概念図
		2.2 溢水伝播経路モデル図
		3.1 想定破損により生じる溢水に対する被水影響評価について
		5.1 想定破損により生じる溢水影響評価にお ける溢水源リスト
		5.2 高エネルギー及び低エネルギー配管の分類について
		5.3 高エネルギー及び低エネルギー配管の応力評価について
		5.4 想定破損における減肉の考慮について
		6.1 消火水の放水による溢水に対する評価の概要について
		7.1 地震に起因する溢水源について
		7.2 耐震B，C クラス機器の耐震工事の内容
		7.3 溢水防護に係わる設備の耐震評価対象設備•部位の代表性及び網羅性について
		7.4 使用済燃料プール等のスロッシングによ る溢水量の算出
		7.5 溢水源としない耐震 B，C クラス機器の耐震評価の内容
		7.6 溢水源としない耐震 B，C クラス配管の耐震評価の考え方
		7.7 水平 2 方向及び鉛直方向地震力の組合せ による影響評価に関する補足説明
		8.4 その他漏えい事象に対する確認について
		9.8 流下開口を考慮した没水高さについて

工認添付書類VI－1－1－8 の各資料と工認補足説明資料との関係【溢水防護に関する施設】

工認添付書類		工認補足説明資料
VI－1－1－8－4	溢水影響に関する評価	2.3 想定破損により生じる溢水に対する没水影響評価について
		2.4 想定破損により生じる溢水に対する没水影響評価結果（溢水防護対象設備）
		2.5 想定破損により生じる溢水に対する没水影響評価結果（重大事故等対処設備）
		2.6 消火栓からの放水による没水影響評価結 果（溢水防護対象設備）
		2.7 消火检からの放水による没水影響評価結 果（重大事故等対処設備）
		2.8 地震に起因する溢水による没水影響評価結果（溢水防護対象設備）
		2.9 地震に起因する溢水による没水影響評価結果（重大事故等対処設備）
		3.2 想定破損により生じる溢水に対する被水影響評価結果（溢水防護対象設備）
		3.3 想定破損により生じる溢水に対する被水影響評価結果（重大事故等対処設備）
		3.4 地震に起因する溢水による被水影響評価結果（溢水防護対象設備）
		3.5 地震に起因する溢水による被水影響評価結果（重大事故等対処設備）
		4.1 想定破損により生じる溢水に対する蒸気影響評価結果（溢水防護対象設備）
		4.2 想定破損により生じる溢水に対する蒸気影響評価結果（重大事故等対処設備）
		4.3 地震に伴い発生する溢水による蒸気影響評価結果（溢水防護対象設備）
		4.4 地震に伴い発生する溢水による蒸気影響評価結果（重大事故等対処設備）
		6．2 消火水の放水による溢水に対する評価例
		8.1 タービン建屋内で発生する溢水の溢水影響評価について
		8.2 屋外タンクからの溢水影響評価について

工認添付書類VI－1－1－8 の各資料と工認補足説明資料との関係【溢水防護に関する施設】

工認添付書類		工認補足説明資料
$\mathrm{VI}-1-1-8-4$	溢水影響に関する評価	8．3 地下水の溢水による影響について
		9.2 ケーブルの被水影響評価について
		9.3 没水評価における床勾配について
		9.6 放射性物質を含む液体の管理区域外漏え い防止評価について
		9.9 鉄筋コンクリート壁の水密性について
		9．18 内部溢水影響評価に用いる各項目の保守性と有効数字の処理について
		9．19 現場操作の実施可能性について
		9.20 ほう酸水漏えい等による影響について
		9.21 漏えい系統の検知時間及び溢水量評価 について
		9.22 溢水発生後の復旧について
		9.23 内部溢水影響評価における判定表
		9.24 建屋地下外壁の地下水に対する健全性 について
VI－1－1－8－5	溢水防護施設の詳細設計	9.4 貫通部止水処置に関する健全性について
		9.5 蒸気防護カバーの性能試験について
		9.7 床ドレンラインからの排水に期待する区画について
		9．10 経年劣化事象と保全内容
		9.11 水密扉の開閉運用について
		9．12 床ドレンラインの応力評価について
		9.13 循環水系隔離システムの内，復水器水室出入口弁への地震時復水器の影響につ いて
		9.14 浸水防護施設の止水性について
		9.15 水密扉の設計に関する補足説明
		9．16 堰の設計に関する補足説明
		9.17 逆流防止装置を構成する各部材の評価及び機能維持の確認方法について

7． 2 耐震 B，Cクラス機器の耐震工事の内容

1．概要
「原子力発電所の内部溢水影響評価ガイド」では，耐震 B，Cクラス機器であって も基準地震動 S s による地震力に対して耐震性が確保される機器については，漏水を考慮しないことができるとされている。

本資料では，地震時に溢水源となり得る耐震 B ，Cクラス機器について，実施する耐震工事の内容を示す。

機器の耐震評価においては，耐震工事後の状態で，基準地震動 S s に対する応力発生値と評価基準を比較することにより行い，評価基準値は，J E A G 等の規格基準で規定されている値を用いる。

耐震工事を実施する機器を表7．2－1に示す。

表 7．2－1 耐震B，Cクラス機器のうち耐震工事を実施する機器

No．	機器名称	工事概要
1	CUW 再生熱交換器	サポートの追加
2	HNCW サージタンク	支持脚への補強部材追加
3	R／A 給気冷却加熱コイル	ケーシング枠への補強部材追加
4	燃料交換床給気加熱コイル	ケーシング枠への補強部材追加
5	燃料交換機制御室空調機	ケーシングへの補強部材追加
6	原子炉補機（HPCS）室給気加熱コイ ル	ケーシング枠への補強部材追加
7	ほう酸水注入系テストタンク	支持脚への補強部材追加
8	タービン補機冷却海水ポンプ	基礎ボルト，ポンプ取付ボルト及び電動機台取付ボルトの取替
9	循環水ポンプ（A）	ポンプ取付ボルト及び吐出エルボ取付 ボルトの取替
10	循環水ポンプ（B）	ポンプ取付ボルト，吐出エルボ取付ボ ルト，ベース架台取付ボルト及び吐出配管ボルトの取替
11	配管	配管へのサポート追加，サポートへの補強部材追加

2．工事内容
2． 1 CUW 再生熱交換器
CUW 再生熱交換器は，熱交換器室耐震壁から架台にサポートを追設することに より耐震性の向上を図る。工事内容を図7．2－1に示し，機器仕様を表7．2－2 に，応力評価結果を表 7．2－3に示す。なお，表7．2－3においては，発生応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。

図7．2－1 CUW 再生熱交換器の工事内容

枠囲みの内容は商業機密の観点から公開できません。

表 7．2－2 機器仕様

設備名称	最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	評価部位	使用材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）
CUW 再生熱交換器	10． 2	302	胴板	SGV480	302
			脚	SS400	302
			脚締付ボルト	SS400	50
			架台	STKR400	50
			基䂾ボルト	SS400	50

表 7．2－3 応力評価結果

設備名称	評価部材	応力	発生値 (MPa)	評価基準値 (MPa)
CUW 再生熱交換器	胴板	一次＋二次	252	396

2．2 HNCW サージタンク
HNCW サージタンクは，支持脚に補強部材を追設することにより耐震性の向上 を図る。工事内容を図7．2－2 に示し，機器仕様を表7．2－4に，応力評価結果を表 7．2－5 に示す。なお，表 7．2－5においては，発生応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。

図 7．2－2 HNCW サージタンクの工事内容

枠囲みの内容は商業機密の観点から公開できません。

表 7．2－4 機器仕様

設備名称	最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	評価部材	使用材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$
$\begin{gathered} \text { HNCW } \\ \text { サージ } \\ \text { タンク } \end{gathered}$	静水頭	66	胴板	SS400	66
			脚	SS400	66
			基礎 ボルト	SS400	50

表 7．2－5 応力評価結果

設備名称	評価部材	応力	発生値 (MPa)	評価基準値 (MPa)
HNCW サージタ ンク	基礎ボルト	引張	127	207

$2.3 \mathrm{R} / \mathrm{A}$ 給気冷却加熱コイル
R／A 給気冷却加熱コイルは，ケーシング枠に補強部材を追設することにより耐震性の向上を図る。工事内容を図 7．2－3に示し，機器仕様を表 7．2－6に，応力評価結果を表 7．2－7に示す。なお，表 7．2－7においては，発生応力と許容応力を踏 まえ，評価上厳しい箇所の結果について記載する。

図 7．2－3 R／A 給気冷却加熱コイルの工事内容

枠囲みの内容は商業機密の観点から公開できません。

表 7．2－6 機器仕様

設備名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	使用材料
		85	取付ボルト
R／A 給気冷却 加熱コイル	1.27	85400	

表 7．2－7 応力評価結果

設備名称	評価部材	応力	発生値 (MPa)	評価基準値 (MPa)
R / A 給気冷却 加熱コイル	取付ボルト	引張	18	179

2． 4 燃料交換床給気加熱コイル
燃料交換床給気加熱コイルは，ケーシング枠に補強部材を追設することにより耐震性の向上を図る。工事内容を図7．2－4に示し，機器仕様を表7．2－8 に，応力評価結果を表 7．2－9に示す。なお，表 7．2－9においては，発生応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。

図 7．2－4 燃料交換床給気加熱コイルの工事内容

枠囲みの内容は商業機密の観点から公開できません。

表 7．2－8 機器仕様

設備名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	使用材料
		85	取付ボルト
然料交換床給気 加熱コイル	1.18	85400	

表 7．2－9 応力評価結果

設備名称	評価部材	応力	発生値 (MPa)	評価基準値 (MPa)
然料交換床給気 加熱コイル	取付ボルト	せん断	7	138

2.5 燃料交換機制御室空調機

燃料交換機制御室空調機は，ケーシングに補強部材を追設することにより耐震性の向上を図る。工事内容を図 7．2－5 に示し，機器仕様を表7．2－10に，応力評価結果を表 7．2－11に示す。なお，表 7．2－11においては，発生応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。
\square

図 7．2－5 燃料交換機制御室空調機の工事内容

枠囲みの内容は商業機密の観点から公開できません。

表 7．2－10 機器仕様

設備名称	最高使用圧力 (MPa)	最高使用温度＊ $\left({ }^{\circ} \mathrm{C}\right)$	使用材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$
			基礎ボルト	
燃料交換機 制御室空調機	-	40	SS 400	50

注記＊：最高使用温度 $40^{\circ} \mathrm{C}$ より，周囲環境温度 $50^{\circ} \mathrm{C}$ の方が温度が高いことから，保守的な評価となるよう周囲環境温度にて評価した。

表 7．2－11 応力評価結果

設備名称	評価部材	応力	発生値 (MPa)	評価基準値 (MPa)
燃料交換機 制御室空調機	基礎ボルト	引張	139	207

2.6 原子炉補機（HPCS）室給気加熱コイル

原子炉補機（HPCS）室給気加熱コイルは，ケーシング枠に補強部材を追設する ことにより耐震性の向上を図る。工事内容を図7．2－6に示し，機器仕様を表7．2－ 12 に，応力評価結果を表 7．2－13に示す。なお，表7．2－13においては，発生応力 と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。

図 7．2－6 原子炉補機（HPCS）室給気加熱コイルの工事内容

枠囲みの内容は商業機密の観点から公開できません。

表 7．2－12 機器仕様

設備名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	使用材料
		85	取付ボルト
原子炉補機（HPCS） 室給気加熱コイル	1.18	85400	

表 7．2－13 応力評価結果

設備名称	評価部材	応力	発生値 (MPa)	評価基準値 (MPa)
原子炉補機 (HPCS) 室給気 加熱コイル	取付ボルト	引張	11	179

2.7 ほう酸水注入系テストタンク

ほう酸水注入系テストタンクは，支持脚へ補強部材を追加することにより耐震性の向上を図る。工事内容を図 7．2－7 に示し，機器仕様を表7．2－14に，応力評価結果を表表7．2－15に示す。なお，表7．2－15においては，発生応力と許容応力 を踏まえ，評価上厳しい箇所の結果について記載する。
\square

図 7．2－7 ほう酸水注入系テストタンクの工事内容

[^0]表 7．2－14 機器仕様

設備名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	評価部材	使用材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$
ほう酸水 注入系テ ストタン スト ク	静水頭	66	胴板	SUS304	66
		脚	SUS304	50	
		基礎 ボルト	SS400	50	

表 7．2－15 応力評価結果

設備名称	評価部材	応力	発生値 (MPa)	評価基準値 (MPa)
ほら酸水注入系 テストタンク	脚	組合せ	90	205

2.8 タービン補機冷却海水ポンプ

タービン補機冷却海水ポンプは，評価対象のボルトをより高強度のボルトに取 り替えることにより耐震性の向上を図る。なお，タービン補機泠却海水ポンプの構造及び耐震性に係る仕様は，A号機，B 号機及びC号機で同じである。工事内容を図7．2－8に示し，機器仕様を表 7．2－16に，応力評価結果を表7．2－17に示 す。なお，表 7．2－17 においては，発生応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。

図 7．2－8 タービン補機冷却海水ポンプの工事内容

表 7．2－16 機器仕様

設備名称	最高使用圧力 （MPa）	最高使用温度＊ $\left({ }^{\circ} \mathrm{C}\right)$	評価部材	使用材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$
タービン 補機 冷却海水 ポンプ	0.69	41	基礎ボルト	SCM435	50
			ポンプ取付 ボルト	SCM435	50
			原動機台取付 ボルト	SCM435	50
			原動機取付ボ ルト	SUS304	50

注記＊：最高使用温度 $41^{\circ} \mathrm{C}$ より，周囲環境温度 $50^{\circ} \mathrm{C}$ の方が温度が高いことから，保守的な評価となるよう周囲環境温度にて評価した。

表 7．2－17 応力評価結果

設備名称	評価部材	応力	発生値 （MPa）	評価基準値 (MPa)
タービン補機泠却海水ポンプ	原動機取付 ボルト	引張	98	145

2.9 循環水ポンプ（A）

循環水ポンプ（A）は，評価対象のボルトをより高強度のボルトに取り替えるこ とにより耐震性の向上を図る。工事内容を図 7．2－9 に示し，機器仕様を表 7．2－ 18 に，応力評価結果を表 7．2－19に示す。なお，表7．2－19においては，発生応力 と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。
\square

図 7．2－9 循環水ポンプ（A）の工事内容

表7．2－18 機器仕様

設備名称	最高使用圧力 （MPa）	最高使用温度＊ $\left({ }^{\circ} \mathrm{C}\right)$	評価部材	使用材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$
$\begin{aligned} & \text { 循環水 } \\ & \text { ポンプ (A) } \end{aligned}$	0.38	41	基礎ボルト	SS400	50
			ポンプ取付 ボルト	SNCM630	50
			吐出エルボ取付ボルト	SNCM630	50
			吐出配管ボ ルト	SS400	50

注記＊：最高使用温度 $41^{\circ} \mathrm{C}$ より，周囲環境温度 $50^{\circ} \mathrm{C}$ の方が温度が高いことから，保守的な評価となるよう周囲環境温度にて評価した。

表 7．2－19 応力評価結果

設備名称	評価部材	応力	発生値 (MPa)	評価基準値 (MPa)
循環水ポンプ（A）	吐出配管ボルト	引張	126	174

2． 10 循環水ポンプ（B）
循環水ポンプ（B）は，評価対象のボルトをより高強度のボルトに取り替える ことにより耐震性の向上を図る。工事内容を図7．2－10 に示し，機器仕様を表 7．2－20に，応力評価結果を表7．2－21に示す。なお，表7．2－21においては，発生応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。
\square

図 7．2－11 循環水ポンプ（B）の工事内容

表 7．2－20 機器仕様

設備名称	最高使用圧力 （MPa）	最高使用温度＊ $\left({ }^{\circ} \mathrm{C}\right)$	評価部材	使用材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$
$\begin{gathered} \text { 循環水 } \\ \text { ポンプ (B) } \end{gathered}$	0.38	41	基礎ボルト	SS400	50
			ポンプ取付 ボルト	SNCM630	50
			吐出エルボ取付ボルト	SNCM630	50
			吐出配管ボ ルト	SCM435	50
			ベース架台取付ボルト	SNCM630	50

注記＊：最高使用温度 $41^{\circ} \mathrm{C}$ より，周囲環境温度 $50^{\circ} \mathrm{C}$ の方が温度が高いことから，保守的な評価となるよう周囲環境温度にて評価した。

表 7．2－21 応力評価結果

設備名称	評価部材	応力	発生値 (MPa)	評価基準値 (MPa)
循環水ポンプ（B）	吐出エルボ 取付ボルト	引張	305	557

2.11 配管

配管は，サポートの追設やサポートへ補強部材を追加することにより耐震性 の向上を図る。工事内容を図7．2－11に示し，代表として換気空調補機常用冷却水系に関して，機器仕様を表 7．2－22に，応力評価結果を表 7．2－23に示す。な お，表7．2－23においては，発生応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。

図 7．2－11 配管の工事内容

表 7．2－22 機器仕様

| 設備名称 | 最高使用圧力
 (MPa) | 最高使用温度
 $\left({ }^{\circ} \mathrm{C}\right)$ | 評価部位 |
| :---: | :---: | :---: | :---: | :---: |\quad 使用材料

表 7．2－23 応力評価結果

設備名称	評価部位	応力	発生値 (MPa)	評価基準値 (MPa)
配管 $\left(\begin{array}{c}\text { 換気空調補機常 } \\ \text { 用冷却水系）}\end{array}\right.$	配管本体	支持構造物	一次＋二次	344
一次＋二次	102	142		

7.5 溢水源としない耐震 B，C クラス機器の耐震評価の内容

1．概要
地震時，溢水源としない耐震 B，C クラス機器については，添付書類「VI－2－別添2－ 2 溢水源としない耐震 B，C クラス機器の耐震性についての計算書」にて，耐震評価結果を纏めている。

本資料は，添付書類「VI－2－別添 2－2 溢水源としない耐震 B，C クラス機器の耐震性についての計算書」にて評価対象とした耐震 B，C クラス機器（容器，ポンプ）の耐震評価内容について補足するものである。

2．対象機器

確認対象機器を表7．5－1 に示す。溢水源としない耐震 B，Cクラス機器は，剛構造及 び柔構造に分類されることから，剛構造機器は代表1機器，柔構造機器は全ての機器 を対象に，耐震評価内容を示す。

表 7．5－1 確認対象機器 ${ }^{*} 1$

機器名称	設計震度		固有周期（s）＊2		対象機器
	水平	鉛直	水平	鉛直	
CRD スクラム排出容器（A）（B）	解析値	解析値			$\bigcirc * 4$
送風機室空調機（A）（B）	2.65	1． 77			$\bigcirc * 5$
入退域エリア（クリーン）空調機	2.25	1． 39			－＊5
IA 後部冷却器（A）（B）	解析値	解析値			－＊4
SA 後部冷却器（A）（B）	解析値	解析値			－＊4
所内温水系温水熱交換器（A）（B）	6.18	1.37			\bigcirc
タービン補機冷却海水ポンプ（A）（B）（C）	解析値	1.94			\bigcirc
循環水ポンプ（A）	解析値	2.02			\bigcirc
循環水ポンプ（B）	解析値	2.02			\bigcirc
燃料プール冷却浄化系プリコートポンプ	1.97	1． 37			\bigcirc

注記＊1：剛構造機器は代表して 1 機器を確認対象とする。また，柔構造機器は全て確認対象とし，評価内容が同様のものは代表機器について示す。
＊2：柔構造のみ固有周期を記載。
＊3：配管の評価手法を適用しており，解析コード「SOLVER」又は「ISAP」を用いた固有値解析 による算出値を記載。
＊4：評価方法が同様であるため，CRD スクラム排出容器を代表して示す。
＊5：評価方法が同様であるため，送風機室空調機を代表して示す。

3．荷重及び荷重の組合せ
応力評価に用いる荷重及び荷重の組合せは，添付書類「VI－2－別添 2－1 溢水防護 に係る施設の耐震計算の方針」の「3．1荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを用いる。

3.1 荷重の種類

応力評価に用いる荷重は，以下の荷重を用いる。
（1）常時作用する荷重（D）
常時作用する荷重は，持続的に生じる荷重であり，自重とする。
（2）内圧荷重（ P_{D} ）
内圧荷重は，当該設備に設計上定められた最高使用圧力による荷重とする。
（3）機械的荷重（ M_{D} ）
当該設備に設計上定められた機械的荷重
（4）地震荷重（ S s ）
地震荷重は，基準地震動 S s により定まる地震力とする。
3.2 荷重の組合せ

応力評価に用いる荷重の組合せは，各機器の評価部位ごとに設定する。各機器の評価部位における荷重の組合せを表7．5－2～表7．5－4に示す。

表 7．5－2 容器類の荷重の組合せ

許容応力状態	荷重の組合せ	評価部位
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	胴板

表 7．5－3 配管の荷重の組合せ

許容応力状態	荷重の組合せ	評価部位
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	配管，弁

表 7．5－4 支持構造物の荷重の組合せ

許容応力状態	荷重の組合せ	評価部位
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	脚，支持構造物，ボルト等

4．耐震評価内容
「2．対象機器」において選定した機器について，耐震評価内容を以下に示す。

4．1 CRDスクラム排出容器（A）（B）
4．1．1 構造計画
CRD スクラム排出容器の構造計画を表7．5－5に示す。

表 7．5－5 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
容器は接続配管及びアンカによ り支持される。	胴板，鏡板，円 すい胴板及び当板で構成する。	

4．1．2 評価対象部位

CRD スクラム排出容器の評価対象部位を表7．5－6に示す。

表 7．5－6 評価対象部位

機器名称	評価部位
CRDスクラム排出容器（A）（B）	容器
	サポート

4．1．3 計算方法
基準地震動 S s による地震力に対して耐震性が確保され，溢水に至らないこと を確認するために，スペクトルモーダル解析による地震応答解析により，許容応力状態IV A S の許容限界を満足することを確認する。

スクラム排出容器は容器中心部のアンカ及び容器前後に取り付く配管によって支持されており，支持構造物となる配管の耐震性確保も必要となるため，容器前後の配管まで含めた配管系評価として実施する。解析コードは「SOLVER」及び「NX NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

4．1．4 許容応力

評価の許容限界は，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。評価に用いる許容限界を表 7．5－7に示す。

表 7．5－7 許容応力

荷重の組合せ	許容応力状態	許容限界		
		一次一般 膜応力	- 次膜応力 + - 次曲げ応力	一次 + 一次 + 二次 + 二次応力 ピーク応力
$\begin{aligned} & \mathrm{D}+\mathrm{P}_{\mathrm{D}}+ \\ & \mathrm{M}_{\mathrm{D}}+\mathrm{S}_{\mathrm{s}} \end{aligned}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍 の値	S s 地震動のみによる疲労解析を行い，疲労累積係数が 1．0以下であること。但し，地震動のみによる一次＋二次応力の変動値が $2 \cdot \mathrm{~S}$ y 以下であ れば，疲労解析は不要。

注記＊1：2•Syを超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－ 3313 を除く。 S_{m} は $2 / 3$ • S_{y} と読み替える。）の簡易弾塑性解析を用いる。

4．1．5 使用材料の許容応力評価条件
使用材料及び使用材料の許容応力評価条件を表 7．5－8に示す。

表 7．5－8 使用材料及び使用材料の許容応力評価条件

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S (MPa)
CRDスクラム排出容器（A）（B）	容器	STS410	138	215	404
	サポート	STKR400	50	234	394

4．1．6 解析モデル
CRD スクラム排出容器の解析モデルを図 7．5－1 に示す。解析モデルは，3 次元多質点系はりモデルとする。

図 7．5－1 CRD スクラム排出容器の解析モデル
補－7．5－6 枠囲みの内容は商業機密の観点から公開できません。

4．1．7 固有周期

固有値解析の結果を表7．5－9に示す。

表 7．5－9 CRDスクラム排出容器の固有値解析結果＊ 1

モード	卓越方向	固有周期 (s)	水平方向刺激係数		鉛直方向
		NS 方向	EW 方向	刺激係数	
1 次	鉛直				
2 次	-				

注記＊1：評価上厳しい箇所を含む解析モデルの固有値解析結果及び振動モード図を掲載。

4．1．8 振動モード図
振動モード図を図 7．5－2に示す。

図 7．5－2 振動モード図＊ 1

注記＊1：評価上厳しい箇所を含む解析モデルの固有値解析結果及び振動モード図を掲載。

4．1．9 設計用地震力
本資料において考慮する設計用地震力の算出に用いる設計用床応答曲線及び設計震度を表7．5－10に示す。

なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

表 7．5－10 設計用床応答曲線及び設計震度

建物•構築物		原子炉建屋		
標高 0．P．（m）		15.0		
減衰定数（\％）				
適用する地震動等		基漼地震動S s		
モード	固有周期 （s）	応答水平震度＊2		応答鉛直震度＊2
		NS 方向	EW 方向	
1 次				
2 次				
動的震度＊3				
記＊ 1				

＊ 2 ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊ $3: ~ \mathrm{~S} \mathrm{~s}$ 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

4．1．10 評価結果
表 7．5－11 に示すとおり，算出応力は許容応力を超えず，基準地震動 S s に対 し，耐震性を有することを確認した。

表 7．5－11 評価結果＊1

評価対象設備	評価部位	応力種類	算出応力 (MPa)	許容応力 (MPa)
CRDスクラム排出容器 （A）（B）	容器	一次	198	363
		363	430	
	一次	98	276	
	一次＋二次	127	159	

注記＊1：評価結果は，算出応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載 する。

枠囲みの内容は商業機密の観点から公開できません。

4．2 送風機室空調機（A）（B）
4．2．1 構造計画
送風機室空調機の構造計画を表 7．5－12に示す。

表 7．5－12 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
送風機室空調機 は基礎ボルトで基礎に据え付け る。	露出型 （予備機付送風機露出型空調機）	

4．2．2 評価対象部位

送風機室空調機の評価対象部位を表7．5－13に示す。

表 7．5－13 評価対象部位

機器名称	評価部位
送風機室空調機（A）（B）	基礎ボルト

4．2．3 計算方法

基準地震動 S s による地震力に対して耐震性が確保され，溢水に至らないこと を確認するために，許容応力状態IV A S の許容限界を満足することを確認する。 また，解析コードは「SAP－IV」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

基礎ボルトの応力評価として，スペクトルモーダル解析による動解析を実施す る。また，固有値解析結果を踏まえ，静解析についても実施する。静解析は，当該評価部位の形状が横軸ポンプと同等であることから，添付書類「VI－2－1－13－4横軸ポンプの耐震性についての計算書作成の基本方針」に記載の評価方法に基づ き評価する。

4．2．4 許容応力

評価の許容限界は，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。評価に用いる許容限界を表7．5－14に示す。

表 7．5－14 許容応力

荷重の組合せ	許容応力状態	許容限界	
		せん断	
$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	IV		
A	S	$1.5 \cdot \mathrm{f} \mathrm{t}^{2}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}} *$

4．2．5 使用材料の許容応力評価条件
使用材料及び使用材料の許容応力評価条件を表7．5－15に示す。

表 7．5－15 使用材料及び使用材料の許容応力評価条件

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)
送風機室空調機（A）（B）	基礎ボルト	SS 400	50	231	394

4．2．6 解析モデル
送風機室空調機の解析モデルを図 7．5－3に示す。解析モデルは，空調機フレー ムをはり要素にてモデル化する。
\square

図 7．5－3 送風機室空調機の解析モデル

4．2．7 固有周期
固有値解析の結果を表7．5－16に示す。

表 7．5－16 送風機室空調機の固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向刺激係数		鉛直方向
		NS 方向	EW 方向	刺激係数	
	水平				
2 次	水平				
3 次	-				

4．2．8 振動モード図
振動モード図を図 7．5－4に示す。

図 7．5－4 振動モード図

4．2．9 設計用地震力
本資料において考慮する設計用地震力の算出に用いる設計用床応答曲線及び設計震度を表7．5－17に示す。

なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

表 7．5－17 設計用床応答曲線及び設計震度

建物•構築物		原子炉建屋		
標高 O．P．（m）		33.20		
減衰定数（\％）		1.0		
適用する地震動等		基準地震動 S S		
モード	固有周期 （s）	応答水平震度＊1		応答鉛直震度＊${ }^{1}$
		NS 方向	EW 方向	
1 次	0.055	7.64	7.64	－
2 次	0.051	6.81	6.81	－
3 次	0． 050	－	－	－
動的震度＊2		2.65	2． 65	1． 77

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

4．2．10 評価結果
表 7．5－18に示すとおり，算出応力は許容応力を超えず，基準地震動 S s に対 し，耐震性を有することを確認した。

表 7．5－18 評価結果＊1

評価対象設備	評価部位	応力 種類	動解析		静解析	
			算出応力 （MPa）	許容応力 （MPa）	算出応力 （MPa）	許容応力 （MPa）
送風機室空調機 （A）（B）	基礎ボルト	引張	55	207	73	207

注記＊1：評価結果は，算出応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載 する。

4． 3 所内温水系温水熱交換器（A）（B）
4．3．1 構造計画
所内温水系温水熱交換器の構造計画を表 7．5－19に示す。

表 7．5－19 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
所内温水系温水熱交換器はフレ ームを4個のベ ースプレートで支持し，基礎台 に基礎ボルトで設置する。	伝熱プレート， フレーム，ベー スプレートを有 するプレート式熱交換器	（単位：mm） （側面図） （正面図）

4．3．2 評価対象部位

所内温水系温水熱交換器の評価対象部位を表7．5－20に示す。

表 7．5－20 評価対象部位

機器名称	評価部位
所内温水系温水熱交換器（A）（B）	フレーム
	ベースプレート
	基礎ボルト

4．3．3 計算方法
基準地震動 S s による地震力に対して耐震性が確保され，溢水に至らないこと を確認するために，許容応力状態IV A S の許容限界を満足することを確認する。

固有周期及びフレームに発生する各応力の算出は，既往研究「BWRプラント へのプレート式熱交換器適用化に関する研究」（引用文献参照）に基づく評価式よ り算出する。
ベースプレート及び基礎ボルトに発生する各応力の算出は，当該評価部位の形状が横置一胴円筒形容器と同等であることから，添付書類「VI－2－1－13－2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針」に記載の評価式を基 に算出する。

4．3．4 許容応力

評価の許容限界は，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。評価に用いる許容限界を表7．5－21及び表7．5－22に示す。

表 7．5－21 許容応力（フレーム）

荷重の組合せ	許容応力 状態	許容限界（フレーム）		
		一次一般 膜応力	- 次膜応力 + - 次曲げ応力	一次＋ 一次＋二次＋ 二次応力 ピーク応力
$\begin{aligned} & \mathrm{D}+\mathrm{P}_{\mathrm{D}}+ \\ & \mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{~s} \end{aligned}$	$\mathrm{IV}_{\text {A }} \mathrm{S}$	$0.6 \cdot \mathrm{~S}_{\text {u }}$	左欄の 1.5 倍 の値	S s 地震動のみによる疲労解析を行い，疲労累積係数が 1．0以下であること。但し，地震動のみによる一次＋二次応力の変動値が $2 \cdot \mathrm{~S}_{\mathrm{y}}$ 以下であ れば，疲労解析は不要。

注記＊1：2•Syを超える場合は弹塑性解析を行ら。この場合，設計•建設規格PVB－3300（PVB－3313 を除く。 S_{m} は $2 / 3 \cdot \mathrm{~S}$ yと読み替える。）の簡易弾塑性解析を用いる。

表 7．5－22 許容応力（ベースプレート及び基礎ボルト）

荷重の 組合せ	許容応力 状態	$\begin{aligned} & \text { 許容限界*1, *2 } \\ & \text { (ベースプレート) } \end{aligned}$	許容限界＊1，＊2 （基礎ボルト）	
		一次応力	一次応力	
		引張	引張	せん断
$\begin{aligned} & \mathrm{D}+\mathrm{P}_{\mathrm{D}}+ \\ & \mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{~S} \end{aligned}$	IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$ s＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行ら。
＊ 2 ：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

4．3．5 使用材料の許容応力評価条件
使用材料及び使用材料の許容応力評価条件を表7．5－23に示す。

表 7．5－23 使用材料及び使用材料の許容応力評価条件

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
所内温水系温水熱交換器（A）（B）	フレーム	SB410N	85	205	394
	ベースプレート	SS400	85	218	377
	基礎ボルト	SNB7	50	512	671

4．3．6 固有周期

（1）水平方向
固有周期の計算方法を以下に示す。
a．所内温水系温水熱交換器の質量は重心に集中するものとする。
b．固定フレーム及び遊動フレーム（以下「フレーム」という。）の並列結合 により1質点を支持するものとし，図 7．5－5に示す計算モデルとする。
c．フレームは，ベースプレート及び基礎ボルト締結部の剛性からなる回転ば ねとフレームの剛性からなる曲げせん断ばねの直列結合とする。

図 7．5－5 固有周期の計算モデル
d．固有周期は次式により求める。

$K_{i}=K_{i, 1}+K_{i, 2}$

（a）フレームの剛性

（b）ベースプレートの剛性

ここで，

T ${ }_{\text {i }}$	：機器の固有周期（ s ）
m_{0}	：機器の運転時質量（kg）
K_{i}	：固定側及び遊動側の並列剛性（ N / mm ）
$K_{i, j}$	：固定側又は遊動側の全体剛性（ N / mm ）
$\mathrm{k}_{, \mathrm{Fi}, \mathrm{j}}$	：フレームの剛性（ N / mm ）
$\mathrm{k}_{\theta, \mathrm{Bi}, \mathrm{j}}$	：ベースプレートの剛性（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）
H	：機器の重心高さ（mm）
$G_{, F, j}$	：フレームのせん断弾性係数（MPa）
$A_{s, F, j}$	：フレームの有効せん断断面積 $\left(\mathrm{mm}^{2}\right)$
$E_{, F, j}$	：フレーム材の縦弾性係数（MPa）
$I_{, F i, j}$	：フレームの断面二次モーメント $\left(\mathrm{mm}^{4}\right)$
$\mathrm{k}_{\theta, \mathrm{BPi}, \mathrm{j}}$	：ベースプレートの回転剛性（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）
$k_{\theta, b i, j}$	：基礎ボルト締結部の回転剛性（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）
た，添字	$: i=1,2$（1：長辺方向， $2:$ 短辺方向）
	$j=1,2$（1：固定側， 2 ：遊動側）

[^1]（2）鉛直方向
所内温水系温水熱交換器は，伝熱プレートとフレームが一体に締め付けられた構造であり，一体での挙動を示す。鉛直方向の剛性は，フレームの軸方向剛性と ベースプレート及び基礎ボルト締結部の剛性の直列結合であることから，鉛直方向は十分な剛性を有しているとみなせるため，固有周期の計算を省略する。
（3）固有周期算出結果
固有周期算出結果を表 7．5－24に示す。

表 7．5－24 所内温水系温水熱交換器の固有値算出結果

固有周期（s）		
水平方向＊1		鉛直方向
長辺方向	短辺方向	

注記＊1：「4．3．3（3）計算方法」に示す引用文献に基づき算出。 ＊2：固有周期は十分に小さく，計算を省略する。

4．3．7 設計用地震力

本資料において考慮する設計用地震力の算出に用いる設計用床応答曲線及び設計震度を表7．5－25に示す。

なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減裹定数を用いる。

表 7．5－25 設計震度

建物•構築物	標高 0．P．（m）	減衰定数 $(\%)$	設計震度	
		水平方向	鉛直方向	
原子炉建屋	15.0	2.0	6.18	1.37

4．3．8 評価結果

表 7．5－26に示すとおり，算出応力は許容応力を超えず，基準地震動 S s に対 し，耐震性を有することを確認した。

表7．5－26 評価結果＊1

評価対象設備	評価部位	応力種類	算出応力 (MPa)	許容応力 (MPa)
所内温水系温水熱交換器 （A）（B）	基礎ボルト	引張	266	323

注記＊1：評価結果は，算出応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載 する。

4．3．9 引用文献
－大山ほか，BWRプラント～のプレート式熱交換器適用化に関する研究，火力原子力発電，第576号，Vol．55，No．9，2004年，pp．962－969．

4． 4 タービン補機冷却海水ポンプ（A）（B）（C）
4．4．1 構造計画
タービン補機冷却海水ポンプの構造計画を表7．5－27に示す。

表 7．5－27 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
ポンプはポンプ ベースに固定さ れ，ポンプベー スは基礎ボルト で基礎に据え付 ける。	ターボ形 （ターボ形たて 軸ポンプ）	（単位：mm）

4．4．2 評価対象部位
タービン補機冷却海水ポンプの評価対象部位を表7．5－28に示す。

表 7．5－28 評価対象部位

機器名称	評価部位
タービン補 機 冷 却 海 水 ポンプ （A）（B）（C） 基礎ボルト	
	ポンプ取付ボルト
	原動機台取付ボルト
原動機取付ボルト	

4．4．3 計算方法

基準地震動 S S による地震力に対して耐震性が確保され，溢水に至らないこと を確認するために，スペクトルモーダル解析による地震応答解析により，許容応力状態IV A S の許容限界を満足することを確認する。また，解析コードは「MSC NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

4．4．4 許容応力

評価の許容限界は，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。評価に用いる許容限界を表7．5－29に示す。

表 7．5－29 許容応力

荷重の組合せ	許容応力状態	許容限界	
		引張	せん断
$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$		$1.5 \cdot \mathrm{ft} *$	$1.5 \cdot \mathrm{f} \mathrm{s}^{*} *$

4．4．5 使用材料の許容応力評価条件
使用材料及び使用材料の許容応力評価条件を表7．5－30に示す。

表 7．5－30 使用材料及び使用材料の許容応力評価条件

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
タービン補機冷却海水ポンプ (A) (B) (C)	基礎ボルト	SCM435	50	764	906
	ポンプ取付 ボルト	SCM435	50	764	906
	原動機台取付 ボルト	SCM435	50	764	906
	原動機取付 ボルト	SUS304	50	198	504

4．4．6 解析モデル
タービン補機冷却海水ポンプの解析モデルを図 7．5－6に示す。解析モデルは，
ャフト部，コラム部，ペデスタル部を考慮した多質点系モデルとする。
\square
図 7．5－6 タービン補機冷却海水ポンプ解析モデル

4．4．7 固有周期
固有値解析の結果を表7．5－31に示す。

表 7．5－31 タービン補機冷却海水ポンプの固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向刺激係数		鉛直方向
		NS 方向	EW 方向	刺激係数	
1 次	水平				
2 次	水平				

4．4．8 振動モード図
振動モード図を図7．5－7に示す。

図 7．5－7 タービン補機冷却海水ポンプ 振動モード

4．4．9 設計用地震力
本資料において考慮する設計用地震力の算出に用いる設計用床応答曲線及び設計震度を表7．5－32に示す。

なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

表 7．5－32 設計用床応答曲線及び設計震度

建物•構築物		海水ポンプ室補機ポンプエリア			
標高 O．P．（m）		2.25			
減衰定数（\％）		1． 0			
適用する地震動等		基準地震動 S S			
モード	固有周期 （s）	応答水平震度＊${ }^{\text {P }}$		応答鉛直震度＊${ }^{1}$	
		NS 方向	EW 方向		
1 次					
2 次					
動的震度＊2		1． 83	1.83	1． 94	

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊ 2 ：S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

4．4．10 評価結果

表 7．5－33に示すとおり，算出応力は許容応力を超えず，基準地震動 S s に対 し，耐震性を有することを確認した。

表 7．5－33 評価結果＊1

評価対象設備	評価部位	応力種類	算出応力 (MPa)	許容応力 (MPa)
タービン補機冷却海水 ポンプ（A）（B）（C）	原動機取付ボルト	引張	98	145

注記＊1：評価結果は，算出応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。
4.5 循環水ポンプ（A）（B）

4．5．1 構造計画
循環水ポンプの構造計画を表 7．5－35及び表 7．5－36に示す。なお，循環水ポン プ（B）は吊下管寸法が大きく，またベース架台を設置している点で循環水ポンプ （A）と構造が異なる。

表 7．5－34 循環水ポンプ（A）構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
ポンプはポンプ ベースに固定さ れ，ポンプベー スは基礎ボルト で基礎に据え付 ける。	ターボ形 （ターボ形たて 軸ポンプ）	（単位：mm）

表 7．5－35 循環水ポンプ（B）構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
ポンプはポンプ ベースに固定さ れ，ポンプベー スは基礎ボルト で基礎に据え付 ける。	ターボ形 （ターボ形たて 軸ポンプ）	（単位：mm）

4．5．2 評価対象部位

循環水ポンプの評価対象部位を表7．5－36に示す。

表 7．5－36 評価対象部位

機器名称	評価部位
循環水ポンプ（A）	基礎ボルト
	ポンプ取付ボルト
	吐出エルボ取付ボルト
	吐出配管ボルト
循環水ポンプ（B）	基礎ボルト
	ポンプ取付ボルト
	吐出エルボ取付ボルト
	吐出配管ボルト
	ベ—ス架台取付ボルト

4．5．3 計算方法

基準地震動 S s による地震力に対して耐震性が確保され，溢水に至らないこと を確認するために，スペクトルモーダル解析による地震応答解析により，許容応力状態 IV A S の許容限界を満足することを確認する。また，解析コードは「MSC NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

4．5．4 許容応力

評価の許容限界は，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。評価に用いる許容限界を表7．5－37に示す。

表 7．5－37 許容応力

荷重の組合せ	許容応力状態	許容限界	
		引張	せん断
$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f} \mathrm{t}^{*}$	$1.5 \cdot \mathrm{f} \mathrm{s}^{*}$

4．5．5 使用材料の許容応力評価条件

使用材料及び使用材料の許容応力評価条件を表 7．5－38に示す。

表 7．5－38 使用材料及び使用材料の許容応力評価条件

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
循環水ポンプ（A）	基礎ボルト	SS400	50	211	394
	ポンプ取付 ボルト	SNCM630	50	873	1061
	吐出エルボ取付ボルト	SNCM630	50	873	1061
	吐出配管 ボルト	SS400	50	211	394
循環水ポンプ（B）	基礎ボルト	SS400	50	211	394
	ポンプ取付 ボルト	SNCM630	50	873	1061
	吐出エルボ取付ボルト	SNCM630	50	873	1061
	吐出配管 ボルト	SCM435	50	764	906
	ベース架台 取付ボルト	SNCM630	50	873	1061

4．5．6 解析モデル
循環水ポンプの解析モデルを図 7．5－8及び図 7．5－9に示す。解析モデルは，
ヤフト部及びケーシング部を考慮した多質点系モデルとする。

図 7．5－8 循環水ポンプ（A）解析モデル
枠囲みの内容は商業機密の観点から公開できません。
補－7．5－30

図 7．5－9 循環水ポンプ（B）解析モデル

4．5．7 固有周期

固有値解析の結果を表 7．5－39～表7．5－42に示す。

表 7．5－39 循環水ポンプ（A）吐出軸方向の固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向 刺激係数	鉛直方向 刺激係数
1 次	水平			
2 次	水平			
3 次	水平			
4 次	水平			
5 次	水平			

表 7．5－40 循環水ポンプ（A）吐出軸直角方向の固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向 刺激係数	鉛直方向 刺激係数
1 次	水平			
2 次	水平			
3 次	水平			
4 次	水平			
5 次	水平			

表 7．5－41 循環水ポンプ（B）吐出軸方向の固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向 刺激係数	鉛直方向 刺激係数
1 次	水平			
2 次	水平			
3 次	水平			
4 次	水平			
5 次	水平			

表 7．5－42 循環水ポンプ（B）吐出軸直角方向の固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向 刺激係数	鉛直方向 刺激係数
1 次	水平			
2 次	水平			
3 次	水平			
4 次	水平			
5 次	水平			

4．5．8 振動モード図
振動モード図を図7．5－10～図7．5－13に示す。

図 7．5－10 循環水ポンプ（A）吐出軸方向 振動モード

図 7．5－11 循環水ポンプ（A）吐出軸直角方向 振動モード

図7．5－12 循環水ポンプ（B）吐出軸方向 振動モード

図 7．5－13 循環水ポンプ（B）吐出軸直角方向 振動モード

4．5．9 設計用地震力

本資料において考慮する設計用地震力の算出に用いる設計用床応答曲線及び設計震度を表 7．5－43～表7．5－46に示す。

なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減裹定数を用いる。

表 7．5－43 設計用床応答曲線及び設計震度（循環水ポンプ（A）吐出軸方向加振）

注記＊1 ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。 ＊ $2: ~ S ~ s ~$ 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

表 7．5－44 設計用床応答曲線及び設計震度（循環水ポンプ（A）吐出軸直角方向加振）

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。 ＊2：S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

表 7．5－45 設計用床応答曲線及び設計震度（循環水ポンプ（B）吐出軸方向加振）

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

表 7．5－46 設計用床応答曲線及び設計震度（循環水ポンプ（B）吐出軸直角方向加振）

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

4．5．10 評価結果
表 7．5－47に示すとおり，算出応力は許容応力を超えず，基準地震動 S s に対 し，耐震性を有することを確認した。

表 7．5－47 評価結果＊1

評価対象設備	評価部位	応力種類	算出応力 (MPa)	許容応力 (MPa)
循環水ポンプ（A）	吐出配管ボルト	引張	126	174
循環水ポンプ（B）	吐出エルボ取付 ボルト	引張	305	557

注記＊1：評価結果は，算出応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載する。
4.6 燃料プール冷却浄化系プリコートポンプ

4．6．1 構造計画
燃料プール泠却浄化系プリコートポンプの構造計画を表 7．5－48に示す。

表 7．5－48 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
ポンプはポンプ ベースに固定さ れ，ポンプベー スは基礎ボルト で基礎に据え付 ける。	うず巻形 （らず巻形横軸 ポンプ）	（単位：mm）

4．6．2 評価対象部位
燃料プール泠却浄化系プリコートポンプの評価対象部位を表7．5－49に示す。

表 7．5－49 評価対象部位

機器名称	評価部位
燃料プール冷却浄化系プリコート ポンプ	基礎ボルト
	ポンプ取付ボルト
	原動機取付ボルト

4．6．3 計算方法
基準地震動 S s による地震力に対して耐震性が確保され，溢水に至らないこと を確認するために，許容応力状態IV A S の許容限界を満足することを確認する。

4．6．4 許容応力

評価の許容限界は，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。評価に用いる許容限界を表7．5－50に示す。

表 7．5－50 支持構造物の許容限界

荷重の組合せ	許容応力状態	許容限界＊1，＊2 （ボルト等）	
		一次応力	
		引張	せん断
$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。

4．6．5 使用材料の許容応力評価条件
使用材料及び使用材料の許容応力評価条件を表7．5－51に示す。

表 7．5－51 使用材料及び使用材料の許容応力評価条件

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S u （MPa）
然料プール冷却浄化系プ リコートポンプ	基礎ボルト	SS 400	50	231	394
	ポンプ取付 ボルト	SS 400	50	211	394
	原動機取付 ボルト	SS 400	50	211	394

4．6．6 設計用地震力
評価に用いる設計震度を表 7．5－52に示す。

表 7．5－52 設計震度

建物•構築物	標高 0．P．（m）	設計震度	
		水平方向	鉛直方向
原子炉建屋	15.00	1.97	1.37

4．6．7 評価結果

表 7．5－53に示すとおり，算出応力は許容応力を超えず，基準地震動 S s に対 し，耐震性を有することを確認した。

表 7．5－53 評価結果＊1

評価対象設備	評価部位	応力種類	算出応力 (MPa)	許容応力 (MPa)
燃料プール冷却浄化系 プリコートポンプ	基礎ボルト	引張	18	207

注記＊1：評価結果は，算出応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載 する。

7.6 溢水源としない耐震 B，C クラス配管の耐震評価の考え方

配管の耐震設計については，日本電気協会「原子力発電所耐震設計技術指針 JEAG 4601」等に基づき，一次応力評価，一次＋二次応力評価，疲労評価を実施している。

一方，溢水源としない耐震 B，Cクラス配管の耐震評価については，疲労に着目した評価手法及び評価基準値を適用し評価を実施している。これは，「原子力発電所耐震設計技術規定 JEAC4601－2008」等の知見を参考にしたものであり，地震荷重に対する配管の破損形態と設計限界に関しては，これまでに様々な試験や研究等が実施され，以下のような知見が得られている。
－配管の地震荷重による破損形態は，ラチェットを伴う低サイクル疲労であり，塑性崩壊は起きなかった。
－ラチェットを伴う低サイクル疲労による破損寿命は，使用材料の設計疲労線図に対して余裕がある。
－配管に設計許容限界を超える地震荷重が負荷された場合でも，進行性過大変形が発生しな い。
－疲労に対する耐震設計上の制限を設けることにより，配管の変形を塑性崩壊が起きないレ ベルに抑えることが可能であり，崩壊防止のための一次応力制限は不要である。
（詳細は別紙（参考文献抜粋）参照）

内部溢水影響評価において着目する地震起因による耐震 B，C クラス配管から溢水が発生す る損傷モードは，配管にき裂又はそれ以上の損傷が生じる状態であり，上記知見によれば，低 サイクルラチェット疲労に起因するものである。

したがって，耐震 B，C クラス配管の耐震評価については，溢水防止の観点から，疲労に着目 した評価手法及び評価基準値を適用し，配管のバウンダリ機能が確保されることを確認する。

参考文献：原子力発電所耐震設計技術規定（JEAC4601－2008，日本電気協会）

参考資料4．4 地震荷重を受ける管の許容応力

背 景

許容基準見直しの着眼点

図 7．6－1 配管要素試験（原子力発電所耐震設計技術規程 JEAC4601－2008より抜粋）

			$1($	(1)	1		11			10	11		(1)		1			\cdots
			\％	ה్త	あ	\％	品	¢	吕	\％	星		0	8				魙回
		缐会	$\begin{aligned} & \text { \% } \\ & +1 \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 筑 } \end{aligned}$	$\begin{gathered} c \\ \substack{\circ \\ +1} \end{gathered}$	$\stackrel{7}{7}$	$\begin{aligned} & -7 \\ & +1 \end{aligned}$	$\begin{gathered} 8 \\ \substack{8 \\ H} \end{gathered}$	$\begin{gathered} 8 \\ +1 \\ +1 \end{gathered}$	$\text { 鹵 } \circ$		置	㙼禺 8		䨓 0	裪ざ	比：
		馨	$\begin{aligned} & \text { 婑 } \\ & \text { 冓 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { 㥪 } \\ \text { 简 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 搌 } \\ \text { 畄 } \end{array}$			$\begin{aligned} & \text { 荥 } \\ & \text { 符 } \end{aligned}$	$\begin{aligned} & \text { 捼 } \\ & \text { 筑 } \end{aligned}$	而 楽					睯 等		盏
			16		$1(1$	10	1	1	5	-11	1		$1($			$\stackrel{5}{2}$		Fi
			\％	\％	8	9	옹	$\stackrel{\rightharpoonup}{\square}$	合	苟	\％	等	$\stackrel{\circ}{\square}$		$\stackrel{\text { ¢ }}{\sim}$	\％	F	\％
			$\stackrel{9}{\circ}$	$\underset{i}{\infty}$	J	$\stackrel{\ominus}{6}$	$\stackrel{\square}{-}$	${ }_{0}$	$\stackrel{\infty}{\mathrm{a}}$	$\stackrel{7}{\infty}$	－	\％	$\stackrel{Y}{4}$		$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{*}{*}$	$\stackrel{\square}{¢}$
	迷		$\stackrel{\infty}{\sim}$	สั่	$\stackrel{\circ}{\text {－}}$	$\stackrel{-1}{\infty}$	\bigcirc	\cdots	$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\infty}$	$\stackrel{\odot}{\square}$	9	$\stackrel{\sim}{\sim}$		－	$\stackrel{-}{\square}$	$\stackrel{\infty}{+}$	$\stackrel{8}{6}$
		谈首	8	¢	\％	¢	∞	衔	8	i8	¢	4	$\begin{aligned} & \circ \\ & \\ & \hline 1 \end{aligned}$		\％	$\stackrel{\infty}{\text { ¢ }}$	$\stackrel{\circ}{\infty}$	$\stackrel{\infty}{\infty}$

1．配管要素試駿
 群分法

荷東を負荷するの試験はすごて室温で実施した。

b．誠酸結果

[^2]図 7．6－2 配管要素試験（原子力発電所耐震設計技術規程 JEAC4601－2008より抜粋）

2．一方向負荷試験
配管要素に一方向の荷重を負荷した場合の塑性変形举動と崩壊荷重を把握する。 ．試験方法（試験矿究 A の場合）
a）試験对象： 90° エルホ
b）口径•肉厚•材質：200A，Sch20，STS410
試験方法
苗重条件

[^3]図 7．6－3 配管要素試験（原子力発電所耐震設計技術規程 JEAC4601－2008より抜粋）

3．進行性変形試験

 ルボには内風により周方間応力 1.0 Sm ，軸力向応力 0.5 Sm ，自重汇より 1.0 Sm の一次応力を生じをせた。参表 $4.4-2$ 進行性変形試伢 $ケ ー ス ~$

	留根站	sulta安的	舸特性＾1	$\begin{gathered} \text { 最大入力 } \\ \text { 加速度 }\left(\mathrm{m} / \mathrm{s}^{2}\right) \end{gathered}$	設試評価上の 1		你亦
1	地原波	水平	$\begin{gathered} \text { 共振 } \\ (\mathrm{Rw}=0.9) \end{gathered}$	7.0	約 48 Sm	緫165m	－
2	地震波	水平	$\begin{gathered} \text { 非共㹉 } \\ (\mathrm{Rww} \end{gathered}$	4.2	約6Sm	枃3Sm	
3	地曹波	$\begin{aligned} & \text { 水平 } \\ & + \\ & \text { 上下 } \end{aligned}$		$\begin{aligned} & \text { 水平: }: 7.3 \\ & \text { 下下 }: 2.5 \end{aligned}$	約50Sm水平：約 48 Sm上下：約 2 Sm		振预给性能限䍗

（＊2）：表示の設計用減衰定数を用いた応签スペクトル解析（拡幅なし）より求まる地震慣性力をもとに算定されるモー

参図 4．4－11 入力地震波 $の 力 ⿰ 力 口$ 速度波形

着目部位
（Test十廾7証験体と類似形状）
参表 4．4－4 绗行性変形の解析結果
容限界 1.5 Sm （本解析では内压による周力向応力 0 Sm ，自重による応力 1.5 Sm ）となる条件下で，設討許察限思

	校助数比	$\begin{gathered} \text { 加振による } \\ 1 \text { 次応力 } \end{gathered}$	$\begin{gathered} \text { 累皘たわみ角 } \\ \text { (deg) } \end{gathered}$	$2 \tan \theta$ 法による崩壊判定値	$\frac{\text { 累皘たわみ角 }}{\text { 前境判定値 }}$
950A	$\mathrm{Rw}=0.9$	8.3 Sm	1.1	4.3	0.25
	$\mathrm{Rw}=0.5$	8.3 Sm	1.4	4.3	0.33
950 A	$\mathrm{Rw}=0.9$	13.5 Sm	1.6	4.3	0.37
	$\mathrm{Rw}^{2}=0.5$	13.5 Sm	2.9	4.3	0.67
350 A	$\mathrm{Rw}=0.9$	13.5 Sm	2.3	5.8	0.40
	$\mathrm{Rw}=0.5$	13.5 Sm	3.8	5.8	0.66

図 7．6－4 配管要素試験（原子力発電所耐震設計技術規程 JEAC4601－2008 より抜粋）
5．配管系モデル鳪験
配管系としての基本的な弹塑性応䇣学動を明らかにするために，財団法人原子力発䉓技行機䊀（NUPEC）に

訬䓉ケース	A－1	A－2	A－3	A．4	A 5	A－6
試硂体外镇						
$\begin{aligned} & \text { 加振波の } \\ & \text { 振数特性 } \end{aligned}$		$\begin{array}{c\|} \hline \text { 註験体共振域老 } \\ \text { 合む } \end{array}$	調験体共振域を合豙	語験体に比べ低振動数域	識験体共振域を合学	$\begin{gathered} \text { 試験体共振域空 } \\ \text { 管む } \end{gathered}$
加振方向	方向	劝向	x方向	X方向	x方向	$\underset{\substack{\text { X方问 } \\ \text { 相対変位有 }}}{\text { cos. }}$
加振以゙吅	中	大	中	中	中	中
材質	STS410	STS410	STS410	STS410	SUS304TP	STS410

図 7．6－6 配管要素試験（原子力発電所耐震設計技術規程 JEAC4601－2008より抜粋）
7．設計疲労曲線の適用性
（
参图4．4－17 疲労鳪詳データの統言計処理結果

（\％）目謰と系 $\sqrt{2}$

$$
\begin{aligned}
& \text { (炭素钢: : 室盗) }
\end{aligned}
$$

イクルラチェットト波労寿命に対して繰返し回数で5倍，応力で 2 倍を超える裕度を有している。さらに，

$$
\begin{aligned}
& \text { 以上より, 設計疲労曲線は, 地震荷重に対する配管の低サイクルラチェット疲当軯侕に適用できる偪。 }
\end{aligned}
$$

つてのて，＂＊＊＊

㚐図 4．4－18 設計疲労曲線に対する余裕
図 7．6－7 配管要素試験（原子力発電所耐震設計技術規程 JEAC4601－2008 より抜粋）

管の地震時許容基準 見直しの経緯

［3］国内にままける研究成果等

図 7．6－8 配管要素試験（原子力発電所耐震設計技術規程 JEAC4601－2008より抜粋）

7.7 水平 2 方向及び鉛直方向地震力の組合せによる影響評価に関する補足説明

1．概要

地震時，溢水源としない耐震 B，C クラス機器に対する水平 2 方向及び鉛直地震力の組合せに関する影響評価については，添付書類「VI－2－1－8 水平 2 方向及び鉛直方向地震力の組合せに関する影響評価方針」及び補足説明資料「補足－600－5 水平2 方向及び鉛直方向の適切な組合 せに関する検討について」を基に，添付書類「VI－2－別添2－3 溢水防護に関する施設の水平 2方向及び鉛直方向地震力の組合せに関する影響評価結果」に評価結果を整理している。

本資料は，添付書類「VI－2－別添2－3 溢水防護に関する施設の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果」における評価部位の抽出結果に関して補足するものである。

なお，以下の内容については，補足説明資料「補足 $-600-5$ 水平 2 方向及び鉛直方向の適切 な組合せに関する検討について」から抜粋して示している。

2．水平 2 方向同時加振の影響評価について（正方形配置されたボルト）

（1）はじめに
本項は，水平 2 方向に地震力が作用した場合の矩形配置されたボルトに対する影響検討結果をまとめたものである。強軸•弱軸が明確なものについては，弱軸方向に応答し水平 2 方向地震力による影響が軽微であるため，機器の形状を正方形として検討をおこなった。
（2）引張応力への影響
水平 1 方向に地震力が作用する場合と水平 2 方向に地震力が作用する場合のボルトへの引張力の違いを考察する。なお，簡単のため機器の振動による影響は考えないこととする。
a．水平 1 方向に地震力が作用する場合
図 7．7－1 のように X 方向に震度 C_{X} が与えられる場合を考慮する。

図 7．7－1 水平 1 方向の地震力による応答（概要）

この場合，対象としている系の重心に作用する水平方向の力 F_{H} は

$$
F_{H}=m g C_{X} \quad \text { (式 } 1 \text {) }
$$

と表せ，F_{H} によりボルトBとボルトDの中心を結んだ軸を中心に転倒モーメントを生じる。 この転倒モーメントはボルトA，Cにより負担される。

このとき，系の重心に生じる力は，図7．7－2に示すとおりである。
L：ボルト間距離

図 7．7－2 水平 1 方向の地震力による力

機器が転倒を起こさない場合，転倒支点まわりの転倒モーメントとボルトからの反力が釣 り合うため，水平方向地震動によりボルトに発生する全引張力 F_{b} は

$$
\begin{equation*}
F_{b}=\frac{1}{L}\left(m g C_{X} h\right) \tag{式2}
\end{equation*}
$$

となる。

ボルトに掛かる引張応力 σ_{b} は全引張力を断面積 A のボルト n 本で受けると考え，

$$
\begin{equation*}
\sigma_{b}=\frac{F_{b}}{n A} \tag{式3}
\end{equation*}
$$

である。水平 1 方向地震力を考慮する場合，ボルト A, C で全引張力を負担することから，$n=$ 2 であり，ボルトに掛かる引張応力 σ_{b} は

$$
\begin{equation*}
\sigma_{b}=\frac{F_{b}}{2 A}=\frac{m g C_{X} h}{2 A L} \tag{式4}
\end{equation*}
$$

となる。
b．水平 2 方向に地震力が作用する場合
図 7．7－3 のように X 方向と Y 方向にそれぞれ震度 C_{X}, C_{Y} が作用する場合を考慮する。 なお，本検討においては， X 方向と Y 方向に同時に最大震度が発生する可能性は低いと考 え， X 方向の震度と Y 方向の震度を $1: 0.4\left(0.4 C_{X}=C_{Y}\right)$ と仮定する。

図 7．7－3 水平 2 方向の地震力による応答（概要）
この時，$\theta=\tan ^{-1}\left(\frac{C_{Y}}{C_{X}}\right)=\tan ^{-1}(0.4)$ であることから，水平方向の震度 $C_{X Y}$ は

$$
\begin{align*}
C_{X Y} & =C_{X} \cos \theta+C_{Y} \cos \left(\frac{\pi}{2}-\theta\right) \\
& =\frac{5}{\sqrt{29}} C_{X}+0.4 \times \frac{2}{\sqrt{29}} C_{X} \\
& =\frac{5.8}{\sqrt{29}} C_{X} \tag{式5}
\end{align*}
$$

と表すことができる。この時，対象としている系の重心に作用する水平方向の力 F_{H} は

$$
\begin{equation*}
F_{H}=m g C_{X Y}=m g \frac{5.8}{\sqrt{29}} C_{X} \tag{式6}
\end{equation*}
$$

となる。この F_{H} により，転倒軸を中心に転倒モーメントが生じ，ボルト $\mathrm{A}, \mathrm{B}, \mathrm{C}$ により負担 される。
水平 2 方向の地震力を受けた場合，各ボルトにかかる引張力を F_{A}, F_{B}, F_{C} とし，図7．7－ 4 に示すようにボルトDの中心を通り水平方向の震度 $C_{X Y}$ と直交する直線を転倒軸とすると，

図 7．7－4 対角方向に応答する場合の転倒軸からの距離

ボルト A, B, C に発生する引張力は転倒軸からの距離に比例するため，

$$
F_{A}: F_{B}: F_{C}=7: 2: 5
$$

であり，転倒軸周りのボルトの軸力により発生するモーメントMは，

$$
\begin{align*}
\mathrm{M} & =\frac{7}{\sqrt{29}} L F_{A}+\frac{2}{\sqrt{29}} L F_{B}+\frac{5}{\sqrt{29}} L F_{C} \\
& =\frac{7}{\sqrt{29}} L \times F_{A}+\frac{2}{\sqrt{29}} L \times \frac{2}{7} F_{A}+\frac{5}{\sqrt{29}} L \times \frac{5}{7} F_{A} \\
& \left.=\frac{78}{7 \sqrt{29}} L F_{A} \quad \text { (式 } 7\right) \tag{式7}
\end{align*}
$$

である。

転倒しない場合，ボルトの軸力により発生する転倒軸周りのモーメントと，水平方向地震力によるモーメントが釣り合っているので，（式6）及び（式 7）より，

$$
\begin{equation*}
m g C_{X Y} h=\frac{78}{7 \sqrt{29}} L F_{A} \tag{式8}
\end{equation*}
$$

であり，引張力 F_{A} は以下のとおりとなる。

$$
\begin{equation*}
F_{A}=\frac{7 \sqrt{29}}{78 L} m g C_{X Y} h \tag{式9}
\end{equation*}
$$

以上より，最も発生応力の大きいボルトAに発生する応力 σ_{b} は は

$$
\begin{equation*}
\sigma_{b}^{\prime}=\frac{F_{A}}{A}=\frac{7 \sqrt{29}}{78 A L} m g C_{X Y} h \tag{式10}
\end{equation*}
$$

であり，（式 4）（式5）及び（式 10）より

$$
\begin{align*}
\sigma_{b}^{\prime} & =\frac{F_{A}}{A}=\frac{7 \sqrt{29}}{78 A L} \times \frac{5.8}{\sqrt{29}} m g C_{X} h \\
& =\frac{7 \times 5.8}{39} \times \frac{m g C_{X} h}{2 A L} \\
& =\frac{40.6}{39} \times \sigma_{b} \\
& \cong 1.04 \sigma_{b} \tag{式11}
\end{align*}
$$

となる。
したがって，水平 2 方向地震を考慮した場合，ボルトに発生する引張応力は増加するが， その影響は軽微である。
（3）せん断応力への影響
せん断力は全基礎ボルト断面で負担するが，全ボルトに対するせん断力 Q_{b} は，

$$
\begin{equation*}
Q_{b}=F_{H} \tag{式12}
\end{equation*}
$$

であり，せん断応力 τ_{b} は断面積 A のボルト全本数 n でせん断力 Q_{b} を受けるため，

$$
\begin{equation*}
\tau_{b}=\frac{Q_{b}}{n A} \tag{式13}
\end{equation*}
$$

となる。
水平 1 方向の地震力を考慮した場合のせん断力 Q_{b} 及び水平 2 方向の地震力を考慮した場合 のせん断力 Q_{b}^{\prime} は（式 1）及び（式5）より

$$
\begin{align*}
Q_{b} & =m g C_{X} \tag{式14}\\
Q_{b}^{\prime} & =m g C_{X Y} \\
& =\frac{5.8}{\sqrt{29}} m g C_{X}
\end{align*}
$$

となる。水平 1 方向及び水平 2 方向地震時に断面積 A 及びボルト全本数 n は変わらないため，水平 2 方向地震を考慮した場合，ボルトに発生するせん断応力は増加するが，その影響は軽微である。

3．水平 2 方向同時加振の影響評価について（円形配置されたボルト）
（1）はじめに
本項は，水平 2 方向に地震力が作用した場合の円形配置されたボルトに対する影響検討結果をまとめたものである。なお，せん断応力への影響は，円形／矩形の配置形状に依らず， 2 章に記載している矩形配置されたボルトと同様に影響軽微となるため，本章における検討 では省略する。

円形配置されたボルトは，支持する構造物から伝達される地震力を受け持つことから，補足説明資料「補足－600－5 水平2方向及び鉛直方向の適切な組合せに関する検討について」別紙 4．4－4章に記載している円筒容器の検討結果を踏まえた検討を行う。具体的には，図 7．7－ 5 に示す円筒容器基部における水平地震時の軸方向応力コンター図において， 180° 方向位置 にて円筒容器の軸方向応力に算定される Z 方向荷重を 1.00 と規格化し，円形配置されたボ ルトに作用する引張荷重 F_{b} と考慮した検討を行う。

図 7．7－5 水平地震時軸方向応力コンター図
（2）引張応力への影響
円形配置されたボルトに作用する引張荷重 F_{b} の分布を表 7．7－1に示す。X 方向に水平地震動を入力した際には，最大荷重発生点は 180° 方向位置に発生する。また，円筒形容器のた め評価部位が円形の一様断面であることから，Y 方向に水平地震動を入力した際には，最大荷重発生点は 90° 位置に発生し，水平地震動の入力方向により最大荷重発生点は異なる。

表 7．7－1 水平地震時の引張荷重分布

角度	X 方向入力時引張荷重（ - ） $\mathrm{F}_{\mathrm{b}, \mathrm{x}}(\theta)$	Y 方向入力時引張荷重（ $~$ ） $\mathrm{F}_{\mathrm{b}, \mathrm{Y}}(\theta)$	2 方向入力時荷重（ - ）	
			組合せ係数法 $\mathrm{F}_{\mathrm{b}, \mathrm{c}}(\theta)$	SRSS 法 $\mathrm{F}_{\mathrm{b}, \mathrm{~s}}(\theta)$
90° 方向	0.00	1.00	$\begin{gathered} 1.00 \\ \mathrm{~F}_{\mathrm{b}, \mathrm{c}(\mathrm{X})}\left(90^{\circ}\right)=0.40 \\ \mathrm{~F}_{\mathrm{b}, \mathrm{c}(\mathrm{Y})}\left(90^{\circ}\right)=1.00 \end{gathered}$	1． 00
112.5° 方向	0.38	0.91	$\begin{gathered} 1.08 \\ \mathrm{~F}_{\mathrm{b}, \mathrm{c}(\mathrm{X})}\left(112.5^{\circ}\right)=0.75 \\ \mathrm{~F}_{\mathrm{b}, \mathrm{c}(\mathrm{Y})}\left(112.5^{\circ}\right)=1.08 \end{gathered}$	1.00
135° 方向	0.71	0． 71	$\begin{gathered} 0.99 \\ \mathrm{~F}_{\mathrm{b}, \mathrm{c}(\mathrm{X})}\left(135^{\circ}\right)=0.99 \\ \mathrm{~F}_{\mathrm{b}, \mathrm{c}(\mathrm{Y})}\left(135^{\circ}\right)=0.99 \end{gathered}$	1.00
157.5° 方向	0.91	0． 38	$\begin{gathered} 1.08 \\ \mathrm{~F}_{\mathrm{b}, \mathrm{c}(\mathrm{X})}\left(157.5^{\circ}\right)=1.08 \\ \mathrm{~F}_{\mathrm{b}, \mathrm{c}(\mathrm{Y})}\left(157.5^{\circ}\right)=0.75 \end{gathered}$	1． 00
180° 方向	1． 00	0.00	$\begin{gathered} 1.00 \\ \mathrm{~F}_{\mathrm{b}, \mathrm{c}(\mathrm{X})}\left(180^{\circ}\right)=1.00 \\ \mathrm{~F}_{\mathrm{b}, \mathrm{c}(\mathrm{Y})}\left(180^{\circ} \quad\right)=0.40 \end{gathered}$	1.00

水平 2 方向同時加振時の引張荷重の合力は，水平 1 方向加振時の最大の引張荷重と比較し， SRSS 法を用いた場合は同値，組合せ係数法を用いた場合は最大で約 1.08 倍の値となる（図 7．7－6）ため，水平 2 方向同時加振の引張応力への影響は軽微である。

図 7．7－6 水平 2 方向同時加振時の水平力分布について
9.13 循環水系隔離システムの内，復水器水室出入口弁への地震時復水器の影響について

1．概要

2．復水器の構造概要
3．復水器水室出入口弁への地震時復水器の影響モード

A．復水器水室落下の影響評価

1．評価方針
（1）評価方針
（2）適用規格•基準等
2．復水器水室の評価部位•評価条件
（1）構造概要及び評価部位
（2）設計用地震力
（3）水室サポート部の許容応力
3．復水器水室サポート部の評価
（1）地震力が復水器細管軸方向に作用した場合
（2）地震力が復水器細管軸直方向に作用した場合
（3）地震力が鉛直方向に作用した場合
（4）水室自重の作用
（5）水平 2 方向地震力と鉛直方向地震力を考慮した応力
4．評価結果

B．復水器本体移動による接触影響評価

1．評価方針
（1）評価方針
（2）適用規格•基準等
2．復水器基礎部と復水器水室フランジの評価部位•評価条件
（1）構造概要及び評価部位
（2）設計用地震力
（3）評価条件及び許容応力
3．復水器基礎部（No．V，VI，VII 耐震ずれ止め側）の評価
（1）耐震ずれ止めに作用する荷重
（2）既設の耐震ずれ止めに作用する荷重
（3）既設の底板と補強板の圧縮（引張）応力
（4）既設の耐震ずれ止めの曲げ応力
（5）既設の I 形補強の圧縮（引張）応力
（6）追設の耐震ずれ止めの曲げ応力
（7）追設の平板溶接部の応力

4．復水器基礎部（No．V，VI，VII 耐震基礎のずれ止め側）の評価
（1）耐震基礎のずれ止めの圧縮応力
（2）基礎ボルトの引張応力
（3）基礎ボルトとコンクリートの付着力
（4）埋設 I 形鋼の曲げ応力
（5）埋設 I 形鋼フランジ部の曲げ応力
（6）板の曲げ応力
5．復水器水室フランジ変位量の評価
6．復水器基礎（No．I～IV）の評価
（1）鉛直方向を拘束する基礎台配置
（2）復水器基礎の評価条件
（3）基礎コンクリート圧縮の評価
7．復水器基礎（No．V，VI，VII）評価（コーン破壊評価）
（1）水平方向を拘束する基礎台及び耐震基礎のずれ止めの配置
（2）既設基礎ボルトのコーン破壊評価
（3）追設基礎ボルトのコーン破壊評価
8．評価結果
（1）復水器基礎部（No．V，VI，VII 耐震ずれ止め側）
（2）復水器基礎部（No．V，VI，VII 耐震基礎のずれ止め側）
（3）復水器水室フランジ変位量
（4）復水器基礎（No．I～IV）コンクリート
（5）復水器基礎（No．V，VI，VII）コンクリート

C． 3 次元 FEM 解析

1．解析条件
2．固有値解析結果
3．耐震ずれ止めに発生する荷重の算出
4．復水器基礎部に発生する荷重の算出
5．復水器水室フランジの変位量の算出
D．まとめ
（別紙）復水器水室フランジ変位量算出に関する補足

1．概要

タービン建屋復水器エリアに配置する循環水系配管の地震起因の破損時には，海洋を溢水源とする溢水が発生する。この溢水量低減を目的として，当該エリアの漏えいを検知し，循環水ポンプ停止及び復水器水室出入口弁を自動閉止する循環水系隔離システム を設置している。溢水量算出においては循環水ポンプ停止（吐き出し停止）までの時間 としているが，復水器水室出入口弁を閉止することにより，海洋と隔離し，その後の溢水量増加を防止している。したがって，当該弁は地震後に弁閉止機能を必要とすること から，基準地震動 S s による地震力に対して，復水器損傷による影響を受けないことを確認する。

2．復水器の構造概要

復水器の構造概要について表9．13－1に示す。

表 9．13－1 構造概要（ $1 / 2$ ）

概要		構造概略図
$\begin{gathered} \text { 基礎•支持 } \\ \text { 構造 } \end{gathered}$	主体構造	
復水器は，	復水器に作	
細管軸方向	用する荷重	
及び細管軸	は，ずれ止	
直方向をそ	め金具及び	
れぞれ拘束	基礎ボルト	
するずれ止	を介して躯	
め金具を，	体に伝達す	
基礎ボルト	る構造とす	
により復水		
器下部中央	また，復水	
部の基礎に	器水室に作	
据え付け	用する荷重	
る。また，復	は，水室サ	
水器は，基	ポートを介	
礎ボルトに	して復水器	
より復水器	に伝達する	
四隅の基礎	構 造とす	
に据え付け	る。	
る。	なお，復水	
復水器水室	器は連絡胴	
は水室サポ	にて連結す	
ートにより	る構造とす	
復水器に支	る。	
持する。		

表 9．13－1 構造概要（2／2）

概要		構造概略図
基礎•支持構造	主体構造	
復水器は，	復水器に作	
細管軸方向	用する荷重	
及び細管軸	は，ずれ止	
直方向をそ	め金具及び	
れぞれ拘束	基礎ボルト	
するずれ止	を介して躯	
め金具を，	体に伝達す	
基礎ボルト	る構造とす	
により復水		
器下部中央	また，復水	
部の基礎に	器水室に作	
据え付け	用する荷重	
る。また，復	は，水室サ	
水器は，基	ポートを介	
礎ボルトに	して復水器	
より復水器	に伝達する	
四隅の基礎	構 造とす	
に据え付け		
る。	なお，復水	
復水器水室	器は連絡胴	
は水室サポ	にて連結す	
ートにより	る構造とす	
復水器に支	る。	
持する。		

3．復水器水室出入口弁への地震時復水器の影響モード
復水器水室出入口卉は復水器水室の真下に配置され，復水器水室が地震により損傷し落下する事象，復水器本体が地震により移動して当該弁へ接触する事象の影響がある。当該弁への影響イメージを図 9．13－1～図9．13－3 に示す。

なお，復水器本体移動による接触影響に対しては，実機構造を反映した 3 次元 FEM 解析を実施し，地震により復水器基礎部に生じる荷重や復水器水室フランジ変位量を算出 し，これを用いて評価を行う。

図 9．13－1 地震時の復水器水室出入口弁への影響イメージ （A．復水器水室落下の影響）

復水器本体移動による復水器水室出入口弁への接触影響を考慮し，復水器基礎部の評価を実施

図 9．13－2 地震時の復水器水室出入口弁への影響イメージ （B．復水器本体移動による接触影響）

地震応答解析により，復水器基礎部に生じる荷重を算出
注記 $~$ ：細管軸方向：紙面左右方向，細管軸直方向：紙面奥行方向
図 9．13－3 地震時の復水器水室出入口弁への影響イメージ
（C． 3 次元 FEM 解析）

A．復水器水室落下の影響評価

1．評価方針
（1）評価方針
復水器水室は，復水器水室出入口弁上部に設置され，水平側水室サポート及び下部水室サポートにより復水器本体に支持させる構造としている。

復水器水室落下の影響評価は，基準地震動S s による地震力に対して，復水器水室各サポートの評価部位に発生する応力が許容応力を超えないことを評価することによ り，復水器水室出入口弁の機能が損なわれないことを確認する。

なお，復水器水室落下の影響評価においては，「C．3 次元 FEM 解析」に示す解析結果は用いず，復水器基礎台高さにおける設計震度を用いて簡便に評価する。
（2）適用規格•基準等
本評価において適用する規格•基準等を以下に示す。

- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
- J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格
- 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－

2．復水器水室の評価部位•評価条件
（1）構造概要及び評価部位
図 9．13－4に示すとおり，荷重伝達経路を踏まえ，復水器水室を支持する水平側水室 サポート，下側水室サポートを評価部位とする。なお，各サポートは復水器本体と復水器水室に溶接で固定している。サポート形状と溶接固定面を図9．13－5 及び図9．13－ 6 に示す。

図 9．13－4 水室サポート取付状況

図 9．13－6 下側水室サポートの形状
（2）設計用地震力
評価に用いる設計用地震力は，添付書類「VI－2－別添2－1 溢水防護に係る施設の耐震計算の方針」に基づき設定する。復水器基礎台高さ（0．P． 2300 mm ）における基準地震動 S s の床応答スペクトル又は床応答最大加速度を表9．13－2に示す。なお，地震力 については，水平 2 方向地震力と鉛直方向地震力を SRSS にて組み合わせる。

表 9．13－2 設計用震度

地震動	場所	床面高さ （復水器基礎台高さ） （mm）	固有周期＊1 （s）		地震による設計震度	
基準地震動	タービン	0．P． 800	水平方向	鉛直方向	水平方向	鉛直方向
S s	建屋	（0．P．2300）	0.097	0.043	$\mathrm{C}_{\mathrm{H}}=6.43$	$\mathrm{C}_{\mathrm{V}}=0.75$

注記 $* 1$ ：復水器本体の水平方向固有周期 0.097 s は，建設時工認耐震計算書（建設時工認図書番号：02 IV－3－15）に示す値であり柔構造である。

また，鉛直方向固有周期は次式より 0.043 s となり剛構造のため最大床応答加速度の 1.2 倍を適用する。

鉛直方向固有周期の算出

$\mathrm{m}: ~$ 運転時質量 $\square(\mathrm{kg})$	E ：縦弾性係数 $191000(\mathrm{MPa})$
$\mathrm{L}:$ 重心高さ $\square \mathrm{mm})$	$\mathrm{A}:$ 復水器断面積 \square

復水器断面積Aの算出は，下図の建設時工認耐震計算書（建設時工認図書番号：02 IV －3－15）と同様に算出。

図 9．13－7 建設時工認耐震計算書抜粋図 復水器断面
（3）水室サポート部の許容応力
水平側水室サポート，下側水室サポートとそれぞれ溶接部の許容応力を表9．13－3に示す。また，許容応力評価条件を表 9．13－4に示す。

表 9．13－3 水室サポート 許容応力

評価部位	算出応力	応力（S s 地震力 評価） 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	適用式
水平側水室 サポート応力	$\sigma \mathrm{A}: 引$ 張，曲げ	クラス 2 支持構造物	$\begin{gathered} \mathrm{ft}=1.5 \times \frac{\mathrm{F}}{1.5} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{gathered}$
水平側水室 サポート固定ボルト応力	σ B ：せん断	クラス 2 支持構造物	$\begin{array}{r} \mathrm{fs}=1.5 \times \frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{array}$
水平側水室 サポート溶接部応力	σ C：せん断	クラス 2 支持構造物	$\begin{array}{r} \mathrm{fs}=1.5 \times \frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{array}$
下側水室 サポート応力	σ D ：曲げ	クラス 2 支持構造物	$\begin{gathered} \mathrm{ft}=1.5 \times \frac{\mathrm{F}}{1.5} \\ \mathrm{~F}=\mathrm{min}(1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{gathered}$
下側水室 サポート溶接部応力	$\sigma \mathrm{E}$ ：せん断	クラス 2 支持構造物	$\begin{gathered} \mathrm{fs}=1.5 \times \frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{gathered}$

表 9．13－4 水室サポートの許容応力評価条件

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$
水平側水室サポート	SS400	$66 * 1$	225	385	270
水平側水室サポート固定ボルト	SCM440	$66 * 1$	777	913	639
水平側水室サポート溶接部＊2	SS400 相当	$66^{* 1}$	225	385	270
下部水室サポート	SS400	$66 * 1$	225	385	270
下部水室サポート溶接部＊2	SS400 相当	$66 * 1$	225	385	270

注記 $* 1$ ：最高使用温度
＊ 2 ：溶接部の許容応力は，接合される母材の許容せん断応力とする。

3．復水器水室サポート部の評価
水室に地震力及び自重が作用したときに水室が落下しないことを評価するため，水平側水室サポートと下側水室サポートの強度評価を行う。
（1）地震力が復水器細管軸方向に作用した場合
復水器本体内の細管（管束）運転時質量が水平地震動により水室へ与える水平力か ら，水平側水室サポートが受ける 1 枚あたりの引張応力と溶接部のせん断応力を算出。

図 9．13－8 地震力が復水器細管軸方向に作用した場合

設計震度（水平方向）を C_{H} ，復水器運転時管束質量を m1 とおくと，復水器 1 基の管束水平力 Fh1は，

Fh $1=C_{H} \cdot m 1 \cdot g$
設計震度 $\left(\mathrm{C}_{\mathrm{H}}\right)$

$$
=6.43
$$

復水器運転時管束質量（m1）
重力加速度（g）
地震による水平力（Fh1）

$=9.80665 \mathrm{~m} / \mathrm{s}^{2}$

復水器 1 基に水室は 4 個あり， 1 水室あたり水平側水室サポートは \square枚であるた め，水平側水室サポート 1 枚あたりの水平力 F1 は，
$\mathrm{F} 1=\frac{\mathrm{Fh} 1}{4 \times \square}$

水平側水室サポートが水平力 F1 を受ける断面積A1は， $\mathrm{A} 1=\left(\mathrm{t} 1+\mathrm{t} 1^{\prime}\right) \cdot \mathrm{w} 1$

mm^{2}

よって，復水器細管軸方向地震力により水平側水室サポートにかかる引張応力 $\sigma 1$ は，

$$
\sigma 1=\frac{\mathrm{F} 1}{\mathrm{~A} 1}
$$

水室サポート 1 つあたりの固定ボルトは 2 本であるため，水室サポート固定ボルト 1本にかかる水平力F2は，

$$
\mathrm{F} 2=\frac{\mathrm{F} 1}{2}
$$

固定ボルトの呼び径はM42 であるため，固定ボルトの断面積A2は，

$$
\mathrm{A} 2=\frac{\pi}{4} \times \square=\square \mathrm{mm}^{2}
$$

固定ボルトのせん断力 $\sigma 2$ は，

水平側水室サポートと復水器は，既設水室サポート上下及び追設サポート上部にて溶接されているため，水平側水室サポートの溶接線長さ L5 $(=w 1 \times 3)$ ，溶接脚長を X1，水平側水室サポートのすみ肉溶接部の応力 $\sigma 3$ は，

$$
\sigma 3=\frac{\mathrm{F} 1}{\mathrm{~L} 5 \cdot \frac{\mathrm{X} 1}{\sqrt{2}}}
$$

| 水平側水室サポート 1 枚あたりの引張応力 $\quad \sigma 1$ | 56 （MPa） | |
| :--- | :--- | :--- | :--- | :--- |
| 水平側水室サポート固定ボルトのせん断応力 | $\sigma 2$ | $230(\mathrm{MPa})$ |
| 水平側水室サポート 1 枚溶接部のせん断応力 | $\sigma 3$ | 110 （MPa） |

（2）地震力が復水器細管軸直方向に作用した場合
水室に水平地震動が作用した際の水室サポートに生じるモーメントから，水平側水室サポートが受ける1枚あたりの引張応力と溶接部のせん断応力を算出。

図 9．13－9 地震力が復水器細管軸直方向に作用した場合

図 9．13－10 水室サポートを上から見た図

設計震度（水平方向）を $\mathrm{C}_{\mathrm{H}}, 1$ 水室あたりの質量を m 2 とおくと 1 水室あたりの水平力 Fh2 は，

Fh2 $=\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m} 2 \cdot \mathrm{~g}$
設計震度（ CH ）
$=6.43$
1 水室当たりの運転時質量（m2）
 kg

重力加速度（g）

$$
=9.80665 \mathrm{~m} / \mathrm{s}^{2}
$$

地震による水平力（Fh2）

水室サポート1枚あたりの水平力 F3 は，1 水室に水室サポートが \square 枚あることか ら，
$\mathrm{F} 3=\frac{\mathrm{Fh} 2}{\square}$

水室サポートに生じるモーメントM1は，

水室サポートの断面係数 Z1 は，

$$
\mathrm{Z} 1=\frac{\mathrm{t} 1 \times \mathrm{L1}^{2}+\mathrm{t} 1^{\prime} \times \mathrm{L1}^{2}}{6}
$$

水室サポートの曲げ応力 o 4 は，

水室サポート 1 つあたりの固定ボルトは 2 本であるため，水室サポート固定ボルト 1 本にかかる水平力F4は，
$F 4=\frac{F 3}{2}$

固定ボルトのせん断力 $\sigma 5$ は，

水平側水室サポートのすみ肉溶接部の応力 $\sigma 6$ は，

$$
\sigma 6=\frac{\mathrm{F} 3}{\mathrm{~L} 5 \cdot \frac{\mathrm{X} 1}{\sqrt{2}}}
$$

水平側水室サポート 1 枚あたりの曲げ応力 $\sigma 4$（MPa）		
水平側水室サポート固定ボルトのせん断応力 $\sigma 5$	$195(\mathrm{MP}$	$143(\mathrm{MPa})$
水平側水室サポート 1 枚溶接部のせん断応力 $\sigma 6$	$69(\mathrm{MPa})$	

（3）地震力が鉛直方向に作用した場合
水室に鉛直地震動が作用した際の鉛直曲げモーメントから，水平側水室サポートが受ける 1 枚あたりの引張応力と溶接部のせん断応力を算出。

図 9．13－11 地震力が鉛直方向下向きに作用した場合

設計震度（鉛直方向）CV， 1 水室あたりの質量 m2，1水室あたりの鉛直力 Fv1 は， $\mathrm{Fv} 1=\mathrm{C}_{\mathrm{V}} \cdot \mathrm{m} 2 \cdot \mathrm{~g}$

設計震度（Cv）
1 水室あたりの運転時質量（m2）
重力加速度（g）
地震による鉛直力（Fv1）
 kg
$=9.80665 \mathrm{~m} / \mathrm{s}^{2}$

a）鉛直方向地震力（下向き）が水平側水室サポートに作用した場合水室にかかる鉛直力による，端板と水室サポートの接続面まわりのモーメントM2 は， M2 $=$ Fv1 \cdot L6

ここで，モーメント M 2 により，図 9．13－12に示すように各水平側水室サポートに水平力がかかる。

よって，水平側水室サポートが受け持つ最大の水平荷重F5は，
$\mathrm{M} 2=\sum_{\mathrm{k}=1} 1_{\mathrm{k}} \times \mathrm{f}_{\mathrm{k}} \times 2$
$\mathrm{F} 5=\mathrm{f} 9=\square \mathrm{kN}$
水平側水室サポートが鉛直方向地震力によりかかる引張応力 $\sigma 7$ 俗，

図 9．13－12 各水平側水室サポートにかかる水平力（鉛直モーメント）

水室サポート 1 つあたりの固定ボルトは 2 本であるため，水室サポート固定ボル ト1本にかかる水平力F6は，
$\mathrm{F} 6=\frac{\mathrm{F} 5}{2}$

固定ボルトのせん断力 $\sigma 8$ は，
$\sigma 8=\frac{\mathrm{F} 6}{\mathrm{~A} 2}=\square=16 \mathrm{MPa}$

水平側水室サポートのすみ肉溶接部の応力 $\sigma 9$ は，

| 水平側水室サポート 1 枚あたりの引張応力 $\sigma 7$ | $4(\mathrm{MPa})$ |
| :--- | :--- | :--- |
| 水平側水室サポート固定ボルトのせん断応力 $\sigma 8$ | $16(\mathrm{MPa})$ |
| 水平側水室サポート 1 枚溶接部のせん断応力 $\sigma 9$ | $8(\mathrm{MPa})$ |

b）鉛直方向地震力（下向き）が下側水室サポートに作用した場合，水室に鉛直地震動が作用した際の下側水室サポート付け根部まわりのモーメントから，下側水室サポートが受ける 1 枚あたりの曲げ応力と溶接部のせん断応力を算出。

1 水室あたり下側水室サポートが \square 箇所あるため，下側水室サポートにかかる鉛直力 F7 は，

下側水室サポート付け根部にかかる曲げモーメントM3は，

断面係数 Z2 は図 9．13－6より，

$$
\begin{aligned}
& \mathrm{Z} 2=\min \left\{\frac{\mathrm{I}}{\mathrm{e}_{1}}, \frac{\mathrm{I}}{\mathrm{e}_{2}}\right\} \\
& \mathrm{I}=\frac{1}{3} \cdot\left\{\mathrm{t} 3 \cdot \mathrm{e}_{2}^{3}+\mathrm{t} 2 \cdot \mathrm{e}_{1}^{3}-(\mathrm{t} 2-\mathrm{t} 3) \cdot\left(\mathrm{e}_{1}-\mathrm{L} 4\right)^{3}\right\} \\
& \\
& =\frac{1}{3} \square=\square
\end{aligned}
$$

$$
\mathrm{e}_{1}=\frac{\mathrm{L} 2^{2} \cdot \mathrm{t} 3+\mathrm{L} 4^{2} \cdot(\mathrm{t} 2-\mathrm{t} 3)}{2 \cdot(\mathrm{t} 2 \cdot \mathrm{~L} 4+\mathrm{L} 3 \cdot \mathrm{t} 3)}
$$

$\mathrm{e}_{2}=\mathrm{L} 2^{-} \frac{\mathrm{L} 2^{2} \cdot \mathrm{t} 3+\mathrm{L} 4^{2} \cdot(\mathrm{t} 2-\mathrm{t} 3)}{2 \cdot(\mathrm{t} 2 \cdot \mathrm{~L} 4+\mathrm{L} 3 \cdot \mathrm{t} 3)}$

$Z 2=\min \left\{\frac{\mathrm{I}}{\mathrm{e}_{1}}, \frac{\mathrm{I}}{\mathrm{e}_{2}}\right\}$

下側水室サポートに鉛直地震力によりかかる曲げ応力 $\sigma 10$ は，
$\sigma 10=\frac{\mathrm{M} 3}{\mathrm{Z} 2}$

また，下側水室サポートの溶接線長さ $\mathrm{L} 8 \quad(=\mathrm{L} 2 \times 2+\mathrm{t} 2 \times 2)$ ，溶接脚長を X 2 ，下側水室サポートのすみ肉溶接部の応力 $\sigma 11$ は，
$\sigma 11=\frac{\mathrm{F} 7}{\mathrm{~L} 8 \cdot \frac{\mathrm{X} 2}{\sqrt{2}}}$

| 下側水室サポート 1 枚あたりの曲げ応力 $\sigma 10$ | 34 （MPa） |
| :--- | :--- | :--- |
| 下側水室サポート 1 枚溶接部のせん断応力 $\sigma 11$ | $30(\mathrm{MPa})$ |

（4）水室自重の作用
1 水室あたりの自重による鉛直力 Fv2は， 1 水室あたりの運転時質量（m2）

重力加速度（ g ）
自重による鉛直力（Fv2）
$=9.80665 \mathrm{~m} / \mathrm{s}^{2}$

a）自重が水平側水室サポートに作用した場合
水室の自重により水平側水室サポート付け根部に発生する曲げモーメントM4 は，
$\mathrm{M} 4=\mathrm{Fv} 2 \cdot \mathrm{~L} 6$

ここで，（3）項と同様に曲げモーメントM4により，図 9．13－12に示すように各水平側水室サポートに水平力がかかる。

よって，水平側水室サポートが受けもつ最大の水平荷重 F8 は，

水平側水室サポートが自重によりかかる引張応力 $\sigma 12$ は，

$$
\sigma 12=\frac{\mathrm{F} 8}{\mathrm{~A} 1}
$$

水室サポート 1 つあたりの固定ボルトは 2 本であるため，水室サポート固定ボ ルト 1 本にかかる水平力 F9 は，
$\mathrm{F} 9=\frac{\mathrm{F} 8}{2}$

固定ボルトのせん断力 $\sigma 13$ は，

水平側水室サポートのすみ肉溶接部の応力 $\sigma 14$ は，
$\sigma 14=\frac{\mathrm{F} 8}{\mathrm{~L} 5 \cdot \frac{\mathrm{X} 1}{\sqrt{2}}}$

水平側水室サポート 1 枚あたりの引張応力 $\sigma 12$（MPa）	
水平側水室サポート固定ボルトのせん断応力 $\sigma 13$	$78(\mathrm{MPa})$
水平側水室サポート 1 枚溶接部のせん断応力 $\sigma 14$	$14(\mathrm{MPa})$

b）自重が下側水室サポートに作用した場合
1 水室あたり下側水室サポートが口箇所あるため下側水室サポートにかかる鉛直力 F10は，
$\mathrm{F} 10=\frac{\mathrm{Fv} 2}{\square}$

水室の自重により下側水室サポート付け根部に発生する曲げモーメントM5は， $\mathrm{M} 5=\mathrm{F} 10 \cdot \mathrm{w} 2$

下側水室サポートが自重によりかかる曲げ応力 $\sigma 15$ は，
$\sigma 15=\frac{\mathrm{M} 5}{\mathrm{Z2}}$

下側水室サポートのすみ肉溶接部の応力 $\sigma 16$ は，

| 下側水室サポート 1 枚あたりに自重により作用する曲げ応力 $\sigma 15$ | $45(\mathrm{MPa})$ |
| :--- | :--- | :--- |
| 下側水室サポート 1 枚溶接部に自重により作用するせん断応力 $\sigma 16$ | 40 （MPa） |

（5）水平 2 方向地震力と鉛直方向地震力を考慮した応力
（1）～（4）より，水平 2 方向地震力と鉛直方向地震力を考慮した各応力は以下に示す とおり。
＜水平側水室サポートにかかる応力 σ A $>$

$$
\begin{aligned}
\sigma \mathrm{A} & =\sqrt{\sigma_{1}^{2}+\sigma_{4}^{2}+\sigma_{7}^{2}}+\sigma_{12} \\
& =210 \mathrm{MPa}
\end{aligned}
$$

$<$ 水平側水室サポート固定ボルトにかかる応力 σ B＞

$$
\sigma \mathrm{B}=\sqrt{\sigma{ }_{2}^{2}+\sigma{ }_{5}^{2}+\sigma{ }_{8}^{2}}+\sigma_{13}
$$

$$
=300 \mathrm{MPa}
$$

＜水平側水室サポートすみ肉溶接部にかかる応力 $\sigma C>$

$$
\sigma \mathrm{C}=\sqrt{\sigma_{3}^{2}+\sigma_{6}^{2}+\sigma_{9}^{2}}+\sigma_{14}
$$

$=143 \mathrm{MPa}$
$<$ 下側水室サポートにかかる応力 σ D $>$ $\sigma \mathrm{D}=\sigma_{10}+\sigma_{15}$ $=78 \mathrm{MPa}$
$<$ 下側水室サポートすみ肉溶接部にかかる応力 σ E＞ $\sigma \mathrm{E}=\sigma_{11}+\sigma_{16}$ $=70 \mathrm{MPa}$

4．評価結果
水室サポート及び溶接部の強度評価を実施し発生応力が許容応力以下であること から，復水器水室出入口弁への地震時の水室落下により影響を及ぼさないことを確認した。

評価部位	算出応力	発生応力 （MPa）	許容応力 （MPa）
水平側水室サポート応力	$\sigma \mathrm{A}: 引$ 張，曲げ	210	270
水平側水室サポート固定 ボルト応力	σ B：せん断	300	369
水平側水室サポート溶接部応力	σ C ：せん断	143	155
下側水室サポート応力	$\sigma \mathrm{D}:$ 曲げ	78	270
下側水室サポート溶接部応力	$\sigma \mathrm{E}$ ：せん断	70	155

B．復水器本体移動による接触影響評価

1．評価方針
（1）評価方針
復水器底板には，復水器細管軸方向及び細管軸直方向をそれぞれ拘束するずれ止め金具を設置し，ずれ止め金具は復水器下部中央部のコンクリート基礎により固定する構造としている。また，復水器の 4 隅に設置されたコンクリート基礎により，鉛直方向を拘束する構造としている。

復水器本体移動による接触影響評価は，基準地震動 S s による地震力に対して，復水器基礎部の各評価部位に発生する応力が許容応力を超えないこと及び復水器水室フ ランジの変位量が許容変位量を超えないことを評価することにより，復水器水室出入口弁の機能が損なわれないことを確認する。なお，復水器水室フランジの変位量算出 に関する補足を別紙に示す。

復水器本体は種々の部材により構成され，複雑な構造の機器であるため，地震によ り復水器基礎部に与える荷重や復水器水室フランジ変位について，実機構造を反映し て詳細評価を行う方針とする。評価条件として，3次元 FEM 解析を実施することによ り，復水器基礎部に生じる荷重及び復水器水室フランジ部の変位を求め，これを用い て評価する。
（2）適用規格•基準等
本評価において適用する規格•基準等を以下に示す。

- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601•補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
- J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格
- 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－

2．復水器基礎部と復水器水室フランジの評価部位•評価条件
（1）構造概要及び評価部位
復水器基礎部と復水器水室フランジの構造概要及び各評価部位は図 9．13－13～図 9．13－17に示す。

評価部位（コンクリート圧縮）

評価部位（各部材強度評価）

図 9．13－13 復水器基礎平面図＊
注記＊：復水器1基分を示す。

補－9．13－25 枠囲みの内容は商業機密の観点から公開できません。

（復水器基礎部鳥瞰図）

（ずれ止め金具の概要（A面矢視））

図 9．13－14 復水器ずれ止め金具配置図

図 9．13－15 既設ずれ止め金具断面図

耐震ずれ止め，平板寸法

A面矢視

図 9．13－16 追設ずれ止め金具断面図

図 9．13－17 復水器水室出入口弁，復水器水室フランジ
（2）設計用地震力
復水器本体移動による接触影響の評価においては，実機構造を反映した耐震評価を実施することを目的として，3 次元 FEM 解析により発生荷重及び復水器水室フランジ部の変位を求める。設計用地震力としては，添付書類「VI－2－別添2－1 溢水防護に係 る施設の耐震計算の方針」に基づき，復水器基礎台高さ（0．P． 800 mm ）における基準地震動 S s の床応答スペクトルを適用する。なお，地震力については，水平 2 方向地震力と鉛直方向地震力をSRSSにて組み合わせる。解析の詳細は「C． 3 次元 FEM 解析」 に示す。
（3）評価条件及び許容応力
ずれ止め金具の評価部位と評価条件は図 9．13－18に，許容応力については表 9．13－ 6～表9．13－10に示す。また，許容応力評価条件を表9．13－11～表9．13－13に示す。

- J E A G4601－補 1984 許容応力編に従う。
- 耐震ずれ止め，基礎ボルトは，クラス 2 支持構造物の許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ とする。 －コンクリートの圧縮の許容応力状態IV A S とする。

基礎ボルト：クラス 2 支持構造物

図 9．13－18 ずれ止め金具の評価部位と評価条件

表 9．13－6 復水器基礎部（No．V，VI耐震ずれ止め側）許容応力

評価部位	算出応力	応力（S s 地震力評価）許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	適用式
底板と補強板 （圧縮）	\％ 21	クラス 2 支持構造物引張	$\begin{gathered} \mathrm{ft}=1.5 \times \frac{\mathrm{F}}{1.5} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{gathered}$
耐震ずれ止め （曲げ）	\％ 22	クラス 2 支持構造物曲げ（面外）	$\begin{gathered} \mathrm{fb}=1.5 \times \frac{\mathrm{F}}{1.3} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{gathered}$
I 形補強 （圧縮）	\％ 23	クラス 2 支持構造物引張	$\begin{gathered} \mathrm{ft}=1.5 \times \frac{\mathrm{F}}{1.5} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{gathered}$

表 9．13－7 復水器基礎部（No．VII 耐震ずれ止め側）許容応力

評価部位	算出応力	応力（S s 地震力評価）許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	適用式
耐震ずれ止め （曲げ）	o 22 ，	クラス 2 支持構造物曲げ（面外）	$\begin{gathered} f b=1.5 \times \frac{F}{1.3} \\ F=\min (1.2 S y, 0.7 S u) \end{gathered}$
平板溶接部 （圧縮）	\％ 24	クラス 2 支持構造物 せん断	$\begin{array}{r} \mathrm{fs}=1.5 \times \frac{\mathrm{F}}{1.5 \sqrt{3}} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{array}$

表 9．13－8 復水器基礎部（No．V，VI，VII 耐震基礎のずれ止め側）許容応力

評価部位	算出応力	応力（S s 地震力評価）許容応力状態IV ${ }_{A}$ S	適用式
耐震基礎のずれ止め （圧縮）	o 31	クラス 2 支持構造物引張	$\begin{gathered} \mathrm{ft}=1.5 \times \frac{\mathrm{F}}{1.5} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{gathered}$
基礎ボルト （引張）	\％ 32	クラス 2 支持構造物引張	$\begin{gathered} \mathrm{ft}=1.5 \times \frac{\mathrm{F}}{2} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{gathered}$
埋設 I 形鋼 （曲げ）	\％ 33	クラス 2 支持構造物曲げ（面外）	$\begin{gathered} \mathrm{fb}=1.5 \times \frac{\mathrm{F}}{1.3} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{gathered}$
埋設 I 形鋼 フランジ部 （曲げ）	\％ 34	クラス 2 支持構造物曲げ（面外）	$\begin{gathered} \mathrm{fb}=1.5 \times \frac{\mathrm{F}}{1.3} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{gathered}$
板 （曲げ）	\％ 35	クラス 2 支持構造物曲げ（面外）	$\begin{gathered} \mathrm{fb}=1.5 \times \frac{\mathrm{F}}{1.3} \\ \mathrm{~F}=\min (1.2 \mathrm{Sy}, 0.7 \mathrm{Su}) \end{gathered}$

表 9．13－9 復水器基礎コンクリート（No．I～IV）許容応力

| 評価部位 | 算出応力 | 応力（ S s 地震力評価）
 許容応力状態 IV
 A | 適用式 |
| :---: | :---: | :--- | :--- |\quad| 埋没金物コンクリート部の |
| :--- |
| 基礎コンクリート
 （圧縮） |

表 9．13－10 復水器基礎（No．V，VI，VII）コンクリートのコーン破壊 許容応力

評価部位	算出応力	応力（S s 地震力評価） 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	適用式
基礎コンクリート		基礎ボルトが引張荷重を受け	$\mathrm{P} \leq \mathrm{Pa}=\mathrm{min}(\mathrm{Pa} 1, \mathrm{~Pa} 2)$
基礎ボルト部の コーン破壊	-	る場合のコンクリートの評価	$\mathrm{Pa}=\mathrm{K} 1 \times \mathrm{Ac} 1 \times \sqrt{\mathrm{Fc}}$
$\mathrm{Pa} 2=\mathrm{K} 2 \times \alpha \times \mathrm{A} 0 \times \mathrm{Fc}$			

表 9．13－11 復水器基礎部（No．V，VI耐震ずれ止め側）許容応力評価条件

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	F (MPa)
底板と補強板	SM400A 相当 $($ SMA400AP）	66^{*}	225	385	270
耐震ずれ止め	SS400	66^{*}	206	385	247
I 形補強	SS400	66^{*}	225	385	270

注記 $*$ ：最高使用温度

表 9．13－12 復水器基礎部（No．VII 耐震ずれ止め側）許容応力評価条件

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	F (MPa)
耐震ずれ止め	SF490A	$66^{* 1}$	236	451	283
平板溶接部＊2	SF490A 相当	$66^{* 1}$	236	451	283

注記 $* 1$ ：最高使用温度
＊2：溶接部の許容応力は，接合される母材の許容せん断応力とする。

表 9．13－13 復水器基礎部（No．V，VI，VII 耐震基礎のずれ止め側）許容応力評価条件

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	F (MPa)
耐震基礎のずれ止め	SS 400	66^{*}	206	385	247
基礎ボルト	既設：SS400	66^{*}	206	385	247
	追設：SCM435	66^{*}	777	913	639
埋設 I 形鋼	SS 400	66^{*}	206	385	247
埋設 I 形鋼フランジ部	SS 400	66^{*}	206	385	247
板	SS 400	66^{*}	206	385	247

注記＊：最高使用温度

3．復水器基礎部（No．V，VI，VII 耐震ずれ止め側）の評価 （1）耐震ずれ止めに作用する荷重

復水器の強度部材を考慮した3次元モデルを作成し，3次元 FEM 解析により各耐震 ずれ止めに作用する荷重を算出する。水平2方向それぞれに対し応答スペクトル解析 により荷重を求め，各方向による荷重をSRSSにて組み合わせる。各耐震ずれ止めに作用する荷重を表9．13－14に示す。既設耐震ずれ止め（No．V，VI）は同構造であること から，発生荷重の大きい No．Vの値の荷重が，細管軸方向に作用するものとして評価 する。解析の詳細は「C． 3 次元 FEM 解析」に示す。

表 9．13－14 各耐震ずれ止めに作用する荷重

評価部位	算出荷重	発生荷重 (kN)
No．V	F1	
No．VI		
No．VII	F2	

（2）既設の耐震ずれ止めに作用する荷重
図 9．13－15 より，耐震ずれ止めの底板上面（R2 の作用する面）を軸とするモーメ ントつり合いから，既設耐震ずれ止めにかかる反力R1，R2 は，

$$
\mathrm{R} 1=\mathrm{F} 1 \cdot \frac{\mathrm{H} 2}{\mathrm{H} 1}
$$

（3）既設の底板と補強板の圧縮（引張）応力
図 9．13－15より，底板の厚さ H 4 ，既設補強板の厚さ H 5 ，既設補強板の有効長さ t 1 とすると，底板と既設補強板の圧縮（引張）応力 o 21 は，
$\sigma 21=\frac{\mathrm{R} 2}{(\mathrm{H} 4+\mathrm{H} 5) \times \mathrm{t} 1 \times 2}$

既設 補強板の圧縮（引張）応力 $\sigma 21$	$152(\mathrm{MPa})$

（4）既設の耐震ずれ止めの曲げ応力
図 9．13－15より，既設の耐震ずれ止めの曲げモーメントM1は，

$$
\mathrm{M} 1=\mathrm{F} 1 \times(\mathrm{H} 3+\mathrm{H} 4)
$$

既設の耐震ずれ止めの厚さ L5 は $\square \mathrm{mm}$ であり，断面係数 Z 1 は，

以上より，既設の耐震ずれ止めの曲げ応力 $\sigma 22$ は， $\sigma 22=\frac{\mathrm{M} 1}{\mathrm{Z1}}$

既設 耐震ずれ止めの曲げ応力 $\sigma 22$	$166(\mathrm{MPa})$

（5）既設の I 形補強の圧縮（引張）応力
図 9．13－15より，既設の I 形補強 \square の断面積をA1 とすると，既設のI形補強の圧縮（引張）応力 $\sigma 23$ は，

$$
\sigma 23=\frac{\mathrm{R} 1}{\mathrm{~A} 1 \cdot 2}
$$

既設 I 形補強の圧縮（引張）応力 $\sigma 23$	$79(\mathrm{MPa})$

（6）追設の耐震ずれ止めの曲げ応力
図 9．13－16より，追設の耐震ずれ止めの曲げモーメントM1’は，

$$
\mathrm{M1}^{\prime}=\mathrm{F} 2 \times \mathrm{L} 2^{\prime}
$$

追設の耐震ずれ止め厚さL3＇は $\square \mathrm{mm}$ であり，断面係数 Z1＇は，

以上より，追設の耐震ずれ止めの曲げ応力 o 22’は， $\sigma 22^{\prime}=\frac{\mathrm{M1}^{\prime}}{\mathrm{Z1}^{\prime}}$

| 追設 耐震ずれ止めの曲げ応力 σ 22 $\quad 86(\mathrm{MPa})$ |
| :--- | :--- |

（7）追設の平板溶接部の応力
図 9．13－16より，追設の耐震ずれ止め平板部と底板とのすみ肉溶接長さ L6’ （＝（L4’＋L5’）×2），すみ肉溶接脚長 X1’とすると，追設ずれ止め金具平板部から底板 への力の伝達によるすみ肉溶接の応力 $\sigma 25$ は，
$\sigma 25=\frac{\mathrm{F} 2}{\frac{\mathrm{~L} 6^{\prime} \cdot \mathrm{X} 1^{\prime}}{\sqrt{2}}}$

追設 耐震ずれ止め平板のすみ肉溶接の応力 $\sigma 25$

4．復水器基礎部（No．V，VI，VII 耐震基礎のずれ止め側）の評価地震力が復水器細管軸方向に働く場合の復水器基礎部（耐震基礎のずれ止め側）の強度評価を実施する。

耐震基礎のずれ止めに働く地震力 F1，F2 は表 9．13－14に示す値を適用する。
（1）耐震基礎のずれ止めの圧縮応力

図 9．13－19 耐震基礎のずれ止め寸法（側面図）

図 9．13－19より，既設と追設の耐震基礎のずれ止めそれぞれに働く地震力の圧縮応力 o 31，o31’は，
$\sigma 31=\frac{\mathrm{F} 1}{\mathrm{a} \cdot \mathrm{b}}$

$\sigma 31^{\prime}=\frac{\mathrm{F} 2}{\mathrm{a}^{\prime} \cdot \mathrm{b}^{\prime}}$

| 既設 耐震基礎のずれ止めに働く地震力による圧縮応力 | $\sigma 31$ | 218 （ MPa ） |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 追設 耐震基礎のずれ止めに働く地震力による圧縮応力 | $\sigma 31^{\prime}$ | $59(\mathrm{MPa})$ |

（2）基礎ボルトの引張応力

図 9．13－20 基礎ボルト埋込断面図

図 9．13－20より，既設埋設 I 形鋼の（D）点高さ L1，基礎ボルト間の距離 L2，呼び径 d1，数量 n1とし，追設埋設 I 形鋼の（D）点高さ L1＇，基礎ボルト間の距離 L2＇，呼び径 $\mathrm{d} 1^{\prime}$ ，，数量 n 1 ’ とする。

既設と追設の基礎ボルトそれぞれに働く力 P1，P1＇は，

$$
\mathrm{P} 1=\frac{\mathrm{F} 1 \times \mathrm{L} 1}{\mathrm{~L} 2}
$$

以上より，既設と追設の基礎ボルトそれぞれに働く引張応力 o 32，o 32’ は，

$\sigma 32^{\prime}=\frac{\mathrm{P} 1^{\prime}}{\frac{\pi}{4} \cdot \mathrm{~d} 1^{\prime 2} \cdot{ }^{2} 1^{\prime}}$

| 既設 基礎ボルトに働く引張応力 $\sigma 32$ | $158(\mathrm{MPa})$ |
| :--- | :--- | :--- |
| 追設 基礎ボルトに働く引張応力 $\sigma 32^{\prime}$ | $218(\mathrm{MPa})$ |

（3）基礎ボルトとコンクリートの付着力
後段で示す，7．項復水器基礎（No．V，VI，VII）評価（コーン破壊評価）にて行 う。

図 9．13－21 ずれ止め埋設金物寸法

図 9．13－21 より，既設埋設 I 形鋼の数量 n 2 ，高さ L3 とし，追設埋設 I 形鋼の数量 n2＇，高さ L3＇とする。既設埋設 I 形鋼，追設埋設 I 形鋼それぞれの等分布荷重 w1，w1’は，

$$
\mathrm{w} 1=\frac{\mathrm{F} 1}{\mathrm{n} 2 \cdot \mathrm{~L} 3}
$$

$$
\mathrm{w} 1^{\prime}=\frac{\mathrm{F} 2}{\mathrm{n} 2^{\prime} \cdot \mathrm{L} 3^{\prime}}
$$

既設埋設 I 形鋼，追設埋設 I 形鋼それぞれのつけ根部におけるモーメントM1， M1＇は，

$$
\mathrm{M} 1=\mathrm{w} 1 \cdot \frac{\mathrm{~L}^{2}}{2}
$$

$$
\mathrm{M1}^{\prime}=\mathrm{w} 1^{\prime} \cdot \frac{\mathrm{L} 3^{2}}{2}
$$

既設と追設の埋設 I 形鋼の断面係数をそれぞれ Z1，Z1＇とすると，既設と追設の埋設 I 形鋼それぞれの曲げ応力 $\sigma 33$ ，$\sigma 33^{\prime}$ は，

$\sigma 33^{\prime}=\frac{\mathrm{M1}^{\prime}}{\mathrm{Z1}^{\prime}}$

既設 埋設 I 形鋼の曲げ応力 $\sigma 33$	$18(\mathrm{MPa})$
追設 埋設 I 形鋼の曲げ応力 $\sigma 33^{\prime}$	$29(\mathrm{MPa})$

（5）埋設 I 形鋼フランジ部の曲げ応力
既設と追設の埋設 I 形鋼の等分布荷重 w1，w1＇は（4）項にて算出する。
図 9．13－21より，既設と追設の埋設 I 形鋼のフランジ部のつばの長さをそれぞれL6， L6’とすると，既設と追設それぞれの単位面積に働く荷重P2，P2’は，

$$
\mathrm{P} 2=\frac{\mathrm{w} 1}{\mathrm{~L} 5+\mathrm{L} 6 \times 2}
$$

$$
\mathrm{P} 2^{\prime}=\frac{\mathrm{w} 1^{\prime}}{\mathrm{L} 5^{\prime}+\mathrm{L} 6^{\prime} \times 2}
$$

既設と追設のフランジ付け根部（I）におけるそれぞれの曲げモーメントM3，M3’ は，

$$
\mathrm{M} 3=\frac{\mathrm{P} 2}{2} \cdot \mathrm{~L} 6^{2}
$$

$$
\mathrm{M} 3^{\prime}=\frac{\mathrm{P} 2^{\prime}}{2} \cdot \mathrm{~L} 6^{, 2}
$$

既設と追設のフランジ断面係数をそれぞれ Z2，Z2’とすると，既設と追設それぞれ のフランジ曲げ応力 o 34，o 34’は，
$\sigma 34=\frac{\mathrm{M} 3}{\mathrm{Z} 2}$

$$
\sigma 34^{\prime}=\frac{\mathrm{M} 3^{\prime}}{\mathrm{Z2}^{\prime}}
$$

| 既設 埋設 I 形鋼フランジの曲げ応力 $\sigma 34$ | $62(\mathrm{MPa})$ |
| :--- | :--- | :--- |
| 追設 埋設 I 形鋼フランジの曲げ応力 $\sigma 34^{\prime}$ | $98(\mathrm{MPa})$ |

（6）板の曲げ応力
基礎ボルトに働く力 P1，P1＇は（2）項にて算出した値である。
図 9．13－21 より，既設と追設のフランジから基礎ボルトまでの長さをそれぞれ L8， L8’とすると，既設と追設の板（Gにおけるそれぞれの曲げモーメントは， $\mathrm{M} 4=\mathrm{P} 1 \cdot \mathrm{~L} 8$

$\mathrm{M}^{\prime}=\mathrm{P} 1^{\prime} \cdot \mathrm{L}^{\prime}$

既設と追設の板の厚さをそれぞれ t3，t3’，既設と追設の板長さをそれぞれ L7， L7’，既設と追設のにおける断面係数をそれぞれZ3，Z3’とすると，

$$
\mathrm{Z} 3=\frac{1}{6} \cdot \mathrm{~L} 7 \cdot \mathrm{t} 3^{2}
$$

$$
\mathrm{Z3} 3^{\prime}=\frac{1}{6} \cdot \mathrm{~L} 7^{\prime} \cdot \mathrm{t} 3^{, 2}
$$

既設と追設の断面（Gにおける曲げ応力 $\sigma 35, ~ o 35$ ，は，

$$
\sigma 35=\frac{\mathrm{M} 4}{\mathrm{Z3}}
$$

$$
\begin{aligned}
\sigma 35^{\prime} & =\frac{\mathrm{M} 4^{\prime}}{\mathrm{Z3}} \\
& =\square=147 \mathrm{MPa}
\end{aligned}
$$

既設の断面（G）における曲げ応力 $\sigma 35$	$195(\mathrm{MPa})$
追設の断面（ $)$ における曲げ応力 $\sigma 35{ }^{\prime}$	$147(\mathrm{MPa})$

5．復水器水室フランジ変位量の評価
地震荷重による復水器水室フランジの変位によって，水室出入口弁の弁体と接触し ないことを確認する。3次元 FEM 解析を適用し，復水器水室フランジの変位量Lを求 めた。解析の詳細は「C． 3 次元 FEM 解析」に示す。

$$
\begin{array}{|l|l}
\hline \text { 復水器水室フランジの変位量 L } & 25(\mathrm{~mm})
\end{array}
$$

復水器水室フランジの許容変位量は図 9．13－22より， 150 mm とする。

A面矢視

図 9．13－22 復水器水室フランジ許容変位

6．復水器基礎（No．I～IV）の評価
（1）鉛直方向を拘束する基礎台配置
復水器の鉛直方向を拘束する基礎台は，図9．13－23に示す基礎台No．I～IVであり，復水器 1 台につき 4 個の基礎台で拘束している。なお，復水器運転中の熱伸びを吸収 するため図 9．13－24に示すとおり，復水器本体と基礎台間にすべり板を設置するとと もにボルト固定部は穴に余裕を持たせている。

図 9．13－23 鉛直方向を拘束する復水器基礎台（平面図）

ボルト固定部は，穴 に余裕を持たせる ことにより，熱伸び を吸収し，水平方向荷重を負担しない構造としている。

図 9．13－24 鉛直方向のみ拘束する構造の概略断面図
（2）復水器基礎の評価条件
復水器の強度部材を考慮した3次元モデルを作成し，3 次元 FEM 解析により各復水器基礎に作用する荷重を算出する。水平2方向及び鉛直方向それぞれに対し応答スペ クトル解析により荷重を求め，各方向による荷重をSRSSにて組み合わせる。各復水器基礎に作用する荷重を表9．13－15に示す。発生荷重の最も大きいNo．IVの値の荷重が，鉛直方向に作用するものとして評価する。解析の詳細は「C．3 次元 FEM 解析」に示 す。

表 9．13－15 各復水器基礎に作用する荷重

評価部位	算出荷重	発生荷重（kN）
No．I		
	Fo．II	
No．III		
No．IV		

（3）基礎コンクリート圧縮の評価
基礎コンクリートを圧縮する面 A は，

よって，基礎コンクリートにかかる圧縮応力 o 41 は，
$\sigma 41=\frac{\mathrm{F}}{\mathrm{A}}$

$$
\text { 基礎コンクリートにかかる圧縮応力 } \sigma 41 \quad 16 \text { (MPa) }
$$

7．復水器基礎（No．V，VI，VII）評価（コーン破壊評価）
表 9．13－14に示す荷重値を使用し，復水器の水平方向（細管軸方向）を拘束する基礎台 No．V，VI，VIIの基礎ボルトの引張（コーン破壊）を評価する。
（1）水平方向を拘束する基礎台及び耐震基礎のずれ止めの配置
復水器の水平方向（細管軸方向）を拘束する基礎台は，図 9．13－25 に示す基礎台 No．
V，VI，VIIである。

図 9．13－25 水平方向（細管軸方向）を拘束する復水器基礎台

耐震基礎のずれ止め形状と基礎ボルト配置寸法を図9．13－26に示し，既設と追設の基礎ボルトを評価する。コーン破壊評価上最も厳しい評価として，図中斜線部で示す投影面積を評価対象とする。

既設の耐震基礎のずれ止め
W／．／：投影面積

追設の耐震基礎のずれ止め

図 9．13－26 耐震基礎のずれ止め形状と基礎ボルト配置寸法
（2）既設基礎ボルトのコーン破壊評価

図 9．13－27 既設基礎ボルトの形状

供用状態 D（ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ ）：K1＝0． 6 ••JEAG4601－1991 表2．2－1 より
$\mathrm{Fc}=330 \mathrm{kgf} / \mathrm{cm}^{2}$

JEAG4601－1991より，基礎ボルト1本あたりの基礎コンクリートの許容引張荷重は， Pa1 $=\mathrm{K} 1 \times \mathrm{Ac} 1 \times \sqrt{\mathrm{Fc}} \times \mathrm{g}$

また，4．項より基礎ボルト（4 本）に働く力 P1 に \square kN となるため，基礎ボ ルト（1本）に働く力は，

既設基礎ボルト（1 本）に働く力
（kN）
（3）追設基礎ボルトのコーン破壊評価

図 9．13－28 追設基礎ボルトの形状と配置

供用状態 D（ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ ）：K1＝0．6，K2＝0．75 \cdots JEAG4601－1991 表2．2－1より，
$\mathrm{Fc}^{\prime}=337 \mathrm{kgf} / \mathrm{cm}^{2}$

$$
\alpha^{\prime}=\sqrt{\mathrm{Ac} 2^{\prime} / \mathrm{A}_{0}{ }^{\prime}}=\square
$$

JEAG4601－1991より，基礎ボルト1本あたりの基整コンクリートの許容引張荷重は， Pa1＇$=\mathrm{K} 1 \times \mathrm{Acl}^{\prime} \times \sqrt{\mathrm{Fc}}{ }^{\prime} \times \mathrm{g}$

$$
\mathrm{Pa} 2^{\prime}=\mathrm{K} 2 \times \alpha^{\prime} \times \mathrm{Ao}^{\prime} \times \mathrm{Fc}^{\prime} \times \mathrm{g}
$$

$$
\mathrm{Pa}=\mathrm{Min}\left(\mathrm{~Pa} 1^{\prime}, \mathrm{Pa} 2^{\prime}\right)=1.399 \times 10^{3} \mathrm{kN}
$$

また，4．項より基礎ボルト（8本）に働く力 P1＇は \square となるため，基礎ボル ト（1 本）に働く力は，

追設基礎ボルト（1 本）に働く力 $\quad \square$（kN）

8．評価結果

（1）復水器基礎部（No．V，VI，VII 耐震ずれ止め側）
復水器水平方向を拘束する基礎部（No．V，VI，VII 耐震ずれ止め側）の強度評価を行い，許容応力以下であることを確認した。

表 9．13－16 復水器基礎部（No．V，VI 耐震ずれ止め側）の応力

評価部位		算出応力 (MPa)		許容応力 (MPa)
底板と補強板 （圧縮）	既設	$\sigma 21$	152	270
耐震用ずれ止め （曲げ）	既設	$\sigma 22$	166	247
I 形補強 （圧縮）	既設	$\sigma 23$	79	270

表 9．13－17 復水器基礎部（No．VII 耐震ずれ止め側）の応力

評価部位		算出応力 (MPa)		許容応力 (MPa)
耐震用ずれ止め （曲げ）	追設	$\sigma 22$,	86	283
平板溶接部 （せん断）	追設	$\sigma 24$	99	163

（2）復水器基礎部（No．V，VI，VII 耐震基礎のずれ止め側）
復水器水平方向を拘束する基礎（No．V，VI，VII 耐震基礎のずれ止め側）の強度評価を行い，許容応力以下であることを確認した。

表 9．13－18 復水器基礎部（No．V，VI，VII 耐震基礎のずれ止め側）の応力

評価部位		算出応力 （MPa）		許容応力 （MPa）
耐震基礎のずれ止 め（圧縮）	既設	o 31	218	247
	追設		59	
基礎ボルト （引張）	既設	o 32	158	185
	追設		218	479
基礎ボルトと$\begin{aligned} & \text { コンクリート } \\ & \text { (付着) * } \end{aligned}$	既設	－	－	－
	追設			
埋設 I 形鋼 （曲げ）	既設	o 33	18	247
	追設		29	
埋設 I 形鋼 フランジ部 （曲げ）	既設	\％ 34	62	247
	追設		98	
板 （曲げ）	既設	o 35	195	247
	追設		147	

注記＊：復水器基礎（No．V，VI，VII）コンクリートのコーン破壊評価にて確認。
（3）復水器水室フランジ変位量
地震荷重による復水器水室フランジの変位量を評価し，許容変位量以下であること を確認した。

表 9．13－19 復水器水室フランジの変位量評価

評価部位	算出変位量 (mm)		許容変位量 (mm)
復水器水室フランジ （変位量）	L	25	150

（4）復水器基礎（No．I～IV）コンクリート
復水器鉛直方向を拘束する基礎（No．I～IV）のコンクリート圧縮を評価し，許容応力以下であることを確認した。

（5）復水器基礎（No．V，VI，VII）コンクリート
耐震基礎のずれ止め（No．V，VI，VII）の基礎ボルトの引張力を評価し，コンクリー トのコーン破壊に対して許容引張荷重以下であることを確認した。

表 9．13－21 復水器基礎（No．V，VI，VII）コンクリートのコーン破壊評価

評価部位	算出引張荷重 (kN)	許容引張荷重 (kN)
基礎コンクリート既設基礎ボルト部 $(1$ 本）のコーン破壊	5.064×10^{2}	6.225×10^{2}
基礎コンクリート追設基礎ボルト部 $(1$ 本）$)$	6.990×10^{2}	1.399×10^{3}

C． 3 次元 FEM 解析

1．解析条件
「B．復水器本体移動による接触影響の評価」において，実態に近い耐震評価を実施することを目的として，解析コード「ABAQUS」による応答スペクトル解析により耐震ずれ止め及び復水器基礎部に発生する荷重，復水器水室フランジ部の変位を求めた。耐震上考慮すべき復水器の強度部材を考慮し，3次元解析モデルをはり要素及びシ エル要素にて作成した。解析モデル鳥瞰図を図 9．13－29に示す。また，解析モデル作成における設定条件を表9．13－22に示す。

設計用地震力としては，添付書類「VI－2－別添2－1 溢水防護に係る施設の耐震計算 の方針」に基づき設定した，復水器基礎台高さ（0．P． 800 mm ）における基準地震動 S s の床応答スペクトルを適用した。

なお，「A．復水器水室落下の影響評価」においては，本解析結果は用いず，復水器基礎台高さにおける設計震度を用いて簡便に評価している。

図 9．13－29 復水器解析モデル鳥瞰図
補－9．13－57 枠囲みの内容は商業機密の観点から公開できません。

表 9．13－22 復水器解析モデル条件

温度条件		$66{ }^{\circ} \mathrm{C}$（最高使用温度）
材料物性	絶弾性係数	
	ポアソン比	
境界条件	耐震ずれ止め	
	復水器基整 （鉛直方向拘束）	
モデル要素数		

2．固有値解析結果
固有値解析結果を表9．13－23に示す。また，振動モード図を図9．13－30に示す。建設時工認における固有値評価では，復水器下部本体の曲げ・せん断剛性を考慮し細管軸方向及び軸直角方向それぞれの固有周期を算出していたが，本評価では，復水器の構造を詳細にモデル化し固有値解析を実施したことにより，より長周期の振動モード が確認されている。

表 9．13－23 固有値解析結果（ $1 / 3$ ）

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

補－9．13－59 枠囲みの内容は商業機密の観点から公開できません。

表 9．13－23 固有値解析結果（2／3）

次数	固有周期 （ s ）	刺激係数＊			
		水平方向		鉛直方向	
		$\begin{gathered} \text { EW 方向 } \\ (\text { 細管軸方向) } \end{gathered}$	NS 方向 （細管軸直方向）		
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47					
48					
49					
50					
51					
52					
53					
54					
55					
56					
57					
58					
59					
60					

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

補－9．13－60 枠囲みの内容は商業機密の観点から公開できません。

次数	固有周期 （ s ）	刺激係数＊			
		水平方向		鉛直方向	
		$\begin{gathered} \text { EW 方向 } \\ \text { (細管軸方向) } \end{gathered}$	NS 方向 （細管軸直方向）		
61					
62					
63					
64					
65					
66					
67					
68					
69					
70					
71					
72					
73					
74					
75					
76					
77					
78					
79					
80					
81					
82					
83					
84					
85					
注記＊	刺激係数は，モード質量を正規化し，固有ベクトルと算出した値を示す。			トリックス	

補－9．13－61 枠囲みの内容は商業機密の観点から公開できません。
\square
図 9．13－30 1 次振動モード図

3．耐震ずれ止めに発生する荷重の算出
水平 2 方向それぞれに対し応答スペクトル解析により耐震ずれ止めに発生する荷重 を求め，各方向による荷重をSRSSにて組み合わせることで，荷重を算出した。算出し た荷重値を表 9．13－24に示す。なお，評価部位の付番は図9．13－13に従う。

表 9．13－24 各耐震ずれ止めに作用する荷重

評価部位	発生荷重 (kN)
No．V	
No．VI	
No．VII	

4．復水器基礎に発生する荷重の算出
水平2方向及び鉛直方向それぞれに対し応答スペクトル解析により，鉛直方向拘束 の復水器基礎に発生する荷重を求め，各方向による荷重を SRSS にて組み合わせるこ とで，荷重を算出した。算出した荷重値を表9．13－25に示す。なお，評価部位の付番 は図 9．13－13に従う。

表 9．13－25 各復水器基礎に作用する荷重

評価部位	発生荷重 (kN)
No．I	
No．II	
No．III	
No．IV	

5．復水器水室フランジの変位量の算出
水平 2 方向及び鉛直方向それぞれに対し応答スペクトル解析により，軸方向加振時変位量及び軸直方向加振時変位量の和として，復水器水室フランジの変位量を算出した。算出した変位量を表9．13－26に示す。

表 9．13－26 水室フランジ変位量

評価部位	変位量（mm）
復水器水室フランジの変位量	25

補－9．13－63 枠囲みの内容は商業機密の観点から公開できません。

D．まとめ
復水器水室出入口弁への地震時復水器の影響として，復水器水室落下の影響及び復水器本体移動による接触影響について評価を実施し，評価対象部位に生じる応力等は許容限界を超えず，復水器水室出入口弁は，地震時の復水器損傷による影響を受けないこと を確認した。

復水器水室フランジ変位量算出に関する補足

1．概要
「B．復水器本体移動による接触影響の評価」においては，「C．3 次元 FEM 解析」に より，細管軸方向及び細管軸直方向を考慮した復水器水室フランジ部の変位量を算出し，復水器が復水器水室出入口弁に対して接触影響を及ぼさないことを確認している。

ここでは，参考として，仮に復水器基礎の拘束機能が喪失し，復水器本体が転倒する ことを想定した場合の復水器水室フランジの変位量を確認する。なお，復水器は床面に支持される構造であるが，周辺構造物として，タービンを支持するペデスタルが設置さ れていることを考慮する。
（1）復水器細管軸方向
復水器細管軸方向断面の概略を図－1 に示す。

図－1 復水器細管軸方向断面の概略図
（2）復水器細管軸直方向
復水器細管軸直方向断面の概略を図－2に示す。

図－2 復水器細管軸直方向断面の概略図

2．確認結果
図－1 及び図－2 に示すとおり，復水器細管軸方向及び軸直方向それぞれに対して，復水器とその周辺構造物の位置関係を踏まえた復水器水室フランジの変位量を算出し，仮に復水器基礎の拘束機能喪失による復水器本体の転倒を想定しても，復水器水室フランジ の変位量は，許容変位 150 mm を超えないことを確認した。また，算出結果に対して「C． 3 次元 FEM 解析」による解析結果を考慮しても，復水器水室フランジの変位量は，許容変位 150 mm を超えないことを確認した。

[^0]: 枠囲みの内容は商業機密の観点から公開できません。

[^1]: 枠囲みの内容は商業機密の観点から公開できません。

[^2]:

[^3]:

 参図 4．4－6 $\begin{gathered}\text { 荷重－ピン間変位線図 } \\ \text {（内圧なし）}\end{gathered}$

 試験結呆
 内压がない
 内压がないケースでは，最大荷重点に達した後，荷重が低下した（参図4．4－6）。Sm 相当の応力が生じる内
 圧を加えたケースでは，最大荷重点に達した後もほとんど荷重が低下しなかった（参図 4．4－7）。どちらのケー スでも誠験で得られた最大荷重は $2 \tan \theta$ 法により算定した崩㯖荷重（図中の実線と 2 点检線の交点を若干上
 回り， $2 \tan \theta$ 法が崩壊荷重を適度に保守的に予想することが分かった。 スでも誠験で得られた最大荷重は $2 \tan \theta$ 法により算定した崩壊荷重（図中の実線と 2 点䚪線の交点を若干上
 回り， $2 \tan \theta$ 法が崩壊荷重を適度に保守的に予想することが分かった。回り， $2 \tan \theta$ 法が崩䍝何重を適度に保守的に予想することが分かった。

