本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号機 工事計画審査資料		
資料番号	02-補-E-19-0600-25-2_改 8	
提出年月日	2021年10月14日	

補足-600-25-2【地下水位低下設備の耐震性に係る補足説明資料】

- 第1章 地下水位低下設備ドレーンの耐震性に係る補足説明
- 第2章 地下水位低下設備接続桝の耐震性に係る補足説明
- 第3章 地下水位低下設備揚水井戸の耐震性に係る補足説明

■ 第4章 地下水位低下設備揚水ポンプの加振試験に関する補足説明

- - - : 今回説明項目

第4章 地下水位低下設備揚水ポンプの加振試験に関する補足説明

目次

1.	試験概要	4-1
2.	振動特性把握試験 · · · · · · · · · · · · · · · · · · ·	• • • 4-5
2.	試験方法	4-3
2.	2 試験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • 4-5
3.	加振試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-6
3.	試験方法	4-6
3	. 試驗結果	4-8

1. 試験概要

地下水位低下設備のうち揚水ポンプは、ポンプと電動機が一体構造となった没水式ポンプのため、JEAG4601における適用形式と異なることから、機能確認済加速度を用いた評価とすることができない。そのため、機能確認済加速度を設定することを目的とし、加振設備を用いて女川原子力発電所第2号機に設置する同形式のポンプを加振した。加振台の平面図を図1-1に、揚水ポンプ外形図を図1-2に示す。試験方法としては振動特性把握試験を実施し、固有振動数を求め、剛構造であることを確認した後、機器の据付位置における評価用加速度を包絡する加振波で加振試験を実施した。

加振試験後は、性能試験及び性能試験後の分解点検を実施することで健全性を確認した。振動試験装置外観を図 1-3 に、加振台仕様を表 1-1 に、試験体と実機の主な仕様の比較を表 1-2 に示す。

また、揚水ポンプの振動特性把握試験及び加振試験は、没水式ポンプであるが、没水による応答低減効果がポンプ機能に影響を与える変形や損傷リスクを低減させることから、加振に対して厳しい条件となる気中にて実施しており、没水による水の付加質量を考慮しても剛構造であることを 2.2 項に示すとおり確認している。

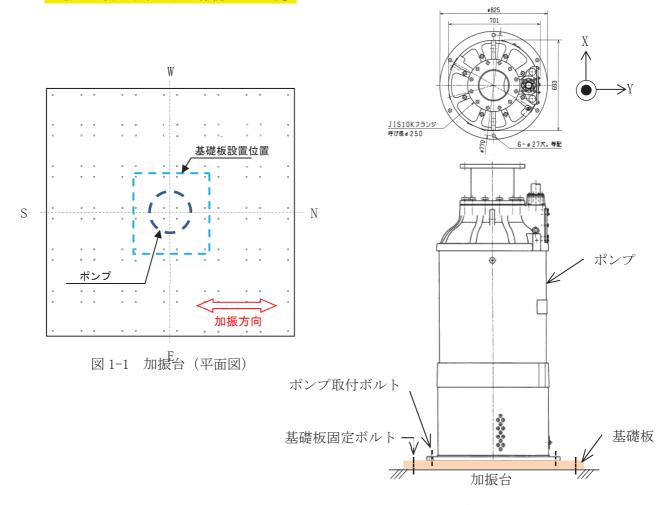


図 1-2 揚水ポンプ外形図

図 1-3 振動試験装置外観

表 1-1 加振台仕様

寸法	6 [m] ×6 [m]
最大積載質量	100 [ton]
周波数範囲	0 - 50 [Hz]
加振力	水平 120 [ton·g]
加加力	鉛直 200 [ton·g]

表 1-2 揚水ポンプの主な仕様の比較

仁	比様	試験体	実機
外刑		φ825 [mm] (縦) φ825 [mm] (横) 1847 [mm] (高さ)	同左
户	<u> </u>		⊟ +
Į į	量	1500* [kg]	同左
ポンプ	種類	うず巻形	同左
<i>ハンフ</i>	容量	$6.25 [m^3/min]$	同左
電動機	種類	誘導電動機	同左
电剔煖	容量	110 [kW]	同左

注記*:ケーブルを除くポンプ単体概算乾燥質量

2. 振動特性把握試験

2.1 試験方法

ポンプに加速度センサを取り付け、加振波として 50Hz までの範囲でランダム波を使用し、水平 2 方向と鉛直方向の 3 方向で加振を実施し、応答加速度から周波数応答関数を得て、固有周期を求める。また、図 1-1 に示す加振方向に模擬地震波を付加するため、ポンプ加振時は X 方向と Y 方向で 90 度回転させて設置する。加速度センサ取付位置を図 2-1 に、ポンプに取り付けた加速度センサの設置箇所を表 2-1 に示す。

図 2-1(a) 加速度センサ取付位置(水平 X 方向+鉛直方向加振試験)

図 2-1(b) 加速度センサ取付位置(水平 Y 方向+鉛直方向加振試験)

表 2-1 加速度センサ設置箇所

部位	水平X方向	水平Y方向	鉛直方向
加振台	A1X	A1Y	A1Z
ポンプ中央部	A2X	A2Y	A2Z
ポンプ頂部	АЗХ	АЗҮ	A3Z

2.2 試験結果

試験により得られた周波数応答関数を図2-2に,各方向の最大応答共振点と固有周期を表2-2に示す。各方向について剛構造と見なせる固有周期0.05秒を十分に下回る結果が得られた。

また、揚水ポンプは没水式であり水の付加質量を考慮した場合でも、固有周期が約 0.03<mark>8</mark> 秒であり、剛構造であることを確認した。

固有周期の算出にあたっては、補足説明資料「補足-600-40-40 耐震評価における流体中の構造物に対する付加質量及び応答低減効果の考慮」に基づいて算出した気中-水中間の補正比率に最も低い共振点となる固有振動数を乗じて固有振動数を求める。

 $\sqrt{\frac{M_1}{M_1 + M_{11}}} \quad = \quad 0.823$

M₁ : 1500kg(ポンプ質量)

M₁₁:715kg(付加水)

32.3 × 0.823 ≒ 26.5Hz (約 0.038 秒)

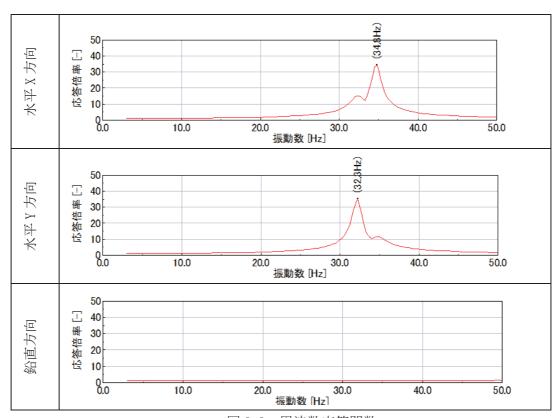


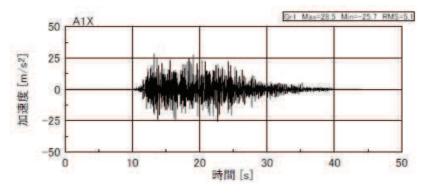
図 2-2 周波数応答関数

表 2-2 各方向の最大応答共振点と固有周期

方向	共振点(Hz)	固有周期(s)
水平X方向	約 35Hz	約 0.029
水平Y方向	約 32Hz	約 0.031
鉛直方向	50Hz 以上	0.02以下

3. 加振試験

3.1 試験方法


機器の据付位置における評価用加速度を包絡する加振波を生成し、加振試験を実施する。加振波は水平(X or Y)+鉛直方向を加振方向として、次のように生成される。

- 添付書類「VI-2-13-5 地下水位低下設備揚水井戸の地震応答計算書」に示す揚水井戸の地震応答から、添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき作成した設計用床応答曲線を包絡する試験用床応答曲線を作成する。
- ・ 作成された<mark>試験用床応答曲線</mark>を満足する模擬地震波を生成する。

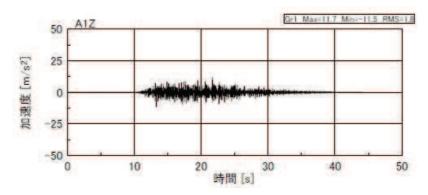
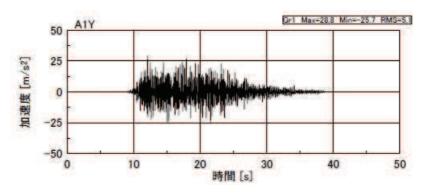
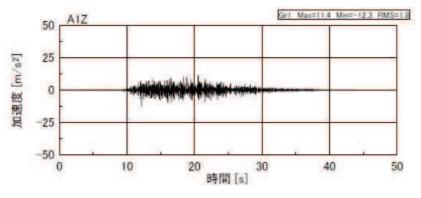

加振試験における試験条件を表 3-1 に,加振波を図 3-1 に示す。

表 3-1 加振試験条件


項目	試験条件
加振地震波	模擬地震波
加振方向	水平X方向+鉛直方向
	水平Y方向+鉛直方向
運転状態	停止中加振
取付状態	加振台にボルトにて取り付け


a. 水平 X 方向(水平 X 方向+鉛直方向加振)

b. 鉛直方向(水平 X 方向+鉛直方向加振)

c. 水平 Y 方向(水平 Y 方向+鉛直方向加振)

d. 鉛直方向(水平 Y 方向+鉛直方向加振)

図 3-1 加振試験に用いた加振波(加振台上での計測データ)の加速度波形

3.2 試験結果

加振試験及び加振試験後の性能試験について機器に異常がないことを確認した。本試験における加振台での最大加速度を表 3-2 に示し、機能確認済加速度を表 3-3 に示す。

図 3-2 に加速度応答スペクトルの比較を示す。また、加振試験後の性能試験結果を図 3-3 に示す。

- (1) 加振台の加速度応答スペクトルがターゲットスペクトル以上であること。(図 3-2 参照)
- (2) 加振試験後にポンプ取付ボルトの緩みが無いこと。
- (3) 加振試験後の性能試験において、ポンプの健全性並びに動作性に異常のないこと。
 - ・性能試験時の吐出流量 6.25m³/min で、全揚程が 52m 以上であること。(図 3-3 参照)
- (4) 性能試験後の分解点検において、内部構造物に割れ等の異常がないこと。

表 3-2 加振台の最大加速度

 (m/s^2)

加振方向	水平 X 方向+鉛直方向	水平 Y 方向+鉛直方向
水平	28.5 (2.90G)	28.8 (2.93G)
鉛直	11.7 (1.19G)	12.3 (1.25G)

表 3-3 機能確認済加速度

 $(\times 9.8 \text{m/s}^2)$

評価部位	方向	機能確認済加速度
揚水ポンプ	水平方向	2.90
	鉛直方向	1. 19

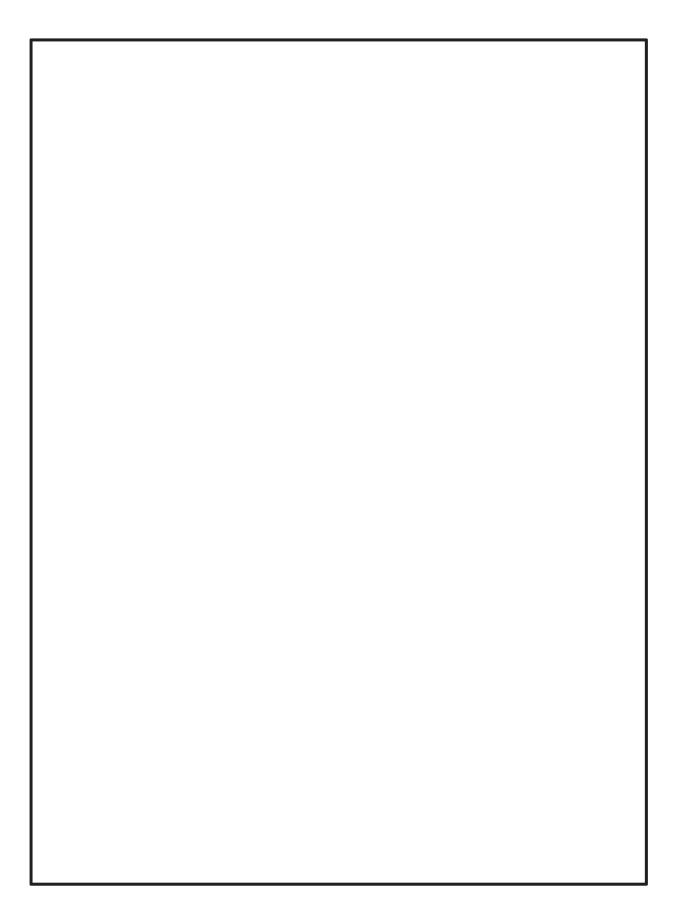


図 3-2 加速度応答スペクトルの比較

枠囲みの内容は商業機密の観点から公開できません。

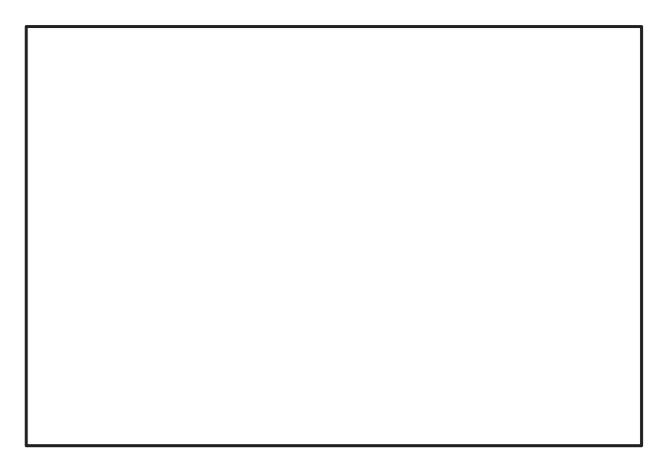


図 3-3 加振試験後の性能試験結果