```
本資料のうち, 枠囲みの内容
は商業機密の観点から公開で
きません。
```

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －工－B－20－0142＿改 3
提出年月日	2021 年 10 月 14 日

VI－3－別添 6－3 炉心シュラウド支持ロッドの強度計算書
1．一般事項 1
1． 1 記号の説明 1
1．2 形状•寸法•材料 1
1．3 解析範囲 1
1．4 計算結果の概要 1
2．計算条件 9
2.1 重大事故等時の条件 9
2．2 材料 9
2.3 荷重の組合せ及び運転状態 9
2.4 荷重の組合せ及び応力評価 9
2.5 許容応力 9
2.6 応力の記号と方向 9
3．応力計算 10
3.1 応力評価点 10
3.2 上部サポートの外荷重による応力 10
3．2．1 荷重条件 10
3．2．2 計算方法 10
3.3 上部タイロッド，下部タイロッド及びトグルクレビスの外荷重による応力 11
3．3．1 荷重条件 11
3．3．2 計算方法 11
3．4 応力の評価 11
4．応力強さの評価 12
4.1 一次一般膜応力強さの評価 12
4.2 一次一般膜 + 一次曲げ応力強さの評価 12
5．特別な応力の評価 13
5.1 せん断応力の評価 13
5．1．1 せん断面積 13
5．1．2 純せん断荷重 13
5．1．3 平均せん断応力 13
5．1．4 せん断応力の評価 13

図表目次

図 1－1 形状•寸法•材料•応力評価点 2
表 1－1 計算結果の概要 7
表 3－1 断面性状 14
表 4－1 一次一般膜応力強さの評価のまとめ 15
表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ 16
表 5－1 せん断応力の評価 17

1．一般事項
本計算書は，炉心シュラウド支持ロッドの強度計算書である。
炉心シュラウド支持ロッドは，炉心支持構造物であるため，添付書類「VI－2－3－3－2－ 1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

1．1 記号の説明
記号の説明は，「応力解析の方針」（2）強度評価編の 2.4 節に示す。 さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	断面積	mm^{2}
D。	外径	mm
I	断面二次モーメント	mm^{4}
L	荷重作用点と応力評価断面との距離	mm
t	板厚	mm
b	六角断面の対面距離	mm
τ	平均せん断応力	MPa

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．3 解析範囲
解析範囲を図1－1に示す。

1．4 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図 1－1（1）形状•寸法•材料•応力評価点（単位：mm）

A 解絃細

注：上部ウェッジは原子炉圧力容器に面接触し，上部サポート（タイプ 1）と機械的に接合している。上部サポート（タイプ 1）は炉心シュラウド上端に嵌合するとともに上部胴側面に面接触している。

図 1－1（2）形状•寸法•材料•応力評価点（単位：mm）

B 部詳細

注：上部ウェッジは原子炉圧力容器に面接触し，上部サポート（タイプ 2）と機械的に接合している。上部サポート（タイプ 2）は炉心シュラウド上端に嵌合するとともに上部胴側面に面接触している。

図 1－1（3）形状•寸法•材料•応力評価点（単位：mm）

注：下部タイロッドは上部タイロッドとは異なり，タイプ 1 及びタイプ 2 で構造上の差異がない。なお，下部スタビライザは原子炉圧力容器に面接触し，下部ウェッジと機械的に接合している。また，下部ウェ ッジは炉心シュラウドに面接触している。上部タイロッド及び下部タイロッドは下部スタビライザに機械的に接合されている。炉心支持板ウェッジは炉心シュラウドと炉心支持板に面接触している

図 1－1（4）形状•寸法•材料•応力評価点（単位：mm）

F－F 断面
（トグルクレビス）

G－G迦面
（トグルピン）

D 部詳細

注：斜線部はトグルクレビス及びトグルピンの評価対象部を示す。なお，下部タイロッドはトグルクレビス と機械的に接合されている。トグルはトグルピンによりトグルクレビスにピン結合されている。トグルはシ ュラウドサポートプレート下面に面接触している。

図 1－1（5）形状•寸法•材料•応力評価点（単位：mm）

表 1－1（1）計算結果の概要

（単位：MPa）

部分及び材料	運転状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
上部サポート（タイプ 1） NCF750 相当 （ASME SB－637 UNS N07750）	V	22	585	P01－P02	38	878	P01－P02
上部サポート（タイプ 2） NCF750相当 （ASME SB－637 UNS N07750）	V	23	585	P03－P04	41	878	P03－P04
上部タイロッド（タイプ 1） GXM1 相当 （ASME SA－182 F XM－19）	V	26	367	P05－P06	26	550	P05－P06
```上部タイロッド (タイプ 2) GXM1 相当 (ASME SA-182 F XM-19)```	V	26	367	P07－P08	26	550	P07－P08
下部タイロッド NCF750 相当 （ASME SB－637 UNS N07750）	V	31	585	P09－P10	31	878	P09－P10
トグルクレビス NCF750 相当 （ASME SB－637 UNS N07750）	V	47	585	P11－P12	47	878	P11－P12
上部タイロッド（タイプ 1）   GXM1 相当   （ASME SA－182 F XM－19）	V	21	367	P13－P14	21	550	P13－P14
上部タイロッド（タイプ 2）   GXM1 相当   （ASME SA－182 F XM－19）	V	14	367	P15－P16	14	550	P15－P16

表 1－1（2）計算結果の概要
（単位：MPa）

部分及び材料	運転状態	せん断応力	
		平均せん断応力	許容応力
トグルピン		30	386
NCF750 相当		30	
（ASME SB－637 UNS N07750）			

2．計算条件
2.1 重大事故等時の条件

重大事故等時の条件を「応力解析の方針」（2）強度評価編の4．2節に示す。

2． 2 材料
各部の材料を図1－1に示す。
2.3 荷重の組合せ及び運転状態

荷重の組合せ及び運転状態を「応力解析の方針」（2）強度評価編の 3.3 節に示す。
2.4 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」（2）強度評価編の4．3節に示す。

2． 5 許容応力
許容応力を「応力解析の方針」（2）強度評価編の3．4節に示す。
2.6 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。


上部サポート
上部サポート以外

3．応力計算
3.1 応力評価点

応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。
3.2 上部サポートの外荷重による応力

3．2．1 荷重条件（L02，L04）
炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。

3．2．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。

$$
\tau_{t \ell}=\frac{\mathrm{V}}{\mathrm{~A}}
$$

（2）一次一般膜＋一次曲げ応力外荷重による一次一般膜 + 一次曲げ応力は，次式で求める。

$$
\sigma_{\ell}=\frac{\mathrm{V} \cdot \mathrm{~L}}{2 \cdot \mathrm{I}} \cdot \frac{\mathrm{t}}{2}
$$

$$
\tau_{\mathrm{t} \ell}=\frac{\mathrm{V}}{\mathrm{~A}}
$$

3.3 上部タイロッド，下部タイロッド及びトグルクレビスの外荷重による応力

3．3．1 荷重条件（L02，L04）
炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」（2）強度評価編の4．1節に示す。

3．3．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。

$$
\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{~A}}
$$

（2）一次一般膜＋一次曲げ応力
外荷重による一次曲げ応力は，存在しない。したがって，一次一般膜 + 一次曲げ応力は，一次一般膜応力と同じである。

## 3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」（2）強度評価編の5．3．2項に定めると おりである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価運転状態Vにおける評価を表4－1に示す。

表 4－1 より，運転状態 V の一次一般膜応力強さは，「応力解析の方針」（2）強度評価編の 3.4 節に示す許容応力を満足する。
4.2 一次一般膜＋一次曲げ応力強さの評価運転状態Vにおける評価を表4－2 に示す。

表 4－2 より，運転状態 Vの一次一般膜＋一次曲げ応力強さは，「応力解析の方針」 （2）強度評価編の 3.4 節に示す許容応力を満足する。

5．特別な応力の評価
炉心シュラウド支持ロッドの軸力により，トグルピンにはせん断応力が生じる。これ について，せん断応力の評価を行う。
5.1 せん断応力の評価

5．1．1 せん断面積
（1）トグルピン（図 1－1（5）参照）
トグルピンが鉛直荷重を受けるせん断面積は次のようになる。


5．1．2 純せん断荷重
運転状態Vにおけるトグルピンに作用する鉛直力を「応力解析の方針」（2）強度評価編の 4.1 節に示す。

5．1．3 平均せん断応力
平均せん断応力 $\tau$ は，次式によって求める。

$$
\tau=\frac{\mathrm{V}}{\mathrm{~A}}
$$

## 5．1．4 せん断応力の評価

運転状態 V における評価を表5－1 に示す。
表 5－1 より，運転状態 Vの平均せん断応力は，「応力解析の方針」（2）強度評価編の3．4節に示す許容応力を満足する。

表 3－1 断面性状

応力評価点	$\begin{aligned} & \mathrm{D} \text { o } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{b} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$
P01，P02					
P03，P04					
P05，P06					
P07，P08					
P09，P10					
P11，P12					
P13，P14					
P15，P16					

表 4－1 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	22	585
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	22	585
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	23	585
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	23	585
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	26	367
$\begin{aligned} & \hline \text { P05' } \\ & \text { P06, } \end{aligned}$	26	367
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	26	367
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	26	367
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	31	585
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	31	585
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	47	585
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	47	585
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	21	367
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	21	367
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	14	367
$\begin{aligned} & \text { P15 } \\ & \text { P16, } \end{aligned}$	14	367

表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	38	878
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	38	878
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	41	878
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	41	878
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	26	550
$\begin{aligned} & \hline \text { P05' } \\ & \text { P06 } \end{aligned}$	26	550
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	26	550
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	26	550
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \end{aligned}$	31	878
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	31	878
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	47	878
$\begin{aligned} & \hline \text { P11' } \\ & \text { P12 } \end{aligned}$	47	878
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	21	550
$\begin{aligned} & \text { P13' } \\ & \text { P14 } \end{aligned}$	21	550
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	14	550
$\begin{aligned} & \text { P15 } \\ & \text { P16, } \end{aligned}$	14	550

表 5－1 せん断応力の評価

					（単位：MPa）
応力評価面	運転状態	平均せん断応力	許容応力		
トグルピン	V	30	386		

